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I. Code Description

ProjectX is a high-order, adaptive discontinuous Galerkin finite element solver. The DG discretization
uses Roe’s approximate Riemann solver1 for the inviscid numerical flux, Bassi and Rebay’s second discretiza-
tion (BR2)2 for the viscous numerical flux, and Oliver’s asymptotically dual-consistent discretization3 for
the RANS source term. Modifications have been made to the Spalart-Allmaras turbulence model4 as de-
scribed by Oliver5 to improve robustness of the RANS model for higher-order discretizations. (The model
incorporates few additional modifications by Modisette.6)

The solution to the discretized system is obtained using a Newton-based nonlinear solver with pseudo-time
continuation and a line search on unsteady residual that explicitly controls the accuracy of time integration.6,7

The combination improves solver robustness, particularly through initial transients and on coarse meshes.
The linear system arising in each pseudo-time step is solved using GMRES,8 preconditioned with an in-place
block-ILU(0) factorization9 with minimum discarded fill reordering and p = 0 algebraic coarse correction.10

An output-based, anisotropic simplex adaptation algorithm is used to control the discretization error.11

The algorithm iterates toward a mesh that minimizes the output error for a given number of degrees of free-
dom. The anisotropic adaptation decisions are entirely driven by the behavior of an output-based a posteriori
error estimate; thus, the method handles any discretization order, naturally incorporates both the primal
and adjoint solution behaviors, and robustly treats irregular features. The output error estimate uses the
dual-weighted residual (DWR) method of Becker and Rannacher.12 A new mesh that conforms to the metric
request is generated using using BAMG (Bidimensional Anisotropic Mesh Generator),13 and higher-order,
globally curved meshes are constructed through linear elasticity.3

II. Case Description

II.A. Flow Condition

This case considers turbulent flow over a three-element MDA 30P-30N airfoil, with a freestream Mach
number of M∞ = 0.2, an angle of attack of α = 16◦, and a Reynolds number based on chord (in the
retracted configuration) of Rec = 9× 106. The dynamic viscosity is assumed to adhere to Sutherland’s law,
the Prandtl number is set to Pr = 0.71, and the freestream turbulence level is set to ρ∞ν̃∞ = 5.0ρ∞ν∞.

II.B. Domain Specification

A square outer domain with the half-edge length of R = 30000c is used for this case (i.e. the square is
60000c × 60000c). To minimize the effect of the farfield boundary location for this high-lift configuration,
the flux at farfield boundaries is determined using the Roe flux in which the exterior state is set to the
freestream conditions (instead of specifying the stagnation quantities and flow angle at the inflow and the
static pressure at the outflow).14
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II.C. Convergence Criterion

The `2 norm of the DG residual of non-dimensionalized Navier-Stokes equations is used to monitor conver-
gence to the steady state. Our solver operates on non-dimensionalized variables
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The DG residual is computed against the Lagrange test functions with equidistributed nodes, and the `2

norm of the residual is converged to 1×10−9. (Note that the solver time would not be significantly influenced
for any reasonable choice of the tolerance (say < 1×10−7), as we achieve Newton convergence in this regime.
With the specified non-dimensionalization, the difference between the `2 residual and the mass residual is
well within this offset.)

II.D. Hardware Specification

All computations are performed in serial on a Linux machine with an Intel i7-2600 processor and 16 Gbytes
of RAM. The machine produces a Taubench time of 6.60 seconds.

II.E. Residual Timing

The time for performing a single dof = 250, 000 residual evaluation, including the full Jacobian construction
for the implicit solver, is summarized in Table 1. The residual evaluation is performed on a 22097-element
mesh and the times are scaled to 250,000 degrees of freedom.

p time (work unit)

1 4.29

2 3.48

3 3.76

Table 1. dof = 250, 000 residual evaluation time (including the full Jacobian construction).

II.F. Initial Mesh

The initial mesh used for this case is shown in Figure 1. The airfoil geometry is represented using q = 3
simplex elements. The mesh does not have any refinement in the boundary layer region and is unsuited for
RANS calculation. Our objective is to demonstrate a fully-automated transition to a RANS mesh using the
adaptive algorithm. After each mesh refinement, the geometry representation is refined by re-sampling from
a fine cubic spline defining the three-element MDA airfoil geometry.

Figure 1. The initial mesh (2343 elements).
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II.G. Adaptation Procedure and Data Reported

For each solution order p, the numbers of degrees of freedom considered are:

p = 1, dof = {15000, 30000, 60000, 90000, 120000}
p = 2, dof = {30000, 60000, 90000, 120000}
p = 3, dof = {60000, 90000, 120000}.

For each p-dof combination, a family of optimized meshes are generated using our anisotropic simplex mesh
adaptation algorithm.11 The output adapted is the drag on the airfoil.

Similar to the transonic RANS flow considered in C2.2, it is difficult to converge the nonlinear problems
arising from the p > 1 distributions on coarse meshes with no boundary layer resolution. To overcome
the convergence difficulty, we perform the initial transition from the “Euler” mesh shown in Figure 1 to
a coarse RANS mesh using a p = 1 discretization. Then, we start the adaptation sequence for the p > 1
discretizations starting from the coarse RANS mesh.

The cd error variation during this initial transition process is shown in Figure 2. Starting from the initial
mesh shown in Figure 1, nine p = 1, dof = 15, 000 adaptation iterations are performed to obtained a coarse
RANS mesh shown in Figure 3(a). On this coarse mesh, not all flow features are resolved; for instance, the
lack of solution resolution in the lower side of the flap is apparent, and the drag error is over 80 counts.
However, this mesh provides sufficient resolution for the p = 2 adaptation sequence to be started and carried
out in a reliable manner. Nine additional p = 2, dof = 30, 000 adaptation iterations results in a coarse p = 2
mesh shown in Figure 3(b). While the mesh is still coarse, the mesh is sufficient to provide the drag accuracy
of 3 counts. Note that the adaptation targets select off-body features, such as the wake from the slat that
interacts with the main element, before some on-body features, such as the boundary layer on the lower side
of the main element.
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Figure 2. The drag coefficient error history in the Euler-to-RANS mesh transition.

As in Case 1.1, the performance of each p-dof is assessed by averaging the error obtained on five realization
of meshes in the family. The time reported is the total time required to reach the first realization of the
p-dof-optimized mesh starting from the initial mesh shown in Figure 1; this includes multiple flow solves and
adaptation overhead. For example, the time to perform the entire 18 adaptation cycles is reported for the
p = 2, dof = 30, 000 case, whose drag error history is shown in Figure 2. (See the description provided in
Case 1.1 for details on the error assessment procedure.)
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(a) p = 1, dof = 15, 000, Ecd = 8.5× 10−3

(b) p = 2, dof = 30, 000, Ecd = 2.9× 10−4

Figure 3. Coarse p = 1 and p = 2 meshes obtained after the initial transition.

III. Results

III.A. Error Convergence

The reference solution is obtained using the cd-adapted p = 3, dof = 250000 discretization. The reference cd
and cl values are

cd = 0.047112± 2× 10−6

cl = 4.1697,

where the error estimates are based on the adjoint-based error estimates and the fluctuation in the output
values for this family of optimized meshes.

Figure 4(a) shows the drag error against the number of degrees of freedom. The p > 1 discretizations
outperforms the p = 1 discretization for the entire range of degrees of freedom considered. At 120000
degrees of freedom, the p = 1 discretization still produces cd error of several drag counts, whereas the p = 2
discretization requires less than 30,000 degrees of freedom to achieve a lower error level. The superiority
of the higher-order discretizations is likely due to their ability to effectively convect information about the
flow from the slat downstream to the flap. Figure 4(b) shows that the higher-order discretizations are also
more efficient than the p = 1 discretization in terms of the work unit. In the range of accuracy required for
a high-fidelity engineering application (say the cd error of 1.0 to 0.1 counts), the p = 2 discretization is the
most efficient discretization both in terms of the numbers of degrees of freedom and the work unit.

The lift results, shown in Figure 4(c), also confirm that the p > 1 discretizations outperform the p = 1
discretization for this high-lift configuration. The lift results are noisier than the drag results, perhaps
because our meshes are drag-optimized. Our experience suggests that a stronger refinement along stagnation
streamlines is necessary for accurate lift calculation than drag.

III.B. Adapted Meshes

Examples of drag-adapted meshes are shown in Figure 5. Various features in the primal and adjoint solutions
are resolved through adaptive refinement. Adaptation targets not only the boundary layers, but also the
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Figure 4. Error convergence.

off-body features, such as wakes, that are crucial to accurately characterizing the interactions between the
three elements of the high-lift airfoil (e.g. the main element wake interacting with the flap); the adjoint-based
adaptation quantifies the importance of these interactions with respect to the output of interest and adapt
as necessary.

Comparison of the p = 1, dof = 120, 000 mesh (Figure 5(a)) and the p = 2, dof = 30, 000 mesh
(Figure 5(b)) shows the differences in the meshes required to compute the drag accurately to several counts.
The p = 2 mesh is much sparser in the off body regions. The boundary layer in the lower side of the main
element and the flap are also not resolved using on the p = 2 mesh; nevertheless, the p = 2 discretization
achieves a lower drag error on this coarse mesh than the p = 1 discretization on a much finer mesh.

Comparison of the p = 2, dof = 30, 000 mesh (Figure 5(b)) and the p = 2, dof = 120, 000 mesh
(Figure 5(c)) shows how the mesh evolves to achieve a lower error. The close up of the various regions of the
p = 2, dof = 120, 000 mesh is shown in Figure 6. The close up of the slat region and the flap region reveals
anisotropic refinement of the wakes to effective capture the interaction among the multiple elements of the
airfoil. The farfield view shows that the adjoint-based refinement results in the refinement of both the wake
and the stagnation streamline. The comparison of the mesh and a few components of the solution shown in
Figure 7 clearly shows how the meshes generated are specifically designed for this flow.
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(a) p = 1, dof = 120, 000, Ecd = 4.8× 10−4

(b) p = 3, dof = 30, 000, Ecd = 2.9× 10−4

(c) p = 3, dof = 120, 000, Ecd = 1.3× 10−6

Figure 5. Select adapted meshes.
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(a) overview

(b) slat (c) flap

(d) far field

Figure 6. An example of adapted mesh. (p = 2, dof = 120000)

III.C. Surface Quantity Distributions

The pressure and skin coefficient distributions obtained on a p = 3, dof = 120, 000 mesh are shown in
Figure 8. While the cp distribution is smooth, the cf distribution is not as smooth as one might expect
based on the low cd error. In particular, the cf distribution on the lower side of the flap is noisy. This
may be due to the use of fully-unstructured simplex elements with high aspect ratio (and a large maximum
angle); we expect the cf distribution on a structured, quadrilateral mesh that achieve a similar error level
to be much smoother.
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(a) Mach number

(b) SA working variable (ρν̃)

(c) mass adjoint (drag output)

Figure 7. The Mach number, the SA working variable, and the mass adjoint for the drag output.
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Figure 8. The pressure and skin friction coefficient distributions.
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