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Abstract

Improving the autonomy, efficiency, and reliability of partial differential equation (PDE)
solvers has become increasingly important as powerful computers enable engineers to ad-
dress modern computational challenges that require rapid characterization of the input-
output relationship of complex PDE governed processes. This thesis presents work toward
development of a versatile PDE solver that accurately predicts engineering quantities of
interest to user-prescribed accuracy in a fully automated manner.

We develop an anisotropic adaptation framework that works with any localizable error
estimate, handles any discretization order, permits arbitrarily oriented anisotropic elements,
robustly treats irregular features, and inherits the versatility of the underlying discretization
and error estimate. Given a discretization and any localizable error estimate, the framework
iterates toward a mesh that minimizes the error for a given number of degrees of freedom
by considering a continuous optimization problem of the Riemannian metric field. The
adaptation procedure consists of three key steps: sampling of the anisotropic error behavior
using element-wise local solves; synthesis of the local errors to construct a surrogate error
model based on an affine-invariant metric interpolation framework; and optimization of the
surrogate model to drive the mesh toward optimality. The combination of the framework
with a discontinuous Galerkin discretization and an a posteriori output error estimate
results in a versatile PDE solver for reliable output prediction.

The versatility and effectiveness of the adaptive framework are demonstrated in a num-
ber of applications. First, the optimality of the method is verified against anisotropic poly-
nomial approximation theory in the context of L2 projection. Second, the behavior of the
method is studied in the context of output-based adaptation using advection-diffusion prob-
lems with manufactured primal and dual solutions. Third, the framework is applied to the
steady-state Euler and Reynolds-averaged Navier-Stokes equations. The results highlight
the importance of adaptation for high-order discretizations and demonstrate the robustness
and effectiveness of the proposed method in solving complex aerodynamic flows exhibiting
a wide range of scales. Fourth, fully-unstructured space-time adaptivity is realized, and
its competitiveness is assessed for wave propagation problems. Finally, the framework is
applied to enable spatial error control of parametrized PDEs, producing universal optimal
meshes applicable for a wide range of parameters.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Advancement in numerical algorithms and computational hardware in recent decades has

made numerical simulation an indispensable tool in assisting engineering decisions and sci-

entific discoveries. In particular, partial different equation (PDE) solvers are widely used

to analyze various physical phenomena, ranging from fluid dynamics to solid mechanics

to electromagnetics. Unlike physical experiments, numerical simulation does not require

specialized testing facilities and handles virtually any physical conditions and design con-

figurations. This accessibility and flexibility make simulation well-suited for meeting the

primary goal of engineering analysis: the characterization of the relationship between input

parameters — such as geometric configurations, material properties, and operating condi-

tions — and output quantities — the performance variables of interests. However, despite

their widespread use, the current PDE solvers lack in efficiency, reliability, and autonomy,

making high-fidelity simulations unaffordable, producing unreliable prediction of outputs,

and requiring frequent user intervention. These limitations prevent the current PDE solvers

from realizing the full potential of simulation-based analysis in the engineering and scientific

environments.

The lack of automated error control has not only limited the effectiveness of PDE-

based simulations but also has led to catastrophic failures. One notable example is the

Sleipner A platform accident in 1991, in which the 44,000-ton offshore platform sank due

to a flawed design based on the finite element analysis that underestimated the shear stress

in a supporting structure by 45% [84]. The cause of the underestimation was attributed
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to the use of a coarse mesh with poorly shaped linear elements and the subsequent post-

processing of the results. A more refined finite element analysis conducted as part of the

failure investigation predicted the failure of the structure at the water depth of 62 meters,

which was in agreement with the actual failure depth of 65 meters [49]. Thus, the reliance

on human experience in grid generation caused the catastrophic failure that could have been

prevented with automated error control.

While computational power has increased dramatically over the past two decades since

the accident, the ability of PDE solvers to produce a reliable output prediction in an auto-

mated manner is still limited. For example, error assessment and grid generation procedures

employed in the aerospace industry for computational fluid dynamics (CFD) simulations

still rely heavily on the experience of the CFD users. The inadequacy of this practice,

even for geometries frequently encountered in engineering practice, has been highlighted

in a study by Mavriplis in 2007 [103] conducted as a part of the third AIAA Drag Pre-

diction Workshop. In this study, two families of meshes were generated — one by NASA

Langley and the other by Cessna Aircraft Co. — following each organization’s best prac-

tices for a typical transonic turbulent flow over a wing. Then, Mavriplis tested for the

convergence of the drag output under uniform scaling of the elements using a second-order

industrial-strength CFD solver. Even though 10 times more degrees of freedom were used

than typically used in practice, the output values were not grid converged; the finest NASA

and Cessna mesh predicted the drag coefficient of 194 counts and 201 counts, respectively.

The difference of 7 drag counts is quite significant, as 1 drag count translates to four to

eight passengers for a typical, long-range, passenger jet [56, 144]. Mavriplis concludes that

the range of scales present in the turbulent flow cannot be adequately resolved using a

second-order method with best-practice meshes.

To take advantage of ever-increasing computational power, providing an automated

error control will become even more important for two reasons. First, faster computers

enable simulation of increasingly complex phenomena, in which an engineer’s knowledge

may be of little use in identifying the features relevant to accurate output evaluation.

This is particularly true for multiscale problems, where small-scale features may have a

large impact on the overall solution behavior. Second, and more importantly, the next

generation of PDE solvers must support modern computational challenges — such as design

optimization, uncertainty quantification, and inverse parameter estimation. A successful
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execution of these tasks requires a PDE solver that can reliably quantify the input-output

relationship over a wide range of input parameters in a fully-automated manner. This thesis

presents work toward development of a fully-automated PDE solver, freeing engineers from

the task of handling numerical issues, reducing the time to achieve desired accuracy, and

improving reliability and robustness of complex simulations.

1.2 Thesis Objective

The objective of this work is to develop a versatile, adaptive, higher-order PDE solution

framework for reliably predicting an engineering output of interest in a fully-automated

manner and apply it to a wide range of engineering applications to assess its effectiveness.

In particular, the critical areas of improvement are identified as follows:

• Autonomy: Autonomy is a measure of the solver to complete the entire PDE solution

process with little to no user intervention. The solution process here refers to the

procedure of starting with the geometry definition and the physical condition as inputs

and predicting the output quantities of interest.

• Efficiency: Efficiency is a measure of the solver to produce an accurate output

prediction for a given computational effort. An efficient solver is capable of producing

low-fidelity solutions rapidly or producing a high-fidelity solution in a reasonable time.

• Reliability: Reliability is a measure of the PDE solver to produce an output predic-

tion that the user can trust. A reliable solver provides not only an output value but

also the degree of confidence the user should have in the prediction.

• Robustness: Robustness is a measure of the PDE solver to produce reliable solutions

for a wide range of geometries and physical conditions. A robust solver produces

results that the user can trust for radically different configurations with little a priori

knowledge of the solution.

• Versatility: Versatility is a measure of the PDE solver to handle a variety of PDEs

arising from different disciplines or applications. A versatile solver requires minimal

development effort to solve problems in different disciplines (e.g. solid mechanics, fluid

dynamics) or applications (e.g. unsteady problems, parameter space exploration).
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1.2.1 Mathematical Description of the Objective

This section provides a mathematical description of the thesis objective and introduces no-

tation used throughout this work. A common goal of engineering simulations is to estimate

a certain output quantity or quantities — such as drag, heat transfer rate, or strain energy

release rate — of a process modeled by a PDE. Thus, the automated PDE solver considered

in this work focuses on measuring, controlling, and effectively minimizing the error in an

output, J , given by

J = J (u),

where J : V → R is the output functional, and u is the field variable which is a member

of an appropriate function space V on a d-dimensional domain Ω. The field variable u ∈ V

satisfies a system of conservation laws

∂u

∂t
+∇ · Fconv(u, x, t)−∇ · Fdiff(u,∇u, x, t) = S(u,∇u, x, t), ∀x ∈ Ω, t ∈ [0, T ],

where the convective flux Fconv, the diffusive flux Fdiff, and the source S specify the PDE.

An approximation to the desired output is obtained by discretizing the conservation laws

and evaluating the discrete output functional. In the finite element framework, this results

in an approximate output Jh,p given by

Jh,p = Jh,p(uh,p) such that Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p,

where Vh,p is the finite-dimensional approximation space, uh,p ∈ Vh,p is the discrete solution,

Jh,p : Vh,p → R is the discrete functional, andRh,p : Vh,p×Vh,p → R is the discrete semilinear

form. The subscripts h and p signify the characteristic element size and the polynomial

degree of the finite element space. The quality of the estimated output is measured by the

output error

E ≡ J − Jh,p = J (u)− Jh,p(uh,p).

The computational cost associated with the approximation process is denoted by C. The

error E and the cost C are in general functions of discretization, approximation space,
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Figure 1-1: Illustration of the information flow in an automated PDE solver.

and linear and nonlinear solvers. Effectively controlling the output error E using a given

computational resource C is the main objective of an automated PDE solver.

The ultimate goal is to develop a PDE solver that efficiently estimates the output quan-

tity in a fully automated manner for a user defined problem characterized by 1) governing

equations, 2) domain geometry, 3) boundary conditions, 4) output quantities, 5) output

tolerances, and 6) available computational resources. Given a problem definition, the solver

should provide an output prediction that meets the user prescribed tolerance with the least

computational effort. This work develops technologies towards realizing such a fully auto-

mated general PDE solver.

1.3 Background

In the past decades, significant advancements have been made in improving the accuracy,

autonomy, and reliability of PDE solvers. As identified in Figure 1-1, the technologies that

constitute an automated PDE solver may be decomposed into three key pieces: discretiza-

tion, error estimation, and mesh adaptation. Given a problem definition, the solver first

discretize the problem and solve it on a (typically coarse) mesh, yielding the solution field

and output predictions. Then, using an error estimation technique, the solver estimates the

error in the output prediction. Finally, if the error is larger than the prescribed tolerance,

the solver adapts the mesh to reduce the error. This work leverages recent developments in

discretization, error estimation, and adaptation technologies. Specifically, this work builds

on:

• Discontinuous Galerkin (DG) methods: DG methods can discretize a wide vari-

ety of 1st- and 2nd-order PDEs, provide stability for convection-dominated problems,

maintain an element-wise compact stencil for high-order approximation, naturally

treat boundary conditions, and support unstructured meshes.
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• Output-based error estimates: Output-based error estimates provide a constant-

free, a posteriori estimate of the error in the engineering output and an element-wise

localization of the error to drive adaptation.

• Anisotropic simplex adaptation mechanics: Anisotropic simplex adaptation,

combined with an output-based error estimate, provides an approximation space that

minimizes the output error for a given cost by considering both the magnitude and

directionality of the error distribution.

The following subsections review previous work on high-order discretizations, error estima-

tion techniques, and adaptation strategies. The references provided are not intended to be

an exhaustive survey, but rather consist of seminal works on the subject of interest.

1.3.1 High-Order Discretizations for General Geometries

In general, the output error is related to the characteristic mesh size, h, by

|E| = |J − Jh,p| ≤ Chr,

where the constant C and the convergence rate r are dependent on the discretization,

(primal) solution, and output functional. For a sufficiently regular solution, r = cp+ c0 for

some constants c and c0. High-order methods aim to accelerate the grid convergence of the

numerical solution by achieving a higher convergence rate r through employing a higher p.

There are two general classes of methods capable of providing high-order approximations

of convection-dominated flows on unstructured meshes suited for general geometries: finite

volume methods and stabilized finite element methods. Although this work focuses on

finite element methods, it is worth noting that the high-order finite volume framework on

unstructured meshes was pioneered by Barth [20] and subsequently extended by various

researchers, e.g. [111, 151].

Development of high-order finite element methods starts with the work on the p-type

finite element method by Babuska et al. [12]. In the p-type method, the solution resolution

is improved by increasing the approximation order p instead of by decreasing the element

diameter h. The p-type method combines the generality of the finite element methods and

the exponential convergence property of the spectral methods for smooth problems. Later,
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Patera introduced a variant of the p-type method called the spectral element method [90,

115].

While the finite element framework offers a conceptually simple path to achieving a

higher solution order, it lacks stability for convection-dominated problems. To overcome this

difficulty, Hughes and his collaborators introduced the streamline-upwind Petrov-Galerkin

method (SUPG) [76, 83], which provides an additional stabilization for convection operators

in the finite element framework. Through a series of papers, Hughes extended the method to

support discontinuities [81, 82], system of equations [80], and time-dependent problems [78].

Hughes later generalized the concept of stabilization for finite element methods as the

Galerkin Least-Squares (GLS) method [77]. Application of second-order GLS discretization

to compressible flows is provided by Shakib and Hughes [131], and its higher-order extension

is considered by Barth [21].

Another approach to providing stability for convection operators within the finite ele-

ment framework is the discontinuous Galerkin (DG) method. The DG method stabilizes

convection operators by incorporating Riemann solvers developed in the finite volume com-

munity. It also provides element-wise compact support of basis functions, which enables a

straightforward implementation of hp-adaptation and efficient preconditioning. Reed and

Hill introduced the original DG method to solve a scalar hyperbolic equation [123], and

Johnson and Pitkäranta [85] and Richter [124] subsequently proved sharp a priori error

estimates for the method. Chavent and Salzano extended the DG method to nonlinear

hyperbolic equations by incorporating Godunov’s flux [41]. Cockburn and Shu introduced

the RKDG method — which combined Runge-Kutta explicit time stepping with a slope

limiter and DG spatial discretization — and extended the method to a multi-dimensional

system of conservation laws in a series of papers [42, 44, 45, 47]. Independent from the

aforementioned work, Allmaras and Giles presented a version of the DG method for Euler

equations [6, 7]. Cockburn et al. provide an excellent summary of the early development of

DG methods in their review paper [43].

To solve convection-diffusion systems, in particular the Navier-Stokes equations, Bassi

and Rebay introduced a DG discretization of diffusive operators, which is now known

as BR1 [24]. Cockburn and Shu generalized the method to yield the local discontinu-

ous Galerkin (LDG) method [46]. Bassi and Rebay modified the BR1 method to main-

tain stability for purely elliptic problems and to recover the element-wise compact stencil,
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yielding BR2 [25]. Similarly, Peraire and Person introduced the compact discontinuous

Galerkin (CDG) method by modifying the LDG method to recover the compact stencil.

Recent extensions of the discretization of diffusive operators within the DG framework

include [48, 118, 143].

1.3.2 Error Estimation

A posteriori error estimation provides two distinct functions critical to driving an automated

solution procedure. First is the estimation of the global error, which can be used to assess

the quality of the finite element solution. Second is the localization of the error to elements,

which is used to mark elements causing large errors for refinement or to mark those with

small errors for coarsening.

Initial work on a posteriori error estimates focused on controlling the error measured in

the energy norm of elliptic equations, such as those of structural elasticity. Development of

energy-based error estimates began with the pioneering work of Babuška and Reinboldt [13].

Subsequently, a wide variety of error estimation and localization techniques were developed;

a thorough review of energy-based error estimation techniques is provided by Ainsworth and

Oden [1, 2] and references therein.

An increasing interest in development of solution-adaptive methods also led to develop-

ment of simple error estimates based on estimating the interpolation error. The idea was

originally proposed by Demkowicz et al. [50]. While not quantifying the solution error in

a formal norm, interpolation-based error estimates — also called Hessian-based error esti-

mates as majority of simulations were conducted using second-order methods — localized

discretization error sufficiently for the purpose of adaptation. The use of the Hessian is

motivated by the fact that the interpolation error for a linear interpolant is dictated by the

solution Hessian. More importantly, an edge-based interpretation of the interpolation error

provided an anisotropic description of the error. This allowed Peraire et al. [119] to develop

an anisotropic adaptive scheme suitable for compressible flows with anisotropic features.

Both energy-based and interpolation-based error estimates assume that the local mesh

refinement leads to reduction of the local solution error. This is true for elliptic equations,

whose Green’s functions decay rapidly away from the source. However, the estimates lose

their effectiveness when applied to hyperbolic equations, whose Green’s functions do not

decay along the characteristics and can indefinitely transmit errors [138]. In other words,
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the local solution error in a downstream region may be highly sensitive to upstream dis-

cretization errors, and this long-range error transmission may be hard to identify a priori.

Noting that engineering applications often require prediction of certain output quanti-

ties, output-based error estimation techniques have been developed more recently. These

techniques incorporate an adjoint to estimate and localize the output error. An adjoint, or a

dual solution, acts as a transfer function from the local residual perturbation to the output

error, capturing the effect of error transmission. Due to the explicit inclusion of the adjoint,

output-based error estimates work effectively for hyperbolic equations. The starting point

for output-based error estimation is the error representation formula,

E = J − Jh,p = Rh,p(uh,p, ψ − ψh,p)︸ ︷︷ ︸
(I)

= R′h,p[u, uh,p](u− uh,p, ψ − ψh,p)︸ ︷︷ ︸
(II)

, (1.1)

where J is the quantity of interest, u is the primal solution, ψ is the dual solution, Rh,p(·, ·)

is the semilinear form for the governing PDEs, and R′h,p[u, uh,p](·, ·) denotes the mean value

linearization of the semilinear form about u and uh,p. The expression (I) shows that the

output error is equal to the primal residual weighted by the adjoint error. The expression (II)

shows that the output error is the weighted product of the primal and dual errors, where

the weight is specified by the bilinear form. Both expressions highlight the importance

of controlling the behaviors of not only the primal solution but also the adjoint solution.

Starting from the error representation formula, two classes of output-based error estimation

techniques have been developed.

The first class of methods, developed by Patera, Peraire, and their collaborators, cast

the output error estimation problem as a constrained minimization problem with a convex

functional that naturally arises from coercive PDEs. The original method provides strict

bounds of the output error for the fine “truth” mesh solution [101, 116]. Later, by incorpo-

rating the complementary variational principle, Budge and Peraire extended the method to

provide strict bounds of the true output for the PDE solution [128, 129]. A different per-

spective on the same idea presented in Chapter 8 of Ainsworth and Oden [1] shows that the

method is equivalent to applying the parallelogram identity to expression (II) of Eq. (1.1)

and bounding the primal and dual errors using the equilibrated residual method. While this

class of methods provide strict output bounds, i.e. a true certificate of the output estimate,

further research is necessary to apply the method to PDEs that do not induce a natural

29



convex functional, e.g. the compressible Navier-Stokes equations with a semi-definite diffu-

sion tensor. As the goal of this work is to develop an adaptation framework that works on a

wide class of PDEs, including the Navier-Stokes equations, this class of bounding methods

is not used in this work.

The second class of methods, developed by Becker and Rannacher, is called the dual-

weighted residual (DWR) method [26, 27]. The method appeals directly to expression (I) of

Eq. (1.1) to provide an error estimate, and the true adjoint ψ is approximated by the adjoint

obtained on a finer discretization space. Within the DG framework, a common choice is to

use ψh,p+1 ∈ Vh,p+1 obtained by increasing the polynomial degree. Unlike the method of

Patera and Peraire, the DWR method does not provide a strict bound and only estimates

the output error. However, it can in principle be applied to any PDE, including those

that do not induce a natural convex functional. The applicability of the DWR framework

to a wide class of engineering problems is demonstrated by, for example, Bangerth and

Rannacher [16] and Giles and Süli [66]. All output-based adaptation cases considered in

this work use the DWR error estimate to drive the adaptation.

1.3.3 Adaptation Mechanics

The goal of mesh adaptation is to control and effectively minimize the output error or,

more precisely, minimize the output error estimate. The localized error estimate — which

assigns a single scalar value that indicates the magnitude of the error contribution to each

element — can readily drive isotropic adaptation, where elements with large error are

refined and those with small error are coarsened. In terms of generality, the isotropic

adaptation strategy in principle inherits the versatility of the underlying discretization and

error estimate. The effectiveness of the isotropic adaptation strategies that incorporate

the DWR error estimate have been demonstrated in numerous early studies [71, 146, 147].

Applicability of the approach to complex three-dimensional aerodynamic simulations has

been validated by Nemec and Aftosmis [107] and Wintzer et al. [153].

While a simple isotropic adaptation strategy works well for a number of PDEs, the

inability to provide anisotropic resolution is a major limitation for processes that exhibit

strong directional features due to, e.g., a singularity or singular perturbation. By incor-

porating anisotropic adaptivity, the number of elements required to resolve the directional

features can be significantly reduced. For example, high Reynolds number aerodynamic

30



flows exhibit features such as boundary layers, wakes, and shocks, where the resolution

requirement in orthogonal directions differ by several orders of magnitude. Specifically, for

a typical high Reynolds number flow (Rec ≥ 106) over an aircraft wing, the mesh resolu-

tion requirement in the wall normal direction is about 1000 times higher than those in the

streamwise or spanwise directions. Thus, appropriately shaped anisotropic elements can

reduce the required number of degrees of freedom relative to isotropic elements by a factor

of 106 in three dimensions. In other words, isotropic elements would require 106 times more

degrees of freedom, rendering this typical three-dimensional problem intractable. To drive

anisotropic adaptation, the adaptation process must control not only element sizes but also

element stretchings and orientations. This section provides a brief summary of anisotropic

mesh generation technologies and anisotropy detection methods currently available.

Curved Anisotropic Mesh Generation

In order to support adaptivity for problems exhibiting anisotropic features using a higher-

order discretization, the mesh generator must meet two requirements. First, the mesh

generator must be capable of generating anisotropic elements whose anisotropy matches

that of the local solution. Second, the mesh must capture higher-order geometry informa-

tion of curved surfaces; the degradation in the solution quality resulting from the use of

linear meshes (i.e. straight-edged meshes) for higher-order discretizations is documented by

Bassi and Rebay [23]. The selection of adaptation strategies is largely dictated by the avail-

able anisotropic mesh generation technologies. Currently, there are two meshing strategies

that can produce anisotropic elements in adaptive setting: simplex-based remeshing and

quadrilateral-based hierarchical subdivision.

Simplex-Based Remeshing

The first class of adaptive meshing strategy employs simplex elements to tessellate a domain.

In terms of the initial mesh generation (i.e. geometry definition to computational mesh),

simplices currently offer greater flexibility in meshing complex geometries than quadrilat-

erals. However, in the context of anisotropic adaptation, simplices cannot be locally sub-

divided anisotropically while maintaining element quality. Thus, to produce high-quality

anisotropic elements, local remeshing that modifies multiple elements or fully global remesh-

ing must be performed. This remeshing step can compromise the robustness of the adaptive
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(a) metric field (b) simplex mesh

Figure 1-2: An example of a metric-mesh pair.

procedure, as meshing of complex curved geometries remains a challenging problem. How-

ever, remeshing offers an opportunity to produce arbitrarily oriented anisotropy, which can

be critical to efficiently resolving features whose direction is not known a priori, e.g. oblique

shocks and wakes in compressible flows.

In typical anisotropic simplex mesh generation, the desired characteristics of the next

mesh are encoded as a Riemannian metric field, whose precise definition is provided in Sec-

tion 2.3. The Riemannian metric field {M(x)}x∈Ω, or a field of spatially varying symmetric

positive definite (SPD) matrices, provides anisotropic specification of the desired element

properties, i.e. size, stretching, and orientation. Specifically, given a metric field, the objec-

tive of mesh generation is to tessellate a domain using elements with unit edge length with

respect to the Riemannian metric field [63, 119]. While a mesh that conforms to a given

metric field is not unique, a family of metric-conforming meshes have similar approximation

properties [97, 98]. An example of a metric-mesh pair is shown in Figure 1-2, where the

field of SPD tensors is illustrated by ellipses.

The key enabling technology for simplex-based remeshing is a reliable metric-conforming

simplex mesh generator. In two dimensions, the metric-mapped Delaunay triangulation

algorithm has been successfully implemented in the Bidimensional Anisotropic Mesh Gen-

erator (BAMG) [30, 73]. Combined with an elasticity-based mesh curving algorithm that

recovers high-order geometry information [110, 122], BAMG generates simplex meshes suit-

able for high-order discretizations. In three dimensions, the introduction of anisotropic

adaptation strategies based on local remeshing in the past decade has significantly im-

proved ability to generate anisotropic linear meshes in a reliable manner. Some of the

seminal work on this subject include [31, 94, 113, 140]. So far, few work has considered gen-
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eration of tetrahedral meshes with curved anisotropic elements in the context of adaptation,

with notable exceptions of an elasticity-based approach by Michal and Krakos [104] and a

“cut-cell”-based approach of Fidkowski [57]. The absence of a robust higher-order simplex

mesh generator currently limits the capability of fully-automated simplex-based adaptation

in three dimensions.

Quadrilateral-Based Hierarchical Subdivision

The second class of adaptive meshing strategy uses quadrilateral elements1 with hanging

nodes to tessellate a domain. Automated generation of an initial mesh of a general geometry

using quadrilateral elements is considerably more difficult than using simplices. However,

for aerospace applications, quadrilateral meshes for typical geometries are often available

due to the prevalence of structured mesh solvers in the community. However, the reliance

on these initial meshes is far from ideal for a general purpose PDE solver intended to explore

radically different designs. The initial quadrilateral mesh generation is a problem that must

be overcome to use the strategy in a fully automated adaptive PDE solver.

Once the initial mesh is in place, the quadrilateral meshes can be anisotropically refined

through elemental subdivisions. The elemental subdivision process is robust and preserves

element quality. Furthermore, the child elements naturally inherit the high-order geometry

information of the parent element. An example of a mesh generated through anisotropic

subdivisions of elements is shown in Figure 1-3. Note that the anisotropy is constrained

by the initial mesh topology. The effect of limited anisotropy direction is expected to be

minor for features that naturally align with geometry, such as boundary layers. However,

the efficiency loss may be significant for arbitrarily oriented features, such as wakes and

oblique shocks.

Anisotropic Adaptation: Interpolation-Based

While the focus of this work is output-based adaptation, let us first provide a brief review

of interpolation-based adaptation strategies, which played a key role in the development of

simplex-based anisotropic adaptation techniques. As noted in Section 1.3.2, Peraire et al.

pioneered the use of the Hessian of a select solution field to control the desired anisotropic

1The term “quadrilateral” should be understood as hexahedrons in three-dimensions throughout this
section.
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(a) initial mesh (b) anisotropic quadrilateral mesh

Figure 1-3: An example of anisotropic quadrilateral mesh generated by hierarchical subdi-
visions (reproduced with permission from [40]).

mesh configuration [119]. The objective of the interpolation-based anisotropic mesh adap-

tation is to equidistribute the Hessian-based interpolation error estimate computed on each

edge by modifying the edge lengths and orientations.

Subsequently, interpolation-based anisotropic adaptation has been implemented with

various discretizations, Hessian-recovery techniques, and mesh generation strategies, im-

proving the robustness and applicability of the method to complex industrial applications.

For example, Castro-Diaz et al. combined the Hessian of multiple solution fields to remove

the arbitrary selection of a solution field [39]. More recently, the advancement of mesh gen-

eration technology based on local remeshing has enabled application of the interpolation-

based adaptive method to complex three-dimensional problems, including: subsonic Euler

flows [140], time-dependent flow problems [113], phase change problems [28], supersonic

Euler flows [99], and time-dependent shock-propagation problems [4].

Anisotropic Adaptation: Output-Based

The DWR error estimate, which assigns a single scalar value to each element, is insufficient

for making anisotropy decisions. This section reviews anisotropy detection strategies devel-

oped in the context of output-based adaptation.

Anisotropy Detection by Solution Hessian

In order to overcome the lack of information necessary to make anisotropy decisions, several

researchers have proposed strategies that combine the DWR error estimate with Hessian-

based anisotropy detection. Venditti and Darmofal combined the DWR technique with

an anisotropy detection based on the Hessian of the Mach number to drive output-based

adaptation for second-order finite volume discretization of the compressible Navier-Stokes
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equations [148]. The work demonstrated the effectiveness and improved reliability of the

output-based anisotropic adaptation compared to the interpolation-based anisotropic adap-

tation. Subsequently, Jones et al. validated the effectiveness of the approach using three-

dimensional industrial aerospace applications [88]. Fidkowski and Darmofal later general-

ized the method to higher-order discretizations by using the higher derivative of the Mach

number to guide their anisotropy decision [58]. Namely, for the degree-p polynomial space,

the p + 1 derivative of Mach number is recovered by H1-patch reconstruction and is used

to make the anisotropy decision. Oliver [110] and Barter [18] improved the quality of p+ 1

derivative reconstruction for curved elements by using Jacobi smoothing instead of the

patch reconstruction. The Hessian (or higher derivative) recovery technique can in princi-

ple be combined with either the simplex-based remeshing or quadrilateral-based hierarchical

subdivision techniques. However, all work mentioned above used simplex remeshing.

Leicht and Hartmann introduced a variant of this strategy specifically for DG discretiza-

tions on quadrilateral meshes [92]. The anisotropy is detected by comparing the jump in

Mach number across the element interfaces in two orthogonal directions. If the ratio of

the jumps exceeds a prescribed threshold, then the quadrilateral element is subdivided

anisotropically in the direction of larger jump. This strategy relies on tensor-product el-

ements and must be used with the quadrilateral-based hierarchical subdivision technique.

The strategy has been successfully applied to turbulent flow over a wing-body configura-

tion, realizing the first output-based adaptive DG simulation of three-dimensional turbulent

flow [72].

The Hessian- or jump-based anisotropy detection is unsuited for general PDE solver for

a number of reasons. First, it assumes that a single scalar quantity, e.g. the Mach number,

captures anisotropic behavior of the solution; the existence of such a scalar field is not guar-

anteed, and, even if it existed, the a priori knowledge of the solution behavior would be

required to identify the variable. Second, in the context of output-based adaptation, it does

not account for the anisotropic behavior of the adjoint solution, which is just as important

as primal solution in controlling the output error as shown in Eq. (1.1). Third, by using

the p+ 1 derivative, it assumes that the flow feature is resolved and the approximation is in

the asymptotic range; this is often not the case in the early stage of adaptation and results

in a lack of robustness particularly for higher-order discretizations.
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Anisotropy Adaptation using a Hessian-Based Error Model

Another approach to performing anisotropic adaptation is to incorporate the solution Hes-

sian information into the DWR error representation. Formaggia et al. derived a local error

estimate that explicitly includes the Hessian of the dual solution for linear finite element

discretization of the advection-diffusion equation [62] and the Stokes equations [61]. The

element shape is then chosen to minimize the local error expression. Loseille et al. intro-

duced a variant of this approach for the second-order finite volume discretization, in which

the primal Hessian is weighted by the dual solution [96].

While the approaches devised by Formaggia et al. and Loseille et al. require recon-

struction of solution Hessians, their adaptation principle is fundamentally different from

the Hessian-based anisotropy detection discussed previously. The approaches considered

by Formaggia et al. and Loseille et al. first construct an error model that captures the

anisotropic behavior of the error, and then choose the anisotropic configuration that mini-

mizes the error estimated by the model. Thus, anisotropy realized is not a result of fitting to

a scalar quantity chosen a priori, but rather as a consequence of minimizing the anisotropic

error estimate. The approaches cast the anisotropic adaptation problem as an error min-

imization problem in which the sizing and anisotropy decisions are treated in a unified

manner.

Loseille and Alauzet in particular formalize this error minimization problem by intro-

ducing the concept of continuous mesh [97, 98]. The duality between a discrete mesh and

continuous Riemannian metric field is established by studying the approximation properties

of piecewise linear polynomials on a mesh conforming to the metric field. By incorporating

the continuous representation of the approximation error to the Hessian-based anisotropic

error model, Loseille et al. cast the output-error minimization problem as an optimization

problem of the continuous metric field [96]. In Chapter 3, we will adopt this interpretation

of anisotropic simplex adaptation as a continuous optimization problem.

In order to construct their error models, both Loseille et al. and Formaggia et al. take

advantage of relatively simple output error expressions for second-order discretizations. The

error expression becomes increasingly complex for higher-order discretizations as we will see

in Section 2.3.4, rendering a direct extension of their approach difficult. The sensitivity of

higher-order discretizations to irregular features can also compromise the robustness of the

error model based on higher derivatives. The application of their approaches to arbitrary-
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Figure 1-4: The original, anisotropic split, and isotropic split configurations for
quadrilateral-based hierarchical subdivision strategy.

order discretizations is yet to be demonstrated.

Anisotropic Competitive Subdivision by Local Sampling

The anisotropic competitive subdivision strategy directly controls the output error by con-

sidering anisotropic discrete refinement options on quadrilateral elements. This strategy

works with the quadrilateral-based hierarchical subdivision meshing strategy. The algo-

rithm starts by first marking a fraction of elements with largest error estimates (typically

the top 10-20%). Then, for each element marked for refinement, the algorithm performs

element-wise local solves on configurations obtained by locally splitting the edges; exam-

ples of such configurations are shown in Figure 1-4. A local solve of the governing PDE

is performed by freezing the states on neighbor elements. Once the local solutions are ob-

tained, the local error estimate is recomputed and recorded. The algorithm then chooses

the local configuration that is most competitive in terms of the ratio of the error and the

number of degrees of freedom. This strategy was first proposed by Houston and his col-

laborators [64, 65, 74]. A variant of strategy has been successfully applied to aerodynamic

flows by Ceze and Fidkowski [40].

The anisotropic competitive subdivision strategy eliminates many of the shortcomings

of Hessian-based anisotropy detection. The strategy solves a discrete output-error mini-

mization problem in a greedy manner by directly monitoring the behavior of the local error

estimate. The error estimate naturally incorporates the information about both the primal

and adjoint solutions as well as behavior of all components of state for a system of equations.

Furthermore, the strategy does not assume the solution is in the asymptotic range, making

more robust decisions for higher-order discretizations. Our adaptation strategy developed

in Chapter 3 inherits many of the advantages of this local sampling based strategy.

One major drawback of the competitive subdivision strategy is that it works only with
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quadrilateral-based meshes, in which the tensor-product type elements allows natural di-

rectional sampling of the local error behavior. Thus, the strategy inherits the limitations

of the quadrilateral-based hierarchical subdivision meshing. For example, only the features

that align with the initial mesh topology can be effectively detected and refined, and the

degree of coarsening is also limited by the initial mesh. Park [114] and Sun [139] attempted

a similar competitive refinement strategy on simplex meshes by using edge split operations.

However, the method performed poorly due to the negative feedback of irregular meshes

generated in anisotropic hierarchical subdivision of simplex elements and noise in error es-

timates on such irregular meshes.

Anisotropic Error Estimate

Yet another approach to anisotropy detection is to split the DWR error estimate into contri-

butions from different coordinate directions. Richter constructed a directional error estimate

by performing p+1 solution recovery in each direction of tensor-product type element [125].

The configurations considered for recovery are the same as the edge split configurations in

Figure 1-4. A variant of the strategy was successfully adopted to a DG discretization by

Leicht and Hartmann [93] and applied to compressible Navier-Stokes flows. These strategies

are computationally more efficient than the competitive subdivision strategy as it does not

require explicit local solves. The approach captures behavior of both the primal and adjoint

solutions. However, similar to the competitive subdivision strategy, the anisotropic error

estimate only works with quadrilateral-based meshes.

1.4 Thesis Overview

This thesis presents work toward development of a versatile, adaptive PDE solver. In par-

ticular, the thesis presents a versatile, anisotropic adaptation algorithm, Mesh Optimization

via Error Sampling and Synthesis (MOESS), which works particularly well with the DG

discretization and the DWR error estimate. The specific contributions of the thesis are as

follows.

• Development of an anisotropic adaptation algorithm that works with any localiz-

able error estimate, handles any discretization order, permits arbitrarily oriented

anisotropic simplex elements, robustly treats irregular features, and inherits the ver-
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satility of the underlying discretization and error estimate.

• Presentation of a general parametrized anisotropic error model based on an affine-

invariant interpolation of metric tensors and a scale-invariant interpolation of errors,

and incorporation of a regression-based procedure to identify the parameter through

local anisotropic metric-error sampling.

• Analysis of the optimal L2-error anisotropic element size distribution for problems

with canonical singularities and singular perturbations, and verification of MOESS to

produce optimal meshes.

• Quantification of the importance of mesh adaptation for high-order discretizations of

aerodynamic flows, and demonstration of the robustness and effectiveness of MOESS

for this class of highly nonlinear systems exhibiting a wide range of scales.

• Realization of fully-unstructured space-time adaptivity using MOESS, and demon-

stration of the competitiveness of the formulation for linear and nonlinear wave prop-

agation problems through the use of space-time anisotropy.

• Realization of spatial error control for Galerkin- (polynomial choas) and collocation-

based (reduced basis) parameter-space discretizations of parameterized PDEs using

MOESS, and generation of universal optimal meshes suitable for a wide range of

parameters.

This thesis is organized as follows. Chapter 2 reviews the discontinuous Galerkin discretiza-

tion and the a posteriori error estimation method used in this work. The chapter further

presents a priori error analysis of L2 projection error and output error for an arbitrary-

order DG discretization of a system of conservation laws. Chapter 3 develops the MOESS

anisotropic adaptation strategy. The chapter details the exploitation of the continuous mesh

framework in formulating a mesh optimization problem and the incorporation of a novel

tensor interpolation framework in describing the anisotropic error behavior. Then, Chap-

ter 4 develops an optimal anisotropic element size distribution for approximating canonical

singularities and singular perturbations frequently encountered in PDE solutions and ver-

ifies the MOESS’s ability to generate optimal meshes. Chapter 5 studies the behavior of

the anisotropic adaptation algorithm for a scalar advection-diffusion equation with manu-

factured primal and dual solutions. Comparison of MOESS with adaptive algorithms based
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on isotropic elements and primal-based anisotropy detection highlights the effectiveness of

anisotropic refinement and the consequence of neglecting the dual-solution behavior in de-

termining the anisotropy. Chapter 6 first highlights the importance of mesh adaptation

for high-order discretizations of aerodynamic flows. Then, the improved efficiency and ro-

bustness of MOESS compared to an adaptation strategy based on primal-based anisotropy

detection is demonstrated through a number of complex aerodynamic flows governed by the

Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations. Taking advantage of

its versatility, Chapter 7 applies MOESS to a fully-unstructured space-time formulation of

the wave and Euler equations, realizing fully-unstructured anisotropic space-time adaptivity

for wave propagation problems. Chapter 8 applies MOESS to PDEs describing the system

behavior over a wide range of parameters, initiating work towards reliable, fully-automated

parameter-space exploration. Finally, Chapter 9 summarizes the conclusions of this work

and suggests areas of future work.
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Chapter 2

Discretization, A Posteriori

Output Error Estimation, and

Continuous Mesh Framework

This chapter reviews the discretization and the error estimation method used in this work.

As discussed in Chapter 1, we employ a combination of the discontinuous Galerkin (DG)

finite element method and the dual-weighted residual (DWR) error estimation method. The

combination provides the versatility necessary for a fully-automated PDE solver of general

conservation laws. We also present key results from the a priori output error analysis.

2.1 Discretization

Let Ω ⊂ Rd be the d-dimensional spatial domain and I ⊂ R be the time interval of interest.

A general system of conservation laws is of the form

∂u

∂t
+∇ · Fconv(u, x, t)−∇ · Fdiff(u,∇u, x, t) = S(u,∇u, x, t) ∀x ∈ Ω, t ∈ I, (2.1)

with the boundary conditions

B(u, n̂ · Fdiff(u,∇u, x, t), x, t; BC) = 0, ∀x ∈ ∂Ω, t ∈ I,
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where u(x, t) ∈ Rm is the state variable with m components, Fconv is the convective flux,

Fdiff is the diffusive flux, S is the source, and B imposes the boundary condition. The true

output is given by

J = J (u),

where J is the output functional of interest, which can often be expressed as an integral

quantity on surfaces or in the domain.

An approximation to the desired output is obtained by discretizing the conservation

law and evaluating the discrete output functional. In particular, we seek a solution in a

finite-dimensional approximation space Vh,p defined on a triangulation Th of the domain Ω

into non-overlapping elements κ of characteristic size h, i.e.

Vh,p = {vh,p ∈ [L2(Ω)]m : vh,p ◦ f qκ ∈ [Pp(κref)]
m,∀κ ∈ Th},

where Pp denotes the space of complete polynomials of order p, and f qκ is the q-th degree

polynomial parametric mapping from the reference element κref to the physical element κ.

The DG finite element method yields the weak form: Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p,

where Rh,p : Vh,p × Vh,p → R is the semilinear form corresponding to the conservation law.

Throughout this work, we use Roe’s approximate Riemann solver [126] for the convective

numerical flux, the second discretization of Bassi and Rebay (BR2) [25] for the viscous flux,

and a mixed form of Bassi et al. [22] for the source function with ∇u dependence, which is

asymptotically dual-consistent [110].

Upon obtaining the DG solution uh,p ∈ Vh,p, the desired output is estimated by

Jh,p = Jh,p(uh,p),

where Jh,p : Vh,p → R is the discrete functional that maintains dual consistency [68, 100,

110]. The details of the discretization, the discrete solution strategy, and the output evalu-

ation procedure are provided in Appendix A.
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2.2 Dual-Weighted Residual Method

2.2.1 Error Estimation

The objective of the functional error estimation is to approximate the true error in the

output,

Etrue ≡ J − Jh,p = J (u)− Jh,p(uh,p).

This work relies on the dual-weighted residual (DWR) method of Becker and Rannacher [26,

27] to estimate the output error. In DWR, the output error is expressed as

Etrue = J (u)− Jh,p(uh,p) = −Rh,p(uh,p, ψ), (2.2)

where ψ ∈W ≡ V + Vh,p is the adjoint satisfying

R′h,p[u, uh,p](w,ψ) = J ′h,p[u, uh,p](w), ∀w ∈W. (2.3)

Here, R′h,p[u, uh,p] : W ×W → R and J ′h,p[u, uh,p] : W → R are the mean-value linearized

semilinear form and output functional, respectively, given by

R′h,p[u, uh,p](w, v) =

∫ 1

0
R′h,p[(1− θ)u+ θuh,p](w, v)dθ

J ′h,p[u, uh,p](w) =

∫ 1

0
J ′h,p[(1− θ)u+ θuh,p](w)dθ,

where R′h,p[z](·, ·) and J ′h,p[z](·) denote the Fréchet derivative of Rh,p(·, ·) and Jh,p(·) with

respect to the first argument evaluated about z. Note that, by Galerkin orthogonality,

Eq. (2.2) may be expressed as

Etrue = −Rh,p(uh,p, ψ − vh,p), ∀vh,p ∈ Vh,p,

or, by the definition of mean-value linearization,

Etrue = −R′h,p[u, uh,p](u− uh,p, ψ − vh,p), ∀vh,p ∈ Vh,p.

43



The expression signifies that the true error is a function of not only the error in the primal

solution, u− uh,p, but also the error of approximating the adjoint ψ in Vh,p. Thus, effective

control of the output error requires an approximation space Vh,p that is suited for controlling

both the primal and adjoint errors.

Note that the true adjoint, ψ ∈ W is not computable in general, as W is infinite

dimensional and Eq. (2.3) requires the true primal solution u. For the purpose of error

estimation, the true adjoint is replaced by an approximate adjoint ψh,p̂ ∈ Vh,p̂ that satisfies

R′h,p̂[uh,p](vh,p̂, ψh,p̂) = J ′h,p̂[uh,p](vh,p̂), ∀vh,p̂ ∈ Vh,p̂, (2.4)

where Vh,p̂ ⊃ Vh,p with p̂ = p + 1 is the enriched space. The DWR error estimate of the

output is given by substituting this approximate adjoint to Eq. (2.2), i.e.

Etrue ≈ −Rh,p(uh,p, ψh,p̂).

The quality of the error estimate depends on the linearization error arising from replac-

ing the mean-value linearized functionals with uh,p-linearized functionals and the error of

approximating the adjoint in Vh,p̂ ⊂ W . The linearization and the adjoint-approximation

errors may be significant, especially on coarse meshes; however, in practice, the error esti-

mate is sufficiently accurate for the purpose of mesh adaptation. A detailed analysis of the

linearization error is provided in [27].

2.2.2 Error Localization

To perform mesh adaptation, the error estimate must be localized to identify regions with

large and small contributions to the error. To this end, the error estimate is localized

through element-wise restriction of the adjoint weight. The local error estimate, ηκ, associ-

ated with element κ is defined by

ηκ ≡ |Rh,p(uh,p, ψh,p̂|κ)|. (2.5)
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The agglomeration of the locally positive error estimate results in a conservative error

estimate,

E ≡
∑
κ∈Th

ηκ.

Note that in Eq. (2.5), the residual is computed about p instead of p̂ such that the resulting

estimate is both globally and locally convergent, as presented in Appendix E.

Due to the element-wise Galerkin orthogonality of the DG discretization, the localized

error estimate can be expressed as

ηκ = inf
vh,p∈Vh,p

|Rh,p(uh,p, (ψh,p̂ − vh,p)|κ)|

= inf
vh,p∈Vh,p

|R′h,p[u, uh,p](u− uh,p, (ψh,p̂ − vh,p)|κ)|,

Again, the expression signifies that the localized error is a weighted product of the local

primal error and the local adjoint error, and effective control of the output error requires

Vh,p that accounts for the behaviors of both the primal and adjoint solutions.

2.3 Continuous Mesh Framework

The success of metric-based adaptation algorithms relies on the fact that the metric field

controls the ability of a metric-conforming tessellation to approximate functions. In the

first two subsections (Section 2.3.1 and 2.3.2), we provide a definition of metric-conforming

meshes, introducing a geometric relationship between a Riemannian metric field and the

corresponding anisotropic mesh. The following two subsections (Section 2.3.3 and 2.3.4)

establish that both approximation and output errors incurred on a metric-conforming mesh

can be approximated in terms of the Riemannian metric field. The result justifies a con-

tinuous relaxation of the mesh optimization problem (which is inherently discrete), the

approach we will pursue in designing our adaptation algorithm in Chapter 3. Using the

term coined by Loseille and Alauzet [97, 98], we will refer to this framework that enables

continuous interpretation of a discrete mesh as the continuous mesh framework.
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2.3.1 Metric-Conforming Meshes

Let us review the concept of Riemannian metric field used to encode an anisotropic descrip-

tion of element sizes in this work. Notation used in here — and throughout the rest of the

chapter — closely follows that of Loseille and Alauzet [97, 98].

Definition 2.1. A Riemannian metric field {M(x)}x∈Ω is a smoothly varying field of sym-

metric positive definite (SPD) matrices on Ω ⊂ Rd. The length of a segment
−→
ab from point

a ∈ Ω to b ∈ Ω under the metric is given by

`M(
−→
ab) =

∫ 1

0

√−→
abTM(a+

−→
abs)
−→
ab ds.

Definition 2.2 (metric conforming triangulation). A metric-conforming triangulation is a

triangulation such that all edges are close to unit length under the metric Riemannian field,

{M(x)}x∈Ω. Specifically, the mesh satisfies the edge-length condition

1√
2
≤ `M(e) ≤

√
2, ∀e ∈ Edges(Th),

where `M(·) is the length measure defined in Definition 2.1, and the element-quality condi-

tion,

QM(κ) =
(
∫
κ

√
det(M(x))dx)2/d∑
e∈Edges(κ) `

2
M(e)

∈ [α, 1] with α > 0,

where QM is the element quality measure.

For a given {M(x)}x∈Ω, the metric-conforming triangulation is not unique; however,

the edge-length condition and the element-quality condition ensure that a family of metric-

conforming triangulations have similar geometric configurations. This work uses Bidi-

mensional Anisotropic Mesh Generator (BAMG) [73] developed by INRIA to generate

all two-dimensional metric-conforming meshes and Edge Primitive Insertion and Collapse

(EPIC) [104] developed by The Boeing Company to generate three-dimensional meshes. The

initial, non-metric-conforming meshes are generated using Triangle developed by Shewchuk [132]

in two dimensions and TetGen developed by Si [134] in three dimensions. For problems with

curved geometries, the linear mesh is globally curved using linear elasticity to capture the

higher-order geometry information [110, 122].

46



Figure 2-1: Illustration of the transformation of the reference element κ̂ into a physical
element κ. The metric tensor associated with each element is shown in dashed lines.

2.3.2 Mesh-Conforming Metric Fields

Given a tessellation, it is also possible to find a metric field that conforms to the mesh. To

perform the task, we first define the element-implied metric tensor as follows.

Definition 2.3 (element-implied metric). The element implied metric of a simplex element

κ, Mκ, is a unique metric under which all edges of the elements are unit length, i.e. Mκ ∈

Sym+
d such that

√
eTMκe = 1, ∀e ∈ Edges(κ), (2.6)

where Edges(κ) is the set of d(d+ 1)/2 edges of the simplex.

The uniqueness follows from the fact that a d-dimensional simplex has d(d+ 1)/2 edges,

which reduces satisfying Eq. (2.6) to solving a (d(d + 1)/2)-by-(d(d + 1)/2) linear system

for the coefficients of Mκ. The linear system is non-singular as long as the simplex is

non-degenerate. The relationship between an element and the associated metric tensor is

illustrated in Figure 2-1. Assuming the element κ is part of a metric-conforming triangu-

lation, the implied metric associated with κ is representative of the metric field over the

region covered by κ.

A collection of element-implied metrics, {Mκ}κ∈Th , encodes the anisotropic element

size information as a discontinuous field. Let us present our method to reconstruct a

continuous metric field {M(x)}x∈Ω, represented by the metrics associated with the vertices

of the triangulation, {Mν}ν∈V , where V is the set of vertices of the triangulation. To

reconstruct vertex-based metrics {Mν}ν∈V from elemental metrics {Mκ}κ∈Th , we take the

47



affine-invariant mean of the elemental metrics of the elements surrounding the vertex, i.e.

Mν = meanaffinv({Mκ}κ∈ω(ν)).

Here ω(ν) is the set of elements surrounding the vertex ν. The mean of the set of metrics

is defined as the minimizer of the sum of the squared distance in the affine invariant sense,

as defined by Pennec et al. [117], i.e.

meanaffinv({Mκ}κ∈ω(ν)) = arg min
M

∑
κ∈ω(ν)

‖ log
(
M−1/2

κ MM−1/2
κ

)
‖2F .

The mean value is computed iteratively using the intrinsic gradient descent algorithm de-

scribed in [117]. Then, we define a continuous metric field over element κ as a weighted

mean of vertex matrices,

M(x) = arg min
M

∑
ν∈V(κ)

wν(x)‖ log
(
M−1/2

ν MM−1/2
ν

)
‖2F , x ∈ κ,

where wν(x) is the barycentric coordinate corresponding to the vertex ν. Note that this

element-wise continuous reconstruction results in a globally continuous metric field. Using

these steps, we can generate either elemental (discontinuous) or vertex-based (continuous)

representation of the metric field associated with a triangulation. The combination of a

metric-conforming mesh generator, such as those described in Section 2.3.1, and the mesh-

to-metric recovery algorithm described here completes the geometric duality between an

anisotropic mesh and a Riemannian metric field.

2.3.3 Metric-based Representation of Polynomial Approximation Errors

Let us now introduce a key result that shows that the function approximation error incurred

on a metric-conforming mesh is a function of the Riemannian metric field from which the

mesh is generated. The result relies on the geometric duality of the discrete mesh and the

Riemannian metric field and anisotropic polynomial approximation theory. Several variants

of anisotropic polynomial approximation theory for piecewise-linear polynomials have been

developed by, for example, Formaggia et al. [62], Shewchuk [133], Cao [35], and Loseille and

Alauzet [97, 98]. An extension to higher-degree polynomials have been proposed by Houston
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et al. [74], Pagnutti and Ollivier-Gooch [112], and Cao [36–38]. The formulation used in

this work closely follows that of Houston et al ; the details are omitted here for brevity but

are provided in Appendix D.1. The main result is stated in the following theorem.

Proposition 2.4. Let Th be a tessellation conforming to a metric field {M(x)}x∈Ω. The

Hn error that results from the L2 projection of a function v ∈ Hkv(Ω) to the piecewise

degree-p polynomial space defined on Th, Vh,p, is approximated by,

|v −Πh,pv|2Hn(Ω) . Cp,d

∫
Ω

(λmax(M(x)))−n/2EsM(M(x); v(x))dx, n = 0, 1,

where s = min(p + 1, kv), Cp,d is a constant that only depends on the polynomial degree p

and the dimension d, EsM is the metric-based error kernel given by

EsM(M; v) =
d∑

i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
M−1/2

j1i1
· · ·M−1/2

jsis

)2

,

and M−1/2 is the metric square root of M. Summation on the repeated indices j1, . . . , js is

implied.

The proposition states that the continuous metric field {M(x)}x∈Ω provides a convenient

means of encoding the ability of the triangulation Th to approximate a function. In fact, the

proposition is an extension of the continuous mesh interpolation error model established by

Loseille and Alauzet [97, 98] for linear polynomials to arbitrary-degree polynomials. The

duality not only justifies the metric-based continuous optimization framework for mesh

adaptation, but also enables development of analytical expressions for optimal anisotropic

element size distributions in Chapter 4.

2.3.4 A Priori Metric-based Representation of the Output Error

Let us now analyze the output error for a system of equations. For simplicity, we consider

linear equations with constant coefficients and Dirichlet boundary conditions, i.e.

∇ · (Au)−∇ · (K∇u) + Cu = 0, in Ω

u = g, on ∂Ω, (2.7)
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where Ai ∈ Rm×m, i = 1, . . . , d, is the flux Jacobian, Kij ∈ Rm×m, i, j = 1, . . . , d, constitute

the viscosity tensor, and C ∈ Rm×m is the reaction matrix. Furthermore, we assume that

the DG solution is optimal in H1 and L2 volume and face errors, as defined precisely by

Assumption D.7. Then, the output error incurred by a metric-conforming triangulation

can be expressed in terms of the governing Riemannian metric field as follows. (Details are

provided in Appendix D.2.)

Proposition 2.5. Let Th be a tessellation conforming to a metric field {M(x)}x∈Ω. Fur-

thermore, let the primal and adjoint solutions to the advection-diffusion-reaction system

Eq. (2.7) be u ∈ Hku(Ω) and ψ ∈ Hkψ(Ω), respectively. Assuming the DG approximation

uh,p ∈ Vh,p satisfies the optimality condition, Assumption D.7, the output error using the

degree-p DG discretization on Th is approximated by

E . C
∑
κ∈Th

[
m∑
k=1

d∑
i=1

|λAik |
hmin,κ

(∫
κ

EsuM(M(x); (rAik )Tu(x))dx

)1/2(∫
κ

E
sψ
M(M(x); (lAik )Tψ(x))dx

)1/2

+
∑

f∈F (κ)

m∑
k=1

|λA
−
n̂

k |
hmin,κ

(∫
κ

EsuM(M(x); (r
An̂f
k )Tu(x))dx

)1/2(∫
κ

E
sψ
M(M(x); (l

An̂f
k )Tψ(x))dx

)1/2

+

m∑
k=1

d∑
i,j=1

|λKijk |
h2

min,κ

(∫
κ

EsuM(M(x); (r
Kij
k )Tu(x))dx

)1/2(∫
κ

E
sψ
M(M(x); (l

Kij
k )Tψ(x))dx

)1/2

+

m∑
k=1

|λCk |
(∫

κ

EsuM(M(x); (rCk )Tu(x))dx

)1/2(∫
κ

E
sψ
M(M(x); (lCk)Tψ(x))dx

)1/2
]

where su = min(p + 1, ku), sψ = min(p + 1, kψ), hmin,κ = (supx∈κ λmax(M(x)))−1/2) is the

minimum implied element length, and C depends only on the dimension d and the polynomial

degree p. For an arbitrary matrix B, λBk , rBk , and lBk denote the k-th eigenvalue, right

eigenvector, and left eigenvector, respectively, i.e. B =
∑m

k=1 λ
B
k r

B
k (lBk )T . The matrices Ai,

Kij, and C are those specifying the advection-diffusion-reaction system Eq. (2.7).

The proposition shows that, assuming the discretization is stable, the error associated

with the DG approximation of an output is a function of the metric field, {M(x)}x∈Ω. The

behavior of the error bound is characterized by the higher derivatives of all components of

the primal and dual solutions. In particular, the error is dictated by the p + 1 derivative

of the solution in the smooth regions, whereas the lower-order derivatives comes into play

in low-regularity regions. The manner in which these derivatives enter the output error

is dependent on the modal decompositions of the flux Jacobian, viscosity tensor, and the

source coefficient matrix. Thus, the relationship between the metric field, {M(x)}x∈Ω, and
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the a priori output error, E , is complex and depends on many variables that are hard to

approximate or not available, e.g. solution regularity and higher derivatives. The design of

our adaptation scheme presented in Chapter 3 is motivated by the need to overcome these

complexities.

51



52



Chapter 3

Mesh Optimization via Error

Sampling and Synthesis

This chapter presents the anisotropic adaptation algorithm, Mesh Optimization via Error

Sampling and Synthesis (MOESS).

3.1 Output Error Minimization Problem

3.1.1 Problem Definition and Continuous Relaxation

In Section 2.2, we introduced the means of expressing discretization errors as a function of

the approximation space, Vh,p. The objective of our adaptation is to find the space V ∗h,p

that minimizes the error for a given dimension of Vh,p, i.e.

V ∗h,p = arg inf
Vh,p

E(Vh,p) s.t. dim(Vh,p) ≤ N,

where N is the maximum permissible dimension of Vh,p. In particular, if Vh,p consists of

elements with a constant polynomial degree p, then Vh,p is described by the triangulation

Th and the scalar p, i.e. Vh,p = Vh,p(Th, p). Thus, for a fixed p ∈ R+, the optimization

problem simplifies to that of finding the optimal triangulation T ∗h such that

T ∗h = arg inf
Th

E(Vh,p(Th, p)) s.t. dim(Vh,p(Th, p)) ≤ N. (3.1)
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This is a discrete-continuous optimization problem, as the triangulation Th is defined by the

node locations and the connectivity of the nodes. In general, the problem is intractable.

In order to find an approximate solution to the problem, we consider a continuous re-

laxation of the discrete problem, following the approach pursued by Loseille et al. [96, 98].

In particular, we appeal to the fact that the Riemannian metric field M = {M(x)}x∈Ω

controls the discretization error associated with a metric-conforming triangulation Th ac-

cording to Propositions 2.4 and 2.5. Thus, we can cast a continuous relaxation of the

discrete problem, Eq. (3.1), as

M∗ = arg inf
M

E(Vh,p(M, p)) s.t. dim(Vh,p(M, p)) ≤ N.

For brevity, we write the optimization problem as

M∗ = arg inf
M

E(M) s.t. C(M) ≤ N, (3.2)

where E and C are the error and cost functionals that map the metric tensor field to the error

and cost, respectively. The expression assumes that the polynomial degree, p, is constant

and fixed. The extension of the continuous optimization framework to hp-adaptation would

require introduction of the solution order field {p(x)}x∈Ω; the extension is not considered

in this work.

3.1.2 Error and Cost Functionals

In order to solve the optimization problem Eq. (3.2), we need a means of approximating

the behavior of the error and cost functionals. If we use the number of degrees of freedom

as the measure of cost, then the cost functional takes the form

C(M) =

∫
Ω
c(M(x), x)dx,

where c(·, ·) : Sym+
d × Rd → R+ is the local cost function. In the view of the continuous

mesh framework, the local cost function for the discontinuous piecewise polynomial space

is given by

c(M(x), x) = cp
√

det(M(x)), (3.3)
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where cp is the degrees of freedom associated with a reference element normalized by the

size of the reference element, κ̂. In particular, the coefficients associated with triangular

and tetrahedral elements are

ctri
p =

2√
3

(p+ 1)(p+ 2) and ctet
p =

√
2(p+ 1)(p+ 2)(p+ 3),

respectively. These choices allow us to recover the correct elemental cost, ρκ, when the local

cost function is integrated over an element, i.e.

ρκ =

∫
κ
c(M(x), x)dx ≈

∫
κ
cp
√

det(Mκ)dx = cp|κ̂| = dof(κ̂).

To estimate the behavior of the error functional, we make an assumption that the

functional results from a sum of the local contributions, i.e.

E(M) =

∫
Ω
e(M(x), x)dx, (3.4)

where e(·, ·) : Sym+
d × Rd → R+ is the local error function that maps the configuration

described by M(x) to the local contribution to the output error. This locality assumption

is formally only applicable to errors that only depend on local properties, e.g. L2 projection

errors. However, we have found that the algorithm developed based on the assumption

works well in practice for output-based error estimates for DG discretizations. Under the

locality assumption, we can write the elemental error contribution as

ηκ =

∫
κ
e(M(x), x)dx ≈

∫
κ
e(Mκ, x)dx ⇒ ηκ = ηκ(Mκ).

That is, the elemental error — or the error associated with the region covered by κ —

is a function of the metric Mκ that encodes the approximation properties of the region

covered by κ. The expression is consistent with the continuous error expressions for L2

projection and output errors based on a priori error analysis in Proposition 2.4 and 2.5,

respectively. Thus, the form of our continuous error model is compatible with the expected

local error behavior and is capable of representing the error behavior. Our primary task is

to approximate the dependency of ηκ on Mκ, to model the error functional, and then to

minimize the functional.
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3.1.3 Design Criteria and Approach

Our main goal is to design a versatile mesh optimization algorithm that works with a wide

range of discretizations and error estimates. Let us use the results of the a priori error

analysis for L2 projection error and the output error using the DG discretization presented

in Section 2.3.3 and 2.3.4 to motivate our approach to designing the algorithm.

Let us first consider the case of L2 projection error. Proposition 2.4 states the error

is dictated by s-th derivative of the solution, where s is dependent on the degree of the

approximating polynomial and the regularity of the solution. Thus, direct use of the a priori

error analysis result, Proposition 2.4, as the error kernel of Eq. (3.4) requires a means of

estimating the regularity of the solution and evaluating the appropriate higher derivatives of

the solution. In the context of L2 approximation error control, the true function is assumed

to be accessible. Thus, these quantities could be estimated directly and the a priori error

expression could serve as the error kernel.

In the case of output error, construction of the error model by the direct evaluation

of the a priori error bound in Proposition 2.5 is more complicated, requiring a means of:

estimating the regularity of all components of the primal and dual solutions; approximat-

ing the appropriate higher derivatives of all components of primal and dual solutions; and

estimating the mean-value linearized flux Jacobian, viscosity tensor, and source matrix.

While the first two tasks may appear the same as that for the L2 approximation error

control, the tasks are complicated by the fact that the true primal and dual solutions are

unknown. Some of the irregular features may be induced by nonlinearity, which makes the

a priori estimation of the regularity impossible. While there are procedures for estimating

the regularity (e.g. [75]) and reconstructing the higher derivatives (e.g. [58]), these quan-

tities are hard to approximate and results may be unreliable, especially for higher-order

discretizations. Thus, the direct evaluation and minimization of the a priori error bound

— as done for second-order discretizations in [61] and [96] — is likely not a viable strategy

for constructing the error kernel of Eq. (3.4) for a high-order discretization of a system of

equations with irregular features.

A key observation is that, even for a high-order discretization whose output error de-

pends on a large amount of data, the degrees of freedom that we can control — the d(d+1)/2-

dimensional metric tensor — is the same as a lower-order discretization. Noting that the
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degrees of freedom that we can control is significantly smaller than the amount of data

governing the error behavior, our approach to capturing the anisotropic error behavior is

not to estimate the complicated underlying dependencies, but rather to characterize the

error behavior by directly monitoring the change in the error under the change in the met-

ric tensor. We will accomplish this by solving local problems and re-evaluating the error

estimates, adopting the idea developed for quadrilateral elements in [74] to simplices.

Using the direct error sampling strategy in the context of the continuous optimization

framework described in Section 3.1.1 requires a means of constructing a continuous error-to-

metric map using the samples collected. This is accomplished by an error model that builds

on the tensor interpolation framework described in Section 3.2.1. Finally, optimization is

performed using the surrogate error model to iterate toward a mesh that minimizes the

error for a given degrees of freedom.

3.2 Optimization Algorithm: MOESS

3.2.1 Metric Manipulation Framework

Let us first introduce a framework for manipulating metric tensors (i.e. SPD matrices)

based on the work by Pennec et al. [117]. The most intuitive method of manipulating a

tensor may be to simply treat the tensor as an array of numbers and to directly modify the

entries of the matrix in the standard Euclidean sense, i.e.

M =M0 + δM,

where M0 is the original matrix, δM is the modification to the matrix, and M is the new

matrix. However, this method is unsuited for our purpose, as the update, δM, must be

chosen carefully to maintain the positive definiteness of the tensor. Furthermore, the entries

of the update δM are not strongly related to the change in the approximation property of

the space. The approximability of the space equipped with a metric M can be described

using the directional length, h(ê), defined by

h(ê;M) ≡ (êTMê)−1/2,
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where ê is a unit vector specifying the direction of interest. The change in the approxima-

bility in a given direction, or the ratio of the directional lengths between the configurations

induced by M and M0, is

h(e;M)

h(e;M0)
=

(
eTM1/2

0 e

eTM1/2e

)1/2

.

With the entry-wise direct manipulation of M0, the change in this ratio of directional

lengths is not strongly related to the magnitude of the entries of δM.

Instead, we consider the tensor manipulation framework that results from endowing the

tensor space with an affine-invariant Riemannian metric introduced by Pennec et al. [117].

The affine-invariant metric produces a manifold structure where matrices with zero and

infinite eigenvalues are infinite distance from any SPD matrix and a geodesic joining any

two tensors is unique. On the Riemannian manifold induced by the affine-invariant metric,

the exponential map of a tangent vector S ∈ Symd in the tangent space about M0 to the

manifold is given by

M(S) ≡M1/2
0 exp(S)M1/2

0 , (3.5)

where exp(·) is the matrix exponential. Conversely, the logarithmic map of a tensor M to

the tangent space about M0 is given by

S ≡ log(M−1/2
0 MM−1/2

0 ),

where log(·) is the matrix logarithm. The distance between two tensorsM andM0 is equal

to ‖ log(M−1/2
0 MM−1/2

0 )‖F , where ‖ · ‖F denotes the Frobenius norm of the matrix [117].

As the tangent vector S specifies the change in the metric field, S is referred to as the step

matrix from hereon. With this choice of S, the fractional change in the directional length

is bounded by

exp

(
−1

2
‖S‖F

)
≤ exp

(
−1

2
λmax(S)

)
≤ h(e;M(S))

h(e;M0)
≤ exp

(
−1

2
λmin(S)

)
≤ exp

(
1

2
‖S‖F

)
.

(3.6)

In other words, we can control the change in the directional approximability by controlling
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the magnitude of S. The proof of the relationship is provided in Appendix F.1.

By decomposing the step matrix, S, into the isotropic and the tracefree parts, we can

gain a better insight into the manipulation of the tensors in the tangent space. Let us

denote the decomposition by

S = sI + S̃,

where I is the identity matrix, and s = tr(S)/d such that tr(S̃) = 0. The exponential map

of the decomposed step tensor yields

M(sI + S̃) =M1/2
0 exp(sI + S̃)M1/2

0 = exp(s)M1/2
0 exp(S̃)M1/2

0 .

The expression shows that the isotropic part, sI, simply scales the resulting tensor while

preserving the shape. In contrary, the change induced by the tracefree part, S̃, modifies the

shape while preserving the volume, or the determinant, i.e.

det(M(S̃)) = det(M1/2
0 exp(S̃)M1/2

0 ) = det(M0) det(exp(S̃))

= det(M0) exp(tr(S̃)) = det(M0).

The decomposition yields a convenient means of manipulating the size and the shape sep-

arately, which we exploit in designing the optimization algorithm.

3.2.2 Local Error Sampling

The goal of the local error sampling step is to probe the behavior of the local elemental

error, ηκ, as a function of the local metric, Mκ. Here, we probe the functional dependency

by directly monitoring the behavior of the elemental error or a posteriori error estimate for

several different local configurations. Let us first describe the procedure in context of L2

error control.

We consider nconfig configurations obtained by locally splitting the edges, as shown in

Figures 3-1 and 3-2 for two- and three-dimensional cases, respectively. We will denote

the configuration obtained by the i-th local modification by κi. By convention, κ0 is the

original configuration. For configuration κi, we solve the L2 projection problem to obtain
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Figure 3-1: The original, edge split, and uniformly split configurations used to sample the
local error behavior in two dimensions. The metrics implied by the sampled configurations
are shown in dashed lines.

the associated solution uκih,p, i.e.

uκih,p = arg inf
v
κi
h,p∈Vh,p(κi)

‖u− vκih,p‖
2
L2(κ),

where Vh,p(κi) is the piecewise polynomial space associated with κi. Once we obtain the

solution, we can compute the error associated with the configuration, ηκi , i.e.

ηκi = ‖u− uκih,p‖
2
L2(κ).

We expect the error ηκi to be lower than that of the original configuration, ηκ0 , because

Vh,p(κi) ⊃ Vh,p(κ0), i = 1, . . . , nconfig. Different configurations yield different reduction in

the error, depending on how the approximability of the space is modified by the edge split

operation with respect to the function u. In particular, we encode the approximability of

configuration κi into the associated metric Mκi , the affine invariant mean of the elemental

metric tensors of the split configuration, i.e.

Mκi = meanaffinv({Mj
κi}

nsplit
elem
j=1 ),

where nsplit
elem = 2 for edge split, and nsplit

elem = 4 for uniform split in two dimensions. Repeating

the procedure for all nconfig configurations, we construct metric-error pairs

{Mκi , ηκi}
nconfig

i=1 .
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(a) original (b) edge split 1 (c) edge split 2 (d) edge split 3

(e) edge split 4 (f) edge split 5 (g) edge split 6

Figure 3-2: The original and edge split configurations used to sample the local error behavior
in three dimensions.
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Along with the isotropic behavior, these pairs capture the anisotropic behavior of the local

error because anisotropic edge split configurations are included in the nconfig configurations.

The construction of metric-error pairs for the DG discretization with the DWR error

estimate follows a similar procedure. First, we solve an element-wise local problem associ-

ated with κi. The local solution, uκih,p ∈ Vh,p(κi), is a function defined on the subdivided

mesh, κi, that satisfies

Rκih,p(u
κi
h,p, v

κi
h,p) = 0, ∀vκih,p ∈ Vh,p(κi),

where the local semilinear form, Rκih,p(·, ·), sets the boundary fluxes on κi assuming the

solution on the neighbor elements does not change. Here, we take advantage of the element-

wise discontinuous nature of the DG solution. Then, we recompute the localized DWR error

estimate corresponding to the subdivided mesh as

ηκi ≡ |Rh,p(u
κi
h,p, ψh,p̂|κ0)|,

where p̂ = p + 1 as used for the global error estimate in Section 2.2. Due to the local

Galerkin orthogonality of the DG scheme, we can rewrite the local error as

ηκi = |Rh,p(uκih,p, (ψh,p̂ − ψ
κi
h,p)|κ0)|.

The equality signifies that the local sampling procedure automatically accounts for the

improvement in the adjoint approximability resulting from the local refinement even though

the local adjoint problem is not explicitly solved.1 Thus, the local sampling technique based

on the a posteriori error estimate automatically captures the behaviors of both primal and

dual solutions. Finally, we compute the local metric associated with κi, Mκi , to construct

metric-error pairs {Mκi , ηκi}
nconfig

i=1 .

3.2.3 Local Error Model Synthesis

The goal of the model synthesis step is to construct a continuous metric-error function

ηκ(·) : Sym+
d → R+ from the pairs {Mκi , ηκi}

nconfig

i=1 collected in the sampling stage. Our

1We have also experimented with solving the p̂ = p+1 local dual problems as done in [65] for quadrilateral
elements, but numerically observed no quantifiable difference in the quality of the error estimate and hence
the adaptation efficiency.
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error model builds on Pennec’s affine invariant framework for tensor manipulation [117]

briefly reviewed in Section 3.2.1.

First, we recall that the logarithmic map of a metric about the original configuration

Mκ0 provides a convenient means of characterizing the change in the anisotropic approx-

imability of the region, as discussed in Section 3.2.1. Thus, we will measure the changes in

the configuration as

Sκi = log
(
M−1/2

κ0
MκiM−1/2

κ0

)
, i = 0, . . . , nconfig.

Note that, by construction, the original configuration,Mκ0 , maps to the origin, i.e. Sκ0 = 0.

Similarly, we measure the associated changes in the errors as

fκi = log (ηκi/ηκ0) , i = 0, . . . , nconfig.

Again, the original error, ηκ0 , maps to zero by construction.

In practice, we enforce that the logarithm of the relative error, fκi , to be strictly negative,

i.e.

fκi = − |log(ηκi/ηκ0)| , i = 0, . . . , nconfig.

This modification is not necessary if the error estimate monotonically decreased with the

increase in the local resolution by the edge splits, which is the case for the L2 error or

output error on sufficiently refined meshes. Unfortunately, on a very coarse mesh, the

DWR error estimate could increase with the local refinement; this is because the error is

underestimated on the original κ0 configuration. Thus, the increase in the error suggests

severe underresolution and inaccurate error estimate. In order to ensure that the error

minimization algorithm refines these elements, we make the modification, which results in

the error model that measures the “impact,” rather than the “decrease,” of the metric

configuration on the error.

Once we have the pairs {Sκi , fκi}
nconfig

i=1 that characterizes the change in the error as

a function of the change in the configuration, our objective is to construct a continuous
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function fκ(·) : Symd → R. We choose to construct a linear function in the entries of Sκ,

fκ(Sκ) = tr(RκSκ), (3.7)

where Rκ is a d×d matrix that governs the behavior of the linear function. Since Sκ ∈ Symd,

we take Rκ ∈ Symd without loss of generality. To find an appropriate Rκ, we perform the

least-squares regression of the known data, i.e.

Rκ = arg min
Q∈Symd

nconfig∑
i=1

(fκi − tr(QSκi))
2 .

Note that, if nconfig is equal to the degrees of freedom of the symmetric matrix Rκ (e.g. three

in two dimensions and six in three dimensions), the regression becomes an interpolation,

and the resulting linear function matches exactly at the data points. In two dimensions, we

use four configurations (i.e. three anisotropic edge splits and one uniform refinement), so

the linear function is not an interpolant.

Rearranging Eq. (3.7), the local error model is given as

ηκ(Sκ) = ηκ0 exp (tr (RκSκ)) .

We can gain a better insight into the error function behavior by decomposing the rate tensor

Rκ into the isotropic and the tracefree parts, i.e.

Rκ = rκI + R̃κ,

where rκ = tr(Rκ)/d such that tr(R̃κ) = 0. Combined with the decomposition of the step

tensor Sκ into Sκ = sκI + S̃κ, the local error model simplifies to

ηκ(sκI + S̃κ) = ηκ0 exp
(

tr
(

(rκI + R̃κ)(sκI + S̃κ)
))

= ηκ0 exp
(
rκsκd+ tr

(
R̃κS̃κ

))
= ηκ0 exp(rκsκd) exp

(
tr
(
R̃κS̃κ

))
,

where the cross terms vanish because tr(R̃κI) = 0 and tr(S̃κI) = 0. The decomposition

shows that rκ (i.e. the trace of Rκ) controls the change in the error under isotropic scaling,
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and R̃κ (i.e. the tracefree part of Rκ) controls the change in the error under shape modifi-

cation. Thus, the rate matrix Rκ can be thought of as a generalization of the convergence

rate for isotropic scaling to anisotropic manipulation. A precise relationship between our

anisotropic error model and the standard isotropic error model,

ηiso
κ (h) = ηκ0

(
h

h0

)riso
κ

,

where riso
κ is the isotropic convergence rate, is derived in Appendix F.2.

One of the important properties of the proposed error reconstruction scheme is that the

quality of the reconstruction is not affected by the current configuration, Mκ0 . In other

words, the quality of the model — and subsequent adaptation decisions — is preserved even

on high aspect ratio elements encountered in anisotropic adaptation. This property is proved

in Appendix F.3. The importance of this property is highlighted in a comparison of the

proposed error model and another model based on the log-Euclidean tensor interpolation [11]

— an error model that also includes the isotropic error model but whose reconstruction

quality is dependent on the current configuration — in Appendix G.

3.2.4 Local Cost Model

The element-wise cost function model, ρκ, is obtained by using the metric-manipulation

relation Eq. (3.5) and directly integrating the continuous local cost function over an element,

i.e.

ρκ(Sκ) =

∫
κ
c(M(x), x)dx =

∫
κ
cp
√

detM(x)dx =

∫
κ
cp

√
det(M1/2

κ0 exp(Sκ)M1/2
κ0 )dx

=

∫
κ
cp
√

det(Mκ0) det(exp(Sκ))dx =

∫
κ
cp
√

det(Mκ0)
√

exp(tr(Sκ))dx

= ρκ0 exp

(
1

2
tr(Sκ)

)
= ρκ0 exp

(
d

2
sκ

)
.

Note that the cost is only a function of sκ, which controls the scaling of the tensor, and not

S̃κ, which controls the shape.
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3.2.5 Optimization of the Surrogate Model

The final step of the adaptation algorithm is to optimize the Riemannian metric field

{M}x∈Ω, described by vertex values {Mν}ν∈V . The vertex-based metric can then be used

to generate a metric-conforming mesh using an anisotropic mesh generator. To manipu-

late the metric tensors at vertices, we describe the changes in the tangent space about the

original configuration, M0,ν , and use the exponential map, i.e.

Mν(Sν) =M1/2
0,ν exp (Sν)M1/2

0,ν . (3.8)

Here, Sν ∈ Symd describes the change in the metric at vertex ν. Thus, given {M0,ν}ν∈V ,

our objective is to choose the step matrices {Sν}ν∈V to reduce the error.

To solve the optimization problem, we first need to write the objective function E and

the cost constraint C in terms of the optimization variables {Sν}ν∈V . Substitution of the

local error model into the error functional yields

E(M) =

∫
Ω
e(x,M(x))dx ≈

∑
κ∈Th

ηκ(Sκ). (3.9)

In other words, we have approximated the behavior of the error functional in terms of the

changes in the configuration in each region covered by κ, Sκ. We assign the change in

the configuration over an element Sκ as the simple arithmetic mean of the changes at its

vertices. That is, denoting the vertices of κ by V(κ), we have

Sκ = {Sν}ν∈V(κ) ≡
1

|V(κ)|
∑

ν∈V(κ)

Sν .

Substitution of the expression into the error model Eq. (3.9) yields our objective function,

E ({Sν}ν∈V) =
∑
κ∈Th

ηκ

(
{Sν}ν∈V(κ)

)
.

Similarly, we can write our cost constraint in terms of our {Sν}ν∈V as

C ({Sν}ν∈V) =
∑
κ∈Th

ρκ

(
{Sν}ν∈V(κ)

)
.

We note that the error model is a good approximation of the error behavior only in
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vicinity of the original configuration, because the model is built from the local samples of

the configuration. Thus, we need to limit the change in the metric field in each step. This

is accomplished by limiting the entries of Sν , ν ∈ V, i.e.

|(Sν)ij | ≤ α, i, j = 1, . . . , d, ∀ν ∈ V,

where the constant α specifies the region over which the metric-error map is considered

reliable. For this work, we use α = 2 log(2), which limits the change in the approximability

to 2 in any direction — the range over which the sampling is performed and the error model

is assumed reliable.

By introducing the surrogate error and cost functions, we have turned our infinite di-

mensional optimization problem of the metric tensor field (with an unknown error function)

into a finite dimensional optimization of vertex step matrices. The surrogate optimization

problem for the optimal {Sν}ν∈V is

{S∗ν}ν∈V = arg inf
{Sν}ν∈V

E ({Sν}ν∈V) (3.10)

s.t. C ({Sν}ν∈V) = N (3.11)

|(Sν)ij | ≤ α, i, j = 1, . . . , d, ∀ν ∈ V. (3.12)

We emphasize that we do not intend to solve the problem exactly, because our error model,

based on local sampling and surrogate model, is only an approximation to the true problem.

Thus, investing a large computational effort into solving the surrogate optimization problem

would be counterproductive.

We will now present gradient expressions for the error and cost models, which we will

use to develop the first order optimality conditions and our optimization algorithm. The

gradient of the error and cost functions with respect to the vertex step matrix is

∂E
∂Sν

=
∑

κ∈ω(ν)

[
ηκ

(
{Sν}ν∈V(κ)

) 1

|V(κ)|
Rκ

]
∂C
∂Sν

=
∑

κ∈ω(ν)

[
ρκ

(
{Sν}ν∈V(κ)

) 1

2|V(κ)|
I

]
,

where ω(ν) is the set of elements that have ν as one of their vertices. Because the cost
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function is only dependent on the trace of Sν , it is more convenient to measure the sensitivity

with respect to the trace and the trace-free part separately. In particular, let us decompose

Sν as

Sν = sνI + S̃ν ,

where sν = tr(Sν)/d and S̃ν is the trace-free part of Sν . The sensitivities of the error with

respect to sν and S̃ν are

∂E
∂sν

=
∑

κ∈ω(ν)

[
ηκ

(
{Sν}ν∈V(κ)

) 1

|V(κ)|
tr(Rκ)

]
∂E
∂S̃ν

=
∑

κ∈ω(ν)

[
ηκ

(
{Sν}ν∈V(κ)

) 1

|V(κ)|
R̃κ

]
.

Similarly, the sensitivities of the cost are

∂C
∂sν

=
∑

κ∈ω(ν)

[
ρκ

(
{Sν}ν∈V(κ)

) d

2|V(κ)|

]
∂C
∂S̃ν

= 0.

Assuming that the current configuration is sufficiently close to the optimal configuration

such that the constraints Eq. (3.12) are inactive, the first order optimality condition for the

optimization problem Eq. (3.10)-(3.11) is given by

∂E
∂sν

+ λ
∂C
∂sν

= 0, (3.13)

∂E
∂S̃ν

= 0, ∀ν ∈ V, (3.14)

for some Lagrange multiplier λ ∈ R. The first condition, Eq. (3.13), is a global condition

for the size distribution. In particular, if we define the “local” Lagrange multiplier as

λν ≡
∂E
∂sν

/ ∂C
∂sν

,

then for optimality we must have λν = λ, ∀ν ∈ V. The global coupling is provided by the

Lagrange multiplier, λ. The “local” Lagrange multiplier, λν , is interpreted as the marginal

improvement in the local error for a given investment in the local cost, which is the degrees of
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freedom in the context of mesh adaptation. The global condition states that, at optimality,

the investment to any element results in the same marginal improvement in the error.

The second condition, Eq. (3.14), is a local condition that states that the error is sta-

tionary with respect to the shape change. Note that this second optimality condition is

satisfied if

R̃κ = 0, ∀κ ∈ Th. (3.15)

The shape change, induced by S̃ν , does not affect the cost. Thus, if R̃κ 6= 0, then we can

reduce the error by choosing a S̃ν such that tr
(
R̃κ{Sν}ν∈V(κ)

)
< 0 without affecting the

cost. Thus, the stationarity with respect to the shape change is required at optimality.

If the current configuration is far from the optimal configuration, then some of the

constraints Eq. (3.12) become active and the equalities in the two optimality conditions

Eq. (3.13) and (3.14) are replaced by inequalities on those constrained variables.

Let us now propose a gradient-based algorithm to solve the surrogate optimization

problem Eq. (3.10)-(3.12). We again emphasize that our objective is to only approximately

solve the problem. Our algorithm for solving the optimization problem is:

0. Evaluate/reconstruct ρκ0 , ηκ0 , and Rκ that define the local cost and error models

1. Set δs = α/nstep, which controls the incremental change in the metric such that the

maximum change over nstep steps is limited to α. This enforces Eq. (3.12) and prevents

large changes that would render our error model inaccurate. S0
ν = 0, ∀ν ∈ V. Set the

iteration index to n = 0.

2. Compute vertex derivatives, ∂E/∂sν , ∂E/∂S̃ν , and ∂C/∂sν and the local Lagrange

multiplier λν ≡ (∂E/∂sν)/(∂C/∂sν) about {Snν }ν∈V .

3. Work toward equidistributing the local Lagrange multiplier and satisfying the global

optimality condition, Eq. (3.13), by updating the isotropic part of Sν according to:

• Refine top 30%2 of the vertices ν with the largest λν by setting S
n+1/3
ν = Snν +δsI

• Coarsen top 30% of the vertices ν with the smallest λν by setting S
n+1/3
ν =

Snν − δsI
2Because the refinement and coarsening fractions are used inside the nstep steps of the optimization loop,

the algorithm is not very sensitive to the particular choice of the fractions. This is unlike “fixed-fraction”
adaptation strategies for which the choice is important for efficient mesh generation.
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This fixed-fraction type refinement results in a more robust mesh adaptation than a

simple steepest descent, which can behave poorly when the error is dominated by few

elements.

4. Work toward satisfying the local shape optimality condition, Eq. (3.14), by updating

the anisotropic part of Sν according to S
n+2/3
ν = S

n+1/3
ν − δs(∂E/∂S̃ν)/(∂E/∂sν).

5. Rescale S
n+2/3
ν to obtain a metric field with desired degrees of freedom. That is,

Snν = S
n+2/3
ν + βI, where β is selected to satisfy Eq. (3.11).

6. Set n = n+ 1. If n < nstep go back to 2.

After obtaining the desired field of vertex step matrices {Sν}ν∈V , we modify the vertex

metrics using the exponential map, Eq. (3.8), obtaining {Mν}ν∈V . Finally, the resulting the

metric field, described by the vertex values, is fed to a metric-conforming mesh generator

to generate a new mesh.

The proposed adaptation algorithm is independent of the particular coordinate repre-

sentation of the tensors. This property implies that the same physical problem represented

in two different coordinate systems produces an identical sequences of tensor fields with

respect to the physical problem. The property is proved in Appendix F.4.

3.3 Properties of MOESS

Let us now summarize properties of MOESS that are particularly important for practical

output-based mesh adaptation.

• The method handles any discretization order

• The method uses the simplex remeshing strategy, which allow for arbitrarily-oriented

anisotropic elements.

• The method does not make any a priori assumption about the convergence behavior

of the error. Because no a priori assumptions are utilized on the convergence rate,

the method is more robust when features are under-resolved in the presence of a

singularity or singular perturbation.
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• Of the three steps of the adaptation algorithm (local error sampling, error model

synthesis, and surrogate model optimization), the local error sampling constitutes

majority (over 90%) of the computational cost. The local solves are perfectly scalable

and are particularly suited for multi-core processors.

• Both the sizing and the anisotropy decisions are driven directly by the a posteriori er-

ror estimates, which automatically captures the behaviors of both the primal and dual

solutions as well as all components of the states. Improved efficiency is expected for

problems in which primal and adjoint solutions exhibit different directional features.

• The method inherits the versatility of the adjoint-based error estimate, which exclu-

sively governs adaptation decisions. For example, the framework straightforwardly

extends to different governing equations (e.g. Navier-Stokes, structural elasticity,

Maxwell’s).

3.4 Practical Considerations and Data Reported

Let us illustrate how MOESS works in practice and clarify the data reported in all the sub-

sequent chapters. We will use the L2 error control problem for a two-dimensional boundary

layer that will be considered in Section 4.4 as an example. The problem is solved using a

p = 3, dof = 1000 discretization.3

A sequence of meshes obtained for this problem is shown in Figure 3-3. The initial mesh

consists of 32 p = 3 elements. As the target degrees of freedom is set to 1000, all subsequent

meshes contain approximately 100 p = 3 elements. The dof history shown in Figure 3-4(a)

confirms the stationarity of the number of degrees of freedom. The error convergence

history, shown in Figure 3-4(b), indicates that the adaptation leads to an error reduction of

over three orders of magnitude. MOESS achieves this by redistributing element sizes and

employing highly anisotropic elements. Figure 3-4(b) also shows that, after 5 adaptation

cycles, the mesh is optimized for this problem, and the L2 error fluctuates around 8×10−6.

Note that the number of adaptation cycles required to achieve optimality is dependent on

the quality of the initial mesh; a typical case requires fewer adaptation cycles than this

case, because the initial mesh typically comes from an optimized mesh at lower degrees of

3The choice of the number of degrees of freedom at which adaptation is performed is currently left to the
user. Future work to solve the minimum-dof error-constrained problem is discussed in Section 9.2.
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(a) adaptation 0 (b) adaptation 2 (c) adaptation 5

Figure 3-3: Sequence of adapted meshes for the 2d boundary layer L2 error control problem.
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Figure 3-4: Variation in the degrees of freedom and error with the adaptation iterations.
The samples used for assessment are marked in red boxes.

freedom or from a case with small changes in parameter.

The error convergence history also shows that the optimization algorithm generates a

family of optimal meshes that have similar error levels, in this case generated after the 5th

adaptation iterations. All of these meshes have similar metric fields but slightly different

triangulations, which arise from the non-uniqueness of the meshes that realize a given metric

field. To account for this fluctuation in the error, we average the errors obtained on five

meshes belonging to a given family and report that averaged error. (Note, we report the

average of the errors, not the error of the average.) This method is used to compute the

error for all cases considered in the subsequent chapters. For output errors, which are not

normed quantities, the method also reduces the chance of reporting falsely low error due to

cancellation.
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Chapter 4

L2 Projection and Error Control

4.1 Introduction

In this chapter, we study the behavior of the L2 approximation error for problems with

a canonical singularity and a singular perturbation often encountered in solving PDEs.

Specifically, the objective of this chapter is twofold. First is to analytically develop the

optimal anisotropic element size distributions for these select problems using the anisotropic

polynomial approximation result stated in Proposition 2.4 and calculus of variations. Second

is to verify the ability of out adaptation algorithm, Mesh Optimization via Error Sampling

and Synthesis (MOESS), to produce optimal meshes in the L2 error control setting. To

this end, the L2 projector is used as the “solver,” and the L2 error is used as the quantity

of interest. This solver-error pair eliminates the issues associated with the stability of

discretization and allows us to focus on the ability of the space to approximate a given

function. Thus, L2 error control is well-suited for initial verification of our adaptation

algorithm.

The L2 projection “solver” finds the solution uh,p ∈ Vh,p that minimizes the square of

the L2 projection error, i.e.

uh,p = arg inf
vh,p∈Vh,p

E(vh,p),

where

E(vh,p) ≡ ‖u− vh,p‖2L2(Ω) =

∫
Ω

(u− vh,p)2dx.
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Because the approximation space Vh,p is discontinuous across element interfaces, the L2 pro-

jection problem entails element-by-element inversion of the mass matrix. A straightforward

localization of the error functional to an element yields the local error

ηκ ≡ ‖u− uh,p‖2L2(κ) =

∫
κ
(u− uh,p)2dx,

and the local errors satisfy E =
∑

κ∈Th ηκ.

4.2 Conditions for the Optimal Approximant

This section develops general conditions for the optimal approximant, the approximant that

minimizes the L2 error for a given number of degrees of freedom. The expression can be

developed in terms of the metric tensor field {M(x)}x∈Ω or its singular value decomposi-

tion pairs, {U(x), σ(x)}x∈Ω; let us use the decomposition pairs for convenience. (Details

of the connection between error representation based on {M(x)}x∈Ω and its decomposi-

tion {U(x), σ(x)}x∈Ω are presented in Appendix D.1.) Based on Proposition 2.4, the L2

projection error is approximated in terms of {U(x), σ(x)}x∈Ω by

E(σ, U ;u) = C

∫
Ω
Ep̃Σ(U(x), σ(x);u(x))dx, (4.1)

where the error kernel is given by

Ep̃Σ(U, σ;u) ≡
d∑

i1=1

· · ·
d∑

ip̃=1

(
∂p̃u

∂xj1 · · · ∂xjp̃
Uj1i1 · · ·Ujp̃ip̃σi1 · · ·σip̃

)2

, (4.2)

where p̃ = p + 1 and, as before, the summation on repeated indices j1, . . . , jp̃ is implied.

The cost functional is

C(σ) = c

∫
Ω

d∏
j=1

σj(x)−1dx. (4.3)

Note that the cost functional is not a function of U , which induces a volume-preserving

transformation.

Forming the Lagrangian L(U, σ) = E(U, σ) + λC(σ) and finding the first-order variation

with respect to U and σ yields the first-order optimality conditions in the differential form
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as stated in the following theorem.

Theorem 4.1 (Optimality conditions for an L2 approximant). The L2 approximant that

minimizes the L2 error for a given number of degrees of freedom satisfies

∂Ep+1
Σ

∂σi
− λ̂σ−1

i

d∏
j=1

σ−1
j = 0, i = 1, . . . , d

∂Ep+1
Σ

∂U
δU = 0, ∀δU permissible,

where λ̂ = λc/C ∈ R is the scaled Lagrange multiplier, Ep+1
Σ (U, σ) is the error kernel

Eq. (4.2), and the permissible variation δU satisfies

UT δU + δUTU = 0.

Proof. The optimality conditions follow from direct differentiation of the Lagrangian. The

permissibility condition on δU arises from differentiating the orthogonality condition, UTU =

I, where I is the identity matrix.

In general, obtaining a closed-form expression for the field of optimal pairs {U(x), σ(x)}x∈Ω

for an arbitrary function u is impossible. The following sections develop the optimality con-

ditions for special cases for which the optimal element size distribution can be found in a

closed form.

4.3 rα-Type Corner Singularity

We consider a function with a rα-type corner singularity in two dimensions, where r is the

distance from the singular corner and α > 0 is a constant determining the strength of the

singularity. This class of singularity appears at geometric corners of the solution to elliptic

equations. The general form of the singularity, located at the origin, is given by

u(r, θ) = rα sin [α(θ + θ0)] ,

where r2 = x2
1 + x2

2, tan(θ) = x2/x1, α 6∈ Z specifies the singularity strength, and θ0 is the

offset angle.
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4.3.1 Analytical Solution

Let us obtain the optimal anisotropic element size distribution using the optimal approx-

imant conditions stated in Theorem 4.1. First, we develop a lemma regarding the higher

derivatives of the function.

Lemma 4.2. The p̃-th derivative of the function u = rα sin[α(θ + θ0)] is given by

∇p̃u =

p̃−1∏
j=0

(α− j)

 rα−p̃= [eiβ(r̂ + iθ̂)p̃
]
, (4.4)

where β = α(θ + θ0), r̂ and θ̂ are the unit vectors defining the locally orthogonal polar

coordinates, i is the imaginary unit, and =(·) : C → R returns the imaginary part of the

argument.

Proof. The proof follows by induction. The function of interest can be compactly written

as

u = rα=(eiβ),

where β = α(θ+θ0). Note that ∂β/∂θ = α. The first derivative (p̃ = 1), expressed in terms

of r̂ and θ̂, is given by

∇u = r̂
∂u

∂r
+ θ̂

1

r

∂u

∂θ
= r̂

[
αrα−1=(eiβ)

]
+ θ̂

1

r

[
rα=(iαeiβ)

]
= αrα−1=

[
eiβ(r̂ + iθ̂)

]
,

which verifies Eq. (4.4) for p̃ = 1.

Assuming Eq. (4.4) is true for the p̃-th derivative, some arithmetic operations yield

∂

∂r
∇p̃+1u =

 p̃∏
j=0

(α− j)

 rα−p̃−1=
[
eiβ(r̂ + iθ̂)p̃

]
∂

∂θ
∇p̃+1u =

p̃−1∏
j=0

(α− j)

 rα−p̃= [iαeiβ(r̂ + iθ̂)p̃ + eiβ p̃(r̂ + iθ̂)p̃−1(θ̂ − ir̂)
]

=

 p̃∏
j=0

(α− j)

 rα−p̃= [eiβ(r̂ + iθ̂)p̃i
]
.
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Using the expressions, ∇p̃+1u can be expressed as

∇p̃+1u = ∇(∇p̃u) = r̂
∂

∂r
∇p̃u+ θ̂

1

r

∂

∂θ
∇p̃u =

 p̃∏
j=0

(α− j)

 rα−(p̃+1)=
[
eiβ(r̂ + iθ̂)p̃+1

]
.

The results verifies Eq. (4.4) for the p̃ + 1 derivative under the induction hypothesis, and

this concludes the proof.

Corollary 4.3. The components of ∇p̃u in the coordinate (r̂, θ̂) can be expressed as

∂p̃u

∂rj1 . . . ∂rjp̃
= g(r)=

(
vj1 · · · vjp̃

)
,

where r1 = r, r2 = θ, and

g(r) =

p̃−1∏
j=0

(α− j)

 rα−p̃ and vjk =


e
iβ
p̃ , jk = 1

ie
iβ
p̃ , jk = 2

, k = 1, . . . , p̃.

The following theorem provides the optimal element size distribution for the rα-type

singularity.

Theorem 4.4. The optimal mesh for degree-p polynomial approximation of the function

u = rα sin[α(θ + θ0)] consists of isotropic elements with diameter

h(r) = Crk

where C is a constant independent of r, and k is the optimal grading constant

k = 1− α+ 1

p+ 2
.

In other words, the optimal metric distribution is given by M = C̃r−2kI, where C̃ is a

constant independent of r.

Proof. Recall that any unitary matrix in R2 can be expressed as

U =

 cos(φ) sin(φ)

− sin(φ) cos(φ)


77



for some φ ∈ R. For convenience, let us denote the rank-p̃ tensor appearing in the error

kernel Ep̃Σ defined in Eq. (4.2) by F , i.e.

F p̃i1...ip̃ =
∂p̃u

∂xj1 · · · ∂xjp̃
Uj1i1 · · ·Ujp̃ip̃σi1 · · ·σip̃ and Ep̃Σ =

d∑
i1=1

· · ·
d∑

ip̃=1

(
Fi1...ip̃

)2
,

with d = 2. Appealing to Corollary 4.3, the tensor F can be expressed as

Fi1...ip̃ = g(r)=(vj1 · · · vjp̃)Uj1i1 · · ·Ujp̃ip̃σi1 · · ·σip̃ = g(r)=(vj1Uj1i1σi1 · · · vjp̃Ujp̃ip̃σip̃)

= g(r)=(fi1 . . . fip̃),

where

fik =


e
i
(
β
p̃
−φ

)
σ1, ik = 1

ie
i
(
β
p̃
−φ

)
σ2, ik = 2

, k = 1, . . . , p̃.

Thus, the tensor F simplifies to

|Fi1...ip̃ | = |g(r)=(ii1+···+ip̃−p̃ei(β−p̃φ)σi1 · · ·σip̃)|

=


|g(r) cos(β − p̃φ)|σi1 · · ·σip̃ , i1 + · · ·+ ik − p̃ ∈ Odd

|g(r) sin(β − p̃φ)|σi1 · · ·σip̃ , i1 + · · ·+ ik − p̃ ∈ Even

,

where Odd and Even denote the set of odd and even numbers, respectively. Thus, the local

error kernel, Ep̃Σ(U, σ; v), becomes

Ep̃Σ(U, σ; v) =

d∑
i1=1

· · ·
d∑

ip̃=1

|Fi1...ip̃ |2 = g2(r) sin2(β − p̃φ)
∑

0≤k≤p̃
k∈Even

(
p̃

k

)
σ

2(p̃−k)
1 σ2k

2

+ g2(r) cos2(β − p̃φ)
∑

0≤k≤p̃
k∈Odd

(
p̃

k

)
σ

2(p̃−k)
1 σ2k

2 ,

with d = 2.

Differentiating the error function with respect to σ1 and σ2 and evaluating them about

78



σ1 = σ2 = h yields

∂Ep̃Σ
∂σ1

∣∣∣∣∣
σ1=σ2=h

= 2g2(r)h2p̃−1

sin2(β − p̃φ)
∑

0≤k≤p̃
k∈Even

(
p̃

k

)
(p̃− k) + cos2(β − p̃φ)

∑
0≤k≤p̃
k∈Odd

(
p̃

k

)
(p̃− k)


∂Ep̃Σ
∂σ2

∣∣∣∣∣
σ1=σ2=h

= 2g2(r)h2p̃−1

sin2(β − p̃φ)
∑

0≤k≤p̃
k∈Even

(
p̃

k

)
(k) + cos2(β − p̃φ)

∑
0≤k≤p̃
k∈Odd

(
p̃

k

)
(k)

 .

Since

∑
0≤k≤p̃
k∈Even

(
p̃

k

)
(p̃− k) =

∑
0≤k≤p̃
k∈Even

(
p̃

k

)
(k) =

∑
0≤k≤p̃
k∈Odd

(
p̃

k

)
(p̃− k) =

∑
0≤k≤p̃
k∈Odd

(
p̃

k

)
(k) =

1

2

p̃∑
k=0

(
p̃

k

)
k = 2p̃−2p̃,

the derivatives simplify to

∂Ep̃Σ
∂σ1

∣∣∣∣∣
σ1=σ2=h

=
∂Ep̃Σ
∂σ2

∣∣∣∣∣
σ1=σ2=h

= 2p̃−1p̃g2(r)h2p̃−1,

for any φ ∈ R (i.e. for any transformation U). Substitution of the expressions to the first

of the L2 optimality conditions in Theorem 4.1 yields∂Ep+1
Σ

∂σi
− λσ−1

i

d∏
j=1

σ−1
j


σ1=σ2=h

= 2p̃−1p̃g2(r)h2p̃−1 − λh−3 = 0, i = 1, 2.

Simple arithmetic manipulation together with the definition of g(r) in Corollary 4.3 yields

the h grading

h =

 λ

2p(p+ 1)

p∏
j=1

(α− j)−2

 1
2p+4

r
1−α+1

p+2 .

To verify the second of the L2 optimality conditions in Theorem 4.1 is satisfied, we

differentiate the error kernel with respect to φ and evaluate it at σ1 = σ2 = h, i.e.

∂Ep̃Σ
∂φ

∣∣∣∣∣
σ1=σ2=h

= 2g2(r)p̃ sin(β − p̃φ) cos(β − p̃φ)h2p̃

− ∑
0≤k≤p̃

(−1)k
(
p̃

k

) = 0, ∀φ ∈ R,

where we have used the fact that the sum of the odd terms and even terms of the binomial

expansion cancel. Having shown that both L2 optimality conditions in Theorem 4.1 are
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(a) p = 1 (b) p = 3

Figure 4-1: The optimized meshes for the corner singularity problem. Each mesh contains
approximately 200 elements.

satisfied, this concludes the proof.

The theorem states that the grading becomes stronger as α decreases or p increases for

the corner singularity.

4.3.2 Numerical Results

We apply MOESS to a rα-type corner singularity problem with α = 2/3. Examples of

optimized meshes obtained for the problem using p = 1 and 3 approximation are shown

in Figure 4-1. Each mesh contains approximately 200 elements. MOESS correctly deduces

that the optimal mesh for this problem is isotropic. Moreover, the stronger grading toward

the singularity located at the bottom left corner for the p = 3 mesh is evident from the

figure.

A more quantitative assessment of MOESS-generated meshes is obtained by studying

the distribution of the element size, h, against the distance from the singularity, r, and

comparing the distribution with the analytical result. Figure 4-2 shows the distribution

of h against r for the optimized meshes. The element size h is computed based on the

volume, i.e. h = det (Mκ)−1/4 whereMκ is the elemental implied metric. The distance r is

measured from the singularity to the centroid of the element. The optimization is performed

for p = 1 and p = 3 at the degrees of freedom count of 1000 and 4000. The optimal grading

coefficient calculated analytically using Theorem 4.4 for p = 1 and 3 are kanalytic = 0.44 and

0.67, respectively. Knowing the optimal values of h and r varies linearly in log-log space,
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(a) p = 1
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(b) p = 3

Figure 4-2: The element size h vs. the distance of the element centroid from the corner r
for the optimized meshes for the corner singularity problem with α = 2/3. The lines and
coefficients shown result from least-squares fit in log(h) vs. log(r).

we also plot the least-squares fit to log(h) vs. log(r). MOESS produces meshes with the

grading factor of k = 0.47 and 0.67 for p = 1 and p = 3, respectively, at 4000 degrees of

freedom. Thus, the adaptive algorithm obtains the optimal grading automatically for each

p without any a priori knowledge of the solution behavior for the two p’s.

4.4 2d Boundary Layer

We consider a boundary layer solution resulting from a singular perturbation. The solution

is essentially one-dimensional, but we regularize the solution by adding a constant p + 1

derivative in the parallel direction, i.e.

u(x1, x2) = exp
(
−x1

ε

)
+

β

(p+ 1)!
xp+1

2 , (4.5)

where ε is the characteristic length of the singular perturbation, β is the regularization

constant, and x1 and x2 are the coordinates perpendicular and parallel, respectively, to

the boundary. As we will see shortly, the particular form of the regularization results in a

simple exponential variation in the optimal aspect ratio distribution, which facilitates the

verification of MOESS-generated meshes.
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4.4.1 Optimality Conditions for Functions with No Mixed Partials

Let us first develop a general optimal anisotropic element size distributions for functions

with vanishing mixed partial derivatives, i.e.

∂p̃u

∂xj1 · · · ∂xjp̃
=


u

(p̃)
xj1
, j1 = · · · = jp̃

0, otherwise,

where u
(p̃)
xi , i = 1, . . . , d denotes the p̃ derivative of u with respect to the i-th coordinate.

Note that the 2d boundary layer described by Eq. (4.5) fits in this form. The key optimality

condition that enables an explicit expression of the element size distribution is stated in the

following lemma.

Lemma 4.5. For a function with vanishing mixed partial derivatives, the second optimality

condition of Theorem 4.1 is satisfied for U = I for any σ, where I is the identity matrix.

Proof. The proof follows from a direct evaluation of the second optimality condition of

Theorem 4.1. The first variation of the error kernel in the direction of δU is given by

∂Ep̃Σ
∂U

δU = C

d∑
i1=1

· · ·
d∑

ip̃=1

[{
∂p̃u

∂xj1 · · · ∂xjp̃
Uj1i1 · · ·Ujp̃ip̃σi1 · · ·σip̃v)

}

·

{
p̃∑
s=1

∂p̃u

∂xj1 · · · ∂xjp̃
Uj1i1 · · ·Ujs−1is−1Ujs+1is+1 · · ·Ujp̃ip̃(δU)jsisσi1 · · ·σip̃

}]
.

For a function with no mixed partial derivatives, the expression simplifies to

∂Ep̃Σ
∂U

δU = C

d∑
i1=1

· · ·
d∑

ip̃=1

[
d∑
j=1

u(p̃)
xj Uji1 . . . Ujip̃σi1 · · ·σip̃


·


p̃∑
s=1

d∑
j=1

u(p̃)
xj Uji1 · · ·Ujis−1Ujis+1 · · ·Ujip̃(δU)jisσi1 · · ·σip̃


]
.

For U = I, the term in the first curly bracket vanishes unless i1 = · · · = ip̃. Thus, the
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expression simplifies to

∂Ep̃Σ
∂U

∣∣∣∣∣
U=I

δU = C

d∑
i=1


d∑
j=1

u(p̃)
xj δ

p̃
jiσ

p̃
i

 ·


p̃∑
s=1

d∑
j=1

u(p̃)
xj δ

p̃−1
ji (δU)jiσ

p̃
i




= C
d∑
i=1

[{
u(p̃)
xi σ

p̃
i

}
·
{
p̃u(p̃)

xi (δU)iiσ
p̃
i

}]
= Cp̃

d∑
i=1

(u(p̃)
xi )2σ2p̃

i (δU)ii

Furthermore, the permissiblity condition on δU about U = I simplifies to

δU + δUT = 0.

In other words, δU must be skew-symmetric. In particular, the diagonal entries of δU are

zero, i.e. (δU)ii = 0, i = 1, . . . , d. Thus, we have

∂Ep̃Σ
∂U

∣∣∣∣∣
U=I

δU = C

∫
Ω

2p̃

d∑
i=1

(u(p̃)
xi )2σ2p̃

i (δU)iidx = 0, ∀δU permissible, ∀σ.

Thus, the first-order optimality condition is satisfied by choosing U = I for any choice of

σ.

Having shown that the second of the optimality conditions in Theorem 4.1 is satisfied

for U = I for any σ, our task is to obtain σ that satisfy the first of the optimality conditions

in Theorem 4.1. The main result is stated in the following theorem.

Theorem 4.6 (Optimal element size distribution for functions with vanishing mixed par-

tials). For a function with vanishing mixed partial derivatives, the optimal aspect ratios

γi ≡ σi/σ1, i = 2, . . . , d, are given by

γi =
σi
σ1

=

(
u

(p+1)
x1

u
(p+1)
xi

) 1
p+1

, i = 2, . . . , d, (4.6)

and the optimal σ1 spacing is given by

σ1 =

(
λc

2Cp+ 1

) 1
2p+1+d (

u(p+1)
x1

)− 2p+d+1
(p+1)(2p+d+2)

d∏
i=2

(
u(p+1)
xi

) 1
(p+1)(2p+d+2)

, (4.7)
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where u
(p+1)
xi , i = 1, . . . , d, denote the p+ 1 derivative with respect to the i-th coordinate.

Proof. Substitution of the vanishing-mixed-partial condition and evaluation of ∂Ep+1
Σ /∂σi

about U = I yields

∂Ep̃Σ
∂σi

∣∣∣∣∣
U=I

= 2p̃(u(p̃)
xi )2σ2p̃−1

i , i = 1, . . . , d,

where p̃ ≡ p+ 1. The first of the optimality conditions thus becomes

2p̃(u(p̃)
xi )2σ2p̃−1

i − λcσ−1
i

d∏
j=1

σ−1
j = 0, i = 1, . . . , d.

Let us denote the aspect ratios by γi ≡ σi/σ1, i = 2, . . . , d. Subtracting the i-th equation,

i 6= 1, from the first equation (i = 1) and rearranging the expression yield

γi =
σi
σ1

=

(
u

(p̃)
x1

u
(p̃)
xi

) 1
p̃

, i = 2, . . . , d.

Substitution of the optimal aspect ratio conditions to the first equation yields

σ1 =

(
λc

2Cp̃

) 1
2p̃+d (

u(p̃)
x1

)− 2p̃+d−1
p̃(2p̃+d)

d∏
i=2

(
u(p̃)
xi

) 1
p̃(2p̃+d)

.

Substituting p̃ = p+ 1 proves the desired result.

4.4.2 Analytical Solution to the 2d Boundary Layer Problem

The optimal mesh size distribution for the boundary layer function, Eq. (4.5), is obtained

via direct evaluation of Theorem 4.6. The p+ 1 derivatives of the solution are

|u(p+1)
x1

| = ε−(p+1) exp(−x1/ε) and |u(p+1)
x2

| = β.

Substituting the derivatives into Eq. (4.7) and manipulating the expression, we obtain the

optimal h1 = σ1 grading

h1 = C exp(k1x1)
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(a) p = 1 (b) p = 3

Figure 4-3: Examples of optimized boundary layer meshes for p = 1 and p = 3. Each mesh
contains approximately 200 elements.

with the optimal characteristic thickness

δ =
1

k1
= ε

(
p+

3

2

)(
1− 1

4p2 + 12p+ 9

)
.

We note that this optimal characteristic thickness is close to that of the one-dimensional

boundary layer problem, δ1d = ε(p + 3/2). Unlike the corner singularity case, the optimal

mesh grading decreases as p increases. Similarly, Eq. (4.6) yields the optimal aspect ratio

distribution of

AR = AR0 exp(kanalytic
AR x1)

with the aspect ratio at the root, AR0, and the grading factor, kAR, given by

AR0 =
1

β
1
p+1 ε

and kAR = − 1

ε(p+ 1)
.

Note that the maximum aspect ratio is achieved on the boundary, and the ratio decreases

exponentially away from the boundary.

4.4.3 Numerical Results

We apply MOESS to the boundary layer problem with ε = 1/100 and β = 2p+1, which

results in AR0 = 50. Figure 4-3 shows examples of p = 1 and p = 3 optimized meshes.

Each mesh contains approximately 200 elements. Highly anisotropic elements are employed

to resolve the boundary layer on the left boundary. Visually, the p = 3 optimized mesh
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Figure 4-4: The element size in the perpendicular direction, h1, and the aspect ratio dis-
tribution, AR = h2/h1, for the 2d boundary layer problem with ε = 0.01 and β = 2p+1.

exhibits a weaker h1 grading toward the boundary layer, as predicted by the analytical

result.

A more quantitative assessment of the optimized meshes is provided by Figure 4-4. The

h1 and h2 value for each element is computed by first calculating the elemental implied

metric Mκ, and then taking h1 = (Mκ)
−1/2
11 and h2 = (Mκ)

−1/2
22 . Figure 4-4(a) shows

the distribution of h1 against the distance from the boundary x1 in log-linear scale for the

p = 1 discretization with 1000 and 4000 degrees of freedom. The distribution is essentially

linear in the log(h1)-x1 space, and the least-squares fit in the space shows that the grading

factor in the direction perpendicular to the boundary is k1 = 41.9 (for dof = 4000), which

agrees with the analytical optimal value of kanalytic
1 = 41.7. Figure 4-4(c) shows the aspect

ratio distribution, and the least-squares fit in the log(AR)-x1 space. The aspect ratio at
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k1 AR0 kAR
p = 1 numerical 41.9 43.9 -50.3
p = 1 analytical 41.7 50.0 -50.0

p = 3 numerical 22.7 46.8 -23.3
p = 3 analytical 22.5 50.0 -25.0

Table 4.1: Summary of the optimized mesh parameters for the 2d boundary layer problem.

the boundary obtained using the algorithm is AR0 = 43.9, which is slightly lower than

the analytical result of ARanalytic
0 = 50.0; however, the values are still in good agreement.

The negative grading away from the boundary of kAR = 50.3 matches closely with that of

analytical result, kanalytic
AR = 50.0. The comparison of the analytical and numerical mesh

parameters is summarized in Table 4.1.

Figure 4-4(b) and 4-4(d) show the same log(h1)-x1 and log(AR)-x1 analysis for the p = 3

discretization. The grading for h1 and AR are weaker for p = 3 than for p = 1, which is

consistent with the theory. All parameters of the optimized meshes match well with those

of analytical results. Again, without relying on the a priori error convergence behavior

or the solution Hessian (or a higher derivative equivalent), MOESS deduces the optimal

anisotropic mesh distribution.

4.5 3d Boundary Layer

Let us now consider a boundary layer in three dimensions. The solution is essentially one-

dimensional, but we regularize the solution by adding a constant p+ 1 derivative in the two

parallel direction, i.e.

u(x1, x2, x3) = exp
(
−x1

ε

)
+

β2

(p+ 1)!
xp+1

2 +
β3

(p+ 1)!
xp+1

3 , (4.8)

where ε is the characteristic length of the singular perturbation, β2 and β3 are the regular-

ization constants in the two parallel directions.
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4.5.1 Analytical Solution

The analytical solution is found by evaluating the expressions in Theorem 4.6 using the

derivatives of the solution Eq. (4.8). The p+ 1 derivatives of the solution are

|u(p+1)
x1

| = ε−(p+1) exp(−x1/ε) and |u(p+1)
xi | = βi, i = 2, 3.

Simple algebraic manipulation of Eq. (4.7) yields optimal h1 grading

h1 = C exp(k1x1)

with the optimal characteristic thickness given by

δ =
1

k1
= ε

(
p+

3

2

)(
1− 1

2p2 + 7p+ 6

)
,

where the characteristic thickness is again expressed as a function of the one-dimensional

boundary layer characteristic thickness, δ1d = ε(p+3/2). The optimal aspect ratios obtained

from Eq. (4.6) are

ARi = ARi,0 exp(ki,ARx1), i = 2, 3,

with the aspect ratios at the root, ARi,0, and the grading factor, ki,AR, given by

ARi,0 =
1

β
1
p+1

i ε

and ki,AR = − 1

ε(p+ 1)
, i = 2, 3.

4.5.2 Numerical Results

We apply MOESS to the boundary layer problem with ε = 1/100, β2 = 2p+1, and β3 = 4p+1,

which result in the optimal root aspect ratios of AR2,0 = 50 and AR3,0 = 25.

Figure 4-5 provides assessment of the p = 1, dof = 18000 and p = 2, dof = 36000 opti-

mized meshes. As in the two-dimensional case, the h1, h2, and h3 values for each element

is computed from the diagonal entries of the elemental implied metric. The distribution

shows that the spread in the h1-spacing and the aspect ratios for a given x1 are in general

larger than those for the two-dimensional case. A larger spread is due to the difficulty of

constructing meshes that tightly conform to the metric requests in three dimensions. How-
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Figure 4-5: The element size in the perpendicular direction, h1, and the aspect ratio distri-
bution, ARi = hi/h1, for the 3d boundary layer problem with ε = 0.01 and β2 = 2p+1 and
β3 = 4p+1.
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k1 AR2,0 k2,AR AR3,0 k3,AR

p = 1 numerical 40.8 35.7 -46.8 18.8 -47.0
p = 1 analytical 42.9 50.0 -50.0 25.0 -50.0

p = 2 numerical 22.7 43.9 -34.7 24.1 -36.1
p = 2 analytical 29.6 50.0 -33.3 25.0 -33.3

Table 4.2: Summary of the optimized mesh parameters for the 3d boundary layer problem.

ever, the regression coefficients are in general in good agreement with the analytical values,

as summarized in Table 4.2. In particular, for both the p = 1 and p = 2 discretizations, the

h1 gradings of the optimized meshes agree well with the analytical values. MOESS under-

estimate the optimal anisotropy by approximately 30% for the p = 1 discretization. The

matching is better for the p = 2 discretization, with the optimized mesh underestimating

AR2 and AR3 by only 12% and 4%, respectively.

4.6 Conclusion

We derived the optimal anisotropic element size distribution for a few canonical L2 approx-

imation problems by using a continuous relaxation of the anisotropic approximation theory,

Proposition 2.4, and calculus of variations. The MOESS algorithm produced p-specific op-

timal meshes consistent with analytical results without any a priori p-dependent function

information.
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Chapter 5

Advection-Diffusion Equation

This chapter considers an application of the proposed adaptation algorithm, Mesh Optimiza-

tion via Error Sampling and Synthesis (MOESS), to the scalar advection-diffusion equation.

The objective is to study the behavior of the adaptation algorithm in the context of out-

put error control for problems with simple and carefully chosen primal and dual solution

behaviors. In particular, we will compare the performance of MOESS to two output-based

adaptation strategies: isotropic adaptation and anisotropic adaptation based on the higher

derivatives of the primal solution.

5.1 Governing Equation and Problem Setup

We consider the advection-diffusion equation in a rectangular domain Ω ≡ [−1.5, 1.5]× [0, 1]

shown in Figure 5-1. The governing equation is given by

∇ · (βu)−∇ · (ε∇u) = f in Ω,

where β ∈ R2 defines the advection field, ε ∈ R+ is the viscosity, and f is the source

function. For all the problems considered, we set β = [1, 0] and ε = 10−3, so that the Peclet
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−1.5 0 1.5
0

1

Figure 5-1: The domain for the advection-diffusion problems.

number is 103. The boundary conditions are given by

−(β · n)u+ ε
∂u

∂n
= 0, on Γ1

ε
∂u

∂n
= 0, on Γ2

u = uΓ3 , on Γ3

u = 0, on Γ4,

where the boundaries Γi, i = 1, . . . , 4, are as specified in Figure 5-1, and uΓ3 specifies the

solution value on Γ3. The general form of the output functional considered is

J (u) =

∫
Ω
gΩuds+

∫
Γ3

gΓ3ε
∂u

∂n
ds,

where gΩ and gΓ3 are the two parameters that characterize the output. For the specified

form of the output and the boundary conditions, the dual problem is given by

−β · ∇ψ −∇ · (ε∇u) = gΩ in Ω

with the boundary conditions

ε
∂ψ

∂n
= 0, on Γ1

(β · n)ψ + ε
∂ψ

∂n
= 0, on Γ2

ψ = gΓ3 , on Γ3

ψ = 0, on Γ4.

We will consider three different combinations of the source function f , the boundary

value uΓ3 , and the output functional parameters gΩ and gΓ3 to produce primal and dual
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Primal-Dual Dual-Only Primal-Only

f 0 − sin
(

10π
3 x1

)
sin(πx2) 0

uΓ3 1 0 1

gΩ 0 0 gprim
Ω

gΓ3 1 1 0

Primal Solution P1 P2 P1

Dual Solution D1 D1 D2

Table 5.1: Set of parameters defining the three advection-diffusion problems. The volume

output weight for the primal-only case is gprim
Ω = 1

2π(0.0012) exp
(
−1

2 [
x2

1
0.022 + (x2−0.25)2

0.062 ]
)

. The

solution identifications correspond to those in Figure 5-2.

(a) primal solution P1 (b) primal solution P2

(c) dual solution D1 (d) dual solution D2

Figure 5-2: Solutions to the boundary layer problems.

solutions suitable for assessing MOESS. The choice of problem parameters and the corre-

sponding primal and dual solutions are summarized in Table 5.1. A pair of primal solutions,

P1 and P2, and a pair of dual solutions, D1 and D2, are shown in Figure 5-2. The first

problem is called “primal-dual,” as the choice of parameters induces boundary layers in

both the primal and dual solutions (P1 and D1). The second problem is called “dual-only,”

as it exhibits a boundary layer in the dual solution (D1) but not in the primal solution (P2).

Similarly, the third problem is called “primal-only,” as a boundary layer appears only in

the primal solution (P1) and not in the dual solution (D2).

Note that because the governing PDE is a scalar equation with constant coefficients,

the a priori error bound in Proposition 2.5 simplifies to

E . C
∑
κ∈Th

[(
‖β‖`∞
hmin

+
|κ|
h2

min

)(∫
κ
EsuM(Mκ;u)dx

)(∫
κ
E
sψ
M(Mκ;ψ)dx

)]
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where su = min(p+1, ku) and sψ = min(p+1, kψ) for u ∈ Hku(Ω) and ψ ∈ Hψ(Ω). In other

words, the higher derivatives of the primal and dual solution dictate the output error, and

we can qualitatively assess the adapted meshes by comparing the meshes to the solutions

shown in Figure 5-2.

5.2 Results

5.2.1 Assessment Procedure

In order to assess the effectiveness of MOESS applied to the advection-diffusion equation,

we compare the approach with two different adaptation strategies. First is the isotropic

refinement based on the DWR error estimate. Second is the anisotropic refinement that

uses the DWR error estimate for the element area decision and the primal solution for the

shape decision. Specifically, the method solves the p+1 discretization of the primal problem,

takes the first principal direction in the direction of the maximum p+ 1 derivative, selects

the ratio of the first and second principal lengths to to equidistribute the interpolation error

in the two principal directions, and scales the principal lengths to achieve the desired area.

The detailed implementation of the algorithm is presented in [156]. We emphasize that

all adaptations strategies in this chapter use the adjoint-based error estimate; the primary

difference in the methods lies in the anisotropy decision process.

For each of the advection-diffusion problems, the finite element solutions are obtained

using the p = 1 and p = 2 discretizations at 250, 500, 1000, and 2000 degrees of freedom.

The reference solutions are obtained using the p = 3 discretization at 40,000 degrees of

freedom.

5.2.2 Primal-Dual Boundary Layer

The primal-dual boundary layer problem exhibits boundary layers in both the primal (P1)

and dual (D1) solution, as shown in Figure 5-2. Figure 5-3 shows the output error conver-

gence for the three adaptation schemes using the p = 1 and p = 2 discretizations. Compared

to isotropic adaptation, MOESS reduces the error by approximately two orders of magni-

tude for p = 1 and three orders of magnitude for p = 2 at a given number of degrees of

freedom. These reductions are achieved for the moderate Peclet number of 103; the advan-

tage of the anisotropic boundary layer resolution further increases for higher Peclet number
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Figure 5-3: Output error convergence for the primal-dual boundary layer problem using the
p = 1 and p = 2 discretizations.

cases. Note that the p = 2 discretization outperforms the p = 1 discretization for the

entire range of the degrees of freedom considered, and the adaptive methods achieve the

asymptotic output convergence rate of E ∼ h2p ∼ (dof)p even on coarse meshes.

For this problem, the primal-based anisotropy detection is expected to perform well be-

cause the solution anisotropy of the primal and dual solutions match each other. Thus, tar-

geting the primal anisotropic feature coincidentally results in resolving the dual anisotropic

feature. Nevertheless, Figure 5-3 shows that MOESS outperforms the primal-based anisotropy

detection for both p = 1 and p = 2.

Figure 5-4 shows the p = 1 meshes with 1000 degrees of freedom and p = 2 meshes

with 2000 degrees of freedom. Because the primal and dual solutions are mirror image of

each other about x1 = 0, the isotropic adaptation produces a mesh whose size functions are

symmetric about x1 = 0, as shown in Figures 5-4(a) and 5-4(b). Recalling that the output

error is a (weighted) product of the primal and dual errors, the symmetry of the mesh (and

hence the equal level of the resolution of primal and dual solutions) agrees with intuition.

On the other hand, the primal-based anisotropy results in a scheme that is biased toward

resolving the directional features in the primal solution, as shown in Figures 5-4(c) and 5-

4(d). The biased-treatment of the primal solution suggests that the element anisotropy

is not optimal. Nevertheless, for example on the optimized p = 2 mesh, the primal-based

anisotropy detection results in over 60% of the elements having aspect ratio over 10 and 20%

having the aspect ratio over 30, contributing to the efficient resolution of the boundary layer
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(a) isotropic (p = 1) (b) isotropic (p = 2)

(c) primal anisotropy (p = 1) (d) primal anisotropy (p = 2)

(e) MOESS (p = 1) (f) MOESS (p = 2)

Figure 5-4: Adapted meshes for the primal-dual boundary layer problem. All p = 1 and
p = 2 meshes have dof = 1000 and dof = 2000, respectively.

and outperforming the isotropic adaptation. Figure 5-4(e) and 5-4(f) show that MOESS

produces meshes whose size and anisotropy distributions are symmetric about x1 = 0. This

is not surprising, as the method is driven completely by the behavior of the a posteriori

error estimate and automatically balances the influences of the primal and dual solutions

for this case. On the p = 2 optimized mesh, over 80% of the elements have aspect ratio of

over 10 and 20% have the aspect ratio of over 30.

5.2.3 Dual-Only Boundary Layer

The dual-only boundary layer problem produces a boundary layer in the dual solution (D1)

but not in the primal solution (P2), as shown in Figure 5-2. Figure 5-5 shows the output

error convergence for the three adaptation schemes using the p = 1 and p = 2 discretizations.

For the p = 1 discretization, MOESS requires approximately half the degrees of freedom of

the isotropic adaptation to achieve a given error tolerance. The dof-saving is slightly lower

for the p = 2 discretization, but MOESS nevertheless improves efficiency. For this problem,

the primal-based anisotropy detection performs worse than the isotropic adaptation for both

p = 1 and p = 2, requiring about twice as many degrees of freedom to achieve a given error
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Figure 5-5: Output error convergence for the dual-only boundary layer problem using the
p = 1 and p = 2 discretizations.

tolerance. The loss of efficiency is due to the use of inappropriate anisotropy, as we will see

shortly.

Figure 5-6 shows p = 1, dof = 1000 meshes and p = 2, dof = 2000 meshes obtained using

the three adaptation methods. The isotropic adaptation targets the boundary layer in the

dual solution as shown in Figures 5-6(a) and 5-6(b), however, its efficiency is limited due to

the use of isotropic elements. Figures 5-6(c) and 5-6(d) show that primal-based anisotropy

detection produces elements that are aligned with the primal sine source function. This

x2-aligned anisotropy is inappropriate for resolving the dual boundary layer, resulting in

the method performing worse than the isotropic adaptation. MOESS targets the dual

boundary layer using anisotropic elements, as shown in Figures 5-6(e) and 5-6(f). However,

because the primal solution is not anisotropic near the bottom wall, the elements are not

as anisotropic as those in the primal-dual boundary layer problem. For example, for the

p = 2 discretization, the fraction of elements with the aspect ratio of over 30 are only 6%

for this case, compared to over 20% for the primal-dual boundary layer case. The result

again demonstrates that MOESS automatically balances the resolution of the primal and

dual solution to minimize the output error.

5.2.4 Primal-Only Boundary Layer

The primal-only boundary layer problem considers a regularized line output, and produces

a boundary layer in the primal solution (P1) but not in the dual solution (D2), as shown
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(a) isotropic (p = 1) (b) isotropic (p = 2)

(c) primal anisotropy (p = 1) (d) primal anisotropy (p = 2)

(e) MOESS (p = 1) (f) MOESS (p = 2)

Figure 5-6: Adapted meshes for the dual-only boundary layer problem. All p = 1 and p = 2
meshes have dof = 1000 and dof = 2000, respectively.

in Figure 5-2. The output error convergence for the primal-only boundary layer problem is

shown in Figure 5-7. For the p = 1 discretization, both anisotropic adaptation methods are

significantly more efficient than the isotropic adaptation, reducing the number of degrees

of freedom required to meet a given error by almost an order of magnitude. On the other

hand, for the p = 2 discretization, the primal-based anisotropy detection performs worse

than the isotropic adaptation for dof ≥ 1000. In fact, the primal-based anisotropy renders

the p = 2 discretization less efficient than the p = 1 discretization. MOESS applied to

the p = 2 discretization converges rapidly to the true solution as the number of degrees of

freedom increases.

Figure 5-8 shows p = 1, dof = 1000 meshes and p = 2, dof = 2000 meshes obtained

using the three adaptation strategies. Figures 5-8(a) and 5-8(b) show that the isotropic

adaptation targets the region of overlap between the primal boundary layer and the dual

shear layer; however, similar to the previous two cases, its efficiency is limited due to the

use of isotropic elements.

Figure 5-8(c) and 5-8(c) show that, for both p = 1 and p = 2, the primal-based

anisotropy detection employs anisotropic elements suitable for resolving the primal bound-
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Figure 5-7: Output error convergence for the primal-only boundary layer problem using the
p = 1 and p = 2 discretizations.

(a) isotropic (p = 1) (b) isotropic (p = 2)

(c) primal anisotropy (p = 1) (d) primal anisotropy (p = 2)

(e) MOESS (p = 1) (f) MOESS (p = 2)

Figure 5-8: Adapted meshes for the primal-only boundary layer problem. All p = 1 and
p = 2 meshes have dof = 1000 and dof = 2000, respectively.
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ary layer. Because its sizing decision is based on DWR, smaller elements are employed in

vicinity of the dual source term and elements downstream of the source location are large.

We note that the apparent refinement in the region downstream the source is due to the

use of highly anisotropic elements. However, these anisotropic elements aligned with the

primal boundary layer are unsuited for resolving the dual solution that exhibit a strong

variation in the x1-direction just downstream of the source. The poor p = 2 performance of

the primal-based anisotropy detection shows that anisotropy only suited for resolving the

primal solution is in fact worse than no anisotropy at all even for the problem that exhibits

a strong anisotropic feature in the primal solution. Furthermore, the degradation in the

performance is dependent on the discretization order.

MOESS balances the anisotropy requirements for resolving the primal and dual solu-

tions, as shown in Figures 5-8(e) and 5-8(f). In the region upstream of the dual source, both

the primal and dual solution exhibit a strong variation in the x2-direction, and the algo-

rithm resolves these features using highly anisotropic elements. However, just downstream

of the Gaussian source, the dual solution experiences a strong variation in the x1 direction.

For the p = 1 discretization at this error level, the result suggests that the primal solution

requires more resolution than the dual solution in the region, resulting in elements that

provide more resolution in the x2 direction. On the other hand, for the p = 2 discretization,

the resolution requirement for primal and dual solutions are balanced, and the algorithm

employs isotropic elements. The difference in the anisotropy requirement for p = 1 and

p = 2 explains the degradation in the performance observed for the p = 2 discretization

with the primal-based anisotropy detection.

5.3 Conclusions

Using three advection-diffusion problems with carefully chosen primal and dual solutions,

we studied the behavior of MOESS and compared its performance with the isotropic adap-

tation and the anisotropic adaptation with primal-based anisotropy detection. For all three

problems considered, MOESS outperformed the other two strategies for both p = 1 and

p = 2. The results also highlight that the primal-based anisotropy can perform worse

than isotropic refinement even if the primal solution exhibits strong directional features.

Furthermore, the optimal anisotropy is highly dependent on the discretization order.
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Chapter 6

Compressible Navier-Stokes

Equations

This chapter applies our adaptation algorithm, Mesh Optimization via Error Sampling

and Synthesis (MOESS), to aerodynamic flows governed by the Euler equations (inviscid),

the compressible Navier-Stokes equations (laminar), and the Reynolds-averaged Navier-

Stokes equations (turbulent). These equations exhibit a number of challenges common

to solving many PDEs in engineering, including: convection dominance, a wide range of

scales, anisotropic solution features, high nonlinearity, and discontinuities. The presence of

geometry- and nonlinearity-induced singularities poses challenges for high-order discretiza-

tions, both in terms of robustness and efficiency. Thus, aerodynamic simulations serve as

an excellent testbed for autonomous PDE solver technologies. An overview of challenges

associated with the development of reliable computational fluid dynamics (CFD) capabili-

ties is provided by Allmaras et al. [9]. Recent reviews of error estimation and adaptation

technologies for aerospace CFD applications are detailed in Hartmann and Houston [72]

and Fidkowski and Darmofal [55].
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6.1 Governing Equations

6.1.1 Euler and Navier-Stokes Equations

The compressible Navier-Stokes equations consists of m = d+2 equations. The conservative

state consists of mass, momentum, and energy per unit volume and is given by

u =


ρ

ρvj

ρE

 ,

where ρ is the density, vj is the velocity in the j-th coordinate direction, and E is the

total internal energy per unit mass. The convective (or inviscid) flux in the i-th coordinate

direction is given by

Fconv
i =


ρvi

ρvjvi + δijp

ρHvi

 ,

where the pressure, p, and the total enthalpy, H, are given by

p = (γ − 1)

(
ρE − 1

2
ρvivi

)
H = E +

p

ρ
,

and γ is the ratio of specific heats.

The diffusive (or viscous) flux in the i-th coordinate direction is given by

Fdiff
i =


0

τij

τijvj + κT
∂T
∂xi

 ,

where τ is the shear stress, κT is the thermal conductivity, and T = p/(ρR) is the temper-

ature, and R is the gas constant. The shear stress is given by

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ

∂vk
∂xk

,
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where µ is the dynamic viscosity, and λ = −2/3µ is the bulk viscosity coefficient. The

dynamic viscosity is modeled using Sutherland’s law,

µ = µref

(
T

Tref

)1.5 Tref + Ts
T + Ts

,

unless specified otherwise. The thermal conductivity, κT , is related to the dynamic viscosity

by the Prandtl number, Pr, according to

κT = cp
µ

Pr
,

where cp = γR/(γ − 1) is the specific heat at constant pressure. The implementation of

various boundary conditions follows those detailed in [110].

6.1.2 Reynolds-Averaged Navier-Stokes Equations

The Reynolds-averaged Navier-Stokes (RANS) equations are obtained by temporally av-

eraging the Navier-Stokes equations using the Favre averaging procedure. In this work,

the closure of the RANS system is accomplished by the Spalart-Allmaras (SA) turbulence

model [137]. The particular implementation of the SA equation used in this work incorpo-

rates two modifications by Oliver and Allmaras to the original SA model [110]. First is a

generalization of the original model for incompressible flow to compressible flow. Second is

a set of modifications intended to improve the robustness of the RANS-SA simulations for

higher-order discretizations.

The conservative variable for the RANS-SA equations, corresponding to the mean state,

is given by

u =


ρ

ρvj

ρE

ρν̃

 ,

where ν̃ is the working variable for the turbulence model, which is algebraically related to
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the eddy viscosity, µt, by

µt =


ρν̃fv1, ν̃ ≥ 0

0, ν̃ < 0

,

where

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
,

and ν = µ/ρ is the kinematic viscosity. The convective and diffusive fluxes of the RANS-SA

equations in the i-th coordinate direction are given by

Fconv
i =


ρvi

ρvjvi + δijp

ρHvi

ρν̃

 and Fdiff
i =


0

τRANS
ij

τRANS
ij vj + κRANS

T
∂T
∂xi

1
ση

∂ν̃
∂xi

 ,

where the effective shear stress, τRANS, and the thermal conductivity, κRANS
T , incorporate

the effect of the eddy viscosity, i.e.

τRANS = (µ+ µt)

[(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ

∂vk
∂xk

]
κRANS
T = cp

(
µ

Pr
+

µt
Prt

)
,

and the diffusion coefficient for the SA equation, η, is

η =


µ(1 + χ), χ ≥ 0

µ(1 + χ+ 1
2χ

2), χ < 0

.

The source term of the RANS-SA system is given by

S =


0

0

0

P −D + cb2ρ
∂ν̃
∂xk

∂ν̃
∂xk

 .
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The production term, P , of the SA equation is

P =


cb1S̃ρν̃, χ ≥ 0

cb1Sρν̃gn, χ < 0

,

where gn = 1− fgnχ2/(1 + χ2), fgn = 105, and

S̃ =


S + S̄, S̄ ≥ −cv2S

S +
S(c2v2S+cv3S̄)

(cv3−2cv2)S−S̄ , S̄ < −cv2S

.

Here, S =
√

2ΩijΩij is the magnitude of the vorticity, Ωij = 1
2( ∂ui∂xj

− ∂uj
∂xi

), and the near

wall correction term is given by

S̄ =
ν̃fv2

κ2d2
with fv2 = 1− χ

1 + χfv1
,

where d is the distance to the nearest wall. The destruction term, D, is given by

D =


cw1fw

ρν̃2

d2 , χ ≥ 0

−cw1
ρν̃2

d2 , χ < 0

,

where

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), and r =
ν̃

S̃κ2d2
.

The constants of the turbulence model are set to: cb1 = 0.1355, σ = 2/3, cb2 = 0.622,

κ = 0.41, cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9,

and Prt = 0.9.

6.2 The Importance of Mesh Adaptation for Higher-Order

Discretizations of Aerodynamic Flows

Let us study the importance of adaptation for higher-order discretizations using two simple

flows over isolated airfoils. The first problem considered is Euler flow with a single dominant

geometry-induced singularity, which is similar to the rα singularity studied in the context
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L2 error control in Section 4.3. The second problem is subsonic RANS flow exhibiting

various features with a wide range of scales. For second-order methods, careful studies

quantifying the effect of adaptation for aerodynamic flows exhibiting multiple scales have

been conducted by Dervieux et al. [51] and Loseille et al. [99]. This section quantifies the

effect of adaptation for higher-order discretizations of aerodynamic flows.

6.2.1 NACA 0012 Subsonic Euler

The first problem considered is M∞ = 0.5 Euler flow over a NACA 0012 airfoil at α = 2◦.

The farfield boundary is set at 10, 000 chord (i.e. 10000c) away from the airfoil to minimize

the finite-boundary effect on the lift and drag. To quantify the effect of adaptation, adaptive

refinement is first performed using MOESS at 5,000 degrees of freedom. Then, for uniform

refinement, each element of the optimized mesh is divided into four elements and the solution

is obtained on the refined mesh having 20,000 degrees of freedom. For adaptive refinement,

the results are obtained using the MOESS algorithm at 20,000 degrees of freedom. The

results for the uniformly and adaptively refined dof = 20, 000 meshes for p = 1, p = 2,

and p = 3 discretizations are compared to assess the impact of adaptation for different

discretization orders.

The key feature that dictates the drag error of this problem is the geometry-induced

singularity at the trailing edge of the airfoil. A simplified analysis based on the potential

flow theory reveals that the singularity is of the rα-type studied in Section 4.3, where the

strength α is dependent on the trailing edge angle. Thus, given a sequence of properly graded

meshes, we expect the optimal output error convergence rate of E ∼ h̄2p+1 ∼ (dof)−(p+1/2)

for this hyperbolic problem (c.f. [67]).

Figure 6-1 shows the behavior of the drag error. With uniform refinement, the p = 1

discretization converges at a rate close to the optimal rate (against the dof) of −1.5. On

the other hand, uniform refinement limits the convergence rate of both the p = 2 and p = 3

discretizations to approximately −1.5, which is significantly lower than the optimal rates of

−2.5 and −3.5, respectively. The suboptimal convergence rates are due to presence of the

corner singularity at the trailing edge; the result is consistent with the theory.

With adaptive refinement, the p = 2 and p = 3 discretizations achieve the convergence

rates of −2.8 and −4.0, respectively, which are slightly higher than the optimal error rate

based on the a priori error analysis. The output convergence rate of the p = 1 discretization
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Figure 6-1: Comparison of the error convergence for uniform and adaptive refinements for
the subsonic NACA 0012 Euler flow.

(a) coarse mesh (dof = 5, 000) (b) uniform refinement (dof =
20, 000)

(c) adaptive refinement (dof =
20, 000)

Figure 6-2: Comparison of the trailing edge mesh grading and error indicator distribution
of the p = 3, dof = 20, 000 meshes obtained from uniform and adaptive refinements of the
p = 3, dof = 5, 000 optimized mesh for the subsonic NACA 0012 Euler flow. The color scale
is in log10(ηκ).

does not significantly improve from that obtained using uniform refinement as the rate was

near-optimal. The result does not imply that adaptation is not important for the p = 1

discretization. The efficiency of the p = 1 discretization is still dependent on the element

size distribution; however, once a good initial element size distribution is obtained, then

uniform refinement is sufficient to maintain a near-optimal performance. This is contrary to

the p = 2 and p = 3 discretizations, whose performances significantly degrade with uniform

refinement even if the initial element size distribution is optimal.

To understand the differences in the error convergence behaviors of the uniform and

adaptive refinements, the element size and local error distribution near the trailing edge

singularity are analyzed. Figure 6-2 shows the error indicator distribution at the trailing

edge for the original p = 3, dof = 5, 000 mesh, the p = 3, dof = 20, 000 mesh that results
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Figure 6-3: Element size distributions in the vicinity of the trailing edge of the p = 1 and
p = 3 optimized meshes for the subsonic NACA 0012 Euler flow.

from a step of uniform refinement, and a p = 3, dof = 20, 000 mesh obtained after adaptive

refinements. On the original mesh with 5,000 degrees of freedom shown in Figure 6-2(a),

the adaptation algorithm nearly equidistributes the error indicator. (Note that completely

equidistributing the error on this coarse mesh with only 500 elements is difficult.) Figure 6-

2(b) shows that a step of uniform refinement significantly reduces the error contribution from

the elements not on the trailing edge but only marginally improves the error contribution

from the trailing edge elements. As a result, the error contribution of the trailing edge

elements is several orders of magnitude greater than that of other elements, indicating the

mesh is suboptimal due to the inefficient element size distribution. Figure 6-2(c) shows that

the adaptive refinement targets the corner elements dominating the error and produces a

strongly graded mesh that nearly equidistributes the error. The diameter of the trailing edge

element is approximately 1 × 10−5c for the adapted mesh, whereas that for the uniformly

refined mesh is approximately 5 × 10−3c. In other words, in increasing the number of

degrees of freedom by a factor of 4, the p = 3 adaptive refinement decreases the trailing

edge element diameter by a factor of 1,000, instead of a factor of 2 obtained by a step of

uniform refinement.

The difference in the mesh grading required to achieve optimality for the p = 1 and

p = 3 discretizations is also important to understand. Figure 6-3 shows the variation in

the element diameter, h, as a function of the distance from the trailing edge, r, for p = 1

and p = 3 optimized meshes. Each mesh has approximately 2,000 elements. Recalling

from Section 4.3 that the optimal element size distribution for the rα-type singularity is of
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Figure 6-4: Comparison of the error convergence for uniform and adaptive refinements for
the subsonic RAE 2822 RANS-SA flow.

the form h ∼ rk where k is the grading factor, the solid regression lines are produced by

performing least-squares fit in the log(h)-log(r) space for the elements in r < 0.1c. The

p = 3 optimal mesh has a grading factor of 0.87 and employs elements of diameter 1×10−5c

on the trailing edge. In comparison, the p = 1 optimal mesh has a weaker grading factor of

0.74, and its trailing edge elements are of diameter 3×10−3c. The higher-order discretization

requires a stronger grading toward the corner singularity to equidistribute the error; this

result is consistent with the analytical result for the rα-type singularity in Section 4.3. In

addition, the higher-order discretization is more sensitive to suboptimal h distribution as

the error scales with a higher power of h. Thus, h-adaptation is indispensable to achieve

the full benefit of higher-order discretizations for flows with low regularity.

6.2.2 RAE 2822 Subsonic RANS-SA

The second problem we consider to quantify the importance of mesh adaptation for aero-

dynamic flows is a M∞ = 0.3, Rec = 6.5 × 106 turbulent flow over an RAE 2822 airfoil

at α = 2.31◦. Following the procedure for the Euler NACA 0012 case, adaptation is first

performed at 20,000 degrees of freedom to generate optimized meshes, and then uniform

and adaptive refinements are started from those meshes.

The true drag error and the drag error estimate are shown in Figure 6-4. Similar to the

Euler case, the adaptive refinement makes little difference in the convergence rate of the

p = 1 discretization compared to uniform refinement when the original mesh is optimized

at a lower degrees of freedom. Again, the result does not imply adaptation is not important

109



(a) coarse mesh (dof = 20, 000) (b) coarse (zoom)

(c) uniform refinement (dof = 80, 000) (d) uniform (zoom)

(e) adaptive refinement (dof = 80, 000) (f) adaptive (zoom)

Figure 6-5: Comparison of the error indicator distributions of p = 3, dof = 80, 000 meshes
obtained from uniform and adaptive refinements of the p = 3, dof = 20, 000 optimized mesh
for the subsonic RAE 2822 RANS-SA flow. The color scale is in log10(ηκ).

for p = 1; it merely means that uniform refinement is sufficient to maintain a near-optimal

performance given the refinement is applied on an optimized mesh. The convergence rate

for the p = 2 and p = 3 discretizations are limited by the solution regularity when the

mesh is uniformly refined; however, with the adaptive refinement, the optimal output error

indicator convergence rate of E ∼ (dof)2p/d is recovered (cf. [67]). The optimized p = 3

mesh achieves a drag error of approximately 10−5 using 20,000 degrees of freedom (2,000

elements), whereas the optimal p = 1 mesh requires 80,000 degrees of freedom (27,000

elements) to achieve the same fidelity. Thus, for a high-fidelity simulation, the p = 3

discretization is significantly more efficient than the p = 1 discretization. The result also

shows that, at the level of cd accuracy required in a practical engineering setting — which

is about 10−5 at minimum — the p = 3 discretization is only marginally more efficient than

the p = 2 discretization.

In order to understand the region limiting the performance of uniform refinement, the
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error indicator distribution obtained after a step of uniform refinement from the dof =

20, 000 optimized mesh is shown in Figure 6-5. The elements at the edge of the boundary

layer have high error indicators, likely due to the singularity in the SA equation in the

region [109]. The adaptive refinement correctly identifies the region and makes necessary

adjustments to better control the error due to these high-error elements. The boundary layer

edge singularity is an example of a flow feature that is hard to locate a priori. However, this

subtle flow feature limits the convergence rate of higher-order discretizations and exemplifies

the need for adaptation driven by an a posteriori error estimate for higher-order methods.

6.3 Assessment of MOESS Applied to Aerodynamic Flows

6.3.1 Assessment Procedure

We present numerical examples of applying MOESS to aerodynamic problems. Some of

the results have been presented in [155]. As a comparison, we also provide the results

obtained using the method based on fixed-fraction marking and the Mach number-based

anisotropy detection [156], a modification of the algorithm developed by Fidkowski [57]. The

fixed-fraction marking, which controls the size of the elements, is based on the DWR error

indicator described in Section 2.2. The anisotropy request is driven by the p+ 1 derivative

of the Mach number estimated by approximately solving the flow problem in the p-enriched

space, Vh,p+1. Note that while the sizing decision accounts for the influence of the adjoint,

the anisotropy decision is driven by a single scalar characterization of the primal solution.

This approach will be referred to as the fixed-fraction Mach-anisotropy method, or FFMA,

from here on.

Throughout this section, we will assess the performance of the adaptive procedures by

measuring the true output error rather than the error estimate. As the analytical solutions

to the problems are not available, we approximate the true output by computing the solution

in a space that is much richer than the solutions being compared by increasing the number

of degrees of freedom and, in some cases, the polynomial order. To assess the quality of the

reference solution, we first adaptively solve the problem of interest in the enriched space

using both the MOESS and the FFMA approach. If the error computed with respect to the

two reference solutions is indistinguishable, then the reference solution is deemed accurate

enough for the purpose of the assessment.
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Figure 6-6: Drag error convergence for the laminar flat plate problem.

6.3.2 Laminar Flat Plate

We first consider laminar flow over a flat plate. The problem is solved on a rectangular

domain of size [−0.5, 1.0]× [0, 0.5] with the plate spanning from x = 0.0 to 1.0. The inflow

Mach number is M∞ = 0.2, the Reynolds number is ReL = 105, and the adiabatic no-slip

condition is specified along the plate. The output of interest is the drag on the plate. This

canonical problem tests ability of MOESS to produce anisotropic elements in the boundary

layer and to control the effect of the leading edge singularity.

Figure 6-6 shows the convergence of the drag error for the p = 1 and p = 2 discretizations

adapted using MOESS and FFMA. The reference solution is obtained on an adapted p = 3,

dof = 20,000 mesh. The convergence history shows that, for the p = 1 discretization, the

MOESS produces four to five times smaller drag error than FFMA for a given problem

size. Another interpretation is that MOESS using 500 dof achieves a similar level of error

as FFMA using 2,000 dof for p = 1. For the p = 2 discretization, MOESS performs

significantly better than FFMA on coarse meshes (e.g. dof = 250); the improvement means

that MOESS achieves the 0.5% error range (≈ 2 × 10−5cd) using approximately half the

degrees of freedom of FFMA. In the asymptotic range, the p = 2 performances of the two

adaptive schemes are similar.

The difference in the output accuracy for the p = 1 case is due to the difference in the

anisotropy of the elements used to resolve the boundary layer, as shown in Figure 6-7. When

the Mach-based anisotropy detection is employed, the anisotropy of elements on the wall is

limited, as the Mach profile has an inflection point at the wall. Having a vanishing second

derivative, the Mach-anisotropy detection employs elements with relatively small aspect
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Figure 6-7: Close views of the meshes for the laminar flat plate problem. (p = 1, dof =
2, 000)

ratios on the wall. MOESS employs elements with much higher aspect ratios, resulting in

a smaller error for p = 1. The difference between the adaptation strategies is smaller for

p = 2, as the third derivative of the Mach profile is large near the wall and FFMA employs

highly anisotropic elements on the wall.

This simple case demonstrates a problem of using a priori knowledge of the solution

behavior to control anisotropy. While the Mach number has been found to be a good indi-

cator for making the anisotropy decision in previous works [57, 72, 148], there are instances

where the indicator fails to capture the anisotropic behavior of the flow. The example also

demonstrates that the ability of the Mach-anisotropy to produce the required anisotropy is

dependent on the discretization order. In particular, while the inappropriate aspect ratio

that results from the presence of inflection points in the Mach number is a known problem

for second-order discretizations [39], there could be instances where vanishing higher-order

derivatives can lead to inappropriate aspect ratio for higher-order discretizations. In con-

trast, MOESS driven by the a posteriori error estimates from the local solves automatically

considers the behaviors of all state variables, providing robust anisotropy decisions for

arbitrary-order discretization of the system of equations.

6.3.3 RAE 2822 Transonic RANS-SA

We consider turbulent transonic flow over an RAE 2822 airfoil. The freestream Mach

number is M∞ = 0.734, the Reynolds number is Rec = 6.5 × 106, and the angle of attack
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Figure 6-8: Drag error convergence for the RAE 2822 transonic RANS-SA problem.

is α = 2.79◦. Each mesh consists of cubic (q = 3) elements representing the geometry, and

the farfield is 10,000 chord lengths away. The output of interest is the drag on the airfoil.

This standard RANS test case requires accurate computation of the shock-boundary layer

interaction and also exhibits multiple singular and singularly perturbed features.

Figure 6-8 shows the drag output convergence history. The reference solution is obtained

using the adaptive p = 3, dof = 250,000 discretization. For the p = 1 discretization,

MOESS outperforms FFMA for all numbers of degrees of freedom considered. In particular,

MOESS requires less than 20,000 degrees of freedom to achieve the drag error of less than

1 count. For the p = 2 discretization, MOESS outperforms FFMA for dof ≥ 30, 000. At

dof = 20, 000, neither FFMA nor MOESS is capable of producing a well-resolved p = 2

solution; however, once all relevant solution features are sufficiently resolved, the p = 2

discretization becomes very effective. For either adaptation strategy, the error level at

which the p = 2 discretization becomes more efficient than the p = 1 discretization is

approximately 0.5 counts. For a higher-fidelity simulation requiring a tighter error tolerance,

the p = 2 discretization is clearly more effective.

The difference in the drag error convergence between MOESS and FFMA can be un-

derstood by comparing the meshes generated by the two adaptation strategies; the adapted

meshes for the p = 2, dof = 60, 000 discretizations are shown in Figure 6-9. In particu-

lar, recalling that the output error is a product of the primal residual and the dual error,

we can compare the primal and the dual features targeted by the strategies. Both strate-

gies target the boundary layers using highly anisotropic elements that have the aspect ratio

approaching 103. Similarly, the shock is resolved using anisotropic elements. The key differ-
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(c) mesh (FFMA) (d) mesh (MOESS)

Figure 6-9: The Mach number, the mass adjoint, and the meshes for the RAE 2822 transonic
RANS-SA problem. (p = 2, dof = 60, 000)

ence between the methods is the choice of elements used to resolve the stagnation streamline

and adjoint features in the sonic pocket. Because the primal solution, and the Mach number

in particular, does not exhibit anisotropic behavior along the stagnation streamline, Mach-

anisotropy detection chooses isotropic elements along the stagnation streamline. However,

the adjoint solution exhibits a wake-like feature along the stagnation streamline (of the pri-

mal solution), as shown in Figure 6-9(b). MOESS employs anisotropic elements to resolve

this feature, as the local a posteriori error estimates automatically accounts for both the

primal and adjoint solution behaviors.

The regularized cp and cf distributions computed using the p = 1 and p = 2 discretiza-

tions on dof = 30, 000, 40, 000, and 60, 000 meshes obtained using MOESS are shown in

Figure 6-10. The regularization of the surface quantity distributions is performed using

the procedure described in Appendix C. The cp distribution is essentially grid converged

at dof = 30, 000 for both p = 1 and p = 2, and the all curves essentially lie on top of

each other. The regularized cf distributions computed on the p = 1 meshes exhibit some

fluctuations, even at 60, 000 degrees of freedom. The p = 2, dof = 30, 000 result slightly
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Figure 6-10: The regularized cp and cf distributions for the transonic RAE 2822 RANS-SA
problem computed on p = 1 and p = 2 adapted meshes obtained using MOESS.

deviates from those obtained on the higher-dof meshes, especially in the leading edge re-

gion. The distribution computed on the p = 2, dof = 40, 000 and dof = 60, 000 meshes are

indistinguishable for practical purposes.

6.3.4 NACA 0006 Euler Supersonic Shock Propagation

We consider a problem of predicting the sonic boom generated by supersonic flow over a

NACA 0006 airfoil. The freestream Mach number is M∞ = 2.0, and the airfoil is at 0◦

angle of attack. The Euler equations are solved using a p = 2 DG discretization, and the

mesh is adapted for the pressure output 50 chord lengths below the airfoil. In particular,
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Figure 6-11: Pressure line output error convergence for the NACA 0006 Euler shock prop-
agation problem (p = 2).

the output functional is given by

J (u) =

∫
Γline

(p(u)− p∞)2ds,

where p(u) is the pressure, p∞ is the freestream pressure, and Γline is the line along which

the pressure perturbation is measured. Meshes consist of cubic elements, and the farfield is

200 chord lengths away. This problem tests the ability of the adaptive schemes to propagate

singular features over a long distance.

Figure 6-11 shows the convergence of the pressure line integral error. The reference

solution is computed on an adaptive p = 2 discretization with 120,000 dof. MOESS shows

approximately an order of magnitude improvement in the pressure line error compared to

FFMA for the entire range of degrees of freedom considered.

To understand the difference in the pressure line errors, we compare the meshes ob-

tained by MOESS and FFMA, shown in Figure 6-12. As expected, both meshes employ

highly anisotropic elements to resolve the shock formed in front of the airfoil and the shock

emanating from the trailing edge.

The FFMA method uses anisotropic elements in the flow direction behind the trailing

shock, which does not seem to be appropriate for this flow. These elements are generated

due to negative interaction between the solver and the adaptation algorithm. First, the

numerical solution through the shock experiences O(h) noise, producing an artificial varia-

tion in the flow quantities along the shock direction [19]. Second, this variation is convected

downstream with little dissipation due to the use of the high-order method, creating stream-
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(a) pressure perturbation (p− p∞)/p∞ (b) mass adjoint (pressure line)

(c) mesh (FFMA) (d) mesh (MOESS)

(e) mesh near field (FFMA) (f) mesh near field (MOESS)

(g) mesh line zoom (FFMA) (h) mesh line zoom (MOESS)

Figure 6-12: The pressure, the mass adjoint, and the meshes for the NACA 0006 Euler
supersonic shock propagation problem. The pressure line is depicted in a red line. (p = 2,
dof = 40, 000)
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wise streaks. Third, the anisotropy detection based on the higher-order derivative of the

Mach number captures these artificial streaks, requesting elements that are stretched in the

stream-wise direction. Finally, the process worsens in the next adaptation iteration, as the

stream-wise refinement of the elements results in generation of even smaller streaks. This

case highlights the shortcomings of the anisotropy detection algorithm based on a priori

convergence behavior of the solution, especially when a high-order discretization is applied

to aerodynamic flows with low regularity.

Contrary to the FFMA method, MOESS produces large, low aspect ratio elements

downstream of the second shock. The method clearly wastes no degrees of freedom in

this region. Driven by the anisotropy in the adjoint solution, the method employs highly

anisotropic elements aligned with the shock direction in the region between the leading and

trailing shocks. The close up of the mesh near the airfoil shows that the method resolves

complex adjoint features using anisotropic elements. Unlike the Mach-based anisotropy

detection, the a posteriori error estimate based on local solves automatically captures the

influence of the solution regularity to the local error. This in turn results in a more robust

assessment of required anisotropies and generation of more efficient meshes, when a high-

order discretization is applied to flows with limited regularity.

6.3.5 Multi-Element Supercritical 8 Transonic RANS-SA

We consider transonic turbulent flow over a multi-element supercritical airfoil (MSC8).

The original geometry with sharp trailing edges, provided by Drela [53], is modified to have

blunt trailing edges to facilitate adaptive meshing [105]. The freestream Mach number is

M∞ = 0.775, the Reynolds number is Rec = 2× 107, and the angle of attack is α = −0.7◦.

The farfield is 200 chord lengths away. The output of interest is the combined drag on

the two elements. The solution to the problem is shown in Figure 6-13. This flow exhibits

complex interactions between the main element and the flap; accurately capturing the two

shocks and their interaction with the wake and the stagnation streamline present challenges

in this case.

The Initial Transition

Making the initial transition from an isotropic mesh, shown in Figure 6-14, to a mesh

suitable for RANS calculation is particularly challenging for this problem. Note that the
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(a) Mach (b) mass adjoint (drag)

Figure 6-13: The Mach number distribution and the mass adjoint for the MSC8 transonic
RANS-SA problem.

Figure 6-14: The initial mesh for the MSC8 transonic RANS-SA problem.

initial mesh has the first boundary spacing of y+ ≈ 104, making it unsuitable for RANS

simulation. To illustrate the challenge, we consider the transition for the p = 1 discretization

using 40,000 degrees of freedom.

The drag convergence histories for the transition stage are shown in Figure 6-15. The

reference solution is computed on an adapted p = 2, dof = 250, 000 mesh. The figure

shows that the drag computed using FFMA does not approach the reference value, even

though MOESS shows that the p = 1, dof = 40, 000 discretization is in fact sufficient to

approximate the drag to within 2 counts. To understand the cause of the failed adaptation,

let us study the fifth mesh generated by the FFMA algorithm, shown in Figure 6-16, which

is representative of the other meshes generated by the adaptive scheme. Because the flow

is supersonic over the upper surface of the airfoil, any small non-smooth perturbation from

the underresolved boundary layer can induce a shock over the upper surface. Note also

that the boundary layer for this high Reynolds number flow is completely underresolved at

this early stage of adaptation, and the presence of the boundary layer cannot be detected

through the variation in the Mach number. As the artificial shocks are observable while the
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Figure 6-15: Drag adaptation histories for the p = 1, dof = 40, 000 isotropic-to-RANS mesh
transition test.

(a) Mach (b) mesh

Figure 6-16: The Mach number distribution and the mesh for the fifth adaptation iteration
starting from the isotropic mesh in Figure 6-14 using FFMA (p = 1, dof = 40, 000).

boundary layer is not, the FFMA scheme attempts to resolve the features above the upper

surface using anisotropic elements aligned with the artificial shocks — elements aligned

in the direction perpendicular to the boundary layer. Due to the use of inappropriate

anisotropy, FFMA is unable to detect and resolve the boundary layer, and the transition

to a RANS mesh fails even after 30 adaptation iterations.

Figure 6-15 shows that MOESS makes a successful transition from the isotropic mesh to

a RANS mesh, converging to the reference solution in about 15 adaptation iterations. The

mesh obtained after five adaptation iterations is shown in Figure 6-17(a). Similar to the

fifth FFMA-adapted mesh, MOESS also suffers from the presence of the artificial shocks

on the suction side and uses shock-aligned anisotropic elements away from the boundary.

However, right on the boundary, the method employs boundary-aligned anisotropic ele-

ments. With five more adaptation iterations, MOESS generates a RANS mesh shown in

Figure 6-17(b). The boundary layer is resolved using highly anisotropic elements, the ar-

tificial shocks disappear, and the drag output rapidly approaches the reference value. To
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(a) 5th adapted mesh (b) 10th adapted mesh

Figure 6-17: The adapted meshes starting from the isotropic mesh in Figure 6-14 using
MOESS.

illustrate the reliability of this transition, the drag convergence histories starting from the

fifth and tenth FFMA-adapted meshes are also shown in Figure 6-15. For both cases, the

drag value approaches the reference value in about 15 adaptation iterations.

Our experience suggests that MOESS can infer the presence of an anisotropic feature

through DWR-based local sampling even if the feature is significantly underresolved. In

other words, even on a coarse mesh on which the p+ 1 solution reconstruction — and the

subsequent p+ 1-derivative-based anisotropy detection — is unreliable, the sampling-based

anisotropy detection appears to behave correctly. Thus, MOESS is more robust than FFMA

in the presence of underresolved features.

Drag Error Convergence Results

Figure 6-18 shows the convergence of the drag error for FFMA and MOESS. As FFMA

is incapable of making an isotropic-to-RANS mesh transition, the initial RANS mesh for

FFMA is constructed by performing several FFMA adaptation iterations starting from a

RANS mesh prepared using MOESS. For both the p = 1 and p = 2 discretizations, MOESS

in general achieves lower error than FFMA for a given number of degrees of freedom. In

particular, significant improvement is observed for the low-dof p = 2 discretizations, making

the p = 2 discretization competitive against the p = 1 discretization for simulations using

as few as 40,000 degrees of freedom. Thus, MOESS is not only more robust in isotropic-to-

RANS mesh transition but also more efficient than FFMA for this complex, multi-element,

multi-shock problem.

Figure 6-19(a) shows the p = 2, dof = 120, 000 meshes generated by the FFMA method.

The mesh features highly anisotropic elements in the boundary layer regions and also in the

shocks. The stagnation streamlines emanating from the main element and the flap elements
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Figure 6-18: Drag error convergence for the MSC8 Transonic RANS-SA problem.

are both resolved using isotropic elements, resulting in a large number of elements employed

to resolve these features.

Figure 6-19(b) shows the p = 2, dof = 120, 000 mesh generated by MOESS. In addition

to the boundary layers and the shocks, anisotropic elements are employed to resolve the

stagnation streamlines. In particular, the effect of the shock on the lower surface of the

main element is effectively propagated downstream toward the flap element. The efficient

resolution of adjoint features appears to have a larger impact on the output quality for this

complex multi-element airfoil case than in the isolated RAE 2822 case.

The regularized cp and cf distributions produced by the adaptive p = 1 and p = 2

discretizations using MOESS are shown in Figure 6-20. As in the transonic RAE 2822 case,

the regularization of the surface quantity distributions is performed using the procedure

described in Appendix C. The distributions show rapid variations in the force coefficients

across the shocks. Similar to the force distributions for the RAE 2822 case, the cp distribu-

tion converges quicker than the cf distribution. All cp distributions shown are essentially

grid converged. On the other hand, the cf distribution for the p = 1 discretization is noisy

even on the dof = 120, 000 mesh, which achieves the drag error of less than 0.1 counts. The

p = 2, dof = 60, 000 mesh, which achieves a similar cd error, produces a much smoother cf

distribution, providing sufficient resolution for qualitative assessment of the surface quantity

distribution for practical engineering purposes.
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(a) Fixed-Fraction Mach-Anisotropy

(b) MOESS

Figure 6-19: Drag-adapted meshes for the transonic MSC8 RANS-SA problem. For each
subfigure: overview (top left); main-element shock (top right); main-element leading edge
(bottom left); and flap-element (bottom right). (p = 2, dof = 120, 000)
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Figure 6-20: The cp and cf distributions for the transonic MSC8 RANS-SA problem com-
puted on adapted meshes obtained using MOESS.
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Figure 6-21: The Mach number isosurface, Mach number slices, and the streamlines for the
delta wing case.

6.3.6 Laminar Flow over a Delta Wing

As the final case, we consider laminar flow over a delta wing at a high angle of attack, the

case originally considered by Leicht and Hartmann [93] as a part of the ADIGMA project.

The delta wing has a sharp leading edge and a blunt trailing edge. The freestream Mach

number is M∞ = 0.3, the angle of attack is α = 12.5◦, and the Reynolds number based on

the root chord is Recr = 4000. The viscosity is assumed to be constant and the Prandtl

number is set to 0.72. Isothermal no-slip boundary condition with the wall temperature

equal to the freestream condition is imposed on the wing.

The Mach number distribution and streamlines of the flow around the delta wing are

shown in Figure 6-21. The flow rolls up over the sharp leading edge and creates large

vortices on the upper surface of the wing. Both the singularity along the leading edge and

the smooth vortices on the upper surface must be captured to accurately compute the lift

and drag on the wing. The reference values of the drag and lift coefficients computed for

the ADIGMA project are CD = 0.1658 and CL = 0.347 [93].

Figure 6-22 shows the convergence of the drag coefficient using several different methods.

The “HOW mesh” results are obtained on a series of “best-practice” meshes prepared by

NLR for the 1st International Workshop on High-Order CFD Methods [152]. The drag

values are taken from those reported by the University of Michigan group. The “L&H”

corresponds to the results reported by Leicht and Hartmann in [93] using their hexahedron-

based, anisotropic hierarchical subdivision adaptation. The “MOESS” results are generated

by applying the MOESS algorithm starting from an initial mesh consists of only 26 elements.
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Figure 6-22: Drag error convergence for the laminar delta wing case. “HOW mesh” are the
high-order workshop meshes prepared by NLR for the High-Order Workshop [152]. “L&H”
is the result reported by Leicht and Hartmann using their hexahedron-based hierarchical
subdivision strategy [93].

In fact, as shown in Figure 6-23(a), the initial mesh uses a single face of a tetrahedron to

cover the entire upper surface of the delta wing.

Due to the presence of multiple geometry-induced singularities, both the p = 1 and

p = 2 discretizations achieve the same low convergence on a priori generated HOW meshes.

In particular, the benefit of higher-order discretization is not realized on this family of

meshes. MOESS significantly improves the quality of the drag prediction. For the p = 1

discretization, MOESS produces a family of meshes that are more efficient than the meshes

generated a priori or those generated through hexahedron-based, anisotropic hierarchical

subdivision. Furthermore, MOESS significantly improves the performance of the p = 2 dis-

cretization, reducing the number of degrees of freedom required to achieve 10 drag counts

of error by over an order of magnitude. For a higher-fidelity simulation requiring a tighter

error tolerance, the adaptation achieves more drastic improvement in the error-to-dof ef-

ficiency. The higher-efficiency is achieved through aggressive mesh refinement toward the

geometric singularities, as evident from the meshes shown in Figure 6-23(b).

6.3.7 Computational Cost

Let us make a few remarks regarding the computational cost of the adaptation process. To

analyze the computational cost, we decompose the time for a single adaptation cycle into:

Primal solve: the time for solving the primal equation (i.e. the flow equation)
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(a) initial mesh (b) p = 2, dof = 160, 000 adapted mesh

Figure 6-23: The 26-element initial mesh and the p = 2, dof = 160, 000 adapted mesh. The
symmetry plane is shown in gray.

Dual solve: the time to obtain the p+ 1 degree surrogate solution to the dual problem

Adapt (FFMA): the time to perform 10 Newton iterations of p + 1 degree primal solve

to construct an approximate p+ 1 derivative

Adapt (MOESS): the time to sample local errors, synthesize the errors, and optimize the

surrogate error model

In the context of output error control, “primal solve” is the cost of computing the output,

“dual solve” is the cost of endowing the output with an error estimate, and “adapt” is the

cost of controlling and improving the output error in the next solve. An effective adaptation

algorithm must keep the cost of error estimation and control a fraction of the flow solve.

The first row of Table 6.1 shows a timing breakdown for the NACA 0006 Euler shock

propagation problem considered in Section 6.3.4. Both FFMA and MOESS use the same

p = 2, dof = 20, 000 mesh. For this case with a small number of degrees of freedom,

computing the dual surrogate solution and constructing an error estimate requires 17%

of the flow solve time. For FFMA, the additional cost of constructing a p + 1 derivative

approximation is 50% of the flow solve. For MOESS, the additional adaptation cost is 43%

of the flow solve, the majority of which stems from the local solves. For both FFMA and

MOESS, the additional cost for error estimation and control is a fraction of flow solve, even

for this relatively small case. Moreover, MOESS is not only more efficient than FFMA

in terms of error-per-dof (as shown in Section 6.3.4) but also slightly faster in terms of

timing-per-dof.
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Case Primal (p) Dual (p+ 1) FFMA Adapt MOESS Adapt

NACA 0006 Euler shock
1.000 0.174 0.495 0.431

(p = 2, dof = 20000)

RAE 2822 transonic RANS
1.000 0.092 0.157 0.072

(p = 2, dof = 60000)

Table 6.1: Timing breakdown for a single adaptation cycle normalized by the primal solve
time.

As the second example, we consider a more complex flow: the RAE 2822 transonic RANS

case considered in Section 6.3.3. The second row of Table 6.1 shows the timing breakdown

on a p = 2, dof = 60, 000 mesh. Due to the increased complexity of the problem, the

nonlinear primal problem is harder to converge, and the relative cost of solving the dual

problem, which is inherently linear, decreases to about 9% of the flow solve. Moreover, the

local sampling cost for MOESS decreases to 7% of the flow solve cost. This decrease is

attributed to two factors. First, even though RANS equations are highly nonlinear, each

element-wise localized problem can still be solved in a few Newton iterations for most of

the cases. Second, the time for the local solves scales linearly with the number of elements,

whereas the cost of the global linear solve scales superlinearly. As a result, the relative

cost of the adaptation stage decreases with the problem complexity. We also note that the

anisotropy detection by p+ 1 Mach derivative reconstruction requires 16% of the flow solve

time, compared to the 7% of MOESS. Again, MOESS is not only more accurate (as shown

in Section 6.3.3) but also faster than FFMA for a given number of degrees of freedom.

6.4 Conclusions

This chapter first quantified the importance of mesh adaptation for higher-order discretiza-

tions of aerodynamic flows. The numerical experiments demonstrated that uniform refine-

ment is insufficient to attain the benefits of higher-order discretizations even starting from

optimized coarse meshes. Strong mesh grading toward singular features are required to con-

trol the effect of the singularities, some of which are hard to identify a priori for complex

aerodynamic flows.

The second half of the chapter compared the performance of MOESS against state-of-

the-art adaptation algorithms. For a wide range of aerodynamic flows considered, MOESS

was at least as competitive as the method based on fixed-fraction marking and Mach-based
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anisotropy detection, and in some cases produced over an order of magnitude improvement

in the output error for a given number of degrees of freedom. In particular, as the method

stems from the first principle of output error minimization and is guided by the a posteri-

ori error behavior, it does not suffer from degradation of the performance when the flow

includes features that violate a priori assumptions of the error behavior, e.g. the approxi-

mation error is not governed by the p + 1 derivatives of the solution because the solution

is underresolved or singular. Moreover, numerical results demonstrated that, with proper

mesh selection, higher-order methods are more efficient than lower-order methods for high-

fidelity simulations. In terms of computational cost, the time spent on error estimation and

adaptation is a fraction of the flow solve time, and the relative cost decreases for complex

problems requiring a larger number of degrees of freedom.
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Chapter 7

Fully-Unstructured Space-Time

Adaptivity for Wave Propagation

Problems

7.1 Introduction

This chapter considers a unified space-time formulation of conservation laws and applica-

tion of our anisotropic adaptation algorithm, Mesh Optimization via Error Sampling and

Synthesis (MOESS), to space-time adaptivity. In particular, we consider fully-unstructured

space-time adaptivity for wave propagation problems governed by the wave equation and

the time-dependent Euler equations using the combination of the discontinuous Galerkin

(DG) method, the dual-weighted residual (DWR) error estimation, and MOESS. We then

assess the competitiveness of the space-time formulation through numerical experiments.

The idea of using a variational discretization in both spatial- and temporal-space has

been explored previously. In particular, Johnson [86] proposed the use of the discontinuous

Galerkin (DG) method for temporal integration, resulting in a class of variational integra-

tors that is suited for stiff ODEs and facilitates a posteriori error estimation and control.

The DG temporal integrator has been combined with the continuous Galerkin (CG) spatial

discretization for parabolic problems [54] and second-order hyperbolic problems [79, 87].

By casting the space-time problem within the variational framework, this so-called CG-DG

formulation (spatially-continuous, temporally discontinuous) allows rigorous a priori and a
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posteriori error analysis using general variational techniques, offers flexibility of using un-

structured space-time meshes, and permits discretization of complex or time-varying spatial

domains. Later, Bangerth and Rannacher combined the second-order accurate CG-DG fi-

nite element discretization of the wave equation with the dual-weighted residual (DWR)

error estimate and performed adaptation on tensor-product space-time meshes [15]. A

recent review of the CG-DG approach for the wave equation is provided in [14].

Due to the success of the DG discretization for steady-state conservation laws, a number

of researchers have considered the use of the DG discretization in space-time [17, 59, 142].

In particular, Hartmann combined the space-time DG formulation with the DWR error esti-

mate to perform output-based space-time adaptation on tensor-product space-time meshes

for the one-dimensional Burgers [69] and the Euler [70] equations; Süli and Houston also

considered the tensor-product space-time formulation for the one-dimensional wave equa-

tion [138]. Again, the rigor and flexibility of the variational formulation are thought to

warrant the higher computational cost of the DG time integrator compared to, say, an

implicit Runge-Kutta integrator.

It is also worth noting that (spatially) anisotropic adaptation has been successfully car-

ried out for unsteady problems on complex three-dimensional domains using simplex meshes.

In particular, Pain et al. [113] have considered anisotropic adaptivity for unsteady incom-

pressible fluid flows, and Alauzet et al. have combined their time-slab based anisotropic

mesh adaptation scheme with interpolation-based [4] and output-based [5] error estimate

to simulate shock wave propagation over complex domains.

In this work, we consider fully-unstructured space-time adaptivity for wave propagation

problems. In particular, we abandon the idea of “time-slab” used almost universally to solve

unsteady problems using time-marching techniques. Instead, we recast a time-dependent

problem in the d-dimensional space as a “steady-state” hyperbolic problem in the d + 1

dimensional space-time space. Specifically, the wave equation is recast as a system of d+ 1

first-order hyperbolic equations, and the Euler equation is recast in the d + 1 dimensional

space with the “temporal flux” in the first dimension. Such a unified space-time formu-

lation permits space-time meshes with arbitrarily-oriented anisotropic space-time simplex

elements, which in principle can efficiently track the characteristic waves in the space-time

plane. We realize this fully-unstructured space-time adaptivity by applying the MOESS

algorithm to wave propagation problems recast as a “steady-state” problem over the space-
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time domain. While the fully-unstructured space-time formulation requires solution of a

fully-coupled space-time system, numerical results demonstrate that an effective use of

space-time anisotropy can effectively reduce the dimensionality of the problem, warranting

the use of such a unified space-time formulation.

7.2 The Wave Equation and Discretization

Consider the wave equation

ρ
∂2φ

∂t2
−∇x · (κ∇xφ) = 0 in Ω× I,

with the homogeneous Neumann boundary condition

n̂ · κ∇xφ = 0 on ∂Ω× I

and initial conditions

φ = φ1
0

∂φ

∂t
= φ2

0 on Ω× [0].

Here, Ω ⊂ Rd is the spatial domain, ∂Ω is the spatial boundary, and I ∈ (0, T ] is the time

interval. The equation is characterized by a density ρ(x) ∈ R and a symmetric positive-

definite stiffness matrix κ(x) ∈ Rd×d. The initial condition is specified by φ1
0 and φ2

0. The

subscript x on ∇x signifies that the derivative is taken with respect to the spatial dimension.

To apply a DG discretization to the wave equation, we reformulate the equation as a

system of hyperbolic conservation laws, i.e.

∂

∂t
(ρw)−∇x · (κq) = 0

∂q

∂t
−∇xw = 0 in Ω× I,

where w(x) ∈ R, and q(x) ∈ Rd is an auxiliary variable. The homogeneous Neumann
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boundary condition becomes

n̂ · κq = 0 on ∂Ω× I,

and the initial conditions are

w = w0

q = q0 on Ω× [0].

We will denote our state by u, i.e. u = (w, qT )T . This hyperbolic form arises naturally in,

for example, acoustics, in which w is the pressure and q is the particle velocity, or in shallow

water modeling, in which w is the perturbed height and q is the fluid velocity.

In order to realize fully-unstructured space-time adaptivity in a straightforward manner,

we will reinterpret the time-dependent hyperbolic conservation law as a “steady-state” con-

servation law by treating the temporal dimension as the 0-th dimension. The conservation

law can be concisely written as

d∑
i=0

∂

∂xi
Fconv
i (u, x) = 0 in Ω× I,

where

Fconv
0 (u, x) =

 ρw

q

 and Fconv
i (u, x) = −

 κijqj

êiw

 i = 1, . . . , d,

and êi ∈ Rd is a unit vector with 1 in the i-th entry and 0 elsewhere. Appropriate “bound-

ary” conditions, which now includes the initial conditions, are imposed on the space-time

boundaries.

7.3 Energy Error Estimate

This section develops an energy error estimate that is suitable for capturing the entire

wave behavior as oppose to a specific output quantity. The formulation closely follows that

recently used by Fidkowski and Roe [60] to develop an “entropy” error estimate in the

context of compressible flows.
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Because the wave equation written in the hyperbolic form is symmetrizable, it possesses

an energy pair. Let us define the energy as

U =
1

2
ρw2 +

1

2
qTκq,

with the associated energy flux

Fi = −κijwqj .

The energy pair satisfies

∂U

∂t
+∇x · F = 0.

Integrating the energy equation over Ω× (0, t] for some t ∈ I, we observe

∫ t

0

∫
Ω

[
∂U

∂t
+∇x · F

]
dxdt =

[∫
Ω
Udx

]t
t=0

+
���

���
���:0∫ t

0

∫
∂Ω
n̂ · Fdxdt = 0,

where the boundary flux vanishes as n̂ · F = −niκijwqj = 0 on ∂Ω due to the homogeneous

Neumann boundary condition. In other words, the energy is conserved and

∫
Ω
Udx

∣∣∣∣
t=t′

=

∫
Ω
Udx

∣∣∣∣
t=0

, ∀t′ ∈ I.

By defining the output of interest as

JE = J E(u) =

∫
Ω
U(u)dx

∣∣∣∣
t=T

=

∫
Ω

(
1

2
ρw2 +

1

2
qTκq

)
dx

∣∣∣∣
t=T

,

we can effectively identify the regions of spurious energy generation or dissipation.

Moreover, note that the adjoint solution (ψw, ψq) to this output is governed by

ρ
∂ψw

∂t
−∇x · ψq = 0

∂ψqi
∂t
− κT∇xψw = 0 in Ω× I
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with the boundary condition n̂ · ψq = 0 and the terminal conditions

ψw = w and ψq = κq on Ω× [T ].

In particular, the variables (ψw, ψ̃q) with ψ̃q = κ−1ψq is identical to (w, q) as they are

governed by the identical set of equations. Thus, the adjoint (ψw, ψq) can be computed

from the primal variables using simple algebraic relations, ψw = w and ψq = κq. This

error indicator, which targets the regions of spurious energy generation, does not require

a backward adjoint solve, which is required for a general output. In the context of mesh

adaptation, the error indicator is useful for obtaining a “well-rounded” mesh that evenly

resolves all solution features.

7.4 Results: The Wave Equation

7.4.1 Assessment Procedure

To assess the performance of space-time adaptive schemes for the wave equation, we con-

sider permutations of two error estimators (energy or output) and two adaptation mechanics

(isotropic or anisotropic). While all combinations of error estimates and adaptation mechan-

ics are implemented using the unified space-time formulation, each combination is aimed to

represent performance of different adaptation strategies used in practice. Namely:

• Uniform Refinement: Corresponds to solving the wave equation using a fixed mesh

with a fixed time stepping.

• Isotropic Energy-Based Adaptation: Corresponds to solving the wave equation

using an adaptive Rothe method — a traditional time-slab based time-marching solver

that incorporates different spatial mesh in each time slab — with an energy-based error

indicator. The main advantage of this method is that it does not require an adjoint

calculation. Thus, adaptation could be performed in a single-pass time-dependent

solve (assuming the target local error level is fixed a priori). In the space-time plane,

this method produce isotropic elements as it does not permit element faces that cuts

through space-time.

• Isotropic Output-Based Adaptation: Corresponds to solving the wave equation
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using an adaptive Rothe method with an adjoint-based error indicator. The strategy

requires multiple time-dependent primal and adjoint solves. An efficient implemen-

tation for a large-scale (nonlinear) problem requires a well-designed checkpointing

scheme. As in the energy-based Rothe method, isotropic elements are produced in

the space-time plane as the element faces must align with the axes. Bangerth et

al. have recently performed a comparison of energy-based and output-based error

estimates for an adaptive Rothe method [14].

• Anisotropic Energy-Based Adaptation: To our knowledge, this strategy has not

been used in practice. The method requires a fully-unstructured (d+1)-dimensional

space-time mesh. It is useful for generating a “well-rounded” mesh for resolving all

features of the wave.

• Anisotropic Output-Based Adaptation: This strategy also has not been used

in practice. The method requires a fully-unstructured (d+1)-dimensional space-time

mesh. The additional burden of performing the adjoint solve in the fully-unstructured

context is considerably smaller than in a time-marching scheme, as the space-time

anisotropic algorithms do not take advantage of hyperbolicity of the equation in the

temporal dimension to start with.

Let us now consider two wave propagation problems. The first one is a verification

case in one spatial dimension. The second problem is a demonstration case in two spatial

dimensions. For each problem, we measure the energy and output errors against the total

number of space-time degrees of freedom. Note that the total space-time degrees of freedom

may not be representative of the computational cost, as solving a fully-unstructured (i.e.

fully-coupled) space-time problem with N degrees of freedom is arguably more expensive

than solving the problem using a time-marching formulation with nstep time steps, each step

containing N/nstep degrees of freedom. This is particularly true in the absence of an effi-

cient preconditioner for the fully-unstructured space-time formulation. Thus, the following

error-to-dof results should not be interpreted as an absolute comparison of computational

efficiencies, but merely as one way of comparing the methods.
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(a) primal solution (b) dual solution for JO

Figure 7-1: The first component of the primal and dual solutions to the 1+1d wave problem.

7.4.2 1+1d Wave Propagation

We consider a 1+1d wave propagation problem similar to the one considered by Bangerth

and Rannacher [15]. The computational domain is Ω× I = [−1, 1]× (0, 2.7], and the initial

condition is given by

w(x, 0) = exp

(
−
(x
s

)2
)

and q(x, 0) = 0, (7.1)

with a characteristic length s = 0.05. Homogeneous Neumann boundary condition is im-

posed everywhere. The output of interest is a local solution value at the final time, repre-

sented as a Gaussian weighted integral, i.e.

JO = J O(u) =

∫
Ω
g(x)w(x, T )dx with g(x) = exp

(
−
(
x+ 0.65

0.025

)2
)
.

The output captures a part of one of the branches of the wave. The primal and dual

solutions to the problem are shown in Figure 7-1.

Figure 7-2 shows the convergence of the energy error and the output error using the p = 2

DG discretization with five adaptive strategies discussed in Section 7.4.1. The reference

energy and output values are obtained by solving the wave equation using the method of

characteristics and by evaluating simple one-dimensional integrals at the final time.

Figure 7-2(a) shows that the energy-based adaptation performs significantly better than
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Figure 7-2: Energy and output error convergence for the 1+1d wave problem. (p = 2)

uniform refinement in controlling the energy error. Using the energy-based isotropic re-

finement reduces the degrees of freedom required to achieve the fractional error level of

10−3 by approximately a factor of eight compared to uniform refinement. Allowing fully-

unstructured space-time anisotropy further reduces the degrees of freedom required to

achieve the error level by another factor of eight compared to the isotropic adaptation.

The meshes in Figure 7-3 shows that energy-based adaptation targets both branches of the

wave in space-time. With fully-unstructured space-time anisotropy, the algorithm convects

the waves efficiently using a very few space-time elements that align with the direction of a

constant phase (for example from t = 0.1 to t = 0.9 or from t = 1.1 to t = 1.9). Thus, the

anisotropic adaptation effectively reduces the dimensionality of the problem from two to

one. When the two waves with a different wave phase interfere with each other (including

the boundary reflection), the isotropic elements are employed because there is no dominant

characteristic direction.

Figure 7-2(b) shows the convergence of the output error. Again, the adaptive strategies

require significantly fewer degrees of freedom than uniform refinement. Moreover, both

anisotropic adaptation strategies outperform the isotropic strategies. This, from the in-

terpretation provided in Section 7.4.1, means that fully-unstructured space-time mesh is

significantly more effective for this class of problem than adaptive Rothe methods. The

output-adapted meshes shown in Figure 7-3 targets only one branch of the wave that is

relevant to evaluating the output. The combination of the output-based error estimate and

anisotropic adaptation reduces the degrees of freedom required to achieve the error level of
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(a) uniform (1800 elem) (b) energy, iso (2608 elem) (c) energy, ani (2235 elem)

(d) output, iso (2638 elem) (e) output, ani (1913 elem)

Figure 7-3: Adapted meshes for the 1+1d wave problem. (p = 2)

140



10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

scale length ratio, 1/s

|J
re

f

E
−

J
h

,p

E
|/
|J

re
f

E
|

 

 

1% error

0.1% error

uniform

energy iso.

energy ani.

(a) fixed dof (dof = 10, 000)

10
0

10
1

10
2

10
2

10
3

10
4

10
5

scale length ratio, 1/s

d
o

f

 

 

1.44

2.45

uniform

energy iso.

energy ani.

(b) fixed error (|JEref − JEh,p|/|JEh,p| = 0.01)

Figure 7-4: Scaling of the energy-error-to-dof efficiency with the characteristic length ratio,
1/s, for the 1+1d wave problem. (p = 2)

10−3 by over two orders of magnitude compared to uniform refinement. In fact, in order

to achieve the 10−3 relative error level, a uniform mesh with a fixed time stepping requires

approximately 230 spatial elements (or 700 spatial degrees of freedom) and 230 third-order

accurate temporal time steppings. On the other hand, output-based, anisotropic space-time

adaptation requires 3000 space-time degrees of freedom to achieve the same error level. That

is, the space-time anisotropic mesh requires the same order of space-time degrees of free-

dom as the spatial degrees of freedom for a uniform mesh, suggesting that the space-time

anisotropy has effectively reduced the dimensionality of the problem by one.

It is important to note that the advantage of fully-unstructured anisotropic space-time

adaptivity compared to isotropic adaptation or uniform refinement further increases as the

ratio of the propagation length to the spatial characteristic length of the wave increases.

For this problem, this ratio is controlled by the domain size (O(1)) and the characteristic

length of the initial perturbation, the variable s in Eq. (7.1). The variation in the energy

error against this scale length ratio for a fixed number of degrees of freedom is shown in

Figure 7-4(a). Each discretization contain approximately 10,000 degrees of freedom. The

energy error of both uniform refinement and isotropic adaptation increases rapidly with the

scale length ratio. On the other hand, the energy error of the fully-unstructured space-time

adaptation is much less sensitive to the increase in the range of scales. Figure 7-4(b) shows

the variation in the number of degrees of freedom required to achieve a fixed error tolerance

of approximately 1% fractional error. Again, the dimensionality reduction achieved by the
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space-time anisotropy makes the anisotropic adaptation much less sensitive to the variation

in the range of scales.

7.4.3 2+1d Wave Propagation

Let us consider a more practical problem in two spatial dimensions similar to the one consid-

ered in [15]. We consider wave propagation through a heterogeneous medium characterized

by density and stiffness distributions

ρ(x) = 1.0

κ(x) = 1.0 + 9.0

(
1

2
+

1

2
tanh

(
x1 − 0.2

0.01

))
.

The coefficient κ changes rapidly (but smoothly) from 1.0 to 10.0 along x1 = 0.2. The

initial condition is given by

w(x, 0) = exp

(
−x

2
1 + x2

2

s2

)
and q(x, 0) = 0,

with a characteristic length s = 0.05. Homogeneous Neumann boundary condition is im-

posed everywhere. The snapshots of the solution at several different times are shown in

Figure 7-5.

For this problem, we are interested in the time history of the solution at (x1, x2) =

(0.0, 0.75), marked by a red circle in Figure 7-5. To target this point (or a line in space-

time) using the output-based adaptation framework, we choose a regularized functional,

JO = J O(u) =

∫
I

∫
Ω
g(x)w2(x, t)dxdt where g(x) = exp

(
−x

2
1 + (x2 − 0.75)2

0.0252

)
,

as our output of interest.

Figure 7-6 shows the convergence of the energy and output error using the p = 2 DG

discretization with the five different adaptation strategies discussed in Section 7.4.1. The

reference energy and output function values are obtained from the energy- and output-

adapted solutions, respectively, at 500,000 degrees of freedom.

Figure 7-6(a) shows that, as in the 1+1d-case, the anisotropic, energy-based adapta-

tion outperforms other methods by a wide margin in preserving the total wave energy. In

fact, using just 240,000 space-time degrees of freedom, the method achieves the 1% rela-
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 7-5: Time slices of the solution to the 2+1d wave problem. The output evaluation
point is marked by a red circle. Note that the color scale for t = 0.0 is different from that
for all the others.

tive error level in energy. Comparing the energy-based anisotropic and isotropic adaptive

results, anisotropy appears to make an even larger difference for the 2+1d problem. Again,

this should be interpreted as a difference between an adaptive Rothe method and fully-

unstructured space-time adaptation. In 2+1d, anisotropic adaptation effectively resolves

anisotropic features in not only the space-time dimension but also within the spatial di-

mension. Note that it is difficult to realize arbitrary spatial anisotropy in a Rothe method

as the use of different unstructured meshes in each time slab necessitates solving a compli-

cated interfacing matching (i.e. arbitrary “hanging node”) problem across each time slab.

While an approximate solution to this interface-matching problem may suffice for a low-

order time integration, an accurate solution to the problem is necessary for a higher-order

time integration. Thus, we expect the isotropic adaptation results to be representative of

the performance one might get from an adaptive Rothe scheme in 2+1d.

Figure 7-6(b) shows that the combination of output-based error estimate and anisotropic

adaptation is very effective at evaluating the (regularized) point output. Comparing the

energy-based anisotropic adaptation and output-based isotropic adaptation, the addition
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Figure 7-6: Energy and output error convergence for the 2+1d wave propagation problem.
(p = 2)
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Figure 7-7: Solution history at x1 = 0.0, x2 = 0.75 for the 2+1d wave propagation problem.
(p = 2, dof ≈ 240000)

of space-time anisotropy is more important than the output-based error estimate for this

problem.

The solution history at (x1, x2) = (0, 0.75) is shown in Figure 7-7. At 240,000 degrees

of freedom, the uniform mesh is clearly insufficient for capturing the solution history. Of

the two isotropic adaptation strategies, the output-based adaptation performs considerably

better than energy-based adaptation. The trend agrees with the result reported in [15].

Consistent with the output error convergence result, the two anisotropic adaptation strate-

gies perform significantly better than the isotropic counterparts. In particular, the point

output from the output-based anisotropic adaptation appears to be grid converged for the
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 7-8: Time slices of the solution to the 2+1d wave problem obtained on the p = 2,
dof = 240, 000 output-adapted mesh. The output evaluation point is marked by a red circle.
(c.f. the reference solution in Figure 7-5)

purpose of plotting at this degrees of freedom.

Slices of the mesh at select time instances obtained using the p = 2, dof = 240, 000

output-based adaptation are shown in Figure 7-8. The output-based adaptation tracks

only the wave features relevant to accurately evaluating the solution at (x1, x2) = (0, 0.75)

(c.f. the reference solution in Figure 7-5). The slices of the solutions and crinkle cuts of the

meshes obtained using the two anisotropic adaptation strategies are shown in Figures 7-9.

The anisotropy in space-time planes is evident in the meshes.

7.5 Nonlinear Waves: Space-Time Euler Equations

Having shown the effectiveness of anisotropic space-time adaptation for linear wave propa-

gation problems, this section applies the anisotropic adaptation algorithm to nonlinear wave

propagation problems governed by the Euler equations. The Euler equations, reviewed in

Chapter 6, are recast as a system of “steady-state” conservation laws in d+ 1 dimensions,

where the conserved states constitutes the flux in the 0-th dimension. The Riemann solver
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(a) primal (b) dual
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Figure 7-9: The primal solution, the dual solution, and p = 2, dof = 240, 000 adapted
meshes. 2+1d view (top row); the x2 = 0 plane (middle row); and the x1 = 0 plane
(bottom row).
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is also modified accordingly to support arbitrarily-oriented space-time faces encountered in

the fully-unstructured space-time formulation.

The discontinuity regularization technique described in Section A.1.1 is used to regular-

ize the shocks. Unlike the steady state cases considered in Chapter 6, the unsteady Euler

equations exhibit both shocks and contact discontinuities. Distinguishing the two types of

discontinuties is important for accurate and robust simulations. While shocks are nonlinear

features that require nonlinear stabilization, contact discontinuities are linear and the stan-

dard DG method results in a stable discretization. In fact, unlike in a shock, the waves do

not coalesce in a contact discontinuity; thus, the dissipation must be minimized in order to

preserve the sharp contact discontinuity. The physical viscosity model automatically dis-

tinguishes shocks and contact discontinuities, as the viscous flux vanishes across a contact

discontinuity regardless of the value of the viscosity. However, we further use the jump in

the pressure as the shock switch kernel so that the viscosity itself is not added across a

contact discontinuity.

7.5.1 2+1d Vortex Convection

First, we consider convection of an isentropic vortex in two dimensions, which is similar to

the problem considered by Wang and Mavriplis [150]. The freestream condition is given by

ρ∞ = 1, u∞ = 0.5, v∞ = 0, and T∞ = 1. The convecting vortex centered at the origin is

produced by perturbing the freestream condition by

δu = − α

2π
x2 exp(1− r2)

δv =
α

2π
x1 exp(1− r2)

δT = −α
2(γ − 1)

16γπ2
exp(2(1− r2)),

where α = 4, r2 = x2
1+x2

2, and γ = 1.4 is the ratio of specific heats. The isentropic condition

specifies the density to be ρ = (T∞ + δT )1/(γ−1). The vortex convects at the speed of u∞

over the time interval [0, T ] with T = 20. Figure 7-10 shows the variation in the density

field over time.
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t = 0

t = 20

x2 = 0

Figure 7-10: The density field of the isentropic vortex convection problem. The solution at
t = 0 and t = 20 (left), and the space-time cut along x2 = 0 (right).

We consider the momentum perturbation at the final time as the output of interest, i.e.

J = J (u) =

∫
Ω

[
(ρ(x, T )u(x, T )− ρ∞u∞)2 + (ρ(x, T )v(x, T )− ρ∞v∞)2

]
dx.

The mass adjoint corresponding to the output is shown in Figure 7-11. The complexity of

the adjoint solution suggests that the relatively simple primal solution in fact results from

complex nonlinear interactions of multiple waves.

Figure 7-12 shows the convergence of the momentum-perturbation output for the p = 1,

p = 2, and p = 3 discretizations. Similar to the wave equation cases, the use of space-time

anisotropy significantly improves the quality of the output prediction for a given number

of space-time degrees of freedom. For this smooth problem, the output superconverges

as E ∼ h2p ∼ (dof)2p/(d+1) = (dof)2p/3 with uniform refinement, where d is the spatial

dimension. The result is consistent with the theory. On the other hand, for the range

of errors considered, the anisotropic refinement results in the output error converging as

E ∼ (dof)2p/d = (dof)p. In other words, the error-to-dof scaling is similar to that expected

for a 2d problem rather than a 2+1d problem. The result suggests that the use of space-

time anisotropy effectively reduces the dimensionality of the problem. The efficiency gain

for the fully-unstructured space-time formulation is expected to further increase with the

ratio of the convection length to the vortex core size, as observed for the wave equation in

Section 7.4.2.
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t = 0

t = 10

x2 = 0

Figure 7-11: The mass adjoint for the momentum perturbation output of the isentropic
vortex convection problem. The solution at t = 0 and t = 10 (left), and the space-time cut
along x2 = 0 (right).
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Figure 7-12: Convergence of the momentum-perturbation output for the isentropic vortex
convection problem.
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(a) 2+1d view (b) x2 = 0

Figure 7-13: Space-time adapted mesh for the isentropic vortex convection problem. (p = 2,
dof = 80, 000)

Figure 7-13 shows a typical space-time adapted mesh. As expected, the mesh is refined

only along the path traveled by the vortex. Note the use of highly anisotropic space-time

elements, particularly for t < 15.

7.5.2 1+1d Riemann Problem

Let us consider a simple Riemann problem in one spatial dimension, which is a slight

modification of Sod’s classical shock tube problem [136]. The problem is solved on a space-

time domain Ω× I = [−0.5, 0.5]× [0, 0.75]. The air is initially at rest with a pressure ratio

pR/pL = 2.5 and a temperature ratio TR/TL = 1. The space-time fields of the density

and the pressure are shown in Figure 7-14. The density field shows the shock, contact

discontinuity, and rarefaction waves emanating from the initial discontinuity. At t ≈ 0.6,

the reflected shock interacts with the contact discontinuity, creating two shocks and one

contact discontinuity. Our goal is to accurately capture the propagation and the interaction

of the waves using the space-time anisotropic adaptation.

For this problem, we consider two different outputs: the squared pressure and density

perturbations at the final time T , i.e.

Jρ = J ρ(u) =

∫
Ω
ρ2(u(x, T ))dx and Jp = J p(u) =

∫
Ω
p2(u(x, T ))dx.

Accurate prediction of the density output requires resolution of both the shocks and contact
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(a) density (b) pressure

Figure 7-14: Solution to the shock tube problem.
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(b) pressure output error

Figure 7-15: Convergence of the two outputs of the shock tube problem. (p = 2)

discontinuities, but the pressure output does not require resolution of the contact disconti-

nuities.

Figure 7-15 shows the convergence of the density and pressure outputs with the number

of degrees of freedom for the p = 2 discretization. The reference solution was obtained using

the adaptive p = 2, dof = 32, 000 discretization. When uniform refinement is employed,

both outputs converge at the rate of E ∼ h1 ∼ (dof)−1/2; a higher-order convergence is not

observed due to the presence of the discontinuities. Note that this convergence behavior

is different from that for the smooth problems in Section 7.4.2, in which the higher-order

convergence is eventually obtained in the asymptotic range.

The density-output-based anisotropic refinement produces meshes that target both the

shocks and contact discontinuities, as shown in Figure 7-16(a). The adaptation does not
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(a) density-adapted, anisotropic (b) pressure-adapted, anisotropic

Figure 7-16: Adapted meshes for the shock tube problem. (p = 2, dof = 10, 000)

target the rarefaction waves because the waves are effectively propagated using the higher-

order discretization. The anisotropic resolution of the discontinuties significantly improves

the convergence of the output quantities. Figure 7-15 shows that the density-based re-

finement results in the error convergence of approximately E ∼ h6 ∼ (dof)−3 for both

the density and pressure outputs. The observed convergence rate exceeds the theoretical

isotropic convergence rate using the p = 2 discretization for a smooth problem, h4. This is

likely because the discontinuities in this problem are lower-dimensional features, and the use

of anisotropy effectively reduced the dimensionality of the problem. The anisotropic refine-

ment reduces the degrees freedom required to achieve the fractional pressure output error

of 10−3 by a factor of 30. At a lower error level of 10−5, the anisotropic refinement reduces

the degrees of freedom requirement by a factor of approximately 4× 104. In fact, the 7,000

space-time degrees of freedom used by the anisotropic adaptation is smaller than the 17,000

spatial-only degrees of freedom that is expected to be required for the uniform refinement.

In other words, as observed in Section 7.4.2, the space-time anisotropy effectively reduces

the dimensionality of the problem by one.

As shown in Figure 7-16(a), the pressure-output-based anisotropic refinement produces

meshes that only targets the shocks. As the contact discontinuities are not targeted by the

adaptation, the density output does not converge rapidly, as shown in Figure 7-15. On the

other hand, the pressure output converges at the rate of (dof)−3.

Figure 7-17 shows the density and pressure distributions at t = 0.25 and t = 0.75.

The uniform refinement result is obtained on a 40 × 40, p = 2 mesh, which corresponds
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(b) pressure distribution at t = 0.25
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(c) density distribution at t = 0.75
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(d) pressure distribution at t = 0.75

Figure 7-17: The density and pressure distributions of the shock tube problem at two dif-
ferent time instances. The uniform mesh contains approximately 20, 000 degrees of freedom
whereas the adapted meshes contain approximately 10, 000 degrees of freedom.

to approximately 20,000 space-time degrees of freedom. At t = 0.25, the shock, contact

discontinuity, and rarefaction waves are all smeared due to the lack of resolution. At

t = 0.75, the contact discontinuity has further smeared due to the lack of the coalescing

effect. The density-adapted mesh produces sharp density and pressure profiles at both time

instances considered. The pressure-adapted mesh produces the pressure profiles that are

indistinguishable from those of the density-adapted mesh, but the density profile at t = 0.75

is inaccurate across the contact discontinuity.
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7.6 Conclusions

A unified treatment of the spatial and temporal dimensions leads to a straightforward

implementation of a fully-unstructured space-time anisotropic adaptive solver for the wave

equation and the Euler equations. While the addition of the temporal dimension may

appear costly, the numerical examples have demonstrated that an effective use of space-

time anisotropy could significantly reduce the computational cost. By aligning the element

anisotropy in the constant-phase direction, it appears that we can effectively reduce the

dimensionality of the problem by one. In particular, space-time anisotropy is beneficial for

problems exhibiting a wide range of scales. In higher spatial dimensions, the method also

exploits anisotropy within the spatial dimension.

In addition to the use of space-time anisotropy, the unified space-time formulation offers

a number of benefits compared to the traditional time-marching formulation. First, in the

context of output error control for nonlinear problems, the additional cost incurred in solving

the adjoint problem is significantly smaller for the space-time formulation, as the primal

solution over the entire time is available by construction. Thus, output-based adaptation can

be easily added; an efficient implementation of an adjoint solver in a typical time-marching

solver requires an effective checkpointing scheme. Second, at least conceptually, the space-

time formulation enables straightforward treatment of problems with moving boundaries

using high-order discretizations.

Our numerical results suggest that the space-time formulation may be competitive with

other existing adaptive schemes. We have estimated what might be possible with an adap-

tive Rothe method, which does not permit space-time oriented faces, using isotropic adapta-

tion. The inability to produce space-time anisotropy hinders the performance of the Rothe

method for wave propagation problems, whether energy-based or output-based error esti-

mate is used. We also note that it is difficult, particularly for a high-order time integrator,

to take advantage of arbitrary spatial anisotropy in the Rothe method as non-embedded

meshes would require interface matching problem across each time slab.

In order for the unified space-time formulation to become truly competitive for large-

scale wave propagation problems, a few challenges must be overcome. First, an precondi-

tioner that takes advantage of the hyperbolicity of the problem in the temporal dimension

must be developed. Without an efficient space-time preconditioner, the error-to-dof results
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presented in this chapter are not necessary representative of computational efficiency, as

discussed in Section 7.4.1. Second, a generation of (3+1)d unstructured space-time meshes

remain an open problem. In particular, high-order meshing of complex four-dimensional

space — which is required for, for example, three-dimensional simulations with moving

boundaries — poses a significant challenge, possibly limiting the applicability of the fully-

unstructured space-time formulation in the near future. Third, a mesher should handle

internal boundaries to effectively resolve material discontinuities, which facilitates high-

order simulation of waves through inhomogeneous media. Once these problems are solved,

with an effective anisotropic adaptation mechanics, the unified space-time formulation may

be a viable strategy for multiscale wave propagation problems in seismology, acoustics, and

electromagnetics.
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Chapter 8

Adaptation for Parametrized

Partial Differential Equations

8.1 Introduction

As the technology to perform single-design-point simulations matures, developing techniques

to characterize the behavior of performance variables over a wide range of design parameters

has become increasingly important. Rapid characterization of the input-output relation-

ship is crucial to enable computationally demanding tasks that require a large number of

queries, such as design optimization, uncertainty quantification, and inverse parameter in-

ference. While an efficient finite-element-based PDE solver may be used directly for tasks

requiring a moderate number of evaluations, a further acceleration is necessary for tasks

requiring thousands or even millions of input-output evaluations. Two popular acceleration

techniques that take advantage of low dimensionality of the parameter-induced solution

manifold are polynomial chaos and reduced order modeling. This chapter focuses on the

development of an efficient and reliable finite-element-based PDE solver that can serve as

a backbone of these two acceleration techniques, working toward development of a multi-

fidelity solver that enables rapid characterization of parametrized PDEs.
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8.1.1 Mathematical Description of the Problem

We considers a system of steady-state, parametrized conservation laws of the form

∇ · Fconv(u, x;µ)−∇ · Fdiff(u,∇u, x;µ) = S(u,∇u, x;µ), ∀x ∈ Ω, µ ∈ Ωµ, (8.1)

with the boundary conditions

B(u, n̂ · Fdiff(u,∇u, x;µ), x; BC(µ)) = 0, ∀x ∈ ∂Ω, µ ∈ Ωµ.

Here, µ ∈ Rmµ is the input parameter, u(x;µ) ∈ Rm is the parametrized state variable,

Ω ⊂ Rd is the spatial domain, and Ωµ ⊂ Rmµ is the mµ-dimensional parameter domain.

8.2 Space-Parameter Galerkin Method

One approach to solving the parametrized PDE is to use a polynomial expansion to ap-

proximate the solution dependence on the parameters. Then, the appropriate coefficients

of the polynomial expansion may be found by using the Galerkin projection in the param-

eter space. In particular, the application of this technique to quantify the propagation of

stochastic parameters through a system is called polynomial chaos (PC), which has recently

gathered considerable interest in the uncertainty quantification community. A recent review

of PC methods in computational fluid dynamics is provided by Najm [106]. As our goal

is to simply model the parameter dependency — which may or may not be stochastic —

we will simply refer to this approach as the space-parameter Galerkin formulation. In par-

ticular, our goal is to adaptively control the spatial discretization error of the formulation

to facilitate the application of the technique to problems exhibiting a wide range of spatial

scales.

8.2.1 Formulation

We seek an approximate, weak solution to the parametrized PDE, Eq. (8.1), in a finite

dimensional space-parameter space. Specifically, we augment the spatial finite element
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space consisting of piecewise p-degree (complete) polynomials, introduced in Section 2.1,

Vh,p = {vh,p ∈ [L2(Ω)]m : vh,p ◦ fκ ∈ [Pp(κref)]
m, ∀κ ∈ Th},

by an s-degree tensor-product polynomial parameter space,

V µ
s = [Ps(Ωµ)]mµ ,

and seek the solution uh,p,s ∈ Vh,p × V µ
s . Note that the parameter approximation space V µ

s

is mµ · (s + 1) dimensional. Using the spatial DG discretization described in Section 2.1,

the approximate solution for a given parameter, u( · ;µ) ∈ Vh,p, satisfies

Rh,p(uh,p( · ;µ), vh,p;µ) = 0, ∀vh,p ∈ Vh,p,

where Rh,p( · , · ;µ) is the parameter-dependent semilinear form for the conservation law,

Eq. (8.1). Projection of the spatial-residual form onto the parameter space results in a weak

form: Find uh,p,s ∈ Vh,p × V µ
s such that

Rh,p,s(uh,p,s, vh,p,s) = 0, ∀vh,p,s ∈ Vh,p × V µ
s , (8.2)

where Rh,p,s( · , · ) is the space-parameter semilinear form given by

Rh,p,s(wh,p,s, vh,p,s) ≡
∫

Ωµ

Rh,p(wh,p,s( · ;µ), vh,p,s( · ;µ);µ)dµ.

Because the solution space results from the tensor product of the spatial and parameter

spaces, the solution may be decomposed as

uh,p,s(x;µ) =

dim(V µs )∑
i=1

u
(i)
h,p(x)χ(i)

s (µ),

where {χ(i)
s }dim(V µs )

i=1 is a set of basis functions that spans V µ
s , and the field u

(i)
h,p ∈ Vh,p is the

parameter expansion mode strength associated with the i-th mode.
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Once the solution uh,p,s is obtained, a functional output can be evaluated by

Jh,p,s = J (uh,p,s) ≡
∫

Ωµ

g(Jh,p(uh,p,s( · ;µ);µ))dµ,

where Jh,p( · ;µ) is the parameter-dependent output functional, and function g defines the

dependency of the functional on Vh,p × V µ
s to the functional on Vh,p. For example, if the

output of interest is the mean of the output over the parameter domain, then g is the

identity map.

8.2.2 Stability of the Space-Parameter Formulation

The stability of the space-parameter formulation applied to a nonlinear hyperbolic system

is summarized in the following theorem.

Theorem 8.1 (Global entropy norm stability of nonlinear hyperbolic system). Suppose,

for each parameter µ ∈ Ωµ, the conservation law of interest possess an entropy pair {U,F}

that satisfies

∂U

∂t
+∇ · F ≤ 0,

where U(u) : Rm → R+ is a nonnegative convex entropy function, and the DG discretization

is equipped with the symmetric mean-value numerical flux function defined by Barth [21].

Then, the space-parameter discretization is globally entropy stable in the sense that

∫
Ωµ

∫
Ω
U(x, t1;µ)dxdµ ≤

∫
Ωµ

∫
Ω
U(x, t0;µ)dxdµ, ∀t1 ≥ t0.

Proof. The global nonlinear stability of the space-parameter system is a direct consequence

of the variational formulation and the entropy stability of the DG discretization [21] for each

instance of the parameter. Namely, the DG discretization applied to a hyperbolic system

with an entropy pair satisfies the global entropy balance, i.e. testing against the entropy

variable vT ≡ ∂U
∂u yields

0 =

∫ t1

t0

∫
Ω
vT (x, t;µ)

∂u(x, t;µ)

∂t
dxdt+

∫ t1

t0
Rconv(v(·, t;µ), u(·, t;µ);µ)dt

=

∫
Ω
U(x, t1;µ)dx−

∫
Ω
U(x, t0;µ)dx+ Θ2(µ), ∀µ ∈ Ωµ,
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where Θ2(µ) ≥ 0 is the dissipation function, whose exact form is dependent on the numerical

flux function. By construction of the space-parameter semilinear form,

0 =

∫ t1

t0

∫
Ωµ

∫
Ω
vT (x, t;µ)

∂u(x, t;µ)

∂t
dxdµdt+

∫ t1

t0
Rconv(v(·, t; ·), u(·, t; ·))dt

=

∫
Ωµ

[∫ t1

t0

∫
Ω
vT (x, t;µ)

∂u(x, t;µ)

∂t
dxdt+

∫ t1

t0
Rconv(v(·, t;µ), u(·, t;µ);µ)dt

]
dµ

=

∫
Ωµ

[∫
Ω
U(x, t1;µ)dx−

∫
Ω
U(x, t0;µ)dx+ Θ2(µ)

]
dµ.

Noting
∫

Ωµ
Θ2(µ)du ≥ 0 proves the desired result.

We emphasize that our space-parameter discretization is different from that obtained by

applying the DG spatial discretization to a large, parameter-expanded system that results

from projecting the flux onto a polynomial approximation of the parameter space. In other

words, unlike the approach taken by Lin et al. [95] and Tryoen et al. [141], our discretization

does not result from spatially discretizing

∂

∂t
u(x, t) +∇ ·F(u(x, t)) = 0, ∀x ∈ Ω, t ∈ I, (8.3)

where the parameter-expanded state, u(x, t) ∈ m · dim(V µ
s ), and flux, F(u(x, t)) ∈ d×m ·

dim(V µ
s ) are given by

u(i)(x, t) =

∫
Ωµ

χ(i)
s (µ)u(x, t;µ)dµ

F (i)(u(x, t)) =

∫
Ωµ

χ(i)
s (µ)F(u(x, t;µ);µ)dµ,

and χ
(i)
s is the i-th parameter basis. Hyperbolicity of this parameter-expanded system,

Eq. (8.3), is not guaranteed in general [141]. Even if the system is hyperbolic, constructing

a stable discretization requires an appropriate upwinded numerical flux for the parameter-

expanded flux, F . In general this requires a solution to an m · dim(V µ
s ) dimensional eigen-

problem. To circumvent the costly operation, Lin et al. [95] and Tryoen et al. [141] introduce

approximate upwinding fluxes for their finite volume discretizations, which are not prov-

ably stable and are unsuited for implicit solvers. The space-parameter variational frame-

work employed in this work is entropy stable and requires no modifications to the standard
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single-parameter numerical flux function.

In practice, our implementation operates on the conservative variables instead of the en-

tropy variables, and the symmetric mean-value numerical flux is replaced by Roe’s approx-

imate Riemann solver. While the resulting space-parameter discretization is not provably

entropy stable [21], the same modifications have been made to the space-only discretiza-

tion considered in Chapter 6 without any practical problems. Thus, these modifications

are expected to have negligible impact in the context of space-parameter discretization of

hyperbolic conservation laws.

8.2.3 Spatial Error Estimation and Control

In order to estimate the output error due to the lack of spatial resolution (and not the

parameter resolution), the DWR error estimate is constructed by enriching only the spatial

space. Namely, defining the spatial contribution to the output error as

Etrue,s ≡ lim
h→0

[Jh,p,s]− Jh,p,s,

we estimate the error by

Etrue,s ≈ −Rh,p,s(uh,p,s, ψh,p̂,s),

where ψh,p̂,s ∈ Vh,p̂ × V µ
s is the approximate truth adjoint satisfying

R′h,p̂,s[uh,p,s](vh,p̂,s, ψh,p̂,s) = J ′h,p̂,s[uh,p,s](vh,p̂,s), ∀vh,p̂,s ∈ Vh,p̂ × V µ
s ,

and p̂ = p+ 1. The spatially local error contribution is estimated by

ηκ = |Rh,p,s(uh,p,s, ψh,p̂,s|κ)|, (8.4)

where ψh,p̂,s|κ should be understood as the restriction of ψh,p̂,s to the space-parameter

element κ× Ωµ.
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8.2.4 Practical Considerations

While the formulation handles parameter space of arbitrary dimensions in principle, for

simplicity, we consider only one-dimensional parameter domain in this work. Thus, we

have mµ = 1, and the parameter space is given by V µ
s = Ps(Ωµ) where Ωµ ⊂ R. Without

loss of generality, let us represent the parameter and solution variation using a spectral

decomposition of the form

µ(θ) =
s∑
i=0

µ(i)χ(i)
s (θ) and uh,p,s(x;µ(θ)) =

s∑
i=0

u
(i)
h,p(x)χ(i)

s (θ), ∀x ∈ Ω,

where θ ∈ [0, 1], χ(i) is the i-th Legendre polynomial, and u
(i)
h,p ∈ Vh,p is the parameter

expansion mode strength of the i-th mode. Throughout the rest of the chapter, the i-th

parameter mode strength refers to the field of coefficients associated with the i-th spectral

mode of this decomposition.

8.3 Space-Galerkin Parameter-Collocation Method

The second approach to solving the parametrized PDE is based on using collocation in the

parameter space. Our goal in this case is to generate a single spatial approximation space,

Vh,p, suited for the entire range of parameters, i.e. construction of an optimal universal

mesh. Such a universal mesh can serve as an efficient “truth” finite-element mesh in reduced

order model space generation, for example by proper orthogonal decomposition [29, 135]

or greedy sampling [149]. In this context, the “truth” space must capture all features

on the parameter-induced solution manifold relevant to evaluation of the output. On the

other hand, the space should not be excessively large to enable efficient calculation of the

snapshots and to facilitate more extensive search over the parameter domain. The universal

mesh can also be used to construct simple interpolation for parameter variations directly

for small parameter dimensions. Thus, our goal is to use our versatile adaptation algorithm

to generate optimal universal meshes suited for the entire range of parameters.

8.3.1 Formulation

The space-Galerkin parameter-collocation method approximates the variation of the output

J(µ) with respect to the parameter µ by simply finding the solution at select collocation
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points. That is, our objective is to find a set of snapshots {uh,p( · ;µ)}µ∈M , where M is a

set of parameter-evaluation points and uh,p( · ;µ) ∈ Vh,p. Here, M serves as a finite dimen-

sional surrogate of the parameter space Ωµ. The standard single-parameter discretization

presented in Chapter 2 is used to construct each snapshot, i.e. Find uh,p( · ;µ) ∈ Vh,p for

µ ∈M such that

Rh,p(uh,p( · ;µ), vh,p;µ) = 0, ∀vh,p ∈ Vh,p,

and evaluate the output

J(µ) ≡ J (uh,p( · ;µ);µ).

8.3.2 Spatial Error Estimate and Error Control

We define the output error for the parameter-collocation method as

Etrue,M ≡
∑
µ∈M
|J(µ)− Jh,p(µ)|.

Note that the error is defined as the sum of the errors at the prescribed collocation points,

M . In particular, the error due to an insufficient distribution of M over the parameter space

Ωµ is not accounted for in this formulation; this is analogous to the omission of the error

due to an insufficient parameter expansion in the space-parameter Galerkin formulation in

Section 8.2. We assume that M is sufficiently large that the maximum error observed for

µ ∈M is that encountered over Ωµ. We estimate the error by

Etrue,M ≈
∑
µ∈M
|Rh,p(uh,p( · ;µ), ψh,p̂( · ;µ);µ)| ,

where ψh,p̂( · ;µ) ∈ Vh,p̂ is the approximate adjoint satisfying

R′h,p̂[uh,p( · ;µ)](vh,p̂, ψh,p̂( · ;µ);µ) = J ′h,p̂[uh,p( · ;µ)](vh,p̂;µ), ∀vh,p̂ ∈ Vh,p̂,
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and p̂ = p + 1. We will define the elemental error contribution as the sum of the error

contribution from each parameter collocation point, i.e.

ηκ ≡
∑
µ∈M
|Rh,p(uh,p( · ;µ), ψh,p̂( · ;µ)|κ;µ)| . (8.5)

Interpreting the summation of the errors at the collocation points as an approximate inte-

gral, the elemental error captures the error contribution of the space-parameter element.

8.4 Numerical Results

8.4.1 RAE 2822 Subsonic RANS-SA

We first consider subsonic RANS-SA flow over an RAE 2822 airfoil with a freestream Mach

number of M∞ = 0.3 and a Reynolds number of Rec = 1× 106. The parameter of interest

is the angle of attack, α, which varies from 0◦ to 6◦. The far field boundary is located 200c

away.

Behavior of the Space-Parameter Galerkin Formulation

Let us first analyze the behavior of the space-parameter Galerkin formulation of the RANS-

SA equations. For this study, the output of interest is set to the mean drag. Figure 8-1

shows the fields of parameter expansion coefficients for select components. The mode 0

fields, which correspond to the mean of the solution fields over the parameter space, is

similar to, but different from, the solution field for the α = 3◦ case. The differences are

due to the nonlinear dependence of the flow field on the angle of attack. The mode 1 fields

encode the linear variation in the field quantities with the parameter. The x-momentum

on the upper surface of the airfoil increases with the angle of attack as the flow experiences

larger acceleration. The wake region of both the x-momentum and the SA working variable

has a large linear coefficient as the angle of the wake shifts upward with the angle of attack.

Let us now make a quantitative assessment of the convergence property of the spectral

parameter expansion for this RANS-SA flow. A fixed p = 2, dof = 10, 000 spatial mesh,

generated through output-based adaptation, is used for this purpose. Point-wise simulations

at several angles of attack show that the mesh commits the cd error of less than 1 × 10−4

over the range of angles of attack considered. (This result is presented in the following
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(a) x-momentum, mode 0 ((ρv1)0/(ρ∞v1,∞)) (b) x-momentum, mode 1 ((ρv1)1/(ρ∞v1,∞))

(c) SA working variable, mode 0 ((ρν̃)0/(ρ∞ν̃∞)) (d) SA working variable, mode 1 ((ρν̃)1/(ρ∞ν̃∞))

(e) x-momentum adjoint, mode 0 (f) x-momentum adjoint, mode 1

Figure 8-1: Parameter expansion mode strengths of the first two modes for select solution
fields of the RAE 2822 case. The output is the mean drag.

section on spatial adaptation.)

The lift curve and the drag polar for the parameter degrees of s = 1, . . . , 4 are shown

in Figure 8-2. The results of the point-wise simulation at α = 0◦, 2◦, 4◦, and 6◦ on the

same spatial mesh are also included for the verification purpose. The figure shows that

the lift curve quickly converges even for a small parameter expansion degree, s. On the

other hand, the computation of the drag requires a higher-degree polynomial expansion in

the parameter space. Note that the lift and drag computed using a s-degree polynomial

parameter expansion is in general not a s-degree polynomial due to the nonlinear dependence

of the outputs on the solution fields.

Figure 8-3(a) shows the variation in the cd error due to insufficient parameter space

resolution for the s = 1, . . . , 4 expansions. The reference solution is computed on the

same spatial mesh using the s = 8 expansion. The cd error in the parameter space is

equally distributed; this is not too surprising as the Galerkin projection is employed in

the parameter space. Figure 8-3(b) shows the variation in the maximum cd error over the

parameter space as a function of the parameter polynomial degree. Figure shows that the

expansion initially converges rapidly to the true solution, but the convergence stalls for

s > 4. The lack of spectral convergence suggests that the solution over the parameter space
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Figure 8-2: The lift curve and drag polar for the RAE 2822 case on a fixed p = 2, dof =
10, 000 mesh.

is not smooth. Any singular spatial feature whose location is dependent on the parameter

results in singularity in the parameter space; for the RANS-SA flow, the singularity along

the outer edge of the turbulent boundary layer and the stagnation streamline in the adjoint

solution are potential candidates limiting the regularity in the parameter space. Note that

a spatial singularity whose location is independent of the parameter, e.g. the trailing edge

singularity, does not influence the regularity of the solution in the parameter space.

Fortunately, Figure 8-3(b) also shows that the limited regularity in the parameter space

does not impact the convergence for the maximum cd error of greater than 0.1 counts. The

result suggests that, for the purpose of drag prediction, resolving some of the low regularity

features is not crucial at the accuracy required for a typical engineering simulation of RANS

flows. In particular, the s = 4 parameter expansion is sufficient to achieve less than 0.1

counts of drag error with respect to a reference solution computed on the same spatial mesh;

thus, the s = 4 parameter expansion is used to assess the quality of the spatial adaptation

for the space-parameter Galerkin formulation.

Spatial Adaptation

We assess the quality of the spatial meshes generated by the space-parameter Galerkin

formulation and the space-Galerkin parameter-collocation formulation. For simplicity, we

refer to the two formulations by the type of discretization employed in the parameter space,

i.e. Galerkin and collocation. Specifically, the parameter space is discretized by
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Figure 8-3: Variation in the cd error with the parameter expansion degree, s, for the
RAE 2822 case. The reference solution is computed using the s = 8 expansion. Solu-
tions computed on a fixed p = 2, dof = 10, 000 mesh.

• Galerkin: s = 4 polynomial expansion

• Collocation: quadrature points of the 3-point Gaussian quadrature rule

Figures 8-4(c) and 8-4(d) show the p = 2, dof = 10, 000 meshes optimized over α ∈

[0◦, 6◦] using the Galerkin and collocation formulation, respectively. As a comparison,

the meshes optimized for α = 0◦ and α = 4◦ are shown in Figures 8-4(a) and 8-4(b),

respectively. For this subsonic configuration and at this error range, neither the wake nor

the stagnation streamline is strongly targeted, and all four meshes focus on resolving the

boundary layer. One notable difference among the meshes is the element packing at the

leading edge. As shown in the zoomed figures, the α-specific adapted meshes use relatively

large elements in the vicinity of the stagnation points, where the boundary layer is absent at

the specified angle of attack. On the other hand, the α ∈ [0◦, 6◦]-optimized meshes produce

boundary layer packing over the entire leading edge region because, at any given location,

the boundary layer is present for some angle of attack. Adapting to the spatial error of the

Galerkin and collocation formulations result in similar spatial meshes.

Figure 8-5(a) shows the variation in the error over the range of parameters considered.

The reference solution is computed on p = 3, dof = 80, 000 adapted meshes, each optimized

for the specific angle of attack. While the objective is to minimize the true error, the

adaptation algorithm works on minimizing the error indicator; for this reason, the variation

in the error indicator is also shown in Figure 8-5(b). As expected, the α = 0◦-adapted mesh
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(a) α = 0◦ optimized

(b) α = 4◦ optimized

(c) α ∈ (0◦, 6◦) Galerkin optimized

(d) α ∈ (0◦, 6◦) collocation optimized

Figure 8-4: Optimized meshes for the RAE 2822 subsonic RANS case. Overview (left) and
zoom of the leading edge region [−0.03c, 0.03c]2 (right).
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Figure 8-5: Variation in the cd error for the RAE 2822 case over α ∈ [0◦, 6◦] using α = 0◦,
α = 4◦, and α ∈ [0◦, 6◦] optimized meshes.

achieves low error and error estimate for α = 0◦; however, the error grows exponentially

with the increase in the angle of attack. The α = 4◦-adapted mesh performs well in practice;

however, the increase in the error estimate for the α = 0◦ configuration suggests that there

may be relevant features in the flow that are not accurately resolved; the accurate output

prediction may be due to cancellation of errors from several underresolved features.

A key feature that limits the performance of the α-specific meshes in off-design conditions

is the aforementioned lack of the boundary layer resolution in the leading edge region.

In order to accurately compute cd at a high angle of attack, the acceleration over the

leading edge must be captured accurately. The zoomed in view of Figure 8-4(a) shows that

the α = 0◦ adapted mesh in particular lacks this leading edge resolution, resulting in an

inaccurate drag calculation at a high angle of attack. Thus, even for this simple isolated

airfoil case, a subtle difference in the mesh can make a large difference in the quality of the

output prediction.

Both Galerkin- and collocation-based parameter-range adapted meshes perform well

over the entire range of parameter considered. In fact, for this simple isolated airfoil case,

the quality of the output prediction is just as good as those obtained on α-specific optimized

meshes. Note that, for the collocation formulation, the four points used for error assessment

are different from the three collocation points used for adaptation. The low errors obtained

at the assessment points suggest that the three collocation points sufficiently characterizes

the flow behavior over the entire parameter range for the purpose of constructing an efficient
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universal mesh.

8.4.2 Three-Element MDA High-Lift Airfoil RANS-SA

We consider turbulent flow over a three-element McDonnell Douglas Aerospace (MDA)

high-lift airfoil (30P-30N) [89]. The freestream Mach number is M∞ = 0.2, the Reynolds

number based on the retracted chord is Rec = 9 × 106, and the angle of attack varies

from 0◦ to 24◦. In order to minimize the finite boundary effect on the force coefficients for

this high-lift configuration [8], the farfield boundary is placed 30000c away from the airfoil.

Select flow fields at α = 8◦ and α = 24◦ are shown in Figure 8-6, which depict considerable

change in the flow field with the angle of attack. At α = 8◦, the flow is subsonic and there

is a region of large separation behind the slat. At α = 24◦, the flow becomes transonic,

forming a shock on the suction side of the slat; there is also a region of large separation in

the wake.

We again consider the space-parameter Galerkin formulation and the space-Galerkin

parameter-collocation formulation. Specifically, the parameter space is discretized by

• Galerkin: s = 3 polynomial expansion with 7-point Gaussian quadrature

• Collocation: quadrature points of the 7-point Gaussian quadrature rule

The Galerkin formulation uses a relatively low degree polynomial expansion in the parameter

space due to computational resource available. Figure 8-7 shows the fields of parameter

expansion coefficients of select few components for the Galerkin formulation.

As a comparison, seven α-specific optimized meshes are generated, where the α ranges

from 0◦ to 24◦ in 4◦ increments. To generate the α-specific adaptive meshes, MOESS

algorithm is first applied to the α = 8◦ case, transitioning from the initial mesh consisting

of 2343 elements shown in Figure 8-8(a) to the 8◦-optimized mesh. Then, to generate a

mesh optimized for different angles of attack, adaptation is performed at each angle of

attack using the mesh optimized for the previous angle of attack as the starting mesh. For

instance, to generate a 12◦-optimized mesh, the adaptation starting from the 8◦-optimized

mesh. As the flow features do not change significantly from one angle of attack to the next,

only a few adaptation iterations are necessary to generate the optimal mesh at the new angle

of attack. Repeating the process for all angles of attack results in an efficient generation
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(a) Mach number, α = 8◦

(b) normalized SA working variable ((ρν̃)/(ρ∞ν∞)), α = 8◦

(c) Mach number, α = 24◦

(d) normalized SA working variable ((ρν̃)/(ρ∞ν∞)), α = 24◦

Figure 8-6: The Mach number and normalized SA working variable for the three-element
MDA airfoil case at α = 8◦ and α = 24◦.
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(a) x-momentum, mode 0 ((ρv1)0/(ρ∞v1,∞)) (b) x-momentum, mode 1 ((ρv1)1/(ρ∞v1,∞))

(c) SA working variable, mode 0 ((ρν̃)0/(ρ∞ν̃∞)) (d) SA working variable, mode 1 ((ρν̃)1/(ρ∞ν̃∞))

(e) x-momentum adjoint, mode 0 (f) x-momentum adjoint, mode 1

Figure 8-7: Parameter expansion mode strengths of the first two modes for select solution
fields of the three-element MDA airfoil case.

of all angle-specific meshes. All results are obtained using the p = 2 DG discretization at

approximately 90, 000 degrees of freedom.

Figures 8-8(b)-8-8(d) show the adapted meshes for select angles of attack. Near the

body, all optimized meshes employ highly anisotropic elements to resolve the high Reynolds

number boundary layers. On the other hand, the adaptation algorithm targets different

off-body features depending on the angle of attack to capture the interaction among the

three airfoil elements. At lower angles of attack, the flow separates from the back side of the

slat, and the wake must be captured to account for its influence on the main element. At

α = 24◦, capturing the acceleration over the front side of the slat, the resulting shock, and

the flow separation behind the shock becomes important to accurately calculate the drag.

In particular, the flow becomes transonic in the front side of the slat for α ≥ 20; Figure 8-

8(d) shows that the α = 24◦-optimized mesh is refined for this shock. The importance of

resolving this shock for accurate calculation of drag will be demonstrated shortly.

Figure 8-8(e) shows the mesh optimized for the mean drag over α ∈ [0◦, 24◦] using the

s = 3 Galerkin formulation. Adaptation targets all features important in this parameter

range. For instance, the farfield view shows that a sweep of stagnation streamlines and

the wakes are resolved. The entire region behind the slat is also refined to track the wake

that moves with the angle of attack. Note that this mesh is generated as a consequence of
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(a) initial

(b) α = 0◦ optimized

(c) α = 8◦ optimized
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(d) α = 24◦ optimized

(e) α ∈ (0◦, 24◦) Galerkin optimized

(f) α ∈ (0◦, 24◦) collocation optimized

Figure 8-8: Select optimized meshes for the three-element MDA airfoil case. (p = 2,
dof = 90, 000)
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(d) drag error indicator

Figure 8-9: The lift curve, drag polar, drag error, and drag error indicator for the three-
element MDA case.

trying to control the mean drag error. The error is governed by parameter expansion mode

strengths of the primal and dual solutions, some of which are shown in Figure 8-7.

Figure 8-8(f) shows the mesh optimized for α ∈ [0◦, 24◦] using the 7-point collocation

formulation. The universal mesh is similar to the mesh adapted for the parameter-mean

drag using the Galerkin formulation, targeting all features important in the parameter

range. All optimized meshes clearly show that MOESS takes full advantage of the arbitrary

oriented anisotropy delivered by using simplex elements to resolve off body features.

Figure 8-9 shows the lift curves, drag polars, drag error, and the drag error indicator

obtained using a few different approaches. The first approach (α = 8◦) uses the 8◦-optimized

mesh for the entire parameter range. The second approach (α ∈ [0◦, 24◦] Galerkin) uses

the mean-drag adapted mesh shown in Figure 8-8(e). The third approach (α ∈ [0◦, 24◦]
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(a) Mach number

(b) normalized SA working variable ((ρν̃)/(ρ∞ν∞))

(c) error indicator (log10(ηκ))

Figure 8-10: The Mach number and normalized SA working variable for the α = 24◦ flow
computed on the α = 8◦ optimized mesh.

collocation) uses the parameter-range adapted mesh shown in Figure 8-8(f). The fourth

approach (α specific) uses a series of adapted meshes, each adapted to the specific angle of

attack. Note that a combination of the higher-order discretization (p = 2) and α-specific

mesh adaptation maintains the drag error of less than 0.5 counts over the entire range of

the angles of attack using only 90,000 degrees of freedom.

As shown in Figure 8-9(c), the p = 2 discretization on the 8◦ optimized mesh attains

less than 1 drag count of error for α ∈ [0◦, 16◦], but the error grows exponentially with the

angle of attack for α > 16◦. In fact, at α = 24◦, the fixed mesh commits a drag error of

approximately 500 counts — a relative drag error of approximately 50%. The cause of the

error is attributed to a massive artificial separation induced by insufficient mesh resolution

on the front side of the slat, as shown in Figure 8-10 (c.f. the α = 24◦ reference flow field

shown in Figure 8-6). Fortunately, the error indicator correctly identifies not only the lack

of confidence in the drag prediction, as shown Figure 8-9(d), but also the regions causing

large error, as shown in Figure 8-10(c). The case highlights that a high-order discretization
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alone is insufficient to resolve all features present in this complex, multi-element airfoil case.

As shown in Figure 8-9(c), the p = 2 discretization on the parameter-range adapted mesh

obtained using the collocation formulation achieves less than 1 drag count of error for all but

the α = 20◦ case, where the drag error is approximately 1.3 counts. In general, the drag error

is 2 to 5 times larger than those obtained on the α-specific optimized meshes using the same

number of degrees of freedom. The complex, α-dependent interaction of the three airfoil

elements makes the construction of a single mesh that works well over the parameter range

more challenging than the isolated airfoil case considered in Section 8.4.1. Nevertheless, the

drag prediction obtained on the range-optimize mesh is a significant improvement compared

to the 8◦-optimized mesh.

Figure 8-9(c) shows that the mesh optimized for the mean drag using the Galerkin

formulation works well for α ∈ [0◦, 20◦] but is ill-suited for α = 24◦. The large error incurred

for the α = 24◦ flow is likely due to the low parameter expansion degree of s = 3 employed

for the Galerkin projection. Due to the low degree projection, the space-parameter Galerkin

system is incapable of capturing the nonlinear parameter dependency, particularly in the

front side of the slat. As a result, the mean-drag-adapted mesh for the s = 3 expansion

does not provide sufficient resolution in these regions with a strong nonlinear parameter

dependence.

It is also worth noting that the α-specific adaptive p = 1 discretization achieves 3 to

8 drag counts of error — or 15 to 50 times the error obtained using the α-specific p = 2

discretization with the same number of degrees of freedom. In other words, assuming the

asymptotic behavior and the error convergence of E ∼ h2p ∼ (dof)−1, the adaptive p = 1

discretization requires approximately 15 to 50 times more degrees of freedom to achieve

the same error level as the adaptive p = 2 discretization. The ability of the high-order

discretization to effectively resolve the boundary layer and capture the interaction between

the three airfoil elements is a significant advantage over the p = 1 discretization for this

high-lift case.

8.5 Conclusions

This chapter considered development of an efficient finite-element-based PDE solver that can

serve as a backbone of polynomial chaos and reduced order modeling, two technique designed
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to accelerate input-output characterization of parametrized PDEs. Using both the space-

parameter Galerkin formulation and the space-Galerkin parameter-collocation formulation,

MOESS algorithm generated meshes suitable for a wide range of parameters. By casting

the adaptation problem as a minimization problem of the error over the space-parameter

domain, the versatile adaptive framework enabled straightforward implementation of the

spatial error control for parametrized PDEs.

We considered two RANS problems to test the behavior of MOESS applied to the

parametrized PDEs and to assess the quality of universal meshes designed for the entire

range of parameters. For the isolated airfoil case, both the Galerkin and collocation for-

mulations produced a mesh that works well over the parameter range. In particular, the

space-parameter Galerkin formulation generated a p = 2-spatial s = 4-parameter mesh that

would allow a rapid characterization of cd as a function of α, achieving less than 1 drag

count of error for any parameter value. For the multi-element high-lift airfoil case, the collo-

cation formulation generated an efficient finite-element mesh for the angle of attack varying

from 0◦ to 24◦. This case also reemphasized the benefit of combining high-order discretiza-

tions with mesh adaptivity. Performing parameter-sweep using the p = 2 discretization on

a single-α-specific mesh resulted in an inaccurate drag prediction for off-design configura-

tions. Conversely, the adaptive p = 1 discretization was significantly less efficient than the

adaptive p = 2 discretization.

While only the spatial adaptivity was considered in this work, a more efficient parametrized

PDE solver may be constructed by performing adaptation in the parameter space. In partic-

ular, the error control framework of MOESS can be directly applied to the space-parameter

Galerkin formulation to enable space-parameter adaptation. One simple extension is to

maintain the current tensor product structure of the physical and parameter spaces, but

to perform DWR error estimation in both spaces and enrich the space that makes a larger

contribution to reducing the error (c.f. [102]). Another approach is to discretize the param-

eter space using multiple elements (i.e. multi-element polynomial chaos), and use the direct

sampling technique to perform anisotropic adaptation in the parameter space. A more so-

phisticated approach may be to forgo the tensor product structure of the space-parameter

space, and use different parameter expansion degree for different spatial elements, i.e. local

s-adaptation in the physical space.
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Chapter 9

Conclusions

9.1 Summary and Conclusions

This thesis presents work toward development of a versatile, adaptive, high-order PDE

solver that reliably predicts an engineering output of interest in a fully-automated man-

ner. In particular, we developed an adaptation algorithm, Mesh Optimization via Error

Sampling and Synthesis (MOESS). Using the continuous mesh framework, the original in-

tractable optimization problem on the discrete mesh has been relaxed to yield a well-posed

optimization problem on a continuous metric field. In the process, we extend the original

continuous mesh framework for linear polynomials to arbitrary-degree polynomials. Then,

we devised a method for estimating the error functional of the continuous optimization

problem. The key strategy used to estimate the error functional is to directly monitor the

behavior of the error by solving local problems on anisotropically refined simplicies. The

strategy eliminates the need to model the true underlying dependencies of the error on the

metric configuration, a formidable task that requires estimation of the solution regularity,

higher derivatives, and mean-value linearized equation coefficients. An anisotropic error

model was developed by incorporating the affine-invariant measure of the metric tensors

and by synthesizing the sampled metric-error pairs, yielding a model that is entirely based

on the behavior of the a posteriori error estimate. Finally, an optimization procedure to

solve the surrogate minimization problem based on the proposed error kernel was developed.

MOESS offers a number of benefits including: works with any localizable error estimate;

handles any discretization order; accounts for both primal and dual solution behaviors;

permits arbitrarily oriented anisotropic elements; delivers superior robustness by eliminat-
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ing a priori error convergence assumptions; and inherits the versatility of the underlying

discretization and error estimate.

We demonstrated the versatility and effectiveness of MOESS through various appli-

cations. First, the ability of the adaptation framework to produce optimal meshes was

verified in the context of L2 projection error control; to enable the verification, we also

derived the optimal anisotropic element size distribution for a few canonical problems us-

ing a combination of the continuous relaxation of the anisotropic approximation theory for

arbitrary-degree polynomials and calculus of variations. Then, the framework was applied

to the advection-diffusion equation and a series of aerodynamic flow problems. The results

highlighted the importance of considering both the primal and dual solutions in choosing the

elemental anisotropy. In particular, even for problems with an anisotropic primal solution,

primal-based anisotropy detection may perform worse than isotropic refinement. More-

over, the appropriate anisotropy is highly p-dependent. MOESS deduced the appropriate

anisotropy for each case, as the error samples implicitly incorporate both the primal and

dual solution behaviors. The results also confirmed the ability of the adaptation framework

to realize the full-potential of high-order discretizations for practical aerospace problems.

In particular, for problems with limited regularity, MOESS offered superior robustness and

effectiveness compared to other state-of-the-art adaptive higher-order methods.

Taking advantage of the versatility of the algorithm, we considered adaptation for space-

time systems and space-parameter systems. In particular, we realized fully-unstructured

space-time adaptivity for linear and nonlinear wave propagation problems. The results

demonstrated that the additional computational work required to solve the unified space-

time system can be significantly reduced by using space-time anisotropy, which can ef-

fectively reduce the dimensionality of the problem. For space-parameter systems, MOESS

enabled spatial error control for Galerkin- and collocation-based parameter-space discretiza-

tions. The spatial adaptivity facilitates application of polynomial chaos or reduced order

modeling to complex, multiscale problems. Combined with MOESS both methods pro-

duced universal optimal meshes suitable for a wide range of parameters. The promising

results obtained in various examples in this thesis suggest that the adaptation framework

is a positive step forward in developing a fully-automated, reliable PDE solver that pro-

duces accurate prediction of the performance variables for a wide range of engineering and

scientific applications.
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9.2 Future Work

During the course of this work, we have identified several areas of future research.

• Extension of the continuous optimization framework to hp-adaptation

A natural extension of the current work on anisotropic h-adaptation is anisotropic hp-

adaptation. The potential of hp-adaptivity to deliver optimal finite element meshes

has been discussed for decades, and its theoretical approximation properties are sum-

marized in, for example, [130], and the references therein. More recently, Geor-

goulis et al. [65] has combined their quadrilateral-based hierarchical subdivision strat-

egy with the regularity estimate developed by Houston and Süli [75] to devise an

anisotropic hp-adaptation strategy for quadrilateral meshes. Leicht and Hartmann

have applied a similar strategy to variety of aerodynamic problems in two- and three-

dimensions [91]. Their results suggest that the anisotropic hp-adaptation outperforms

their quadrilateral-based anisotropic h-adaptation, especially for high-fidelity appli-

cations.

Several questions must be answered to enable hp-adaptivity within our simplex-based

adaptation framework. First, just as a triangulation has been relaxed to continuous

metric field, the concept of element-wise p-field must be relaxed to yield a continu-

ous p-field, and rules relating the discrete and continuous fields must be established.

Second, the error model must be modified to incorporate the error variation with p.

In particular, sampling in the p-enriched space is insufficient to fully characterize the

behavior with the p-change; this is due to the fact that a single step of p-refinement per-

forms better than uniform h-refinement even for irregular solutions, as proved in [12].

Third, the purpose of h-refinement in the hp-context is the containment of singularity

effects rather than reducing the error [3], and this interpretation of h-adaptivity is

only implicitly reflected in our current error model.

Most importantly, we must carefully study benefits of hp-adaptation for fully-unstructured

simplex meshes. The efficiency gain, in terms of errors-per-dof, may be smaller than

that observed for quadrilateral-based meshes which have fewer spatial adaptation op-

tions. A more practical gain may be the improved robustness obtained through using

a lower-order discretization in regions with low regularity, especially for nonlinear

features such as shocks.
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• Minimizing the degrees of freedom or time of computation for a given error

tolerance

In the current optimization framework, the objective was defined as minimizing the

output error for a given number of degrees of freedom. In a practical engineering

setting, however, engineers may be more interested in obtaining a solution of a given

error tolerance using the least computational effort. One measure of the computational

effort is the degrees of freedom. Solving the minimum-dof error-constrained problem

is more challenging than the optimization problem considered in this work, as the

continuous error model is less accurate than the cost model, making it difficult to

impose the constraint. In particular, the error model differs from the cost model

in that 1) the error model suffers from inherent noise in the error estimate, and 2)

the quality of the error prediction degrades for a large configuration change outside

of the sampled configurations. A more robust error estimate may be necessary to

successfully solve the minimum-dof error constrained problem. Another measure of

computational effort is the computational time. In order to solve the minimum-

time, tolerance-constrained problem, a means of estimating the solution time must be

developed. In the adaptive context, this may be accomplished using the time history

of all previous runs, assuming the solver is sufficiently robust. Then, the current error

model may be combined with the time model to minimize the computational time.

• Improving the robustness of the error estimate

While the DWR error estimate was sufficiently robust to drive adaptation for a wide

range of PDEs considered in this work, the error estimate can significantly underesti-

mate the error on coarse meshes in which solution features are completely under-

resolved. While constructing the true bounds — as done for coercive equations

in [128, 129] — may not be feasible for general PDEs, improved robustness is highly

desired. A recent work on the safeguarded DWR method [108], which augments the

standard DWR with a residual-based error estimate, is also only applicable to a lim-

ited number of PDEs. One practical approach to improving the robustness of the

error estimate within the current sampling-based adaptation framework may be to

incorporate the error information gathered in the sampling stage to the error estimate

itself. Because the sampling is done on a more refined mesh, this may remedy the

underestimation of the error due to the lack of resolution.
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• Higher-order metric field representation and natively curved meshing

In the current implementation of the continuous optimization framework, the Rieman-

nian metric field was represented as a piecewise linear function on the triangulation.

The linear approximation could limit the accuracy of the metric field representation,

especially on high aspect-ratio, curved elements. Using a higher-order metric field

representation could remedy this problem. However, the current two-step strategy to

curved mesh generation — the initial linear mesh generation followed by mesh curving

— is insufficient to realize the full benefit of such a higher-order metric representation.

A mesh generator capable of generating natively curved elements must be developed.

• Space-time adaptivity in higher dimensions

Future work required to make the fully-unstructured space-time adaptivity truly com-

petitive for real world applications has been discussed in Section 7.6. To summarize,

first, an efficiency preconditioner that takes advantage of the hyperbolicity of the

problem in the temporal direction must be designed. Second, a mesh generator for

(3 + 1)d unstructured space-time meshes must be developed.

• Space-parameter adaptivity

Future work to improve the efficiency of the space-parameter discretization has been

discussed in Section 8.5. Recommendations include: adaptation of the parameter

space by using multiple parameter elements; and unstructured space-parameter adap-

tation by employing spatially varying s-adaptivity for the parameter representation.
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Appendix A

Discontinuous Galerkin Method

This appendix provides details of the discontinuous Galerkin discretization, the solution

technique for the resulting discrete nonlinear system, and the output evaluation procedure

used in this thesis. Throughout this appendix, we consider a general conservation law of

the form

∂u

∂t
+∇ · Fconv(u, x, t)−∇ · Fdiff(u,∇u, x, t) = S(u,∇u, x, t) ∀x ∈ Ω, t ∈ I ≡ [t0, tf ],

with the boundary conditions

B(u, n̂ · Fdiff(u,∇u, x, t), x, t; BC) = 0, ∀x ∈ ∂Ω, t ∈ I.

The diffusive flux is assumed to be a linear function of∇u(x, t), such that it can be expressed

as

Fdiff(u,∇u, x, t) = K(u, x, t)∇u(x, t),

where K is the viscosity tensor.
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A.1 Discontinuous Galerkin Discretization

Recall that the weak form associated with the DG approximation of the conservation law

is: Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p. (A.1)

The semilinear form associated with the spatial residual, Rh,p : Vh,p× Vh,p → R, consists of

the convective, diffusive, and source contributions, and may be written as

Rh,p(wh,p, vh,p) = Rconv
h,p (wh,p, vh,p) +Rdiff

h,p(wh,p, vh,p) +Rsour
h,p (wh,p, vh,p).

For notational simplicity, the dependency of the flux and source functions on x and t are

implied and are not explicitly stated.

The DG discretization of the convective term is given by

Rconv
h,p (wh,p, vh,p) = −

∑
κ∈Th

∫
κ
∇vTh,p · F(wh,p)dx+

∑
f∈Γi

∫
f
(v+
h,p − v

−
h,p)

TH(w+
h,p, w

−
h,p; n̂

+)ds

+
∑
f∈Γb

∫
f
v+
h,p

THb(w+
h,p, ub(w

+
h,p; BC); n̂+)ds,

where (·)+ and (·)− denote trace values on the opposite sides of a face f , n̂+ is the normal

vector pointing from + to −. By convention, the interior side is always the + side on the

boundary faces. H and Hb are numerical flux functions on interior faces and on boundary,

respectively. The boundary state, ub, is in general a function of the interior state and the

boundary conditions. In this work, the interior face numerical flux function uses the Roe’s

approximate Riemann solver [126] and takes the form

H(w+
h,p, w

−
h,p; n̂

+) =
1

2

(
n̂+ · F(w+

h,p) + n̂− · F(w−h,p)
)

+
1

2
|ARoe(w+

h,p, w
−
h,p; n̂

+)|(w+ − w−),

where ARoe is the flux Jacobian matrix computed about the Roe’s mean state.

The viscous terms are discretized using the second method of Bassi and Rebay (BR2) [25].

For notational convenience, let us define define a jump operator, J·K, for a scalar quantity
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and a averaging operator, {·}, for a vector quantity, i.e.

JsK = s−n̂− + s+n̂+ and {v} =
1

2
(v+ + v−)

The semilinear form for the diffusive term is given by

Rdiff
h,p(wh,p, vh,p)

=
∑
κ∈Th

∫
κ
∇vTh,p · K(wh,p)∇wh,pdx

−
∑
f∈Γi

∫
f

[
{KT (wh,p)∇vh,p}T · Jwh,pK + Jvh,pKT · {K(wh,p)(∇wh,p + ηfrf (Jwh,pK))}

]
ds

−
∑
f∈Γb

∫
f

[
(n̂+ · KT (ub)∇v+)T (w+

h,p − ub)

+v+
h,p

TFb
(
n̂+ · (K(ub)(∇w+

h,p + ηfr
b
f ((w+

h,p − ub)n̂
+))); BC

)]
ds

where ηf is the BR2 stabilization parameter, and rfh,p is the lifting operator associated with

the face f . The lifting operator rfh,p : [Vh,p(f)]d → [Vh,p]
d is defined by

∑
κ∈κf

∫
κ
τTh,p · r

f
h,p(qh,p)dx = −

∫
f
{τh,p}T · qh,pds, ∀qh,p, τh,p ∈ [Vh,p]

d,

where κf is the set of elements sharing the face f . The boundary flux function Fb : Rm →

Rm takes the diffusive flux based on the interior state as the argument and returns an

appropriate diffusive flux by considering the boundary condition.

The source term is discretized using the mixed form presented by Bassi et al. [22], which

is asymptotically dual-consistent [110]. The semilinear form is given by

Rsour
h,p (wh,p, vh,p) =

∑
κ∈Th

∫
κ
vTh,pS(wh,p,∇wh,p + rglob(wh,p))dx,

where the global lifting operator is rglob
h,p : Vh,p → [Vh,p]

d such that

∑
κ∈Th

∫
κ
τTh,p · r

glob
h,p (wh,p)dx = −

∑
f∈Γi

∫
f
{τh,p}T · Jwh,pKds

−
∑
f∈Γb

∫
f
τTh,p · n̂(wh,p − ub)ds, ∀τh,p ∈ [Vh,p]

d.
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Because the lifting operator is linear on its argument, the global lifting operator is related

to the local, face-wise lifting operator by

rglob
h,p (wh,p) =

∑
f∈Γi

rfh,p(Jwh,pK) +
∑
f∈Γb

rfh,p(n̂(wh,p − ub)).

A.1.1 Nonlinear Discontinuity Regularization

For problems with strong discontinuities induced by a nonlinear physical mechanism (e.g.

shocks in compressible flow), a nonlinear operator that detects and regularizes the discrete

solution is added to improve the robustness of the solver. This work uses a jump-based indi-

cator and PDE-based artificial diffusion smoothing introduced by Barter and Darmofal [19]

with minor modifications.

The jump-based discontinuity sensor for element κ is given by

Sκ(w) = log

(
1

|∂κ|

∫
∂κ

∣∣∣∣∣ g(w+)− g(w−)
1
2(g(w+) + g(w−))

∣∣∣∣∣ ds
)
,

where g(w) is a scalar quantity suitable for detecting a discontinuity and is dependent on the

governing equation of interest. The sensor takes advantage of the relationship between the

inter-elemental jump and the strong form of the elemental residual in the DG formulation.

To prevent the addition of artificial diffusion in smooth region or addition of excess viscosity,

a filter originally developed by Persson and Peraire [120] is applied to yield

S̄κ(Sκ) =


0, Sκ ≤ S0(p)−∆S

Smax
2

(
1 + sin

(
π(Sκ−S0)

2∆S

))
, S0(p)−∆S < Sκ ≤ S0 + ∆S

Smax, S0(p) + ∆S < Sκ

,

with a polynomial-degree-dependent function S0(p) and parameters ∆S = 0.5 and Smax = 1.

The element-wise discontinuity sensor is then used as a source term of a diffusive equa-

tion which smoothly propagates the effect of discontinuity to generate an artificial diffusivity

field, νart. The artificial-diffusion PDE used in this work is a modified version of the original
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equation by Barter and takes the form

∂νart

∂t
=

∂

∂xi

(
ηij
τ

∂νart

∂xj

)
+

1

τ

[
h̄

p
λmax(u)S̄κ(u)− νart

]
in Ω

ηij
τ

∂νart

∂xj
ni =

√
C1C2

pλmax

hmin
(ninjHij)(νart,∞ − νart) on ∂Ω. (A.2)

Here, H(x) =M−1/2(x) is the generalized length scale based on the metric-tensor defined

in Section 2.3, ηij = C2HikHkj is the diffusion coefficient, τ = hmin/(C1pλmax(u)) is the

time scale based on the maximum wave speed, λmax(u), hmin = mini λi(H) is the minimum

(anisotropic) element size, and h̄ = (det(H))1/d is the volume based element size. The two

constants are set to C1 = 3 and C2 = 5. The resulting artificial diffusion field, νart, is

again filtered to completely remove artificial viscosity in the smooth regions and to cap the

maximum viscosity. The final filtered artificial visocsity augments the physical viscosity of

the governing equation.

Unlike Barter’s original equation that used axis aligned bounding boxes to measure the

local element sizes, a Riemannian metric field is used in this work to measure the local

length scale for the PDE. The new formulation provides consistent propagation of artificial

viscosity independent of the coordinate system and enables sharper shock capturing on

highly anisotropic elements with arbitrary orientations. Effects of the modification on the

solution quality and adaptation efficiency are summarized in Appendix B.

A.1.2 Solution Method

Upon selecting suitable basis functions for the approximation space, Vh,p, solving Eq. (A.1)

becomes a discrete, root-finding problem. The steady-state solution is obtained using a

nonlinear solver based on pseudo-time continuation and backward Euler time integration.

Given a discrete solution, Un, the solution after one time step, Un+1, is given by solving

Rt(U
n+1) ≡M tw(Un+1 − Un) +Rs(U

n+1) = 0, (A.3)

where Rt(U) is the pseudo-unsteady residual, M tw is the time-weighted mass matrix, and

Rs(U) is the spatial residual. The m-th entry of Rs(U) is the residual evaluated against

the m-th basis function, φ(m), i.e. [Rs(U)]m = Rh,p(U (n)φ(n), φ(m)). In the pseudo-time

continuation algorithm, the CFL number acts as the global continuation parameter, and
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different time step is assigned to each element based on the local characteristic speed and

the element size. A single step of Newton’s method is used to approximately solve (A.3) at

each time step such that

Un+1 − Un ≈ ∆U ≡ −
(
M tw +

∂Rs
∂U

∣∣∣∣
Un

)−1

Rs(U
n). (A.4)

Computation of the state update, ∆U , requires the solution of a large linear system with a

block-sparse structure. The linear system in this work is solved with restarted GMRES [127].

In order to improve the convergence of the GMRES algorithm, the linear system is precondi-

tioned with an in-place block-ILU(0) factorization [52] with minimum discarded fill ordering

and a coarse p = 0 multigrid correction [121].

The solution process is advanced in time until the 2-norm of the spatial residual,

‖Rs(Un) ‖2, is less than a specified tolerance. The robustness of the continuation pro-

cedure is further enhanced by incorporating two update limiting strategies: a physicality

check and a line search over the unsteady residual, Rt(U). The physicality check prevents

a large change in select states. The line search aims to prevent the nonlinear solver diver-

gence due to the lack of temporal integration accuracy by explicitly controlling the unsteady

residual. The details of the limiting strategies are presented in [105, 156].

A.2 Output Evaluation

This work considers a general output for a conservation law of the form

J = J (u) =

∫
Ω
ji(u,∇u, x, t)dx+

∫
∂Ω
jb(u, n̂ · Fdiff(u,∇u, x, t), x, t, )ds,

where ji and jb are functions specifying the interior and boundary contributions to the

output, respectively. In the DG setting, the output is evaluated as

Jh,p = Jh,p(uh,p),
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where the output functional, Jh,p : Vh,p → R, is given by

Jh,p(wh,p) =

∫
Ω
ji(wh,p,∇wh,p + rglob(wh,p), x, t)dx

+

∫
∂Ω
jb
(
ub,Fb

(
n̂+ · (K(ub)(∇w+

h,p + ηfr
b
f ((w+

h,p − ub)n̂
+))); BC

)
, x, t

)
ds,

where rglob is the global lifting operator, rbf is the local lifting operator, ub is the boundary

state function, and Fb is the boundary viscous flux function as specified in Section 2.1.
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Appendix B

Comparison of Vector- and

Tensor-Based Element Sizing for

the Shock PDE

This appendix compares the original shock PDE developed by Barter and Darmofal [19],

which uses a vector-based element size specification, and the new formulation based on a

tensor-based element size specification. The original shock PDE uses a vector-based element

size based on the axis-aligned bounding box to specify the element size, i.e. the metric tensor

appearing in the shock PDE, Eq. (A.2), is replaced by

M← diag(h−2
1 , . . . , h−2

d ),

where hi is the length of the axis-aligned bounding box in the i-th direction. Section B.1

summarizes the impact of the modification on a fixed mesh, and Section B.2 summarizes

its influence on adaptation.

B.1 Comparison on a Fixed Mesh

In this section, we consider the p = 1 DG discretization of M∞ =
√

2 inviscid flow over

a NACA 0012 airfoil at 0◦ angle of attack. The Mach number is chosen such that the

Mach angle is 45◦. The 7136-element fixed mesh used throughout this section is shown in

Figure B-1.
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(a) overview (b) zoom

Figure B-1: The 7136-element NACA 0012 mesh used for the fixed mesh tests.

The test consists of solving the supersonic NACA problem on two meshes, the second one

tilted by 45◦ with respect to the first one. The test is designed to check for the dependence of

the shock capturing algorithms on the particular coordinate system. Figure B-2 shows the

artificial viscosity distribution obtained using the original, vector-based element sizing and

the new, tensor-based element sizing. The original shock PDE is coordinate dependent,

and the artificial viscosity excessively diffuses when the shock does not align with the

coordinate axes (Figure B-2(a)). The modified shock PDE is invariant under coordinate

transformation, and the artificial viscosity is tightly confined in the region of the shock.

Figure B-3 compares the effect of sharper, coordinate-independent artificial viscosity

distribution on the shock resolution. Figure B-3(a) shows that the original formulation

produces a sharp shock along the stagnation streamline since the shock is aligned with one

of the coordinate axes (i.e. the x2-axis). However, the regularization excessively smears

the shock in the curved region, as the shock PDE propagates the artificial viscosity more

than necessary when the shock is not axis-aligned. The modified, tensor-based shock PDE

produces sharp shock along the entire span of the curved shock. More importantly, it

propagates artificial viscosity consistently whether the shock is curved. This means that,

if the artificial viscosity is tuned for a shock of a particular orientation, it would work for

shock of any orientation.
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(a) not tilted, vector-based (b) not tilted, tensor-based

(c) tilted, vector-based (d) tilted, tensor-based

Figure B-2: The artificial viscosity, ε, for the Euler problem solved at M∞ =
√

2. The two
meshes are identical, except that one of them is tilted by 45◦.

(a) not tilted, vector-based (b) not tilted, tensor-based

Figure B-3: The Mach number distribution on the same non-tilted meshes for the M∞ =
√

2
flow. The contour lines are in 0.1 increments.
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Figure B-4: The adapted meshes obtained using the vector- and tensor-based element size
specifications. Each mesh contains approximately 7000 elements.

B.2 Effects on Adaptation

In this section, we consider the influence of the shock PDEs on the adaptation process. To

this end, we compare the adapted meshes obtained for M∞ = 2.0 flow over a NACA 0012

airfoil using the original, vector-based shock PDE and the modified, tensor-based shock

PDE. The p = 1 DG discretization is used for both cases.

Figure B-4 shows adapted meshes. The original shock PDE excessively smears the

tilted shock, resulting in the adaptation unable to sharply target the shock. The level

of anisotropy is also limited, with less than 30% of the elements having anisotropy above

10. The modified PDE provides consistent level of artificial viscosity to the tilted shock,

resulting in the adaptation correctly targeting the shock. A much higher level of anisotropy

is attained with 60% of the elements having the anisotropy of between 30 and 300. Thus, the

modified, tensor-based formulation of the shock PDE not only improves the shock resolution

on a fixed mesh, but also improves the adaptation effectiveness.
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Appendix C

Regularization of Surface Quantity

Distributions

This appendix describes the procedure used to regularize the surface quantity distributions

and provides justification for employing such a procedure.

C.1 Formulation

Suppose we are interested in quantifying the distribution of a surface quantity g, which in

general is a function of the local state and derivative, i.e. g = g(u(x),∇u(x)). Plotting

the surface quantity distribution corresponds to evaluating g at all surface points. This

point-wise surface value evaluation problem may be viewed as a “functional” evaluation

problem of the form

g(x) = `x(u) =

∫
∂Ω
δ(x′ − x)g(u(x′),∇u(x′))dx′,

where δ is the Dirac delta function. However, it is well-known that this functional `x arising

from the evaluation of a point-wise quantity results in an ill-posed adjoint problem (see,

e.g. Giles and Süli [66]). The ill-posed adjoint problem implies that the point-wise quantity

does not superconverge, as the adjoint error in the output error representation formula is

O(1). In other words, the characterization of the point-wise surface quantity (e.g. skin

friction (cf )) may be poor even if the prediction of the integral quantity with a well-posed

dual problem (e.g. drag) is accurate.
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Following the approach pursued in [66], let us define a regularized functional as

`reg
x,h(u) =

∫
∂Ω
φh(x′ − x)g(u(x′),∇u(x′))dx′,

where φh is a regularizer whose support varies with the local element size, h. In particular,

we ensure that φh → δ as h→ 0. This in turn ensures that |`x(v)− `reg
x,h(v)| → 0 as h→ 0

for any v ∈ V . Error incurred by the regularization procedure may be expressed as

|`x(v)− `reg
x,h(vh,p)| ≤ |`x(v)− `reg

x,h(v)|︸ ︷︷ ︸
regularization error

+ |`reg
x,h(v)− `reg

x,h(vh,p)|︸ ︷︷ ︸
approximation error

.

A stronger regularization decreases the approximation error because the regularized func-

tional induces a smoother dual problem, which is easier to approximate; however, a strong

regularization increases the regularization error. Thus, the regularizer must be chosen to

balance the regularization error and the approximation error. In practice, we have found a

Gaussian function with a standard deviation of σ(x) = h(x)/p works well as a regularizer.

Here, h is a smoothly varying function characterizing the local surface element length in

two dimensions, and p is the polynomial order. The choice of the h/p-scaling regularization

scale is motivated by the fact that the resolution of the DG discretization scales as h/p in

pre-asymptotic range, and that we want to produce a regularized dual problem that can

be well-approximated by the discretization. The procedure may be generalized to three

dimensions by using the metric field projected to the surface as the characteristic surface

element size.

C.2 Results

Let us assess the impact of the regularization procedure using transonic RANS-SA flow over

an RAE 2822 airfoil, the case considered in Section 6.3.3. The raw and regularized pressure

coefficient (cp) and skin friction coefficient (cf ) distributions computed using the p = 1 and

p = 2 discretizations with dof = 60, 000 are shown in Figure C-1. The reference distribution,

computed on a p = 3, dof = 120, 000 mesh, is also shown. As the raw cp distributions for

both the p = 1 and p = 2 discretizations are already smooth, the regularization procedure

has no apparent impact on the cp distributions. On the other hand, the raw cf distributions
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0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

8

9

x 10
−3

x/c

c
f

 

 

raw

regularized

reference

(b) cf (p = 1)

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

x/c

c
p

 

 

raw

regularized

reference

(c) cp (p = 2)
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Figure C-1: Comparison of raw and regularized cp and cf distributions for transonic RANS-
SA flow over an RAE 2822 airfoil. The p = 1 and p = 2 discretizations achieve the drag
error of |cd − cref

d | ≈ 7× 10−6 and ≈ 4× 10−7, respectively.

are quite noisy, despite the fact that the cd errors are 7 × 10−6 for p = 1 and 4 × 10−7 for

p = 2. The poor convergence of cf distributions computed on unstructured anisotropic

simplex meshes is also reported by Modisette [105]. The regularized cf distributions are

noticeably smoother than the raw distributions. In fact, the p = 2 cf plot is essentially

indistinguishable from the reference plot for practical engineering purposes. Thus, the reg-

ularization procedure improves the prediction of the surface quantity distribution obtained

from highly anisotropic simplex-based meshes.
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Appendix D

Metric-based A Priori Error

Bounds

This appendix presents details of the metric-based a priori error analysis for L2 projection

error and output error provided in Section 2.3.3 and 2.3.4.

D.1 Anisotropic Polynomial Interpolation Theory

The approximation error analysis presented in this section can be thought of as an extension

of the analysis for linear polynomials by Loseille and Alauzet [97, 98] to an arbitrary-degree

polynomial space. To extend the analysis, we closely follow the formulation provided by

Houston et al. [74]. (Related analysis on the higher-degree polynomial approximation error

is also provided by Pagnutti and Ollivier-Gooch [112] and Cao [36–38].)

We are concerned with the error that results from approximating a given function with

a degree-p polynomial over a region (or an element) κ, i.e. the Pp approximation error.

Here, κ results from an affine transformation of the reference element, κ̂, with unit length

edges, i.e.

κ = {x ∈ Rd : x = Jx̂+ x0, x̂ ∈ κ̂},

where J ∈ Rd×d is the Jacobian of the transformation. Specifically, the Pp approximation

error is defined here as the error incurred by projecting a function onto the polynomial

space in the L2 sense. The L2 projection of a function v ∈ L2(κ) onto Pp(κ) is denoted by
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Πpv and satisfies

Πpv = arg inf
vh,p∈Pp(κ)

‖v − vh,p‖L2(κ).

Our goal is to quantify the Pp approximation error in terms of metric tensors.

D.1.1 Notation

Before presenting key results, let us make a few remarks on the notation used in this section.

In general, summation on repeated indices is implied except under two circumstances. First,

no sum on repeated indices is implied if the indices also appear on the left hand side of the

equation. Second, if an index explicitly appears as the index of the summation operator Σ,

then the summation on the repeated indices in the argument of the operator is not implied.

D.1.2 Volume Inequalities

We first develop approximation error bounds over the volume of an anisotropic element

starting from the well-known Bramble-Hilbert lemma.

Lemma D.1 (Approximation on a unit diameter region). Let κ̂ be the reference element

of unit diameter. For v̂ ∈ Hkv(κ̂), the Pp approximation error is bounded by

|v̂ −Πpv̂|Hn(κ̂) ≤ Cp,d|v̂|Hs(κ̂), n = 0, 1,

where s ≤ min(p + 1, kv), and Cp,d is dependent only on the polynomial order p and the

spatial dimension d.

Proof. The proof is provided in, for example, [32].

A key approximation result is given in the following theorem, presented by Houston et

al. [74]:

Theorem D.2. The Pp approximation error of a function v ∈ Hkv(κ) is bounded by

|v −Πpv|Hn(κ) ≤ Cp,d(hmin)−n
(∫

κ
EsΣ(U, σ; v)dx

)1/2

, n = 0, 1.
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Here, Cp,d is the constant of Lemma D.1 that is only dependent on the polynomial degree p

and the dimension d, and the error kernel EsΣ is defined as

EsΣ(U, σ; v) ≡
d∑

i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1i1 · · ·Ujsisσi1 · · ·σis

)2

,

where s = min(p + 1, kv), U ∈ Rd×d is a matrix consisting of left singular vectors of the

transformation Jacobian J , σ ∈ Rd is a set of singular values of J , and hmin is the minimum

singular value of J .

Proof. The proof follows from anisotropic scaling of the Hs-norm appearing in the right

hand side of Lemma D.1. A proof is provided in [74], but it is repeated here for completeness.

For n = 0, i.e. the L2 error, the projection error is bounded by

‖v −Πpv‖2L2(κ) =

∫
κ
(v −Πpv)2(x)dx =

∫
κ̂
(v̂ −Πpv̂)2(x̂) det(J)dx̂

≤ C2
p,d

∫
κ̂

d∑
i1=1

· · ·
d∑

is=1

(
∂sv̂

∂x̂i1 · · · ∂x̂is

)2

det(J)dx̂

≤ C2
p,d

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Jj1i1 · · · Jjsis

)2

dx, (D.1)

where Cp,d is the constant of Lemma D.1. For n = 1, i.e. the H1 error, the projection error

scales as

|v −Πpv|2H1(κ) =

∫
κ

d∑
l=1

(
∂

∂xl
(v −Πpv))2(x)dx =

∫
κ̂

d∑
l=1

(
∂x̂n
∂xl

∂

∂x̂n
(v̂ −Πpv̂))2(x̂) det(J)dx̂

≤ (hmin)−2

∫
κ̂

d∑
l=1

(
∂

∂x̂l
(v̂ −Πpv̂))2(x̂) det(J)dx̂

≤ C2
p,d(hmin)−2

∫
κ̂

d∑
i1=1

· · ·
d∑

is=1

(
∂sv̂

∂x̂i1 · · · ∂x̂is

)2

det(J)dx̂

≤ C2
p,d(hmin)−2

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Jj1i1 · · · Jjsis

)2

dx

Substitution of the singular decomposition, J = UΣV T where Σ = diag(σ1, . . . , σd), into
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Eq. (D.1) yields,

|v −Πpv|2Hn(κ)

≤ C2
p,dd(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1k1Σk1l1Vi1l1 · · ·UjsksΣkslsVisls

)2

dx

= C2
p,dd(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1k1Σk1i1 · · ·UjsksΣksis

)2

dx

= C2
p,dd(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1i1σi1 · · ·Ujsisσis

)2

dx,

where, following the aforementioned notational convention, the summation of the repeated

i1, . . . , is in the last expression inside the parentheses is not implied. In other words, the

integrand is the sum of squared entries of the rank-s tensor indexed by i1, . . . , is. The first

equality follows from the fact that the sum of the squared entries (i.e. the Frobenius norm of

the tensor) is invariant under the unitary transformations induced by multiple applications

of V . Recognizing the integrand as the error kernel concludes the proof.

Note that the anisotropic Pp approximation error bound is a function of not the full

d× d-dimensional Jacobian matrix; it is a function of d singular values and a d× d unitary

matrix, which is d(d−1)/2-dimensional. In other words, the approximation error is governed

by d(d− 1)/2 + d = d(d+ 1)/2 parameters of the affine transformation, rather than the d2-

dimensional Jacobian. This allows us to encode the anisotropic approximation information

into an element-implied metric tensor, M. We note that the element-implied metric is

closely related to the transformation Jacobian from the reference element κ̂ (a unit simplex)

to the element κ, i.e.

M = J−TJ−1.

The proof follows from the fact that the edges of κ are related to that of the unit simplex

by ei = Jêi, i = 1, . . . , d(d + 1)/2, and the uniqueness of the element-implied metric. The

following theorem, expresses the elemental Pp approximation error in terms of the elemental

metric. (A similar error expression is also derived by Cao in [37].)

Theorem D.3. The Pp approximation error of a function v ∈ Hkv(κ) can be expressed in
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terms of the element-implied metric Mκ as

|v −Πpv|Hn(κ) ≤ Cp,d(hmin)−n
(∫

κ
EsM(Mκ; v)dx

)1/2

, n = 0, 1,

where s = min(p+ 1, kv), Cp,d is a constant dependent only on the polynomial degree p and

the dimension d, hmin = σmax(Mκ)−1/2 is the minimum element length, the metric-based

error kernel EsM is given by

EsM(M; v) =
d∑

i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
M−1/2

j1i1
· · ·M−1/2

jsis

)2

,

and M−1/2 is the metric square root of M.

Proof. The metric tensor is related to the singular-value decomposition of the Jacobian by

M = J−TJ−1 = UΣ−1V TV Σ−1UT = UΣ−2UT .

Thus, the Pp approximation error bound in Theorem D.2 can be expressed in terms of the

metric tensor as

|v −Πpv|2Hn(κ)

≤ C2
p,d(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1k1Σk1i1 · · ·UjsksΣksis

)2

dx

= C2
p,d(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Uj1k1Σk1l1Ui1l1 · · ·UjsksΣkslsUisls

)2

dx

= C2
p,d(hmin)−2n

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
M−1/2

j1i1
· · ·M−1/2

jsis

)2

dx,

where the first equality follows from the invariance of the Frobenius norm under successive

orthogonal transformations by U .

A straightforward extension of the elemental error result to a triangulation yields the

following global approximation error bound.

Theorem D.4. The Pp approximation error of a function Hkv(Ω) on the triangulation Th
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of Ω is bounded by

|v −Πh,pv|Hn(Ω) ≤ Cp,d

∑
κ∈Th

(
(hmin)−2n

∫
κ
EsM(Mκ; v)dx

)1/2

, n = 0, 1,

where s = min(p+ 1, kv), Cp,d is a constant dependent only on the polynomial degree p and

the dimension d, hmin = σmax(Mκ)−1/2 is the minimum element length, EsM is the error

kernels defined in Theorem D.3, and Mκ is the elemental metric tensor associated with κ.

Proof. Proof follows from a direct summation of the elemental error in Theorem D.3.

Face Inequalities

Let us now develop a few Pp anisotropic error bounds on faces of an element κ. These

bounds are used for the a priori analysis of the output error in the following section.

Lemma D.5 (Approximation on a face of a unit diameter element). Let κ̂ be the reference

element of unit diameter and f̂ be one of its faces. For v̂ ∈ Hkv(κ̂), the Pp approximation

error on f̂ is bounded by

|v̂ −Πpv̂|Hn(f̂) ≤ Cp,d|v̂|Hs(κ̂), n = 0, 1,

where s ≤ min(p + 1, kv), and Cp,d is dependent only on the polynomial order p and the

spatial dimension d.

Proof. The proof is provided in, for example, [74].

The following theorem is a variant of the face inequality shown in [74] expressed in terms

of the element-implied metric tensor.

Theorem D.6. The Pp approximation error of a function v ∈ Hkv(κ) on the face f of the

element κ is bounded by

|v −Πpv|Hn(f) ≤ Cp,d(hmin)−n
(
|f |
|κ|

)1/2(∫
κ
EsM(Mκ; v)dx

)1/2

, n = 0, 1,

where s = min(p + 1, kv), Cp,d is a constant only dependent on the polynomial degree p

and the dimension d, |f | is the measure of the face, |κ| is the measure of the element, and

EsM(M; v) is the error kernel defined in Theorem D.3.
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Proof. The proof follows from anisotropic scaling of the Hs-norm in the right hand side of

Theorem D.6. For n = 0, i.e. the L2 error, we have

‖v −Πpv‖2L2(f) =

∫
f
(v −Πpv)2ds =

∫
f̂
(v̂ −Πpv̂)2|f |dŝ

≤ Cp,d|f |
∫
κ̂

d∑
i1=1

· · ·
d∑

is=1

(
∂sv̂

∂x̂i1 · · · ∂x̂is

)2

dx̂

≤ Cp,d
|f |
|κ|

∫
κ

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Jj1i1 · · · Jjsis

)2

dx,

and replacing the Jacobian J in the integrand with the metric tensor M as in the proof of

Theorem D.3 concludes the proof. For n = 1, we have

|v −Πpv|2H1(f) =

∫
f

d∑
l=1

(
∂

∂xl
(v −Πpv))2(x)ds

≤ (hmin)−2|f |
∫
f̂

d∑
l=1

(
∂

∂x̂l
(v̂ −Πpv̂))2(x̂)dŝ

≤ Cp,d(hmin)−2|f |
∫
κ̂

d∑
i1=1

· · ·
d∑

is=1

(
∂sv̂

∂x̂i1 · · · ∂x̂is

)2

dx̂

≤ Cp,d(hmin)−2 |f |
|κ|

∫
κ̂

d∑
i1=1

· · ·
d∑

is=1

(
∂sv

∂xj1 · · · ∂xjs
Jj1i1 · · · Jjsis

)2

dx,

and again replacing the Jacobian J in the integrand with the metric tensor M as in the

proof of Theorem D.3 concludes the proof.

D.2 Output Error Bounds

This section provides auxiliary results used to prove the output error bound of the system

of linear PDEs, Eq. (2.7), considered in Section 2.3.4. For convenience, the equation is

reproduced here:

∇ · (Au)−∇ · (K∇u) + Cu = 0, in Ω

u = g, on ∂Ω, (D.2)
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where Ai ∈ Rm×m, i = 1, . . . , d, is the flux Jacobian, Kij ∈ Rm×m, i, j = 1, . . . , d constitute

the viscosity tensor, and C ∈ Rm is the reaction matrix. To proceed with the error analysis,

we split the elemental error contribution into convection, diffusion, and source terms, and

analyze the terms individually, i.e.

ηκ = |R′h,p(u− uh,p, (ψ − vh,p)|κ)|

≤ |(Rconv
h,p )′(u− uh,p, (ψ − vh,p)|κ)|+ |(Rdiff

h,p)′(u− uh,p, (ψ − vh,p)|κ)|

+ |(Rsour
h,p )′(u− uh,p, (ψ − vh,p)|κ)|, ∀vh,p ∈ Vh,p.

In order to enable the analysis, we make the following key assumption regarding the

quality of the DG solution.

Assumption D.7 (Optimality of the DG solution). Suppose u ∈ Hku(Ω) is the solution to

the linear advection-diffusion-reaction system, Eq. (D.2). The DG solution to the problem

is assumed to be optimal in the sense that the volume and face errors of the solution are

comparable to those that result from the L2 projection of the true solution. Specifically, the

degree-p DG solution, uh,p, is assumed to satisfy,

|u− uh,p|Hn(κ) ≤ Cp,d(hmin)−n
∫
κ
EsuM(Mκ;u)dx, n = 0, 1,

where su = min(p+ 1, ku), and EsM is the error kernel defined in Theorem D.3. Similarly,

the face errors are assumed to be bounded by

|u− uh,p|Hn(f) ≤ Cp,d(hmin)−n
(
|f |
|κ|

)1/2(∫
κ
EsuM(Mκ;u)dx

)1/2

, n = 0, 1,

where su = min(p+ 1, ku).

This is a rather strong assumption regarding the quality of the DG solution. The

assumption implies that the DG discretization is stable and is optimal with respect to the

volume and face norms. However, the optimality assumption simplifies the output error

estimation to that of analyzing the continuity of the bilinear form. (The proof of optimality

for a coercive scalar linear equation is provided by Houston et al. [74].)

Let us start with the analysis of the convection term.
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Lemma D.8 (Continuity of the convection term of a linear system). The elemental restric-

tion of the linear convection operator is bounded by

|(Rconv
h,p )′(w, v|κ)| ≤

m∑
k=1

d∑
i=1

|λAik |‖(r
Ai
k )T v‖L2(κ)‖(lAik )T

∂w

∂xi
‖L2(κ)

+
∑

f∈F (κ)

m∑
k=1

|λA
−
n̂

k |‖(r
An̂
k )T v‖L2(f)‖(l

An̂
k )T [w]+−‖L2(f),

where F (κ) is the set of faces of κ, [w]+− = w+ − w− for interior faces, [w]+− = w+ for the

boundary faces, and, for an arbitrary matrix B, λBk , rBk , and lBk denote the k-th eigenvalue,

right eigenvector, and left eigenvector, respectively, i.e. B =
∑m

k=1 λ
B
k r

B
k (lBk )T .

Proof. The interior and boundary upwinding numerical flux for the linear system is given

by

H(w+, w−; n̂) = A+
n̂w

+ +A−n̂w
−

Hb(w+, g; n̂) = A+
n̂w

+ +A−n̂ g,

where An̂ = Ain̂i the flux Jacobian in the direction of n̂, A+
n̂ and A−n̂ denote the matrix

that results from collecting the modes with positive and negative eigenvalues, respectively.

Substitution of the numerical flux functions, restriction to the element κ, and integration

by parts yield the local semilinear form

Rconv
h,p (w, v|κ) =

∫
κ
vTA∇wdx−

∫
∂κ\∂Ω

vTA−n̂ [w]+−ds−
∫
∂κ∩∂Ω

vTA−n̂ (w − g)ds,

where [w]+− = w+ − w−. Linearization of the semilinear form yields a bilinear form

(Rconv
h,p )′(w, v|κ) =

∫
κ
vTA∇wdx−

∫
∂κ\∂Ω

vTA−n̂ [w]+−ds−
∫
∂κ∩∂Ω

vTA−n̂wds.

Using the definition of [w]+− and the eigenvalue decompositions, the expression becomes

(Rconv
h,p )′(w, v|κ) =

m∑
k=1

d∑
i=1

∫
κ
λAik ((rAik )T v)((lAik )T

∂w

∂xi
)dx

−
∑

f∈F (κ)

m∑
k=1

∫
f
λ
A−n̂
k ((rAn̂k )T v)((lAn̂k )T [w]+−)ds
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Invoking the Schwarz inequality on each integral proves the desired result.

A combination of the output error representation formula and the continuity of the

bilinear form yields the following output error bound for the convection term.

Theorem D.9 (Output error bound of the linear convection operator). Let the local restric-

tion of the primal and adjoint solutions to the advection-diffusion-reaction system Eq. (2.7)

be u ∈ Hku(κ̃) and ψ ∈ Hkψ(κ̃), respectively, where κ̃ consists of element κ and its face-

sharing neighbors. Assuming the DG approximation uh,p ∈ Vh,p satisfies the optimality

condition, Assumption D.7, the elemental output error contribution from the convection

term is bounded by

∣∣(Rconv
h,p )′(u− uh,p, (ψ − vh,p)|κ)

∣∣
≤ h−1

min

m∑
k=1

d∑
i=1

|λAik |
(∫

κ
EsuM(Mκ; (rAik )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (lAik )Tψ)dx

)1/2

+ h−1
min

∑
f∈F (κ)

m∑
k=1

|λA
−
n̂

k |
(∫

κ
EsuM(Mκ; (r

An̂f
k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (l

An̂f
k )Tψ)dx

)1/2

,

where su = min(p+ 1, ku), sψ = min(p+ 1, kψ), and h−1
min is the minimum singular value of

the transformation Jacobian of the element κ.

Proof. Substituting w = u − uh,p and v = ψ − Πh,pψ into Lemma D.8 and invoking Theo-

rems D.3 and D.6 on the integrals over κ and ∂κ, respectively, results in

|(Rconv
h,p )′(u− uh,p, (ψ −Πh,pψ)|κ)|

≤ h−1
min

m∑
k=1

d∑
i=1

|λAik |
(∫

κ
EsuM(Mκ; (rAik )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (lAik )Tψ)dx

)1/2

+
|f |
|κ|

∑
f∈F (κ)

m∑
k=1

|λA
−
n̂

k |
(∫

κ
EsuM(Mκ; (rAn̂k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (lAn̂k )Tψ)dx

)1/2

.

Recognizing |f |/|κ| ≤ h−1
min concludes the proof.

Before proceeding to bound the diffusive term, let us introduce two useful relationships

relating the element and face norms. The first one is an anisotropic extension of the well-

known trace scaling result [72], and the second one relates the lifting operator and the face

jump.
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Lemma D.10 (Anisotropic trace scaling). For any v ∈ Pp(κ), the following inverse esti-

mate holds

‖v‖L2(f) ≤ C inv
p,d

(
|f |
|κ|

)1/2

‖v‖L2(κ),

where f is one of the faces of κ, and C inv
p,d is a constant only dependent on the polynomial

degree p and the dimension d.

Proof. The proof is provided in [72], but is repeated here for completeness. On a unit

diameter element κ̂ with a unit face f̂ ,

‖v̂‖L2(f̂) ≤ C
inv
p,d ‖v̂‖L2(κ̂), ∀v̂ ∈ Pp(κ̂),

by inverse estimate. Straightforward scaling yields

‖v‖2L2(f) =

∫
f̂
v̂2|f |dŝ ≤ (C inv

p,d )2|f |
∫
κ̂
v̂2dx̂ = (C inv

p,d )2 |f |
|κ|
‖v‖2L2(κ),

which proves the desired result.

Lemma D.11 (Anisotropic h-scaling of the Lifting Operator). The BR2 lifting operator is

bounded by the face jump according to

‖rf (JvK)‖L2(f) ≤ C inv
p,d

(
|f |
|κ|

)1/2

‖rf (JvK)‖L2(κ) ≤ (C inv
p,d )2 |f |

|κ|
‖JvK‖L2(f),

where Cp,d is a constant dependent on only polynomial order p and dimension d.

Proof. The first inequality follows from the trace scaling, Lemma D.10. The second in-

equality follows from the definition of the lifting operator and the trace scaling, i.e.

‖rf (JvK)‖2L2(κ) =

∫
κ
rf (JvK)2dx =

∫
f
rf (JvK)JvKds ≤ ‖rf (JvK)‖L2(f)‖JvK‖L2(f)

≤ C inv
p,d

(
|f |
|κ|

)1/2

‖rf (JvK)‖L2(κ)‖JvK‖L2(f),

which proves the desired result.

Having proved two auxiliary results concerning the element and face norms, let us now

analyze the continuity of the diffusive term.
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Lemma D.12 (Continuity of the diffusive term of a linear system). The elemental restric-

tion of the linear diffusive operator is bounded by

|(Rdiff
h,p)′(w, v|κ)| ≤

m∑
k=1

d∑
i,j=1

|λKijk |‖(r
Kij
k )T

∂v

∂xi
‖L2(κ)‖(l

Kij
k )T

∂w

∂xj
‖L2(κ)

+

m∑
k=1

d∑
i,j=1

|λKijk |‖(r
Kij
k )T

∂v

∂xi
‖L2(∂κ)‖(l

Kij
k )T JwKj‖L2(∂κ)

+

m∑
k=1

d∑
i,j=1

|λKijk |‖(r
Kij
k )T vn̂i‖L2(∂κ)(

‖(lKijk )T { ∂w
∂xj
}‖L2(∂κ) + C inv

p,d ηf
|f |
|κ|min

‖(lKijk )T JwKj‖L2(∂κ)

)
,

where λ
Kij
k , r

Kij
k , and l

Kij
k are the k-th eigenvalue, right eigenvector, and left eigenvector of

the viscosity matrix Kij, |κ|min = min (|κ+|, |κ−|) on ∂κ \ ∂Ω, |κ|min = |κ| on ∂κ ∩ ∂Ω,

JwKj is the j-th coordinate component of the jump operator on ∂κ \ ∂Ω, and JwKj ≡ wn̂j on

∂κ ∩ ∂Ω.

Proof. The local semilinear form for a linear diffusive operator with the Dirichlet boundary

condition is

Rdiff
h,p(w, v|κ) =

∫
κ
∇vT · K∇wdx−

∫
∂κ\∂Ω

1

2
∇vT · KJwK + vT n̂ · {K(∇w + ηfrf (JwK))}ds

−
∫
∂κ∩∂Ω

∇vT · K(w − g)n̂+ vT n̂ · K(∇w + ηfr
b
f ((w − g)n̂))}ds.

Linearization of the semilinear form yields a bilinear form

(Rdiff
h,p)′(w, v|κ) =

∫
κ
∇vT · K∇wdx−

∫
∂κ\∂Ω

1

2
∇vT · KJwK + vT n̂ · {K(∇w + ηfrf (JwK))}ds

−
∫
∂κ∩∂Ω

∇vT · Kwn̂+ vT n̂ · K(∇w + ηfr
b
f (wn̂))}ds.

By defining JwK = wn̂ on ∂κ ∩ ∂Ω and combining the interior and boundary integrals, the

expression simplifies to

∣∣∣(Rdiff
h,p)′(w, v|κ)

∣∣∣ ≤ ∣∣∣∣∫
κ
∇vT · K∇wdx

∣∣∣∣+

∣∣∣∣∫
∂κ
∇vT · KJwK + vT n̂ · {K(∇w + ηfrf (JwK))}ds

∣∣∣∣ .
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Using the eigenvalue decompositions of K, the expression becomes

∣∣∣(Rdiff
h,p)′(w, v|κ)

∣∣∣ ≤ m∑
k=1

d∑
i,j=1

∣∣∣∣∫
κ
λ
Kij
k ((r

Kij
k )T

∂v

∂xi
)((l
Kij
k )T

∂w

∂xj
)dx

∣∣∣∣
+

m∑
k=1

d∑
i,j=1

∣∣∣∣∫
∂κ
λ
Kij
k ((r

Kij
k )T

∂v

∂xi
)((l
Kij
k )T JwKj)ds

∣∣∣∣
+

m∑
k=1

d∑
i,j=1

∣∣∣∣∫
∂κ
λ
Kij
k ((r

Kij
k )T vn̂i)((l

Kij
k )T { ∂w

∂xj
+ ηfrf (JwKj)})ds

∣∣∣∣ ,
Invoking the Schwarz inequality yields the desired results for the first and second terms.

The third term is bounded by Schwarz inequality followed by the lifting operator scaling,

Lemma D.11, i.e. after invoking Schwarz inequality, the term involving the lifting operator

is bounded by

‖(lKijk )T { ∂w
∂xj

+ ηfrf (JwKj)}‖L2(∂κ) = ‖{(lKijk )T
∂w

∂xj
+ ηfrf ((l

Kij
k )T JwKj)}‖L2(∂κ)

≤ ‖{(lKijk )T
∂w

∂xj
}‖L2(∂κ) + ηf‖{rf ((l

Kij
k )T JwKj)}‖L2(∂κ)

≤ ‖{(lKijk )T
∂w

∂xj
}‖L2(∂κ) + C inv

p,dηf
|f |
|κ|min

‖{(lKijk )T JwKj}‖L2(∂κ),

which proves the desired result.

Theorem D.13 (Output error bound of the linear diffusion operator). Let the local restric-

tion of the primal and adjoint solutions to the advection-diffusion-reaction system Eq. (2.7)

be u ∈ Hku(κ̃) and ψ ∈ Hkψ(κ̃), respectively, where κ̃ consists of element κ and its face-

sharing neighbors. Assuming the DG approximation uh,p ∈ Vh,p satisfies the optimality

condition, Assumption D.7, the elemental output error contribution from the diffusion term

is bounded by

∣∣∣(Rdiff
h,p )′(u− uh,p, (ψ − vh,p)|κ)

∣∣∣
≤ C

m∑
k=1

d∑
i,j=1

|λKijk |
h2

min

(∫
κ
EsuM(Mκ; (r

Kij
k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (l

Kij
k )Tψ)dx

)1/2

,

where su = min(p+ 1, ku), sψ = min(p+ 1, kψ), and hmin is the minimum singular value of

the transformation Jacobians of the elements in κ̃.
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Proof. Substituting w = u − uh,p and v = ψ − Πh,pψ into Lemma D.12 and invoking

Theorems D.3 and D.6 on the integrals over κ and ∂κ, respectively, results in

|(Rdiff
h,p)′(u− uh,p, (ψ −Πh,pψ)|κ)|

≤ Cp,d
m∑
k=1

d∑
i,j=1

|λKijk |
[
h−2

min

(∫
κ
EsuM(Mκ; (r

Kij
k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (l

Kij
k )Tψ)dx

)1/2

+ h−1
mind

2 |f |
|κ|

(∫
κ
EsuM(Mκ; (r

Kij
k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (l

Kij
k )Tψ)dx

)1/2

+ d2 |f |
|κ|

(
h−1

min +
C inv
p,d ηf |f |
|κ|min

)(∫
κ
EsuM(Mκ; (r

Kij
k )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (l

Kij
k )Tψ)dx

)1/2

.

Recognizing that |f |/|κ| ≤ h−1
min and |f |/|κ|min ≤ h−1

min with the definition of hmin that

includes the face-sharing neighbor elements concludes the proof.

Now let us consider the error contribution due to the source term, using the same

technique used for the convection and diffusion terms.

Lemma D.14 (Continuity of the linear source term). The linear source term is bounded

by

|(Rsour
h,p )′(w, v|κ)| ≤

m∑
k=1

|λCk |‖(rCk )T v‖L2(κ)‖(lCk)Tw‖L2(κ),

where λCk, rCk , and lCk are the k-th eigenvalue, right eigenvector, and left eigenvector of the

reaction matrix C.

Proof. The elemental restriction of the bilinear form corresponding to the linear source

contribution is given by

(Rsour
h,p )′(w, v|κ) =

∫
κ
vTCwdx.

Taking the eigenvalue decomposition of the matrix C and invoking the Schwarz inequality

yields the desired result.

Theorem D.15 (Output error bound of the linear source term). Let the elemental restric-

tion of the primal and adjoint solutions to the advection-diffusion-reaction system Eq. (2.7)

be u ∈ Hku(κ) and ψ ∈ Hkψ(κ), respectively. Assuming the DG approximation uh,p ∈ Vh,p
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satisfies the optimality condition, Assumption D.7, the elemental output error contribution

from the source term is bounded by

∣∣(Rsour
h,p )′(u− uh,p, ψ − vh,p)

∣∣
≤ C

m∑
k=1

|λCk |
(∫

κ
EsuM(Mκ; (rCk )Tu)dx

)1/2(∫
κ
E
sψ
M(Mκ; (lCk)Tψ)dx

)1/2

.

where su = min(p+ 1, ku), and sψ = min(p+ 1, kψ).

Proof. Substituting w = u − uh,p and v = ψ − Πh,pψ into Lemma D.14 and invoking

Theorem D.3 yield the desired result.

Finally, combining the error bounds for the convection, diffusion, and reaction operators

stated in Theorems D.9, D.13, and D.15, respectively, we obtain an elemental a priori error

bound for the advection-diffusion-reaction system Eq. (2.7).

Theorem D.16. Let the local restriction of the primal and adjoint solutions to the advection-

diffusion-reaction system Eq. (2.7) be u ∈ Hku(κ̃) and ψ ∈ Hkψ(κ̃), respectively, where κ̃

consists of element κ and its face-sharing neighbors. Assuming the DG approximation

uh,p ∈ Vh,p satisfies the optimality condition, Assumption D.7, the elemental output error

is bounded by

ηa priori
κ ≤ C

[
m∑
k=1

d∑
i=1

|λAik |
hmin

(∫
κ

EsuM(Mκ; (rAik )Tu)dx

)1/2(∫
κ

E
sψ
M(Mκ; (lAik )Tψ)dx

)1/2

+
∑

f∈F (κ)

m∑
k=1

|λA
−
n̂

k |
hmin

(∫
κ

EsuM(Mκ; (r
An̂f
k )Tu)dx

)1/2(∫
κ

E
sψ
M(Mκ; (l

An̂f
k )Tψ)dx

)1/2

+

m∑
k=1

d∑
i,j=1

|λKijk |
h2

min

(∫
κ

EsuM(Mκ; (r
Kij
k )Tu)dx

)1/2(∫
κ

E
sψ
M(Mκ; (l

Kij
k )Tψ)dx

)1/2

+

m∑
k=1

|λCk |
(∫

κ

EsuM(Mκ; (rCk )Tu)dx

)1/2(∫
κ

E
sψ
M(Mκ; (lCk)Tψ)dx

)1/2
]

where su = min(p + 1, ku), sψ = min(p + 1, kψ), hmin = minκ∈κ̃(σmax(Mκ)−1/2) is the

minimum element length of all the face-sharing neighbors, and C only dependents on the

dimension d and the polynomial degree p. For an arbitrary matrix B, λBk , rBk , and lBk

denote the k-th eigenvalue, right eigenvector, and left eigenvector, respectively, i.e. B =∑m
k=1 λ

B
k r

B
k (lBk )T .

Proof. The proof follows from combining Theorems D.9, D.13, and D.15.
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Appendix E

On DWR Error Estimates for

p-Dependent Discretizations

This appendix analyzes the behavior of three variants of the dual-weighted residual (DWR)

error estimates applied to the p-dependent discretization that results from the BR2 dis-

cretization of a second-order PDE. Three error estimates are assessed using two metrics:

local effectivities and global effectivity. A priori error analysis is carried out to study the

convergence behavior of the local and global effectivities of the three estimates. Numerical

results verify the a priori error analysis. This analysis originally appeared in the technical

report [154].

E.1 p-Dependence of DG Discretizations

Let u ∈ V , where V is some appropriate function space, be the weak solution to a general

second-order PDE described by the semilinear form R(·, ·) : V ×V → R. That is, u satisfies

R(u, v) = 0, ∀v ∈ V.

The space Vh,p is a finite-dimensional space of piecewise polynomial functions of degree at

most p on a triangulation Th of domain Ω ⊂ Rn, i.e.

Vh,p ≡ {vh,p ∈ L2(Ω)| vh,p|κ ∈ P p(κ), ∀κ ∈ Th},
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where P p(κ) denotes the space of p-th degree polynomial on element κ. A finite element

approximation to the problem, uh,p ∈ Vh,p, is induced by the semilinear form Rh,p(·, ·) :

Vh,p × Vh,p → R and satisfies

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p.

Definition E.1 (p-Dependence). Let q < p. A semilinear form Rh,p(·, ·) : Vh,p × Vh,p → R

is said to be p-independent if

Rh,p(wh,q, vh,q) = Rh,q(wh,q, vh,q), ∀wh,q, vh,q ∈ Vh,q ⊂ Vh,p.

If a semilinear form is not p-independent, then it is said to be p-dependent.

We now show that the semilinear form arising from the second discretization of Bassi

and Rebay (BR2)[25] of a second-order PDE is p-dependent. For simplicity, let us consider

the Poisson equation with homogeneous Dirichlet boundary conditions on domain Ω,

−∆u = f in Ω

u = 0 on ∂Ω.

The appropriate function space for the problem is V = H1
0 (Ω). The semilinear form is given

by

R(w, v) = `(w)− a(w, v), (E.1)

where the source functional ` ∈ V ′ and the bilinear form a(·, ·) : V × V → R are given by

`(w) =

∫
Ω
fvdx and a(w, v) =

∫
Ω
∇v · ∇wdx.

The BR2 discretization of the Poisson equation is given by the semilinear form

Rh,p(wh,p, vh,p) = `h,p(wh,p)− ah,p(wh,p, vh,p), (E.2)
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where

`h,p(vh,p) = `(vh,p)

ah,p(wh,p, vh,p) =
∑
κ∈Th

∫
κ
∇vh,p · ∇wh,pdx−

∑
f∈Fh

∫
f
{∇vh,p} · Jwh,pK + Jvh,pK · {∇wh,p}ds

+
∑
f∈Fh

af,BR2
h,p (wh,p, vh,p)

where Fh denotes the set of faces of the triangulation. On the interior faces, the jump

operator, J·K, for a scalar quantity x is defined by

JxK = x−n̂− + x+n̂+.

and the average operator, {·}, for a vector quantity y is defined by

{y} =
1

2
(y− + y+).

Due to the homogeneous Dirichlet boundary condition, the operators on the boundary faces

are given by (see e.g. [22] for general case)

JxK = xn̂ and {y} = y.

The BR2 face penalty term for the face f ∈ Fh is given by

af,BR2
h,p (wh,p, vh,p) = −

∫
f
βJvh,pK ·

{
rfh,p(Jwh,pK)

}
ds,

where the lifting operator, rfh,p(Jwh,pK) ∈ [V f
h,p]

d, satisfies

∑
κ∈κf

∫
κ
gh,p · rfh,p(Jwh,pK)dx = −

∫
f
{gh,p} · Jwh,pKds, ∀gh,p ∈ [V f

h,p]
d,

where V f
h,p ≡ {vh,p ∈ L

2(κf )| vh,p|κ ∈ P p(κ), κ ∈ κf} with κf denoting the set of elements

neighboring face κ. The stability parameter, β, must be set to a number greater than the

number of faces for coercivity [10].
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Theorem E.2. The BR2 lifting operator, rfh,p(·), is p-dependent in the sense that

rfh,q(Jwh,qK) 6= rfh,p(Jwh,qK)

for some wh,q ∈ Vh,q with q < p.

Proof. By definition, the lifting operator, rfh,p(Jwh,qK), satisfies

∑
κ∈κf

∫
κ
gh,p · rfh,p(Jwh,qK)dx = −

∫
f
{gh,p} · Jwh,qKds, ∀gh,p ∈ [V f

h,p]
d.

Because V f
h,p is finite dimensional, there exist basis functions that span V f

h,p. In particular,

let us denote the basis functions that span the restriction of V f
h,p to κ, one of the elements

in κf , by {φm}. The dimension of Vh,p|κ is N (p), where N (p) is the dimension of the p-th

degree polynomial space. For example, for triangular elements, N (p) = (p + 1)(p + 2)/2.

We will chose φm to be a hierarchical orthogonal basis with respect to κ, i.e.,

φm ∈ P r(κ), ∀m ≤ N (r)

∫
κ
φnφmdx =


cn, n = m

0, n 6= m.

The i-th spatial component of the lifting operator restricted to element κ, rf,ih,p(Jwh,qK)|κ,

can be represented as

rf,ih,p(Jwh,qK)|κ =

N (p)∑
n=1

Bi
nφn

where Bi ∈ RN (p). The coefficients, Bi, of the lifting operator restricted to κ must satisfy

the system of algebraic equations

N (p)∑
n=1

[∫
κ
φmφndx

]
Bi
n = −α

∫
f
φmni · Jwh,qKds, ∀m = 1, . . . ,N (p),

where α = 1/2 on the interior face and α = 1 on the boundary face. Due to the orthogonality
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of the basis functions, we arrive at an explicit expression for the coefficients,

Bi
n = − α

cn

∫
f
φnn̂i · Jwh,qKds, n = 1, . . . ,N (p).

The face integral term does not vanish in general. In particular,

Bi
n = − α

cn

∫
f
φnn̂i · Jwh,qKds 6= 0, n = N (q) + 1, . . . ,N (p),

for some Jwh,qK ∈ P q(f). Having finite coefficients for n > N (q), the lifting operator

rf,ih,p(Jwh,qK)|κ is not in the space P q(κ). In contrast, rf,ih,q(Jwh,qK)|κ ∈ P
q(κ) by construction.

Thus, rf,ih,q(Jwh,qK) 6= rf,ih,p(Jwh,qK) and the lifting operator is p-dependent.

As the lifting operator is p-dependent, the semilinear form arising from the BR2 dis-

cretization of a second-order PDE is p-dependent.

Remark E.1. The interior penalty (IP) DG discretization is also p-dependent. The bilinear

form for the IP method is obtained by replacing the BR2 face penalty term, af,BR2
h,p (·, ·) :

Vh,p × Vh,p → R, with the IP face penalty term,

af,IP
h,p (wh,p, vh,p) = CIP

∫
f

p2

h
Jvh,pK · Jwh,pKds,

which is p-dependent due to the explicit presence of the p2 term.

E.2 The Dual-Weighted Residual Error Estimation

In this section, we review the dual-weighted residual (DWR) error estimate of Becker and

Rannacher [26, 27] applied to the DG methods.

E.2.1 Problem Setup

For simplicity, we consider the Poisson equation with homogeneous Dirichlet boundary

conditions, as in Section E.1, with a linear output functional of the form

J (w) = Jh,p(w) = −`O(w) = −
∫

Ω
gwdx,
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for some g ∈ L2(Ω). Our objective is to quantify

E ≡ Jh,p(uh,p)− J (u),

where u ∈ V and uh,p ∈ Vh,p satisfy the residual expressions Eq. (E.1) and (E.2), re-

spectively. In the DWR framework, the output error is quantified in terms of the adjoint

solution, ψ. For the Poisson problem of interest, the strong form of the dual problem is

given by

−∆ψ = g in Ω

ψ = 0 on ∂Ω.

Equivalently, the weak form of the dual problem is: Find ψ ∈ V = H1
0 (Ω) such that

Rψ(v, ψ) = `O(v)− a(v, ψ) = 0, ∀v ∈ V.

Similarly, the finite element approximation to the dual problem is: Find ψh,p ∈ Vh,p such

that

Rψh,p(vh,p, ψh,p) = `O(vh,p)− ah,p(vh,p, ψh,p) = 0, ∀vh,p ∈ Vh,p.

E.2.2 Local and Global Consistency Results

Let us develop properties of the discrete primal and dual residual that facilitate the devel-

opment of error estimates for the DG method.

Lemma E.3 (Extended Local Consistency). The semilinear form possesses local consis-

tency in the following sense: Given the true solution, u ∈ V = H1(Ω), the residual satisfies

Rh,p(u, v|κ) = 0, ∀v ∈ H1(Ω),

where v|κ ∈ L2(Ω) is understood as the restriction of v to κ with zero extension in Ω \ κ.

Similarly, given the true adjoint, ψ ∈ V , the adjoint residual satisfies

Rψh,p(v|κ, ψ) = 0, ∀v ∈ H1(Ω).
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These results are referred to as the extended local primal and dual consistency, respectively,

because it encompasses the traditional statement of local consistency for v|κ ∈ Vh,p(κ) ⊂

H1(κ).

Proof. Since u ∈ H1(Ω), all terms related to jumps in u in the primal residual vanish. The

remaining expression is

Rh,p(u, v|κ) = `(v|κ)− ah,p(u, v|κ)

=
∑
κ′∈Th

∫
κ′
fv|κdx−

∑
κ′∈Th

∫
κ′
∇v|κ · ∇udx+

∑
f∈Fh

∫
f
Jv|κK · {∇u}ds

=

∫
κ
fvdx−

∫
κ
∇v · ∇udx+

∫
∂κ
vn̂ · ∇uds

=

∫
κ
v(f + ∆u)dx = 0, ∀v ∈ V = H1(Ω).

Similarly, since ψ ∈ H1(Ω), all terms related to jumps in ψ in the dual residual vanish. The

remaining expression is

Rψh,p(v|κ, ψ) = `O(v|κ)− ah,p(v|κ, ψ)

=
∑
κ′∈Th

∫
κ′
gv|κdx−

∑
κ′∈Th

∫
κ′
∇ψ · ∇v|κdx+

∑
f∈Fh

∫
f
·{∇ψ}Jv|κKds

=

∫
κ
gvdx−

∫
κ
∇ψ · ∇vdx+

∫
∂κ
∇ψ · n̂vds

=

∫
κ
v(g + ∆ψ)dx = 0, ∀v ∈ V = H1(Ω).

Lemma E.4 (Extended Global Consistency). Given the true primal solution, u ∈ V =

H1(Ω), the discrete primal residual is globally consistent in the sense that

Rh,p2(u, v) = 0, ∀v ∈ Vh,p1 ⊕ V, ∀p1, p2 ∈ N

Similarly, given the true dual solution, ψ ∈ V = H1(Ω), the discrete dual residual is globally

consistent in the sense that

Rψh,p2
(v, ψ) = 0, ∀v ∈ Vh,p1 ⊕ V, ∀p1, p2 ∈ N
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Proof. First, we note that

Vh,p1 ⊕ V = (⊕κVh,p1(κ))⊕ V ⊂ (⊕κVh,p1(κ))⊕
(
⊕κH1(κ)

)
= ⊕κ

(
Vh,p1(κ)⊕H1(κ)

)
= ⊕κH1(κ).

The proof then follows from the extended local consistency. Since v =
∑

κ∈Th v|κ, we have

Rh,p2(u, v) =
∑
κ∈Th

Rh,p2(u, v|κ) = 0, ∀v ∈ ⊕κH1(κ) ⊃ (Vh,p1 ⊕ V ) ,

where the second equality follows from the extended local consistency, i.e., Rh,p2(u, v|κ) = 0,

∀v ∈ H1(κ). The proof for the global dual consistency is identical.

E.2.3 DWR Error Estimates

Theorem E.5 (Functional Error Representation Formula). The error in the finite element

approximation of the output, Jh,p(uh,p), is represented in terms of the adjoint solution,

ψ ∈ V , by

E ≡ Jh,p(uh,p)− J (u) = Rh,p(uh,p, ψ − ψh,p).

Proof. Using the definition of the adjoint, we obtain the error representation formula

E ≡ Jh,p(uh,p)− J (u) = `O(u− uh,p)

= ah,p(u− uh,p, ψ) (extended global dual consistency)

= ah,p(u− uh,p, ψ − ψh,p) (Galerkin orthogonality)

= `(ψ − ψh,p)− ah,p(uh,p, ψ − ψh,p) (extended global primal consistency)

= Rh,p(uh,p, ψ − ψh,p).

Note that ψh,p could be replaced by any vh,p ∈ Vh,p since Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈

Vh,p.

Definition E.6 (Local Functional Error Representation Formula). The functional output
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error, E, is localized to element κ according to

ηκ ≡ Rh,p(uh,p, (ψ − ψh,p)|κ).

Let us state a few important properties of the local error ηκ. First, the output error is

the sum of the local errors, i.e.

E =
∑
κ∈Th

ηκ.

Second, the local error representation requires that a local residual, which vanishes with

mesh refinement, results from the elemental restriction of test functions. While DG dis-

cretizations have this property, continuous Galerkin discretizations do not. For continuous

Galerkin discretizations, the global error representation formula must be integrated by parts

to yields an expression with the strong form of residual, which vanishes with mesh refine-

ment.

In practice, the true adjoint, ψ ∈ V , is not computable. Thus, we replace the adjoint

with the surrogate solution obtained on a enriched space, i.e., ψh,p̂ ∈ Vh,p̂ such that

Rψh,p̂(vh,p̂, ψh,p̂) = 0, ∀vh,p̂ ∈ Vh,p̂,

for some p̂ = p + pinc > p, where pinc is the increase in the polynomial degree in the

enrichment process.

We now introduce three different forms of the error estimates.

Definition E.7 (Error Estimate 1). The error estimate 1 is given by

E(1) ≡ Rh,p̂(uh,p, ψh,p̂ − ψh,p)

η(1)
κ ≡ Rh,p̂(uh,p, (ψh,p̂ − ψh,p)|κ).

The error estimate 1 arises naturally if the discrete formulation of the adjoint is used

(see, e.g., [34, 58, 145]).
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Definition E.8 (Error Estimate 2). The error estimate 2 is given by

E(2) ≡ Rh,p̂(uh,p, ψh,p̂)

η(2)
κ ≡ Rh,p̂(uh,p, ψh,p̂|κ).

Error estimate 2 eliminates the need to compute ψh,p by appealing to the local Galerkin

orthogonality of DG discretizations, and this is one of the error estimates advocated in [55].

However, with the form presented, the local Galerkin orthogonality does not hold due to

the p-dependence of the semilinear form. In particular, while

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p,

the same does not hold if the p about which the residual is evaluated is replaced by p̂ 6= p,

i.e.,

Rh,p̂(uh,p, vh,p) 6= 0, for some vh,p ∈ Vh,p.

This implies that

E(2) ≡ Rh,p̂(uh,p, ψh,p̂) 6= Rh,p̂(uh,p, ψh,p̂ − ψh,p) ≡ E(1)

η(2)
κ ≡ Rh,p̂(uh,p, ψh,p̂|κ) 6= Rh,p̂(uh,p, (ψh,p̂ − ψh,p)|κ) ≡ η(1)

κ ,

and the error estimate 2 is different from error estimate 1.

Definition E.9 (Error Estimate 3). The error estimate 3 is given by

E(3) ≡ Rh,p(uh,p, ψh,p̂)

η(3)
κ ≡ Rh,p(uh,p, ψh,p̂|κ).

The error estimate 3 is obtained by simply replacing ψ in the error representation formula

by ψh,p̂. Note that because the residual is evaluated about p, the Galerkin orthogonality
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holds, and we have

E(3) ≡ Rh,p(uh,p, ψh,p̂) = Rh,p(uh,p, ψh,p̂ − vh,p) ∀vh,p ∈ Vh,p

η(3)
κ ≡ Rh,p(uh,p, ψh,p̂|κ) = Rh,p(uh,p, (ψh,p̂ − vh,p)|κ) ∀vh,p ∈ Vh,p.

E.2.4 Assessment of the Error Estimates

For each of the error estimates considered, we will develop a bound for the absolute error

in the global error estimate

|E − E(i)|

and the absolute error in the local error estimate

|ηκ − η(i)
κ |.

In practice, however, we are more interested in the quality of the error estimates with respect

to the true error. In particular, we want to ensure that the error in the error estimate is

a small fraction of the true error; otherwise the estimates would be useless. The relative

error in the global error estimate i is given by

θ
(i)
global ≡

|E − E(i)|
|E|

.

The relative error is related to the error effectivity Ieff defined in, for example, [26, 27] by

|E − E(i)|
|E|

=

∣∣∣∣∣E − E(i)

E

∣∣∣∣∣ =

∣∣∣∣∣1− E(i)

E

∣∣∣∣∣ =
∣∣∣1− Ieff

∣∣∣ .
That is, the relative error measures the deviation of the error effectivity from unity. Ideally,

the effectivity of the error estimate should improve with mesh refinement such that Ieff → 1

as h→ 0. Equivalently, the relative error should ideally vanish as h→ 0.

Similarly, the relative error in the local error estimate i is given by

θ
(i)
local,κ ≡

|ηκ − η(i)
κ |

|ηκ|
=

∣∣∣∣∣1− η
(i)
κ

ηκ

∣∣∣∣∣ .
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Again, the relative error in the local error estimate measures the deviation of the local error

effectivity from unity.

E.3 A Priori Error Analysis

In this section, we perform a priori analysis of the three error estimates to establish the

bound on the output estimation errors. In particular, we are interested in the convergence

of the estimates with grid refinement.

Throughout this section, we will use the notation A . B to imply that A ≤ cB for

some c <∞ independent of h, in order to avoid proliferation of constants. Similarly, A & B

implies that A ≥ cB for some c > 0 independent of h. Moreover, A ≈ B implies that A . B

and B . A.

E.3.1 Assumptions

We assume that the DG-FEM approximation to both the primal and the dual problems are

optimal in the L2 sense, i.e.,

‖u− uh,p‖L2(κ) . ‖u−Πh,pu‖L2(κ), ∀κ ∈ Th

‖ψ − ψh,p‖L2(κ) . ‖ψ −Πh,pψ‖L2(κ) ∀κ ∈ Th,

where Πh,p : V → Vh,p is the L2 projection operator such that Πh,pv ∈ Vh,p satisfies

‖v −Πh,pv‖L2(Ω) = inf
wh,p∈Vh,p

‖v − wh,p‖L2(Ω).

Furthermore, we will assume u and ψ are analytic for convenience. Under the analyticity

assumption, the scaling argument results in the following interpolation results:

‖v −Πh,pv‖Hm(κ) . hp+1−m‖v‖Hp+1(κ)

‖v −Πh,pv‖Hm(f) . hp+1/2−m‖v‖Hp+1(κ).

E.3.2 Useful Relationships

This section introduces lemmas that facilitate the development of the error bounds for the

output error estimates.
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Lemma E.10 (Local Residual-Error Mapping). For all p1, p2, p3 ∈ N, the local dual-

weighted residual can be represented as

Rh,p3(wh,p1 , (ψ − vh,p2)|κ) = ah,p3(u− wh,p1 , (ψ − vh,p2)|κ), ∀wh,p1 ∈ Vh,p1 , vh,p2 ∈ Vh,p2 .

where u and ψ are the solutions to the primal and dual problems respectively.

Proof. The proof relies on the definition of the primal residual, the extended local consis-

tency (Lemma E.3), and the linearity of the bilinear form, i.e.,

Rh,p3(wh,p1 , (ψ − vh,p2)|κ) ≡ `h,p3((ψ − vh,p2)|κ)− ah,p3(wh,p1 , (ψ − vh,p2)|κ)

= ah,p3(u, (ψ − vh,p2)|κ)− ah,p3(wh,p1 , (ψ − vh,p2)|κ)

= ah,p3(u− wh,p1 , (ψ − vh,p2)|κ), ∀wh,p1 ∈ Vh,p1 , vh,p2 ∈ Vh,p2 .

Lemma E.11 (Global Residual-Error Mapping). For all p1, p2, p3 ∈ N, the global dual-

weighted residual can be represented as

Rh,p3(wh,p1 , ψ − vh,p2) = ah,p3(u− wh,p1 , ψ − vh,p2) = Rψh,p3
(u− wh,p1 , vh,p2)

∀wh,p1 ∈ Vh,p1 , vh,p2 ∈ Vh,p2 .

where u and ψ are the solutions to the primal and dual problems respectively.

Proof. The first equality follows from the local residual-error mapping, i.e.,

Rh,p3(wh,p1 , ψ − vh,p2) =
∑
κ∈Th

Rh,p3(wh,p1 , (ψ − vh,p2)|κ) =
∑
κ∈Th

ah,p3(u− wh,p1 , (ψ − vh,p2)|κ)

= ah,p3(u− wh,p1 , ψ − vh,p2), ∀wh,p1 ∈ Vh,p1 , vh,p2 ∈ Vh,p2 .

The second equality results from the definition of the adjoint residual and the extended
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global consistency, i.e.,

Rψh,p3
(u− wh,p1 , vh,p2) ≡ `Oh,p3

(u− wh,p1)− ah,p3(u− wh,p1 , vh,p2)

= ah,p3(u− wh,p1 , ψ)− ah,p3(u− wh,p1 , vh,p2)

= ah,p3(u− wh,p1 , ψ − vh,p2), ∀wh,p1 ∈ Vh,p1 , vh,p2 ∈ Vh,p2 .

Lemma E.12 (h-Scaling of the Lifting Operator). The BR2 lifting operator is bounded by

the face jump according to

‖rfh,p(JvK)‖L2(κf ) . h−1/2‖JvK‖L2(f).

Proof. The lemma is stated in, for example, [33]. Here, we present the proof for com-

pleteness. The inequality follows from setting the test function equal to rfh,p(JvK) in the

definition of the lifting operator, applying the Schwarz inequality, and invoking the trace

scaling argument, i.e.,

‖rfh,p(JvK)‖
2
L2(κf ) =

∫
κf

rfh,p(JvK) · r
f
h,p(JvK)dx

=

∫
f
{rfh,p(JvK)} · JvKds (definition of lifting operator)

≤ ‖rfh,p(JvK)‖L2(f)‖JvK‖L2(f) (Schwarz)

. h−1/2‖rfh,p(JvK)‖L2(κf )‖JvK‖L2(f). (trace scaling)

Division of the both sides by ‖rfh,p(JvK)‖L2(κf ) yields the desired result,

‖rfh,p(JvK)‖L2(κf ) . h−1/2‖JvK‖L2(f).

Remark E.2. The face jump is also bounded by the lifting operator as h−1/2‖JvK‖L2(f) .

‖rfh,p(JvK)‖L2(κf ). The proof is provided in [33].

Lemma E.13 (Local Bilinear Form Error Bound). Under the optimality assumption, the
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following error bound holds on element κ for all p1, p2, p3 ∈ N:

|ah,p3(u− uh,p1 , (ψ − ψh,p2)|κ)| . hp1+p2‖u‖Hp1+1(κ̃)‖ψ‖Hp2+1(κ),

where u and ψ are the true solution to the primal and dual problems, respectively, and uh,p1

and ψh,p2 are the DG-FEM approximation to the primal and dual problems, respectively,

and κ̃ is the set of elements sharing common face with κ.

Proof. Substitution of the expression for the bilinear form yields

ah,p3(u− uh,p1 , (ψ − ψh,p2)|κ)

=
∑
κ′

∫
κ′
∇(ψ − ψh,p2)|κ · ∇(u− uh,p1)dx︸ ︷︷ ︸

(I)

−
∑
f

∫
f
{∇(ψ − ψh,p2)|κ} · Ju− uh,p1Kds︸ ︷︷ ︸

(II)

−
∑
f

∫
f
J(ψ − ψh,p2)|κK · {∇(u− uh,p1)}ds︸ ︷︷ ︸

(III)

−
∑
f

∫
f
βJ(ψ − ψh,p2)|κK ·

{
rfh,p3

(Ju− uh,p1K)
}
ds︸ ︷︷ ︸

(IV)

Now we bound each one of the braced terms. The interior term becomes

|(I)| =

∣∣∣∣∣∑
κ′

∫
κ′
∇(ψ − ψh,p2)|κ · ∇(u− uh,p1)dx

∣∣∣∣∣ =

∣∣∣∣∫
κ
∇(ψ − ψh,p2) · ∇(u− uh,p1)dx

∣∣∣∣
≤ ‖ψ − ψh,p2‖H1(κ)‖u− uh,p1‖H1(κ) . hp1+p2‖ψ‖Hp2+1(κ)‖u‖Hp1+1(κ)

The first face term is bounded by

|(II)| =

∣∣∣∣∣∣
∑
f

∫
f
{∇(ψ − ψh,p2)|κ} · Ju− uh,p1Kds

∣∣∣∣∣∣ =

∣∣∣∣∫
∂κ
α∇(ψ − ψh,p2) · Ju− uh,p1Kds

∣∣∣∣
≤ ‖α∇(ψ − ψh,p2)‖L2(∂κ)‖Ju− uh,p1K‖L2(∂κ)

. hp2−1/2‖ψ‖Hp2+1(κ)h
p1+1/2‖u‖Hp1+1(κ̃) = hp1+p2‖ψ‖Hp2+1(κ)‖u‖Hp1+1(κ̃),

where α = 1 if f is a boundary face, and α = 1/2 if f is an interior face. The second face

233



term is bounded in a similar manner as the first term, resulting in

|(III)| =

∣∣∣∣∣∣
∑
f

∫
f
J(ψ − ψh,p2)|κK · {∇(u− uh,p1)}ds

∣∣∣∣∣∣ =

∣∣∣∣∫
∂κ

(ψ − ψh,p2)n̂ · {∇(u− uh,p1)}ds
∣∣∣∣

. hp1+p2‖ψ‖Hp2+1(κ)‖u‖Hp1+1(κ̃)

Finally, we bound the term involving the lifting operator as

|(IV)| =

∣∣∣∣∣∣
∑
f∈F

∫
f
βJ(ψ − ψh,p2)|κK ·

{
rfh,p3

(Ju− uh,p1K)
}
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
f∈∂κ

∫
f
β(ψ − ψh,p2)n̂ ·

{
rfh,p3

(Ju− uh,p1K)
}∣∣∣∣∣∣ (finite support of (ψ − ψh,p2)|κ)

≤
∑
f∈∂κ

β‖ψ − ψh,p2‖L2(f)‖
{
rfh,p3

(Ju− uh,p1K)
}
‖L2(f) (Schwarz inequality)

.
∑
f∈∂κ

‖ψ − ψh,p2‖L2(f)h
−1/2‖

{
rfh,p3

(Ju− uh,p1K)
}
‖L2(κf ) (trace scaling)

.
∑
f∈∂κ

‖ψ − ψh,p2‖L2(f)h
−1‖Ju− uh,p1K‖L2(f) (Lemma E.12)

. hp1+p2‖ψ‖Hp2+1(κ)‖u‖Hp1+1(κ̃) (L2 optimality assumption)

Combining the bounds for (I), (II), (III), and (IV), we obtain the desired result:

|ηκ| ≤ |(I)|+ |(II)|+ |(III)|+ |(IV)| . hp1+p2‖ψ‖Hp2+1(κ)‖u‖Hp1+1(κ̃).

Lemma E.14 (Global Bilinear Form Error Bound). Under the optimality assumption, the

following error bound holds for all p1, p2, p3 ∈ N:

|ah,p3(u− uh,p1 , ψ − ψh,p2)| . hp1+p2‖u‖Hp1+1(Ω)‖ψ‖Hp2+1(Ω)

where uh,p1 and ψh,p2 are the DG-FEM approximation to the primal and dual problems,

respectively.
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Proof. The global error bound is a direct consequence of the local error bound, i.e.,

|ah,p3(u− uh,p1 , ψ − ψh,p2)| =

∣∣∣∣∣∣
∑
κ∈Th

ah,p3(u− uh,p1 , (ψ − ψh,p2)|κ)

∣∣∣∣∣∣
.
∑
κ∈Th

hp1+p2‖u‖Hp1+1(κ̃)‖ψ‖Hp2+1(κ)

≤ hp1+p2

∑
κ∈Th

‖u‖Hp1+1(κ̃)

∑
κ∈Th

‖ψ‖Hp2+1(κ)


. hp1+p2‖u‖Hp1+1(Ω)‖ψ‖Hp2+1(Ω)

E.3.3 A Priori Error Analysis of the True Output Error

In this section, we analyze the convergence behavior of the true output error.

Theorem E.15 (Convergence of True Error). Let uh,p ∈ Vh,p be the DG-FEM solution to

the Poisson equation. The local and global error are bounded by

|ηκ| . h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ)

|E| . h2p‖u‖Hp+1(Ω)‖ψ‖Hp+1(Ω),

respectively, where κ̃ is the set of elements sharing a common face with κ.

Proof. We prove the local convergence bound by invoking the local residual-error mapping,

Lemma E.10, for wh,p1 = uh,p and vh,p2 = ψh,p and by applying the local bilinear form error

bound, Lemma E.13, for p1 = p2 = p3 = p, i.e.,

|ηκ| ≡ |Rh,p(uh,p, (ψ − ψh,p)|κ)| = |ah,p(u− uh,p, (ψ − ψh,p)|κ)| . h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ).

Similarly, we obtain the global convergence bound by applying the global residual-error

mapping, Lemma E.11, for wh,p1 = uh,p and vh,p2 = ψh,p and the global bilinear form error

bound, Lemma E.14, for p1 = p2 = p3 = p, i.e.,

|E| ≡ |Rh,p(uh,p, ψ − ψh,p)| = |ah,p(u− uh,p, ψ − ψh,p)| . h2p‖u‖Hp+1(Ω)‖ψ‖Hp+1(Ω).
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Thus, both the global and local errors superconverge at the rate of h2p.

E.3.4 A Priori Error Analysis of Output Error Estimate 3

In this section, we analyze the convergence behavior of the output error estimate 3.

Theorem E.16 (Convergence of Local Error Estimate 3). The error in the local error

estimate 3 is bounded by

|ηκ − η(3)
κ | . hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ).

Proof. By linearity of the semilinear form with respect to the second argument, we have

ηκ − η(3)
κ = Rh,p(uh,p, ψ|κ)−Rh,p(uh,p, ψh,p̂|κ) = Rh,p(uh,p, (ψ − ψh,p̂)|κ)

From here on, the proof is similar to that of the convergence of the true error. By invoking

the local residual-error mapping, Lemma E.10, for wh,p1 = uh,p and vh,p2 = ψh,p̂ and by

applying the local bilinear form error bound, Lemma E.13, for p1 = p3 = p and p2 = p̂, we

obtain

|ηκ − η(3)
κ | = |ah,p(u− uh,p, (ψ − ψh,p̂)|κ)| . hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ).

Corollary E.17. Assuming the true local error converges as ηκ ≈ h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ),

the effectivity of the local error estimate 3 converges to unity as

θ
(3)
local,κ =

∣∣∣∣∣1− η
(3)
κ

ηκ

∣∣∣∣∣ =
|η(3)
κ − ηκ|
|ηκ|

.
Chp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ)

h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ)
= hp̂−p = hpinc

where pinc is the increase in the polynomial degree for the truth surrogate adjoint solve.

Theorem E.18 (Convergence of Global Error Estimate 3). The error in the global error

estimate 3 is bounded by

|E(3) − E| . hp+p̂‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω).
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Proof. The convergence of the global error estimate 3 follows from that of the local coun-

terpart, i.e.,

|E − E(3)| =

∣∣∣∣∣∣
∑
κ∈Th

(ηκ − η(3)
κ )

∣∣∣∣∣∣ .
∑
κ∈Th

hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ)

. hp+p̂‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω).

Corollary E.19. If E ≈ h2p‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω), then the effectivity of the global error

estimate 3 converges to unity as

θ
(3)
global =

∣∣∣∣∣1− E(3)

E

∣∣∣∣∣ =
|E(3) − E|
|E|

.
hp+p̂‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω)

h2p‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω)

. hp̂−p = hpinc .

E.3.5 A Priori Error Analysis of Output Error Estimate 1

In this section, we analyze the convergence behavior of the output error estimate 1.

Theorem E.20 (Convergence of Local Error Estimate 1). The error in the local error

estimate 1 is bounded by

|ηκ − η(1)
κ | . h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃)

Proof. Expanding the difference in the local error using the error representation formula,

ηκ − η(1)
κ = Rh,p(uh,p, (ψ − ψh,p)|κ)−Rh,p̂(uh,p, (ψh,p̂ − ψh,p)|κ)

= Rh,p(uh,p, (ψ − ψh,p)|κ)−Rh,p̂(uh,p, (ψ − ψh,p)|κ)︸ ︷︷ ︸
(I)

+Rh,p̂(uh,p, (ψ − ψh,p̂)|κ)︸ ︷︷ ︸
(II)

Term (II) can be bounded following a similar argument as that used to bound ηκ− η(3)
κ .

By invoking the local residual-error mapping, Lemma E.10, for wh,p1 = uh,p and vh,p2 =

ψh,p̂ and by applying the local bilinear form error bound, Lemma E.13, for p1 = p and
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p2 = p3 = p̂, we obtain

|(II)| = |Rh,p̂(uh,p, (ψ − ψh,p̂)|κ)| = |ah,p̂(u− uh,p, (ψ − ψh,p̂)|κ)|

. hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ).

The only difference in the terms constituting (I) stems from the difference in the lifting

spaces. Thus, term (I) can be expressed as

|(I)| =

∣∣∣∣∣∣−
∑
f∈∂κ

(∫
f
βJ(ψ − ψh,p)|κK ·

{
rfh,p̂(Ju− uh,pK)

}
ds

−
∫
f
βJ(ψ − ψh,p)|κK ·

{
rfh,p(Ju− uh,pK)

}
ds

)∣∣∣∣
=

∣∣∣∣∣∣−
∑
f∈∂κ

∫
f
βJ(ψ − ψh,p)|κK ·

({
rfh,p̂(Ju− uh,pK)− r

f
h,p(Ju− uh,pK)

})
ds

∣∣∣∣∣∣
≤
∑
f∈∂κ

β‖ψ − ψh,p‖L2(f)‖
{
rfh,p̂(Ju− uh,pK)− r

f
h,p(Ju− uh,pK)

}
‖L2(f)

.
∑
f∈∂κ

‖ψ − ψh,p‖L2(f)h
−1/2‖

{
rfh,p̂(Ju− uh,pK)− r

f
h,p(Ju− uh,pK)

}
‖L2(κf )

.
∑
f∈∂κ

‖ψ − ψh,p‖L2(f)h
−1‖Ju− uh,pK‖L2(f)

. h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃)

Combining the bounds for (I) and (II), we obtain

|η(1)
κ − ηκ| ≤ |(I)|+ |(II)| . h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃) + hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ)

. h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃)

Corollary E.21. If ηκ ≈ h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ), then the local effectivity does not con-

verge to unity as the mesh is refined, i.e.,

θ
(1)
local,κ =

∣∣∣∣∣1− η
(1)
κ

ηκ

∣∣∣∣∣ =
|ηκ − η(1)

κ |
|ηκ|

.
h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃)

h2p‖ψ‖Hp+1(κ)‖u‖Hp+1(κ̃)
. 1.

Theorem E.22 (Convergence of Global Error Estimate 1). The error in the global error
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estimate 1 is bounded by

|E − E(1)| . h2p‖ψ‖Hp+1(Ω)‖u‖Hp+1(Ω).

Proof. The convergence of the global error estimate 1 follows from that of the local coun-

terpart, i.e.,

|E − E(1)| =

∣∣∣∣∣∣
∑
κ∈Th

(ηκ − η(1)
κ )

∣∣∣∣∣∣ .
∑
κ∈Th

h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ)

. h2p‖u‖Hp+1(Ω)‖ψ‖Hp+1(Ω).

Corollary E.23. If E ≈ h2p‖ψ‖Hp+1(Ω)‖u‖Hp+1(Ω), then the global effectivity does not con-

verge to unity as the mesh is refined, i.e.,

θ
(1)
global =

∣∣∣∣∣1− E(1)

E

∣∣∣∣∣ =
|E − E(1)|
|E|

.
h2p‖ψ‖Hp+1(Ωh)‖u‖Hp+1(Ωh)

h2p‖ψ‖Hp+1(Ωh)‖u‖Hp+1(Ωh)
. 1.

E.3.6 A Priori Error Analysis of Output Error Estimate 2

In this section, we analyze the convergence behavior of the output error estimate 2.

Theorem E.24 (Convergence of Local Error Estimate 2). The error in the local error

estimate 2 is bounded by

|ηκ − η(2)
κ | . hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ).

Proof. We will first bound the local error estimate, η
(2)
κ . By the definition of the primal

residual and the linearity of the bilinear form,

η(2)
κ = Rh,p̂(uh,p, ψh,p̂|κ) = `(ψh,p̂|κ)− ah,p̂(uh,p, ψh,p̂|κ) = ah,p̂(u− uh,p, ψh,p̂|κ).

As ah,p̂(u − uh,p, vh,p) 6= 0 in general for p̂ > p, we cannot subtract ψh,p|κ from the second
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argument. The substitution of the BR2 bilinear form to the expression for η
(2)
κ yields

η(2)
κ =

∫
κ
∇(u− uh,p) · ∇(ψh,p̂)dx︸ ︷︷ ︸

(I)

−
∫
∂κ
{∇ψh,p̂|κ} · Ju− uh,pKds︸ ︷︷ ︸

(II)

−
∫
∂κ

Jψh,p̂|κK · {∇(u− uh,p)}ds︸ ︷︷ ︸
(III)

−
∑
f∈∂κ

∫
f
βJψh,p̂|κK ·

{
rfh,p(Ju− uh,pK)

}
ds︸ ︷︷ ︸

(IV)

The interior term is bounded by

|(I)| ≤ ‖u− uh,p‖H1(κ)‖ψh,p̂‖H1(κ) . hp‖u‖Hp+1(κ)‖ψh,p̂‖H1(κ).

The first face term is bounded by

|(II)| ≤ ‖{∇ψh,p̂|κ}‖L2(∂κ)‖Ju− uh,pK‖L2(∂κ) . h−1/2‖∇ψh,p̂‖L2(κ)h
p+1/2‖u‖Hp+1(κ̃)

. hP ‖ψh,p̂‖H1(κ)‖u‖Hp+1(κ̃).

The second face term is bounded by

|(III)| ≤ ‖Jψh,p̂|κK‖L2(∂κ)‖{∇(u− uh,p)}‖L2(∂κ) . h−1/2‖ψh,p̂‖L2(κ)h
p+1/2‖u‖Hp+1(κ)

. hp‖ψh,p̂‖L2(κ)‖u‖Hp+1(κ).

The term involving the lifting operator is bounded by

|(IV)| =
∑
f∈∂κ

∫
f
βJψh,p̂|κK ·

{
rfh,p(Ju− uh,pK)

}
ds

≤
∑
f∈∂κ

β‖ψh,p̂‖L2(f)‖
{
rfh,p(Ju− uh,pK)

}
‖L2(f)

.
∑
f∈∂κ

‖ψh,p̂‖L2(f)h
−1/2‖

{
rfh,p(Ju− uh,pK)

}
‖L2(κf )

.
∑
f∈∂κ

‖ψh,p̂‖L2(f)h
−1‖Ju− uh,pK‖L2(f)

. hp‖ψh,p̂‖L2(κ)‖u‖Hp+1(κ̃).
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Combining the bounds for (I), (II), (III), and (IV), we obtain

|η(2)
κ | ≤ |(I)|+ |(II)|+ |(III)|+ |(IV)| . hp‖u‖Hp+1(κ̃)‖ψh,p̂‖H1(κ).

We further note that

‖ψh,p̂‖H1(κ) = ‖ψh,p̂ − ψ + ψ‖H1(κ) ≤ ‖ψh,p̂ − ψ‖H1(κ) + ‖ψ‖H1(κ)

. hp̂‖ψ‖H p̂+1(κ) + ‖ψ‖H1(κ) . ‖ψ‖H1(κ)

for h sufficiently small. Thus, we obtain the bound for η
(2)
κ in terms of u and ψ, i.e.,

|η(2)
κ | . hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ)

An immediate consequence of this result is that

|η(2)
κ − ηκ| . |hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ) − h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ)|

. hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ).

Corollary E.25. If ηκ ≈ h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ), then the effectivity of the local error

estimate 3 diverges in the sense that

θ
(2)
local,κ =

∣∣∣∣∣1− η
(2)
κ

ηκ

∣∣∣∣∣ =
|ηκ − η(2)

κ |
|ηκ|

.
hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ)

h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ)
. h−p,

i.e., the local error estimator degrades (relative to the true local error) as the mesh is refined.

Theorem E.26 (Convergence of Global Error Estimate 2). The error in the global error

estimate 2 is bounded by

|E − E(2)| . h2p̂‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω)

Proof. Unlike the analysis for the global error estimate 1 and 3, simply summing the local

error estimator bounds results in a loose bound. Thus, we will pursue a different approach
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to obtain a tighter bound. We first note that

Rh,p(uh,p, v) = Rh,p̂(uh,p, v), ∀v ∈ H1(Ω), ∀p, p̂ ∈ N,

as the lifting operator is always multiplied by the jump in the second argument and JvK = 0,

∀v ∈ H1(Ω). In particular, we can rewrite the true error representation as

E = Rh,p(uh,p, ψ) = Rh,p̂(uh,p, ψ)

The error in the global error estimate becomes

E − E(2) = Rh,p̂(uh,p, ψ)−Rh,p̂(uh,p, ψh,p̂)

= Rh,p̂(uh,p, ψ − ψh,p̂) (linearity)

= Rψh,p̂(u− uh,p, ψh,p̂) (Lemma E.11 for wh,p = uh,p, vh,p = ψh,p̂)

= inf
vh,p̂∈Vh,p̂

Rψh,p̂(u− uh,p − vh,p̂, ψh,p̂) (dual Galerkin orthogonality)

= inf
vh,p̂∈Vh,p̂

ah,p̂(u− vh,p̂, ψ − ψh,p̂) (Lemma E.11 for wh,p = vh,p̂, vh,p = ψh,p̂)

By applying the global bilinear form error bound, Lemma E.14, for p1 = p2 = p3 = p̂, we

obtain

|E(2) − E| = |ah,p̂(u− vh,p̂, ψ − ψh,p̂)| . h2p̂‖u‖H p̂+1(Ωh)‖ψ‖H p̂+1(Ωh)

Corollary E.27. If E ≈ h2p‖ψ‖Hp+1(Ω)‖u‖Hp+1(Ω), then the effectivity of the global error

estimate 2 converges to unity as

θ
(2)
global =

∣∣∣∣∣1− E(2)

E

∣∣∣∣∣ =
|E − E(2)|
|E|

.
h2p̂‖u‖Hp+1(Ωh)‖ψ‖H p̂+1(Ωh)

h2p‖ψ‖H p̂+1(Ω)‖u‖Hp+1(Ω)
. h2(p̂−p) = h2pinc

E.3.7 Summary of A Priori Error Analysis

Table E.1 summarizes the result of the a priori error analysis. The table shows that

neither the local nor global effectivity of the estimate 1 approaches unity as h → 0. The

estimate 2 results in a superconvergent global estimate; however, the local error effectivity
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(a) local estimates

η
(i)
κ |η(i)

κ − ηκ| θlocal,κ = |1− η(i)
κ /ηκ|

1 Rh,p̂(uh,p, (ψh,p̂ − ψh,p)|κ) h2p‖u‖Hp+1(κ̃)‖ψ‖Hp+1(κ) h0

2 Rh,p̂(uh,p, ψh,p̂|κ) hp‖u‖Hp+1(κ̃)‖ψ‖H1(κ) h−p

3 Rh,p(uh,p, ψh,p̂|κ) hp+p̂‖u‖Hp+1(κ̃)‖ψ‖H p̂+1(κ) hpinc

true Rh,p(uh,p, ψ|κ) - -

(b) global estimates

E(i) |E(i) − E| θglobal = |1− E(i)/E|
1 Rh,p̂(uh,p, ψh,p̂ − ψh,p) h2p‖u‖Hp+1(Ω)‖ψ‖Hp+1(Ω) h0

2 Rh,p̂(uh,p, ψh,p̂) h2p̂‖u‖H p̂+1(Ω)‖ψ‖H p̂+1(Ω) h2pinc

3 Rh,p(uh,p, ψh,p̂) hp+p̂‖u‖Hp+1(Ω)‖ψ‖H p̂+1(Ω) hpinc

true Jh,p(uh,p)− J (u) = Rh,p(uh,p, ψ) - -

Table E.1: Summary of the local and global error estimate convergence.

diverges with mesh refinement, and thus the estimator is not suited for driving adaptation.

The estimate 3 is the only estimate whose effectivity converges to unity both locally and

globally as h→ 0.

E.4 Numerical Results

This section provides numerical verification of the a priori error analysis results presented in

Section E.3. In particular, we apply the three error estimates to a one dimensional Poisson

problem given by

−d
2u

dx2
= exp(x)(1 + x), on (0, 1),

u(0) = u(1) = 0,

and the functional output of interest,

J (u) =

∫ 1

0
sin(πx)u(x)dx.

Note that the analytical solution to the primal and dual problems are given by

u = (exp(x)− 1)(1− x) and ψ = sin(πx),

both of which are in C∞ and have finite and non-vanishing measures in Hm(Ω), ∀m ∈ N.

243



We will use two different metrics to assess the performance of the error estimates. The

first measure is the relative error in the global estimate as defined earlier, i.e.

θ
(i)
global ≡

|E − E(i)|
|E|

=

∣∣∣∣∣1− E(i)

E

∣∣∣∣∣ ,
where E is the true error and E(i) is the error estimate provided by the estimator i. Recall

that the relative error is equivalent to the deviation of the error effectivity from unity. The

second measure is the agglomerated local effectivity, which is a single measure intended to

capture the effectivity of the local, element-wise error estimates. The agglomerated local

effectivity is defined by

θ
(i)
local ≡

∣∣∣∣∣1− E(i)
agg

Eagg

∣∣∣∣∣ =
|Eagg − E(i)

agg|
|Eagg|

where

Eagg ≡
∑
κ∈Th

|ηκ| and E(i)
agg ≡

∑
κ∈Th

|η(i)
κ |.

Note that this is different from the relative local error θ
(i)
local,κ associated with each element

κ, but it is an agglomerated measure of the quality of the local estimates.

E.4.1 True Output Error

We first analyze the behavior of the true error, measured in the standard sense and in

the agglomerated local sense. Figure E-1 shows the convergence results for p = 1, 2, 3, 4.

Since both the primal and dual solutions are infinitely smooth, Theorem E.15 predicts the

superconvergence of both the local and global errors at the rate of h2p. The numerical

result confirms the analysis. Since the solutions have well-behaved higher order derivatives,

the convergence with grid refinement is very smooth. We note that p = 4 solution achieves

machine precision accuracy using just 16 elements; while this is an encouraging result, it

makes the assessment of the error estimates more difficult, as the results are affected by

the finite precision arithmetics. Thus, p = 3 and p = 4 results are sometimes truncated or

omitted, if the results have been deemed polluted by rounding errors.
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(b) true agglomerated local error, Eagg ≡
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Figure E-1: The convergence of the true output error.

E.4.2 Output Error Estimate 1

By the a priori error analysis, Theorem E.20 and E.22, we expect

θ
(1)
local ≡

∣∣∣∣∣1− E(1)
agg

Eagg

∣∣∣∣∣ . h0 and θ
(1)
global ≡

∣∣∣∣∣1− E(1)

E

∣∣∣∣∣ . h0,

i.e., neither the local nor the global effectivity converge to unity with grid refinement.

Figure E-2 shows the convergence of the local and global effectivity of error estimate 1.

The result must be interpreted carefully, as the a priori error analysis results are upper

bound and the cancellation can give a false sense of convergence. For example, Figure E-

2(a) and E-2(c) show that the local and global effectivities converge to unity for odd p but

not for even p. The cause of this odd-even behavior is unclear, but similar results have been

observed in [67, 110]. In these cases, we should always compare the worst convergence rate

with the a priori analysis, i.e. the even results for this case. The numerical experiment

confirms that the effectivity of the error estimate 1 does not converge to unity in either the

local or the global sense.

E.4.3 Output Error Estimate 2

By the a priori error analysis, Theorem E.24 and E.26, we expect

θ
(2)
local ≡

∣∣∣∣∣1− E(2)
agg

Eagg

∣∣∣∣∣ . h−p and θ
(2)
global ≡

∣∣∣∣∣1− E(2)

E

∣∣∣∣∣ . h2pinc ,

245



2 3 4 6 8 10 12 14 16

10
−2

10
−1

10
0

1/h

θ
lo

c
a

l

 

 

−2.00
p=1, p

inc
=2

p=2, p
inc

=2

p=3, p
inc

=2

p=4, p
inc

=2

(a) local error effectivity, varying p

2 3 4 6 8 10 12 14 16
10

−1

10
0

10
1

1/h

θ
lo

c
a

l

 

 

p=2, p
inc

=1

p=2, p
inc

=2

p=2, p
inc

=3

p=2, p
inc

=4

(b) local error effectivity, varying pinc

2 3 4 6 8 10 12 14 16

10
−2

10
−1

10
0

1/h

θ
g

lo
b

a
l

 

 

−2.00

p=1, p
inc

=2

p=2, p
inc

=2

p=3, p
inc

=2

p=4, p
inc

=2

(c) global error effectivity, varying p

2 3 4 6 8 10 12 14 16
10

−1

10
0

10
1

1/h

θ
g

lo
b

a
l

 

 

p=2, p
inc

=1

p=2, p
inc

=2

p=2, p
inc

=3

p=2, p
inc

=4

(d) global error effectivity, varying pinc

Figure E-2: The local and global effectivity of the error estimate 1.
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Figure E-3: The local and global effectivity of the error estimate 2.

i.e., the local error effectivity diverges at the rate of h−p, but the global error effectivity

superconverges at the rate of h2pinc . The divergence of the local effectivity is captured in

Figure E-3(a) and E-3(b). In particular, the local effectivity diverges at the rate of h−2

and h−4 for p = 2 and 4, respectively. The local effectivity is not a function of pinc as

pinc = 1, 2, 3, 4 all diverges at the rate of h−2 for p = 2. On the other hand, Figure E-3(c)

and E-3(d) show that the global effectivity exhibit superconvergence. In particular, the

global effectivity convergence rate is a function of pinc showing the convergence rates of h2,

h4, and h6 for pinc = 1, 2, and 3, respectively. The global effectivity convergence rate is not

a function of p, as pinc = 2 results in the convergence rate of h4 for all p = 1, 2, 3. These

results are consistent with the a priori analysis.
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Figure E-4: The local and global effectivity of the error estimate 3.

E.4.4 Output Error Estimate 3

By the a priori error analysis, Theorem E.16 and E.18, we expect

θlocal ≡

∣∣∣∣∣1− E(3)
agg

Eagg

∣∣∣∣∣ . hpinc and θglobal ≡

∣∣∣∣∣1− E(3)

E

∣∣∣∣∣ . hpinc ,

i.e., both the local and global error effectivities converge at the rate of hpinc . Figure E-4(a)

shows that pinc = 2 results in the local effectivity convergence of h2 for p = 2, 4. Figure E-

4(b) shows that the convergence rate improves to h4 for pinc = 4. The same behavior is

shown for the global effectivity in Figure E-4(c) and E-4(d), converging at the rate of at

least hpinc .
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E.5 Conclusion

This appendix analyzed the behavior of three variants of the DWR error estimates applied

to a p-dependent discretization. We showed that the BR2 discretization of second-order

PDEs results in a p-dependent discretization due to the presence of the p-dependent lifting

operator. Then, we analyzed three commonly used variants of DWR error estimates. The

a priori error analysis showed that the effectivity of error estimate 1—which naturally

results from the discrete interpretation of the adjoint—converges in neither the local nor

global sense. Error estimate 2 exhibited superconvergent global effectivity; however, its local

effectivity diverges, making it unsuited for grid adaptation. The effectivity of error estimate

3 converges both in the local and global sense, making it an attractive choice for both error

estimation and adaptation. A simple one-dimensional Poisson problem numerically verified

the a priori error analysis.
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Appendix F

Properties of the Adaptation

Algorithm

F.1 Relationship between Step Matrix and the Change in

Approximability

In designing our surrogate error model and optimization algorithm, we advocated the use

of the step matrix S (either elemental or vertex) rather than using the metric tensor M

directly. This is because the magnitude of the entries of a step matrix S is closely related

to the change in the anisotropic approximability of the space associated with M0 and

M(S) ≡ M1/2
0 exp(S)M1/2

0 , as stated in Section 3.2.1. Here we prove the relationship

Eq. (3.6) between the change in the anisotropic approximability and the entries of the step

matrix S.

The change in the approximability in a given direction, or the ratio of the directional

lengths between the configurations induced by M0 and M(S), is

h(e;M(S))

h(e;M0)
=

(
eTM0e

eTM1/2
0 exp(S)M1/2

0 e

)1/2

.

The lower bound of the ratio, i.e. the maximum increase in the approximability, is related
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to the eigenvalues of S by

min
e∈Rd\0

h(e;M(S))

h(e;M0)
= min

e∈Rd\0

(
eTM0e

eTM1/2
0 exp(S)M1/2

0 e

)1/2

= min
f∈Rd\0

(
fT f

fT exp(S)f

)1/2

= (λmax(exp(S)))−1/2 = exp

(
−1

2
λmax(S)

)
,

where λmax(S) denotes the maximum eigenvalue of S. Similarly, the upper bound of the

ratio can be expressed as

max
e∈Rd\0

h(e;M(S))

h(e;M0)
= exp

(
−1

2
λmin(S)

)
,

where λmin(S) denotes the minimum eigenvalue of S. Thus, we can control the maximum

increase or decrease in the approximability by controlling the maximum and minimum

eigenvalue of S, respectively. In particular, because

λ2
min(S) ≤ ‖S‖2F and λ2

max(S) ≤ ‖S‖2F ,

the magnitude of the entries in S is a good indicator of the maximal change in the approx-

imability in moving from M0 to M(S). Thus, expressing the manipulation in terms of the

step tensor S ∈ Symd and mapping the tensor to M(S) ∈ Sym+
d via the exponential map

not only eliminates the potential of generating a null-tensor but also provides a convenient

means of controlling the change in the anisotropic approximability.

F.2 Inclusion of the Isotropic Error Model

As mentioned in Section 3.2.3, our anisotropic error model ηκ(Sκ) = ηκ0 exp(tr(RκSκ)) is a

generalization of the familiar isotropic error relationship based on the power law,

ηiso
κ (h) = ηκ0

(
h

h0

)riso
κ

, (F.1)

where riso
κ is the convergence rate. In particular, the behavior of the error model under

isotropic scaling is consistent with that of the isotropic error model in the following sense.

The isotropic metric M for mesh size h is given by M = h−2I. The step tensor required
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to change from an isotropic tensor M0 = h−2
0 I to M = h−2I is

Sκ = log
(
M−1/2

0 MM−1/2
0

)
= log

(
h2

0h
−2I
)

= −2 log

(
h

h0

)
I

We note that the trace-free part S̃κ vanishes as expected, and the isotropic part is sκ =

−2 log(h/h0). Substitution of the step tensor into the local error model yields

ηκ (Sκ) = ηκ

(
−2 log

(
h

h0

)
I

)
= ηκ0 exp

(
−2drκ log

(
h

h0

))
= ηκ0

(
h

h0

)−2drκ

.

If we define riso
κ = −2drκ, then we recover the isotropic error relationship Eq. (F.1). Thus,

our error model can be thought of as an extension of the scalar error model to anisotropic

deformations.

F.3 Invariance of the Sampling Quality

One of the important features of the proposed error model and sampling strategy is that

the quality of the error reconstruction does not degrade on highly anisotropic elements.

Recalling the error reconstruction operates on the step matrices {Sκi}
nconfig

i=1 in the tangent

space, the property requires that the set of step matrices does not become degenerate on

a highly anisotropic configuration. In fact, we will show that {Sκi}
nconfig

i=1 are invariant

with respect to the current configuration Mκ0 up to orthogonal transformation, which

does not influence the quality of reconstruction. The invariance is a consequence of the

local coordinate system induced by the affine-invariant metric. We note that, if the error

reconstruction is performed directly using the coefficients of the metric tensor, the error

reconstruction would become ill-posed as the step tensors Mκ0 −Mκi becomes degenerate

on highly anisotropic elements.

Let us denote the metric tensor associated with the unit reference element by M̂0.

By definition, M̂0 = I. Let us denote the mapping of the unit reference element to an

element obtained by the i-th local mesh operation of the reference element by Ĵi. The

tensor corresponding to the split reference element is

M̂i = Ĵ−Ti M̂0Ĵ
−1
i .
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The step tensor from M̂0 to M̂i is

Ŝi = log(M̂−1/2
0 M̂iM̂−1/2

0 ) = log(M̂i)

Let us now consider the step tensor from an arbitrary configuration Mκ0 to the config-

uration obtained by the i-th local mesh operation, Mκi . Let us denote the mapping from

the unit reference triangle, M̂0, toMκ0 by J and the singular value decomposition of J by

J = UΣV T . Then, Mκ0 can be expressed as

Mκ0 = J−TM̂0J
−1 = (UΣ−1V T )I(V Σ−1UT ) = UΣ−2UT .

Similarly, using the mapping J , we can express the configuration obtained by i-th mesh

operation as

Mκi = J−TM̂iJ
−1 = UΣ−1V TM̂iV Σ−1UT .

The step matrix from Mκ0 to Mκi is

Sκi = log(M−1/2
κ0
MκiM−1/2

κ0
)

= log((UΣ−2UT )−1/2(UΣ−1V TM̂iV Σ−1UT )(UΣ−2UT )−1/2)

= UV T log(M̂i)V U
T = (V UT )T Ŝi(V U

T )

The step matrix from Mκ0 to Mκi is related to the step matrix from M̂0 to M̂i by the

orthogonal transformation induced by V UT . Thus, as long as the samples {M̂i}
nconfig

i=1 are

chosen such that the linear error reconstruction problem is well-posed on the reference

element, the linear fitting problem onMκ0 is well-posed. In other words, the quality of the

error model reconstruction is preserved even on high aspect ratio elements encountered in

anisotropic adaptation.

F.4 Invariance under Coordinate Transformation

In this section, we show that the tensor field optimization algorithm presented is indepen-

dent of the particular coordinate representation of the tensors. The property means that
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the same physical problem represented in two different coordinate systems would produce

the identical sequences of the tensor fields with respect to the physical problem.

Let us consider two coordinate systems, x and x̄, that are related by the mapping

x̄ = g(x) = αUx+ x̄0,

where U is a d × d orthogonal matrix, α > 0 is the coordinate scaling factor, and x̄0 ∈ Rd

is the coordinate shift. A mesh defined in terms of x can be represented in the coordinate

system x̄ by mapping each nodal coordinate according to x̄ = g(x). Then, the tensor field

represented in the coordinate system x̄, {M̄}x̄∈Ω, is related to that of the coordinate system

x, {M}x∈Ω, by

M̄(x̄) = α−2UM(x)UT .

Now let us work through the adaptation procedure and show that it is invariant under

coordinate transformation.

The first step of adaptation is local sampling. The elemental step tensor in x̄, S̄κi , is

related to that in x, Sκi , by

S̄κi = log
(
M̄−1/2

κ0
M̄κiM̄−1/2

κ0

)
= log

((
α−2UMκ0U

T
)−1/2 (

α−2UMκiU
T
) (
α−2UMκ0U

T
)−1/2

)
= U log

(
M−1/2

κ0
MκiM−1/2

κ0

)
UT = USκiU

T ,

where we have identified the step matrix in x coordinate system as Sκi =M−1/2
κ0 MκiM

−1/2
κ0 .

We also map the change in the error to the logarithmic space, i.e. fκi = log (ηκi/ηκ). Here,

because the two coordinate systems represent the same physical system, we assume that

ηκi/ηκ0 evaluates to the same value for all i = 1, . . . , nconfig and κ ∈ Th, resulting in the

same {fκi}
nconfig

i=1 for both coordinate systems. To identify the rate matrix in the transformed

coordinate system, R̄κ, we solve the minimization problem

R̄κ = arg min
Q̄∈Symd

nconfig∑
i=1

(
fκi − tr(Q̄S̄κi)

)
= arg min

Q̄∈Symd

nconfig∑
i=1

(
fκi − tr

(
Q̄USκiU

T
))
.
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Recalling Rκ in the original coordinate system is the solution to

Rκ = arg min
Q∈Symd

nconfig∑
i=1

(fκi − tr (QSκi)) .

and noting that similarity transforms do not alter the value of trace, we immediately rec-

ognize the solution to the minimization problem on the transformed coordinate is related

to that of the original coordinate by

R̄κ = URκU
T .

As a result, the two error models are identical in the sense that

η̄κ(S̄κ) = ηκ0 exp
(
tr
(
R̄κS̄κ

))
= ηκ0 exp

(
tr
(
URκU

TUSκU
))

= ηκ0 exp (tr (RκSκ)) = ηκ(Sκ).

Similarly, the cost model is identical because

ρ̄κ(S̄κ) = ρκ0 exp

(
1

2
tr(S̄κ)

)
= ρκ0 exp

(
1

2
tr(USκU

T )

)
= ρκ0 exp

(
1

2
tr(Sκ)

)
= ρκ(Sκ).

Finally, to create the new vertex representation of the metric field, we solve the optimiza-

tion problem on the surrogate model. Recall that the optimization algorithm relies entirely

on the gradient of the surrogate error and cost functions. Let us denote the surrogate error

and cost functions in the transformed space by Ē({S̄ν}) and C̄({S̄ν}). Because the error and

cost models are invariant under the coordinate transformation, their derivatives are related

by simple coordinate transformations,

∂Ē
∂S̄ν

= U
∂E
∂Sν

UT and
∂C̄
∂S̄ν

= U
∂C
∂Sν

UT .

Consequently, the proposed gradient descent algorithm produces the vertex step matrices in

the transformed coordinate, {S̄ν}, which are related to that solved in the original coordinate

by

S̄ν = USνU
T .
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The exponential map of the step matrices in the transformed coordinate yields

M̄ν

(
S̄ν
)

= M̄1/2
ν0

exp
(
S̄ν
)
M̄1/2

ν0

=
(
α−2UMν0U

T
)1/2

exp
(
USνU

T
) (
α−2UMν0U

T
)1/2

= α−2UM1/2
ν0

exp (Sν)M1/2
ν0
UT = α−2UM (Sν)UT .

Because the relationship between M̄ν

(
S̄ν
)

andM (Sν) is identical to the transformation of

the tensor for the two coordinate systems, the two updated tensors {Mν}ν∈V and {M̄ν}ν∈V

represent the same physical tensor fields. Thus, our adaptation algorithm is invariant under

coordinate transformation.
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Appendix G

On Gradient Descent in the Metric

Tensor Space

In the mesh optimization algorithm presented in Chapter 3, we assumed that the error

is a function of the Riemannian metric field and solved an optimization problem on the

metric field. The particular anisotropic error model employed in the optimization process

employed an affine-invariant description of metric tensors, i.e. symmetric positive definite

matrices. This appendix presents a few error models considered in designing a gradient-

based optimization algorithm in the metric tensor space.

G.1 The Choice of Metric

To perform a gradient-based optimization, we must first endow the metric tensor space

with a “metric” (i.e. a sense of distance). To avoid confusions, the metric tensor used for

interpolation is referred to as “tensor” whereas the “metric” is used to describe the distance

measure with which the tensor space is equipped.

While the choice of metric is arbitrary, we note the following desirable properties:

1. A null element of the tensor space, i.e. det(M) = 0, is infinite distance from any

elements. This guarantees that null elements are not reached in the gradient descent

algorithm.

2. Metric resulting from edge split operations, {Mi}mdi=1, is equidistant from the original

metric M0. The property ensures that the quality of the samples are independent
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of the current configuration and, in particular, quality does not degrade on highly

anisotropic elements.

3. The characterization of the metric does not rely on a particular decomposition of

M, e.g. the area A, the aspect ratio AR, and the orientation θ in two dimensions.

The decomposition-based characterization renders generalization to higher dimensions

non-trivial.

Let us now present three error models that result from choosing different metrics.

G.1.1 Frobenius Norm

Treating tensors as matrices with no additional properties, we may define the vector pointing

from M0 to M by

SF ≡M−M0

and the distance by taking the Frobenius norm, i.e.

dF(M,M0) = ‖M−M0‖F .

However, we immediately conclude that metric dF (·, ·) has none of the aforementioned

desired properties. For instance, the distance to the zero tensor is finite. The metric is

unsuitable for our purpose and will not be consider any further.

G.1.2 Log-Euclidean Framework

The second metric we consider is Log-Euclidean metric, proposed by Arsigny et al. [11].

The metric is defined by

dLE(M,M0) = ‖ log(M)− log(M0)‖F ,

where log(·) is the matrix logarithm. Because the tensors are symmetric positive definite,

the matrix logarithm is well defined. Note that this metric places the null tensor infinite

distance from any other tensors. Furthermore, the distance is invariant under scalar scaling

260



and orthogonal transformations, i.e.

dLE(αM, αM0) = dLE(M,M0), ∀α ∈ R+

dLE(UMUT , UM0U
T ) = dLE(M,M0), ∀U ∈ {V ∈ Rd : V V T = I}

Given the metric, it is natural to define the vector pointing from M0 to M by

SLE ≡ log(M)− log(M0) ∈ Symd. (G.1)

Similarly, we measure the distance between two errors η0 ∈ R+ and η ∈ R+ in the logarith-

mic space, i.e.

fLE ≡ log(η)− log(η0) ∈ R. (G.2)

With these choices, the linear error model based on the Log-Euclidean measure is given by

fLE = tr
(
RLESLE

)
or, equivalently,

η(M) = η0 exp
(
tr
(
RLE (log(M)− log(M0))

))
,

where RLE ∈ Symd is the parameter of the log-Euclidean-based model. Note that the log-

Euclidean model is a generalization of the standard isotropic error model. That is, if we

choose M0 = h−2
0 I, M = h−2I, and RLE = −(r/2d)I, then

η(h) = η0

(
h

h0

)r
.

The parameter RLE ∈ Symd is deduced from regression. Given metric-error pairs

{Mi, ηi}
nconfig

i=0 , we can readily compute the log-Euclidean description of the metric-error

pairs, {SLE
i , fLE

i }
nconfig

i=1 , using Eq. (G.1) and Eq. (G.2), and find

RLE = arg min
Q∈Symd

nconfig∑
i=1

(
fLE
i − tr(QSLE

i )
)2
,
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which entails finding the least-squares solution to a nconfig-by-d(d + 1)/2 linear system. If

we perform steepest descent by choosing SLE = −αRLE for some α > 0 in Eq. (G.1), the

resulting updated tensor is given by

M̃ = exp
(
log(M0)− αRLE

)
. (G.3)

G.1.3 Affine-Invariant Framework

The third metric we consider is affine-invariant metric, introduced by Pennec et al. [117]

and defined by

dAI(M,M0) = ‖ log(M−1/2
0 MM−1/2

0 )‖F .

This metric also places the null element infinite distance from any other elements. Further-

more, the distance is invariant under the action of any linear transformation, i.e.

dAI(AMAT , AM0A
T ) = dAI(M,M0), ∀A ∈ Rd×d

Given the metric, it is natural to define the vector from M0 to M by

SAI = log(M−1/2
0 MM−1/2

0 ) ∈ Symd. (G.4)

Similarly, we measure the distance between two errors η0 ∈ R+ and η ∈ R+ in the logarith-

mic space as in the log-Euclidean case, i.e.

fAI ≡ log(η)− log(η0) ∈ R. (G.5)

With these choices, the linear error model based on the affine-invariant measure is given by

fAI = tr
(
RAISAI

)
or, equivalently,

η(M) = η0 exp
(

tr
(
RAI log

(
M−1/2

0 MM−1/2
0

)))
,
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where RAI ∈ Symd is the parameter of the affine-invariant-based model. As shown in

Section F.2, the affine-invariant model is also a generalization the standard isotropic error

model.

As in the log-Euclidean model, the parameter RAI ∈ Symd is deduced from regres-

sion. Given metric-error pairs {Mi, ηi}
nconfig

i=0 , we can readily compute the affine-invariant

description of the metric-error pairs, {SAI
i , fAI

i }
nconfig

i=1 , using Eq. (G.4) and Eq. (G.5), and

find

RAI = arg min
Q∈Symd

nconfig∑
i=1

(
fAI
κi − tr(QSAI

κi )
)2
,

which entails finding the least-squares solution to a nconfig-by-d(d + 1)/2 linear system. If

we perform steepest descent by choosing SAI = −αRAI for some α > 0 in Eq. (G.4), the

resulting update is

M̃ =M1/2
0 exp(−αRAI)M1/2

0 . (G.6)

G.2 Single Step Descent Test

Note that both the Log-Euclidean metric and the affine-invariant metrics are invariant under

scalar multiplication, i.e.

d(M,M0) = d(αM, αM0), ∀M0,M∈ Sym+
d , ∀α ∈ R+.

Thus, we only need to consider the effect of non-scaling operations. In particular, for 2× 2

tensors, we need to consider rotation and aspect ratio deformations.

Throughout this section, we visually assess the quality of the descent algorithms. In

order to do so, we perform a step of gradient descent using Eq. (G.3) and Eq. (G.6), starting

from a given metric M0 and a prescribed error vector ηi/η0. Then we visualize resulting

updated metric in three different measures. First is the relative change from the original

configuration measured in the log-Euclidean sense, i.e.

exp (log(M)− log(M0)) ∈ Sym+
d .
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Figure G-1: LE and AI gradient descent from M0 = I for η/η0 = (0.5, 1.0, 1.0).
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Figure G-2: LE and AI gradient descent from M0 = I for η/η0 = (0.5, 0.5, 1.0).

Note that the original tensor,M0, maps to the identity, which is visualized as a unit circle.

Second measure is the relative change from the original configuration measured in the affine

invariant sense, i.e.

M−1/2
0 MM−1/2

0 ∈ Sym+
d .

The third measure is the metric measured in the physical space, i.e. with respect to the

identity tensor.

G.2.1 Action from the Identity Tensor

We first compare the action of the gradient descent algorithm starting from the identity

tensor, i.e. M0 = I. Figure G-1 shows the results of taking a step of gradient descent

for an error configuration η/η0 = (0.5, 1.0, 1.0). Because the error only decreases for the

first configuration, we expect the gradient descent to step in the direction of M1. Figure

confirms that both log-Euclidean and affine-invariant error models achieve this; in fact, the

two models are identical when M0 = I and thus the models produce identical results.
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Figure G-3: LE and AI gradient descent from AR(M0) = 5 for η/η0 = (0.5, 1.0, 1.0).
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Figure G-4: LE and AI gradient descent from AR(M0) = 5 for η/η0 = (0.5, 0.5, 1.0).

Figure G-2 shows the results of taking a step for an error configuration η/η0 = (0.5, 0.5, 1.0).

For this configuration, we expect gradient descent to produce a tensor that is in some sense

an average of M1 and M2. The figure confirms that this is the case for both models.

G.2.2 Action from an AR = 5 Tensor

We repeat the same test but starting from the original tensor M0 with an aspect ratio of

AR = 5. As before, we first consider an error configuration η/η0 = (0.5, 1.0, 1.0). The correct

behavior is to step in the direction ofM1. Figure G-3 shows that the affine-invariant model

steps exactly in the direction of M1; this is not surprising because the action in the step

taken by the model is invariant to M0. On the other hand, the log-Euclidean framework

takes a step that is a combination of M1 and M2. Similarly, Figure G-4 shows the affine-

invariant model exhibiting the desired behavior, whereas the log-Euclidean model produces

a non-ideal result.
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Figure G-5: LE and AI gradient descent from AR(M0) = 50 for η/η0 = (0.5, 1.0, 1.0).
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Figure G-6: LE and AI gradient descent from AR(M0) = 50 for η/η0 = (0.5, 0.5, 1.0).

G.2.3 Action from an AR = 50 Tensor

To study the effect of increased aspect ratio, we now consider M0 with the aspect ratio

of AR = 50. Figures G-5 and G-6 show that the affine-invariant model produces identical

behavior to the two previous cases. On the other hand, the log-Euclidean model produces

undesirable result. Figure G-5(a) shows that the two samples from M2 and M3 become

nearly degenerate; as a result, the gradient reconstruction is unstable and gradient descent

produces an undesirable metric.

Comparison of the results obtained for M0 with AR = 1, 5, and 50 show that the

action of the affine-invariant model is invariant to M0, producing the desired results for

any aspect ratio. On the other hand, the log-Euclidean model becomes unstable for higher

aspect ratios. Thus, the error model based on the log-Euclidean metric is unsuited for a

gradient-based mesh optimization.
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G.3 Multi- Step Descent Test

We now compare the performance of the descent algorithms based on the log-Euclidean and

affine-invariant error models. In particular, we assume that the error is of the form

η(H) = ηopt[σmax(HH−1
opt)]

r,

where where H =M−1/2 is the generalized element size, r is the convergence rate, σmax(·)

is the maximum singular-value operator, and Hopt is the tensor having det(Hopt) = 1 and

gives minimum error ηopt. Clearly, the minimum is attained at H = Hopt.

Specifically, the test runs as follows: Given an optimal configuration {Mopt, ηopt} and

the initial metric M(0),

1. Set i = 0

2. Construct a triangle ∆(i) which conforms to M(i) (not unique).

3. Split the j-th edge of the triangle ∆(i) and compute the metric tensor, M(i)
j , and the

error, η
(i)
j , associated with the split configurations for j = 1, . . . , 3.

4. Perform a step of gradient descent : M̃(i+1) = descent({M(i)
j , η

(i)
j }4j=0)

5. Isotropically scale M̃(i+1) such that det(M(i+1)) = 1.

6. Set i← i+ 1, go to 2.

We consider three options for the descent step, Step 4.

• Minimum: take Mi that gives the minimum error

• Log-Euclidean: take a step using the log-Euclidean model, Eq. (G.3), with α = 1

• Affine-Invariant: take a step using the affine-invariant model, Eq. (G.6), with α = 1

G.3.1 From the Identity Tensor to an AR = 2 Tensor

Figure G-7 shows the result of the multi-step gradient descent test starting from the identity

tensor toward an optimal tensor with AR = 2. Both the sequences of the tensors generated

and the error history are shown. The descent algorithm based on choosing the minimum

error does not converge to the optimal tensor, as the algorithm always steers toward one of
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Figure G-7: Multi-step descent test from the identity tensor to an AR = 2 tensor.

the three split configurations. The log-Euclidean solution also fluctuates about the optimal

metric, but the fluctuation is smaller than that using the minimum descent. The affine-

invariant metric approaches the optimal configuration smoothly, resulting in a monotonic

error convergence.

G.3.2 From the Identity Tensor to an AR = 20 Tensor

Figure G-8 shows the result of the multi-step gradient descent test starting from the identity

tensor toward an optimal tensor with AR = 20. Similar to the AR = 2 case, the minimum-

metric descent results in fluctuation about the optimal configuration. The log-Euclidean

descent does not work, even for this moderate aspect ratio; the result is consistent with

the behavior observed in the single-step tests in Section G.2. The affine-invariant descent

again converges monotonically to the optimal configuration; the number of steps required

is higher than that for the AR = 2 case.

G.3.3 From an AR = 5 Tensor to an AR = 20 Tensor

Figure G-9 shows the result of the multi-step gradient descent test starting from an initial

metric with AR = 5 toward an optimal tensor with AR = 20 at a different orientation.
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Figure G-8: Multi-step descent test from the identity tensor to an AR = 20 tensor.

Similar to the previous case, the log-Euclidean descent algorithm does not work even for this

moderate aspect ratio. The affine invariant descent algorithm morphs the metric smoothly,

simultaneously adjusting the aspect ratio and the orientation.
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Figure G-9: Multi-step descent test from an AR = 5 tensor to an AR = 20 tensor.
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