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Abstract

We present a projection-based model reduction formulation for parametrized time-dependent nonlinear partial dif-
ferential equations (PDEs). Our approach builds on the following ingredients: reduced bases (RB), which provide
rapidly convergent approximations of the parameter-temporal solution manifold; reduced quadrature (RQ) rules,
which provide hyperreduction of the nonlinear residual; and the dual-weighted residual (DWR) method, which
provides an error representation formula for the quantity of interest. To find the RQ rules, we develop an empiri-
cal quadrature procedure (EQP) for time-dependent problems; we analyze the output error due to hyperreduction
using a space-time DWR framework and identify appropriate constraints so that the output error due to hyperre-
duction is controlled. We in addition equip our reduced model with an online-efficient DWR a posteriori error
estimate for the output; we again analyze the error in the hyperreduced dual problem and DWR expression to find
appropriate constraints for the EQP so that the error in the error estimate is controlled. In the offline stage, the
RBs and RQs, as well as the finite element mesh, are simultaneously constructed using a POD-greedy algorithm
that leverages the online-efficient output error estimate. We demonstrate the framework for parametrized unsteady
flows in a lid-driven cavity and over a NACA0012 airfoil. Reduced models achieve over two orders of magnitude
reduction in the number of degrees of freedom, number of quadrature points, and wall-clock computational time,
while achieving less than 0.5% output error and providing efficient error estimates in predictive settings.

Keywords: reduced basis method, parametrized nonlinear PDEs, time-dependent PDEs, hyperreduction,
empirical quadrature, compressible flow

1. Introduction

We consider rapid and reliable solution of parametrized time-dependent nonlinear partial differential equa-
tions (PDEs). Our goal is to evaluate quantities of interest (i.e., outputs), such as the time-averaged drag on an
aerodynamic body, for various configurations (i.e., input parameters), such as the Mach number and Reynolds
number. Our interest is in many-query scenarios, which require the input-output evaluation for many different
configurations, and in real-time scenarios, which demand rapid output predictions. Our approach to this problem
is projection-based model reduction with an efficient offline-online computational decomposition: in the offline
stage, which is expensive but performed only once, we construct a reduced order model (ROM) using a systematic
training algorithm; in the online stage, we invoke the ROM for many different parameter configurations to provide
rapid output predictions, coupled with a posteriori error estimates to ensure reliability. This work focuses on
PDEs that are parametrized, time-dependent, and nonlinear.

Model reduction techniques for time-dependent PDEs, or more generally dynamical systems, can be catego-
rized by the class of problems considered: reproduction problems and parametrized problems. In a reproduction
problem, we are given a “truth” solution {u(µ, t)}t∈[0,T ] associated with (a discrete approximation of) the PDE for
some fixed configuration (i.e., parameter value) µ; we then construct a ROM that approximates the “truth” solu-
tion more rapidly for the same fixed configuration. There is a vast body of literature on projection-based model
reduction of time-dependent PDEs in the context of reproduction problems; we refer to a review paper [10] for an
overview of the existing methods. We note that arguably the most common approach is to use proper orthogonal
decomposition (POD) to construct a reduced basis (RB) and then to apply (Petrov-)Galerkin projection to construct
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a ROM [50, 38, 39]; the approach has been successfully applied to large-scale simulations of incompressible flows
(e.g., [54, 35]) and compressible flows (e.g., [13, 14]). These works consider reproduction problems, in which the
“truth” solution is known.

The focus of the present work is parametrized problems. Unlike a reproduction problem that constructs a
ROM for a single (parameter) configuration, in a parametrized problem we wish to construct a ROM that works
for all parameter values µ in a parameter domain D. We wish to use the ROM in a “predictive” setting and
invoke it for parameter values for which the “truth” solution may not be available. This poses two additional
challenges. First, to provide reliable predictions, the ROM must provide an a posteriori error estimate that works
in the “predictive” setting. This is unlike the reproduction case, in which the quality of the ROM can be verified
for the fixed configuration at the time of construction. Second, to enable efficient construction of a ROM, we
must judiciously select the parameter values to evaluate the “truth” solutions used to construct the RB. One way
to approach this problem is to use a greedy algorithm [53]: given a ROM that provides an online-efficient a
posteriori error estimate, we evaluate the ROM solution and error estimate for many candidate parameter values,
solve the “truth” problem at the worst-approximated parameter value, and successively update the ROM until the
user-prescribed error tolerance is met over the entireD.

We review here some of the seminal model reduction works on a posteriori error estimation and the greedy
algorithm for time-dependent PDEs. (For reviews of the methods for steady PDEs, we refer to, e.g., [46, 40,
33].) Grepl and Patera [29] introduce a greedy framework for linear time-dependent PDEs. Haasdonk and
Ohlberger [31] then introduce the POD-greedy framework, which combines greedy sampling over the parame-
ter space with POD temporal compression at each parameter point. Drohmann et al. [20] and Grepl [27] extend
the POD-greedy framework to nonlinear PDEs using (variants of) empirical interpolation method (EIM) [5] for
hyperreduction. Wirtz et al. [55] apply a similar approach to dynamical systems. Haasdonk [30] provides theoret-
ical analysis of the convergence rate of the POD-greedy algorithm. Urban and Patera [52] develop a space-time
formulation that uses space-time reduced bases; the formulation has been extended to quadratically nonlinear
problems [60, 56]. These works provide formulations and theoretical foundations to systematically construct
ROMs with a posteriori error estimates for parametrized time-dependent (nonlinear) problems; however, the nu-
merical demonstrations have been limited to relatively small-scale problems compared to the aforementioned work
on reproduction problems (e.g., [54, 35, 13, 14]). One notable exception is the recent work of Fick et al. [24],
which applies the POD-greedy framework to direct numerical simulation of turbulent flows; however, the work
does not consider general (non-quadratic) nonlinearities or provide an a posteriori error estimate for the quantity
of interest.

In this work, we extend the above work on model reduction for parametrized time-dependent nonlinear PDEs
in three distinct ways: (i) we develop a versatile hyperreduction method that provides quantitative control of the
output error due to hyperreduction for parametrized time-dependent problems with general nonlinearities; (ii) we
develop an effective and online-efficient output a posteriori error estimate for the problems; and (iii) we develop
a systematic ROM training procedure that controls the output error due to the finite element approximation, the
reduced basis approximation, and hyperreduction. We demonstrate the framework for time-dependent problems
with applications to fluids and aerodynamics. We discuss the three contributions in detail in the next three para-
graphs

Our first contribution is the development of a hyperreduction method that provides quantitative control of
output error due to hyperreduction for parametrized time-dependent PDEs with general (non-polynomial) non-
linearities. As briefly discussed, model reduction of PDEs with general nonlinearities requires hyperreduction to
enable online-efficient evaluation of the nonlinear residual. In the context of time dependent problems, Grepl et
al. [28] as well as the aforementioned works [20, 27, 55] employ the EIM, Carlberg et al. [13, 14] develop the
Gauss-Newton with approximated tensors (GNAT) method based on the Gappy POD [21], and Farhat et al. [22, 23]
develop the energy-conserving sampling and weighting (ECSW) method for second-order dynamical systems. In
this work, we employ the empirical quadrature procedure (EQP) [42], which belongs to a family of quadrature-
based hyperreduction methods that includes [47, 3, 22, 32]. EQP can control the hyperreduction error in either
the norm of the solution [59] or the quantity of interest [58]. This feature distinguishes EQP from many other
other hyperreduction methods, which control the error in the nonlinear residual operator, so that the hyperreduc-
tion tolerance must be “tuned” to achieve the desired error tolerance. To extend the goal-oriented EQP framework
in [58] to time-dependent problems, we appeal to the space-time formalism and the dual-weighted residual (DWR)
method [9, 8]. This combination allows us to analyze the output error due to hyperreduction and then identify an
appropriate set of constraints to use in the EQP so that the hyperreduced ROM meets the user-prescribed output
error tolerance. This eliminates the need for problem-specific and user-intensive tuning of hyperreduction param-
eters. Our formulation is versatile in the sense that it can be used with any quadrature-based spatial discretization
and any time-marching scheme.
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Our second contribution is the development of an online-efficient output a posteriori error estimate for parametrized
time-dependent PDEs with general nonlinearities. Our formulation is based on the DWR framework [9, 8], which
provides a general means to relate the residual to the output error using a dual (or adjoint) solution. This method
is a popular choice for adaptive finite element approximation of fluid dynamics problems [25], including time-
dependent problems [7, 49, 26]. The DWR method provides only an error estimate unlike the aforementioned
bound formulations for linear PDEs (e.g., [29, 45, 31, 52]) and quadratically nonlinear PDEs (e.g., [37, 56]).
However, the estimate applies to general nonlinearities in predictive settings and are effective in practice; see,
e.g., [41, 11, 58] for previous applications of the DWR method in model reduction. In this work, we develop
an online-efficient DWR error estimate for time-dependent PDEs with general nonlinearities. To this end, we
approximate the dual solution in an RB space and then hyperreduce the dual problem and the DWR expression
using EQPs. We present an approach to hyperreduce the dual problem in time-dependent contexts that is different
from the original approach considered for steady problems in [58]. We appeal to the space-time formalism and
the dual-of-the-dual problem to analyze the error in the error estimate due to hyperreduction and to identify ap-
propriate constraints to use in the EQPs. In the dual-of-the-dual approach, we apply the DWR framework to the
dual problem so that we can control the error in the DWR error estimate.

Building on the above two contributions to hyperreduction and a posteriori error estimation, we finally develop
a POD-greedy algorithm that simultaneously constructs the finite element mesh, the RBs, and the reduced quadra-
ture rules to meet the user-prescribed output error tolerance in a fully automated manner. Drohmann et al. [20]
explores the idea of simultaneous RB and hyperreduction for time-dependent nonlinear PDEs. In this work, we
in addition perform adaptive mesh refinement to control the finite element error using the DWR error estimate, an
idea that has been explored for steady nonlinear PDEs in [58]; adaptive mesh refinement is arguably a necessity
to reliably solve complex aerodynamics problems [25]. We demonstrate the automated training framework using
parametrized unsteady flows in a lid-driven cavity and over the NACA0012 airfoil. The reduced models achieve
over two orders of magnitude reduction in the number of degrees of freedom, the number of quadrature points,
and the wall-clock computational time relative to the FE model, while controlling the relative output error to less
than 0.5%; the model in addition provides effective output a posteriori error estimates.

The remainder of this paper is organized as follows. In Section 2, we introduce the parametrized time-
dependent nonlinear problem considered throughout this work and develop EQPs that control the output error.
In Section 3, we present our error estimation formulation, with an emphasis on EQPs to construct an online-
efficient DWR error estimate. In Section 4, we present the simultaneous finite-element, RB, and hyperreduction
training procedure. In Section 5, we demonstrate the framework for parametrized unsteady flows in a lid-driven
cavity and over the NACA0012 airfoil.

2. Output prediction

2.1. Problem statement

We first present the output prediction problem that we consider throughout this work. To this end, we introduce
a P-dimensional parameter spaceD ⊂ RP, a d-dimensional spatial domain Ω ⊂ Rd, and a time interval I ≡ (0,T ],
where T ∈ R>0 is the terminal time. We next introduce a vector-valued Hilbert space V on Ω. We consider the
following weak form of parametrized time-dependent nonlinear PDEs: given µ ∈ D, find u(µ, t) ∈ V such that

m(
∂u
∂t

(µ, t), v; µ) + r(u(µ, t), v; µ, t) = 0 ∀v ∈ V, ∀t ∈ I,

m(u0 − u(µ, t = 0), v) = 0 ∀v ∈ V,
(1)

where m : V ×V × D → R is the bilinear form associated with the mass operator, r : V ×V × D × I → R is
the semi-linear form associated with the spatial residual, and u0 ∈ V is the initial condition. Given the solution
u(µ, ·), we evaluate the output

s(µ) = J(u(µ, ·), µ) ≡
∫

I
f (u(µ, t); µ, t)dt + g(u(µ,T ); µ),

where f : V × D × I → R is the time-dependent output functional, and g : V × D → R is the terminal-time
output functional. Our goal is to rapidly and accurately approximate the input-output map µ 7→ u(µ, ·) 7→ s(µ) in
many-query and real-time scenarios; we demonstrate this framework in the many-query context in Section 5.
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2.2. Finite element approximation
We now consider a finite element (FE) approximation of the problem (1). To begin, we introduce a piecewise

polynomial approximation spaceVh of dimension Nh. We next introduce an FE bilinear form mh : Vh×Vh×D →

R and an FE semi-linear form rh : Vh ×Vh ×D × I → R, which arise from the approximation of the integrals in
m(·, ·; ·) and r(·, ·; ·, ·), respectively, using a piecewise Gauss-like quadrature rule with Qh = O(Nh) points. The FE
approximation of (1) is the following: given µ ∈ D, find uh(µ, t) ∈ Vh such that

rh(uh(µ, t), vh; µ, t) = 0 ∀vh ∈ Vh, ∀t ∈ I,

mh(u0 − uh(µ, t = 0), vh; µ) = 0 ∀vh ∈ Vh,
(2)

where the semi-linear form rh : Vh ×Vh ×D × I → R associated with the time-dependent residual is given by

rh(wh, vh; µ, t) ≡ mh(
∂wh

∂t
, vh; µ) + rh(wh, vh; µ, t). (3)

Given the FE approximation of the true solution, we evaluate the FE output

sh(µ) = Jh(uh(µ); µ) ≡
∫

I
fh(uh(µ, t); µ, t)dt + gh(uh(µ,T ); µ), (4)

where fh : Vh × D × I → R and gh : Vh × D → R are the Qh-point quadrature approximations of f (·; ·, ·) and
g(·; ·), respectively.

We now introduce the quadrature-point-wise decomposition of the FE forms to prepare for our discussion of
the model reduction formulation:

mh(w, v; µ) =

Qh∑
q=1

ρqmq(w, v; µ) and rh(w, v; µ, t) =

Qh∑
q=1

ρqrq(w, v; µ, t), (5)

where Qh is the total number of quadrature points inside the domain Ω and on the boundary ∂Ω. For example, if
r(w, v; µ, t) ≡

∫
Ω
∇v·c(µ, t)∇wdx and we approximate the integral using quadrature points {xq}

Qh
q=1 and the associated

weights {ρq}
Qh
q=1, then rh(w, v; µ, t) ≡

∑Qh
q=1 ρq[∇v ·c(µ, t)∇w]xq and hence rq(w, v; µ, t) ≡ [∇v ·c(µ, t)∇w]xq . The time-

dependent residual (3) inherits the quadrature-point-wise decomposition of mh(·, ·; ·) and rh(·, ·; ·, ·) so that

rh(w, v; µ, t) =

Qh∑
q=1

ρqrq(w, v; µ, t),

where rq(w, v; µ, t) = d
dt mq(w, v; µ) + rq(w, v; µ, t). Similarly, the output functionals admit a quadrature-point-wise

decomposition so that

fh(w; µ, t) =

Qh∑
q=1

ρq fq(w; µ, t), gh(w; µ) =

Qh∑
q=1

ρqgq(w; µ), and Jh(w; µ) =

Qh∑
q=1

ρqJq(w; µ), (6)

where Jq(w; µ) ≡
∫

I fq(w(t); µ, t)dt + gq(w(T ); µ).
We conclude this section with a few remarks about the FE problem.

Remark 1. In the quadrature-point-wise decompositions (5) and (6), we assume that each decomposed form de-
pends only on the parameter value, the time, the quadrature point location, and the function and gradient evaluated
at the quadrature point. For instance, rq(w, v; µ, t) depends only on the parameter value µ, current time t, the co-
ordinates of the q-th quadrature point xq, function values w(xq, t) and v(xq, t), and gradient values ∇w(xq, t) and
∇v(xq, t). This assumption is satisfied for most finite element methods.

Remark 2. In practice, to compute the FE solution, we apply a time-marching scheme to the semi-discrete resid-
ual (3) to obtain a fully discrete residual. We then approximate the temporal integral in the output functional (4)
using the same time-marching scheme. However, as our model reduction formulation admits all multi-step and
multi-stage time marching schemes, we will develop the formulation for the semi-discrete form of the equation.
We refer to Appendix B for one realization of fully discrete approximations using diagonally implicit Runge-Kutta
(DIRK) methods.

Remark 3. Following the application of a time-marching scheme, the FE system (2) is solved using a Newton-like
solver. The cost to compute the solution can be decomposed into two parts: the cost for the residual and Jacobian
evaluations, which scales linearly with the number of quadrature points Qh, and the cost for linear solves, which
scales superlinearly with the number of degrees of freedom Nh. Since the number of quadrature points Qh is
O(Nh) for a typical FE method, the overall cost to compute µ 7→ uh(µ, ·) 7→ sh(µ) is O(N•h ), where the exponent •

is between 1 and 3 depending on the linear solver.
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2.3. Reduced-basis and reduced-quadrature approximation
We now introduce the reduced-basis (RB) approximation. We first introduce an N-dimensional RB approxi-

mation space Vpr
N ⊂ Vh spanned by a reduced basis {φpr

i }
Npr

i=1, where formally Npr ≤ Nh but in practice Npr � Nh.
The superscript “pr” indicates that the basis is associated with the primal problem, as opposed to the dual prob-
lem for the error estimate discussed in Section 3. We will discuss a systematic procedure to construct {φpr

i }
Npr

i=1 in
Section 4.1; for now we assume an RB is given. Our RB approximation of (1) is as follows: given µ ∈ D, find
uN(µ, t) ∈ Vpr

N such that

rh(uN(µ, t), vN ; µ, t) = 0 ∀vN ∈ V
pr
N , ∀t ∈ I,

mh(u0 − uN(µ, t = 0), vN ; µ) = 0 ∀vN ∈ V
pr
N ,

(7)

and evaluate the RB output

sN(µ) = Jh(uN(µ); µ) =

∫
I

fh(uN(µ, t); µ, t)dt + gh(uN(µ,T ); µ).

While the RB solution uN(µ, t) ∈ Vpr
N is approximated in the RB space of dimension Npr � Nh, the evaluation

of the FE residual (and the Jacobian) requires the application of the FE quadrature rule with Qh = O(Nh) points.
Hence, the cost to compute µ 7→ uN(µ, ·) 7→ sN(µ) is still O(Nh).

To evaluate the residual and the output with a cost independent of Nh, we apply hyperreduction to FE forms
rh(·, ·; ·, ·) and Jh(·; ·). Namely, we approximate rh(·, ·; ·, ·) using a reduced quadrature (RQ) rule that uses Q̃r � Qh

points: i.e.,

r̃h(w, v; µ, t) ≡
Q̃r∑

q̃=1

ρ̃r
q̃rqr(q̃)(w, v; µ, t), (8)

where qr : {1, . . . , Q̃r} → {1, . . . ,Qh} is the mapping from the RQ indices to the FE quadrature indices, and
{ρ̃r

q̃}
Q̃r

q̃=1 are the RQ weights. We indicate all quantities associated with RQ approximations with a tilde (·̃), and the
superscript “r” denotes that the RQ rule is associated with the (time-dependent) residual. We discuss an approach
to find a RQ rule {qr(q̃), ρ̃r

q̃}
Q̃r

q̃=1 in Section 2.5; for now we assume the indices and weights are given. Similarly, we
approximate output functionals fh(·; ·, ·) and gh(·; ·) using an RQ rule that uses Q̃J � Qh points; i.e.,

f̃h(w; µ, t) ≡
Q̃J∑
q̃=1

ρ̃J fqJ (q̃)(w; µ, t) and g̃h(w; µ) ≡
Q̃J∑
q̃=1

ρ̃JgqJ (q̃)(w; µ)

where qJ : {1 . . . , Q̃J} → {1, . . . ,Qh} is the mapping from the RQ indices to the FE quadrature indices of the
output functionals. We discuss an approach to find the RQ rule {qJ(q̃), ρ̃J

q̃}
Q̃J

q̃=1 in Section 2.5.
Given RB and RQ rules for the (time-dependent) residual and the output functionals, our RB-RQ approxima-

tion of (1) is as follows: given µ ∈ D, find ũN(µ, t) ∈ Vpr
N such that

r̃h(ũN(µ, t), v; µ, t) = 0 ∀vN ∈ V
pr
N , ∀t ∈ I,

mh(u0 − uN(µ, t = 0), vN ; µ) = 0 ∀vN ∈ V
pr
N ,

(9)

and evaluate the RB-RQ output

s̃N(µ) = J̃h(ũN(µ); µ) ≡
∫

I
f̃h(u(µ, t); µ, t)dt + g̃h(u(µ,T ); µ). (10)

Assuming Q̃r � Qh and Q̃J � Qh and in particular O(Q̃r) = O(Q̃J) = O(Npr), the RB-RQ approximation permits
the evaluation µ 7→ ũN(µ, ·) 7→ s̃N(µ) in O((Npr)3) cost, which is independent of Nh and Qh.

Remark 4. Similarly to Remark 2 on the solution of the FE problem, we apply a time-marching scheme to (7)
and (9) to obtain a fully discrete system to find the RB and RB-RQ solutions, respectively. We refer to Appendix
B.2 for fully discrete approximations of the RB problems using DIRK methods.

Remark 5. Some formulations of RB output include the so-called dual correction term so that the output is given
by sN(µ) = Jh(uN(µ); µ) −

∫
I rh(uN(µ, t), zdu

N (µ, t); µ, t)dt, where zdu
N (µ) is an RB approximation of the dual solution

computed in an RB space Vdu
N that is different from Vpr

N [29]; the correction yields a more accurate RB output,
where the output error is bounded by the product of the errors due to the approximation of the primal solution
uh(µ) in Vpr

N and the dual solution zh(µ) in Vdu
N (instead of in Vpr

N ). In this work, we do not include the dual
correction term in the RB output and instead use the correction term to estimate the error in the output; see (25)
and (26). This is analogous to the approach used for steady problems in [58].
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2.4. Error in the RB approximation of output due to RQ

Our goal is to find RQ rules {qr(q̃), ρr
q̃}

Q̃r

q̃=1 and {qJ(q̃), ρJ
q̃}

Q̃J

q̃=1 that are (i) sparse (to facilitate rapid evaluation of
the residual and the output functional), and (ii) accurate (to control the error in the output s̃N(µ) due to the use of
the RQ). To devise a systematic procedure to identify RQ rules with these properties, we first analyze the error
due to the use of the RQ rules. To this end, we decompose the output error into two parts:

|sN(µ) − s̃N(µ)| = |Jh(uN(µ); µ) − J̃h(ũN(µ); µ)| ≤ |Jh(uN(µ); µ) − Jh(ũN(µ); µ)|︸                              ︷︷                              ︸
OE1

+ |Jh(ũN(µ); µ) − J̃h(ũN(µ); µ)|︸                              ︷︷                              ︸
OE2

.

We see that “OE1” is associated with the error in the RB-RQ solution ũN(µ) given by (9), relative to the RB
solution uN(µ) given by (7), while “OE2” is associated with the approximation of J(·; ·) by J̃(·; ·). Here “OE”
stands for output error. The analysis of OE2 is relatively straightforward, so we focus on OE1 for the remainder
of this section.

We appeal to the space-time framework to facilitate the analysis of OE1, but we make one cautionary remark
before we begin:

Remark 6. In this work, we appeal to the space-time framework to enable formal manipulations that are system-
atic, but without rigorous justifications. Given the present setting of general time-dependent nonlinear PDEs, we
do not attempt to rigorously verify conditions under which these manipulations hold or under which the space-
time problems are well-posed. We refer to, e.g., [52] for a rigorous space-time treatment of RB formulations for
linear PDEs.

We first introduce a space-time space V pr
N = H1(I;Vpr

N ). We next introduce a space-time operator associated
with (7): A : V pr

N ×D → V pr
N
′ such that

〈A(w; µ), v〉 ≡
∫

I
mh(

∂w
∂t
, v; µ)dt +

∫
I
rh(w, v; µ, t)dt + mh(u0 − w(t = 0), v(t = 0); µ) ∀w, v ∈ V pr

N . (11)

We also recall the space-time output functional is J : V pr
N × D → R such that J(w; µ) ≡

∫
I fh(w; µ, t)dt +

gh(w(µ,T ); µ). We in addition introduce the derivative DA : V pr
N ×D → L(V pr

N ,V pr
N
′) such that

〈DA(y; µ)w, v〉 =

∫
I
mh(

∂w
∂t
, v; µ)dt +

∫
I
r′h(y; w, v; µ, t)dt − mh(w(t = 0), v(t = 0); µ)

= −

∫
I
mh(w,

∂v
∂t

; µ)dt +

∫
I
r′h(y; w, v; µ, t)dt + mh(w(t = T ), v(t = T ); µ),

(12)

and the derivative DJ : V pr
N ×D → V pr

N
′ such that

〈DJ(y; µ),w〉 =

∫
I

f ′h(y; w; µ, t)dt + g′h(y; w(t = T ); µ), (13)

where r′h(y; w, v; µ, t), f ′h(y; w; µ, t), and g′h(y; w; µ) are the Gateaux derivatives of rh(·, v; µ, t), fh(·; µ, t), and gh(·; µ),
respectively, about y ∈ V pr

N in the direction w ∈ V pr
N .

In the space-time framework, we can concisely state the RB problem (7) as follows: given µ ∈ D, find
uN(µ) ∈ V pr

N such that
〈A(uN(µ); µ), vN〉 = 0 ∀vN ∈ V pr

N ,

and then evaluate the output sN(µ) ≡ J(uN(µ); µ). We also introduce the associated dual problem: given µ ∈ D
and uN(µ) ∈ V pr

N , find zpr
N (µ) ∈ V pr

N such that

〈DA(uN(µ); µ)vN , z
pr
N (µ)〉 = 〈DJ(uN(µ); µ), v〉 ∀vN ∈ V pr

N .

(The superscript “pr” on zpr
N (µ) indicates that the RB dual problem is solved in the spaceVpr

N . In Section 3, we will
introduce a dual solution computed in a different space, which will bear a different superscript.) We may appeal
to the expressions for the space-time operators (12) and (13) to obtain a more explicit form of the dual problem:
given µ ∈ D and uN(µ) ∈ V pr

N , find zpr
N (µ, t) ∈ Vpr

N for all t ∈ [0,T ) such that

rdu
h (uN(µ, t); wN , z

pr
N (µ, t); µ, t) = 0 ∀wN ∈ V

pr
N , ∀t ∈ [0,T ),

m(wN , z
pr
N (µ,T ); µ) = g′h(uN(µ,T ); wN ; µ) ∀wN ∈ V

pr
N ,

(14)
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where the time-dependent dual residual is given by

rdu
h (u; w, v; µ, t) ≡ −mh(w,

∂v
∂t

; µ) + r′h(u; w, v; µ, t) − f ′h(u; w; µ, t).

The dual problem (14) is solved backward in time starting with the terminal condition at time T . We refer to
Appendix B.3 for fully discrete approximations of the dual problem using DIRK methods. The space-time form
of the RB-RQ problem (9) and the associated dual problem can be written analogously by replacing A(·; ·) and
J(·; ·) with their RQ approximations Ã(·; ·) and J̃(·; ·), respectively.

The following proposition summarizes OE1 due to the use of an RQ rule.

Proposition 7 (Output error due to the RQ approximation of rh(·, ·; ·, ·)). Given µ ∈ D, let uN(µ) ∈ V pr
N , ũN(µ) ∈

V pr
N , and zpr

N (µ) ∈ V pr
N be the solutions to (7), (9), and (14), respectively, and ûN(µ) ∈ V pr

N be a surrogate state
that may differ from both uN(µ) ∈ V pr

N and ũN(µ) ∈ V pr
N . Suppose DA(·; µ) : V pr

N → L(V pr
N
′,V pr

N
′) and DÃ(·; µ) :

V pr
N → L(V pr

N
′,V pr

N
′) are continuously differentiable and bounded, and DA−1(·; µ) : V pr

N → L(V pr
N
′,V pr

N
′) and

DÃ−1(·; µ) : V pr
N → L(V pr

N
′,V pr

N
′) are bounded. In addition, suppose

|

∫
I
[rh(ûN(µ, t), zpr

N (µ, t); µ, t) − r̃h(ûN(µ, t), zpr
N (µ, t); µ, t))]dt| ≤ δr, (15)

sup
w∈V pr

N
′

sup
v∈VN

′

〈(I − DA(ûN(µ); µ)DÃ(ûN(µ); µ)−1)w, v〉
‖w‖V pr

N
′‖v‖V

≤ δDA (16)

for some δr ∈ R>0 and δDA ∈ R>0, where ‖w‖V pr
N
′ ≡ supv∈Vpr

N
〈w, v〉/‖v‖V is the dual norm with respect to V pr

N . Then

|Jh(uN ; µ) − Jh(ũN ; µ)| ≤ δr + O(δ̃2) + O((δDA)2) + O(δ̂2),

where δ̃ ≡ ‖uN(µ) − ũN(µ)‖V and δ̂ ≡ ‖uN(µ) − ûN(µ)‖V .

Proof. See Appendix A.

Proposition 7 shows that the error in the output J(uN(µ); µ) − J(ũN(µ); µ) due to the use of an RQ rule is
bounded (i) primarily by the difference in the dual-weighted residual δr and (ii) secondarily by the error in the
linearized operator δDA, the error in the norm of the solution δ̃, and the error in the linearization point δ̂. We will
now devise a systematic procedure to find an RQ rule informed by this output error estimate.

2.5. Empirical quadrature procedure
We recast the problem of finding the RQ rules {qr(q̃), ρ̃r

q̃}
Q̃r

q̃=1 and {qJ(q̃), ρ̃J
q̃}

Q̃J

q̃=1 as constrained minimization

problems. The general form of our approach to find {q•(q̃), ρ̃•q̃}
Q̃•

q̃=1, where • may be “r” for the residual or “J” for
the output functional, is the empirical quadrature procedure (EQP) [42].

Definition 8 (general form of the EQP to find {q•(q̃), ρ̃q̃}
Q̃•

q̃=1). Let nnz(ρ•) denote the number of nonzero elements
in ρ• ∈ RQh . Given a training parameter set Ξeqp ⊂ D of size Neqp, find a sparse set of quadrature weights
ρ•,? ∈ RQh such that

ρ•,? = arg min
ρ•∈RQh

nnz(ρ•),

subject to Qh non-negativity constraints

ρ•q ≥ 0, q = 1, . . . ,Qh,

a constant-function accuracy constraint

|

∫
Ω

dx −
∑

q∈{vol. quad}

ρ•q| < δ
•,

and Nc × Neqp manifold accuracy constraints

c(ρ•; µ)i ≤ δ
•, i = 1, . . . ,Nc, ∀µ ∈ Ξeqp,

where {vol. quad} is the set of indices of the FE quadrature points inside the domain Ω (as opposed to the boundary
∂Ω), and c : RQh × D → RNc are specific to the particular quadrature rule. Given a sparse set of weights {ρ•q}

Qh
q=1

that solves the optimization problem, the RQ mapping is q• : {1, . . . , Q̃• ≡ nnz(ρ•)} → {1, . . . ,Qh} for the nonzero
entries of ρ•, and the RQ weights are ρ̃•q̃ ≡ ρ

•,?
q•(q̃), q̃ = 1, . . . , Q̃•. They collectively define an RQ rule {q•(q̃), ρ̃•q̃}

Q̃•

q̃=1.
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In other words, the EQP seeks a set of sparse quadrature weights {ρ•q}
Qh
q=1 that (i) contains the fewest number of

nonzero points (i.e., minρ• nnz(ρ•)) that (ii) are non-negative, (iii) accurately integrate the constant function, and
(iv) satisfy the manifold accuracy conditions that are specific to the RQ rule. The choice of the manifold accuracy
constraints are crucial to control the error in the quantities of interest due to the RQ rule.

Remark 9. In practice, we do not solve the EQP problem (Definition 8) exactly, but approximate it as an `1

minimization problem, as done in [42, 59], or as a non-negative least squares (NNLS) problem, as in done in [22,
16] in the context of the ECSW method. In the case of NNLS, the standard `2 termination criterion is replaced
by the EQP constraints (i.e., the solver iterates until the EQP constraints are satisfied). We have found that both
methods reliably find sparse quadrature rules in practice. The parallel updatable NNLS method [16] is particularly
well-suited for large-scale problems; the numerical example in Section 5.5 uses the algorithm on a problem that
contains over 3 × 105 FE quadrature points and 103 constraints.

We now describe the manifold accuracy constraints for the residual RQ rule {qr(q̃), ρ̃r
q̃}

Q̃r

q̃=1 that are designed
to control OE1. Our constraints are based on the DWR condition (15) in Proposition 7, but we use a more con-
servative form of the constraints obtained by (i) splitting the time interval into Keqp subintervals and (ii) modally
decomposing the dual solution in the DWR into L pieces (see Remark 11). The resulting EQP statement is as
follows:

Definition 10 (EQP for residual quadrature {qr(q̃), ρ̃r
q̃}

Q̃r

q̃=1). Given a training parameter set Ξeqp ⊂ D of size Neqp,
we introduce the associated training state set {ûN(µ) ∈ V pr

N }µ∈Ξeqp and training dual-state set {ẑpr
N (µ) ∈ V pr

N }µ∈Ξeqp . We
in addition introduce 0 = t0 < t1 < · · · < tKeqp = T and partition the time interval I ≡ (0,T ] into Keqp subintervals
Ik = (tk−1, tk], k = 1, . . . ,Keqp. Similarly, we introduce 1 = N0 < N1 < · · · < NL = Npr and partition the RB
function indices {1, . . . ,Npr} into L sets S l = {Nl−1, . . . ,Nl}, l = 1, . . . , L. We then apply the EQP (Definition 8)
subject to manifold accuracy constraints

|

∫
Ik

[rh(ûN(µ, t),ΠS l ẑ
pr
N (µ, t); µ, t) −

Qh∑
q=1

ρr
qrq(ûN(µ, t),ΠS l ẑ

pr
N (µ, t); µ, t)]dt| ≤

δr

L
|Ik |

T
(17)

for k = 1, . . . ,Keqp, l = 1, . . . , L, and µ ∈ Ξeqp. Here, |Ik | = tk − tk−1, and ΠS l : Vpr
N → span{φpr

i }i∈S l is the
L2-projection operator. The total number of manifold accuracy constraints is KeqpLNeqp.

Remark 11. In general, splitting the time interval I into smaller subintervals (i.e., larger K) results in a more con-
servative set of constraints since it prevents the positive and negative contributions to the DWR from cancelling
with each other at different times. Similarly, splitting the RB functions into smaller sets results in more conser-
vative constraints. The most conservative choice results from L = Npr so that the constraints are associated with
rh(ûN(µ, t), zpr

i φ
pr
i ; µ, t) for i = 1, . . . ,Npr, where zpr

i is the i-th basis coefficient of ẑpr
N (µ, t) ; the least conservative

choice results from L = 1 so that a single constraint is associated with rh(ûN(µ, t), ẑpr
N (µ, t) ≡

∑Npr

i=1 zpr
i φ

pr
i ; µ, t). In

theory, we could adaptively choose the size of each time interval Ik = (tk−1, tk] and RB indices S l = {Nl−1, . . . ,Nl}

so that, for instance, each constraint makes an equal contribution to the DWR statement. However, at least for the
problems we have studied, we have found that the adaptive selection of the constraints does not make a significant
difference in the resulting RQ rule. We hence use uniformly partitioned constraints in our numerical examples.

We observe that the EQP constraint (17) enforces the primary condition (15) in Proposition 7 that is required
to control the output error (OE1) in the sense that

|

∫
I
(rh(ûN(µ, t), zpr

N (µ, t); µ, t) − r̃h(ûN(µ, t), zpr
N (µ, t); µ, t)))dt|

≤

Keqp∑
k=1

L∑
l=1

|

∫
Ik

[rh(ûN(µ, t),ΠS l ẑ
pr
N (µ, t); µ, t) −

Qh∑
q=1

ρr
qrq(ûN(µ, t),ΠS l ẑ

pr
N (µ, t); µ, t)]dt| ≤

Keqp∑
k=1

L∑
l=1

δr

L
|Ik |

T
= δr.

(18)

On the other hand, we do not enforce the secondary condition (16) on the linearized operator DÃ explicitly. We
hope that enforcing the residual constraint (17) (and hence (15) more conservatively) indirectly controls the error
in the linearized operator DÃ and hence results in the satisfaction of (16). We also note that (16) is associated with
the second-order error, as opposed to the first-order error. An analogous simplification was made in the context
of steady-state problems in [58] and used successfully in practice. In Section 5, we will demonstrate using our
numerical examples that the simplified constraints also work well for time-dependent problems.
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Remark 12. Similarly to Remark 2 on the solution of the FE problem (2), in practice we apply the same time-
marching scheme used for the FE problem to the semi-discrete residual rh(·, ·; ·, ·) in the EQP constraint (17) to
obtain a fully discrete residual. We then create Keqp subintervals that each contain multiple time steps of the time-
marching scheme. We refer to Appendix B.6 for fully discrete approximations of the EQP constraints for DIRK
methods.

We now describe the manifold accuracy constraints for the output functional RQ rule {qJ(q̃), ρ̃J
q̃}

Q̃J

q̃=1 that are
designed to control OE2. The EQP statement is as follows:

Definition 13 (EQP for output functional quadrature {qJ(q̃), ρ̃J
q̃}

Q̃J

q̃=1). Given a training parameter set Ξeqp ⊂ D of
size Neqp, we introduce a training parameter set Ξeqp and the associated RB-RQ solutions {ũN(µ) ∈ V pr

N }µ∈Ξeqp given
by (9). We in addition introduce 0 = t0 < t1 < · · · < tKeqp = T and partition the time interval I ≡ (0,T ] into Keqp
subintervals Ik = (tk−1, tk], k = 1, . . . ,Keqp. We then apply the EQP (Definition 8) subject to the manifold accuracy
constraints

|

∫
Ik

[ fh(ũN(µ, t); µ, t) −
Qh∑

q=1

ρJ
q fq(ũN(µ, t); µ, t)]dt| ≤ δJ |Ik |

T
, k = 1, . . . ,Keqp − 1,

|

∫
IKeqp

fh(ũN(µ, t); µ, t)dt + gh(ũN(µ,T ); µ) −
Qh∑

q=1

ρJ
q[
∫

IKeqp

fq(ũN(µ, t); µ, t)dt + gq(ũN(µ, t); µ)]| ≤ δJ |IKeqp |

T
,

(19)

for µ ∈ Ξeqp. The total number of constraints is KeqpNeqp.

The first Keqp − 1 constraints of (19) enforce the output functional accuracy constraint for all time intervals
except the last one, and the last constraint enforces the output functional accuracy constraint over the last time
interval IKeqp and at the terminal time. We include the terminal-time condition in the final interval constraint so
that their treatment is consistent with the dual problem constraints introduced in Section 3. We observe that the
EQP constraints (19) control error (OE2) in the sense that

|Jh(ũN(µ); µ) − J̃h(ũN(µ); µ)| = |
Keqp∑
k=1

∫
Ik

( fh(ũN(µ, t); µ, t) − f̃h(ũN(µ, t); µ, t))dt + gh(ũN(µ,T ); µ) − g̃h(ũN(µ,T ); µ)|

≤

Keqp∑
k=1

δJ |Ik |

T
= δJ .

Hence we provide direct control of OE2.
It follows that the EQP for the residual (Definition 10) and the EQP for output functional (Definition 13)

together control the output error due to the use of RQ rules in the sense that

|sN(µ) − s̃N(µ)| ≤ (OE1) + (OE2) ≤ δr + δJ + (higher-order terms), ∀µ ∈ Ξeqp,

where the higher-order terms are identified in Proposition 7.

Remark 14. In principle, we can use a sufficiently rich training set Ξeqp ⊂ D to control the RQ errors everywhere
in D. This is the approach used for steady problems in [59, 58]. However, imposing the constraints over a rich
training set Ξeqp can be prohibitively expensive for time-dependent problems. As such, we employ a relatively
small Ξeqp in practice, as discussed in Section 4. Nevertheless, numerical results in Section 5 show that the EQP
controls the output error well in practice.

Remark 15. In this work, we employ a (space-only) Galerkin formulation and standard multi-stage time integra-
tors. The associated RB problem (7) is not guaranteed to be well-posed, even if the underlying FE problem (2) is
well-posed; as noted in Remark 6, we assume our RB problem (7) is well-posed. If we used (a) a time-integrator
that is amenable to variational interpretation with (b) a space-time Petrov-Galerkin formulation, then it would
be possible to guarantee well-posedness of the RB formulation for well-posed linear PDEs [52] and for certain
nonlinear PDEs [56], as the space-time inf-sup constant for the RB formulation would be bounded. However, in
this work, we do not explore the space-time Petrov-Galerkin formulation.

3. Output a posteriori error estimation

In this section we present an approach to construct output a posteriori error estimates for the FE problem (2)
and for the RB-RQ problem (9). Our approach is based on the DWR method [9].
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3.1. Estimation of FE error
We first describe our approach to estimate the FE output error |s(µ) − sh(µ)| associated with (2). Our approach

is based on the DWR method [9], and in particular its application to time-dependent problems [7, 49, 26]. To
this end, we first introduce an “enriched” FE approximation space Vĥ ⊃ Vh. In our numerical examples in
Section 5, we enrich the space by increasing the polynomial degree of the FE approximation space by one. We
then introduce the FE dual problem in the enriched space: given µ ∈ D and the associated FE solution uh(µ) ∈ V pr

N ,
find zĥ(µ, t) ∈ Vĥ such that

rdu
ĥ (uh(µ, t); wĥ, zĥ(µ, t); µ, t) = 0 ∀wĥ ∈ Vĥ, ∀t ∈ [0,T ),

m(wĥ, zĥ(µ,T ); µ) = g′
ĥ
(uh(µ,T ); wĥ; µ) ∀wĥ ∈ Vĥ,

(20)

where we recall that the time-dependent dual residual is given by

rdu
ĥ (u; w, z; µ, t) ≡ −mĥ(w,

dz
dt

; µ) + r′
ĥ
(u; w, z; µ, t) − f ′

ĥ
(u; w; µ, t). (21)

We then evaluate the DWR error estimate

|s(µ) − s̃h(µ)| ≈ ηfe
h (µ) ≡ |

∫
I
rh(ũh(µ), zĥ(µ); µ, t)dt|. (22)

The accuracy of the approximation (≈) depends on the effect of neglecting the mean-value linearization, and on the
ability of the enriched FE approximation spaceVĥ to represent the true dual solution; see [9] for a detailed analysis
of the DWR error estimate. The dual problem (20) is solved backward in time starting from the terminal condition
at time T . Expression (22) follows from the DWR error representation formula [9]. The DWR formulation
provides (merely) an error estimate and is not guaranteed to be reliable. However, in practice, the estimate has
been used successfully in many complex nonlinear problems, including those in aerodynamics [25]. We will
continue to present our formulation in the semi-discrete form throughout this section, as discussed in Remark 2.
We refer to Appendix B for fully discrete approximations of the dual problem and the DWR error estimate using
DIRK methods.

3.2. Reduced-basis and reduced-quadrature approximation of DWR
We now describe our approach to construct an online-efficient a posteriori error estimate for the error |sh(µ) −

s̃N(µ)| based on the DWR method [9] and its RB-RQ approximation. To begin, we first introduce the FE dual
problem (in the non-enriched space): given µ ∈ D and the associated RB-RQ solution ũN(µ) ∈ V pr

N , find zh(µ, t) ∈
Vh for all t ∈ [0,T ) such that

rdu
h (ũN(µ, t); wh, zh(µ, t); µ, t) = 0 ∀wh ∈ Vh, ∀t ∈ [0,T ),

m(wh, zh(µ,T ); µ) = g′h(ũN(µ,T ); wh; µ) ∀wh ∈ Vh,
(23)

where r̄du
h (·; ·, ·; ·, ·) is given by (21), and then evaluate the DWR error estimate

|sh(µ) − s̃N(µ)| ≈ ηh(µ) ≡ |
∫

I
rh(ũN(µ), zh(µ); µ, t)dt|. (24)

The accuracy of the approximation (≈) depends on the effect of neglecting the mean-value linearization; see [9].
Note that ηfe

h (µ) given by (22) approximates the error |s(µ) − sh(µ)| between the true output and the FE approxi-
mation to the output, while ηh(µ) given by (24) approximates the error |s(µ) − s̃N(µ)| between the true output and
the RB-RQ approximation to the output. The dual residual (21) inherits quadrature-point-wise decompositions of
mh(·, ·; ·) and rh(·, ·; ·, ·) in (5) and fh(·; ·, ·) in (6) so that

rdu
h (u; w, z; µ, t) =

Qh∑
q=1

ρqrdu
q (u; w, z; µ, t).

From the triangle inequality, we have

|s(µ) − s̃N(µ)| ≤ |s(µ) − sh(µ)| + |sh(µ) − s̃N(µ)| ≈ ηfe
h (µ) + ηh(µ).

In practice, we set the FE error tolerance to be an order of magnitude lower than the target error, so that the RB-RQ
error |sh(µ)− s̃N(µ)| dominates the overall error (see Remark 25). In addition, as the DWR error estimate has been
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used successfully in many complex nonlinear problems [25], we assume that the accuracy of ηh(µ) (the DWR error
estimate based on the FE dual solution) is satisfactory. Hence our goal is to enable an online-efficient evaluation
of ηh(µ) ≈ |sh(µ) − s̃N(µ)| ≈ |s(µ) − s̃N(µ)|.

To enable an online-efficient approximation of the DWR error estimate, we employ RB and RQ approximation.
To this end, we first introduce an Ndu-dimensional RB approximation space for the dual problem Vdu

N ∈ Vh

spanned by a reduced basis {φdu
i }

Ndu

i=1 for Ndu � Nh. We defer the discussion of the procedure to construct {φdu
i }

Ndu

i=1
to Section 4.1 and here assume the basis is given. Our RB approximation of the DWR problem is the following:
given µ ∈ D and ũN(µ) ∈ V pr

N , find zdu
N (µ, t) ∈ Vdu

N such that

rdu
h (uN(µ, t); wN , zdu

N (µ, t); µ, t) = 0 ∀wN ∈ V
du
N , ∀t ∈ [0,T ),

m(wN , zdu
N (µ,T ); µ) = g′h(uN(µ,T ); wN ; µ) ∀wN ∈ V

du
N .

(25)

and then evaluate the error estimate

|sh(µ) − sN(µ)| ≈ ηN(µ) ≡ |
∫

I
rh(ũN(µ, t); zdu

N (µ, t); µ, t)dt|. (26)

While the RB dual-solution zdu
N (µ, t) ∈ Vdu

N is approximated in a space of dimension Ndu � Nh, the evaluation
of the DWR estimate requires O(Qh) = O(Nh) operations because the solution of the dual problem (25) and the
evaluation of the DWR expression (26) require the evaluation of the FE residual (21) and the associated Jacobian.
Before we introduce the RQ rules needed for hyperreduction, we make a remark on the accuracy of the DWR error
estimate:

Remark 16. The RB-approximated DWR error estimate (26) is different from the true error |sh(µ)− sN(µ)| for two
reasons: (i) the adjoint problem (25) is linearized about ũN instead of the mean-value-linearized adjoint problem
(see [9]), and (ii) we solve for zdu

N (µ, t) in Vdu
N instead of Vh. The error due to (i) scales with ‖uh − ũN‖

2
V , so it

is second-order in the primal error. This error may be non-negligible for a coarse RB approximation, but if we
assume that the primal error decreases rapidly with increasing N, then so does the error due to (i). The error due
to (ii) can be significant for certain problems, depending on the choice ofVdu

N . For instance, ifVdu
N ⊂ V

pr
N so that

zdu
N (µ, t) ∈ Vpr

N , then the error estimate would be zero by Galerkin orthogonality. We must carefully chooseVdu
N to

ensure that the error estimate is effective. Specifically, the space must be chosen so that z(µ, t)−ΠVpr
N

z(µ, t) is well
approximated inVdu

N . In Section 4.1, we present a method to adaptively construct the dual spaceVdu
N to meet the

desired error estimate effectivity (for the training parameter values).

We introduce RQ rules to enable rapid evaluation of the FE residual. To this end, we first introduce an RQ rule
{qη,1(q̃), ρ̃η,1q̃ }

Q̃η,1

q̃=1 for the dual residual that governs the dual problem (25) (i.e., to solve the dual problem) so that

rdu
h (u; w, v; µ, t) is approximated by

r̃
du,η,1
h (u; w, v; µ, t) ≡

Q̃η,1∑
q̃=1

ρ̃
η,1
q̃ rdu

qη,1(q̃)(u; w, v; µ, t).

Similarly, we introduce an RQ rule {qη,2(q̃), ρ̃η,2q̃ }
Q̃η,2

q̃=1 for the primal residual for the DWR (26) (i.e., to evaluate the
DWR error estimate) so that rh(w, v; µ, t) is approximated by

r̃
η,2
h (w, v; µ, t) ≡

Q̃η,2∑
q̃=1

ρ̃
η,2
q̃ rqη,2(q̃)(w, v; µ, t).

Note that this RQ approximation of the residual, which is used to evaluate the RB-RQ DWR error estimate, is
different from the approximate residual (8), which is used to evaluate the primal RB-RQ solution; we use EQP
constraints that are tailored to the specific purpose of each RQ rule to construct two different RQ rules, which
results in {ρ̃η,2q̃ }

Q̃η,2

q̃=1 , {ρ̃
r
q̃}

Q̃r

q̃=1. Given these approximations of the residual, our RB-RQ approximation of the DWR
problem is as follows: given µ ∈ D and ũN(µ) ∈ VN , find z̃du

N (µ, t) ∈ Vdu
N such that

r̃
du,η,1
h (uN(µ, t); wN , z̃du

N (µ, t); µ, t) = 0 ∀wN ∈ V
du
N , ∀t ∈ [0,T ),

m(wN , z̃du
N (µ,T ); µ) = g′h(uN(µ,T ); wN ; µ) ∀wN ∈ V

du
N ,

(27)
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and then evaluate the DWR error estimate

|sh(µ) − s̃N(µ)| ≈ η̃N(µ) ≡ |
∫

I
r̃
η,2
h (ũN(µ, t), z̃du

N (µ, t); µ, t)dt|. (28)

We refer to Appendix B for fully discrete approximations of the dual problem and the DWR error estimate using
DIRK methods. As before, assuming the number of RQ points Q̃η,1 and Q̃η,2 are O(Ndu) � Nh, the RB-RQ
approximation permits the evaluation of the DWR error estimate in O((Ndu)•) cost, which is independent of Nh

and Qh.

3.3. Error in the RB approximation of DWR due to RQ
We now analyze the error in the DWR error estimate due to the use of the RQ rules, |ηN(µ) − η̃N(µ)|. We

appeal again to the space-time framework to facilitate this analysis. (We use the framework only to enable for-
mal manipulations; see Remark 6.) Using the space-time framework, we can compactly express the DWR error
estimates (26) and (28) as

ηN(µ) = 〈A(ũN(µ); µ), zdu
N (µ)〉 and η̃N(µ) = 〈Ã(ũN(µ); µ), z̃du

N (µ)〉,

where the space-time operator A is given by (11). We can decompose the error in the DWR error estimate due to
the use of the RQ as

|ηN(µ) − η̃N(µ)| = | 〈A(ũN(µ); µ), zdu
N (µ) − z̃du

N (µ)〉︸                               ︷︷                               ︸
EE1

| + | 〈A(ũN(µ); µ) − Ã(ũN(µ); µ), zdu
N (µ)〉︸                                       ︷︷                                       ︸

EE2

|

+ | 〈A(ũN(µ); µ) − Ã(ũN(µ); µ), zdu
N (µ) − z̃du

N (µ)〉︸                                                   ︷︷                                                   ︸
EE3

|.
(29)

We have three sources of error: “EE1” associated with the error in dual RB-RQ solution z̃du
N (µ, t) given by (27)

relative to the dual RB solution zdu
N (µ, t) given by (25); “EE2” associated with the RQ approximation of the space-

time operator A(·, ·) by Ã(·, ·); and “EE3” associated with the product of these two errors. Here “EE” stands for
the error in the error estimate. We will introduce EQP constraints to directly control EE1 and EE2. We hope that
by directly controlling EE1 and EE2, we will indirectly control the product term EE3.

To analyze EE1, we apply the DWR error analysis to the DWR error estimate given by (26), which results
from solving the dual problem (25). We first recall that the dual problem is concisely expressed in the space-time
framework as follows: given µ ∈ D and ũN(µ) ∈ V pr

N , find zdu
N (µ) ∈ V du

N such that

〈DA∗(ũN(µ); µ)zdu
N (µ), vN〉 = 〈DJ(ũN(µ); µ), vN〉 ∀vN ∈ V du

N ,

where the space-time operators DA and DJ are given by (12) and (13), respectively, and DA∗(ũN(µ); µ) is the
formal adjoint of DA(ũN(µ); µ); i.e., 〈DA∗(ũN(µ); µ)v,w〉 = 〈DA(ũN(µ); µ)w, v〉 ∀w, v ∈ V du

N . In this context, the
“output” or “quantity of interest” is the DWR error estimate

ηN(µ) = 〈A(ũN), zdu
N 〉.

To analyze the error ηN(µ) − η̃N(µ) due to the use of RQ rules, we introduce the dual-of-the-dual problem, where
we use the DWR framework to control and estimate the error in the DWR error estimate: given µ ∈ D and
ũN(µ) ∈ V pr

N , find ψN(µ) ∈ V du
N such that

〈DA(ũN(µ); µ)ψN(µ), vN〉 = 〈A(ũ(µ)), vN〉 ∀vN ∈ V du
N .

The dual-of-the-dual problem is associated with the tangent operator DA, so we refer to the dual-of-the-dual
problem as the tangent problem for brevity. We also refer to its solution as the tangent solution, or simply the
tangent. We may appeal to the expressions for the space-time operators (11), (12), and (13) to obtain a more
explicit form of the tangent problem: given µ ∈ D and ũN(µ) ∈ V pr

N , find ψN(µ, t) ∈ Vdu
N such that

mh(
∂ψN

∂t
(µ, t), vN ; µ) + r′h(ũN(µ, t);ψN(µ, t), vN ; µ, t) = rh(ũN(µ, t), vN ; µ, t) ∀vN ∈ V

du
N , t ∈ (0,T ],

ψN(µ, t = 0) = 0.
(30)

The tangent problem, like the dual problem, is linear; however, the tangent problem, like the primal problem and
unlike the dual problem, is solved forward in time. We refer to Appendix B.5 for fully discrete approximations of
the tangent problem using DIRK methods.

The following two propositions summarize EE1 and EE2 due to the use of RQ rules.
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Proposition 17 (Error in DWR error estimate due to the RQ approximation of rdu
h (·; ·, ·; ·, ·)). Let ũ(µ) ∈ VN ,

zdu
N (µ) ∈ V du

N , z̃du
N (µ) ∈ V du

N , and ψN(µ) ∈ V du
N be the solutions to (9), (25), (27), and (30), respectively. Suppose

DA∗(ũN(µ); µ), DÃ∗(ũN(µ); µ), DA−∗(ũN(µ); µ), and DÃ−∗(ũN(µ); µ) are bounded. In addition, suppose

|

∫
I
[rdu

h (ũN(µ, t);ψN(µ, t), zdu
N (µ, t); µ, t) − r̃

du
h (ũN(µ, t);ψN(µ, t), zdu

N (µ, t); µ, t)]dt|

+ |mh(ψN(µ,T ), zdu
N (µ,T )) − m̃h(ψN(µ,T ), zdu

N (µ,T )) − g′h(ũN(µ,T );ψN(µ,T )) + g̃′h(ũN(µ,T );ψN(µ,T ))| ≤
δη,1

2
,

(31)

sup
w∈V du

N
′

sup
v∈V du

N

〈(I − DA∗(ũN(µ); µ)DÃ−∗(ũN(µ); µ))w, v〉
‖w‖V du

N
′‖v‖V

≤ δDA, (32)

for some δη,1 ∈ R>0 and δDA ∈ R>0, where the dual norm is given by ‖w‖V du
N
′ ≡ supv∈Vdu

N
〈w, v〉/‖v‖V . Then

|〈A(ũN(µ)), zdu
N (µ) − z̃du

N (µ)〉| ≤
δη,1

2
+ O(δ̃2) + O((δDA)2), (33)

where δ̃ ≡ ‖zdu
N (µ) − z̃du

N (µ)‖V .

Proof. See Appendix A.

Proposition 18 (Error in DWR error estimate due to the RQ approximation of rh(·, ·; ·, ·)). Let ũN(µ) ∈ VN and
zdu

N (µ) ∈ V du
N be the solutions to (9) and (25), respectively. Suppose

|

∫
I
[r(ũN(µ, t), zdu

N (µ, t); µ, t) − r̃(ũN(µ, t), zdu
N (µ, t); µ, t)]dt| ≤

δη,2

2
(34)

for δη,2 ∈ R>0. Then,

|〈A(ũN) − Ã(ũN), zdu
N 〉| ≤

δη,2

2
. (35)

Proof. Proof follows from the definition of the space-time operators A and Ã and forms r(·, ·; ·, ·) and r̃(·, ·; ·, ·).

Propositions 17 and 18 show that EE1 and EE2 in the DWR error estimate due to the use of RQ rules are
bounded (i) primarily by the difference in the tangent-weighted dual residual (31) and the error in the dual-
weighted residual (34), and (ii) secondarily by the error in the adjoint operators (32) and the norm of the adjoint
error. In particular, note that the tangent solution is required to develop (31), which bounds EE1 as a difference
between the original residual and the RQ-approximated residual; this is needed to develop appropriate EQP con-
straints. While the error in the error estimate is rarely explicitly controlled in typical model reduction settings,
this explicit control is required for our hyperreduction framework, since the error estimate based on an arbitrary
quadrature rule can have an arbitrarily poor effectivity. We now devise a systematic procedure to find RQ rules
informed by EE1 and EE2.

3.4. Empirical quadrature procedure

We now describe the manifold accuracy constraints for the dual RQ rule {qη,1(q̃), ρ̃η,1q̃ }
Q̃η,1

q̃=1 , which are designed
to control EE1. Our constraints are based on the tangent-weighted dual residual (31), but we obtain more conser-
vative constraints by (i) splitting the time interval into Keqp subintervals and (ii) modally decomposing the tangent
solution in the tangent-weighted dual residual into L pieces. The resulting EQP statement is as follows:

Definition 19 (EQP for the dual residual RQ rule {qη,1(q̃), ρ̃η,1q̃ }
Q̃η,1

q̃=1 ). Given a training parameter set Ξeqp ⊂ D of size
Neqp, we introduce the associated RB-RQ solutions {ũN(µ) ∈ V pr

N }µ∈Ξeqp , the dual training set {ẑdu
N (µ) ∈ V du

N }µ∈Ξeqp ,
and the tangent training set {ψN(µ) ∈ V du

N }µ∈Ξeqp . We in addition introduce 0 = t0 < t1 < · · · < tKeqp = T and
partition the time interval I ≡ [0,T ) into Keqp subintervals Ik = [tk−1, tk), k = 1, . . . ,Keqp. Similarly, we introduce
1 = N0 < N1 < · · · < NL = Ndu and partition {1, . . . ,Ndu} into L sets S l = {Nl−1, . . . ,Nl}, l = 1, . . . , L. We then
apply the EQP (Definition 8) subject to the manifold accuracy constraints

|

∫
Ik

[rdu
h (ũN(µ, t); ΠS lψN(µ, t), ẑdu

N (µ, t); µ, t) −
Q̃η,1∑
q̃=1

ρ
η,1
q̃ rdu

q (ũN(µ, t); ΠS lψN(µ, t), ẑdu
N (µ, t); µ, t)]dt| ≤

δη1

2L
|Ik |

T
, (36)
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for k = 1, . . . ,Keqp − 1, l = 1, . . . , L, and µ ∈ Ξeqp, and

|

∫
IKeqp

rdu
h (ũN(µ, t); ΠS lψN(µ, t), ẑdu

N (µ, t); µ, t)dt + mh(ΠS lψN(µ,T ), ẑdu
N (µ,T )) − g′h(ũN(µ, t); ΠS lψN(µ, t); µ)

−

Q̃η,1∑
q̃=1

ρ
η,1
q̃ [

∫
IKeqp

rdu
q (ũN(µ, t); ΠS lψN(µ, t), ẑdu

N (µ, t); µ, t)dt + mq(ΠS lψN(µ,T ), ẑdu
N (µ,T )) (37)

− g′qη,1(q̃)(ũN(µ, t); ΠS lψN(µ, t); µ)]| ≤
δη1

2L

|IKeqp |

T
,

for l = 1, . . . , L, and µ ∈ Ξeqp. Here, |Ik | ≡ tk − tk−1, and ΠS l : Vdu
N → span{φdu

i }i∈S l is the L2-projection operator.
The total number of constraints is KeqpLNeqp.

We refer to Remark 11 for a discussion on the selection of Keqp and L. The constraints (36) are associated
with the time-dependent dual residual for all time subintervals except the final subinterval; the constraint (37)
associated with the final subinterval incorporates the terminal condition. The EQP constraints (36) and (37)
enforce the primary condition (31) of Proposition 17 in the sense that

|

∫
I
[rdu

h (ũN(µ, t);ψdu
N (µ, t), zdu

N (µ, t); µ, t) − r̃
du
h (ũN(µ, t);ψdu

N (µ, t), zdu
N (µ, t); µ, t)]dt| ≤

Keqp∑
k=1

N∑
i=1

δη,1

2L
|Ik |

T
≤
δη,1

2
.

(As the argument is identical to the bound (18) for the primal error control, we here omit the presentation for
brevity.) Hence the EQP given by Definition 19 controls the primary condition (31) of Proposition 17 and, in turn,
EE1. On the other hand, similarly to the EQP constraint for the primal problem, we do not enforce the secondary
condition (32). We again hope that conservatively enforcing the primary condition will indirectly control the error
in the tangent operator DÃ∗ and hence results in the satisfaction of (32). We will demonstrate in Section 5 that the
set of constraints works well in practice.

We now describe the manifold accuracy constraints for the dual RQ rule {qη,2(q̃), ρ̃η,2q̃ }
Q̃η,2

q̃=1 , which are designed
to control EE2. Our EQP based on (34) is the following:

Definition 20 (EQP for the dual-weighted residual quadrature {qη,2(q̃), ρ̃η,2q̃ }
Q̃η,2

q̃=1 ). Given a training parameter set
Ξeqp ⊂ D of size Neqp, we introduce the associated RB-RQ solutions {ũN(µ) ∈ V pr

N }µ∈Ξeqp and the dual training set
{ẑdu

N (µ) ∈ V du
N }µ∈Ξeqp . We in addition introduce 0 = t0 < t1 < · · · < tKeqp = T and partition the time interval I ≡ (0,T ]

into Keqp subintervals Ik = (tk−1, tk), k = 1, . . . ,Keqp. Similarly, we introduce 1 = N0 < N1 < · · · < NL = Ndu and
partition {1, . . . ,Ndu} into L sets S l = {Nl−1, . . . ,Nl}, l = 1, . . . , L. We then apply the EQP (Definition 8) subject to
the manifold accuracy constraints

|

∫
Ik

[rh(ũN(µ, t),ΠS l ẑ
du
N (µ, t); µ, t) −

Q̃η,2∑
q̃=1

ρ
η,2
q̃ rq(ũN(µ, t),ΠS l ẑ

du
N (µ, t); µ, t)]dt| ≤

δη,2

2L
|Ik |

T
, (38)

for k = 1, . . . ,Keqp, l = 1, . . . , L, and µ ∈ Ξeqp. Here, |Ik | ≡ tk − tk−1, and ΠS l : Vdu
N → span{φdu

i }i∈S l is the
L2-projection operator. The total number of constraints is KeqpLNeqp.

We readily observe that (38) enforces (34) in Proposition 18 in the sense that

|

∫
I
[r(ũN(µ, t), ẑdu

N (µ, t); µ, t) − r̃(ũN(µ, t), ẑdu
N (µ, t); µ, t)]dt|

= |

Keqp∑
k=1

N∑
i=1

∫
Ik

[rh(ũN(µ, t),ΠS l ẑ
du
N,i(µ, t); µ, t) −

Q̃η,2∑
q̃=1

ρ
η,2
q̃ rq(ũN(µ, t),ΠS l ẑ

du
N,i(µ, t); µ, t)]dt| ≤

Keqp∑
k=1

N∑
i=1

δη,2

2L
|Ik |

T
≤
δη,2

2
.

Hence the EQP given by Definition 20 enforces the condition (18) in Proposition 18 and, in turn, EE2. We
conclude this section with a few remarks about the EQPs for the DWR error estimate.

Remark 21. In the above, we invoke two separate EQPs (Definitions 19 and 20) to find two separate RQ rules
{qη,1(q̃), ρ̃η,1q̃ }

Q̃η,1

q̃=1 and {qη,2(q̃), ρ̃η,2q̃ }
Q̃η,2

q̃=1 for (27) and (28), respectively. We may instead invoke a single EQP to find

a single common RQ rule {qη(q̃), ρ̃ηq̃}
Q̃η

q̃=1 for both (27) and (28). This EQP would include constraints (36), (37),
and (38), and the total number of constraints would be 2KeqpLNeqp. This is the procedure we use in the numerical
examples in Section 5.
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Remark 22. In this section we seek to identify EQP accuracy constraints to control the hyperreduction error in
the DWR error estimate. In the original steady goal-oriented EQP formulation [58], the authors seek to identify
these constraints by analyzing an algebraic equation. However, we cannot use a similar algebraic framework for
unsteady PDEs because we must solve a differential (rather than algebraic) equation in time. To overcome this
challenge, we have appealed to the space-time framework and identified the differential equation (30) associated
with the dual-of-the-dual problem. We use the dual-of-the-dual problem to develop tractable EQP constraints (36)
and (37) for unsteady DWR. This approach readily extends to steady PDEs. In fact, the algebraic constraints
identified in [58] implicitly contain the algebraic solution to the dual-of-the-dual problem.

Remark 23. While EQPs in Definitions 19 and 20 are designed to control EE1 given by 〈A(ũN(µ); µ), zdu
N (µ) −

z̃du
N (µ)〉 and EE2 given by 〈A(ũN(µ); µ)− Ã(ũN(µ); µ), zdu

N (µ)〉, respectively, we do not control the product term EE3
given by 〈A(ũN(µ); µ) − Ã(ũN(µ); µ), zdu

N (µ) − z̃du
N (µ)〉. The steady goal-oriented EQP framework presented in [58]

modified constraints for EE1 and EE2 so that EE3 is indirectly controlled. However, we have found an analogous
modification is difficult, if not impossible, for time-dependent problems for the reasons explained in Remark 22.
We could in principle introduce additional manifold accuracy constraints to directly control the global dual error
‖zdu

N − z̃du
N ‖V and the error in the residual evaluation ‖A(ũN)− Ã(ũN)‖V ; however, this approach would significantly

increase the number of EQP constraints and hence the training cost. In this work, we will instead assume that the
existing constraints control EE3 reasonably well. If EE3 is not well controlled, then we could employ the iterative
procedure described in [51] (see Remark 24).

Remark 24. In the thesis [51] on which this paper is based, we consider more conservative EQP constraints than
those defined in Definitions 19 and 20 by splitting the constraints into portions associated with the derivative of the
output and portions associated with the derivative of the residual. In addition, we explore an iterative procedure
to modify δη,1 and δη,2 so that we achieve the desired error tolerance on |η̃N(µ) − ηN(µ)|. This iterative procedure
also accounts for the effect of EE3, which is it not explicitly controlled by the EQP. The EQP for the dual problem
(Definition 19) requires the solution of the dual problem and is more computationally expensive than the EQP for
the DWR (Definition 20). Thus, if we wish to achieve |η̃N(µ)−ηN(µ)| ≤ δη, then we choose δη,1 = δη and iteratively
decrease δη,2 < δη until we satisfy the desired error tolerance; i.e., we decrease δη,2 and re-solve the EQP for the
DWR (Definition 20) until the error tolerance is satisfied. With this iterative procedure, we can control all three
error sources of the DWR error estimate in (29). We refer to [51] for details.

4. Offline-online computational decomposition

4.1. Offline training

We now present an offline training procedure to simultaneously construct FE spaces, RBs, and RQ rules. Our
approach is based on the POD-greedy algorithm [31, 30, 27]. Like other greedy algorithms, we leverage the
online-efficient error estimate to rapidly explore the parameter spaceD and to minimize the number of FE solves
by choosing an “optimal” sequence of points. Given that our problems are nonlinear, we simultaneously train RBs
and RQs, as explored for RB-EIM in [20, 19] and for steady RB-EQP in [59, 58]. In addition, we simultaneously
adapt the FE mesh, as explored for steady problems in [2, 57, 58].

Algorithm 1 summarizes our training procedure. The algorithm is designed to control the output error in the
RB-RQ solution (9) with respect to the PDE (1). We first provide a high-level description of the algorithm in the
context of output error control:

|s(µ) − s̃N(µ)| ≤

estimated by ηfe
h (µ)︷          ︸︸          ︷

|s(µ) − sh(µ)|︸          ︷︷          ︸
FE error: δfe

(line 3)

+

estimated by η̃N (µ) for all µ∈Ξtrain︷                                   ︸︸                                   ︷
|sh(µ) − sN(µ)|︸            ︷︷            ︸

RB error: δpr

(line 5)

+ |sN(µ) − s̃N(µ)|︸            ︷︷            ︸
RQ errors: δr and δJ

(line 7)

. (39)

The algorithm controls the FE, RB, and RQ errors to their respective tolerances δfe, δrb, and {δr, δJ} at µ ∈ Ξgreedy
in the lines indicated. (We discuss the selection of the tolerances in Remark 25.) The algorithm terminates when
the error estimate η̃N(µ) for the RB-RQ error is less than δgreedy for all µ ∈ Ξtrain. Similarly, the error in the error
estimate can be decomposed as

| |sh(µ) − s̃N(µ)|︸            ︷︷            ︸
≈true error

−η̃N(µ)| ≈ |ηh(µ) − η̃N(µ)| ≤ |ηh(µ) − ηN(µ)|︸            ︷︷            ︸
RB error: δdu,rel

(line 6)

+ |ηN(µ) − η̃N(µ)|︸             ︷︷             ︸
RQ errors: δη,1 and δη,2

(line 8)

(40)
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The algorithm again controls the RB and RQ errors in the DWR error estimate to their respective tolerances δdu,rel

and {δη,1, δη,2} at µ ∈ Ξgreedy. We discuss each step of the algorithm and the associated computational cost in more
detail in the following paragraphs.

Algorithm 1: Simultaneous RB-RQ POD-greedy training for time-dependent problems
input : training set Ξtrain ⊂ D

Overall greedy tolerance: δgreedy

FE tolerance: δfe

RB tolerances: δpr, δdu,rel

EQP tolerances: δr, δJ , δη,1, δη,2

output: RB spaces: Vpr
N andVdu

N

RQ rules: {qr(q̃), ρ̃r
q̃}

Q̃r

q̃=1, {qJ(q̃), ρ̃J
q̃}

Q̃J

q̃=1, {qη,1(q̃), ρ̃η,1q̃ }
Q̃η,1

q̃=1 , and {qη,2(q̃), ρ̃η,2q̃ }
Q̃η,2

q̃=1

1 Set Ξgreedy = {µ(1) ≡ centroid(Ξtrain)} and Ngreedy = 1.
2 while Ngreedy < Ntrain do
3 Solve primal FE problem: solve (2) for uh(µ(Ngreedy)) ∈ Vh; adapt the mesh as necessary to meet δfe.
4 Solve dual FE problem: solve (23) for zh(µ(Ngreedy)) ∈ Vh.
5 Construct primal RB: setVpr

N ←V
pr
N ⊕ PODNpr

add
({Π⊥

V
pr
N

uh(µ(Ngreedy), t)}t∈I), where Npr
add is chosen so that

|sh(µ(Ngreedy)) − sN(µ(Ngreedy))| ≤ δpr.
6 Construct dual RB: setVdu

N ←V
du
N ⊕ PODNdu

add
({Π⊥

Vdu
N

zh(µ(Ngreedy), t)}t∈I), where Ndu
add is chosen so that

the relative error with respect to a reference error estimate is less than δdu,rel.
7 Construct primal RQs: find {qr(q̃), ρr

q̃}
Q̃r

q̃=1 and {qJ(q̃), ρJ
q̃}

Q̃J

q̃=1 using EQPs for residual and output
functional (Definitions 10 and 13) for the training set Ξeqp = Ξgreedy.

8 Construct dual and DWR RQs: find {qη,1(q̃), ρη,1q̃ }
Q̃η,1

q̃=1 and {qη,2(q̃), ρη,2q̃ }
Q̃η,2

q̃=1 using EQPs for dual
problem and DWR (Definitions 19 and 20) for Ξeqp = Ξgreedy.

9 Find parameter with maximum error: for all µ ∈ Ξtrain, solve (9) for ũNpr (µ), solve (27) for z̃du
N (µ), and

evaluate (28) for η̃N(µ). Then set µ? = arg supµ∈Ξtrain
|η̃N(µ)|.

10 Check convergence: if η̃N(µ?) ≤ δgreedy, terminate.
11 Update Ξgreedy: set Ξgreedy ← {Ξgreedy, µ

(Ngreedy+1) ≡ µ?} and Ngreedy ← Ngreedy + 1.
12 end

Solve the (primal) FE problem (line 3). In this step, we compute the “truth” FE solution used to construct the
primal RB {φpr

i }
Npr

i=1. To ensure the snapshots are accurate, we use the standard adaptation strategy based on solve,
evaluate, mark, refine steps (see, e.g., [9]). Specifically, we construct a single adapted mesh for the entire time
interval I instead of time-dependent adapted meshes. This ensures that all solution snapshots lie in the same FE
space. In principle we could employ time-dependent mesh refinement and perform any operations that involve
functions in two different spaces in a common enriched space; however, for simplicity, we do not consider this
approach. Our adaptive mesh refinement algorithm is as follows:

1. Solve the (primal) FE problem (2) for {uh(µ(Ngreedy), t) ∈ Vh}t∈I .
2. Solve the enriched FE dual problem (20) for {zĥ(µ(Ngreedy), t) ∈ Vĥ}t∈I .
3. Evaluate the DWR error estimate ηfe

h (µ(Ngreedy)) given by (22).
4. If ηfe

h (µ(Ngreedy)) < δfe, terminate.
5. Compute the time-integrated element-wise localized error indicator associated with ηfe

h (µ(Ngreedy)) given by

ηfe
h (µ(Ngreedy)) = |

∫
I
rh(ũh(µ); zĥ(µ)|κ; µ, t)dt|,

where κ is an element in the mesh. Each element-wise error indicator is integrated over the entire time
interval I.

6. Mark 10% of elements with largest error indicator for refinement.
7. Refine the marked elements, and go to Step 1.

Whenever the mesh is refined for a given parameter value, we invoke the adaptive FE solver for all previous
parameter values using the new refined mesh as the starting mesh. This approach incurs a higher computational
cost than simply re-representing the previously computed reduced basis on the refined mesh. However, because
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the FE error (or the FE DWR error estimate) is not guaranteed to be nonincreasing under mesh refinement, the
strategy is necessary to ensure that the FE error tolerance is met at all previous parameter values.

The overall computational cost is dominated by Steps 1 and 2. Each solution of the primal problem in Step 1
requires O(Qh) +O(N•h ) computation for the residual (and Jacobian) evaluation and the linear system solve. Simi-
larly, each solution of the dual problem in Step 2 requires O(Qĥ) +O(N•

ĥ
) computation. The dual problem is linear

and requires only one linear solve per time step. However, the cost of the primal and dual solves are comparable in
practice because the time-dependent primal problem requires relatively few Newton iterations to converge, while
the dual problem is solved in an enriched space. The total cost is equal to the product of these costs with the
number of adaptation iterations.

Solve dual FE problem (line 4). We solve the dual FE problem (23) for {zh(µ(Ngreedy), t) ∈ Vh}t∈I . The computa-
tional cost of the FE solve is O(Qh) +O(N•h ) for the dual residual and Jacobian evaluation and linear system solve.
Instead of solving (23), we could approximate {zh(µ(Ngreedy), t) ∈ Vh}t∈I by projecting the enriched dual solution
{zĥ(µ(Ngreedy), t) ∈ Vĥ}t∈I onto Vh; however, as the solution of the (non-enriched) dual problem (23) is relatively
inexpensive, we do not use this approach. We note that we solve the dual FE problem only once per parameter to
reduce the computational cost of the offline training stage (see remark 27). Similarly to the primal solution, the
dual solution is recomputed for all previous parameter values whenever the mesh is refined.

Construct primal RB: (line 5). In this step, we enrich the primal RB space Vpr
N so that the solution to the RB

problem (7) meets the user-prescribed output error tolerance δpr for the current parameter value µ(Ngreedy). We find
the appropriate level of enrichment iteratively using the following algorithm:

1. Project {uh(µ(Ngreedy), t)}t∈I onto the space orthogonal to Vpr
N to identify components of the solution that lie

outside of the current RB spaceVpr
N ; we denote the resulting functions by {y(t)}t∈I ≡ {Π

⊥

V
pr
N

uh(µ(Ngreedy), t)}t∈I .

2. Apply POD to {y(t)}t∈I to obtain a set of dominant modes {ζi} ≡ POD({y(t)}t∈I).

3. AugmentVpr
N with the Npr

add most dominant modes {ζi}
Npr

add
i=1 ; i.e.,Vpr

N ←V
pr
N ⊕ span{ζi}

Npr
add

i=1 .
4. Solve the RB problem (7) for uN(µ(Ngreedy)) ∈ V pr

N using the updatedVpr
N and evaluate sN(µ(Ngreedy)).

5. Check if the output error satisfies |sh(µ(Ngreedy)) − sN(µ(Ngreedy))| ≤ δpr.
6. If the tolerance is met, then terminate; otherwise, increase Npr

add and go back to Step 3.

In words, in Steps 1 and 2 we identify the most dominant modes that are missing from the existing Vpr
N . In

Steps 3–6, we iteratively enrich Vpr
N until the RB output sN(µ(Ngreedy)) meets the user-prescribed error tolerance.

Our implementation of the POD-greedy algorithm differs from its typical implementation (in e.g. [31, 27, 30]),
where only the single most dominant POD mode is added to the RB per greedy iteration; we use this alternative
approach that adds multiple POD modes to reduce the number of greedy iterations and hence the number of FE
solves. Step 4, which requires the solution of the (non-hyperreduced) RB problem (7) dominates the computational
cost of this algorithm. The overall cost is O(Niter(Qh + (Npr)3)), where Niter is the number of iterations required to
find a suitable Npr

add.
We make one cautionary remark. As the output error does not decrease monotonically for all µ ∈ Ξgreedy under

basis enrichment, the addition of Npr
add basis functions may result in the violation of the output error condition for

µ ∈ Ξgreedy \ µ
(Ngreedy). As a result, the greedy algorithm may need to revisit a parameter that is already in Ξgreedy

later in the training procedure.
Construct dual RB: (line 6). In this step, we enrich the dual RB spaceVdu

N so that the DWR error estimate (26)
meets the user-prescribed (relative) error estimate accuracy δdu,rel for the current parameter value µ(Ngreedy). We find
the appropriate level of enrichment iteratively using the following algorithm:

1. Project {zh(µ(Ngreedy), t)}t∈I onto the space orthogonal to Vdu
N to identify components of the solution that lie

outside of the current RB spaceVdu
N ; we denote the resulting functions by {v(t)}t∈I ≡ {Π

⊥

Vdu
N

zh(µ(Ngreedy), t)}t∈I .

2. Apply POD to {v(t)}t∈I to obtain a set of dominant modes {χi} ≡ POD({v(t)}t∈I).

3. Construct an enriched reference dual spaceVdu,ref
N = Vdu

N ⊕ span{χi}
Ndu,ref

add
i=1 for Ndu,ref sufficiently large.

4. Using the reference spaceVdu,ref
N , solve the RB dual problem (25) for zdu,ref

N (µ(Ngreedy)) ∈ V du,ref
N , and evaluate

the error estimate ηref
N (µ(Ngreedy)) using (26).

5. AugmentVdu
N with the Ndu

add most dominant modes {χi}
Ndu

add
i=1 ; i.e.,Vdu

N ←V
du
N ⊕ span{χi}

Ndu
add

i=1 .
6. Using the updated Vdu

N , solve the RB dual problem (25) for zdu
N (µ(Ngreedy)) ∈ V du

N , and evaluate the error
estimate ηN(µ(Ngreedy)) using (26).

7. Check if the error estimate is saturated in the sense that |ηref
N (µ(Ngreedy)) − ηN(µ(Ngreedy))|/|ηref

N (µ(Ngreedy))| < δdu,rel.
8. If the tolerance is met, then terminate; otherwise, increase Ndu

add and go back to Step 5.
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In words, in Steps 1 and 2 we identify most dominant modes that are missing from the original Vdu
N . In Steps 3

and 4, we compute the “reference” dual solution zdu,ref
N (µ(Ngreedy)) ∈ V du

Nref and the DWR error estimate ηNref (µ(Ngreedy))
using an enriched dual space V du

Nref . In Steps 5–8, we iteratively enrich Vdu
N until the relative error in the DWR

error estimate (measured with respect to the reference DWR error estimate ηNref (µ(Ngreedy))) is smaller than the
user-prescribed relative error tolerance δdu,rel.

Steps 4 and 6, which require the solution of the (non-hyperreduced) RB dual problem (25) and the evaluation of
the (non-hyperreduced) DWR error estimate (26), dominate the computational cost. The overall cost is (O(Niter +

1)(Qh + (Ndu)3)), where Niter is the number of iterations required to find a suitable Ndu
add. The solution of the

“reference” dual solution zdu,ref
N (µ(Ngreedy)) is only slightly more expensive than the dual solution zdu

N (µ(Ngreedy)) because
the cost of the non-hyperreduced RB problems are dominated by the residual and Jacobian evaluations, which do
not depend strongly on the dimension of the RB space. However, it is still important to minimize Ndu, because the
number of RQ points increases with higher Ndu.

Construct residual and output functional RQs (line 7). We invoke the residual EQP (Definition 10) and output
functional EQP (Definition 13) to find {qr(q̃), ρr

q̃}
Q̃r

q̃=1 and {qJ(q̃), ρJ
q̃}

Q̃J

q̃=1, respectively. The EQP training parameter

set Ξeqp is the current greedy parameter set Ξgreedy ≡ {µ
(i)}

Ngreedy

i=1 . This choice allows us to use the EQP training
state set {ûN(µ) ≡ uN(µ)}µ∈Ξgreedy , which has been computed in line 5. We use the FE dual solution projected onto
V

pr
N as the dual state set {ẑpr

N (µ) ≡ ΠVpr
N

zh(µ)}µ∈Ξgreedy to avoid the additional (non-hyperreduced) RB dual solve. The
cost of this step is divided into two parts: the cost to compute the EQP constraints, which scales with QhNeqp; the
cost to solve for the sparse weights, which scales with the number of constraints LKNeqp and the number of FE
quadrature Qh.

Construct dual and DWR RQs (line 8). We invoke the dual residual EQP (Definition 19) and DWR EQP
(Definition 20) to find {qη,1(q̃), ρη,1q̃ }

Q̃η,1

q̃=1 and {qη,2(q̃), ρη,2q̃ }
Q̃η,2

q̃=1 . We choose the current greedy parameter set Ξgreedy ≡

{µ(i)}
Ngreedy

i=1 as the EQP training parameter set Ξeqp. This choice allows us to use the EQP training dual set {ẑdu
N (µ) =

zdu
N (µ)}µ∈Ξgreedy , which has been computed in line 6. We solve the (non-hyperreduced) tangent problem (30) to obtain
{ψN(µ)}µ∈Ξgreedy . The cost of this step is again divided into two parts: the cost to compute the EQP constraints, which
scales with QhNeqp; the cost to solve for the sparse weights, which scales with LKNeqp and Qh.

Find parameter with maximum error (line 9). We solve the RB-RQ primal problem (9), solve the RB-RQ dual
problem (27), and evaluate the RB-RQ DWR error estimate (28) for all µ ∈ Ξtrain. We then identify the parameter
value µ? with the largest error estimate, and choose it as the next greedy parameter. For each µ ∈ Ξtrain, the
solution of the primal and dual problems dominate the computation cost, which scales as O((Npr)3 + (Npr)2Q̃r) and
O((Ndu)3 + (Ndu)2Q̃η,1), respectively. Assuming Q̃pr = O(Nr) and Q̃η,1 = O(Ndu), the overall computational cost is
hence O(((Npr)3 + (Ndu)3)Ntrain).

Having described Algorithm 1, we conclude the section with three remarks on the choice of the tolerances and
overall computational cost.

Remark 25. The tolerance that controls the overall output accuracy of the RB-RQ model is δgreedy. This parameter
is set by the user based on the engineering need; e.g., in an aerodynamics simulation, the engineer might target
1% error in drag. Given δgreedy, we then (somewhat conservatively) budget the errors. Typically, we use the
FE tolerance of δfe = δgreedy/10, the primal RB tolerance of δpr = δgreedy/10, the dual relative RB tolerance of
δdu,rel = 1/10, and the EQP tolerances of δr = δη,1 = δη,2 = δgreedy/10 and δJ = δgreedy/100. We refer to the error
decompositions (39) and (40) for the errors controlled by each tolerance.

All tolerances are naturally specified once the user selects the overall output tolerance δgreedy based on the
engineering need. This is only possible because all tolerances are associated with a single common quantity
of interest that is engineering-relevant. This would not be possible if, for example, the tolerance parameter for
hyperreduction were associated with interpolation error of the residual operator. In this sense, the greedy algorithm
presented, which builds on the goal-oriented hyperreduction framework, automates the RB-RQ training.

Remark 26. As we will see in Section 5, in a typical problem of interest, ≈ 50% of the overall offline training
time is spent on the (adaptive) FE solves (lines 3 and 4). The next two dominant costs are the identification of
the appropriate primal and dual RB sizes using the recursive algorithm (lines 5 and 6) and the EQPs (lines 7 and
8), which each take ≈ 25% of the offline training time. The error sampling time is a small fraction . 5% of the
training time even for relatively dense training set thanks to the online efficient a posteriori error estimate.

Remark 27. We use the dual FE solution computed in line 4 to construct the dual RB (line 6), to find primal
RQs (line 7), and to find DWR RQs (line 8). In principle, the dual FE problems involved in each of these steps
could be linearized about the appropriate primal solution (i.e., the solution for which we wish to compute the error
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estimate) to improve the quality of our error estimate and error control. However, solving multiple FE problem is
computationally expensive. The choice of linearization point does not significantly impact the quality of the error
estimate, so we choose to compute only one dual FE solution per greedy iteration, and to use this solution in all
of the above steps.

4.2. Online dataset and evaluation
The training procedure described in Section 4.1 yields an OnlineDataset that comprises the following:

• RQ rules: RQ indices {q•(q̃)}Q̃
•

q̃=1 and the associated RQ points {x̃•q̃ ≡ xq•(q̃)}
Q̃•

q̃=1 and RQ weights {ρ̃•q̃ ≡

ρ•q•(q̃)}
Q̃•

q̃=1 for • ∈ { “r”, “J”, “η, 1”, “η, 2”}.

• Primal RB evaluated at RQ points: {{φpr
i (x̃•q̃)}N

pr

i=1}
Q̃•

q̃=1 and {{∇φpr
i (x̃•q̃)}N

pr

i=1}
Q̃•

q̃=1 for • ∈ {“r”, “J”, “η, 1”, “η, 2”}.

• Dual RB evaluated at RQ points: {{φdu
i (x̃•q̃)}N

du

i=1 }
Q̃•

q̃=1 and {{∇φdu
i (x̃•q̃)}N

du

i=1 }
Q̃•

q̃=1 for • ∈ { “η, 1”, “η, 2” }.

Given the OnlineDataset, we invoke the RB-RQ model to compute the output and the associated a posteriori
error estimate as follows:

1. Given µ ∈ D, solve the RB-RQ problem (9) for ũN(µ) ∈ V pr
N .

2. Evaluate RB-RQ output functional (10) to obtain the associated output J̃N(µ).
3. Solve the associated RB-RQ dual problem (27) for z̃N(µ) ∈ V du

N .
4. Evaluate the RB-RQ DWR error estimate (28) to obtain η̃N(µ).

We can readily evaluate all of the RB-RQ forms that appear in these four steps using the OnlineDataset thanks
to the quadrature-point-wise decomposition of the forms; see Remark 1. We may choose to perform only Steps 1
and 2 if the a posteriori error estimate is not needed. The online computational cost scales as O((Npr)3 + Q̃r) for
the output prediction and O((Ndu)3 + Q̃η,1 + Q̃η,2) for the error estimate.

5. Numerical results

5.1. Preliminary
In this section, we apply our model reduction framework to two families of two-dimensional problems: flow

in a cavity driven by an oscillatory lid and flow past a NACA0012 airfoil at a high angle of attack. For both
problems, the flow is governed by the compressible Navier-Stokes equations in entropy variables [6]: we seek the
entropy variable

u ≡
(
−

s
γ − 1

+
γ + 1
γ − 1

−
ρe
p
,

ρv
p
, −

ρ

p

)
that satisfies the Navier-Stokes equations

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv
∂t

+ ∇ · (ρv ⊗ v + pI − τ) = 0,

∂ρe
∂t

+ ∇ · ((ρe + p)v − τv − κ∇T ) = 0,

where ρ : Ω × I → R is the density, v : Ω × I → R2 is the velocity, e : Ω × I → R is the specific internal
energy, s = log(p/ργ) is the thermodynamic entropy, p ≡ (γ − 1)(ρe − ρ‖v‖22/2) is the pressure, T = p/(ρR) is the
temperature, τ = µv(∇v+∇vT )+λv(∇·v)I is the stress tensor, γ = 1.4 is the ratio of specific heats, µv is the dynamic
viscosity, and λv = −2/3µv is the bulk viscosity coefficient. The entropy (as opposed to conservative) variables
symmetrize the flux Jacobian and the viscous tensor, which yields an entropy stable discontinuous Galerkin (DG)
method assuming exact integration [34, 6].

We use an adaptive P2 DG method [18, 4] for the FE approximation. The inviscid numerical flux is computed
using Roe’s approximate Riemann solver [44], and the viscous terms are discretized using the interior penalty
method [4]. The time integration is performed using a three-stage diagonally implicit Runge-Kutta (DIRK)
method [1]. The nonlinear system arising in each stage is solved using the Newton’s method. The linear sys-
tem is solved using GMRES [48] that uses an additive Schwarz preconditioner globally and block-ILU(0) with
minimum discarded fill ordering locally [43].
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(a) Re = 10, ω = π, t = 7/8 (b) Re = 200, ω = π, t = 1 (c) Re = 1000, ω = 2π, t = 4

Figure 1: Instantaneous pressure fields and streamlines for the lid-driven cavity flow.

5.2. Lid-driven cavity flow: lower Reynolds number

We first consider a lid-driven cavity flow in a lower Reynolds number regime. Our spatial domain is a unit
square Ω ≡ (0, 1)2 ⊂ R2 with a lid on the upper boundary Γlid ≡ (0, 1)×{x2 = 1}. Our time interval is I ≡ (0,T ≡ 1].
The flow is driven by an oscillatory lid so that the tangential velocity on Γlid is

v1(x, t; µ) = exp
(
−

0.05
0.25 − (x1 − 0.5)2

)
sin(ωt), x ∈ Γlid, t ∈ I;

we enforce zero normal velocity v2 = 0 on Γlid and no-slip conditions on all other boundaries Ω \ Γlid. All
boundaries are adiabatic. The flow is stationary at the initial time; the initial density and pressure are chosen so that
the Mach number associated with the peak lid velocity is Mlid = 0.7. Our first parameter is the Reynolds number
based on the domain width of 1 and the maximum lid velocity of 1: Re ≡ 1/ν ∈ [10, 200]. Our second parameter
is the oscillation frequency ω ∈ [π/(4T ), 2π/T ]. We hence have µ ≡ (Re, ω) ∈ [10, 200]× [π/(4T ), 2π/T ] ≡ Dlow.
(The subscript “low” indicates that this is the lower Reynolds number case.) The quantity of interest is the time-
averaged kinetic energy

s(µ) = J(u(µ), µ) =
1

2T

∫
I

∫
Ω

ρv(µ, t) · v(µ, t)dxdt.

Figure 1 shows snapshots of solutions for a few different values of Reynolds numbers.
We use the following greedy algorithm settings. We use the adaptive P2 DG method and the three-stage

DIRK method with ∆t = 1/32 for the FE approximation; we refer to Section 5.1 for details. The initial FE space
comprises an 8 × 8 square of elements and Nh = 1536 degrees of freedom. The training set Ξtrain comprises a
10 × 10 grid of parameter points that are uniformly distributed over D. Our goal is to achieve the error level of
δgreedy = 5 × 10−5, which corresponds to ≈ 0.5% error level. Following Remark 25, we set the FE tolerance to
δfe = 5 × 10−6, the primal RB tolerance to δpr = 5 × 10−6, the dual RB relative tolerance to δdu,rel = 0.1, and the
EQP tolerances to δr = δη = 5× 10−6 and δJ = 5× 10−7. We solve a single EQP problem for the dual problem and
DWR; see Remark 21.

We invoke the greedy algorithm (Algorithm 1) to construct an RB-RQ model. Table 1 summarizes the behavior
of the greedy algorithm. We observe that the algorithm converges in five iterations. The dimensions of the primal
and dual spaces increase to Npr = 22 and Ndu = 28, respectively. The number of RQ points increase monotonically
with the sizes of the reduced bases. The final RB-RQ approximation comprises Q̃r = 411 (primal) residual RQ
points, Q̃J = 42 output RQ points, and Q̃η = 340 dual and DWR RQ points. The FE approximation uses
Nh = 9720 degrees of freedom and Qh = 14765 quadrature points, and hence the RB-RQ approximation is
significantly reduced in terms of both the number of degrees of freedom and the number of quadrature points.
Figure 2a shows the residual RQ points obtained using the EQP in the final greedy iteration; we observe that the
RQ points are clustered towards the upper corners, where the solution exhibits the largest variations in both time
and between parameters.

We next discuss the accuracy of the RB-RQ approximations reported in Table 1. In the seventh column, we
observe that the maximum error estimate over Ξtrain, maxµ∈Ξtrain η̃N(µ), rapidly decays with the greedy iteration.
Figure 3b also depicts this rapid convergence behavior. In columns 8–11, we assess the accuracy of the RB-RQ
approximation in the “predictive setting” by testing the approximation against the solution computed on Ξtest ⊂ D
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Table 1: Behavior of the greedy algorithm for the lid-driven cavity flow problem for Dlow. The FE problem on the final adapted mesh has
Nh = 9720 degrees of freedom and Qh = 14765 quadrature points.

max over Ξtrain max over Ξtest
iter Npr Ndu Q̃r Q̃J Q̃η η̃N |sh − s̃N | η̃N |sN − s̃N | |ηN − η̃N |

1 6 4 54 11 50 2.50 × 10−3 3.21 × 10−3 2.33 × 10−3 3.39 × 10−4 2.10 × 10−5

2 10 16 136 20 143 5.52 × 10−4 1.17 × 10−4 2.08 × 10−4 1.15 × 10−4 2.11 × 10−5

3 14 26 227 31 238 3.98 × 10−4 2.05 × 10−4 2.74 × 10−4 1.79 × 10−5 6.94 × 10−6

4 20 26 373 39 327 7.27 × 10−5 5.48 × 10−5 5.60 × 10−5 5.78 × 10−6 5.87 × 10−6

5 22 28 411 42 340 3.56 × 10−5 2.32 × 10−5 2.80 × 10−5 3.67 × 10−6 6.40 × 10−6

(a)Dlow (b)Dhigh

Figure 2: The residual RQ points for the lid-driven cavity flow problems.

comprises Ntest = 20 randomly chosen test parameter values. We observe that maximum error over the test
set maxµ∈Ξtest |sh − s̃N | decays rapidly. The error estimate maxµ∈Ξtest η̃N(µ) also effectively estimates the output
error in this predictive setting of Ξtest , Ξtrain, as also depicted in Figure 3b. The maximum error in the output
due to the use of the residual and output functional RQs is well controlled by the EQP for Ngreedy ≥ 4; i.e.,
maxµ∈Ξtest |sN(µ)− s̃N(µ)| ≈ δr = 5×10−6. In this predictive setting, the RQ error control is not as tight for Ngreedy ≤ 3
due to the relatively poor coverage of the parameter space provided by the EQP parameter set Ξeqp = Ξgreedy.
Nevertheless, the RQ error is never the dominant source of output error, as shown in column 10 of Table 1. The
maximum error in the DWR error estimate due to the use of the RQ rule also behaves similarly. In column 11 of
Table 1, we see that it is well controlled by the EQP for Ngreedy ≥ 3; i.e., maxµ∈Ξtest |ηN(µ)− η̃N(µ)| ≈ δη = 5× 10−6.

Having discussed the behavior of the RB-RQ approximation, we next comment on the behavior of the adaptive
FE refinement. Figure 3a shows that adaptive mesh refinement is performed for the first two parameter values to
meet the specified FE error tolerance. The dimension of the FE space increases from Nh = 1536 to 9720 through
the adaptive mesh refinement; the number of quadrature points on the final adapted mesh is Qh = 14765. The final
adapted mesh is shown in Figure 2a. Much of the refinement is in the vicinity of the upper boundary and the upper
corners.

We next discuss the offline training time. Table 2 summarizes the wall-clock time observed on an eight-core
computer. All computation times are normalized by the time for a single FE solve on the final adapted mesh,
without the solution of the FE dual problem or DWR. We first note that ≈ 50% of the computational time is spent
on the adaptive FEM. All adaptive mesh refinements are performed in the first and third greedy iterations; while
the other greedy iterations do not require adaptive mesh refinement, we nevertheless must solve the (enriched)
FE dual problem and compute the DWR error estimate to ensure the snapshots are sufficiently accurate. The
next dominant cost is associated with the EQPs for the residual, output functional, and dual+DWR; these steps
take up to ≈25% of the computational time in the final greedy iteration, and the cost increases as the size of the
EQP training set Ξeqp = Ξgreedy increases. The next dominant cost is the identification of the appropriate primal
and dual RB sizes using the recursive algorithm (Algorithm 1, lines 5 and 6); while this cost is non-negligible, it
nevertheless is more efficient than using a POD-greedy algorithm that adds only one RB at a time and requires
more AFEM solves. The error sampling is a relatively small fraction of the overall cost; the efficient RB-RQ error
estimate η̃N(µ) enables rapid evaluation of the error at all |Ξtrain| = 100 parameter values.

We finally discuss the online evaluation time. Table 3 summarizes the wall-clock speed up observed relative
to a single FE solve on the final adapted mesh, without the solution of the FE dual problem or DWR, on the eight-
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(a) FE error (b) RB-RQ error

Figure 3: FE and RB-RQ error convergence for the lid-driven cavity flow problem for Dlow. In (a), the symbols indicate the parameter value
for which the FE problem is solved; the solid and dashed lines correspond to the first and third greedy iterations, in which the mesh is adapted.

EQP
iter AFEM RBs residual output dual+DWR sampling total
1 2.01 0.31 0.04 0.00 0.10 0.50 3.00
2 1.03 0.67 0.11 0.01 0.29 1.09 3.33
3 20.16 3.27 0.58 0.03 2.54 1.71 29.14
4 3.50 2.49 1.19 0.04 3.56 2.40 13.99
5 3.36 2.01 1.59 0.05 4.60 2.70 15.24

48.5% 14.1% 5.6% 0.2% 17.9% 13.6% 100.0%

Table 2: Wall-clock training time for the lid-driven cavity flow problem for Dlow. The times are normalized by the time for a single FE solve
(without the DWR error estimate) on the final adapted mesh.
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iter output (only) output + error estimate
1 325 200
2 166 91
3 113 58
4 74 41
5 62 37

Table 3: Online wall-clock speed up for the lid-driven cavity flow problem for Dlow. The times are normalized by the time for a single FE
solve (without the DWR error estimate) on the final adapted mesh.

(a) RQ error (b) RQ points

Figure 4: The RQ errors and the number of RQ points as a function of EQP tolerance δ• for the lid-driven cavity flow problem forDlow.

core computer. The RB-RQ approximation, which meets the output error tolerance of ≈0.5%, achieves a speed up
of 62 for the (primal) solution and output evaluation; if we wish to also compute the error estimate, which involves
the solution of the dual problem and the evaluation of the DWR, the speed up is 37. The cost to evaluate the error
estimate is comparable to solving the primal problem for this case as the dual and primal problems are comparable
in size (Npr = 22 vs Ndu = 28 and Q̃r = 411 vs Q̃η = 340).

5.3. RQ error control via EQP
We will now assess the ability of the EQPs to control the error in the RB-RQ approximations for the lid-driven

cavity flow. The greedy algorithm setting is identical to those used in Section 5.2, except that we vary the EQP
tolerances from a loose setting of δr = δη = 10δJ = 5 × 10−5 to a tight setting of δr = δη = 10δJ = 5 × 10−7.

Figure 4a summarizes the maximum RQ error over a random test set Ξtest that comprises Ntest = 20 parameter
values. We report the average error for the last two iterations, Ngreedy = 4 and 5. We observe that the RQ error in
the output |sN(µ) − s̃N(µ)| is well controlled for δr ≥ 5 × 10−6. We do not attain a tighter control for δr < 5 × 10−6

because the EQP training parameter set Ξeqp with just Neqp = 4 and 5 parameter points provide limited coverage of
the parameter space. On the other hand, the RQ error in the DWR error estimate |ηN(µ)− η̃N(µ)| is well controlled
for all EQP tolerances δη.

Figure 4b shows the number of residual and DWR RQ points as a function of the EQP tolerances. As expected,
the number of RQ points Q̃• increase as the tolerance δ• is tightened, which results in a commensurate increase in
the online computing time. In fact, our standard choice of δr = δη = δgreedy/10 = 5×10−6, as used in Section 5.2, is
somewhat conservative. A looser EQP tolerance would yield a larger online computational speed up for a minimal
change in the accuracy.

5.4. Lid-driven cavity flow: higher Reynolds number
We now consider the same lid-driven cavity flow problem that we considered in Section 5.2 but in a higher

Reynolds number regime. Our new time interval is I ≡ (0,T ≡ 4]. Our parameters lie in µ ≡ (Re, ω) ∈
[500, 1000] × [π/(4T ), 2π/T ] ≡ Dhigh. Figure 1c shows a snapshot of the solution for the highest Reynolds
number case. The solution significantly differs from the lower Reynolds number case.

We invoke the greedy algorithm (Algorithm 1) to construct an RB-RQ model. The greedy algorithm setting
is the same as the lower Reynolds number case considered in Section 5.2. For brevity, we focus on observations
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Table 4: Behavior of the greedy algorithm for the lid-driven cavity flow problem for Dhigh. The FE problem on the final adapted mesh has
Nh = 12648 degrees of freedom and Qh = 19165 quadrature points.

max over Ξtrain max over Ξtest
iter Npr Ndu Q̃r Q̃J Q̃η η̃N |sh − s̃N | η̃N |sN − s̃N | |ηN − η̃N |

1 8 4 83 17 64 1.29 × 10−3 6.17 × 10−4 9.50 × 10−4 2.59 × 10−4 1.28 × 10−4

2 18 12 253 40 175 1.39 × 10−4 1.04 × 10−4 1.13 × 10−4 1.41 × 10−5 1.16 × 10−5

3 22 20 321 45 246 1.10 × 10−4 6.54 × 10−5 1.03 × 10−4 1.59 × 10−5 1.31 × 10−5

4 28 26 436 60 385 3.63 × 10−5 3.21 × 10−5 2.32 × 10−5 3.92 × 10−6 3.16 × 10−6

(a) FE error (b) RB-RQ error

Figure 5: FE and RB-RQ error convergence for the lid-driven cavity flow problem for Dhigh. In (a), the symbols indicate the parameter value
for which the FE problem is solved; the solid and dashed lines correspond to the first and second greedy iterations, in which the mesh is
adapted.

that differ from the lower-Reynolds-number lid-driven cavity flow case; we refer to Section 5.2 for more detailed
discussions of the general behavior of the algorithm.

Table 4 summarizes the behavior of the greedy algorithms. The greedy algorithm progressively enriches both
the primal and dual spaces, and the number of RQ points increases accordingly. We observe rapid decrease
in the maximum error over the 100 training parameter values in Ξtrain. The maximum error over the 20 test
parameter values in Ξtest , Ξtrain also decays rapidly as the number of greedy iterations increases; we also note
that the error estimate η̃N is also effective. Figure 5b depicts these convergence behaviors over Ξtrain and Ξtest.
We observe that the RQ errors over Ξtest for Ngreedy = 4 is maxµ∈Ξtest |sN(µ) − s̃N(µ)| ≈ δr for the output and
maxµ∈Ξtest |ηN(µ) − η̃N(µ)| ≈ δη for the error estimate. We emphasize that this is for the predictive setting of
Ξtest , Ξeqp, and Ξeqp contains just four parameter values; as the cost of the FE solve dominates the overall
computational cost, the ability to achieve tight error control using a small training set is crucial. The residual RQ
points for the final RB-RQ model is depicted in Figure 2b.

Figure 5a summarizes the behavior of the FE error with adaptive mesh refinement. For this higher Reynolds
number case, adaptive mesh refinement is performed for the first and second parameter values. The final adapted
mesh is shown in Figure 2b; we observe refinement in the vicinity of the lid and the upper corners.

Table 5 summarizes offline computation time. We report the wall-clock time observed on an eight-core com-
puter. All times are normalized by the time for a single FE solve on the final adapted mesh, without the solution
of the FE dual problem or DWR. The timing breakdown is similar to the lower Reynolds number case considered
in Section 5.2. The most dominant cost (≈ 45%) of the offline training are the adaptive FE solves. The cost to
identify appropriate primal and dual RB sizes using the recursive algorithm (Algorithm 1, lines 5 and 6) and the
EQP costs are similar at ≈ 20% each. The error sampling cost over |Ξtrain| = 100 training point is relatively small
thanks to the online-efficient error estimate.

Table 6 summarizes the online wall-clock computational time using the eight-core computer. The final model,
which achieves an output error of less than 0.5%, achieves online speed up of 68 in the wall-clock time for output
evaluation. If we wish to also evaluate the output error estimate, the speed up is 40.

24



EQP
iter AFEM RBs residual output dual+DWR sampling total
1 4.58 0.70 0.05 0.00 0.17 0.49 6.02
2 10.94 3.41 0.38 0.02 1.01 1.28 17.40
3 3.21 2.96 0.66 0.03 2.03 1.76 11.33
4 3.21 3.84 1.21 0.05 3.78 2.49 15.50

45.4% 22.6% 4.8% 0.2% 14.5% 12.5% 100.0%

Table 5: Wall-clock training time for the lid-driven cavity flow problem forDhigh. The times are normalized by the time for a single FE solve
(without the DWR error estimate) on the final adapted mesh.

iter output (only) output + error estimate
1 329 202
2 123 77
3 93 56
4 68 40

Table 6: Online wall-clock speed up for the lid-driven cavity flow problem for Dhigh. The times are normalized by the time for a single FE
solve (without the DWR error estimate) on the final adapted mesh.

5.5. Flow past NACA0012
We now consider a two-dimensional compressible flow past a NACA0012 airfoil. Our parametrized flow

configuration is as follows. The freestream Mach number is fixed at M∞ = 0.2, and the angle of attack is fixed at
α = 20◦. Our parameter is the (chord-based) Reynolds number µ ≡ Re ∈ [300, 600] ≡ D. The initial condition
is a snapshot of a (nearly) periodic solution for Re = 450. The quantity of interest is the time-averaged drag over
a window of 20 non-dimensionalized time units, which corresponds to approximately two periods of the (nearly)
periodic solution. The drag output functional, unlike the kinetic-energy functional for the lid-driven cavity flow, is
localized to the airfoil and hence serves as a good test of the goal-oriented error estimation and control framework.
Figure 6 shows snapshots of the primal and dual solutions.

We again use an adaptive P2 DG method and the three-stage DIRK method with ∆t = 1/4 for the FE approx-
imation, as described in Section 5.1. The initial FE space comprises 1296 elements and Nh = 31104 degrees of
freedom. The greedy training set comprises 30 parameter points that are uniformly distributed over D. Our goal
is to achieve the error level δgreedy = 2 × 10−3, which corresponds to ≈0.5% drag error. Following Remark 25, we
set the FE tolerance to δfe = 2 × 10−4, the primal RB tolerance to δrb = 1 × 10−3, the dual RB relative tolerance to
δdu,tol = 1/10, and the EQP tolerances to δr = δη = 2 × 10−4 and δJ = 2 × 10−5.

We invoke the greedy algorithm (Algorithm 1) to construct an RB-RQ model. (For brevity, we again refer to
Section 5.2 for general observations and focus on observations that are different from the lower-Reynolds-number
lid-driven cavity flow case.) Table 7 summarizes the behavior of the greedy algorithm. The NACA0012 flow
exhibits more complicated dynamics than the lid-driven cavity flow. Accordingly, the number of RBs and RQs
is substantially higher than the lid-driven cavity flow, requiring Npr = 42, Ndu = 24, Q̃r = 1267, Q̃J = 35,
and Q̃η = 799. However, as the FE approximation requires Nh = 155904 degrees of freedom and Qh = 318036
quadrature points, the relative reduction is greater for this case. The residual RQ points obtained in the final greedy
iteration are shown in Figure 7; the majority of the RQ points are in the wake.

We next comment on the accuracy of the RB-RQ approximation. We observe that the maximum error over
the training set maxµ∈Ξtrain η̃N(µ) decays rapidly, as also shown in Figure 8b. The error in the “predictive” setting
over the test set Ξtest comprises randomly selected parameter values also decays rapidly. We also confirm that
the RB-RQ error estimate η̃N(µ) is effective for Ngreedy ≥ 2. We finally comment on the error due to the use of
the RQ rules. While the RQ error in the error estimate is well controlled (i.e., maxµ∈Ξtest |ηN(µ) − η̃N(µ)| < δη),

Table 7: Convergence of the greedy algorithm for the NACA0012 flow problem. The FE problem on the final adapted mesh has Nh = 155904
degrees of freedom and Qh = 318036 quadrature points.

max over Ξtrain max over Ξtest
iter Npr Ndu Q̃r Q̃J Q̃η η̃N |sh − s̃N | η̃ |sN − s̃N | |ηN − η̃N |

1 12 12 226 19 351 5.28 × 10−2 1.56 × 10−2 3.32 × 10−2 3.73 × 10−4 2.04 × 10−2

2 24 24 654 31 785 1.78 × 10−2 7.13 × 10−3 7.26 × 10−3 2.83 × 10−3 1.79 × 10−4

3 42 24 1267 35 799 6.05 × 10−4 1.04 × 10−3 6.00 × 10−4 6.50 × 10−4 8.56 × 10−5
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(a) primal solution (entropy), t = 20 (b) adjoint (continuity equation), t = 0

Figure 6: Snapshots of the primal and adjoint solutions for the NACA0012 flow problem for Re = 450.

Figure 7: The residual RQ points for the NACA0012 flow problem obtained using EQP in the third greedy iteration. Note that the figure is
zoomed into the vicinity of the airfoil.

the RQ error in the output is not as tightly controlled as the lower-Reynolds-number lid-driven cavity flow case
(i.e., maxµ∈Ξtest |sN(µ) − s̃N(µ)| < 3.5δr). We again emphasize that this is for the predictive setting of Ξtest , Ξeqp,
and Ξeqp contains just three parameter points. If a tighter RQ error control over the entire D is desired, we could
increase the size of Ξeqp and/or use a tighter RQ tolerance at the expense of a higher computational cost. The
residual RQ points for the final RB-RQ model are depicted in Figure 7; most RQ points are in the wake. The
overall effectiveness of the RB-RQ approximation and error estimates is illustrated in Figure 8b.

Figure 8a summarizes the convergence behavior of the FE error with adaptive mesh refinement. Figure 7
shows the final adapted mesh. As expected, most of the refinement is in the trailing edge and the wake.

Table 8 summarizes the wall-clock time observed on a 40-core computer. All computational times are nor-
malized by the time for a single FE solve on the final adapted mesh, without the solution of the FE dual problem
or DWR. The computation of the adaptive FE solutions and the FE DWR error estimates dominates the overall
computational cost at ≈54%. The identification of the appropriate primal and dual RB size using the recursive
algorithm (Algorithm 1, lines 5 and 6) also requires ≈27% of the overall computational time. The EQPs com-
prise a smaller fraction of the computational time than for the lid-driven cavity flows. The error sampling time is
negligible, thanks to the efficient RB-RQ error estimate and the relatively small size of the training set |Ξtrain| = 30.

Table 9 summarizes the wall-clock speed up observed on a 40-core computer relative to a single FE solve on
the final adapted mesh. The RB-RQ approximation, which yields ≈0.5% output error in the predictive setting,
achieves a speed up of 328 for the (primal) solution and output evaluation, and a speed up of 240 if we wish to
also evaluate the output error estimate. We note that the wall-clock speed up is “conservative” as the relatively
small size of the RB-RQ model affects the parallel efficiency on the 40-core computer. Nevertheless, we achieve
a wall-clock speed up of two-orders of magnitude in this “conservative” setting.

EQP
iter AFEM RBs residual output dual+DWR sampling total
1 8.02 2.08 0.15 0.01 0.56 0.04 10.87
2 4.54 4.81 0.80 0.03 2.39 0.08 12.97
3 24.21 11.32 3.52 0.09 5.27 0.13 45.56

54.0% 26.8% 6.6% 0.2% 12.1% 0.4% 100.0%

Table 8: Wall-clock training time for the NACA0012 flow problem. The times are normalized by the time for a single FE solve (without the
DWR error estimate) on the final adapted mesh.
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(a) FE error (b) RB-RQ error

Figure 8: FE and RB-RQ error convergence for the NACA0012 flow problem. In (a), the symbols indicate the parameter value for which
the FE problem is solved, including the initial transient solve; the solid and dashed lines correspond to the first and third greedy iterations, in
which the mesh is adapted.

iter output (only) output + error estimate
1 1306 716
2 678 374
3 328 240

Table 9: Online wall-clock speed up for the NACA0012 flow problem. The times are normalized by the time for a single FE solve (without
the DWR error estimate) on the final adapted mesh.

6. Summary and perspectives

The present work extends the previous work on model reduction for parametrized time-dependent (nonlinear)
PDEs (e.g., [29, 31, 20, 27]) in three areas. Our first contribution is the development of EQPs for time-dependent
problems that provide quantitative control of the output error due to hyperreduction. The EQP constraints are
informed by an error analysis that appeals to the space-time DWR error representation formula, and the constraints
can be used to hyperreduce all quadrature-based spatial discretization and time-marching schemes. Our second
contribution is the development of an online-efficient output a posteriori error estimate for time-dependent PDEs
with general nonlinearities. We approximate the DWR error estimate using a dual RB combined with RQ rules,
where the RQ rules are identified using EQP with appropriate accuracy constraints. Our third contribution is the
development of a POD-greedy algorithm that simultaneously constructs the finite element mesh, primal and dual
RBs, and RQ rules; given a user-prescribed output error tolerance, the training is completely automated. We have
demonstrated the efficacy of the framework for two families of unsteady compressible Navier-Stokes flows in a
lid-driven cavity and over a NACA0012 airfoil. We believe that systematic construction of ROMs with quantitative
output error control, as well as online-efficient a posteriori error estimates, are important ingredients needed to
apply model reduction techniques to increasingly challenging problems, such as those in aerodynamics.

We also acknowledge that this work focuses on the above contributions and does not explore several topics that
are important for model reduction of time-dependent nonlinear PDEs. First, while we employ the discontinuous
Galerkin (DG) method and entropy variables for the compressible Navier-Stokes equations to stabilize the “truth”
problem, we do not consider an explicit stabilization of the ROM using, e.g., a closure model [54, 35], minimum-
residual projection [12], or entropy-stable formulation [15]. Second, we use spatial RBs based on POD and do
not consider space-time RB and do not consider space-time formulations based on global snapshots [52] or tensor
decomposition [17]. These techniques could further improve the robustness and efficiency of ROMs.

Appendix A. Proof of error estimates

Proof of Proposition 7. We first apply the standard DWR error estimate (e.g., [9, Section 2.2]) to the space-time
form of the problem to obtain

J(uN) − J(ũN) = −〈A(ũN), zpr
N 〉 + O(δ̃2).
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We next note that

J(uN) − J(ũN) = − 〈A(ũN), zpr
N 〉 + 〈A(uN), zpr

N 〉 + O(δ̃2)

= − 〈A(ûN), zpr
N 〉 − 〈DA(ûN)(ũN − ûN), zpr

N 〉 + O(‖ũN − ûN‖
2
V )

+ 〈A(ûN), zpr
N 〉 + 〈DA(ûN)(uN − ûN), zpr

N 〉 + O(‖uN − ûN‖
2
V )

=〈DA(ûN)(uN − ûN), zpr
N 〉 − 〈DA(ûN)(ũN − ûN), zpr

N 〉 + O(‖ũN − ûN‖
2
V ) + O(‖uN − ûN‖

2
V )

=〈DA(ûN)δũN , z
pr
N 〉 + O(δ̃2) + O(δ̂2),

(A.1)

where δ̃ ≡ ‖δũN‖V and δ̂ ≡ ‖δûN‖V for δũN ≡ uN − ũN and δûN ≡ uN − ûN . Here, the first equality follows from
〈A(uN), zpr

N 〉 = 0, the second equality follows from the Taylor series expansions of A about ûN , and the last equality
follows from the triangle inequality ‖ũN − ûN‖

2
V = ‖(uN − ũN) − (uN − ûN)‖2V ≤ O(δ̃2) +O(δ̂2). On the other hand,

we note that, ∀v ∈ V ,

〈A(ûN) − Ã(ûN), v〉 = 〈A(uN), v〉 + 〈DA(uN)(ûN − uN), v〉 + O(‖ûN − uN‖
2
V )

− 〈Ã(ũN), v〉 − 〈DÃ(ũN)(ûN − ũN), v〉 + O(‖ûN − ũN‖
2
V )

= −〈DA(ûN)δûN , v〉 − 〈DÃ(ûN)(δũN − δûN), v〉 + O(δ̂2) + O(δ̃2)

= −〈DÃ(ûN)δũN , v〉 − 〈(DA(ûN) − DÃ(ûN))δûN , v〉 + O(δ̂2) + O(δ̃2),

(A.2)

where the first equality follows from the Taylor series expansion about uN and ũN for the first and second terms,
respectively, and the second equality follows from 〈A(uN), zpr

N 〉 = 0, 〈Ã(ũN), zpr
N 〉 = 0, the Taylor series expansion

of DA and DÃ about ûN , and grouping second-order terms. We rearrange the expression to obtain, ∀v ∈ V ,

〈DÃ(ûN)δũN , v〉 = −〈A(ûN) − Ã(ûN), v〉 − 〈(DA(ûN) − DÃ(ûN))δûN , v〉 + O(δ̂2) + O(δ̃2).

We now take v = DÃ−∗(ûN)DA∗(ûN)zpr
N , where (·)∗ denotes the formal adjoint to obtain

〈DA(ûN)δũN , z
pr
N 〉

= −〈DA(ûN)DÃ(ûN)−1(A(ûN) − Ã(ûN)), zpr
N 〉 − 〈DA(ûN)DÃ(ûN)−1(DA(ûN) − DÃ(ûN))δûN , z

pr
N 〉 + O(δ̂2) + O(δ̃2)

= −〈A(ûN) − Ã(ûN), zpr
N 〉 + 〈(I − DA(ûN)DÃ(ûN)−1)(A(ûN) − Ã(ûN)), zpr

N 〉

+ 〈(I − DA(ûN)DÃ(ûN)−1)DA(ûN)δûN , z
pr
N 〉 + O(δ̂2) + O(δ̃2)

= −〈A(ûN) − Ã(ûN), zpr
N 〉 + 〈B(A(ûN) − Ã(ûN)), zpr

N 〉 + 〈B(DA(ûN)δûN), zpr
N 〉 + O(δ̂2) + O(δ̃2),

(A.3)

where we have defined B ≡ I − DA(ûN)DÃ(ûN)−1. We combine (A.1) and (A.3) to obtain

|J(uN) − J(ũN)| ≤ |〈A(ûN) − Ã(ûN), zpr
N 〉| + |〈B(A(ûN) − Ã(ûN)), zpr

N 〉| + |〈B(DA(ûN)δûN), zpr
N 〉| + O(δ̂2) + O(δ̃2)

(A.4)

≡ (I) + (II) + (III) + O(δ̂2) + O(δ̃2). (A.5)

We now bound the three terms. We appeal to the residual constraint (15) to bound the first term

(I) = |〈A(ûN) − Ã(ûN), zpr
N 〉| = |

∫
I
(r(ûN , z

pr
N ) − r̃(ûN , z

pr
N ))dt| ≤ δr. (A.6)

To bound the second term, we first appeal to (A.2) to obtain

(II) = |〈B(A(ûN) − Ã(ûN)), zpr
N 〉|

= | − 〈BDÃ(ûN)δũN , z
pr
N 〉 − 〈B(DA(ûN) − DÃ(ûN))δûN , z

pr
N 〉 + O(δ̂2) + O(δ̃2)|

= | − 〈BDÃ(ûN)δũN , z
pr
N 〉 − 〈B(DA(ûN)DÃ(ûN)−1 − I)DÃ(ûN)δûN , z

pr
N 〉 + O(δ̂2) + O(δ̃2)|

= | − 〈BDÃ(ûN)δũN , z
pr
N 〉 + 〈BBDÃ(ûN)δûN , z

pr
N 〉 + O(δ̂2) + O(δ̃2)|

We then appeal to the triangle inequality and the definition of operator norms

(II) ≤ ‖B‖L(V ′
N ,V

′
N )‖DÃ(ûN)‖L(VN ,V ′

N )‖δũN‖V ‖z
pr
N ‖V + ‖B‖2

L(V ′
N ,V

′
N )‖DÃ(ûN)‖L(VN ,V ′

N )‖δûN‖V ‖z
pr
N ‖V

≤ O(δ2
J) + O(δ̃2) + O(δ̂2), (A.7)
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where the operator norms are defined by

‖B‖L(V ′
N ,V

′
N ) = sup

w∈V ′
N

sup
v∈VN

〈Bw, v〉
‖w‖V ′

N
‖v‖VN

and ‖DÃ(ûN)‖L(VN ,V ′
N ) = sup

w∈VN

sup
v∈VN

〈DA(ûN)w, v〉
‖w‖VN ‖v‖VN

,

and the second inequality follows from ‖B‖ ≤ δJ and the Young’s inequality. Finally, we note that the third term
is bounded by

(III) = |〈B(DA(ûN)δûN), zpr
N 〉| ≤ ‖B‖L(V ′

N ,V
′

N )‖DA(ûN)‖L(VN ,V ′
N )‖δûN‖V ‖δz

pr
N ‖V ≤ O(δ2

J) + O(δ̂2), (A.8)

where the first inequality follows from the definition of operator norms and the second inequality follows from the
Young’s inequality. We substitute (A.6), (A.7), and (A.8) into (A.5) to obtain

|J(uN) − J(ûN)| ≤ δr + O(δ2
J) + O(δ̂2) + O(δ̃2),

which is the desired inequality.

Proof of Proposition 17. Throughout this proof, all DA, DÃ, DJ, and DJ̃ are evaluated about (ũ(µ); µ) and hence
we omit the argument for notational convenience. We first note that

zdu
N − z̃du

N = zdu
N + DÃ−∗DJ̃ = DA−∗DA∗DÃ−∗(DÃ∗zdu

N + DJ̃) = DA−∗(I − (I − DA∗DÃ−∗))(DÃ∗zdu
N + DJ̃)

= DA−∗(I − B)(DÃ∗zdu
N + DJ̃),

(A.9)

where the first equality follows from z̃du
N = −DÃ−∗DJ̃, and we have introduced B ≡ I − DA∗DÃ−∗. It follows that

〈A(ũ(µ)), zdu
N − z̃du

N 〉 = 〈A(ũ(µ)),DA−∗(I − B)(DÃ∗zdu
N + DJ̃)〉 = 〈(I − B)(DÃ∗zdu

N + DJ̃),DA−1A(ũ(µ))〉

= 〈(I − B)(DÃ∗zdu
N + DJ̃), ψN〉 = 〈DÃ∗zdu

N + DJ̃, ψN〉 + 〈B(DÃ∗zdu
N + DJ̃), ψN〉 ≡ (I) + (II),

where the third equality follows from ψN = DA−1A(ũ(µ)). The term (I) is bounded by

(I) = 〈(DA∗zdu
N + DJ) − (DÃ∗zdu

N + DJ̃), ψN〉

=

∫
I
[rdu

h (ũN(µ, t);ψdu
N (µ, t), zdu

N (µ, t); µ, t) − r̃
du
h (ũN(µ, t);ψdu

N (µ, t), zdu
N (µ, t); µ, t)]dt

+ mh(ψdu
N (µ,T ), zdu

N (µ,T )) − m̃h(ψdu
N (µ,T ), zdu

N (µ,T )) − f ′h(ũN(µ,T );ψdu
N (µ,T )) + f̃ ′h(ũN(µ,T );ψdu

N (µ,T )) ≤
δη,1

2
,

where the first equality follows from “adding” DA∗zdu
N +DJ = 0, and the inequality follows from the constraint (31).

The term (II) is bounded by

(II) = 〈B(DÃ∗(zdu
N − z̃du

N )), ψN〉 ≤ ‖B‖L(V du
N
′,V du

N
′)‖DÃ∗‖L(V du

N ,V du
N
′)‖z

du
N − z̃du

N ‖V ‖ψN‖V ≤ O(δ2
J) + O(δ̃2),

where the first equality follows from DÃ∗z̃du
N = −DJ̃, the first equality follows from the constrains and the triangle

inequality.

Appendix B. Fully discrete approximations for DIRK methods

Appendix B.1. Problem description
We present details associated with a fully discrete approximation of the proposed method. We use the DIRK

method to illustrate the construction, but the idea readily extends to other time-marching methods. To present
the formulation for FE, RB, and RB-RQ approximations in a unified manner, we consider a general system of n
equations for the time window I ≡ (0,T ]. Namely, we find u : I → Rn such that

d
dt

M(u(t)) + R(u(t), t) = 0 in Rn × I,

u(t = 0) = uinit in Rn,

(B.1)

and then evaluate the output

s =

∫ T

0
F(u(t), t)dt + G(u(T ));
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here M : Rn → Rn is the mass function, R : Rn × I → Rn is the residual function, F : Rn × I → R is the
time-dependent output functional, and G : Rn → R is the terminal-time output functional. In the context of the
FE approximation given by Vh = span{φfe

i }
Nh
i=1, we have n = Nh, u(t) = uh(t) such that uh(t) =

∑Nh
j=1 φ

fe
j uh(t) j,

M(u(t))i = m(uh(t), φfe
i ; µ) for i = 1, . . . , n, and R(u(t))i = r(uh(t), φfe

i ; µ, t) for i = 1, . . . , n. Similarly, in the
context of the RB approximation given by Vpr

N = span{φpr
i }

Npr

i=1, we have n = Npr, u(t) = uN(t) such that uN(t) =∑Npr

j=1 φ
pr
j uN(t) j, M(u(t))i = m(uh(t), φpr

i ; µ) for i = 1, . . . , n, and R(u(t))i = r(uh(t), φpr
i ; µ, t) for i = 1, . . . , n.

Appendix B.2. Primal problem

We now consider a fully discrete approximation of (B.1) using an s-stage DIRK method characterized by
coefficients {ai j}

s
i, j=1, {bi}

s
i=1, and {c j}

s
j=1; see, e.g., [1, 36]. Our time instances are given by 0 ≡ t0 < t1 < · · · < tK ≡

T , and the time steps are tk ≡ tk − tk−1. The application of the s-stage DIRK method to (B.1) yields the following
problem: find {uk, {uk

l }
s
l=1}

K
k=1 such that

M(uk
i ) − M(uk−1) + ∆tk

s∑
j=1

ai jR(uk
j, t

k
j) = 0, i = 1, . . . , s, k = 1, . . . ,K, (B.2)

M(uk) − M(uk−1) + ∆tk
s∑

j=1

b jR(uk
j, t

k
j) = 0, k = 1, . . . ,K, (B.3)

where uk is the solution at time tk, uk
j is the j-th stage solution in the k-th time interval, and tk

j = tk−1 + c j∆tk for
∆tk ≡ tk − tk−1. The DIRK approximation of the output is given by

s =

K∑
k=1

s∑
j=1

∆tnb jF(uk
j, t

k
j) + G(uK).

For DIRK methods, ai j = 0 for j > i by definition. Hence, in the k-th time interval, we successively solve (B.2) for
stage states uk

1, u
k
2, . . . , u

k
s using Newton’s method, and then solve (B.3) for the updated state uk+1. This procedure

applies to the semi-discrete FE system (2), the RB system (7), and the RB-RQ system (9).

Appendix B.3. Dual problem

To obtain a fully discrete approximation of the dual problem using the s-stage DIRK method, we first introduce
the Lagrangian

L(U,Z) ≡ −
K∑

k=1

s∑
j=1

∆tkb jF(uk
j, t

k
j) −G(uK) + z0(M(u0) − M(uinit))

+

K∑
k=1

s∑
i=1

(zk
i )T

M(uk
i ) − M(uk−1) + ∆tk

s∑
j=1

ai jR(uk
j, t

k
j)


+

K∑
k=1

(zk)T

M(uk) − M(uk−1) + ∆tk
s∑

j=1

b jR(uk
j, t

k
j)

 ,
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where U ≡ {uk, {uk
i }

s
i=1}

K
k=1 and Z ≡ {zk, {zk

i }
s
i=1}

K
k=1 denote the collection of all state vectors. We differentiate the

Lagrangian with respect to the first argument and regroup the terms to obtain

L′(U; W,Z) = −

K∑
k=1

s∑
j=1

∆tkb jF′(uk
j, t

k
j)

T wk
j −G′(uK)T wK + (z0)T M′(u0)w0

+

K∑
k=1

s∑
i=1

(zk
i )T

M′(uk
i )wk

i − M′(uk−1)wk−1 + ∆tk
s∑

j=1

ai jR′(uk
j, t

k
j)w

k
j


+

K∑
k=1

(zk)T

M′(uk)wk − M′(uk−1)wk−1 + ∆tk
s∑

j=1

b jR′(uk
j, t

k
j)w

k
j


= ((zK)T M′(uK) −G′(uK)T )wK +

K−1∑
k=0

(zk)T − (zk+1)T −

s∑
i=1

(zk+1
i )T

 M′(uk)wk


+

K∑
k=1

s∑
j=1

−∆tkb jF′(uk
j, t

k
j)

T + (zk
j)

T M′(uk
j) + ∆tk

 s∑
i=1

ai j(zk
i )T + b j(zk)T

 R′(uk
j, t

k
j)

 wk
j,

where F′ : Rn × I → Rn and G′ : Rn × Rn are the gradients of F and G, respectively, and M′ : Rn → Rn×n and
R′ : Rn × I → Rn×n are the Jacobians of M and R, respectively. (We follow the convention where the gradient is a
column, instead of a row, vector.) We recall that that the adjoint Z must satisfy L′(U; W,Z) = 0 for all W to obtain
the following adjoint equations: find {zk, {zk

l }
s
l=1}

K
k=1 such that

M′(uk
j)

T zk
j + ∆tkR′(uk

j, t
k
j)

T

 s∑
i=1

ai jzk
i + b jzk

 = ∆tkb jF′(uk
j, t

k
j), j = 1, . . . , s, k = 1, . . . ,K, (B.4)

M′(uk)T

zk − zk+1 −

s∑
i=1

(zk+1
i )

 = 0, k = 0, . . . ,K − 1, (B.5)

M′(uK)T zK = G′(uK). (B.6)

We again recall that for DIRK methods ai j = 0 for j > i. Hence, in the k-th time interval, we successively
solve (B.4) for stage adjoints zk

s, z
k
s−1, . . . , z

k
1 and then solve (B.5) for the updated adjoint zk−1. We start at the final

time interval k = K and solve the equation backward in time until we reach k = 0. This approach to compute
the fully discrete DIRK approximations of the dual problem applies to the semi-discrete FE system (23), RB
system (25), RB-RQ system (27), and the enriched FE system (20).

Appendix B.4. DWR error estimate

Given the fully discrete DIRK residual and the associated primal and dual solutions, the stage-wise DWR error
estimates are given by

ηk
i ≡ (zk

s)
T (M(uk

i ) − M(uk−1) + ∆tk
s∑

j=1

ai jR(uk
j, t

k
j)), i = 1, . . . , s, k = 1, . . . ,K, (B.7)

ηk ≡ (zk)T (M(uk) − M(uk−1) + ∆tk
s∑

j=1

b jR(uk
j, t

k
j)), k = 1, . . . ,K, (B.8)

The (global) DWR error estimate is the sum of the stage-wise estimates:

η ≡

K∑
k=1

(ηk +

s∑
i=1

ηk
i ).

This approach to compute the fully discrete DWR error estimates applies to the FE DWR (24), the RB DWR (26),
the RB-RQ DWR (28), and the FE DWR for adaptive mesh refinement (22).

31



Appendix B.5. Dual-of-the-dual (or tangent) problem

A fully discrete approximation of the tangent problem, and specifically (30), for the s-stage DIRK method is
the following: find tangent states {ψk, {ψk

l }
s
l=1}

K
k=1 such that

M′(uk
i )ψk

i − M′(uk−1)ψk−1 + ∆tk
s∑

j=1

ai jR′(uk
j, t

k
j)ψ

k
j = M(uk

i ) − M(uk−1) + ∆tk
s∑

j=1

ai jR(uk
j, t

k
j),

i = 1, . . . , s, k = 1, . . . ,K,
(B.9)

M′(uk)ψk − M(uk−1)ψk−1 + ∆tk
s∑

j=1

b jR′(uk
j, t

k
j)ψ

k
j = M(uk) − M(uk−1) + ∆tk

s∑
j=1

b jR(uk
j, t

k
j), k = 1, . . . ,K,

(B.10)

where {uk, {uk
i }

s
i=1}

K
k=1 is the solution about which the tangent problem is linearized. We note that the right hand

side corresponds to the (DIRK-discretized) time-dependent residual. For DIRK methods, ai j = 0 for j > i by
definition. Hence, in the k-th time interval, we successively solve (B.9) for stage states ψk

1, ψ
k
2, . . . , ψ

k
s, and then

solve (B.10) for the updated state ψk+1. This approach to compute the fully discrete DIRK approximations of the
tangent problem applies to RB system (30).

Appendix B.6. EQP constraints

The fully discrete approximation of the residual EQP constraint (17) in Definition 10 is given by

|

∫
k′

[rh(ûN(µ, t),ΠS l ẑ
pr
N (µ, t); µ, t) −

Qh∑
q=1

ρr
qrq(ûN(µ, t),ΠS l ẑ

pr
N (µ, t); µ, t) ≈

∑
k∈ind(Ik′ )

(ηk,S l +

s∑
i=1

ηk,S l
i ) ≤

δr

L
|Ik |

T
,

where the mapping “ind” identifies DIRK time indices k ∈ [1,K] that belong to the EQP time interval k′ ∈
[1,Keqp], and the stage-wise DWR error estimates associated with the projected training dual states ΠS l ẑ

pr
N (µ, ·) ∈

V pr
N are given by

ηk,S l
i ≡

∑
m∈S l

(zk
s)m(M(uk

i ) − M(uk−1) + ∆tk
s∑

j=1

ai jR(uk
j, t

k
j))m, i = 1, . . . , s, k = 1, . . . ,K,

ηk,S l ≡
∑
m∈S l

(zk)m(M(uk) − M(uk−1) + ∆tk
s∑

j=1

b jR(uk
j, t

k
j))m, k = 1, . . . ,K,

for l = 1, . . . , L. We use the same procedure to obtain the fully discrete approximations of the output functional
EQP constraints (19) in Definition 13, the dual EQP constraints (36) and (37) in Definition 19, and the DWR EQP
constraints (38) in Definition 20.
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