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Abstract—We introduce a registration-based nonlinear model-
order reduction (MOR) method for efficient solution of parametrized
transonic aerodynamics problems. Our goal is to provide rapid and
reliable prediction of outputs, such as lift and drag, in many-query
scenarios, which require the solution of partial differential equations
(PDEs) for many different values of parameters, such as angle of
attack and Mach number. Traditional “linear” MOR methods yield
accurate low-dimensional approximations of many PDEs; however,
for PDEs with shocks whose location depends on the parameter,
linear MOR methods fail due to a fundamental limitation of linear
approximation spaces known as the Kolmogorov barrier. To mitigate
this issue, we develop a nonlinear reduced-order model (NLROM),
which constructs a nonlinear reduced approximation through a two-
step procedure. The method first uses a dilation-based shock sensor
to locate discontinuities and optimally transforms/warps the solutions
to align the discontinuities. The method then applies linear MOR
techniques to this transformed problem: proper orthogonal decom-
position, which finds a low-dimensional reduced basis; empirical
quadrature procedure, which provides hyperreduction that enables
rapid residual evaluation; and a hyperreduced dual-weighted residual
method, which estimates the error in the quantity of interest. We apply
the framework to parametrized two-dimensional transonic Reynolds-
averaged Navier–Stokes flow over the RAE2822 airfoil and demon-
strate that the NLROM enables efficient reduction for the problem
where traditional linear ROMs are ineffective.

Keywords-component—model reduction, nonlinear approxima-
tion, error estimation, hyperreduction, transonic aerodynamics

I. INTRODUCTION

The objective of model-order reduction (MOR) is to provide
rapid and reliable solution of parametrized partial differential
equations (PDEs). We wish to evaluate engineering quantities
of interests, such as lift and drag, as a function of configuration
parameters, such as flight condition parameters (e.g., Mach
number and angle of attack) and geometric parameters (e.g.,

airfoil shape). Our goal is to accelerate the solution of many-
query problems, such as database generation, uncertainity
quantification, and optimization, that require PDE solution
for potentially thousands of different configurations and the
use of expensive high-fidelity simulation (e.g., finite element
methods (FEMs)) can be cost prohibitive. The purpose of
MOR is to provide rapid predictions with minimial loss in the
accuracy and also to equip the predictions with quantitative
error estimates. In this work, we present a nonlinear MOR
method for transonic flow problems modelled by the Reynolds-
averaged Navier-Stokes (RANS) equations.

A. Full-order model (FOM)

Mathematically, our exact PDE problem takes the following
form: given parameters µ ∈ D, find the solution u(µ) ∈ V in
some function space V , and then compute the associated output
s(µ). One way to provide an accurate approximation of the
problem is to use an FEM. FEMs approximate u(µ) in an Nh-
dimensional subspace Vh of V; i.e. u(µ) ≈ uh(µ) ∈ Vh ⊂ V
where Nh = O(105–107). While there are many ways to
evaluate uh(µ), we use a discontinuous Galerkin (DG) FEM,
where Vh ⊂ V is a discontinuous space of piecewise polyno-
mials [6]. To estimate the output error and reduce computa-
tional cost, we equip the DG-FEM with dual-weighted residual
(DWR) error estimation [1] and adaptive mesh refinement
(AMR), respectively; the combination has been shown to be
effective for many aerodynamics problems [4].

B. Linear MOR and its limitations

In aerodynamics, DG-FEM typically yields solutions with
Nh = O(105–107) degrees of freedom, which can be
too expensive in many-query scenarios. We hence wish to
provide a low-dimensional and accurate approximation of



the DG-FEM full-order model (FOM). Linear MOR is a
popular class of reduction methods [2], which approximates
the FOM solution in a N -dimensional subspace VN for
N = O(10–100) ≪ Nh; i.e., uh(µ) ≈ uN (µ) ∈ VN . Like
many other surrogate models, MOR appeals to an offline-
online computational decomposition: in the offline stage, a
reduced-order model (ROM) is constructed through a rel-
atively expensive training process; in the online stage, the
ROM is evaluated rapidly for many parameter values, in real
time, and/or using limited computing resources. Specifically,
in the offline stage, we first compute training snapshots
Uh := {uh(µi)}Ntrain

i=1 associated with Ntrain parameter values
using the FOM. We next use these snapshots to construct
an N -dimensional reduced basis (RB) using, e.g., proper
orthogonal decomposition (POD), which provides an optimal
hierarchical orthogonal basis {ϕi}N≤Ntrain

i=1 . We then define the
RB space VN := span{ϕi}Ni=1 ⊂ span{uh(µi)}Ntrain

i=1 where
N ≪ Nh. In the online stage, we use the (Petrov-)Galerkin
projection onto the subspace to provide an RB approximation
uh(µ) ≈ uN (µ) ∈ VN . The MOR procedure reduces the size
of the problem from Nh = O(105–107) to N = O(101–102),
and hence ROMs are often orders of magnitude more efficient
than FOMs.

In our ROMs, we incorporate two additional ingredients to
provide output error estimates and rapid solution of nonlinear
PDEs. First is the DWR output error estimate, which has
been extended to MOR methods [19]. Second is a so-called
hyperreduction method to accelerate the nonlinear residual
evaluation; we employ the point-wise variant of the empirical
quadrature procedure (EQP) [21, 3] for hyperreduction.

Linear MOR method are effective for subsonic aerodynam-
ics problems and typically provide O(100–1000×) speedup
relative to the FOM while incurring less than O(1%) er-
ror [20]. However, linear MOR methods do not yield accurate
approximations for transonic flow problems where the location
of a shock depends on the parameter. This limitation is known
as the Kolmogorov barrier [14, 20]: the Kolmogorov N -width

ϵN = inf
VN⊂Vh

dim(VN )=N

sup
µ∈D

inf
wN∈VN

∥uh(µ)− wN∥L2(Ω), (1)

which is the best-fit error associated with the best linear ap-
proximation space, decays as only O(N−1/2) where N is the
size of RB. That is, even the best linear approximation space
will require a large basis to yield accurate approximations. To
obtain a more efficient approximation space, we must construct
nonlinear approximations.

C. Nonlinear model reduction

Two classes of nonlinear MOR methods that have become
popular in the last half decade are based on neural networks
and registration (or transformation). Neural-network based
methods can produce accurate approximations when a large
number of training snapshots are available, such as in unsteady
problems [9, 8]. However, for steady transonic flow problems,
these methods are primarily limited by the size of the required

snapshots (i.e. they need large training sets), in addition to
extensive tuning needed to obtain accurate models.

On the other hand, registration-based methods obtain non-
linear approximations by constructing linear approximations of
spaces in which discontinuities are aligned [13, 10]. Generally,
registration-based methods use the following ingredients: a
domain transformation g(γ) : Ω → Ω for γ ∈ Dγ ; a
function ξ : D → Dγ to compute optimal transformation
parameters; and a sensor S(uh(µ)) to detect discontinuity
locations and the distance between them. These ingredients
are used to warp the domain Ω such that discontinuities are
aligned. The transformed space Vg

h then becomes amenable
to linear approximation using transformed training snapshots
Ug
h := {ug

h(µ)}
Ntrain
i=1 ⊂ Vg

h .
Registration-based methods have been successfully ap-

plied to textbook shock-dominated problems, including two-
dimensional inviscid transonic flows modeled by the Euler
equations (e.g., [12, 18, 10]). However, to the best of our
knowledge, the methods have yet to be demonstrated for
larger-scale problems and for the Reynolds-averaged Navier–
Stokes (RANS) equations, which exhibit more complex flow
features than the Euler equations. This requires the following:
a scalable/parallelizable transformation formulation; online-
efficient error estimates (to provide reliable predictions);
and efficient hyperreduction (to provide significant online
speedup).

The contribution of this work is threefold. First, we develop
a registration-based nonlinear ROM (NLROM) method that
uses a dilation-based shock sensor and low-order statistics
(rather than the L2(Ω) norm of the solution field typically
used) and is scalable/parallelizable. Second, we appeal to
implicit transformation so that the method can readily incorpo-
rate online-efficient DWR error estimates and hyperreduction
methods developed for linear MOR to provide rapid and
reliable predictions. Third, we demonstrate the method for
turbulent transonic flows over the RAE2822 airfoil modelled
by the RANS equations.

II. PROBLEM STATEMENT

We first describe the mathematical problem. To this end,
we introduce a parameter domain D and a physical domain
Ω ⊂ Rd. We then state the system of m parametrized PDEs:
given a parameter µ ∈ D, find u(µ) : Ω → Rm such that

∇ · (F c(u(µ);µ)−K(u(µ);µ)∇u(µ))

= S(u(µ),∇u(µ);µ) in Ω,

B(u(µ),∇u(µ);µ) = 0 on ∂Ω,
(2)

where F c : Rm × D → Rm×d is the convective flux,
K : Rm × D → Rm×d×m×d is the diffusion tensor,
S : Rm × Rm×d × D → Rm is a source term, and
B : Rm×Rm×d×D → Rm specifies the boundary conditions.
We then evaluate the output s(µ) = J(u(µ);µ), where J(·;µ)
is some output functional which requires integration over
the volume and boundaries. In aerodynamics problems, the
parameter µ could describe the angle of attack, Mach number,



(a) Domain Ω (b) Subdomain ω

Figure. 1: Partitioning of domain Ω into ω and Ω \ ω for the
RAE2822 problem

and/or geometry, and the output s(µ) could be drag or lift,
for example. Given the parameter space D, (2) induces a
parametric solution manifold UD := {u(µ)}µ∈D. Our goal is
to construct an NLROM for the manifold UD.

III. TRANSFORMATION FRAMEWORK

NLROM is composed of the following ingredients:
parametrized geometry transformation, shock sensor, and a
transformed PDE and FE model. In this section, we describe
the transformation and sensor components, which are unique
to our nonlinear approximation. We discuss the rest, which
are common to linear MOR,—RB, output error estimation,
and hyperreduction—in Sec. IV. A more detailed description
of NLROM can be found in [15].

We wish to warp the domain Ω using geometry transfor-
mations such that discontinuities are aligned, which we detect
using the shock sensor. We expect that when the discontinuities
are aligned, the solutions will be amenable to approximation
with linear MOR methods. The goal is to compute an aligned
training snapshot set Ug

h given the untransformed snapshot
set Uh. To this end, we align all the snapshots in Uh with
a reference snapshot uref

h (µref) ∈ Uh, where µref is chosen
nearest to the centroid of D.

A. Transformation

To define geometry transformations, we partition Ω into two
subdomains: ω and Ω \ ω. The subdomain ω is chosen to
encapsulate the shock for all parameter values. For example
in transonic airfoil/wing problems, ω is the region on the top
(or bottom) surface of the wing, as shown in Fig. 1.

Next, we introduce parametrized transformations G :=
{g(γ) : Ω → Ω}, which transform ω but do not transform
Ω \ ω: i.e., g(γ)|ω = gω(γ) and g(γ)|Ω\ω = I. We construct
gω(γ) with sufficient regularity in the boundaries to avoid
introducing a displacement, kink, or slip anywhere on the in-
terface between ω and Ω\ω, which would introduce instability
and error in the DG-FEM and NLROM. However, we allow
sliding on the regions of ∂ω which are on the boundary of
the domain Ω; e.g., in Fig. 1, we allow transformations that
“slide” the root of the shock along the surface.

We define the transformations gω(γ) as a composi-
tion of transfinite-interpolation (TFI) transformations [5]

ω

g−1
tfi→

Ω̂

gsp(γ)
→

gtfi
→

Figure. 2: Illustration of the composite transform gc(γ) = gtfi◦
gsp(·; γ) ◦ (gtfi)−1.

and parametrized splines. Composition of maps is adapted
from Iollo and Taddei [7] and Taddei [17], and enables
straightforward application of the method to complex geome-
tries. The composite transformation is given by

g(·; γ) = gtfi ◦ gsp(·; γ) ◦ g−1
tfi . (3)

An example of this transformation is illustrated in Fig. 2.
The first component of the composite transformation is a

TFI map. TFI maps are invertible maps gtfi : Ω̂ → ω which
map the unit domain Ω̂ := (0, 1)d to the subdomain ω. In
effect, gtfi(·) is a bilinear interpolation from Ω̂ to ω.

The second component is a spline-based map gsp(·; γ) :
Ω̂ → Ω̂. We define gsp(·; γ) using a set of Nγ control
points uniformly distributed in Ω̂ with coordinates C =

(c
(j)
1 , c

(j)
2 )

Nγ

j=1. We parametrize the transformation by the dis-
placement at these control points, and interpolate between
them using a sum of volumetric cubic B-splines Bj(x)
centered at C(j) with support over 5d surrounding control
points. We ensure that the spline-based maps meet the required
continuity and regularity conditions at the interface between
ω and Ω \ ω by restricting the displacement of control points
on the boundary ∂Ω̂ and their immediate neighbors. Note that
the composition of TFI and spline-based maps allows us to
avoid the direct construction of spline-based maps that meet
the regularity conditions on arbitrary (and potentially complex)
ω instead of the unit domain Ω̂.

B. Shock sensor and computing transformation parameters

We now describe how we compute optimal transformation
parameters γ for the parametrized transformations g(·; γ). To
this end, we use a truncated dilation-based shock indicator
adapted from Moro et al. [11], given by

Sdil(v) =

(
−L(∇ · v)

c∗

)+

, (4)

where c∗ is the critical speed of sound, L is a tuned length
scale, and (z)+ = max{z, 0}. We treat this shock indica-
tor as a probability distribution, and compute the principal
points t(w) = {t(i)}2d+1

i=1 . An example of this sensor for the
RAE2822 problem is illustrated in Fig. 3.

Our goal is to approximate the function ξ : D → Dγ which
maps PDE parameter µ to transformation parameter γ: i.e.,



Figure. 3: Illustration of Sdil(uh(µ)) and principal points for
the RAE2822 problem at M∞ = 0.74.

ξ(µ) = γ. To this end, in the offline stage, we compute the
optimal mapping µj 7→ γj given by

γj = argmin
γ∈Dγ

2d+1∑
i=1

|t(i)(uref
h )− g−1(t(i)(uh(µj)); γ)| (5)

for j = 1, . . . , Ntrain. That is, we translate the principal points
of the shock sensor (rather than the entire sensor field) to
find the optimal transformation parameter; this significantly
reduces the computational cost compared to aforementioned
L2(Ω)-based sensors used in, e.g., [12, 18]. Then in the
online stage, we use radial-basis functions (RBF) to interpolate
the transformation parameters γ as a function of the PDE
parameters µ: i.e., µ 7→ γ ≡ ξ(µ). We then use the optimal
transformation: g(·; γ ≡ ξ(µ)).

IV. TRANSFORMED PDE AND NONLINEAR ROM
Having outlined our procedure to construct an optimal

parametrized domain transformation g(·; γ = ξ(µ)) in Sec. III,
we now describe our procedure to construct NLROM that
builds on the optimal transformation. To this end, we introduce
a transformed system of PDEs in weak form: given PDE
parameter µ ∈ D and the optimal transformation parameter
γ ≡ ξ(µ) ∈ Dγ , find ug(µ, γ) ∈ V such that

Rg(ug(µ, γ), v;µ, γ) =

∫
Ω

rgΩ(u
g(µ, γ), v;µ, γ)dx

+

∫
∂Ω

rg∂Ω(u
g(µ, γ), v;µ, γ)ds = 0 ∀v ∈ V, (6)

where rgΩ(·, ·;µ) and rg∂Ω(·, ·;µ) are transformed volume
and boundary integrands, respectively, of the weak form
of PDEs associated with (2). We then evaluate the out-
put sg(µ, γ) = Jg(u(µ, γ);µ, γ), where Jg(·;µ, γ) is the
transformed functional. The transformed terms incorporate
a transformed gradient ∇γ and transformation determinant
det(Dg(·; γ)), which depend on the parametrized transfor-
mation g(·; γ). That is, the transformations are incorporated
implicitly as a parametrization of the PDE, so that the solution
to the original PDE (2) and the transformed PDE (6) are related
by u(µ) = ug(µ, γ) ◦ g(·; γ)−1 and s(µ) = sg(µ, γ) for all
µ ∈ D and γ ∈ Dγ . We hence solve (6) and compute a
transformed output sg(µ, γ).

We use a DG-FEM to find Nh-dimensional approximations
of (6). Then, given a parameter space D, a DG-FEM ap-
proximation of (6) yields a transformed parametric solution

manifold Ug
D,h = {ug

h(µ, γ ≡ ξ(µ))}µ∈D, where the shocks
are aligned. As discussed in the Introduction, the parametric
solution manifold associated with the transformed solutions,
in which shocks are aligned, is ammenable to linear approx-
imation and therefore is a way to mitigate the Kolmogorov
barrier encountered by linear MOR methods on the original
(untransformed) parametric solution manifold, in which the
shocks are not aligned.

Having identified a transformed PDE amenable to linear
compression, we now construct a ROM for this transformed
PDE. To begin, we construct an N -dimensional RB ap-
proximation of this transformed manifold. We first introduce
the transformed training snapshot set Ug

h := {ug
h(µ, γ ≡

ξ(µ))}Ntrain
i=1 ⊂ Ug

D,h. Unlike in linear ROM, where we
compute the training snapshot set Uh using the DG-FEM on
a single fixed/untransformed mesh, we compute Ug

h using a
simultaneous adaptation and transformation strategy:

1) Compute untransformed (γ = 0) snapshots Ug
h,1 on a

coarse mesh;
2) Compute optimal transformation parameters Γ1 =

{γi}Ntrain
i=1 that (approximately) align discontinuities in

all snapshots in Ug
h,1 using (5);

3) Perform output-error based AMR and compute more
accurate snapshots Ug

h,2 on a finer mesh;
4) Update optimal transformation parameters Γ2.

We repeat steps two to four for Niter iterations until all
snapshots meet the target error level of the DG-FEM method.
This procedure also yields the optimal and online-efficient
RBF-based transformation parameter function ξ : µ 7→ γ.

Once we have the transformed training snapshot set, the
procedure to obtain an RB is identical to linear MOR. We
apply POD to the transformed snapshots Ug

h to obtain an
RB Φ := {ϕi}N≤Ntrain

i=1 and construct an RB space Vg
N ⊂

span{ϕi}N≤Ntrain

i=1 . Since the discontinuities in the snapshot
set Ug

h (and the manifold Ug
D,h) are aligned, we expect POD to

yield an RB which accurately approximates the manifold. Then
we approximate DG-FEM solutions ug

h(·;µ, γ) by a linear
combination of {ϕi(·)}Ni=1 weighted by coefficients α(µ, γ) ∈
RN : i.e., ug

h(·;µ, γ) ≈ ug
N (·;µ, γ) =

∑N
i=1 ϕi(·)αi(µ, γ).

Finally, we apply Galerkin projection to find the coefficients
α(µ, γ) and hence the NLROM solution: given µ ∈ D and
γ ≡ ξ(µ) ∈ Dγ , find ug

N (µ, γ) ∈ Vh such that

Rg
h(u

g
N (µ, γ), vh;µ, γ) = 0 ∀vN ∈ VN , (7)

where Rg
h(·, ·;µ, γ) is the DG-FEM approximation of (6).

We make several remarks on this NLROM. First, for γ = 0,
(7) recovers linear ROM (for non-transformed PDEs). Indeed,
even for γ ̸= 0, although the PDE (6) is parametrized by µ
and γ, due to the relation γ ≡ ξ(µ), NLROM is exactly a
linear ROM for the µ-parametrized transformed PDE.

Second, note that although RB solutions ug
N (·;µ, γ) are

represented by α(µ, γ) ∈ RN coefficients, the evaluation
of (7) remains expensive since we need to evaluate the inte-
grals that appear in the DG-FEM approximation of (6) using
piecewise Gauss(-like) quadrature rules with Qh = O(Nh)



Figure. 4: RANS solutions of RAE2822 problem at M∞ =
0.73 and M∞ = 0.75. The field plotted is Mach number.

points. Fortunately, owing to the implicit incorporation of
transformations in (6), we can readily employ hyperreduction
methods to accelerate evaluation of the integrals. Namely, we
use point-wise EQP hyperreduction [3] to accelerate evaluation
of the residual form Rg

h(·, ·;µ, γ). The procedure solves an
optimization problem to find a small subset of the DG-FEM
quadrature points to yield a sparse quadrature rule of the
size Q ≪ Qh that still provides an accurate evaluation of
the DG-FEM residual. We remark that without the implicit
transformation in (6), it would not be straightforward to extend
EQP hyperreduction to (7).

Third, while the NLROM with hyperreduction yields rapid
solutions, in order to have reliable solutions, we also need an
output error estimate. Again, thanks to the implicit transforma-
tion in (6), we can readily incorporate the hyperreduced DWR-
based output error estimate developed for linear MOR [19]
to estimate |sh(µ) − s̃N (µ)|. The formulation provides an
output error estimate for any parameter µ ∈ D, including those
outside of the training set.

V. APPLICATION TO TRANSONIC RANS FLOW

We assess the effectiveness of the NLROM using
parametrized transonic turbulent flow over the RAE2822 air-
foil. The governing equation is the RANS equations with the
Spalart-Allmaras turbulence model [16], parametrized by the
freestream Mach number M∞ in the range [0.73, 0.75]. We
fix angle of attack to α = 2.75◦ and Reynolds number to
Rec = 6.5 × 106. Despite the relatively narrow M∞ range,
the drag is sensitive to the input parameter and varies from
cd = 169 to 263 counts. Examples of the solutions are shown
in Fig. 4.

We have introduced in Fig. 1 in Sec. III the computational
domain Ω and transformation region ω. The transformation
is defined by a composite transformation (3) associated with
a grid of 5 × 5 uniformly distributed control points and the
dilation-based shock sensor (4). We use 20 training snapshots
from the untransformed manifold UD,h to construct the linear
ROM and 15 snapshots from the transformed manifold Ug

D,h

to construct the NLROM. All snapshots are computed using
the adaptive DG-FEM to achieve the 0.5% drag error level
with respect to the (exact) PDE solutions.

Fig. 5 reports the maximum error of linear ROM and
NLROM from randomly selected test parameters Ξtest =
{µi}3i=1. We observe that the NLROM error converges to
below 0.5% drag error using nine modes; the linear ROM
error does not converge using 20 modes and fluctuates at the
O(10%) drag error level. In addition, we observe that the

Figure. 5: Error convergence of linear ROM and NLROM for
RANS-SA flow over the RAE2822 airfoil. Error is maximum
over test set Ξt.

TABLE. I: Summary of linear ROM and NLROM for the
RAE2822 RANS-SA problem. The times reported are in total
core seconds.

Method Nh Qh cd error tFEM t(NL)ROM Speedup
N Q ×103 ×10−2

ROM 83820 137622 > 10% 1.12 3.14 35500
20 454

NLROM 80220 131616 < 0.5% 1.03 1.05 98000
9 169

DWR output error estimate is effective and closely predicts
the true error for both approximations.

Table I summarizes the linear ROM and NLROM. First, we
again observe that the linear ROM is unable to meet the target
drag error of 0.5% despite using all N = 20 modes, while
the NLROM meets the target using N = 9 modes. Second,
we observe that the NLROM uses three times fewer reduced
quadrature points than linear ROM (Q = 169 vs Q = 454);
this is because the aligned shocks in the transformed space
also makes the residual amenable to a sparser quadrature
approximation. Third, the aligned snapshots also result in a
slight reduction in the DG-FEM FOM size Nh; however, this
effect is not as pronounced as observed in the Euler equations
with the shock as the only dominant feature; see [15]. Finally,
we observe that the three times sparser quadrature rule for the
NLROM relative to the linear ROM yields a commensurate
reduction in the online evaluation time; the NLROM achieves
a significant online speedup of O(105) relative to the adaptive
DG-FEM while controlling the drag error to < 0.5%.

VI. CONCLUSION

We presented NLROM, a registration-based MOR frame-
work, which builds on parametrized geometry transforma-
tion/warping, dilation-based shock sensor, transformation op-
timization, transformed PDE, RB, hyperreduction, and output
error estimation. We applied the method to two-dimensional



transonic RANS flow over the RAE2822 airfoil and observed
that NLROM with N = 9 modes provides rapid and reliable
predictions that achieve 0.5% drag accuracy and are equipped
with sharp error estimates; the linear ROM with N = 20
modes yields greater than 10% error.

Compared to existing registration-based methods, NLROM
has three advantages, which leads to the threefold con-
tributions of this work. First, NLROM uses the combina-
tion of shock sensor and principal points to enable scal-
able/parallizable computation of the optimal transform, which
enables the application of NLROM to larger scale problems.
Second, NLROM uses implicit transformation of the PDE,
which enables a straightforward incorporation of DWR error
estimates and EQP hyperreduction developed for linear ROMs.
Third, NLROM has been demonstrated for transonic RANS
flows, which exhibit much more complex flow features than
the Euler equations.
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