
Registration-based nonlinear model reduction of parametrized aerodynamics
problems with applications to transonic Euler and RANS flows

Alireza H. Razavia,1,∗, Masayuki Yanoa,2

aInstitute for Aerospace Studies, University of Toronto, 4925 Duffein Street, Toronto, M3H 5T6, Ontario, Canada

Abstract

We develop a registration-based nonlinear model-order reduction (MOR) method for partial differential
equations (PDEs) with applications to transonic Euler and Reynolds-averaged Navier–Stokes (RANS) equa-
tions in aerodynamics. These PDEs exhibit discontinuous features, namely shocks, whose location depends
on problem configuration parameters, and the associated parametric solution manifold exhibits a slowly
decaying Kolmogorov N -width. As a result, conventional linear MOR methods, which use linear reduced ap-
proximation spaces, do not yield accurate low-dimensional approximations. We present a registration-based
nonlinear MOR method to overcome this challenge. Our formulation builds on the following key ingredients:
(i) a geometrically transformable parametrized PDE discretization; (ii) localized spline-based parametrized
transformations which warp the domain to align discontinuities; (iii) an efficient dilation-based shock sensor
and metric to compute optimal transformation parameters; (iv) hyperreduction and online-efficient output-
based error estimates; and (v) simultaneous transformation and adaptive finite element training. Compared
to existing methods in the literature, our formulation is efficiently scalable to larger problems and is equipped
with error estimates and hyperreduction. We demonstrate the effectiveness of the method on two-dimensional
inviscid and turbulent flows modeled by the Euler and RANS equations, respectively.

Keywords: discontinuous Galerkin method, adaptive high-order method, model reduction, hyperreduction,
empirical quadrature procedure, aerodynamics

1. Introduction

We consider rapid and reliable solution of parametrized nonlinear partial differential equations (PDEs)
with applications to transonic aerodynamic flows. In particular, we wish to rapidly evaluate quantities of in-
terest (output), such as lift and drag, for any given flight condition parameter (input), such as the freestream
Mach number; we also wish to provide reliable output predictions equipped with an error estimate. Our
interest is in many-query scenarios, which require the input-output evaluation for many different parameter
values and arise in engineering tasks including parameter sweep, optimization, and uncertainty quantifica-
tion. We approach this many-query problem using projection-based model reduction based on offline-online
computational decomposition: in the offline stage, we construct a reduced-order model (ROM) through a
relatively expensive exploration of the parameter domain using a full-order model (FOM); in the online
stage, we invoke the ROM to evaluate the solution field, output, and error estimate for any given input
parameter value. This work focuses on model reduction for inviscid and turbulent transonic aerodynamic
flows modeled respectively by the Euler and Reynolds-averaged Navier–Stokes (RANS) equations, which
exhibit shocks whose location depends on the problem parameter.
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We begin with a brief review of linear projection-based model reduction and its limitations.3 We first
introduce a d-dimensional spatial domain Ω ⊂ Rd, a P -dimensional parameter space D ⊂ RP , a function
space V over Ω, a parametrized solution u : D → V, and the associated parametric solution manifold
UD := {u(µ)}µ∈D ⊂ V. We in addition introduce an Nh-dimensional FOM approximation space Vh ⊂ V
and the associated parametric solution manifold UD,h := {uh(µ)}µ∈D ⊂ Vh. The standard linear projection-

based model reduction methods (as described in e.g. [33, 9, 20]) collect FOM snapshots {uh(µ
(i))}Ntrain

i=1

associated with training parameter set {µ(i)}Ntrain
i=1 , construct an N ≪ Nh-dimensional reduced-basis (RB)

{ϕi}Ni=1 using proper orthogonal decomposition (POD) or the Gram-Schmidt procedure, and find the ROM
solution uN (µ) ∈ VN := span{ϕi}Ni=1 through (Petrov-)Galerkin projection. Linear ROMs have the potential
to produce, for all µ ∈ D, the solution uN (µ) that converges rapidly to uh(µ) if the parametric manifold
UD,h is amenable to low-dimensional approximation, in the sense that the Kolmogorov N -width of UD,h,
defined as

ϵN (UD,h) := inf
VN⊂V

dim(VN )=N

sup
uh∈UD,h

inf
wN∈VN

∥uh − wN∥V ,

decays rapidly with N . This assumption of the rapid decay of ϵN (UD,h) holds for many problems, which
has led to to the success of linear ROMs [9] including in aerodynamics [40]. However, if the solution u(µ)
has a sharp feature, such as a shock, whose location depends on the parameter µ, ϵN (UD,h) decays slowly
and linear ROMs are ineffective [30]. This fundamental limitation of linear model reduction is referred to
as the Kolmogrov barrier. The only way to overcome the Kolmogorov barrier is to consider nonlinear ROMs
(NLROMs), which use nonlinear approximations.

Many different approaches to construct nonlinear approximation spaces have recently been proposed, in-
cluding those based on piecewise linear approximations (e.g., [15, 2]), piecewise quadratic approximation [4],
and more general nonlinear approximations using neural networks of various forms (e.g., [25, 17, 24, 5]).
In this work, we focus on registration-based or Lagrangian methods (e.g., [29, 21, 38]). While specific
formulation and implementation, as well as their interpretation, vary among the works, registration-based
methods build on several common ingredients: a diffeomorphism g(·; ν) : Ω → Ω, which is parametrized
by a transformation parameter ν ∈ Dν and warps points in the domain Ω while preserving the boundary
∂Ω; a function ξ : µ 7→ ν that identifies an appropriate transformation parameter ν ∈ Dν for each problem
parameter µ ∈ D; and a metric that measures the distance between a reference solution u(µref) and trans-
formed solution u(µ) ◦ g(·; ν ≡ ξ(µ)) to identify an optimal ξ. The main idea of registration-based methods
is to transform the solution u(µ) for each µ ∈ D using µ-parametrized transformation g(·; ν ≡ ξ(µ)) so that
sharp features in u(µ) that are not amenable to linear compression are aligned with sharp features in u(µref)
for the transformed solution u(µ) ◦ g(·; ξ(µ)). In other words, we choose g(·; ν ≡ ξ(µ)) such that the trans-
formed parametric solution manifold {u(µ) ◦ g(·; ξ(µ))}µ∈D is more amenable to linear approximation than
the original manifold {u(µ)}µ∈D. The effectiveness of the approach for problems that exhibit parameter-
dependent sharp features and discontinuities has been shown in theory and in practice [29, 21, 38, 10, 35, 22].
Registration-based methods have also been successfully applied to projection-based model reduction of invis-
cid transonic flows modeled by the Euler equations [28, 37, 16, 26, 12] and more recently to two-dimensional
transonic RANS flows [13]. However, there are still a number of challenges in extending registration-based
methods to large-scale problems.

The first challenge, and our first contribution, is the development of a scalable, parallelizable, and robust
approach to find a parametrized transformation g(·; ξ(µ)) : Ω → Ω for transonic turbulent flows. Most
registration-based methods use the L2(Ω) norm of the differences in the full state fields u(µ) [29, 21, 38, 10,
35, 28] or the Mach number fields M(u(µ)) [37, 16] as the metric to minimize to align sharp features: i.e.,
minν ∥u(µref) − u(µ) ◦ g(·; ν)∥L2(Ω) or minν ∥M(u(µref)) −M(u(µ)) ◦ g(·; ν)∥L2(Ω). However, this approach
suffers from two issues. First, the sensor targets the most dominant features in the solution even if some of
those features are amenable to linear compression, and, conversely, it might not align less dominant features
that benefit from alignment. While this is not a significant issue for scalar or Euler equations where the

3“Linear” refers to the fact that the approximation space is linear; the governing PDE may be nonlinear.
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discontinuity/shock is the dominant feature, this is a problem for turbulent flows modeled by the RANS
equations, which exhibit many different features. Second, whether the solution is explicitly transformed
through Lagrangian mapping (e.g., [28]) or implicitly through mesh transformation (e.g., [37]), the evaluation
of the L2(Ω) norm of the difference between reference and transformed fields on distributed-memory parallel
computers requires complex operations with significant communication across subdomain boundaries. This
can be prohibitive in larger scale, industrially relevant problems. We address these two issues using a
combination of (i) a dilation-based shock sensor [27], which isolates the shock from other dominant features
to focus our registration process, (ii) a localized transformation, which isolates the regions with shocks and
still maintains global C1 continuity, and (iii) a shock feature indicator based on principal points, which
eliminates the need to solve the parallel L2-norm minimization problem. (We note that [26] overcome the
issues using a specialized FOM that natively performs shock alignment and [12] overcomes the issue by
leveraging a specific mesh topology, but these methods require a specialized FOM or problem setup.)

Our second contribution is the development and assessment of a registration-based method that (i)
provides online-efficient a posteriori error estimation for the quantity of interest and (ii) provides significant
online computational speedup through a hyperreduction method tailored for high-order methods. To achieve
(i), we appeal to the dual-weighted residual (DWR) method [8] and specifically it adopted to ROMs [39]. To
achieve (ii), we appeal to the empirical quadrature procedure (EQP) [42], and in particular its point-wise
variant specialized for high-order discontinuous Galerkin (DG) methods [14]. To incorporate these ingredients
developed for linear ROMs, we reinterpret nonlinear model reduction based on solution transformation
as a linear model reduction applied to transformed PDEs, which enables straightforward formulation and
implementation of the techniques.

Our third contribution is the demonstration of the proposed registration-based model reduction approach
on inviscid and turbulent transonic flows modeled by the Euler and RANS equations. We demonstrate that
nonlinear approximation significantly reduces the dimension of the reduced space required to achieve a given
error level, point-wise hyperreduction provides significant online speedup, and the output error estimate is
effective. We also demonstrate that, unlike neural network based methods, our method does not require
extensive offline training to achieve an accurate online approximation.

The remainder of the work is organized as follows. Section 2 presents the registration-based nonlin-
ear approximation formulation and introduces its key ingredients: the transformed problem, parametrized
geometry transformation, shock-location indicator, and transformation optimization. Section 3 presents
discretizations of the transformed problem: a FOM based on an adaptive high-order DG method; and a
hyperreduced ROM based on POD, point-wise EQP, and DWR-based error estimate. Section 4 assesses the
accuracy and cost of the proposed formulation using inviscid and turbulent transonic flows modeled by the
Euler and RANS equations.

2. Nonlinear approximation and problem transformation

2.1. Problem statement

We first introduce the problem that we consider throughout this work. We introduce a P -dimensional
parameter domain D ⊂ RP , and a d-dimensional spatial domain Ω ⊂ Rd. The parametrized system of m
PDEs and boundary conditions that we consider is of the form

∇ · F (û(µ);µ)−∇ · (K(û(µ);µ)∇û(µ)) = S(û(µ),∇û(µ);µ) in Ω, (1)

B(û(µ), n̂ ·K(û(µ);µ)∇û(µ);µ) = 0 in ∂Ω,

where û : Ω → Rm is the solution that we seek4, F : Rm ×D → Rm×d is the convective flux, K : Rm ×D →
Rm×d×m×d is the diffusion tensor, S : Rm×Rm×d×D → Rm is the source function, B : Rm×Rm×d×Rd×D →

4We denote the solution with ·̂ so that we can reserve the notation without the ·̂ for the transformed problem.
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Rm is the boundary operator, and n̂ is the outward-pointing normal vector on ∂Ω. Given the solution, we
evaluate the functional output

s(µ) := Ĵ(û(µ);µ),

where Ĵ(·;µ) is the parametrized output functional. In this work, we focus on transonic flows governed by
the Euler and RANS equations with the aerodynamic lift or drag as the functional output.

2.2. Transformed problem

We now introduce a transformed problem that we obtain by warping the spatial domain Ω. By way of
preliminaries, we introduce a parametrized diffeomorphism g(·; ν) : Ω → Ω, where ν ∈ Dν is the parameter of
the transformation, and Dν ⊂ RNν is the domain of transformation parameters; we will specify the specific
form of g in Section 2.3. The system of PDEs on the transformed domain is given by

∇ν · F (u(µ, ν);µ)−∇ν · (K(u(µ, ν);µ)∇νu(µ, ν)) = S(u(µ, ν),∇νu(µ, ν);µ) in Ω, (2)

B(u(µ; ν), nν ·K(u(µ, ν);µ)∇νu(µ; ν);µ) = 0 in ∂Ω,

where ∇ν := (∂ν,x1
, . . . , ∂ν,xd

) is the transformed gradient that satisfies ∂ν,xj
=

∑d
i=1(Dg−1(·; ν))ij∂xi

, nν :=
Dg(·; ν)−T n̂/∥Dg(·; ν)−T n̂∥2 is the transformed outward-pointing normal vector, and Dg(·; ν) : Ω → Rd×d

is the Jacobian of the transformation associated with g(·; ν) : Ω → Ω.
The solution u(µ; ν) to the transformed problem (2) and the solution û(µ) to the original problem (1)

are related by u(µ; ν) = û(µ) ◦ g(·; ν) for all µ ∈ D and ν ∈ Dν . Hence, given the solution u(µ, ν) to
the transformed problem, we may readily find the solution û(µ) to the original problem through the in-
verse transformation. Similarly, we equip the transformed problem with the transformed output functional
J(·;µ, ν) so that s(µ) = Ĵ(û(µ);µ) = J(u(µ, ν);µ, ν) for all µ ∈ D and ν ∈ Dν .

As discussed in the introduction, our goal is to find transformations which make the transformed problems
more amenable to RB approximation than the original problem. To formalize the idea, we first introduce
the parametric solution manifold for the original problem:

ÛD = {û(µ)}µ∈D.

We next introduce the parametric solution manifold for the transformed problem:

UD,ξ = {u(µ, ξ(µ)) := û(µ) ◦ g(·; ξ(µ))}µ∈D,

where ξ : D → Dν is a function that maps the (problem) parameter µ ∈ D to the transformation parameter
ν ∈ Dν . We wish to choose the µ-parametrized transformation g(·; ξ(µ)) — which is defined by a ν-
parametrized transformation g(·; ν) and an associated parameter map D ∋ µ 7→ ξ(µ) ≡ ν ∈ Dν — so that
the Kolmogorov N -width of UD,ξ given by

ϵN (UD,ξ) := inf
VN⊂V

dim(VN )=N

sup
u∈UD,ξ

inf
wN∈VN

∥u− wN∥V

decays (much) more rapidly than that of ÛD.

Remark 1. Whether there exists a transformation g(·; ξ(µ)) that results in a much more rapid decay
of the Kolmogorov N -width is problem dependent, and understanding for which classes of problems the
transformation is effective is an important question on its own. However, we do not attempt to answer
this general question in this work. We instead focus on transonic flow problems with parameter-dependent
shocks, which are known to benefit from the transformation.
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2.3. Parametrized geometry transformation

We now introduce a family of parametrized transformations g(·; ν) : Ω → Ω that we consider in this work.
Our choice of transformation is motivated by the fact that we focus on problems where discontinuities are
localized to a subregion of the domain Ω. For instance, in a typical transonic flow over an airfoil, the shock
is localized to a small region over the suction side of the airfoil. To this end, we introduce the following
space of admissible transformations.

Definition 2 (admissible transformations). The geometry transformation that we consider in this work is
given by

G := {g : Ω → Ω | g|ω = gω ∈ Gω, g|Ω\ω = Id}

where ω ⊂ Ω is a subdomain that is warped, Id is the identity map, and Gω is the space of local transfor-
mations such that gω ∈ Gω satisfies the following conditions:

C1. det(∇gω) > 0 ,

C2. gω ∈ C1(ω) ,

C3. gω(s) = s, s ∈ ∂ω \ ∂Ω ,

C4. ∇gω(s) = Id, s ∈ ∂ω \ ∂Ω ,

C5. gω(s) ∈ ∂ω ∩ ∂Ω, s ∈ ∂ω ∩ ∂Ω ,

where Id is the identity matrix of dimension d.

We make a few observations. First, the “global map” g ∈ G is defined in a piecewise manner, with
the (non-identity) transformation applied only to the subdomain ω ⊂ Ω. Second, C5 allows the points on
∂ω ⊂ ∂Ω (i.e., the boundary of the subdomain ω that is on the domain boundary ∂Ω) to slide along the
boundary, which is important when the discontinuity abuts ∂Ω. Third, the five conditions on the local
transformation ensure that the global map is a C1(Ω)-diffeomorphism, as the following proposition shows:

Proposition 3. A map g ∈ G defined by Definition 2 is a C1(Ω)-diffeomorphism that maps Ω to itself.

Proof. We first observe that the local transformation gω ∈ Gω is a C1-diffeomorphism on ω since C1 and C2
ensure that gω is invertible and C1 continuous, respectively. We next observe that the transformation g ∈ G
is a C1-diffeomorphism on Ω\ω since it is the identity map. We also observe that C3 and C4 ensure that the
value and first derivative of the map is continuous across the interface ∂ω\∂Ω. The combination of these three
observations ensures that g ∈ G is a C1(Ω)-diffeomorphism. Finally, C5 ensures that gω(∂ω \∂Ω) = ∂ω \∂Ω,
which, in conjunction with C3, ensure that gω maps ω to itself.

Remark 4. The fact that g ∈ G is a C1(Ω)-diffeomorphism ensures that, if the original solution u(µ) is
C1 continuous, then the transformed solution u(µ; ν) ≡ û(µ) ◦ g(·; ν) is also C1 continuous. In other words,
g ∈ G does not introduce kinks in the solution, particularly across the subdomain interface ∂ω. Such kinks
can negatively affect the numerical approximation of the transformed PDE, when the standard “reference
domain” or “map-then-discretize” approach is used; see, e.g., [36, 33].

We now introduce a specific class of maps that we consider in this work. To construct a parametrized
transformation that belongs to the space Gω, we consider a composition of two maps: (i) transfinite interpo-
lation, which allows us to map a desired subregion ω (with potentially complicated geometry) to a relatively
simple unit domain over which another transformation is applied; and (ii) spline-based mapping, which in-
duces parametrized transformation on the unit domain that satisfies the required regularity conditions of
Definition 2. The overview of the composite map constructed from these two transformations is illustrated in
Figure 1. The use of the composition follows from [16, 22], but we consider different specific maps to meet the
regularity conditions. There are two advantages to this construction: we can apply geometry transformation
to more complex geometry in a straightforward manner by transforming the geometry to the unit domain
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ω

g−1
tfi

→

Ω̂

gst(γ)

→

gtfi

→

Figure 1: Illustration of the transformation gω(·; ν) ≡ gtfi ◦ gst(·; ν) ◦ g−1
tfi constructed from gtfi and gst.

using (i); and we can construct (ii) on a regular uniform grid rather than an arbitrary grid which conforms
to the complex geometry.

We first introduce a transfinite interpolation gtfi : [0, 1]d → ω, which maps the unit d-cube to ω using
linear (resp. bilinear and trilinear) functions in one (resp. two and three) dimension. For instance, in two
dimensions, the transfinite interpolation gtfi : [0, 1]d≡2 → ω ⊂ R2 is given by

gtfi(s) = (1− s1)bL(s2) + s1bR(s2) + (1− s2)bB(s1) + s2bT(s1)

− (1− s1)(1− s2)bBL − (1− s1)s2bTL − s1(1− s2)bBR − s1s2bTR,

where b□ : R1 → R2 for □ ∈ {L,R,B,T} provides the parametrized coordinates along the left (L), right (R),
bottom (B), and top (T) boundaries, and b◦ ∈ R2 for ◦ ∈ {BL,TL,BR,TR} provides the coordinates of the
four corner points. We note that the sole purpose of this transformation is to map the d-cube to ω, and
hence this transformation is not parametrized. In addition, we assume that the boundary ∂ω is sufficiently
close to ∂[0, 1]d, where ∂[0, 1]d denotes the boundary of the d-cube, so that the transformation gtfi satisfies
det(∇gtfi) > 0 and is invertible. This assumption is typically valid when the number of corners in ω match
the number of corners in the d-cube and when the corners of ω are connected by C1 continuous edges.

We next introduce a ν-parametrized spline-based transformation gst(·; ν) : [0, 1]d → [0, 1]d. Specifically,
we introduce an equi-spaced Cartesian grid over the d-cube and the associated (cardinal and C2-continuous)
cubic B-spline over the grid. In one dimension, each cubic spline basis function has its support over the four
segments delineated by five grid nodes, where the control point is the grid node at the center. In two and
three dimensions, we obtain a spline basis function through the tensor product of one-dimensional spline
basis functions with support over 4d grid elements delineated by 5d grid nodes. To construct a parametrized
transformation, we associate the parameter ν ∈ Dν ⊂ RNν with the value of the B-spline at a set of active
control points and in active control directions. In other words,

gst(s; ν) = s+

Nν∑
j=1

νjBj(s),

where Bj : [0, 1]d → Rd is a (vector-valued) spline basis function associated with an active control point
and direction. To ensure that the composite map gω(·; ν) that uses gst(·; ν) ultimately satisfies the desired
conditions in Definition 2, we choose the nodes on Bint and their immediate neighbors as inactive nodes,
where Bint := ∂[0, 1]d \g−1

tfi (∂Ω) is the subset of ∂[0, 1]d that interfaces with the rest of the domain Ω\ω after

the transfinite interpolation. This ensures
∑Nν

j=1 νjBj(s) = 0 for s ∈ Bint, which in turn implies gst(s; ν) = s.
In addition, since Bj has vanishing first and second derivatives at the edge of its support, ∇gst(s; ν) = Id
and ∇2gst(s; ν) = 0 for s ∈ Bint. In addition, we assume that the parameter domain Dν is chosen such that
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ν ∈ Dν is sufficiently small and gst(·; ν) satisfies det(∇gst(·; ν)) > 0 and is invertible. In practice, this can
also be achieved by choosing sufficiently large ω so that shocks will not be close to the boundary g−1

tfi (∂Ω)
for all µ ∈ D.

Remark 5. The construction of gst(·; ν) highlights the need for gtfi. The typical construction of gst(·; ν)
uses a grid of uniformly distributed nodes in [0, 1]d. While it may be straightforward to affinely scale this
transformation to arbitrarily sized cubes, it would require much more careful construction for arbitrary
geometry. On the other hand, with gtfi, the arbitrary geometry is warped to [0, 1]d.

Remark 6. We choose the active control points and directions to match the shape and direction of the
motion of shocks. For example, in a problem where we expect predominantly stream-wise variation of the
shock location, we can choose to only activate those control points and directions that correspond to this
motion. Restricting the candidate motions based on prior knowledge can improve the accuracy of alignment
by limiting unnecessary warping.

We may now state the ν-parametrized local transformation gω ∈ Gω as a composition:

gω(·; ν) ≡ gtfi ◦ gst(·; ν) ◦ g−1
tfi .

In words, g−1
tfi maps ω to the d-cube, then gst(·; ν) affects a ν-parametrized transformation, and finally gtfi

maps the d-cube with internal transformation back to ω. We again refer to Figure 1 for an illustration of the
composite map. The following proposition shows that the composition yields a local transformation with
desired properties:

Proposition 7. Assuming gtfi and gst(·; ν) are invertible, the transformation gω(·; ν) ≡ gtfi ◦ gst(·; ν) ◦ g−1
tfi

is in Gω defined in Definition 2.

Proof. The condition C1 follows from the assumption that gtfi and gst are invertible. In addition, the
condition C2 is satisfied because gtfi ∈ C∞((0, 1)d) and gst(·; ν) ∈ C2(ω), and hence gω ∈ C1(ω). Next,
the condition C3 is satisfied because gst(s

′; ν) = s′ for s′ ∈ Bint and hence gω(s) = gtfi(gst(g
−1
tfi (s); ν)) =

gtfi(g
−1
tfi (s)) = s for s ∈ ∂ω \ ∂Ω. Also, the condition C4 is satisfied because gst(s

′; ν) = Id for s′ ∈ Bint

and hence ∇gω(s) = ∇gtfi(s
′)∇gst(s

′; ν)∇g−1
tfi (s) = ∇gtfi(s

′)∇g−1
tfi (s) = Id for s ∈ ∂ω \ ∂Ω and s′ = g−1

tfi (s).
Finally, the condition C5 is satisfied because gst(s

′; ν) ∈ Bbnd for s′ ∈ Bbnd, where Bbnd := ∂[0, 1]d∩g−1
tfi (∂Ω),

and hence gω(s) = gtfi(gst(g
−1
tfi (s))) ∈ ∂ω ∩ ∂Ω for s ∈ ∂ω ∩ ∂Ω.

We conclude this subsection with a remark on limitations of the transformation formulation considered
in this work.

Remark 8. In this work, we have assumed that (i) the region ω is simply connected5 and sufficiently close
to [0, 1]d such that the resulting transfinite interpolation gtfi is bijective and (ii) the parameters ν ∈ Dν of
spline-based transformation gst(·; ν) are chosen such that the map is bijective, so that the composition gω(·; ν)
satisfies Definition 2. While these assumptions can be readily satisfied for transonic flows with relatively
simple domain and shock geometries considered in this work, the construction of a map that satisfies the
conditions can be difficult for more complex geometries. The development of theories and algorithms that
enable systematic construction of such maps is important for any registration-based methods; we refer to [13]
for a recent and mathematical rigorous treatment of the topic.

2.4. Shock-location indicator

To find an appropriate transformation parameter ν ∈ Dν that aligns discontinuities, we first need to
systematically characterize the location of the discontinuities. In this work, we use a combination of (i)
a shock indicator, which flags regions with shocks; (ii) a smoother, which regularizes and normalizes the

5We assume only ω (and not Ω) is simply connected; Ω can be not simply connected.
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(rough) raw output of the shock indicator; and (iii) statistical moments, which reduces the information in
the regularized shock indicator to several key values.

We first introduce a dilation-based shock indicator [27] given by

sdil(u) = −L∇ν · v(u)/c⋆(u), (3)

where v(u) : Ω → Rd is the velocity field associated with the state u ∈ V, c⋆(u) is the critical sound speed
given by c⋆(u) =

√
2γRT0(u)/(γ + 1), γ is the ratio of specific heats, R is the gas constant, T0(u) is the

stagnation temperature, and L = kh/p is an empirically turned length scale for h the element size and p the
polynomial degree. We note that sdil(u) : Ω → R is a scalar-valued field that takes on a large positive values
in the regions where the flow experiences strong compression, such as in a shock.

We next regularize the (raw) shock indicator field sdil(u) : Ω → R to obtain a smoothed field s◦dil(u) : Ω →
R. To this end, we solve the reaction-diffusion equation with homogeneous Neumann boundary conditions
given by

−α∆s◦dil(u) + s◦dil(u) = (sdil(u))
+ in Ω,

n̂ · ∇s◦dil(u) = 0 on ∂Ω,

where α ∈ R>0 is a parameter that specifies the characteristic length scale for smoothing, and (sdil(u))
+ :=

max{sdil(u), 0}, so that the right-hand side is always positive, accounting for compression but not for rar-
efaction. This ensures that s◦dil(u) ≥ 0 everywhere. We then normalize the regularized shock indicator field
s◦dil(u) : Ω → R. Namely, we set

ŝ◦dil(u) :=
s◦dil(u)∫

Ω
s◦dil(u)dx

.

The field ŝ◦dil(u) : Ω → R is normalized and non-negative, which allows us to interpret ŝ◦dil(u) as a probability
density on Ω.

We finally reduce the information contained in the shock indicator field ŝ◦dil(u) : Ω → R to a set of
principal points. To this end, we first compute the first and second central moments of the shock indicator
field: m(u) ∈ Rd such thatmi(u) :=

∫
Ω
xiŝ

◦
dil(u)dx, and Σ(u) ∈ Rd×d such that Σij(u) :=

∫
Ω
(xi−mi(u))(xj−

mj(u))ŝ
◦
dil(u)dx for i, j = 1, . . . , d. We then compute the set of np := 2d+1 principal points {pk(u) ∈ Rd}np

k=1

as per the following definition.

Definition 9 (Principal points {pk(u) ∈ Rd}np

k=1 of the sensor ŝ◦dil(u)). Given the first central moment
m(u) ∈ Rd and second central moment Σ(u) ∈ Rd×d, the principal points {pk(u) ∈ Rd}np

k=1 are given by

{pk(u)}
np

k=1 = {m} ∪ {m+ λ
1/2
l χl,m− λ

1/2
l χl}dl=1, (4)

where (χl, λl) ∈ Rd × R, l = 1, . . . d, are the eigenvectors and eigenvalues of Σ(u).

The set of 2d + 1 principal points captures the mean (i.e., center) of the shock, as well as the variance
(i.e., stretching and orientation) of the shock. An illustrative example of the shock sensor and principal
points in two dimensions is shown in Figure 2.

In summary, through the sequence of mappings—µ 7→ u(µ) 7→ sdil(u(µ)) 7→ ŝ◦dil(u(µ)) 7→ {pk(u(µ))}
np

k=1—
, we have constructed a map from the parameter µ ∈ D to the principal points {pk(u(µ)) ∈ Rd}np

k=1 for the
shock indicator ŝ◦dil(u(µ)), which contains significantly reduced but essential information about the shock
location, stretching, and orientation. That is, we approximate a shock by its principal points. As we will
see, this approximation makes our method scalable to larger scale problems and in parallel settings.

2.5. Construction of optimal transformation parameter map: ξ : D ∋ µ 7→ ν ∈ Dν

We finally present a procedure to construct the map ξ : D → Dν from the problem parameter µ ∈ D to
the optimal transformation parameter ν ∈ Dν that best aligns the shock in the solution û(µ) to the shock in
some reference solution û(µref); i.e., g

−1(p(û(µ)); ν) ≈ p(û(µref)). We learn this map using a set of training
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Figure 2: Example of sensor ŝ◦dil(u) and principal points {pi(u)}
np

i=1 used to approximate the location of a shock.

data. Namely, we first introduce a training parameter set Dtrain := {µ(i)}Ntrain
i=1 ⊂ D; we choose the reference

parameter µref as µ ∈ Dtrain that is closest to the centroid of Dtrain. We next compute the associated
(untransformed) solutions {û(µ(i))}Ntrain

i=1 . We then invoke the sequence of maps described in Section 2.4

to obtain the associated set of principal points {{pj(û(µ(i)))}np

j=1}
Ntrain
i=1 . We then solve the optimization

problem: for i = 1, . . . , Ntrain, find

ν⋆(µ(i)) = argmin
ν∈Dν

np∑
j=1

∥pj(û(µref))− g−1(pj(û(µ
(i))); ν)∥2ℓ2(Rd).

This provides a set of transformation parameters {ν⋆(µ(i))}Ntrain
i=1 associated with {û(µ(i))}Ntrain

i=1 . To approx-
imate the map ξ : µ 7→ ν, we assume that µ 7→ ν is sufficiently regular and approximate the map using radial
basis functions (RBFs) applied to each component of the training data {µ ∈ D ⊂ RP }µ∈Dtrain 7→ {ν⋆(µ) ∈
Dν ⊂ RNν}µ∈Dtrain

: i.e.,
ξ(µ)i = RBF(µ; {ν⋆(µ)i}µ∈Dtrain

), i = 1, . . . , Nν . (5)

In practice, we use a variant of the above formulation because in our NLROM construction we do
not approximate the solution û(µ) to (1) but rather the solution u(µ, ν) to the transformed problem (2).
To this end, we first accompany the training parameter set Dtrain with an associated (in general non-
optimal) training transformation parameter set Dν,train := {ν(i)}Ntrain

i=1 ⊂ Dν . We next compute the associated

solutions {u(µ(i); ν(i))}Ntrain
i=1 to the transformed problem. We then obtain the associated set of principal

points for solutions to the non-transformed problem: {{pj(u(µ(i), ν(i)) ◦ g−1(·; ν(i)))}np

j=1}
Ntrain
i=1 , where we

recall u(µ, ν) ◦ g−1(·; ν) = û(µ). We then solve the optimization problem to best align transformed principal
points: for i = 1, . . . , Ntrain, find

ν⋆(µ(i)) = argmin
ν∈Dν

np∑
j=1

∥g−1(pj(u(µref , νref) ◦ g−1(·; νref)); νref)− g−1(pj(u(µ
(i), ν(i)) ◦ g−1(·; ν(i))); ν)∥2ℓ2(Rd).

(6)
We then invoke (5) to construct the map ξ : µ 7→ ν using RBFs and training data {ν⋆(µ)}µ∈Dtrain

.

Remark 10. The above two formulations are identical if (i) û(µ) and u(µ, ν) are the exact solutions of
(1) and (2), respectively, so that û(µ) = u(µ, ν) ◦ g−1(·; ν) and (ii) νref is chosen to satisfy g(·; νref) = Id.
While the second condition can be satisfied without loss of generality through the choice of transformation
parametrization, the first condition cannot be satisfied when the solutions to the PDEs are numerically
approximated. As noted above, we use the second formulation in this work, as our NLROM construction
procedure naturally works with u(µ, ν) instead of û(µ), as we will see in Section 3.3.
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Remark 11. Instead of using the difference in the principal point locations ∥pi(û(µref))−g−1(pi(û(µ)); ν)∥,
one could measure, as discussed in the introduction, the difference in the solution fields ∥û(µref) − û(µ) ◦
g−1(·; ν)∥V or the shock-indicator field ∥ŝ◦dil(û(µref))− ŝ◦dil(û(µref)) ◦ g−1(·; ν)∥L2(Ω). However, the computa-
tion of the difference in the reference field and another arbitrary-transformed field is expensive as it requires
the transformation of all quadrature points and the evaluation of the field at those points. If the fields
are represented as piecewise polynomials on meshes, then an accurate evaluation of the difference may also
require quadrature rules on the intersection of the two meshes. The problem is further exacerbated when
the meshes are decomposed for parallel computation, since the transformed quadrature points may lie in a
subdomain owned by a different process. For these reasons, we use a simple metric that uses the difference
in the principal point locations. That is, by approximating shocks by their principal points, we avoid the
cost and complexity of comparing full fields in parallel settings.

Remark 12. Similarly to the above remark, instead of using a shock indicator field ŝ◦dil(u(µ)), one could
use another field quantity, such as the Mach number field M(u(µ)), to align solution fields. Some of these
field sensors are sensitive to features other than shocks. For example, the Mach number field exhibits sharp
gradients or discontinuity across not just shocks but also in boundary and shear layers. Using such a sensor
provides the potential to not only align shocks but also other features that are difficult to approximate
using linear compression schemes, such as shear layers with parameter-dependent locations. This can be
advantageous for viscous flows, and in particular (high-Reynolds-number) RANS flows with thin boundary
and shear layers. However, using a field sensor that is sensitive to too many flow features may also cause the
optimization algorithm to compromise the alignment of the most important feature: the shocks. In addition,
the presence of multiple features can limit the effectiveness of the principal point approximation; e.g., it
would be difficult to align both a shock and a boundary layer using the same set of principal points. We
hence use the shock indicator field ŝ◦dil(u(µ)) which focuses solely on the shock regardless of the presence of
other features, especially in RANS flows. In other words, for RANS flows, our goal in transformation is to
make the decay of the Kolmogorov N -width for transonic problems comparable to that of subsonic flows; we
do not aim for further improvement through alignment of other features such as shear layers.

Remark 13. In (6), we have assumed that the principal points for all snapshots are ordered consistently.
In two-dimensional flows over an airfoil with a single shock on the upper surface, this assumption is typically
satisfied since the principal direction associated with the largest eigenvalue will be normal to the airfoil
surface. However, for more general shocks and in particular in three dimensions, the assumption is often
violated. In such a case, we must augment the optimization statement with a point-set registration (PSR)
strategy. For a relatively simple shock that can be described using a fixed number of principal points, the
strategy can be as simple as considering all potential orderings of the principal axes and taking the ordering
that minimizes the distance metric. For more complex shock geometries, a more sophisticated PSR strategy
may be needed. In this work, we assume that the principal points orderings are consistent and leave the
development of an optimization strategy with PSR to future work.

3. Discretization and model reduction of the transformed problem

3.1. Discontinuous Galerkin method on transformed domain

We now introduce a DG approximation of the transformed problem (2). Our treatment of geometry
transformation follows the standard “reference domain” or “map-then-discretize” formulation in model re-
duction; see, e.g., [33, 36]. Our DG formulation for transformed domain specifically follows [14]. We first
introduce a triangulation Th of the domain Ω, and the associated sets of interior facets Σ := ∪κ∈Th

∂κ \ ∂Ω
and boundary facets Γ := ∪κ∈Th

∂κ ∩ ∂Ω. We then introduce a DG approximation space

Vh := {v ∈ L2(Ω)m | v|κ ∈ Pp(κ)m, ∀κ ∈ Th}, (7)

where Pp(κ) : κ → R is the space of polynomials of degree at most p on κ. We denote the dimension of the
DG space by Nh = dim(Vh). We then introduce the symmetric interior penalty (IP) DG discretization of
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the system of conservation laws [18, 19]. The semilinear form R : Vh × Vh ×D ×Dν → R is given by

R(w, v;µ, ν) =

∫
Ω

rΩ(w, v;µ, ν)dx+

∫
Σ

rΣ(w, v;µ, ν)ds+

∫
Γ

rΓ(w, v;µ, ν)ds ∀w, v ∈ V, (8)

where

rΩ(w, v;µ, ν) :=
[
−∇νv : F (w;µ) +∇νv : K(w;µ)∇νw − v · S(w,∇νw;µ)

]
det(Dg(·; ν)), (9)

rΣ(w, v;µ, ν) :=
[
[v]+− · F̂ (w+, w−; n̂ν , µ)− {K(w;µ)∇νv} : JwKν

− JvKν : {K(w;µ)(∇νw − σJvKν)}
]
det(Dg(·; ν))∥Dg(·; ν)−T n̂0∥2,

(10)

rΓ(w, v;µ, ν) :=
[
v · F̂Γ(w; n̂ν , µ)−K(w;µ)∇νv : ((w − uΓ(w;µ))⊗ n̂ν)

− (v ⊗ n̂ν) : G(K(w;µ)(∇νw − σ(w − uΓ(w;µ))⊗ n̂ν); n̂ν , µ)
]
det(Dg(·; ν))∥Dg(·; ν)−T n̂0∥2;

(11)

here, F̂ : Rm × Rm × Rd × D → Rm is the interior facet numerical flux, F̂Γ : Rm × Rd × D → Rm is
the boundary facet numerical flux, G : Rm×d × Rd × D → Rm×d is the boundary diffusion flux, J·K is the
so-called jump operator adopted to transformed domain given by JwKν = w+ ⊗ n̂+

ν + w− ⊗ n̂−
ν , {·} is the

so-called averaging operator given by {w} = (w+ + w−)/2, σ ∈ R>0 is the penalty constant for the IP DG
method, and ⊗ denotes the tensor product of two first-order tensors to yield a second-order tensor. We note
that all of the gradients and normal vectors are associated with the transformed problem (2). Throughout
this work, we use Roe’s approximate Riemann solver [32] to compute the numerical fluxes. To stabilize the
approximation in the presence of shocks, the diffusion term incorporates artificial viscosity based on the
local dilation-based shock indicator (3) [27] and the physical Navier-Stokes diffusion model for the Prandtl
number of 3/4, which results in the enthalpy of the flow being constant across the shock [31]. Similarly, the
output functionals that we consider in this work may be written in terms of its integrands as

J(w;µ, ν) :=

∫
Ω

jΩ(w;µ, ν)dx+

∫
Γ

jΓ(w;µ, ν)ds ∀w ∈ V, (12)

where jΩ : Vh ×D×Dν → L∞(Ω) is the volume integrand, and jΓ : Vh ×D×Dν → L∞(Γ) is the boundary
integrand.

In practice, the integrals over Ω, Σ, and Γ are approximated using an element- and facet-wise Gauss-like
quadrature rules. We denote the pairs of quadrature points and weights on Ω, Σ, and Γ by {(xΩ,q, ρΩ,q)}QΩ

q=1,

{(xΣ,q, ρΣ,q)}QΣ

q=1, and {(xΓ,q, ρΓ,q)}QΓ

q=1, respectively. The quadrature approximation of the semilinear form (8)
is given by

Rh(w, v;µ, ν) :=

QΩ∑
q=1

ρΩ,qrΩ(w, v;µ, ν)(xΩ,q) +

QΣ∑
q=1

ρΣ,qrΣ(w, v;µ, ν)(xΣ,q) +

QΓ∑
q=1

ρΓ,qrΓ(w, v;µ, ν)(xΓ,q)

:=

Qr
h∑

q=1

ρrh,qrh(w, v;µ, ν)(x
r
h,q), (13)

where we have introduced a more compact, concatenated notation based on the number of quadrature points

Qr
h := QΩ + QΣ + QΓ, the pairs of quadrature points and weights {(xr

h,q, ρ
r
h,q)}

Qr
h

q=1 = {(xΩ,q, ρΩ,q)}QΩ

q=1 ∪
{(xΣ,q, ρΣ,q)}QΣ

q=1 ∪ {(xΓ,q, ρΓ,q)}QΓ

q=1, and the corresponding mapping of rh(·, ·; ·, ·) to rΩ(·, ·; ·, ·), rΣ(·, ·; ·, ·),
and rΓ(·, ·; ·, ·) based on the evaluation point of the integrand. The superscript “r” indicates that the
concatenated quadrature-point-wise decomposition is associated with the residual form Rh(·, ·; ·, ·). Similarly,
the quadrature approximation of the output functional (12) is given by

Jh(w;µ, ν) :=

QΩ∑
q=1

ρΩ,qjΩ(w;µ, ν)(xΩ,q) +

QΓ∑
q=1

ρΓ,qjΓ(w;µ, ν)(xΓ,q) :=

Qj
h∑

q=1

ρjh,qjh(w;µ, ν)(x
j
h,q), (14)
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where we have again introduced a more compact, concatenated notation based on the number of quadrature

points Qj
h := QΩ + QΓ, the pairs of quadrature points and weights {(xj

h,q, ρ
j
h,q)}

Qj
h

q=1 = {(xΩ,q, ρΩ,q)}QΩ

q=1 ∪
{(xΓ,q, ρΓ,q)}QΓ

q=1, and the corresponding mapping of jh(·, ; ·, ·) to jΩ(·; ·, ·) and jΓ(·; ·, ·) based on the evaluation
point of the integrand, with the superscript “j” indicating the quadrature-point-wise decomposition for the
output form Jh(·; ·, ·).

We now state the (primal) DG problem: given µ ∈ D and ν ∈ Dν , find uh(µ, ν) ∈ Vh such that

Rh(uh(µ, ν), vh;µ, ν) = 0 ∀vh ∈ Vh, (15)

and then evaluate the output
sh(µ, ν) := Jh(uh(µ, ν);µ, ν).

In practice, the (nonlinear) DG problem (15) is solved using a Newton-like method with pseudo-transient
continuation (PTC) [23]. In addition, we introduce the dual DG problem, which is required to equip our
ROM with an output error estimate: given µ ∈ D and ν ∈ Dν , find zh(µ, ν) ∈ Vh such that

R′
h(uh(µ, ν);wh, zh(µ, ν);µ, ν) = J ′

h(uh(µ, ν);wh;µ, ν) ∀wh ∈ Vh, (16)

where R′
h(y;w, v;µ, ν) and J ′

h(y;w;µ, ν) are the Gateaux derivatives of Rh(·, v;µ, ν) and Jh(·;µ, ν), respec-
tively, evaluated about y in the direction w. Unlike the primal problem (15), the dual problem (16) is always
linear.

Remark 14. Not all DG methods admit a quadrature-point-wise decomposition of the DG residual (13)
and output (14). For instance, many of the methods considered in the review paper by Arnold et al. [3],
including the popular Bassi and Rebay’s second method (BR2) [7], do not admit a point-wise decomposition
because they require element-wise lifting, which couples degrees of freedom over each element. Similarly,
element-wise shock indicators, such as the spectral indicator by Persson and Peraire [31], do not admit a
point-wise decomposition. In this work, we choose the symmetric IP DG method and point-wise dilation-
based shock indicator, so that the resulting discretization admits a point-wise decomposition, which is crucial
for efficient hyperreduction of high-order methods [14].

3.2. DG error estimation and adaptive mesh refinement

We now equip our DG approximation with an output error estimate and adaptive mesh refinement to
control the approximation error. To this end, we use the dual-weighted residual (DWR) method [8]. We
first introduce an enriched DG approximation space Ven

h := {v ∈ L2(Ω)m | v|κ ∈ Pp+1(κ)m,∀κ ∈ Th}, which
comprises polynomials of degree one higher than the space Vh in (7). We then solve the enriched dual
problem: given µ ∈ D and ν ∈ Dν , find zenh (µ, ν) ∈ Ven

h such that

R′
h(uh(µ, ν);wh, z

en
h (µ, ν);µ, ν) = J ′

h(uh(µ, ν);wh;µ, ν) ∀wh ∈ Ven
h . (17)

We then evaluate the DWR error estimate:

ηfe(µ, ν) := |Rh(uh(µ, ν), z
en
h (µ, ν);µ, ν)|, (18)

which approximates the output error |s(µ)− sh(µ, ν)|. That is, it approximates the error of the DG output
sh(µ, ν) with respect to the exact PDE output s(µ).

To inform anisotropic adaptive mesh refinement, we also introduce an element-wise error indicator and
an anisotropic refinement indicator. Following the standard practice [8, 19], we construct an element-wise
error indicator through the element-wise restriction of the error estimate (18):

ηfeκ (µ, ν) := |Rh(uh(µ, ν), z
en
h (µ, ν)|κ;µ, ν)|, κ ∈ Th. (19)

We then mark the elements with the top α fraction of error for refinement.
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Algorithm 1: Output-based anisotropic adaptive mesh refinement.

input : Parameters: µ ∈ D and ν ∈ Dν

Initial mesh: Th
FE tolerances: δfe

Refinement fraction: α ∈ (0, 1]
output: Adaptively refined mesh: Th

Adaptively refined solution: uh(µ, ν)

1 Initialize: set E = ∞. while E > δfe do
2 Solve primal problem: solve (15) for uh(µ, ν).
3 Solve enriched dual problem: solve (17) for zenh (µ, ν).

4 Compute error estimate: evaluate (18) and set E := ηfe(µ, ν). Terminate if E < δfe.

5 Compute element-wise error indicators: evaluate (19) for {ηfeκ (µ, ν)}κ∈Th
.

6 for κ ∈ Th such that ηfeκ (µ, ν) is in top α fraction do
7 Compute indicator: solve local problems (20) and evaluate error indicators (21).
8 Refine element: anisotropically refine element κ according to the optimality indicator (22).

9 end

10 end

Next, to determine how to refine those elements, we use an anisotropic refinement indicator based on
local solves (cf. [19, 11, 41]). Namely, we first introduce a set of candidate refinement configurations (or tri-

angulations over κ) {T (1)
κ , . . . , T (nconfig)

κ }, where nconfig is the number of candidate refinement configurations.
For example, for a rectangular element (in two dimensions), we consider three candidate configurations:
anisotropically splitting κ into two elements in one of the element-reference coordinate direction (i.e., “hori-
zontal” split); anistoropically splitting κ into two elements in the other element-reference coordinate direction
(i.e., “vertical” split); and isotropically splitting κ into four elements. We then solve the local problem: find

u
(i)
κ (µ, ν) ∈ V(i)

κ such that

R
(i)
h (u(i)

κ (µ, ν), v;µ, ν) = 0 ∀v ∈ V(i)
κ , i = 1, . . . , nconfig, (20)

where V(i)
κ is the piecewise degree-p polynomial space associated with T (i)

κ , and R
(i)
h (·, ·; ·, ·) is the “local-

ization” of the DG residual form (13) to κ (and hence T (i)
κ ), which incorporates the Dirichlet boundary

condition on ∂κ based on uh(µ, ν)|∂κ evaluated on neighboring elements. We then evaluate the elemental
error indicator

ηfe,(i)κ (µ, ν) := |R(i)
h (u

(i)
h (µ, ν), zenh (µ, ν)|κ;µ, ν)|, i = 1, . . . , nconfig. (21)

We then find the anisotropic refinement configuration that minimizes the error (indicator) for a given increase
in the number of degrees of freedom:

i⋆κ = argmin
i∈{1,...,nconfig}

|ηfe,(i)κ (µ, ν)|
dim(V(i)

κ )
. (22)

We finally split κ ∈ Th according to T (i⋆κ)
κ .

Algorithm 1 summarizes the output-based anisotropic adaptive mesh refinement algorithm used in this
work. In short, we follow the standard Solve → Estimate → Mark → Refine procedure to adaptive
mesh refinement, but with an addition of anisotropy detection in the Estimate and Mark steps, following,
e.g., [19, 11].

3.3. Reduced-order model

We now construct a ROM. To begin, we collect snapshots UDtrain,ν = {uh(µ
(i), ν(i))}Ntrain

i=1 ⊂ UD,ν as-

sociated with a training parameter set Dtrain = {µ(i)}Ntrain
i=1 and a training transformation parameter set
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Dν,train = {ν(i)}Ntrain
i=1 . We then apply proper orthogonal decomposition (POD), if compression is desired, or

Gram-Schmidt orthogonalization, if compression is not required, to obtain an RB {ϕpr
i }Ni=1 for N ≤ Ntrain

and in practice N ≪ Nh; the superscript “pr” indicates that the basis is for the primal (and not dual)
problem. We then introduce the RB space Vpr

N := span{ϕpr
i }Ni=1. Our RB problem is as follows: given µ ∈ D

and ν ∈ Dν , find uN (µ, ν) ∈ Vpr
N such that

Rh(uN (µ, ν), vN ;µ, ν) = 0 ∀vN ∈ Vpr
N , (23)

and then evaluate the output
sN (µ, ν) := Jh(uN (µ, ν);µ, ν). (24)

Similarly to the DG problem (15), the (nonlinear) RB problem may be solved using a Newton-like method
with PTC.

We also equip the ROM with an output error estimate. To this end, we collect adjoint snapshots
ZDtrain,ν = {zh(µ(i), ν(i))}Ntrain

i=1 . Similarly to the (primal) RB, we then apply POD or Gram-Schmidt to

obtain a dual RB {ϕdu
i }Ndu

i=1 for Ndu ≤ Ntrain and in practice Ndu ≪ Nh, and introduce the associated dual

RB space Vdu
N := span{ϕdu

i }Ndu

i=1 . We then evaluate an RB approximation of the DWR: given µ ∈ D and
ν ∈ Dν , find the dual RB solution zN (µ, ν) ∈ Vdu

N such that

R′
h(uN (µ, ν);wN , zduN (µ, ν);µ, ν) = J ′

h(uN (µ, ν);wN ;µ, ν) ∀wN ∈ Vdu
N , (25)

and evaluate the output error estimate

ηrbN (µ, ν) := |Rh(uN (µ, ν), zduN (µ, ν);µ, ν)|, (26)

which approximates the RB output error |sh(µ, ν)− sN (µ, ν)|. That is, it approximates the error in the RB
output sN (µ, ν) with respect to the DG output sh(µ, ν).

In summary, we can first solve the primal problem (23) and evaluate (24) to obtain the RB output
sN (µ, ν). We can then solve the dual problem (25) and evaluate the DWR (26) to equip the RB output
sN (µ, ν) with an error estimate ηrbN (µ, ν). The evaluation of the solution, output, and error estimate, however,
requires O(Qh) = O(Nh) operations since the respective forms involve O(Qh) quadrature points. This
renders the ROM approximation (without hyperreduction) not online efficient.

3.4. Hyperreduction

We now introduce a hyperreduced approximation of the (primal) RB problem (23), output evaluation (24),
dual RB problem (25), and the DWR (26) to enable online-efficient evaluation of the solution, output,
and error estimate. To this end, we appeal to the EQP [42] and in particular its variant for point-wise
decomposition of DG approximations [14] and for goal-oriented error control [39]. We invoke the EQP to

obtain pairs of reduced quadrature points and weights for the (primal) residual form {(x̃r
q, ρ̃

r
q)}

Q̃r

q=1, the output

functional {(x̃j
q, ρ̃

j
q)}

Q̃j

q=1, and the DWR error estimate {(x̃η
q , ρ̃

η
q )}

Q̃η

q=1. We endow all variables associated with

hyperreduced quantities with ·̃. The RQ points are sparse in the sense that {x̃•
q}

Q̃•

q=1 ⊂ {x•
q}

Q•
h

q=1 and Q̃• ≪ Q•
h

for • ∈ {r, j, η}. The RQ approximation of the residual form used for the primal RB problem (23) and the
output functional used for output evaluation (24) are given by

R̃N (w, v;µ, ν) :=

Q̃r∑
q=1

ρ̃rqrh(w, v;µ, ν)(x̃
r
q) and J̃N (w, v;µ, ν) :=

Q̃j∑
q=1

ρ̃jqjh(w;µ, ν)(x̃
j
q).

Similarly, the RQ approximation of the residual form and the output functional used for the dual problem (25)
and DWR evaluation (26) are given by

R̃du
N (w, v;µ, ν) :=

Q̃η∑
q=1

ρ̃ηqrh(w, v;µ, ν)(x̃
η
q ) and J̃du

N (w, v;µ, ν) :=

Q̃η∑
q=1

ρ̃ηqjh(w;µ, ν)(x̃
η
q ).
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Algorithm 2: Simultaneous adaptive mesh and optimized map construction.

input : training parameter set Dtrain := {µ(i)}Ntrain
i=1 ⊂ D

FE tolerances: δfe,1, . . . , δfe,Na

output: Optimized map: ξ : D ∋ µ 7→ ν ∈ Dν

Adapted mesh: Th
1 Initialize: ξ(j=0) : µ 7→ 0 and j = 0
2 for j = 1, . . . , Na do
3 for i = 1, . . . , Ntrain do
4 Solve FE problem: solve FE problem (15) for uh(µ

(i), ξ(j−1)(µ(i))); adapt the mesh Th as

necessary to meet δfe,i using Algorithm 1.
5 Find optimized transformation parameter: solve optimization problem (6) for ν⋆(µ(i)).

6 end

7 Update optimized map: set ξ(j)(·) = RBF(·; {ν⋆(µ(i))}Ntrain
i=1 ) following (5).

8 end

9 Finalize: set ξ(·) := ξ(j)(·).

Using these RQ approximations, our RB-RQ solution is ũN (µ, ν) ∈ VN such that

R̃N (ũN (µ, ν), v;µ, ν) = 0 ∀v ∈ VN , (27)

and the associated RB-RQ output is

s̃N (µ, ν) = J̃N (ũN (µ, ν);µ, ν).

To equip the RB-RQ output with an online-efficient error estimate, we solve the hyperreduced dual problem
for the solution z̃N (µ, ν) ∈ Vdu

N such that

(R̃du)′(ũN (µ, ν);wN , z̃duN (µ, ν);µ, ν) = (J̃du)′(ũN (µ, ν);wN ;µ, ν) ∀wN ∈ Vdu
N , (28)

and evaluate the output error estimate

η̃rbN (µ, ν) := |R̃du(ũN (µ, ν), z̃duN (µ, ν);µ, ν)|,

which approximates the RB-RQ output error |sh(µ, ν) − s̃N (µ, ν)|. That is, it approximates the error in
the RB-RQ output s̃N (µ, ν) with respect to the DG output sh(µ, ν). Similarly to the RB problem (23), we
solve the (nonlinear, primal) RB-RQ problem (27) using a Newton-like method with PTC. The dual RB-RQ
problem (28), as before, is linear.

3.5. Construction of NLROM

We now outline the construction of NLROM using two algorithms. The first is the simultaneous con-
struction of the adaptively refinement mesh Th and the optimized transformation parameter map ξ : D ∋
µ 7→ ν ∈ Dν . The procedure, which follows [35], is summarized in Algorithm 2. The inputs to the al-
gorithm are the training parameter set Dtrain := {µ(i)}Ntrain

i=1 and a sequence of tightening FE tolerances
δfe,1 ≥ δfe,2 ≥ · · · ≥ δfe,Na , where Na is the number of adaptation iterations. At the beginning of the adap-
tation loop, we initialize ξ(j=0) to the zero function: i.e., no geometry transformation. We then compute
FE snapshots at training points to construct {uh(µ

(i), ξ(j−1)(µ(i)))}Ntrain
i=1 , adapting the mesh Th as neces-

sary to meet the FE tolerance. We then compute the associated optimized transformation parameter set
{ν⋆(µ(i))}Ntrain

i=1 . We then construct an RBF approximation of ξ. This process is repeated using increasingly
tighter FE tolerance until we meet the final tolerance δfe,Na .
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Algorithm 3: NLROM construction.

input : Optimized map: ξ : D ∋ µ 7→ ν ∈ Dν

training set Dtrain ⊂ D
RB tolerance: δrb

EQP tolerances: δr, δJ , δη

output: RBs: {ϕpr
i }Ni=1 and {ϕdu

i }Ndu

i=1

RQs: {x̃r
q, ρ̃

r
q}

Q̃r

q=1, {x̃j
q, ρ̃

j
q}

Q̃j

q=1, and {x̃η
q , ρ̃

η
q}

Q̃η

q=1

1 for i = 1, . . . , Ntrain do
2 Solve primal and dual FE problem: solve primal FE problem (15) for uh(µ

(i), ξ(µ(i))) and dual

FE problem (16) for zh(µ
(i), ξ(µ(i))) on adapted mesh Th

3 end

4 Construct primal RB: apply POD to obtain primal RB: {ϕpr
i }Ni=1 = PODδrb({uh(µ

(i), ξ(µ(i)))}Ntrain
i=1 )

5 Construct dual RB: apply POD to obtain dual RB: {ϕdu
i }Ndu

i=1 = PODδrb({zh(µ(i), ξ(µ(i)))}Ntrain
i=1 )

6 Construct RQs: apply EQP to obtain RQs {x̃•
q , ρ̃

•
q}

Q̃•

q=1 for • ∈ {r, j, η}.

Remark 15. The simultaneous constructions of an adaptively refined mesh Th and optimized map ξ com-
plement each other, as also noted in [35]. First, the error in the shock location estimated using the principal
points described in Section 2.4 relative to the true shock location in the (exact) solution u(µ) of (1) is O(h),
as the error in the solution uh(µ, ν) with respect to u(µ) is O(h) and the resolution of the shock indicator
sdil(u) in (3) is also O(h); hence, the construction of an accurate map ξ : µ 7→ ν requires a commensurately
accurate FE solution. Second, an accurate map ξ : µ 7→ ν reduces the region over which the FE mesh has to
be refined since the shock remains in one location as the parameter µ ∈ D is varied; this is in contrast to the
case without a transformation, which requires the mesh to be refined over the entire region over which the
shock appears as the parameter µ ∈ D is varied. Hence, by simultaneously constructing adaptively refined
mesh Th and optimized map ξ, we obtain an increasingly accurate map while avoiding unnecessary “global”
mesh refinement through increasingly accurate shock alignment. In practice, the initial FE tolerance δfe,1 is
set to ∞ so that no mesh adaptation is performed when the shocks are completely unaligned.

The second algorithm, summarized in Algorithm 3 constructs the NLROM. We make an important
remark:

Remark 16. Despite considering a nonlinear approximation, the construction follows the standard linear
ROM construction procedure: compute the DG snapshots associated with the training parameter set Dtrain,
construct primal and dual RBs using POD, and construct RQ rules using EQP. This is because we have
recast the nonlinear approximation of the original problem (1) as a linear approximation of the transformed
problem (2). Specifically, given an optimized parameter map ξ : D ∋ µ → ν ∈ Dν , we are “simply”
solving the problem associated with a µ-parametrized semilinear form D ∋ µ 7→ r(·, ·;µ, ξ(µ)). Hence, the
construction of the NLROM follows the standard linear ROM construction procedure.

4. Examples

4.1. Transonic Euler flow over NACA–Gaussian bump

We first consider transonic inviscid flow over a bump composed from a Gaussian and the NACA0012
profile. The geometry, shown in Figure 3a, is as follows: the boundary ∂Γ3a for x1 ∈ [−1.5, 0] is a Gaussian
bump of a standard deviation 0.2 and a height 0.0625; the boundary ∂Γ3b for x1 ∈ [0, 0.7] is a NACA0012
such that the bottom boundary is C1 continuous with the Gaussian bump at x1 = 0; the boundary ∂Γ3c for
x1 ∈ [0.7, 1.0] is a quartic spline such that the bottom boundary is C2 continuous at x = 0.7 and x = 1.0;
and ∂Γ3d for x1 ∈ [1.0, 1.5] is flat. The height of the domain is 1.6. The governing equation is the two-
dimensional compressible Euler equations in entropy variables [6]. The parameter is the freestream Mach
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(a) geometry.

M∞ = 0.74M∞ = 0.74

M∞ = 0.78M∞ = 0.78

(b) Mach number fields

Figure 3: The geometry and Mach number fields, for the two extreme parameter values, of the NACA–Gauss bump Euler
problem.

number M∞ ∈ [0.74, 0.78] := D. We specify the stagnation temperature, stagnation pressure, and angle
of attack (i.e., 0◦) on the inflow boundary Γ0. We specify the static pressure on the outflow boundary Γ2.
These boundary conditions are chosen to yield the desired freestream Mach number. All other boundaries
are slip walls. The quantity of interest is the drag, which takes on a value in [7.25 × 10−3, 1.951 × 10−2]
over D. The solution for the two extreme values of the parameter is shown in Figure 3b; we observe that
the shock location and size are sensitive to the small change in the freestream Mach number, which is also
reflected in the large change in the drag value.

We define the transformation region ω ⊂ Ω as shown in Figure 3a. This is the region in the domain
where shocks are expected based on solutions for extreme parameter values. We introduce a 5×3 grid shown
in Figure 4a to induce geometry transformation. As discussed in Section 2.3, the five nodes in the flow
direction are necessary to meet the regularity conditions at the interface of ω and Ω \ ω. (We need not have
five nodes in vertical direction as ω spans the entire height of Ω and there is no top or bottom interface.)
We parametrize the transformation by the flow-wise displacement of the three middle nodes, allowing sliding
on the bottom boundary Γ3b. An illustration of the transformed grid is shown in Figure 4a. We use the
principal point approximation of the dilation shock sensor, which for d = 2 dimensions has np = 2d+ 1 = 5
points. An example of the shock sensor, principal points, and alignment of shocks via transformation is
illustrated in Figure 4b.

To construct the ROM and NLROM, we compute DG snapshot sets ÛD = {ûh(µ
(i))}Ntrain

i=1 and UD,ξ =

{uh(µ
(i), ξ(µ(i)))}Ntrain

i=1 , respectively, for Ntrain = 15 parameters equispaced in D. For ROM, we adapt
the mesh so that each DG snapshot meets the drag error tolerance of 5 × 10−5, which is approximately
0.5%. For NLROM, we use Algorithm 2 with four outer iterations at target DG drag error tolerances of
{1× 10−3, 1× 10−4, 5× 10−5, 5× 10−5} to simultaneously adapt the mesh and optimize the transformation.
We equip both the ROM and NLROM with EQP-based hyperreduction and DWR-based error estimation.

We compare the output error convergence for ROM and NLROM in Figure 5a. The reported error is

the maximum over the randomly selected test set Ξtest = {µ(i)
test}

Ntest
i=1 of size Ntest = 5 so that µ

(i)
test /∈ Dtrain.

The NLROM error decreases rapidly with N , converging to below 0.5% with only N = 7 modes, while the
ROM error is greater than 10% using all N = 15 modes. The linear approximation space of the ROM
suffers from the slow decay of the Kolmogorov N -width; the proposed nonlinear approximation strategy
based on transformation mitigates the issue to provide rapid convergence. Specifically, while the shock
alignment achieved by the proposed formulation using a shock indicator, principle points, and spline-based
transformation is never perfect, it is sufficient to enable rapid output error convergence. The NLROM
convergence “stagnates” after meeting the target drag error level (i.e., for N > 7), as the NLROM error
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(a) grid and control points

M∞ = 0.74M∞ = 0.74

M∞ = 0.76M∞ = 0.76

µrefµref

M∞ = 0.78M∞ = 0.78

(b) shock indicator and principal points

Figure 4: Illustration of transformation for the NACA–Gauss bump Euler problem. Subfigure (a) shows grid and control points
for untransformed (top) and transformed (bottom) configurations; active control points are marked with black dots. Subfigure
(b) shows shock indicator and principal points for untransformed (left) and transformed (right) configurations; dotted lines
show alignment.

becomes comparable to the error in DG snapshots; we recall that the fidelity of the transformation and
hence the shock alignment is limited by the DG solution resolution, and hence we cannot expect rapid error
convergence below the DG snapshot error level.

Figure 5a also shows that the DWR error estimate, while it is not a bound, accurately predicts the error
with respect to the DG “truth” approximation for both ROM and NLROM in practice. Specifically, the
DWR error estimate correctly informs the user that the ROM is in fact not working. This ability to know
when, and more importantly when not to, trust ROM predictions is crucial to confidently use ROMs in
predictive settings.

Figure 5b shows the L2(Ω) error convergence of method. The reported error is again the maximum over

a randomly selected test set Ξtest = {µ(i)
test}

Ntest
i=1 of size Ntest = 5. We observe the same convergence trend

as the output error: the linear ROM converges slowly, while the NLROM converges rapidly. The result
indicates that the NLROM can well approximate the entire solution fields, and not just the drag output.

Table 1 provides key attributes of the ROM and NLROM. First, we note that the number of degrees of
freedom of DG snapshots is Nh = 21216 for the ROM and Nh = 16344 for the NLROM. In the ROM, as
the DG approximation uses the same (non-transformed) mesh to compute all snapshots, the mesh has to be
refined over the entire range of shock locations to meet the drag error tolerance of 0.5% for all parameter
values. On the other hand, NLROM uses the simultaneous mesh adaptation and transformation procedure
described in Algorithm 2 to obtain (transformed) snapshots whose shocks are aligned and hence requires
fewer degrees of freedom to meet the same drag error tolerance.

Second, we note that hyperreduction yields RQ rules with Q̃ = 427 points for ROM and Q̃ = 483 points
for NLROM; both are a significant reduction from Qh = 43404 and Qh = 33504. Figure 6 shows the
difference in the RQ points between ROM and NLROM. We note that, in ROM, the RQ points are spread
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(a) Output error (b) L2(Ω) error

Figure 5: Output and L2(Ω) error convergence for linear ROM and NLROM for the NACA–Gauss bump Euler problem.

Table 1: Summary of linear ROM and NLROM for the NACA–Gauss bump Euler problem.

full-order model : reduced-order model cd error speedup
Nh : N Qh : Q tFOM : tROM [s] |sh(µ)− s̃N (µ)| tFOM/tROM

ROM 21216 : 15 43404 : 427 3.04 : 0.0590 > 10% 52
NLROM 16344 : 7 33504 : 483 2.13 : 0.0415 < 0.5% 73

in the wide shock region. On the other hand, in NLROM, the RQ points are concentrated in the reference
solution shock region and the front region of the supersonic pocket. This indicates, as expected, that fewer
RQ points are required to accurately capture the shock, since only those in the reference shock location are
required to approximate the residual for all parameter values. However, the transformation also induces
(undesired) transformation in the front region of the supersonic pocket, where the adjoint exhibits rapid
change, which results in the introduction of more RQ points. The additional RQ points in the front region
of the supersonic pocket are not required when using a larger transformation region ω relative to the shock,
as in the RAE2822 example which follows.

Third, we note in Table 1 that ROM and NLROM yield a speedup (i.e., tFOM/tROM) of approximately
52 and 73 times, respectively, with respect to a single DG solve on the (non-transformed) mesh associated
with the ROM. The ROM and NLROM computational time is dominated by the residual and Jacobian
evaluation, which scales with the number of RQ points Q̃, and hence the two methods having a similar
online time (tROM) is expected. However, we recall that ROM drag error exceeds 10% while the NLROM
drag error is below 0.5%, and hence the NLROM is much more efficient (in terms of accuracy per cost) than
ROM.

Table 2 summarizes the offline computational time for the NAGA–Gauss bump problem. For each outer
iteration of the simultaneous adaptive mesh and optimized map construction (Algorithm 2), we report the
following times: the time tFOM to compute a single offline FOM snapshot uh(µ); the time tSI to compute
the shock indicator field ŝ◦dil(uh) for a single FOM snapshot; the time toptim to compute principal points of
the shock field, and optimal transformation parameters by solving (6); the time tRBF to update the RBFs
(5) used to interpolate transformation parameters; and the time tEQP to construct the RQ rule using EQP
for hyperreduction. We observe that the cost of the NLROM operations, per snapshot, total to less than
10% of the cost of one FOM snapshot solve. We also observe that the total EQP time is a small fraction of
the total offline cost for 15 snapshots.
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(a) ROM (b) NLROM

Figure 6: RQ points superimposed on the solution for the reference parameter value for the NACA–Gauss bump Euler problem.

Table 2: Summary of offline computational times for the NACA–Gauss bump Euler problem. Reported times are as follows:
tFOM - FOM snapshot evaluation; tSI - shock indicator construction; tOptim - principal points and optimal transformation
parameter evaluation; tRBF - RBF update; and tEQP - hyperreduction.

per snapshot for all snapshots

iteration error target Nh tFOM [s] tSI [s] toptim [s] tRBF [s] tEQP [s]

0 1× 10−3 9270 1.50 0.036 0.050 2.24× 10−6 9.619
1 5× 10−4 13560 3.37 0.053 0.051 2.17× 10−6 8.727
2 5× 10−5 16344 3.06 0.065 0.062 3.04× 10−6 9.365
3 5× 10−5 16344 2.94 — — — 6.752

4.2. Transonic RANS-SA flow over RAE2822

We next consider fully turbulent transonic flow over the RAE2822 airfoil. The governing equation is the
two-dimensional compressible RANS equations with the Spalart–Allmaras (SA) turbulence model with the
SA-neg fix [34, 1]. The parameter is the freestream Mach number M∞ ∈ [0.73, 0.75] := D. The angle of
attack and the Reynolds number are fixed at α = 2.75◦ and Rec = 6.5 × 106, respectively. The quantity
of interest is the drag, which takes on a value in [1.70 × 10−2, 2.63 × 10−2] over D. The solution for the
two extreme values of the parameter is shown in in Figure 7b; we again observe that the shock location is
sensitive to the small change in the freestream Mach number, which is also reflected in the large change in
the drag value.

We define ω ⊂ Ω on the top surface of the airfoil, where we expect the shocks, as shown in Figure 8. In
this case, ω does not extend to the top of the domain, and we accordingly require sufficient number of grid
nodes in both vertical and horizontal directions to satisfy the regularity conditions of our transformation.
The typical height of the shocks in the range M∞ ∈ [0.73, 0.75] is O(0.5c) where c is the chord length of the
airfoil. To that end, we select ω to have a height of 1.5c and width of 0.9c. We then define a 5 × 5 grid of
nodes shown in Figure 8 and parametrize the transformation using the horizontal displacement of the three
central nodes. We again use the normalized dilation shock sensor and principal point approximation, which
yields np = 5 principal points. An example of the transformation aligning shocks using the principal points
is illustrated in Figure 9.

To construct ROM and NLROM, we compute DG snapshot sets ÛD = {ûh(µ
(i))}Ntrain

i=1 and UD,ξ =

{uh(µ
(i), ξ(µ(i)))}Ntrain

i=1 , respectively, for Ntrain = 20 parameters equispaced in D. As before, we adaptively
refine the mesh to meet the target DG drag error tolerance of 5 × 10−5, which is ≈ 0.5%. For NLROM,
we invoke Algorithm 3, with four iterations of mesh adaptation and transformation with error tolerances
{1×10−3, 5×10−4, 5×10−5, 5×10−5}. We equip both the ROM and NLROMwith EQP-based hyperreduction
and DWR-based error estimation.
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(a) computational domain

M∞ = 0.73M∞ = 0.73

M∞ = 0.75M∞ = 0.75

(b) Mach number field

Figure 7: The computational domain and the Mach number fields, for the two extreme parameter values, for the RAE2822
RANS-SA problem.

Figure 8: Transformation subdomain ω and control points for the RAE2822 RANS-SA problem. Black dots mark active control
points.

Figure 10a shows the error convergence of ROM and NLROM. We report the maximum error over the

randomly selected test set Ξtest = {µ(i)
test}

Ntest
i=1 for Ntest = 8 so that µ

(i)
test /∈ Dtrain. Errors are evaluated

against DG solutions. We observe slow error convergence for ROM, with the error fluctuating at around 3%
for N = 10–16 and converging below 0.5% for N = 20, and rapid convergence for NLROM, with the error
converging to below 0.5% for N = 9. The ROM, which uses a linear approximation space, again suffers from
the slow decay of the Kolmogorov N -width for this transonic flow. The proposed nonlinear approximation
strategy mitigates the issue to provide rapid convergence. We emphasize that the transformation strategy
is effective even for this transonic RANS flow, which exhibits multiple sharp features that are not shocks,
including the boundary and shear layers, in both mean flow states and the Spalart–Allmaras turbulence
model.

Figure 10a also shows that the error estimate accurately approximates the true error with respect to
the DG solutions. The error estimate is again effective when ROM/NLROM approximations are accurate
and, arguably more importantly, when it is not accurate. We emphasize that the DWR error estimate
remains effective despite the significant nonlinearity introduced by both the shocks and the Spalart–Allmaras
turbulence model.

Figure 10b shows the L2(Ω) error convergence for the ROM and NLROM. We again report the maximum
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M∞ = 0.73M∞ = 0.73

M∞ = 0.74M∞ = 0.74

µrefµref

M∞ = 0.75M∞ = 0.75

(a) non-transformed solutions (b) transformed solutions

Figure 9: Non-transformed (a) and transformed (b) shock indicator ŝ◦dil(u) and principal points for M∞ ∈ {0.73, 0.74, 0.75} for
the RAE2822 RANS-SA problem. Dotted lines show alignment to the reference solution at M∞ = 0.74.

Table 3: Summary of linear ROM and NLROM for the RAE2822 RANS-SA problem.

full-order model : reduced-order model cd error speedup
Nh : N Qh : Q tFOM : tROM [s] |sh(µ)− s̃N (µ)| tFOM/tROM

ROM 84030 : 20 137874 : 698 7.24× 101 : 2.27× 10−1 < 0.5% 319
NLROM 81150 : 9 132876 : 210 9.33× 101 : 8.08× 10−2 < 0.5% 1141

over the test set. We observe that the NLROM converges much more rapidly than the ROM; the NLROM
reaches the ROM accuracy using 9 snapshots instead of 20.

Table 3 summarizes key attributes of the ROM and NLROM. First, we note that the DG snapshots have
Nh = 84030 degrees of freedom for ROM and Nh = 81150 for NLROM. The impact of simultaneous mesh
adaptation and transformation is smaller than observed for the Euler bump case, as a large portion of the
degrees of freedom are used to resolve the boundary and shear layers. However, the transformation results
in a significant difference in the efficiency of hyperreduction: Q̃ = 698 RQ points for ROM compared to
Q̃ = 210 RQ points for NLROM. This is due to two factors: first, the size of the RB is much smaller for
NLROM than for ROM (N = 9 vs N = 20); second, the ROM must introduce RQ points over the entire
range of the shock motion, whereas the NLROM need RQ points only in the aligned shock region, as shown
in Figure 11. Unlike in the NACA–Gauss bump problem, the range of shock locations is narrower, the
deformations required to align shocks are smaller, and no additional RQ points are introduced in the front
region of the supersonic pocket. The threefold reduction in the number of RQ points yields a commensurate
speedup of NLROM compared to ROM; the speedup for the NLROM is ≈ 8, 000 at the 0.5% error level.
While both ROM and NLROM are able to approximate solutions to 0.5% accuracy, the NLROM needs a
smaller RB to achieve this. In addition, the accuracy of the ROM is in part an artifact of the artificial
viscosity introduced in the diffusion term of (8), which smears the shock and makes it easier to approximate;
if we refine the snapshots further to achieve smaller than 0.5% drag error, the ROM will require a larger RB
to provide accurate solutions.

Table 4 summarizes the offline computational times for the RAE2822 RANS-SA problem. We observe the
overhead for NLROM is less than 10% per FOM snapshot, for all outer iterations. The EQP hyperreduction
time is a small fraction of the time to compute a single snapshot, and hence approximately 1% of the offline
training time.
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(a) Output error. (b) L2(Ω) error.

Figure 10: Output and L2(Ω) error convergence for linear ROM and NLROM for RAE2822 RANS-SA problem.

(a) ROM (b) NLROM

Figure 11: RQ points superimposed on the solution for the reference parameter value for the RAE2822 RANS-SA problem.

5. Summary and perspectives

This work develops and assesses a registration-based NLROM method for efficient model reduction of
parametrized PDEs that exhibit slowly decaying Kolmogorov N -widths. The proposed NLROM is composed
of the following ingredients: (i) an arbitrarily transformable PDE and discretization; (ii) a parametrized
composite transformation, which uses transfinite interpolation to map a subdomain ω to the unit domain
and spline transformations to warp points inside a unit domain; (iii) a dilation-based shock indicator and
principal point approximation of this shock indicator to compute optimal transformation parameters; (iv)
online efficient interpolation of transformation parameters; (v) EQP-based hyperreduction and DWR-based
error estimates; and (vi) simultaneous mesh adaptation and transformation to generate snapshots. These
ingredients are combined to yield an NLROM, which approximates the solution in a transformed manifold
UD,ν = {uh(µ, ν ≡ ξ(µ))}µ∈D with aligned shocks and hence a rapidly decaying Kolmogorov N -width.

The proposed NLROM provides the following features: (i) it provides efficient transformations suitable
for many transonic flows, particularly those over an airfoil, where the shock is localized to a small region;
(ii) it is scalable to parallel settings due to efficient shock sensor approximation using principal points
(unlike approaches that require full-field matching and hence the solution to a distributed and arbitrary
mesh projection problem); (iii) it does not resort to extensive offline training to achieve online accuracy
(unlike typical neural-network based approaches); (iv) it is equipped with hyperreduction and online-efficient
error estimates; and (v) it has been demonstrated on two-dimensional inviscid Euler and transonic RANS
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Table 4: Summary of offline computational times for the RAE2822 RANS-SA problem. Reported times are as follows: tFOM -
FOM snapshot evaluation; tSI - shock indicator construction; toptim - principal points and optimal transformation parameter
evaluation; tRBF - RBF update; and tEQP - hyperreduction.

per snapshot for all snapshots

iteration error target Nh tFOM [s] tSI [s] tOptim [s] tRBF [s] tEQP [s]

0 1× 10−3 21210 13.8 0.29 0.39 2.13× 10−6 3.40
1 5× 10−4 21210 14.6 0.40 0.57 2.66× 10−6 3.64
2 5× 10−5 81150 93.5 1.21 1.21 2.98× 10−6 11.26
3 5× 10−5 81150 93.3 — — — 11.51

problems, the latter of which exhibit significant nonlinearities not just in shocks but also in the Spalart–
Allmaras turbulence model.

The future work includes the extension of the NLROM to three-dimensional problems as well as to prob-
lems that exhibit multiple or intersecting shocks and hence requires multiple and/or more flexible transfor-
mation. For instance, we may consider using multiple separate regions to treat multiple shocks (e.g., shocks
on the top and bottom surfaces of an airfoil) or using more sophisticated point-set registration methods (cf.
Remark 13) and parameter-space decomposition to treat intersecting shocks.
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2009.

[20] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized partial
differential equations. Springer, 2016.

[21] A. Iollo and D. Lombardi. Advection modes by optimal mass transfer. Physical Review E, 89(2), feb
2014.

[22] A. Iollo and T. Taddei. Mapping of coherent structures in parameterized flows by learning optimal
transportation with Gaussian models. Journal of Computational Physics, 471:111671, dec 2022.

[23] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal
on Numerical Analysis, 35(2):508–523, apr 1998.

[24] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi. A fast and accurate physics-informed neural network
reduced order model with shallow masked autoencoder. Journal of Computational Physics, 451:110841,
feb 2022.

25



[25] K. Lee and K. T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

[26] M. A. Mirhoseini and M. J. Zahr. Model reduction of convection-dominated partial differential equations
via optimization-based implicit feature tracking. Journal of Computational Physics, 473:111739, Jan.
2023.

[27] D. Moro, N. C. Nguyen, and J. Peraire. Dilation-based shock capturing for high-order methods. Inter-
national Journal for Numerical Methods in Fluids, 82(7):398–416, 2016.

[28] N. J. Nair and M. Balajewicz. Transported snapshot model order reduction approach for parametric,
steady-state fluid flows containing parameter-dependent shocks. International Journal for Numerical
Methods in Engineering, 117(12):1234–1262, 2019.

[29] M. Ohlberger and S. Rave. Nonlinear reduced basis approximation of parameterized evolution equations
via the method of freezing. Comptes Rendus Mathematique, 351(23-24):901–906, dec 2013.

[30] M. Ohlberger and S. Rave. Reduced basis methods: success, limitations and future challenges. In
Proceedings of the Conference Algoritmy, pages 1–12, 2016.

[31] P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA
2006-0112, AIAA, 2006.

[32] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of
Computational Physics, 43(2):357–372, 1981.

[33] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations — Application to
transport and continuum mechanics. Archives of Computational Methods in Engineering, 15(3):229–
275, 2008.

[34] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamics flows. La Recherche
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