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We apply an optimization-based framework for anisotropic simplex mesh adaptation to
high-order discontinuous Galerkin discretizations of two-dimensional, steady-state aerody-
namic flows. The framework iterates toward a mesh that minimizes the output error for
a given number of degrees of freedom by considering a continuous optimization problem
of the Riemannian metric field. The adaptation procedure consists of three key steps:
sampling of the anisotropic error behavior using element-wise local solves; synthesis of the
local errors to construct a surrogate error model in the metric space; and optimization
of the surrogate model to drive the mesh toward optimality. The anisotropic adaptation
decisions are entirely driven by the behavior of the a posteriori error estimate without
making a priori assumptions about the solution behavior. As a result, the method han-
dles any discretization order, naturally incorporates both the primal and adjoint solution
behaviors, and robustly treats irregular features. The numerical results demonstrate that
the proposed method is at least as competitive as the previous method that relies on a
priori assumption of the solution behavior, and, in many cases, outperforms the previous
method by over an order of magnitude in terms of the output accuracy for a given number
of degrees of freedom.

I. Introduction

For decades, significant research effort has been devoted to improve computational efficiency and relia-
bility of aerodynamic simulations through automatic adaptation. The development of adaptive schemes has
been motivated by the lack of solution accuracy that results from the reliance on best-practice guidelines for
mesh generation. Mavriplis demonstrated deficiencies of the non-adaptive solvers even for a routinely-solved
geometry such as the wing-only configuration.1 The lack of solution accuracy and reliability severely limits
the applicability of non-adaptive solvers to explore radically different designs, populate databases, or optimize
configurations—the areas in which computational simulations should excel. Progress has been made in the
development of adaptive solution strategies that overcome the shortcomings of the traditional, non-adaptive
solvers. In particular, adjoint-based error estimation methods, such as the dual-weighted residual (DWR)
method of Becker and Rannacher,2,3 provide a mathematical framework for assessing the quality of the per-
formance variables, such as lift and drag, in practical engineering simulations. The effectiveness of isotropic
adaptation strategies that incorporate the DWR error estimate have been demonstrated in numerous early
studies.4–6

While the DWR error estimate can readily drive isotropic adaptation, it is insufficient for making
anisotropy decisions as it only assigns a single scalar value that indicates the magnitude of the error to each
element. The inability to drive anisotropic adaptation is a major limitation, especially for high Reynolds
number aerodynamic flows, with many directional features such as boundary layers, wakes, and shocks. In
order to overcome the lack of information necessary to make anisotropy decisions, Venditti and Darmofal
combined the DWR technique with an anisotropy detection based on the Hessian of the Mach number to
drive output-based adaptation for the compressible Navier-Stokes equations.7 Fidkowski and Darmofal8 and
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Leicht and Hartmann9 later generalized the method to higher-order discretizations by using the higher-order
derivative of the Mach number to guide their anisotropy decision. While the method produces anisotropic
meshes, the choice of the Mach number to drive the anisotropic decision is arbitrary even for controlling
the global quality of the solution. In the context of output-based adaptation, the method does not account
for the behavior of the adjoint solution, which can have a different anisotropy requirement from the primal
solution.

This work applies our optimization-based framework for anisotropic simplex mesh adaptation10 to two-
dimensional, steady-state aerodynamic flows. Utilizing the mesh-metric duality proposed by Loseille and
Alauzet,11 we cast the mesh adaptation problem as a continuous constrained optimization problem of the
field {M(x)}x∈Ω of the Riemannian metric tensors that encode the approximability of the elements. Namely,
we seek the optimal solution, M∗, to the tensor field optimization problem

M∗ = arg inf
M
E(M) s.t. C(M) ≤ N,

where E(·) is the error functional, C(·) is the cost functional, and N is the maximum permissible cost. A
similar idea was recently pursued by Loseille et al.11–13 The idea can be thought of as a generalization of the
mesh optimization formulation for isotropic h-adaptation presented by Brandt,14 Rannacher,15 and Section 5
of Becker and Rannacher3 to anisotropic h-adaptation. Our optimization framework differs from the previous
approaches in that the error functional is approximated from the a posteriori error estimates, instead of from
the a priori assumptions of the error function behavior. In particular, we first perform a series of local solves
to survey the behavior of the local error as a function of the tensor field. The information gathered by the
local sampling is then synthesized using a tensor-error interpolation technique, which incorporates a novel
tensor manipulation framework developed by Pennec et al.16 Finally, the mesh is driven toward optimality
by manipulating the tensor field based on the reconstructed error function.

The idea of using local solves to guide the anisotropy decision for the DWR-based adaptation has been
previously explored. Both Ceze and Fidkowski17 and Georgoulis et al.18 used local solves to guide their
anisotropy decisions on quadrilateral meshes. However, the perspective set forth in these works are that
of steepest descent in the discrete space where the local solves are used to guide a sequence of anisotropic
subdivision of elements. A similar discrete optimization based approach for simplex meshes was pursued
by Park19 and Sun20 using a sequence of edge splits. In this work, we consider a continuous optimization
problem, and local solves are used to estimate the gradient required to iterate toward optimality. In other
words, while the previous approaches consider a finite dimensional discrete optimization problem where the
dimensionality is governed by the complexity of the current mesh, this work employs local solves as a means
to solve the infinite dimensional optimization problem on the metric tensor field.

Our optimization method combines the rigor of the DWR error estimate and the flexibility of the
anisotropic simplex mesh adaptation. Because the method is based on a posteriori output-based error
estimates from the local samples, it automatically accounts for the primal and dual solution behaviors and
works for arbitrarily high-order discretizations. The simplex mesh adaptation permits the generation of
anisotropic elements in arbitrary orientation, which is crucial for resolving anisotropic features whose di-
rections are not known a priori, such as wakes, stagnation streamlines, and oblique shocks. Previously, we
have verified that the method produces optimal meshes in the context of L2 error control and have shown
its effectiveness for canonical advection-diffusion problems.10 This paper demonstrates the effectiveness of
our method in simulating practical two-dimensional aerodynamic flows.

II. An Optimization Framework for Anisotropic h-Adaptation

This section describes our optimization framework for anisotropic h-adaptation. The overall information
flow for the feedback-based algorithm is shown in Figure 1, where the problem definition consists of the
geometry, the flow condition, and the output of interest. The output is the computed engineering quantity
of interest and the associated error estimate.

II.A. Output Error Estimation and Localization

Let us define the output estimation problem for a general steady state conservation law on a domain Ω ⊂ Rd,
where d is the physical dimension. The governing equation is given by

∇ · F inv(u, x)−∇ · Fvis(u,∇u, x) = S(u,∇u, x), ∀x ∈ Ω,
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Figure 1. The information flow for the adaptive algorithm. The numbers in parenthesis correspond to the section
numbers.

where u(x) ∈ Rm is the state vector, F inv : Rm×Rd → Rmd is the inviscid flux function, Fvis : Rm×Rmd×
Rd → Rmd is the viscous flux function, S : Rm ×Rmd ×Rd → Rm is the source function, and m denotes the
number of components of the state. The output is given by

J = J (u)

where J is the output functional of interest. For aerospace applications, J is often an integral quantity on
surfaces (lift/drag estimation) or in the domain (sonic boom prediction).

An approximation to the desired output is obtained by discretizing the conservation law and evaluating
the discrete output functional. In particular, this work employs a high-order discontinuous Galerkin (DG)
finite element method, resulting in the weak form: Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p, (1)

where Vh,p is the space of discontinuous, p-th order piecewise polynomial functions defined on the triangu-
lation Th of Ω, and Rh,p(·, ·) : Vh,p × Vh,p → R is the semilinear form. This work uses Roe’s approximate
Riemann solver21 for the inviscid flux, Bassi and Rebay’s second discretization22 (BR2) for the viscous flux,
and Oliver’s asymptotically dual-consistent discretization23 for the source term. The nonlinear algebraic sys-
tem resulting from Eq. (1) is solved using Newton’s method with pseudo-time continuation and line search
(see our recent work24,25 for details). The linear system is solved using GMRES,26 preconditioned with an
in-place block-ILU(0) factorization27 with minimum discarded fill ordering and p = 0 multigrid correction.28

Once uh,p ∈ Vh,p is obtained, the desired output is estimated by

Jh,p = Jh,p(uh,p),

where Jh,p : Vh,p → R is the discrete functional that maintains dual consistency.23,29,30

The objective of the functional error estimation is to approximate the true error,

Etrue ≡ J − Jh,p = J (u)− Jh,p(uh,p),

and to identify the elements causing a large error for the purpose of adaptation. This work relies on the DWR
method2,3 to estimate the output error and to localize the error. For brevity, we omit the derivation of the
method and state the main results; a recent review of the method applied to aerodynamic flows is provided by
Fidkowski and Darmofal31 and the references therein. The DWR method requires the approximate adjoint
ψh,p̂ ∈ Vh,p̂ that satisfies

R′h,p[uh,p](vh,p̂, ψh,p̂) = J ′h,p[uh,p](vh,p̂), ∀vh,p̂ ∈ Vh,p̂, (2)

where Vh,p̂ ⊃ Vh,p with p̂ = p + 1 is the enriched space and R′h,p[uh,p](·, ·) and J ′h,p[uh,p](·) denote the
Fréchet derivative of Rh,p(·, ·) and Jh,p(·) with respect to the first argument evaluated about the finite
element approximation uh,p, respectively. The DWR error estimate is provided by

Etrue ≈ −Rh,p(uh,p, ψh,p̂).

We note that by Galerkin orthogonality we can rewrite the equation to arrive at another error representation

Etrue ≈ R̄′h,p[u, uh,p](u− uh,p, ψh,p̂ − ψh,p), (3)
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where R̄′h,p[u, uh,p](·, ·) is the mean-value linearized semilinear form. The expression states that the output
error is a weighted product of the primal error, u− uh,p, and the adjoint error, ψ − ψh,p.

For the purpose of mesh adaptation, we define a more conservative error estimate that results from
summing locally positive quantities, i.e.

E ≡
∑
κ∈Th

ηκ,

where the element-wise localized error estimate κ is defined by

ηκ ≡ |Rh,p(uh,p, ψh,p̂|κ)|.

Assuming the primal solution uh,p to Eq. (1) and the adjoint solution ψh,p̂ to Eq. (2) are unique for a given
approximation space Vh,p, we can associate the (conservative) error estimate to Vh,p, i.e. E = E(Vh,p). Note
that, because the output error is related to the primal and adjoint errors by Eq. (3), an effective control of
the output error requires Vh,p that accounts for the behavior of both the primal and adjoint solutions.

II.B. Output Error Minimization Problem

The objective of the output-based adaptation is to find the space V ∗h,p that minimizes the output error for a
given dimension of Vh,p, i.e.

V ∗h,p = arg inf
Vh,p
E(Vh,p) s.t. dim(Vh,p) ≤ N,

where N is the maximum permissible dimension of Vh,p and is often set by the available computational
resource. In particular, if Vh,p consists of elements with a constant polynomial order p, then Vh,p is described
by the triangulation Th and the scalar p, i.e. Vh,p = Vh,p(Th, p). Thus, for a fixed p ∈ R+, the optimization
problem simplifies to that of finding the optimal triangulation T ∗h such that

T ∗h = arg inf
Th
E(Vh,p(Th, p)) s.t. dim(Vh,p(Th, p)) ≤ N. (4)

This is a discrete-continuous optimization problem, as the triangulation Th is defined by the node locations
and the connectivity of the nodes. In general, the problem is intractable.

In order to find an approximate solution to the problem Eq. (4), we consider a continuous relaxation
of the discrete problem, following the approach pursued by Loseille et al.11–13 We appeal to the fact that
the metric field M = {M(x)}x∈Ω, consisting of symmetric positive definite (SPD) matrices M(x) ∈ Sym+

d ,
captures the approximability of the triangulation Th. With a metric-conforming mesh generator and a metric
reconstruction scheme on the triangulation, we have the mesh-metric duality in the sense that

Th = MeshGen(M) and M≈ MetricRecon(Th),

where ≈ denotes that the two triangulations have similar approximability. Thus, we can cast a continuous
relaxation of the discrete problem Eq. (4) as

M∗ = arg inf
M
E(Vh,p(Th(M), p)) s.t. dim(Vh,p(Th(M), p)) ≤ N.

For brevity, we write the optimization problem as

M∗ = arg inf
M
E(M) s.t. C(M) ≤ N, (5)

where E and C are the error and cost functionals that map the metric tensor field to the error and cost,
respectively. The expression assumes that the polynomial order, p, is fixed.

II.C. Metric Tensor Field Optimization Algorithm

This section describes our approach to approximately solving Eq. (5). The optimization algorithm consists
of three steps: sampling of the local error behavior, synthesis of the local error model, and optimization of
the surrogate model. The full derivation and rationales behind the choices are provided in our recent work.10
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II.C.1. Error Locality Assumption

In order to solve the error minimization problem Eq. (5), let us assume that the error functional results from
a sum of the local contributions, i.e.

E(M) =

∫
Ω

e(M(x), x)dx,

where e(·, ·) : Sym+
d × Rd → R+ is the local error function that maps the local approximability described

by M(x) to the local contribution of the output error. This locality assumption is formally only applicable
to errors that only depend on local properties, e.g. L2 projection errors. However, we have found that the
algorithm developed based on the assumption works well in practice for output error control. Similarly, the
cost functional takes the form

C(M) =

∫
Ω

c(M(x), x)dx,

where c(·, ·) : Sym+
d × Rd → R+ is the local cost function. In the view of metric-mesh duality,11 the local

cost function for DG methods is given by

c(M(x), x) = cp
√

det(M(x)), (6)

where cp is the number of degrees of freedom associated with a reference element normalized by its size. For
example, a triangle, the elemental cost is cp = (2/

√
3)(p+ 1)(p+ 2).

II.C.2. Tensor Manipulation Framework

Let us introduce a framework for manipulating a metric tensor, i.e. an SPD matrix. The framework we employ
results from endowing the space of SPD matrices with an affine-invariant Riemannian metric introduced by
Pennec et al.,16 which produces a manifold structure suited for tensor manipulation. The change in the
tensor is induced by the exponential map of a symmetric matrix S ∈ Symd, which we call the step matrix,
in the tangent space about the current tensor, M0, i.e.

M(S) =M1/2
0 exp(S)M1/2

0 ,

where exp(·) : Symd → Sym+
d is the matrix exponential. Conversely, the logarithmic map of a tensor M to

the tangent space about M0 provides the step matrix for the manipulation, i.e.

S(M) = log(M−1/2
0 MM−1/2

0 ),

where log(·) : Sym+
d → Symd is the matrix logarithm. We note that, by construction,M(S) is SPD for any

symmetric S; thus, no special constraint is necessary to maintain the positive definiteness.
To gain some insight, let us decompose the step matrix into the isotropic and tracefree parts, i.e.

Sκ = sκI + S̃κ, (7)

where sκ = tr(Sκ)/d such that tr(S̃κ) = 0. The isotropic part, sκI, scales the tensor without changing its
shape, and the tracefree part, S̃κ, changes the shape of the tensor without changing the volume.

II.C.3. Local Error Sampling

The goal of the local error sampling step is to probe the behavior of the local elemental error ηκ as a function
of the local metricMκ. Here, we probe the functional dependency by directly monitoring the behavior of the
a posteriori error estimate for several different configurations. The split configurations and the associated
metrics are shown in Figure 2. For each configuration, we solve an element-wise local problem associated
with κi. The local solution, uκih,p ∈ Vh,p(κi), satisfies

Rκih,p(u
κi
h,p, v

κi
h,p) = 0, ∀vκih,p ∈ Vh,p(κi),

5 of 21

American Institute of Aeronautics and Astronautics



E
le

m
en

t
C

on
fig

ur
at

io
n

M
et

ric
 T

en
so

r

Original Edge Split 1 Edge Split 2 Edge Split 3 Uniform Split

Figure 2. The original, edge split, and uniformly split configurations used to sample the local error function behavior.
The metrics implied by the sampled configurations are shown in dashed lines.

where the local semilinear form, Rκih,p(·, ·), sets the boundary fluxes on κi assuming the solution on the
neighbor elements does not change. Then, we recompute the localized DWR error estimate corresponding
to the subdivided mesh as

ηκi ≡ |R
κi
h,p(u

κi
h,p, ψh,p̂|κ0

)|.

Due to the local Galerkin orthogonality of the DG scheme, we can rewrite the local error as

ηκi = |Rκih,p(u
κi
h,p, (ψh,p̂ − ψ

κi
h,p)|κ0

)|.

The equality signifies that the local sampling procedure automatically accounts for the improvement in the
adjoint approximability resulting from the local refinement even though the local adjoint problem is not
explicitly solved. Thus, the local sampling technique based on the a posteriori error estimate automatically
captures the behaviors of both primal and dual solutions. Finally, we compute the local metric associated
with κi, Mκi , to construct metric-error pairs {Mκi , ηκi}

nconfig

i=1 .

II.C.4. Local Error Model Synthesis

The goal of the error model synthesis step is to construct an continuous metric-error function ηκ(·) : Sym+
d →

R+ using the pairs {Mκi , ηκi}
nconfig

i=1 collected in the sampling stage. Our interpolation framework builds on
Pennec’s affine invariant framework for tensor manipulation.16

As discussed in Section II.C.2, the logarithmic map of a metric about the original configuration Mκ0

provides a convenient means of characterizing the change in the approximability of the region over κ. Thus,
we measure the changes in each configuration as

Sκi = log
(
M−1/2

κ0
MκiM−1/2

κ0

)
, i = 0, . . . , nconfig.

Note that, by construction, the original configuration, Mκ0
, maps to the origin, i.e. Sκ0

= 0. Similarly, we
measure the associated changes in the errors as

fκi = log (ηκi/ηκ0) , i = 0, . . . , nconfig. (8)

Again, the original error, ηκ0
, maps to zero by construction.

Once we have the pairs {Sκi , fκi}
nconfig

i=1 that characterize the change in the error as a function of the
change in the configuration, our objective is to construct a continuous function fκ(·) : Symd → R. We
choose to construct a linear function in the entries of Sκ,

fκ(Sκ) = tr(RκSκ). (9)

To find an appropriate d × d symmetric matrix Rκ that governs the behavior of the linear function, we
perform the least-squares regression of the known data, i.e.

Rκ = arg min
Q∈Symd

nconfig∑
i=1

(fκi − tr(QSκi))
2
.
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Thus, from Eq. (8) and (9), the local error model over the region covered by κ is given by

ηκ(Sκ) = ηκ0
exp(tr(RκSκ)).

The tensor, Rκ, can be thought of as a generalization of the convergence rate for isotropic scaling to
anisotropic manipulation. If we consider the decomposition

Rκ = rκI + R̃κ, (10)

where rκ = tr(Rκ)/d and tr(R̃κ) = 0, then rκ and R̃κ capture the sensitivity of the error to the change in
the element size and shape, respectively.

II.C.5. Local Cost Function Model

We obtain the element-wise cost function model, ρκ, by directly integrating the continuous local cost function,
Eq. (6), over an element, i.e.

ρκ(Sκ) =

∫
K

c(M(x), x)dx =

∫
K

cp
√

detM(x)dx =

∫
K

cp

√
det(M1/2

K0
exp(SK)M1/2

K0
)dx

=

∫
K

cp

√
det(M1/2

K0
exp(sKI + S̃K)M1/2

K0
)dx = ρK0

exp

(
1

2
tr(sKd)

)
.

Note that the cost is only a function of sK , which controls the scaling of the tensor.

II.C.6. Optimization and Optimality Conditions

The final step of the adaptation algorithm is to optimize the metric field, M, described by the vertex
values {Mν}ν∈V . The vertex-based metric can then be used to generate a metric-conforming mesh using
an anisotropic mesh generator. Starting from the original configuration {Mν0}ν∈V implied by the current
mesh, we manipulate the metric tensor Mν at vertex ν using a step matrix Sν ∈ Symd, i.e.

Mν(Sν) =M1/2
ν0 exp (Sν)M1/2

ν0 . (11)

Given {Mν0}ν∈V , our objective is to choose the step matrices {Sν}ν∈V to reduce the error.
Using the surrogate error model and the cost model, we approximate the functionals appearing in the

optimization problem Eq. (5) as

E(M) ≈ Ẽ({Sν}ν∈V) ≡
∑
κ∈Th

ηκ

(
{Sν}ν∈V(κ)

)
C(M) ≈ C̃({Sν}ν∈V) ≡

∑
κ∈Th

ρκ

(
{Sν}ν∈V(κ)

)
,

where the {Sν}ν∈V(κ) is the approximate step matrix over the region covered by κ and is defined as the mean
of the vertex step matrices on its vertices, V(κ), i.e.

{Sν}ν∈V(κ) ≡
1

|V(κ)|
∑

ν∈V(κ)

Sν .

Using the surrogate error and cost functions, we have turned our infinite dimensional optimization problem
Eq. (5) into a finite dimensional optimization of vertex step matrices. The surrogate optimization problem
for the optimal {Sν}ν∈V is

{S∗ν}ν∈V = arg inf
{Sν}ν∈V

E ({Sν}ν∈V) (12)

s.t. C ({Sν}ν∈V) = N (13)

|(Sν)ij | ≤ α, i, j = 1, . . . , d, ∀ν ∈ V. (14)
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The last constraint, Eq. (14), is added to prevent a large charge in the metric field that would render our
sampling-based error model inaccurate. Our procedure for solving the optimization problem is detailed in10

and is omitted here for brevity.
Let us describe the features of the optimal mesh by appealing to the optimality conditions of the opti-

mization problem Eq. (12)-(14). For simplicity, let us assume that the current configuration is sufficiently
close to the optimal configuration such that the constraints Eq. (14) are inactive. The first order optimality
condition is given by

∂E
∂sν

+ λ
∂C
∂sν

= 0, ∀ν ∈ V, (15)

∂E
∂S̃ν

= 0, ∀ν ∈ V, (16)

for some Lagrange multiplier λ, where sν = tr(Sν)/d and S̃ν is the trace-free part of Sν . The first condition,
Eq. (15), is a global condition for the size distribution. In particular, if we define the “local” Lagrange
multiplier as

λν ≡
∂E
∂sν

/ ∂C
∂sν

,

then we must have λν = λ, ∀ν ∈ V. The global coupling is provided by the (global) Lagrange multiplier, λ.
The local Lagrange multiplier, λν , is interpreted as the marginal improvement in the local error for a given
investment in the local cost, which is the number of degrees of freedom in the context of mesh adaptation.
The global condition states that, at optimality, the investment to any element results in the same marginal
improvement in the error.

The second condition, Eq. (16), is a local condition that states that the error is stationary with respect
to the shape change. Note that this second optimality condition is satisfied if

R̃κ = 0, ∀κ ∈ Th, (17)

where R̃κ is the tracefree part of Rκ. The shape change, induced by S̃ν , does not affect the cost. Thus, if

R̃κ 6= 0, then we can reduce the error by choosing a S̃ν such that tr
(
R̃κ{Sν}ν∈V(κ)

)
< 0 without affecting

the cost. Thus, the stationarity with respect to the shape change is required at optimality.

II.D. High-Order Mesh Generation

From the new requested metric tensor field, an anisotropic mesh is generated using a metric-conforming
mesh generator. In order to generate a mesh consisting of curved elements that capture high-order geometry
information of curved surfaces, this work uses a two-step strategy developed by Oliver.23 First, a linear
anisotropic mesh (i.e. straight edged elements) is generated using BAMG.32 Then, the linear mesh is globally
curved using linear elasticity. A similar elasticity based approach was pursued by Persson et al. to generate
high-order meshes.33

II.E. Properties of the Optimization Method

We summarize the key features of the proposed optimization method in the context of output-based adap-
tation:

• The method takes into account both the primal and adjoint solution behaviors in manipulating the
mesh. In particular, both the sizing decision and the anisotropy decision are driven directly by the
behavior of the a posteriori error estimate, which automatically captures the behaviors of both the
primal and dual solutions. The a posteriori error estimate also captures the behaviors of all the
components of the state vector when applied to a system of equations.

• The method handles any discretization order.
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• The method does not make any a priori assumption about the convergence behavior of the error,
unlike the previous optimization based methods.7,15,34 Instead, the method approximates the conver-
gence rate based on the behavior of the local a posteriori error estimates. This makes the proposed
method more robust when features are underresolved due to the presence of a singularity or a singular
perturbation, and the actual convergence rate differs from the asymptotic convergence rate based on
the polynomial interpolation theory.

• The method operates on simplex meshes, which allow for arbitrarily oriented anisotropic elements.
This is in contrast to the anisotropic adaptation methods based on hierarchical subdivision of parent
elements,17,18 in which the allowable anisotropy is restricted by the topology of the initial mesh.

• The majority of the computational cost stems from the local, element-wise solves. The reconstruction
of the local error function requires at least three local solves in two dimensions, and we currently use
four local solves (three edge splits and uniform refinement). The cost increases to a minimum of six
solves in three dimensions. However, local solves are perfectly scalable, and becomes a smaller fraction
of the flow solve, which scales superlinearly, as the problem size grows.

The cases in the following result section are chosen to study the benefits of the above features in the context
of aerodynamic simulations.

III. Results

III.A. The Assessment Procedure

We present numerical examples of applying the proposed optimization framework to aerodynamic problems.
As a comparison, we also provide the results obtained using the method based on fixed-fraction marking and
the Mach number-based anisotropy detection,24 a modification of the algorithm developed by Fidkowski.34

The fixed-fraction marking, which controls the size of the elements, is based on the DWR error indicator
described in Section II.A. The anisotropy request is driven by the (p+ 1)-th derivative of the Mach number
estimated by approximately solving the flow problem in the p-enriched space, Vh,p+1. Note that while
the sizing decision accounts for the influence of the adjoint, the anisotropy decision is driven by a single
scalar characterization of the primal solution. This approach will be referred to as the fixed-fraction Mach-
anisotropy method, or FFMA, from here on.

We compare the output quality at several different numbers of degrees of freedom for each case. In par-
ticular, for each select number of degrees of freedom, we run several iterations of the optimization algorithm
illustrated in Figure 1 and described in Section II until no further improvements in the error estimate is
made. The number of iterations to reach stationarity depends on the quality of the initial mesh. For exam-
ple, when a viscous problem is solved from an isotropic mesh only suited for Euler calculation, generating a
mesh suitable for viscous calculation may take over 10 iterations. However, each of these iterations is cheap,
since we perform the first optimization on a small problem. Once stationarity is achieved for the first select
number of degrees of freedom, we scale the mesh to the next selection and repeat the optimization procedure.
The optimization converges quickly for the second and all subsequent selection of degrees of freedom, as the
initial mesh from the previous selection already captures the majority of the important flow features.

Throughout this section, we will assess the performance of the adaptive procedures by measuring the true
output error rather than the error estimate. As the analytical solutions to the problems are not available, we
approximate the true output by computing the solution in a space that is much richer than the solutions being
compared by increasing the number of degrees of freedom and, in some cases, the polynomial order. To assess
the quality of the reference solution, we first adaptively solve the problem of interest in the enriched space
using both the proposed and the FFMA approach. If the error computed with respect to the two reference
solutions is indistinguishable, then the reference solution is deemed accurate enough for the purpose of the
assessment.

III.B. Laminar Flat Plate: M∞ = 0.2, ReL = 105

We first consider laminar flow over a flat plate. The problem is solved on a rectangular domain of size
[−0.5, 1.0]× [0, 0.5] with the plate spanning from x = 0.0 to 1.0. The inflow Mach number is M∞ = 0.2, the
Reynolds number is ReL = 105, and the adiabatic no-slip condition is specified along the plate. The output
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of interest is the drag on the plate. This canonical problem tests ability of the optimization approach to
produce anisotropic elements in the boundary layer and to control the effect of the leading edge singularity.

Figure 3 shows the convergence of the drag error for p = 1 and p = 2 DG discretizations adapted using the
optimization framework and FFMA. The reference solution is obtained on an adapted p = 3, dof = 20,000
mesh. The convergence history shows that, for the p = 1 discretization, the optimization-based method
produces four to five times smaller drag error than FFMA for a given problem size. Another interpretation
is that the proposed method using 500 dof achieves a similar level of error as FFMA using 2,000 dof for
p = 1. For the p = 2 discretization, the optimization framework performs significantly better than FFMA
on a coarse mesh (e.g. dof = 250); the improvement means that the p = 2 discretization achieves the 1%
error range (≈ 10−5cd) using less than half the dof for FFMA. Asymptotically, the p = 2 performance of the
two adaptive schemes are similar.
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Figure 3. Drag error convergence for the laminar flat plate problem.
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Figure 4. Close views of the meshes for the laminar flat plate problem. (p = 1, dof = 2, 000)

The difference in the output accuracy for the p = 1 case is due to the difference in the anisotropy of
the elements used to resolve the boundary layer, as shown in Figure 4. When the Mach-based anisotropy
detection is employed, the anisotropy of elements on the wall is limited, as the Mach profile has an inflection
point at the wall. Having a vanishing second derivative, the Mach-anisotropy detection employs elements
with relatively small aspect ratios on the wall. The proposed optimization approach employs elements with
much higher aspect ratios, resulting in a smaller error for p = 1. The difference between the adaptation
strategies is smaller for p = 2, as the third derivative of the Mach profile is large near the wall and FFMA
employs highly anisotropic elements on the wall.

This simple case demonstrates a problem of using a priori knowledge of the solution behavior to control
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anisotropy. While the Mach number has been found to be a good indicator for making the anisotropy
decision in previous works,7,34,35 there are instances where the indicator fails to capture the anisotropic
behavior of the flow. The example also demonstrates that the ability of the Mach-anisotropy to produce
the required anisotropy is dependent on the discretization order. In particular, while the inappropriate
aspect ratio that results from the presence of inflection points in the Mach number is a known problem for
second-order discretizations,36 there could be instances where vanishing higher-order derivatives can lead to
inappropriate aspect ratio for higher-order discretizations. The proposed optimization-based method driven
by the a posteriori error estimates from the local solves automatically considers the behaviors of all state
variables, providing robust anisotropy decisions for arbitrary-order discretization of system of equations.

III.C. RAE2822 Transonic RANS-SA: M∞ = 0.729, Rec = 6.5× 106, α = 2.31◦

We consider turbulent transonic flow over an RAE2822 airfoil. The Reynolds-averaged Navier-Stokes (RANS)
equations with the Spalart-Allmaras (SA) equation37 are solved in fully turbulent mode using the p = 2
DG discretization. The RANS-SA equation is modified for robustness following Oliver’s work.23 The shock
capturing is provided by Barter’s PDE-based artificial viscosity38 with modifications for anisotropic meshes.24

Each mesh consists of cubic (q = 3) elements representing the geometry, and the farfield is 200 chord
lengths away. The output of interest is the drag on the airfoil. This standard RANS case requires accurate
computation of the shock-boundary layer interaction and also exhibits multiple singular and singularly
perturbed features.

Figure 5 shows the drag output convergence history. The reference solution is obtained on adapted p = 3,
dof = 160,000 mesh. The convergence history shows that, combined with the high-order discretization, both
anisotropic h-adaptation strategies achieve the drag error of fractions of a count using less than 40,000
degrees of freedom. The proposed optimization framework outperforms FFMA for all numbers of degrees of
freedom considered.
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Figure 5. Drag error convergence for the RAE2822 Transonic RANS-SA problem. (p = 2)

The difference in the drag error convergence can be understood by comparing the meshes generated by
the two anisotropic adaptation strategies, shown in Figure 6. In particular, recalling that the output error is
a product of the primal residual and the dual error, we can compare the primal and the dual features targeted
by the strategies. Both strategies target the boundary layers using highly anisotropic elements that have the
aspect ratio approaching 103. Similarly, the shock is resolved using anisotropic elements. The key difference
between the methods is the choice of elements used to resolve the stagnation streamline. Because the primal
solution, and the Mach number in particular, does not exhibit anisotropic behavior along the stagnation
streamline, Mach-anisotropy detection chooses isotropic elements along the stagnation streamline. However,
the adjoint solution exhibits a wake-like feature along the stagnation streamline (of the primal solution),
as shown in Figure 6(b). The proposed optimization approach employs anisotropic elements to resolve this
feature, as the local a posteriori error estimates automatically accounts for both the primal and adjoint
solution behaviors.

11 of 21

American Institute of Aeronautics and Astronautics



(a) Mach (b) mass adjoint (drag)

(c) mesh (FFMA) (d) mesh (optimization)

Figure 6. The Mach number, the mass adjoint, and the meshes for the RAE2822 Transonic RANS-SA problem. (p = 2,
dof = 60, 000)

III.D. NACA0006 Euler Supersonic Shock Propagation: M∞ = 2.0, α = 0.0◦

We consider a problem of predicting the sonic boom generated by supersonic flow over a NACA0006 airfoil at
zero degrees angle of attack. The Euler equations are solved using a p = 2 DG discretization, and the mesh
is adapted for the pressure output 50 chord lengths below the airfoil. In particular, the output functional is
given by

J (u) =

∫
Γline

(p(u)− p∞)2ds,

where p(u) is the pressure, p∞ is the freestream pressure, and Γline is the line along which the pressure
perturbation is measured. Meshes consist of cubic elements, and the farfield is 200 chord lengths away. This
problem tests the ability of the adaptive schemes to propagate singular features over a long distance.

Figure 7 shows the convergence of the pressure line integral error. The reference solution is computed on
an adaptive p = 2 discretization with 120,000 dof. The optimization approach shows approximately an order
of magnitude improvement in the pressure line error compared to FFMA for the entire range of degrees of
freedom considered.

To understand the difference in the pressure line errors, we compare the meshes obtained by the op-
timization method and FFMA, shown in Figure 8. As expected, both meshes employ highly anisotropic
elements to resolve the shock formed in front of the airfoil and the shock emanating from the trailing edge.

The FFMA method uses anisotropic elements in the flow direction behind the trailing shock, which does
not seem to be appropriate for this flow. These elements are generated due to negative interaction between
the solver and adaptation algorithms. First, the numerical solution through the shock experiences O(h) noise,
producing an artificial variation in the flow quantities along the shock direction.38 Second, this variation
is convected downstream with little dissipation due to the use of the high-order method, creating stream-
wise streaks. Third, the anisotropy detection based on the higher order derivative of the Mach number
captures these artificial streaks, requesting elements that are stretched in the stream-wise direction. Finally,
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Figure 7. Pressure line error convergence for the NACA0006 Euler shock propagation problem.

the process worsens in the next adaptation iteration, as the stream-wise refinement of the elements results
in generation of even smaller streaks. This case highlights the shortcomings of the anisotropy detection
algorithm based on a priori convergence behavior of the solution, especially when a high-order discretization
is applied to aerodynamic flows with low regularity.

Contrary to the FFMA method, the proposed optimization approach produces large, low aspect ratio
elements behind the second shock. The method clearly wastes no degrees of freedom in this region. Driven
by the anisotropy in the adjoint solution, the method employs highly anisotropic elements aligned with the
shock direction in the region between the leading and trailing shocks. The close up of the mesh near the
airfoil also shows that the method resolves complex adjoint features using anisotropic elements. Unlike the
Mach-based anisotropy detection, the a posteriori error estimate based on local solves automatically captures
the influence of the solution regularity to the local error. This in turn results in more robust assessment of
required anisotropies and generation of more efficient meshes, when a high-order discretization is applied to
flows with limited regularity.

III.E. Three-Element MDA High-Lift Airfoil RANS-SA: M∞ = 0.2, Rec = 9× 106, α = 8.1◦

We now consider turbulent flow over a McDonnell Douglas Aerospace (MDA) three-element airfoil (30P-
30N).39 The RANS-SA equations are solved using the p = 2 DG discretization. Each mesh consists of cubic
elements, and the farfield is 200 chord lengths away. The output of interest is the drag on the airfoil. This
case requires accurate estimation of the interaction among the three elements of the airfoil.

Figure 9 shows the convergence of the drag error for the two adaptation strategies. The reference solution
is obtained on an adaptive p = 3 discretization with 200,000 dof. The error levels achieved by the adaptation
strategies are similar for each number of degrees of freedom. We conclude that the proposed optimization
method is competitive to the FFMA method for this flow over the complex geometry.

Instead of comparing the meshes generated by the two adaptation strategies, we focus on the mesh
generated by the optimization approach for this complex flow shown in Figure 10. First, we note that all
geometry surfaces are refined using highly anisotropic elements suited for resolving the boundary layers.
Second, the wakes from the three elements are resolved using anisotropic elements aligned in the wake
direction. Third, the stagnation streamlines are refined using anisotropic elements, as the adjoint solution
exhibits wake-like features along the stagnation streamlines. In particular, the far-field view shows that
the optimization method considers the upstream stagnation streamline to be at least as important as the
downstream wake in computing the drag.

III.F. Multi-Element Supercritical 8 Transonic RANS-SA:M∞ = 0.775, Rec = 2×107, α = −0.7◦

As the final example, we consider turbulent flow over a multi-element supercritical airfoil (MSC8). The
original geometry with sharp trailing edges, provided by Drela,40 is modified to have blunt trailing edges to
facilitate adaptive meshing.25 The farfield is 200 chord lengths away. The output of interest is the drag. The
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(a) pressure perturbation (p− p∞)/p∞ (b) mass adjoint (pressure line)

(c) mesh (FFMA) (d) mesh (optimization)

(e) mesh near field (FFMA) (f) mesh near field (optimization)

(g) mesh line zoom (FFMA) (h) mesh line zoom (optimization)

Figure 8. The pressure, the mass adjoint, and the meshes for the NACA0006 Euler supersonic shock propagation
problem. (p = 2, dof = 40, 000)
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Figure 9. Drag error convergence for the three-element MDA airfoil RANS-SA problem.

(a) Mach (b) mass adjoint (drag)

(c) mesh

(d) mesh far field

Figure 10. The Mach number, the mass adjoint, and the mesh for the three-element MDA airfoil RANS-SA problem.
(p = 2, dof = 120, 000)
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solution to the problem is shown in Figure 11. Similar to the three-element airfoil case, this flow exhibits
complex interactions between the main element and the flap; the presence of the two shocks introduces
additional challenges in this case.

(a) Mach (b) mass adjoint (drag)

Figure 11. Solution to the MSC8 transonic RANS-SA problem.

III.F.1. The Initial Transition

Making the initial transition from an isotropic mesh, shown in Figure 12, to a mesh suitable for RANS
calculation is particularly challenging for this problem. To illustrate the challenge, we consider the transition
for the p = 1 discretization using 40,000 degrees of freedom.

(a) overview (b) flap zoom

Figure 12. The initial mesh for the MSC8 transonic RANS-SA problem.

The drag convergence histories for the transition stage are shown in Figure 13. The reference solution is
computed on an adapted p = 2, dof = 250, 000 mesh. The figure shows that the drag computed using FFMA
does not approach the reference value, even though the optimization method shows that 40, 000 degrees of
freedom is sufficient for the p = 1 discretization to approximate the drag to within 2 counts. To understand
the cause of the failed adaptation, let us study the fifth mesh generated by the FFMA algorithm, shown in
Figure 14, which is representative of the other meshes generated by the adaptive scheme. Because the flow is
supersonic over the upper surface of the airfoil, any small non-smooth perturbation from the underresolved
boundary layer can induce a shock over the upper surface. Note also that the boundary layer for this high
Reynolds number flow is completely underresolved at this early stage of adaptation, and the presence of the
boundary layer cannot be detected through the variation in the Mach number. As the artificial shocks are
observable while the boundary layer is not, the FFMA scheme attempts to resolve the features above the
upper surface using anisotropic elements aligned with the artificial shocks—elements aligned in the direction
perpendicular to the boundary layer. Due to the use of inappropriate anisotropy, FFMA is unable to detect
and resolve the boundary layer, and the transition to a RANS mesh fails even after 30 adaptation iterations.

Figure 13 shows that the optimization method makes a successful transition from the isotropic mesh to
a RANS mesh, converging to the reference solution in about 15 adaptation iterations. The mesh obtained
after five adaptation iterations is shown in Figure 15(a). Similar to the fifth FFMA-adapted mesh, the
optimization approach also suffers from the presence of the artificial shocks on the suction side and uses shock-
aligned anisotropic elements away from the boundary. However, right on the boundary, the method employs
boundary-aligned anisotropic elements. With five more adaptation iterations, the optimization method
generates a RANS mesh shown in Figure 15(b). The boundary layer is resolved using highly anisotropic
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Figure 13. Drag adaptation histories for the p = 1, dof = 40, 000 isotropic-to-RANS mesh transition test.

(a) Mach (b) mesh

Figure 14. The Mach number distribution and the mesh for the fifth adaptation iteration starting from the isotropic
mesh in Figure 12 using FFMA (p = 1, dof = 40, 000).

(a) 5th adapted mesh (b) 10th adapted mesh

Figure 15. The adapted meshes starting from the isotropic mesh in Figure 12 using the optimization method.
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elements, the artificial shocks disappear, and the drag output rapidly converges to the reference value. To
illustrate the reliability of this transition, the drag convergence histories starting from the fifth and tenth
FFMA-adapted meshes are also shown in Figure 13. For both cases, the drag value converge to the reference
value in about 15 iterations.

Our experience suggests that the optimization method can infer the presence of an anisotropic feature
through DWR-based local sampling even if the feature is significantly underresolved. In other words, even
on a coarse mesh for which the p + 1 solution reconstruction—and the subsequent p + 1-derivative-based
anisotropy detection—is unreliable, the sampling-based anisotropy detection appears to behave correctly.
Thus, the optimization method is more robust than FFMA in the presence of underresolved features.

III.F.2. p = 2 Convergence Results

Figure 16 shows the convergence of the drag error for FFMA and the optimization strategy. The reference
solution is computed on an adapted p = 2, dof = 250, 000 mesh. As FFMA is incapable of making an
isotropic-to-RANS mesh transition, the initial RANS mesh for FFMA is constructed by performing several
FFMA adaptation iterations starting from a RANS mesh prepared using the optimization method. The
optimization method achieves about an order of magnitude lower error for a given number of degrees of
freedom. Thus, the optimization strategy is not only more robust but also more efficient than FFMA for
this complex, multi-element, multi-shock problem.
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Figure 16. Drag error convergence for the MSC8 Transonic RANS-SA problem. (p = 2)

Figure 17 shows the p = 2, dof = 80, 000 meshes generated by FFMA and the optimization method. The
optimization strategy uses anisotropic elements along the stagnation streamlines emanating from the main
element and the flap. The complex flow and adjoint features in the flap region can be inferred from the
refinement pattern in the flap region.

III.G. Computational Cost

To analyze the computational cost, we decompose the time for a single adaptation cycle into:

Primal solve: the time for solving the primal equation (i.e. the flow equation)

Dual solve: the time to obtain the p+ 1 degree surrogate solution to the dual problem

Adapt (FFMA): the time to perform 10 Newton iterations of p + 1 degree primal solve to construct an
approximate p+ 1 derivative

Adapt (Opt): the time to sample local errors, synthesize the errors, and optimize the surrogate error model

In the context of output error control, “primal solve” is the cost of computing the output, “dual solve” is
the cost of endowing the output with an error estimate, and “adapt” is the cost of controlling and improving
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(a) overview (FFMA) (b) flap zoom (FFMA)

(c) overview (optimization) (d) flap zoom (optimization)

Figure 17. The Mach number, the mass adjoint, and the meshes for the MSC8 Transonic RANS-SA problem. (p = 2,
dof = 80, 000)

the output error in the next solve. An effective adaptation algorithm must keep the cost of error estimation
and control a fraction of the flow solve.

The first row of Table 1 shows a timing breakdown for the NACA0006 Euler shock propagation problem
considered in Section III.D. Both FFMA and the optimization method use the same p = 2, dof = 20, 000
mesh. For this case with small number of degrees of freedom, computing the dual surrogate solution and
constructing an error estimate requires 17% of the flow solve time. For FFMA, the additional cost of
constructing a p + 1 derivative approximation is 50% of the flow solve. For the optimization method, the
additional adaptation cost is 43% of the flow solve, the majority of which stems from the local solves. For
both FFMA and the optimization method, the additional cost for error estimation and control is a fraction
of flow solve, even for this relatively small case. Moreover, the optimization method is not only more efficient
than FFMA in terms of error-per-dof (as shown in Section III.D) but also is faster in terms of timing-per-dof.

Case Primal (p) Dual (p+ 1) FFMA Adapt Opt Adapt

NACA0006 Euler shock propagation
1.000 0.174 0.495 0.431

(p = 2, dof = 20000)

RAE2822 transonic RANS
1.000 0.092 0.157 0.072

(p = 2, dof = 60000)
Table 1. Timing breakdown normalized by the primal solve time.

As the second example, we consider a more complex flow: the RAE2822 transonic RANS case considered
in Section III.C. The second row of Table 1 shows the timing breakdown on a p = 2, dof = 60, 000 mesh.
Due to the increased complexity of the problem, the nonlinear primal problem is harder to converge, and the
relative cost of solving the dual problem, which is inherently linear, decreases to about 9% of the flow solve.
Moreover, the local sampling cost for the optimization algorithm decreases to 7% of the flow solve cost.
This decrease is attributed to two factors. First, even though RANS equations are highly nonlinear, each
element-wise localized problem can still be solved in few Newton iterations for most of the cases. Second,
the time for the local solves scales linearly with the number of elements, whereas the cost of the global linear
solve scales superlinearly. As a result, the relative cost of the adaptation stage decreases with the problem
complexity. We also note that the anisotropy detection by p+1 Mach derivative reconstruction requires 16%
of the flow solve time, compared to the 7% of the optimization algorithm. Again, the optimization method is
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not only more accurate (as shown in Section III.C) but also faster for a given number of degrees of freedom.

IV. Conclusions

In this work, we applied our optimization framework for anisotropic mesh adaptation to two-dimensional,
steady-state aerodynamic flows. Some of the key features of the adaptation framework are: the use of a
posteriori error estimates from fully scalable local solves; sizing and anisotropy decisions that account for
primal and adjoint solution behaviors; unbiased treatment of all components of the state for a system of
equations; applicability to arbitrarily high order discretizations; robust anisotropy decisions in the presence of
low regularity features; and versatility of handing arbitrarily oriented solution features via simplex meshes.
For the wide range of aerodynamic flows considered, the proposed optimization method was at least as
competitive as the method based on fixed-fraction marking and Mach-based anisotropy detection, and in
some cases produced over an order of magnitude improvement in the output error. In particular, as the
method stems from the first principle of output error minimization and is guided by the a posteriori error
behavior, it does not suffer from degradation of the performance when the flow includes features that violate
a priori assumption of the error behavior. In terms of computational cost, the time spent on error estimation
and adaptation is a small fraction of the flow solve time, and the relative cost decreases for complex problems
requiring a larger number of degrees of freedom.
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