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SUMMARY

We present a Parametrized-Background Data-Weak (PBDW) formulation of the variational data
assimilation (state estimation) problem for systems modeled by partial differential equations. The main
contributions are a constrained optimization weak framework informed by the notion of experimentally
observable spaces; a priori and a posteriori error estimates for the field and associated linear-functional
outputs; Weak Greedy construction of prior (background) spaces associated with an underlying
potentially high–dimensional parametric manifold; stability-informed choice of observation functionals
and related sensor locations; and finally, output prediction from the optimality saddle in O(M3)
operations, where M is the number of experimental observations. We present results for a synthetic
Helmholtz acoustics model problem to illustrate the elements of the methodology and confirm the
numerical properties suggested by the theory. To conclude, we consider a physical raised-box acoustic
resonator chamber: we integrate the PBDW methodology and a Robotic Observation Platform to
achieve real-time in situ state estimation of the time-harmonic pressure field; we demonstrate the
considerable improvement in prediction provided by the integration of a best-knowledge model and
experimental observations; we extract, even from these results with real data, the numerical trends
indicated by the theoretical convergence and stability analyses.
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1. INTRODUCTION

The best–knowledge mathematical model of a physical system is often deficient due to
limitations imposed by available knowledge, calibration requirements, and computational
solution costs. Accurate prediction thus requires the incorporation of experimental observations
in particular to accommodate both anticipated, or parametric, uncertainty as well as
unanticipated, or nonparametric, uncertainty. We present in this paper a Parametrized-
Background Data-Weak (PBDW) formulation of the variational data assimilation problem
for physical systems modeled by partial differential equations (PDEs).

Our goal is state estimation. We seek an approximation, u∗·,·, to the true field utrue, over
some spatial domain of interest, Ω. (The state estimate subscript placeholders anticipate two
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2 Y MADAY, AT PATERA, JD PENN, M YANO

discretization parameters to be introduced shortly.) We shall afford ourselves two sources
of information: a best-knowledge (bk) mathematical model in the form of a parametrized
PDE defined over Ω (or more generally a domain Ωbk which includes Ω); M experimental
observations of the true field, interpreted as the application of prescribed observation
functionals [11] `om, m = 1, . . . ,M , to utrue. We shall assume that the true field is deterministic
and time-independent (or time-harmonic); we shall further assume, in this first paper, that
the observations are noise-free.

Given a parameter value µ in a prescribed parameter domain D, we denote the solution
to our best-knowledge parametrized PDE as ubk,µ. We may then introduce the parametric
manifold associated with our best-knowledge model as Mbk ≡ {ubk,µ|µ ∈ D}. We intend, but
we shall not assume, that utrue is close to the manifold: there exists a µ̃ ∈ D such that utrue is
well approximated by ubk,µ̃. We shall require that, in any event, our state estimate u∗·,·, now
denoted u∗·,M , shall converge to utrue in the limit of many (noise-free) observations, M →∞.

To provide a more concrete point of reference, we instantiate the terms introduced above
for the problem we shall consider in this paper. The physical system is a raised-box acoustic
resonator chamber: the state we wish to estimate is the time-harmonic (complex) pressure field;
the domain of interest Ω is the interior of the raised box, or resonator chamber; the observation
functionals are averages over the face of a microphone placed at different positions xc

m ∈ Ω,
m = 1, . . . ,M . The best-knowledge model is the Helmholtz PDE of acoustics: the domain Ωbk

is a large hemispherical dome which includes Ω; the boundary conditions comprise a speaker
Neumann model as well as farfield radiation; the (here, singleton) parameter µ, which appears
in the PDE and boundary conditions, is the wavenumber (or nondimensional frequency) of the
time-harmonic pressure; the parameter domain D = [0.5, 1.0] (roughly 1000 Hz to 2000 Hz in
dimensional terms).

We shall first motivate the PBDW formulation from a perspective directly relevant to
the theme of this special issue, model order reduction. For concreteness, we consider the
particular model-reduction approach which we shall subsequently pursue in this particular
paper, the certified reduced basis (CRB) method; however, other approaches are also possible
and are briefly summarized below. In this context, the point of departure is the parametric
manifold Mbk associated with the solutions of our best-knowledge PDE. (The CRB approach
requires for computational expediency that the parametrized PDE be affine in functions of
the parameter: often inspection suffices to verify this condition; more generally, the Empirical
Interpolation Method [2] provides an (approximate) construction.) We shall then revisit the
PBDW formulation but now from the related perspectives of data interpolation, least-squares
approximation, and variational data assimilation. In this context, the point of departure is the
minimization of the misfit between model predictions and experimental observations.

We briefly summarize the ingredients of the CRB approach [27]: construction of a
Lagrange [25] approximation space ZN as the span of N snapshots, µ̂n ∈ D → ubk,µ̂n ,
n = 1, . . . , N , on the parametric manifold Mbk; approximation of the solution of the PDE,
ubk,µ for any parameter value µ ∈ D, as the Galerkin projection over ZN , ubk,µN ; development

of a posteriori error estimates ∆bk,µ
N — in fact, often bounds — for the error ‖ubk,µ −

ubk,µN ‖ in terms of the dual norm of the residual and corresponding stability constants;
formulation of Construction-Evaluation procedures which permit rapid computation of the
CRB approximation and a posteriori error bound in the limit of many queries µ→ ubk,µN ,∆bk,µ

N ;
application of Weak Greedy sampling procedures which exploit the Construction-Evaluation
procedure to efficiently identify quasi-optimal (snapshots and hence) approximation spaces
ZN relative to the Kolmogorov gold standard [4]; and finally, deployment in an Offline–
Online computational framework such that the Online stage — the response to each new
parameter request — invokes only inexpensive Evaluations. The method is relevant in the
real-time context or the many-query context in which the Offline (and Construction) costs are
respectively irrelevant or amortized.

We now turn to real physical systems, for example the raised-box acoustic resonator
which we shall study in the concluding section of this paper. For such a physical system
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and associated best-knowledge model, we may propose to approximate utrue by ubk,µ̃N , the
CRB approximation of the closest element on the best-knowledge manifold Mbk. We identify
two impediments. First, in general we will not know µ̃ a priori : (anticipated) parametric
uncertainty may arise for example due to imperfect control of ambient temperature and thus
sound speed. Hence we cannot instantiate our weak form and as a result we are simply not
able to apply Galerkin projection to determine ubk,µ̃N . Second, we cannot control the model
error inf µ̃∈D ‖utrue − ubk,µ̃‖: unanticipated nonparametric uncertainty may arise for example
due to uncharacterized impedances on the walls of the resonator chamber. In short, CRB
approximation assumes, often quite unrealistically, that our best-knowledge mathematical
model reflects complete knowledge of the physical system.

Data can provide the necessary closure for both the parametric and nonparametric
sources of uncertainty. In particular, we first write our state estimate u∗N,M as the sum
of two contributions, u∗N,M ≡ z∗N,M + η∗N,M . The first contribution to u∗N,M , z∗N,M ∈ ZN , is
the “deduced background estimate” which represents anticipated uncertainty; ZN is now
interpreted as a background or prior space which approximates the best-knowledge manifold
on which we hope the true state resides. As already discussed, non-zero model error is a virtual
certainty, and thus we cannot realistically assume that utrue lies exactly on our best-knowledge
manifold, which thus motivates the second contribution to u∗N,M . This second contribution to
u∗N,M , η∗N,M ∈ UM , is the “update estimate” which accommodates unanticipated uncertainty;
UM is the span of the Riesz representations of our M observation functionals [3]. We then
search for η∗N,M of minimum norm — we look for the smallest correction to the best-knowledge

parametric manifold — subject to the observation constraints `om(utrue) = `om(u∗N,M ), m =
1, . . . ,M . In conclusion, the data effects the projection onto ZN — in effect serving as test
space — and furthermore supplements the best-knowledge model — thus also serving as a
supplemental trial space.

The prior or background space ZN may be generated from the manifold Mbk by a variety
of model-order reduction approaches. We may consider Weak Greedy procedures as developed
in the reduced basis context and summarized above in our discussion of the principal CRB
ingredients. We may consider classical Proper Orthogonal Decomposition (POD) [15]; POD
is, relative to Weak Greedy, more readily implemented, more optimal, but also considerably
less efficient in the Offline stage. We may consider Taylor spaces [10] and Hermite spaces [13]:
expansion of the best-knowledge solution about one or several nominal parameter values in D
— in effect, higher order tangent approximations of the parametric manifold.

We can now relate this PBDW approach to a variety of existing methods. We first consider
the model-reduction perspective: PBDW is an approximation method that seeks solution in
the reduced-basis space ZN ⊕ UM based on projection-by-data, as opposed to projection-
by-model in the standard reduced basis method. We next consider the data interpolation
perspective: PBDW reduces to the Generalized Empirical Interpolation Method (GEIM)
[19, 24, 23] for N = M , any given ZN ; PBDW reduces to Gappy-POD [9, 29] for M ≥ N ,
ZN generated by a Proper Orthogonal Decomposition (POD), and u∗N,M ≡ z∗N,M (no update
correction). We then continue with the least-squares perspective: PBDW reduces to the
Stable Least Squares Approximation [7] for M ≥ N , ZN chosen by application-specific basis
functions, and u∗N,M ≡ z∗N,M (no update correction); PBDW may also be interpreted, albeit less
directly, as linearized Structured Total Least Squares [22] for M ≥ N , ZN chosen by Taylor
expansion. Finally, and most importantly, PBDW is a special case of 3D-VAR variational
data assimilation [18] for a parametrized background and a particular choice of (penalized-
update) background covariance†; note that in the noise-free case considered in this paper, the
variational data assimilation optimization reduces to a constrained estimation problem. We
emphasize that PBDW is not a generalization of 3D-VAR, but rather a particular choice for
the 3D-VAR constituents.

†It thus follows, by association, that the PBDW formulation can be related to filtering approaches [17, 14].
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A particularly important aspect of variational data assimilation which we incorporate in
our framework is the Riesz representation of observation functionals and the associated field
update [3]. The former, as first introduced in [3], provides an efficient computational procedure
and, in our framework, facilitates a priori error analysis; the latter permits accurate state
prediction even in situations where the true field is not overly close to, in [3], the baseline
solution, and, in our framework, the parametric manifold.

The PBDW formulation does provide some new contributions:

1. Our constrained optimization weak framework informed by the notion of experimentally
observable spaces [3, 30] — our update spaces UM — allows us to incorporate and
analyze data within the standard variational setting for PDEs [26]: we can thus develop
a priori error bounds and a posteriori error estimates for the field and associated
linear-functional “quantity-of-interest” outputs as a function of N , the dimension of
the background space, and M , the number of experimental observations.

2. The a priori theory can serve to inform strategies for the efficient identification of
optimal observations functionals — and hence (for localized observation functionals)
optimal sensor placement. Different optimality criteria may be considered. In this paper
we choose as criterion the stability of the deduced background estimate z∗N,M . Our
methods are thus related to classical Design-of-Experiment approaches [12], however
with an emphasis on state estimation rather than parameter estimation; in particular
both methods rely on singular-value considerations. We may also consider criteria which
balance stability of the background estimate z∗N,M with accuracy of the update estimate
η∗N,M [28].

3. We incorporate several important aspects of model-order reduction: parametrized best-
knowledge model and the associated parametric manifold — rather than a singleton
best-knowledge solution — to reflect anticipated uncertainty; efficient Weak Greedy
construction of rapidly convergent prior (background) spaces associated with an
underlying potentially high–dimensional parametric manifold; output prediction from
the optimality saddle in O((N +M)3) operations for N and M anticipated small. (We
note that stability will require M ≥ N : a good background space thus reduces not only
computational effort but also experimental cost.)

4. The PBDW formulation offers simplicity and generality: the best-knowledge model
appears only in the Offline stage, and solely in the generation of the space ZN .

These features will be highlighted in the sections that follow.

We note that projection-by-data — a problem in approximation theory — rather than
projection-by-model — a problem in PDE discretization — also has many advantages with
respect to the mathematical theory. Projection-by-data can largely eliminate many of the
standard requirements of projection-by-model in particular related to boundary conditions
and initial conditions; for example, the domain over which we reconstruct the state, Ω, can be
a subset of the best-knowledge spatial domain, Ωbk, and indeed Ω can even be a low dimensional
manifold in Ωbk. Even more ambitiously, in projection-by-data we can accommodate norms
which may be considerably stronger than the norms required for well-posedness in projection-
by-model; furthermore, the greater regularity required by data in these stronger norms can be
justified by the application of temporal or spatial filters — in short, by a re-definition of the
true field, utrue. In subsequent studies, we shall explore further these theoretical generalizations
and associated computational extensions and improvements.

We emphasize that in this paper we restrict ourselves to state estimation: the PBDW
formulation chooses a best state estimate from ZN and UM as guided by the constrained
minimization statement. Clearly in many cases state estimation can be related to parameter
estimation [12] and source identification [1], however we do not here take the necessary steps
to infer from our best state estimate u∗N,M a best parameter estimate µ∗N,M . In particular, in
our current paper µ and D serve only in the (Offline) construction of ZN : the Online stage
does not benefit from any prior on the parameter, nor does the Online stage provide any
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posterior for the parameter. However, we note that the PBDW update contribution suggests
both a complication and an extension to current parameter estimation approaches: ‖η∗N,M‖
allows us to explore the sensitivity of any given parameter estimate to model error. We pursue
this possibility in subsequent papers, in which we shall also consider noisy measurements —
another important source of uncertainty in (state and) parameter estimation.

In Section 2, we present the PBDW formulation and associated numerical analysis. In
Section 3, we present results for a synthetic Helmholtz problem: we illustrate the elements of
the methodology; we confirm the numerical properties suggested by the theory. In Section 4, we
present results for a physical raised-box acoustic resonator chamber: we integrate the PBDW
methodology and a Robotic Observation Platform to achieve real-time in situ estimation of
the full pressure field over the resonator chamber.

2. FORMULATION

2.1. Preliminaries

By way of preliminaries, we introduce notations used throughout this paper. We first introduce
the standard L2(Ω) Hilbert space over the domain Ω ⊂ Rd endowed with an inner product
(w, v)L2(Ω) ≡

∫
Ω
wvdx and the induced norm ‖w‖L2(Ω) =

√
(w,w)L2(Ω); L

2(Ω) consists of
functions {w | ‖w‖L2(Ω) <∞}. We next introduce the standard H1(Ω) Hilbert space over
Ω endowed with an inner product (w, v)H1(Ω) ≡

∫
Ω
∇w · ∇vdx+

∫
Ω
wvdx and the induced

norm ‖w‖H1(Ω) ≡
√

(w,w)H1(Ω); H
1(Ω) consists of functions {w | ‖w‖H1(Ω) <∞}. We also

introduce the H1
0 (Ω) Hilbert space over Ω endowed with the H1(Ω) inner product and H1(Ω)

norm; H1
0 (Ω) consists of functions {w ∈ H1(Ω) | w|∂Ω = 0}. We note that, for simplicity, we

shall consider the formulation over real-valued field; however, in the subsequent applications
that appear in Sections 3 and 4, we shall invoke corresponding extension to complex-valued
fields.

We now introduce a Hilbert space U over Ω endowed with an inner product (·, ·) and

the induced norm ‖w‖ =
√

(w,w); U consists of functions {w | ‖w‖ <∞}. We assume that
H1

0 (Ω) ⊂ U ⊂ H1(Ω). We denote the dual space of U by U ′ and the associated duality paring
by 〈·, ·〉U ′×U . The Riesz operator RU : U ′ → U satisfies, for each ` ∈ U ′, (RU`, v) = `(v) ∀v ∈ U .
For any closed subspace Q ⊂ U , the orthogonal projection operator ΠQ : U → Q satisfies
(ΠQw, v) = (w, v) ∀v ∈ Q. The orthogonal complement of Q is given by Q⊥ ≡ {w ∈ U|(w, v) =
0 ∀v ∈ Q}.

2.2. Unlimited-Observations Statement

We first introduce generic hierarchical background (or prior) spaces

Z1 ⊂ Z2 ⊂ · · · ⊂ ZNmax ⊂ · · · ⊂ U ;

here the last ellipsis indicates that although in practice we shall consider N at most Nmax, in
principle we might extend the analysis to an infinite sequence of refinements. We intend, but
not assume, that

εbkN (utrue) ≡ inf
w∈ZN

‖utrue − w‖ ≤ ε as N →∞

for ε an acceptable tolerance. As mentioned in the introduction, the background spaces may be
generated from the best-knowledge manifoldMbk by a variety of model reduction approaches;
the spaces consist of candidate states realized by anticipated, and parametrized, uncertainty
in the model. We consider several specific choices in detail in Section 2.7.2.
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6 Y MADAY, AT PATERA, JD PENN, M YANO

We are now ready to state the unlimited-observations PBDW minimization statement: find
(u∗N ∈ U , z∗N ∈ ZN , η∗N ∈ U) such that

(u∗N , z
∗
N , η

∗
N ) = arg inf

uN∈U
zN∈ZN
ηN∈U

‖ηN‖2 (1)

subject to

(uN , v) = (ηN , v) + (zN , v) ∀v ∈ U ,
(uN , φ) = (utrue, φ) ∀φ ∈ U . (2)

The following proposition summarizes the solution to the minimization problem.

Proposition 1. The solution to the PBDW minimization statement (1) is

u∗N = utrue, z∗N = ΠZN
utrue, and η∗N = ΠZ⊥Nu

true.

Proof
We first deduce from (2)2 that u∗N = utrue. We next deduce from (2)1 that η∗N = utrue − z∗N .
We then note that, since we wish to minimize ‖η∗N‖, we must choose z∗N = ΠZN

utrue such that
η∗N = ΠZ⊥Nu

true.

Proposition 1 provides a precise interpretation for u∗N , z∗N and η∗N and solidifies the
interpretation alluded to in the introduction: u∗N ∈ U is the “state estimate,” which in fact is
equal to the true state utrue; z∗N ∈ ZN is the “deduced background”, the component of the
state formed by the anticipated, and parametrized, uncertainty that lies in the background
space ZN ; η∗N ∈ Z⊥N is the “update”, the component of the state formed by unanticipated, and
in some sense non-parametric, uncertainty that lies outside of the background space ZN . Note
that the update η∗N completes the deficient prior space such that utrue = u∗N = z∗N + η∗N .

We now derive (simplified) Euler-Lagrange equations associated with the PBDW
minimization statement (1). Towards this end, we first introduce the Lagrangian,

L(uN , zN , ηN , v, φ) ≡ 1

2
‖ηN‖2 + (uN − ηN − zN , v) + (uN − utrue, φ).

Here, uN ∈ U , zN ∈ ZN , and ηN ∈ U ; v ∈ U and φ ∈ U are the Lagrange multipliers. We then
obtain the (full) Euler-Lagrange equations: find (u∗N ∈ U , z∗N ∈ ZN , η∗N ∈ U , v∗ ∈ U , φ∗ ∈ U)
such that

(v∗, δu) + (φ∗, δu) = 0 ∀δu ∈ U ,
(v∗, δz) = 0 ∀δz ∈ ZN ,

(η∗N , δη)− (v∗, δη) = 0 ∀δη ∈ U , (3)

(u∗N − η∗N − z∗N , δv) = 0 ∀δv ∈ U ,
(u∗N − utrue, δφ) = 0 ∀δφ ∈ U .

We readily obtain from (3)3 and (3)1 that v∗ = η∗N and φ∗ = v∗ = −η∗N , respectively; we
substitute η∗N in place of v∗ and −φ∗. We in addition note from (3)5 that uN = utrue; we
make the substitution to (3)4. The substitutions yield the (simplified) Euler-Lagrange equation
associated with the PBDW minimization statement (1): find (η∗N ∈ U , z∗N ∈ ZN ) such that

(η∗N , q) + (z∗N , q) = (utrue, q) ∀q ∈ U ,
(η∗N , p) = 0 ∀p ∈ ZN , (4)

and set u∗N = η∗N + z∗N . We readily confirm the aforementioned background-update
decomposition:

u∗N = η∗N + z∗N = ΠZ⊥Nu
true + ΠZN

utrue = utrue.

We will primarily appeal to this saddle problem associated with the PBDW minimization
statement to derive our data assimilation strategy and to develop associated theory.
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PARAMETRIZED-BACKGROUND DATA-WEAK FORMULATION 7

2.3. Limited-Observations Statement

While the PBDW saddle statement (4) (or the minimization statement (1)) yields the exact
state estimate u∗N = utrue, the saddle statement is not actionable since the evaluation of
(utrue, q) ∀q ∈ U in (4)1 (or (2)2) requires the full knowledge of the true state utrue. We wish
to devise an actionable statement that approximates the solution using a finite number of
observations.

Towards this end, we introduce observation functionals

`om ∈ U ′, m = 1, . . . ,Mmax,

such that the m-th perfect experimental observation is modeled as `om(utrue). In other words,
the functionals model the particular transducer used in data acquisition. For instance, if
the transducer measures a local state value, we may model the transducer by a Gaussian
convolution

`om(v) = Gauss(v;xc
m, rm),

where xc
m is the center of the Gaussian that reflects the transducer location, and rm is

the standard deviation of the Gaussian that reflects the filter width of the transducer.
We note observation functionals can be quite general and in fact are only limited by
the capabilities of the associated transducers. The set of functionals that are consistent
with the experimentally realizable data acquisition procedures form a library of observation
functionals, denoted by L . The library L may be finite or infinite; for instance, the library
associated with Gaussian convolutions characterized by the observation center xc

m ∈ Ω ⊂ Rd,
L = {` ∈ U ′ | `(·) = Gauss(·;xc

m, rm), xc
m ∈ Ω}, is infinite dimensional. In general, observation

functionals may be either more global or more localized; in this paper, we focus on “pointwise”
measurements, which we model — for experimental and mathematical reasons‡ — as local
Gaussian convolutions. We in addition note that the precise form of the filter may not be
important in cases for which the variation in the field occurs over scales much larger than rm.

We then introduce, following Bennett [3], experimentally observable update spaces. Namely,
we consider hierarchical spaces

UM = span{qm ≡ RU`om}Mm=1, M = 1, . . . ,Mmax, . . . ;

here again the last ellipsis indicates that although in practice we shall consider M at most
Mmax, in principle we might extend the analysis to an infinite sequence of refinements. We
recall that RU` ∈ U is the Riesz representation of ` ∈ U ′. Then, for qm = RU`

o
m ∈ UM ,

(utrue, qm) = (utrue, RU`
o
m) = `om(utrue)

is an experimental observation associated with the m-th transducer. It follows that, for any
q ∈ UM , (utrue, q) = (utrue,

∑M
m=1 αmqm) =

∑M
m=1 αm`

o
m(utrue); hence (utrue, q) is a weighted

sum of experimental observations. We say that UM is experimentally observable.
We can now readily state our limited-observations PBDW minimization statement: find

(u∗N,M ∈ U , z∗N,M ∈ ZN , η∗N,M ∈ U) such that

(u∗N,M , z
∗
N,M , η

∗
N,M ) = arg inf

uN,M∈U
zN,M∈ZN

ηN,M∈U

‖ηN,M‖2 (5)

‡Mathematically, the point-wise value is in general ill-defined for functions in U ⊃ H1
0 (Ω ⊂ Rd), d > 1.

Practically, any physical transducer has a finite filter width.
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subject to

(uN,M , v) = (ηN,M , v) + (zN,M , v) ∀v ∈ U ,
(uN,M , φ) = (utrue, φ) ∀φ ∈ UM . (6)

We arrive at the limited-observations minimization statement (5) from the unlimited-
observations minimization statement (1) through a restriction of the test space for (2)2 to
UM . With this restriction, the right-hand side of the (6)2, (utrue, φ) ∀φ ∈ UM , is evaluated
from the experimental observations.

We now derive (simplified) Euler-Lagrange equations associated with the limited-
observations PBDW minimization statement (5). Following the construction for the unlimited-
observations case, we first introduce the Lagrangian

L(uN,M , zN,M , ηN,M , v, φM ) ≡ 1

2
‖ηN,M‖2 + (uN,M − ηN,M − zN,M , v) + (uN,M − utrue, φM );

here uN,M ∈ U , zN,M ∈ ZN , ηN,M ∈ U , v ∈ U , and φM ∈ UM . We then obtain the (full) Euler-
Lagrange equations: find (u∗N,M ∈ U , z∗N,M ∈ ZN , η∗N,M ∈ U , v∗ ∈ U , φ∗ ∈ UM ) such that

(v∗, δu) + (φ∗, δu) = 0 ∀δu ∈ U ,
(v∗, δz) = 0 ∀δz ∈ ZN ,

(η∗N,M , δη)− (v∗, δη) = 0 ∀δη ∈ U , (7)

(u∗N,M − η∗N,M − z∗N,M , δv) = 0 ∀δv ∈ U ,
(u∗N,M − utrue, δφ) = 0 ∀δφ ∈ UM .

We now wish to simplify the statement. We first obtain from (7)1 that v∗ = −φ∗; since
φ∗ ∈ UM , we conclude that v∗ ∈ UM . We then obtain from (7)3 that η∗N,M = v∗ = −φ∗;
we again conclude that η∗N,M ∈ UM . We now eliminate v∗ (and φ∗) and rewrite (7)2 as
(η∗N,M , δz) = 0 δz ∈ ZN . We next subtract (7)4 from (7)5 and test against UM to obtain

(η∗N,M + z∗N,M − utrue, δv) = 0 ∀δv ∈ UM . We hence obtain the simplified Euler-Lagrange
equation associated with the PBDW minimization statement (5): find (η∗N,M ∈ UM , z∗N,M ∈
ZN ) such that

(η∗N,M , q) + (z∗N,M , q) = (utrue, q) ∀q ∈ UM ,

(η∗N,M , p) = 0 ∀p ∈ ZN , (8)

and set u∗N,M = η∗N,M + z∗N,M .
Note that the limited-observations saddle was derived here from the limited-observations

minimization statement (5); we may instead directly obtain the limited-observations saddle (8)
from the unlimited-observations saddle (4) through a simple restriction of the trial space for
the first variable and the test space for the first equation to the experimentally observable space
UM ⊂ U — the Galerkin recipe. We could also consider a Petrov-Galerkin approach in which
η∗N,M is sought in a trial space informed by approximation requirements and different from the
experimentally observable test space UM . Note that we may achieve a similar effect within the
Galerkin context: we retain a single trial and test space for η∗N,M and the first equation of our
saddle, respectively, and instead expand ZN to include approximation properties beyond the
best-knowledge model.

From (8), we readily observe that η∗N,M ∈ UM ∩ Z⊥N and z∗N,M ∈ ZN . In words, since we
wish to minimize ‖η∗N,M‖, η∗N,M should only accommodate the part of the projection onto

UM which cannot be absorbed by z∗N,M ∈ ZN : the part that lies in Z⊥N . In particular, we

note that the first equation suggests the decomposition of the observable state ΠUMu
true into

two parts: ΠUMu
true = η∗N,M + ΠUM z

∗
N,M . In other words, the component z∗N,M is chosen such
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that its projection onto the observable space explains the observed data for a minimal η∗N,M :

ΠUM z
∗
N,M = ΠUMu

true − η∗N,M . The size of the saddle system is M +N .
We finally note that we may eliminate the variable η∗N,M from the saddle (8) and write the

equation solely in terms of z∗N,M : find z∗N,M ∈ ZN such that

(ΠUM z
∗
N,M , v) = (ΠUMu

true, v) ∀v ∈ ZN .

The Galerkin statement is associated with the minimization problem: find z∗N,M ∈ ZN such

that z∗N,M = arg infz∈ZN
‖ΠUM (utrue − z)‖.

2.4. Algebraic Form: Offline-Online Computational Decomposition

We consider an algebraic form of the PBDW state estimation problem (8). Towards this end, we
first assume that elements of the infinite-dimensional space U are approximated in a suitably
rich N -dimensional approximation space; from hereon in this section, all spaces are considered
to be subspaces of this N -dimensional approximation space. We introduce a hierarchical basis
of (the N -dimensional representation of) ZNmax : {ζn}Nmax

n=1 such that ZN = span{ζn}Nn=1, N =
1, . . . , Nmax. We similarly introduce a hierarchical basis of (the N -dimensional representation
of) UMmax

: {qm}Mmax
m=1 such that UM = span{qm}Mm=1, M = 1, . . . ,Mmax. Any element z ∈ ZN

may be expressed as z =
∑N

n=1 ζnzn for some z ∈ RN ; any element η ∈ UM may be expressed

as η =
∑M

m=1 qmηm for some η ∈ RM .
In the Offline stage, we then form matrices A ∈ RMmax×Mmax and B ∈ RMmax×Nmax such

that

Amm′ = (qm′ , qm), m,m′ = 1, . . . ,Mmax,

Bmn = (ζn, qm), m = 1, . . . ,Mmax, n = 1, . . . , Nmax.

If we wish to evaluate a functional output `out(u∗N,M ), then we in addition form vectors

lout,U ∈ RMmax and lout,Z ∈ RNmax such that

(lout,U )m = `out(qm), m = 1, . . . ,Mmax,

(lout,Z)n = `out(ζn), n = 1, . . . , Nmax.

The computation of the elements of ZNmax
and UMmax

and the formation of the matrices and
vectors require O(N ·) operations for some exponent that depends on the particular ZN and
UM generation strategies.

In the Online stage, we solve the algebraic form of (8): find η∗ ∈ RM and z∗ ∈ RN such
that (

A1:M,1:M B1:M,1:N

BT
1:M,1:N 0

)(
η∗

z∗

)
=

(
lobs

0

)
;

here A1:M,1:M ∈ RM×M denotes the M ×M principal submatrix of A, B1:M,1:N ∈ RM×N
denotes the M ×N principal submatrix of B, (·)T denotes the transpose, and lobs ∈ RM is
the M -vector of experimentally observed values, lobs

m = `om(utrue), m = 1, . . . ,M . The solution
of the saddle system requires O((N +M)3) operations.

Once the coefficients η∗ ∈ RM and z∗ ∈ RN are computed, we may find the field u∗N,M
and the output `out(u∗N,M ). Specifically, the state is given by u∗N,M = η∗N,M + z∗N,M =∑M

m=1 qmη∗m +
∑N

n=1 ζnz
∗
n; the evaluation requires O(N ) operations. The output is given by

`out(u∗N,M ) =
∑M

m=1 l
out,U
m η∗m +

∑N
n=1 l

out,Z
n z∗n; the evaluation requires O(N +M) operations.
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2.5. A Priori Error Analysis

2.5.1. Field Estimates. We appeal to the variational construction of the PBDW estimate and
the existent theory on finite element analysis (see, for example, [26]) to develop an a priori error
theory for the PBDW formulation. We first state a proposition on the state (field) estimation
error.

Proposition 2. The PBDW approximation error satisfies

‖η∗N − η∗N,M‖ ≤ inf
q∈UM∩Z⊥N

inf
z∈ZN

‖utrue − z − q‖,

‖z∗N − z∗N,M‖ ≤
1

βN,M
inf

q∈UM∩Z⊥N
inf
z∈ZN

‖utrue − z − q‖,

‖utrue − u∗N,M‖ ≤
(

1 +
1

βN,M

)
inf

q∈UM∩Z⊥N
inf
z∈ZN

‖utrue − z − q‖,

where the stability constant βN,M is defined by

βN,M ≡ inf
z∈ZN

sup
q∈UM

(z, q)

‖z‖‖q‖
.

Proof
We subtract (8)1 from (4)1 and test against q ∈ UM ∩ Z⊥N to obtain

(η∗N − η∗N,M , q) = 0 ∀q ∈ UM ∩ Z⊥N .

It follows that, for any q ∈ UM ∩ Z⊥N ,

‖η∗N − η∗N,M‖2 = (η∗N − η∗N,M , η∗N − q) + (η∗N − η∗N,M , q − η∗N,M ) ≤ ‖η∗N − η∗N,M‖‖η∗N − q‖;

note that, in the last step, the second term vanishes: (η∗N − η∗N,M , q − η∗N,M ) = 0 since

q − η∗N,M ∈ UM ∩ Z⊥N . We thus obtain

‖η∗N − η∗N,M‖ ≤ inf
q∈UM∩Z⊥N

‖η∗N − q‖.

Since η∗N = ΠZ⊥Nu
true and q ∈ Z⊥N ,

‖η∗N − η∗N,M‖2 ≤ inf
q∈UM∩Z⊥N

‖ΠZ⊥Nu
true − q‖2

= inf
z∈ZN

‖ΠZN
utrue − z‖2 + inf

q∈UM∩Z⊥N
‖ΠZ⊥Nu

true − q‖2

= inf
q∈UM∩Z⊥N

inf
z∈ZN

(
‖ΠZN

utrue − z‖2 + ‖ΠZ⊥Nu
true − q‖2

)
= inf
q∈UM∩Z⊥N

inf
z∈ZN

‖ΠZN
utrue − z + ΠZ⊥Nu

true − q‖2

= inf
q∈UM∩Z⊥N

inf
z∈ZN

‖utrue − z − q‖2.

Here, the first equality follows since infz∈ZN
‖ΠZN

utrue − z‖2 = 0; the third equality follows
from the Pythagorean theorem since ΠZN

utrue − z ∈ ZN and ΠZ⊥Nu
true − q ∈ Z⊥N . It follows

that

‖η∗N − η∗N,M‖ ≤ inf
q∈UM∩Z⊥N

inf
z∈ZN

‖utrue − z − q‖, (9)
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which is the bound on ‖η∗N − η∗N,M‖.
We next subtract (8)1 from (4)1 and test against q ∈ UM to obtain

(η∗N − η∗N,M , q) + (z∗N − z∗N,M , q) = 0 ∀q ∈ UM .

It follows from z∗N − z∗N,M ∈ ZN and the definition of the inf-sup constant that

βN,M‖z∗N − z∗N,M‖ ≤ sup
v∈UM

(z∗N − z∗N,M , v)

‖v‖
= sup
v∈UM

−(η∗N − η∗N,M , v)

‖v‖
≤ ‖η∗N − η∗N,M‖.

Combined with (9), we obtain

‖z∗N − z∗N,M‖ ≤
1

βN,M
inf

q∈UM∩Z⊥N
inf
z∈ZN

‖utrue − z − q‖,

which is the bound on ‖z∗N − z∗N,M‖.
We finally invoke the triangle inequality,

‖utrue − u∗N,M‖ ≤ ‖η∗N − η∗N,M‖+ ‖z∗N − z∗N,M‖ ≤
(

1 +
1

βN,M

)
inf

q∈UM∩Z⊥N
inf
z∈ZN

‖utrue − z − q‖,

which is the bound on ‖utrue − u∗N,M‖.

Proposition 2 identifies three distinct contributions to the error in the field estimate. First
is the stability constant, βN,M ; the better the stability, the smaller the error. Second is the
background best-fit error, infz∈ZN

‖utrue − z‖; the error is small if utrue is well approximated
in the background space ZN . Third is the update best-fit error, infq∈UM∩Z⊥N ‖ΠZ⊥Nu

true − q‖;
the components of utrue that do not lie in ZN are treated by the update space. We will appeal
in Section 2.7 to these observations to select ZN and UM .

2.5.2. Output Estimates. We may also develop an a priori error bound associated with an
estimate of a functional output.

Proposition 3. Let `out ∈ U ′ be the output functional of interest, and define ψ = RU`
out ∈ U

as the adjoint associated with the output. The output error satifies

|`out(utrue)− `out(u∗N,M )| = |(utrue − u∗N,M , ψ −ΠUMψ)|
≤ ‖utrue − u∗N,M‖‖ψ −ΠUMψ‖.

Proof
We first note that

`out(w) = (RU`
out, w) = (ψ,w) ∀w ∈ U

by the definition of the Riesz operator and the adjoint ψ. We next note that, by Galerkin
orthogonality, (utrue − u∗N,M , q) = 0 ∀q ∈ UM . It follows that

|`out(utrue − u∗N,M )| = |(utrue − u∗N,M , ψ)| = |(utrue − u∗N,M , ψ −ΠUMψ)|.

We finally invoke Cauchy-Schwarz to obtain the desired bound.

Proposition 3 suggests that the error in a functional output depends on, in addition to the
factors that affect the field estimate, the approximation of the adjoint by the update space.
Similar to the finite element approximation, we expect the output estimate to “superconverge”
withM , as both the approximation of the primal and adjoint states contributes to the reduction
in the output error.
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2.5.3. Stabilization. Proposition 2 shows that the stability constant βN,M plays a key role in
controlling the state estimation error. As regard its behavior, we have the following proposition.

Proposition 4. The inf-sup constant

βN,M ≡ inf
z∈ZN

sup
q∈UM

(z, q)

‖z‖‖q‖

is a non-increasing function of the dimension of the background space, N , and a non-decreasing
function of the dimension of the observable space, M . Furthermore, βN,M = 0 for M < N .

Proof
The result is a direct consequence of the expansion of the infimizer space ZN and the supremizer
space UM .

2.5.4. Approximation Properties of UM for Pointwise Measurements in One Dimension.
Proposition 2 suggests that the update space UM plays a role in estimating the component of
state that lies in Z⊥N . We hence wish to quantify the approximation properties of the space
UM . We do not have a characterization of the approximation properties for a general physical
dimension d, inner product (·, ·), and output functional `om(·); we can however quantify the
approximation properties in a very specialized case.

Proposition 5. We introduce a domain Ω ≡]0, 1[ and a space U ≡ H1
0 (Ω) equipped with

an inner product (w, v) ≡
∫

Ω
∂w
∂x

∂v
∂xdx and the associated induced norm | · |H1(Ω). Let utrue ∈

H1
0 (Ω) ∩H2(Ω). Consider pointwise observation functionals `om ≡ δ(·, xo

m), m = 1, . . . ,M , with
uniformly spaced centers {xo

m}Mm=1; here δ denotes the Dirac delta. We denote the associated
update space by UM ≡ span{RU`om}Mm=1. Then, the update best-fit error is bounded by

inf
q∈UM

‖utrue − q‖Hr(Ω) ≤ CM−(2−r)‖utrue‖H2(Ω)

for r = 0, 1 and some C independent of M and utrue.

Proof
Since utrue ∈ H1

0 (Ω) ∩H2(Ω) and ‖ · ‖ = | · |H1(Ω), it suffices to show that UM is a space of
piecewise linear polynomials,

XM ≡ {w ∈ C0(Ω) | w|Ik ∈ P1(Ik), k = 1, . . . ,M + 1},

for I1 = [0, x1], IM+1 = [xM , 1], and Ik = [xk, xk+1], k = 2, . . . ,M − 1. (Without loss of
generality, we assume 0 ≤ x1 < · · · < xM ≤ 1.) Towards this end, we first note that for
`om = δ(·, xom) and ‖ · ‖ = | · |H1(Ω), a function RU`

o
m ∈ U is the piecewise linear “hat” function

with the peak (or the derivative jump) at xo
m; in particular RU`

o
m ∈ UM . We then note

that the functions {RU`om}Mm=1 are linearly independent because xo
m (and hence the location

of the derivative jumps) are different. We thus have M linearly independent functions
in the M -dimensional space UM ; thus, {RU`om}Mm=1 is a basis for UM and in particular
UM ≡ span{RU`om}Mm=1 = XM . This concludes the proof.

On one hand, Proposition 5 shows that we can expect the update best-fit error error to
decrease with M and hence, combined with Proposition 2, u∗N,M converges to utrue in the limit
of M →∞. On the other hand, Proposition 5 shows that the convergence of the error with the
number of observations M is rather slow: the H1(Ω) and L2(Ω) error converges as M−1 and
M−2, respectively, in one dimension. More generally, we expect the H1(Ω) and L2(Ω) error
to converge as M−1/d and M−2/d, respectively, in a d-dimensional space. In order to obtain a
good estimate with a reasonable number of observations M , we must choose the background
space ZN appropriately such that the update η∗N ∈ ΠZ⊥Nu

true is small.
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2.6. A Posteriori Error Estimates

We introduce an a posteriori error estimate for the state estimate u∗N,M ,

EN,M,M ′ ≡ ‖u∗N,M ′ − u∗N,M‖,

where M ′, such that M ≤M ′ ≤Mmax, is the number of observations used to form the
error estimate. We similarly introduce an a posteriori error estimate for the output estimate
`out(u∗N,M ),

ON,M,M ′ ≡ |`out(u∗N,M ′)− `out(u∗N,M )|,

again based onM ′ ≥M observations. We note that, forM ′ = M , EN,M,M ′ = 0 andON,M,M ′ =
0.

Remark 1. The field a posteriori error estimate EN,M,M ′ may be interpreted as an
approximation of the (dual) norm of the error utrue − u∗N,M using the M ′-dimensional subspace
UM ′ ⊂ U as the test space:

EN,M,M ′ = sup
q∈UM′

|(utrue, q)− (u∗N,M , q)|
‖q‖

.

The equivalence follows from (u∗N,M ′ , q) = (utrue, q) ∀q ∈ UM ′ . Assuming UM ′ → U as M ′ →
∞, the (dual) norm estimate converges to the true (dual) norm of the error.

2.7. Construction of Spaces: Offline

2.7.1. Best-Knowledge Model. As we have just described, Proposition 2 suggests that
we should choose the background space ZN such that the background best-fit error
infz∈ZN

‖utrue − z‖ is small. We consider a parametric construction of the spaces ZN , N =
1, . . . , Nmax, such that the background best-fit error decreases rapidly with N .

Towards this end, we now formally introduce the parametrized best-knowledge model
previously discussed in the introduction. We first introduce a parameter µ ∈ D; here, D ⊂ RP
is the parameter domain associated with the anticipated, or parametric, uncertainty in the
best-knowledge model. We next introduce a parametrized form: Gµ : U × U → R; we assume
that the form is linear in the second argument. We then define, for a given µ ∈ D, the best-
knowledge solution ubk,µ ∈ U that satisfies

Gµ(ubk,µ, v) = 0 ∀v ∈ U ;

we assume that the problem is well posed; that is, for any µ ∈ D, ubk,µ exists and is unique.
We now introduce the best-knowledge parametrized manifold

Mbk ≡ {ubk,µ | µ ∈ D}.

We intend to choose the parametrized form Gµ and the parameter domain D to minimize the
model error

εbkmod(utrue) ≡ inf
w∈Mbk

‖utrue − w‖ = ‖utrue − FMbkutrue‖,

where FMbkutrue ∈Mbk is an infimizer.
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Algorithm 1: WeakGreedyM Algorithm

input : Gµ: parametrized best-knowledge model
D: parameter domain
∆bk,µ
N : error estimate for infz∈ZN

‖ubk,µ − z‖ ≤ ∆bk,µ
N

output: {ZN}Nmax

N=1 : sequence of Nmax hierarchical background spaces

1 for M = 1, . . . , Nmax do
2 Identify the parameter associated with the largest error estimate

µ̃N = arg sup
µ∈Ξtrain∈D

∆bk,µ
N−1

3 Evaluate the associated solution

ζN = ubk,µ̃N

4 Augment the background space

ZN = span{ZN−1, ζN}

5 end

2.7.2. Background Spaces ZN . As mentioned in the introduction, we condense the best-
knowledge of Mbk into a N -dimensional linear space ZN through several different model
reduction processes: ProcessZN (Mbk)→ ZN . Here we list a few:

• Proper orthogonal decomposition (POD): ProcessZN ≡ PODN .
We first introduce a training set Ξtrain ⊂ D that sufficiently covers the parameter domain
D. We then evaluate the best-knowledge solution at each training point to form the set
{ubk,µ}µ∈Ξtrain

. We finally apply POD [15] to {ubk,µ}µ∈Ξtrain
and extract the N most

dominant modes as measured in ‖ · ‖ to form ZN .
• Weak Greedy: ProcessZN ≡ WeakGreedyN .

We apply the Weak Greedy algorithm described in Algorithm 1 to form ZN (see also
a detailed review — in particular as regard the construction of an error bound that is
efficient in the many-query setting — by Rozza et al. [27]). The algorithm has been
proven to generate an optimal sequence of spaces with respect to the Kolmogorov width
of Mbk in Binev et al. [4], Buffa et al. [5], and DeVore et al. [8]. We emphasize that
even if the best-knowledge model is effectively exact, typically we can not apply the
standard reduced-basis Galerkin approach in the Online stage since we anticipate that
in many situations the paramaeter values of some particular configuration will not be
known precisely; hence we incorporate only the Offline of the reduced basis framework,
in particular in the development of ZN .

• Taylor expansion: ProcessZN ≡ Taylor
µ0

N .
We first evaluate the parametric derivatives of the solution ubk,µ: ζp = [∂ubk,µ/∂µp]µ=µ0 ,
p = 1, . . . , P . We then form ZN=P = span{ζp}Pp=1. We may also consider higher-order
expansions [10].

We may in addition consider other model order reduction approaches, such as the Proper
Generalized Decomposition (PGD) [16].

In general, we may quantify the approximation property of the background space in terms
of the best-fit error

εbkN (utrue) ≡ inf
w∈ZN

‖utrue − w‖.
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In particular, if the space ZN is generated from the best-knowledge manifold Mbk, we may
decompose the error into two parts and identify two different sources of the error:

εbkN (utrue) ≡ inf
w∈ZN

‖utrue − w‖ ≤ ‖utrue −ΠZN
FMbk(utrue)‖

≤ ‖utrue − FMbk(utrue)‖+ ‖FMbk(utrue)−ΠZN
FMbk(utrue)‖

≤ inf
w∈Mbk

‖utrue − w‖+ sup
w∈Mbk

‖w −ΠZN
w‖

≤ εbkmod(utrue) + εbkdisc,N .

The first term, εbkmod(utrue) ≡ infw∈Mbk ‖utrue − w‖, is the modeling error, which arises from the
fact that we cannot in general anticipate all forms of uncertainty and provide the associated
parametrized model; hence, in general, utrue /∈Mbk, and εbkmod(utrue) 6= 0. The second term,
εbkdisc,N ≡ supw∈Mbk ‖w −ΠZN

w‖, is the discretization error, which arises from the fact we
cannot in general construct a N -dimensional linear space that can represent all elements
of Mbk; hence, in general, Mbk 6⊂ ZN , and εbkdisc,N 6= 0. For some constructions of ZN , we
may rigorously bound the discretization error; for example, in the Weak Greedy procedure,
εbkdisc,N = ∆bk,µ

N . On the other hand, we cannot in general bound the modeling error.

2.7.3. Superdomains for the Best-Knowledge Model. As mentioned in the introduction,
projection-by-data, unlike projection-by-model, does not require boundary conditions (and
initial conditions). However, in order to obtain best-knowledge solutions and to construct
ZN , the best-knowledge model must be defined on a domain on which the boundary-value
problem is well posed. Hence, in general, the domain on which we wish to estimate the state,
Ω ⊂ Rd, may differ from the domain associated with the best-knowledge model, Ωbk ⊃ Ω. More
generally, the domain Ω may be a manifold in Ωbk: Ωbk ⊂ Rd′ for d′ > d.

In this generalized setting, to construct ZN , we first identify the Hilbert space associated
with Ωbk by Ubk = Ubk(Ωbk). We then identify the best-knowledge manifold, Mbk ≡ {ubk,µ ∈
Ubk | µ ∈ D}. We next construct the background space on Ωbk, ProcessZN (Mbk)→ Zbk

N . We
finally form the background space on Ω, ZN = {z ∈ U | z = zbk|Ω, zbk ∈ Zbk

N }.§ The procedure
allows us to focus on data assimilation on Ω ⊂ Ωbk even if the best-knowledge model is only
well posed on Ωbk ⊃ Ω.

2.7.4. Experimentally Observable Update Spaces UM : Design of Experiment. Proposition 2
shows that, for a given ZN , the selection of the experimentally observable update spaces UM
should be based on two criteria:

• the maximization of the stability constant βN,M = infw∈ZN
supv∈UM (w, v)/(‖w‖‖v‖);

to improve stability, we wish to choose UM such that any element in ZN is well
approximated by an element in UM .

• the minimization of the approximation error infη∈UM∩Z⊥N ‖ΠZ⊥Nu
true − η‖ (and in

particular the modeling error infw∈Mbk ‖utrue − w‖); to improve approximation, we wish
to choose UM such that elements in Z⊥N — that is elements outside of ZN — are well
approximated by UM .

We emphasize that UM must be experimentally observable: UM = span{qm ≡ RU`om}Mm=1,
M = 1, . . . ,Mmax. Note that, by construction, the experimentally observable space is a function
of the choice of the inner product (·, ·).

We recall that in general the PBDW framework accommodates a library L consists of
candidate observation functionals that are consistent with experimentally realizable data-
acquisition procedure. In this paper, however, we focus on localized observations using a given

§The restriction of the basis of Zbk
N to the domain Ω ⊂ Ωbk may yield an ill-conditioned basis. To reinforce

the robustness of the approach, one could extract, from the ill-conditioned basis of cardinality N , a subset of
cardinality N ′ < N based on, for instance, a singular value decomposition.
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transducer, `om(·) = Gauss(·;xc
m, rm), whose location of the centers {xc

m}Mm=1 largely determine
the space UM . We may select the observation functionals from L (and more specifically the
observation centers) using several different processes: ProcessUM (ZNmax

)→ UM . Here we list
a few (some of which are specialized for localized observations):

• Quasi-uniform or random: ProcessUM ≡ QuasiUniformM or RandomUniformM .
This procedure is specialized to localized observations. The algorithm aims to minimize
the approximation error by providing a uniform coverage of the domain. QuasiUniformM
is a deterministic sequential procedure: at step m, we insert a new point at the
location which maximizes the shortest distance to the set of points at step m−
1. RandomUniformM is a stochastic sequential procedure: we simply draw points
sequentially from the uniform density over Ω.

• Generalized Empirical Interpolation Method [19, 20]: ProcessUM ≡ GEIMM .
We select, in a greedy manner from L , a sequence of observation functionals aimed to
minimize the interpolation error associated with the approximation space ZNmax ⊂ U .
The algorithm works for M = N , N = 1, . . . , Nmax.

• Greedy stability maximization: ProcessUM ≡ SGreedyM .
The procedure is described in Algorithm 2. In short, the algorithm chooses a sequence
of observations functionals from a library L to maximize the inf-sup constant βN,M
in a greedy manner. Unlike the GEIMM algorithm above, the SGreedyM algorithm is
applicable for M > N . The SGreedyM algorithm is equivalent to GEIMM for M = N .

• Greedy stability maximization (for localized observations): ProcessUM ≡ SGreedylocal
M .

This is a derivative of the SGreedyM algorithm for localized observation functionals,
i.e. L = {` ∈ U ′ | `(·) = Gauss(·;xc

m, rm), xc
m ∈ Ω}. In this procedure, Step 5 of the

SGreedyM algorithm described in Algorithm 2 is approximated by a two-step procedure:
the identification of the least well-approximated point x̃ = arg supx∈Ω |(winf − vsup)(x)|;
the construction of `oM = Gauss(·; x̃, rM ). For a sufficiently small filter width rm, the
approximation gives a reasonable and convenient estimate of the “proper” SGreedyM
algorithm. We assume that members of ZN are sufficiently regular to justify pointwise
evaluation.

• Greedy stability-approximation balancing [28]: ProcessUM ≡ SAGreedy.
The algorithm is a combination of the above SGreedyM and RandomUniformM
algorithms. We initially invoke the SGreedyM algorithm to maximize the stability until
a user-specified threshold stability constant is achieved for N = Nmax. We then invoke
RandomUniformM sampling to minimize the approximation error; this second step is
specialized to localized observations. Note that, because the stability constant is a non-
decreasing function ofM for a fixedN , the stability constant remains above the threshold
in the second stage.

We will see in the results section that the stability-maximization algorithm provide more stable
estimate of the state than a set of random points especially when M is close to N .

Per Proposition 4, for M < N the inf-sup constant is zero. Thus, we may not consider
M < N . However, there is nevertheless a “few-sample” regime, or at least a circumstance
which will result in relatively small M : if the modeling error is small, and the model reduction
process efficient such that N is small, then typically (say with the SGreedyM algorithm) we
may chose M small. This few-observations regime is important in particular because often —
and in our example of Section 4 — it is the observations which dominate the Online cost.

3. SYNTHETIC PROBLEM: HELMHOLTZ IN R2

3.1. Model Form

We study the behavior of the PBDW formulation using a two-dimensional Helmholtz problem.
Towards this end, we consider a complex extension of the PBDW formulation presented in
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Algorithm 2: SGreedyM Stability-Maximization Algorithm

input : {ZN}Nmax

N=1 : background approximation spaces
L : a library of candidate observation functionals

output: {`om}
Mmax
m=1 : observation functionals

{UM}Mmax

M=1 : experimentally observable update spaces

1 for M = 1, . . . ,Mmax do // construct UM given UM−1

2 Set N = min{Nmax,M}.
3 Compute the least-stable mode: for M > 1,

winf = arg inf
w∈ZN

sup
v∈UM−1

(w, v)

‖w‖‖v‖
;

for M = 1, set winf to a normalized basis for ZN=M=1.
4 Compute the associated supremizer

vsup = ΠUM−1
winf .

5 Identify the least well-approximated functional

`oM = arg sup
`∈L

|`(winf − vsup)|

6 Set

UM = span{UM−1, RU`
o
M}.

7 end

Section 2. We first introduce a domain Ω ≡]0, 1[2 and the Hilbert space U ≡ H1(Ω) endowed
with the standard H1 inner product and norm:

(w, v) ≡
∫

Ω

(∇w · ∇v̄ + wv̄)dx and ‖w‖ ≡
√

(w,w).

We then consider the following weak statement: find Υµ
g ∈ U such that

aµ(Υµ
g , v) = fµg (v) ∀v ∈ U ,

where

aµ(w, v) ≡ (1 + iεµ)

∫
Ω

∇w · ∇v̄dx− µ2

∫
Ω

wv̄dx ∀w, v ∈ U ,

fµg (v) ≡ µ
∫

Ω

(2x2
1 + exp(x2))v̄dx+ µ

∫
Ω

gv̄dx ∀v ∈ U ,

for a parameter (i.e. the wave number) µ ∈ R>0, a function g ∈ L2(Ω), and a fixed dissipation
ε = 10−3. Note that (̄·) denotes the complex conjugate of (·). Here the wave number µ
constitutes the anticipated, and parametric, uncertainty — the term might model for instance
the uncertainty in the speed of sound; the function g constitutes the unanticipated, and non-
parametric, uncertainty — the term accommodates all other sources of uncertainty. We also
consider a functional output:

`out(w) ≡
∫

Γ1

wds,
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Figure 1. The truth solutions associated with the 2d Helmholtz problem.

where Γ1 ≡ {(x1, x2) ∈ R2| x1 = 0, x2 ∈ (0, 1)}. We approximate the solution in a 8× 8×
2(=128 element) triangular P5 finite element space, UN ⊂ U .

3.2. Synthetic Truths

To assess the performance of the PBDW formulation for various configurations, we consider
a number of “test truths” associated with different wave numbers and two choices of the bias
function g. The truth wave number µ̃ takes on a value in the interval [2, 10]. The two bias
functions g̃ are given by

g̃ =

{
g̃I ≡ 0, Case I

g̃II ≡ 0.5(exp(−x1) + cos(1.3πx2)), Case II.

A given truth is defined by a particular truth parameter µ̃ and bias g̃: utrue ≡ Υµ̃
g̃ . We show in

Figures 1(a), 1(b), and 1(c) the truth fields for Case I for a few different combination of wave
numbers and biases. We also show in Figure 1(d) the variation in ‖utrue‖ as a function of the
wave number µ̃; note that there are three resonances in the parameter range considered.

3.3. Best-Knowledge Model and PBDW Spaces

We consider the parametrized best-knowledge model Gµ(w, v) ≡ fµg≡0(v)− aµ(w, v) for µ ∈
D ≡ [2, 10]. The associated best-knowledge solution is ubk,µ = Υµ

g≡0, µ ∈ D. We then construct
the background spaces ZN , N = 1, . . . , Nmax, using the WeakGreedyN procedure described
in Algorithm 1. For simplicity, we use the dual norm of the residual as the error estimate:
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Figure 2. Convergence of the WeakGreedyN algorithm.
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Figure 3. Observation centers selected by RandomUniformM=20 and SGreedylocal
M=20; an experimentally

observable function RU `
o
m=3 in UM .

∆bk,µ
N ≡ infw∈ZN

supv∈UN |Gµ(w, v)|/‖v‖ (see [21] for details). The Nmax = 7 parameter points
chosen by the WeakGreedyN algorithm are, in order, (10.00, 2.00, 4.50, 3.15, 6.35, 9.40, 8.65).

As previously discussed, the important property of ZN is that it approximates the
best-knowledge parametric manifold in the sense that the discretization error εbkdisc,N ≡
supw∈Mbk ‖w −ΠZN

w‖ is small. We show in Figure 2 the convergence of the discretization
error as a function of the dimension of N . The error decreases exponentially with N . We also
note that the residual-based error estimate, ∆bk,µ

N , while not a rigorous bound, serves as an
indicator of the true discretization error.

We now discuss the construction of the experimentally observable space UM . We model the
(synthetic) observations by a Gaussian convolution with a standard deviation of rm = 0.02:
`om(·) = Gauss(·, xc

m, rm = 0.02). We then consider experimentally observable spaces UM , M =
1, . . . ,Mmax, based on two different set of observation centers {xc

m}Mm=1: randomly selected
RandomUniformM centers and (approximately) stability-maximizing SGreedylocal

M centers. The
first 20 centers for each set is shown in Figure 3(a) and 3(b). We also show in Figure 3(c) an
example of experimentally observable function. The function, while concentrated about xc

m=3,
has a non-compact support; in particular, (RU`

o
m=3)(x) ∈ [0.86, 1.45], ∀x ∈ Ω, and the function

does not vanish anywhere in the domain.
As previously discussed, the space UM must satisfy two criteria: maximization of the stability

constant βN,M ; the approximation of the unanticipated uncertainty space Z⊥N . Here we focus on
the assessment of the former. We shown in Figures 4(a) and 4(b) the stability constant βN,M
associated with RandomUniformM and SGreedylocal

M centers, respectively, for a few different
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Figure 4. Behavior of the stability constant for RandomUniformM and SGreedylocal
M observation centers.

N as a function of M . We observe that the SGreedylocal
M algorithm provides a much better

stability constant in particular for a small M .

3.4. Error Analysis

3.4.1. Case I: Perfect Model. We first consider Case I: the case with a perfect best-knowledge
model. As mentioned, for this case utrue ∈Mbk and utrue = ubk,µ̃ = Υµ̃

g≡0 for some µ̃ ∈ D.

Hence, we have no model error, εbkmod(utrue) = 0; however, we still have a finite discretization
error εbkdisc,N since Mbk 6⊂ ZN for a finite N .

We show in Figure 5(a) the variation in the maximum relative error over the parameter
domain as a function of the number of observations M for a few different values of N . For
this case with a perfect model — as predicted from the a priori bound in Proposition 2
and the rapid convergence of the discretization error εbkdisc,N in Figure 2 — the error decreases

rapidly with N as εbkN (utrue) ≡ infz∈ZN
‖utrue − z‖ decreases rapidly. Hence, the experimentally

observable space UM , M ≥ N , is required only to provide stability and not to complete the
deficiency in the background space ZN for a sufficiently large (and in practice moderate) N .

In order to understand in more detail the error behavior, we show in Figure 5(b) the
convergence of the two components of the PBDW estimate: z∗N,M ∈ ZN — the background

component of the estimate — and η∗N,M ∈ UM ∩ Z⊥N — the update component of the estimate.
We observe that the error in z∗N,M is typically smaller than the error in η∗N,M . Note that this
is not a contradiction with Proposition 2, which provides bounds for the errors in z∗N,M and
η∗N,M .

We in addition show in Figures 5(c) and 5(d) the fraction of the state anticipated and
unanticipated, respectively, by the parametrized best-knowledge model. As there is no model
error (εbkmod(utrue) = 0), the unanticipated fraction vanishes as N →∞.

We show in Figure 5(e) the variation in the a posteriori error estimate effectivity,
EN,M,M ′/‖utrue − u∗N,M‖, as a function of M and N for M ′ = 2M . The error estimate
unfortunately underestimates the true error. However, the effectivity approaches unity as M
(and hence M ′) increases.

We finally show in Figure 5(f) the convergence of the PBDW output estimates. As we have
observed for the ‖ · ‖-norm of the error, we observe a rapid convergence of the output error
with N for this case with a perfect model. In addition, as predicted by Proposition 3, we
observe superconvergence with M : the output error decreases as M−1 as opposed to M−1/2

for the state error.
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Figure 5. Case I. Behavior of the maximum relative error over the parameter domain, the maximum
error for the update and background components, the anticipated and unanticipated fractions of the
state, the log-mean a posteriori error estimate effectivity (for M ′ = 2M), and the mean relative output

error as a function of the number of observations M for a few different values of N using SGreedylocal
M

observation centers.

3.4.2. Case II: Imperfect Model. We now consider the truths utrue with g̃ = g̃II 6= 0 such that
the parametrized best-knowledge model based on g̃ ≡ 0 is inconsistent with the truths. In
other words, the model error εbkmod(utrue) 6= 0 and utrue 6∈ Mbk. Proposition 2 predicts that,
since εbkN (utrue) ≡ infz∈ZN

‖utrue − z‖ does not converge to 0, we must rely on the relatively
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slow convergence with M provided by infq∈UM∩Z⊥N ‖ΠZ⊥Nu
true − q‖. Figure 6(a) confirms that

this indeed is the case; while the error decreases with N , the decrease is not as rapid as that
observed for the perfect model in Case I. We observe that the error converges at the rate of
M−1/2, and in fact we must rely on this rather slow convergence, and not the rapid convergence
with N , to obtain a good estimate.

We observe in Figure 6(b) that, in the case of imperfect models, the error in η∗N,M dominates
over the error in z∗N,M . This is consistent with the fact that ‖η∗N‖ does not decrease rapidly
with N for an imperfect model. We confirm in Figures 6(c) and 6(d) that this indeed is the case:
since model error εbkmod(utrue) 6= 0, the fraction of the state unanticipated by the parametrized
best-knowledge model does not vanish even if N →∞. We show in Figure 6(e) that the a
posteriori error estimate in Case II works as well as it does in Case I. We finally observe in
Figure 6(f) that the output error, like the state error, does not decrease rapidly with N , but,
unlike the state error, superconverges with M at the rate of M−1.

We finally assess the effect of observation centers on the state estimates. We show
in Figure 7(a) the convergence of the state estimation error using the RandomUniformM
observation centers. Compared to the results shown in Figure 5(a) obtained using the
SGreedylocal

M observation centers, we observe an increase in the error in particular for a small
M . To understand the cause of the increased error, we show in Figure 7(b) the decomposition
of the error into the background and update components; we then compare the results with
that shown in Figure 5(b) obtained using the SGreedylocal

M observation centers. We note that
in general the error in the update component η∗N,M is not strongly affected by the choice of the
observation centers; this is consistent with Proposition 2 which states that the estimation of
η∗N is independent of the stability constant βN,M , which strongly depends on the observation
centers as shown in Figures 4(a) and 4(b). On the other hand, we note that the error in
the background component z∗N,M is much larger for the RandomUniformM observation centers

than for the SGreedylocal
M observation centers, especially for a small M . This again is consistent

with Proposition 2 which shows that the stability constant βN,M plays a crucial role in the
estimation of z∗N .

4. PHYSICAL PROBLEM: RAISED-BOX ACOUSTIC RESONATOR

4.1. Physical System

We now consider the application of the PBDW framework to a physical system: a raised-box
acoustic resonator. In particular, we wish to estimate the (time-harmonic) pressure field inside
the raised-box acoustic resonator described as a complex field in the frequency domain.

We show in Figure 8(a) the physical system: a five-sided, raised, acrylic box is separated
from a bottom panel by a small gap that permits acoustic radiation from the raised box interior
to the exterior; a speaker (Tang Band W2-1625SA) mounted in the center of one side of the
box provides a sound source at a single prescribed frequency f̃dim. Here ·̃ indicates that the
frequency is specified and measured by the frequency generator; also, superscript “dim” refers
to a dimensional variable. We show in Figure 8(b) the dimensional values of the geometric and
thermodynamics variables that define the physical system.

4.2. Robotic Observation Platform.

4.2.1. Data Acquisition. To permit autonomous, rapid, and accurate data acquisition, we
design and build a robotic observation platform for the raised-box acoustic resonator.

As shown in Figure 8(a), a microphone (Radio Shack model 270-092) attached to a 3-
axis positionable holder measures the pressure at a specified position inside the raised box.
Actuation of the microphone in the x1 and x2 directions (as defined in Figure 8(b)) is provided
by two stepper motors controlling a belt-driven output (not shown) that is magnetically
coupled to the microphone holder shown in Figure 8(c) through the bottom panel. Actuation of
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Figure 6. Case II. Behavior of the maximum relative error over the parameter domain, the maximum
error for the update and background components, the anticipated and unanticipated fractions of the
state, the log-mean a posteriori error estimate effectivity (for M ′ = 2M), and the mean relative output

error as a function of the number of observations M for a few different values of N using SGreedylocal
M

observation centers.

the microphone in the x3 direction is provided by a small DC motor mounted to the microphone
holder that positions the microphone via potentiometer position feedback.
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Figure 7. Case II. Behavior of the maximum relative error over the parameter domain and the
maximum error for the update and background components as a function of the number of observations

M for a few different values of N using RandomUniformM observation centers.

(a) robotic observation platform

(b) raised-box acoustic resonator (c) microphone holder

Figure 8. Configuration of the robotic observation platform and the raised-box acoustic resonator.

Figure 8(a) also shows the frequency generator and audio amplifier used to control the output
of the speaker, the motor controller used to control the stepper and DC motors, and the data
acquisition system used to capture the measured speaker input and microphone output.
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Figure 9. Measured calibration curve of the microphone (Radio Shack model 270-092) and preamplifier.

A typical experiment consists of positioning the microphone in three dimensions, generating
a sequence of tones at prescribed frequencies using the frequency generator, amplifier, and
speaker, and recording the speaker input and microphone output using the data acquisition
system. The microphone is then repositioned and the process is repeated.

Prior to use, the microphone was calibrated over the frequency range of interest using a sound
level calibrator (Reed SC-05) accurate to within 6%, sound level meter (Extech 407730), and
a reference microphone (Dayton Audio EMM-6) with a known frequency response accurate
to within 1%. The measured calibration curve of the microphone and its custom microphone
preamplifier circuit is shown in Figure 9.

4.2.2. Data Reduction. We briefly discuss our data reduction procedure. We focus here on the
data reduction of a single speaker-microphone observation pair; to obtain M observations, we
repeat the procedure M times.

The microphone generates a voltage signal ϕdim
mic (xdim, tdim) as a function of time tdim at a

given location xdim within the box. We then assume that the measured voltage is of the form

ϕdim
mic (xdim, tdim

j ) = <
{

Φdim
mic (xdim; f̃dim)ei2πf̃

dimtdimj

}
+ εdim

mic (xdim, tdim
j ), j = 1, . . . ,M ′, where

Φdim
mic (xdim; f̃dim) ∈ C is the complex microphone voltage, εdim

mic (xdim, tdim
j ) ∈ R is the noise, and

M ′ is the number of measurements in the time series. We take M ′ = 4,000 measurements in our
experiment. We then assume that εdim

mic (xdim, tdim) ∼ N (0, (σdim
mic (xdim; f̃dim))2) and perform

linear regression to identify the complex microphone voltage Φdim
mic (xdim; f̃dim) ∈ C and the

noise standard deviation σdim
mic (xdim; f̃dim) ∈ R>0.

We apply a similar data reduction procedure to the speaker voltage signal ϕdim
spk (f̃dim) to

deduce the complex speaker velocity Φdim
spk (f̃dim) ∈ C and the associated standard deviation

σdim
spk (f̃dim) ∈ R>0. We emphasize that we measure the microphone voltage ϕdim

mic (xdim, tdim)

and the speaker voltage ϕdim
spk (tdim) simultaneously over the same time period; we appeal to

this simultaneous data acquisition to deduce the phase information of the pressure signal from
a single microphone observation, as described shortly.

Once we obtain the speaker-microphone voltage pair (Φdim
spk ,Φ

dim
mic ), we calculate the

associated speaker velocity and microphone pressure. We model the speaker as a harmonic
oscillator to identify the (frequency-dependent) transfer function from the applied speaker
voltage Φdim

spk to the resultant speaker velocity V dim
spk ; the construction of the transfer function

is discussed in Section 4.3. We convert the microphone voltage Φdim
mic to the associated pressure

P dim
mic using the calibration curve shown in Figure 9.
We finally introduce the following normalized quantities: the coordinate, x ≡ xdim/rdim

spk ;

the frequency, k̃ ≡ 2πf̃dimrdim
spk /c

dim
0 ; the complex pressure observed by a microphone centered

at xc
m, P obs(xc

m; k̃) ≡ (P dim
mic (xc

m; f̃dim)/V dim
spk (f̃dim))/(ρdim

0 cdim
0 ). Here ρdim

0 is the density of
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Figure 10. A time trace of typical raw data and regression estimate over the first 0.01s; the data

acquisition period is 10 times longer. (xdim = (27.9, 15.2, 1.3)cm, f̃dim = 1100Hz)

the air and cdim
0 is the speed of sound. Note that, in our normalization of the pressure, the

initial (arbitrary) phase angle of the (complex) speaker velocity cancels out (and subsequently
becomes irrelevant) as it appears in P dim

mic in the numerator and V dim
spk in the denominator. It

is important to note that we may thus obtain phase information throughout the pressure field
with just a single movable microphone, a substantial advantage in the real-time context as
implemented in our robotic observation platform. We shall exploit phase as a sensitive error
metric for our data assimilation procedure.

We comment on the precision of typical experimental data. We show in Figure 10 a time trace
of typical regression for the speaker and microphone. The estimate of the complex amplitude
for the speaker voltage is 0.266 + 0.324iV and the associated standard deviation is 0.00095V;
the signal-to-noise ratio is 443. The estimate of the complex amplitude for the microphone
voltage is −0.319− 0.140iV and the associated standard deviation is 0.00185V; the signal-to-
noise ratio is 189. Note that because for a given frequency the voltage-to-pressure calibration
is linear, the signal-to-noise ratio of the voltage directly applies to the pressure. We conclude
that the noise associated with any given observation is small. In addition, because the signal-
to-noise ratio of the speaker voltage, which is used in normalization, is high, we expect the
normalized pressure P obs to inherit this signal-to-noise ratio.

We continue the assessment of the precision of the data, in particular reproducibility and
environmental control, through a repetition test. We show in Figure 11 typical normalized
pressure observed in two different experiments. The microphone was moved to the location
following two different paths; hence, the comparison captures any hysteresis that might be
present in the microphone positioning system. We observe that the two results closely match
each other. The comparison suggests that the physical pressure field is invariant in the sense
that within a given set of observations we maintain environmental conditions such as the
temperature.

The calibration of Section 4.2.1 ensures accurate microphone pressure measurement; the
regression results and associated signal-to-noise ratio suggest very little noise associated with
the (effectively) Fourier transform of the temporal signal; and finally the repetition test
indicates good control of position and environmental conditions and hence very little systematic
error. As regards the latter, we also note that the microphone dimension is small compared to
the wavelength of the acoustic waves, and hence any sufficiently small choice for rm suffices;
we further note that the instrument holder of Figure 8(c) is largely acoustically invisible in
particular due to the thin profile and light vertical-drive mechanism.
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Figure 11. Comparison of the normalized pressures obtained in two different experiments (xdim =
(27.9, 15.2, 1.3)cm)

We conclude that for our purposes here (i) we may indeed apply the “noise-free” observation
framework developed in the previous sections, and (ii) for purposes of assessment, we may
equate our experiments to the true field.

4.2.3. Dataset. We consider 92 configurations associated with the frequency of f̃dim =
1090, . . . , 2000 Hz; the associated normalized frequency based on the ambient temperature,
k̃, takes on a value in [0.502, 0.921]. We acquire data at 84 spatial points distributed on a
Cartesian grid:

xc
m ∈ Ξ ≡ {1.00, 2.67, 4.33, 6.00, 7.67, 9.33, 11.00} × {1.00, 2.67, 4.33, 6.00} × {0.50, 2.50, 4.50}.

We then apply the data reduction procedure described above to compute P obs(xc
m; k̃).

We recall that the regression analysis and repeatability test suggest that the noise in the
pressure observations is in fact small. We hence employ the dataset for two purposes. First, we
use the dataset as experimental observations from which to construct the PBDW estimate; in
fact, because the noise is small, we may apply the noise-free formulation and theory developed
in Section 2. Second, we use the dataset as a surrogate for the truth with which to assess
the accuracy of the PBDW estimate P true(xc

m; k̃) ≡ P obs(xc
m; k̃); we recall that our goal is

prediction of the true state, and not just the experimental observations — the two coincide
only in the noise-free case.

4.3. Best-Knowledge Model

The geometry of the mathematical model is shown in Figure 12. We recall that our goal is to
approximate the pressure field everywhere inside the raised box, Ω =]0, 12[×]0, 7[×]0, 5[, where
we recall the nondimensionalization x ≡ xdim/rdim

spk . We in addition introduce a superdomain

for the best-knowledge model, Ωbk ⊃ Ω, that includes the regions both inside and outside of
the box such that we may model the radiation from the bottom gap of the box.

We now define our parametrized best-knowledge model over the extended domain Ωbk.
The sole parameter of our best-knowledge model is the nondimensional wavenumber, µ ≡
k ≡ 2πfdimrdim

spk /c
dim
0 ; the associated parameter domain is D = [0.5, 1.0]. We then seek the

nondimesionalized complex pressure field ubk,µ ≡ P dim/(ρdim
0 cdim

0 V dim,bk
spk (k)). The field is

governed by a weak statement: find ubk,µ ∈ Ubk ≡ H1(Ωbk) such that

Gµ(ubk,µ, v) ≡ fµ(v)− aµ(ubk, v) = 0 ∀v ∈ Ubk

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



28 Y MADAY, AT PATERA, JD PENN, M YANO

Figure 12. Geometry of the computational model. Here, Ω is the domain inside of the raised box, Ωbk

is the (extended) computational domain that includes the regions inside and outside of the raised-box,
Γspk is the speaker boundary, and Γrad is the radiation boundary.

where

aµ(w, v) ≡
∫

Ω

∇w · ∇v̄dx− µ2

∫
Ω

wv̄dx+

(
iµ+

1

R

)∫
Γrad

wv̄ds ∀w, v ∈ U ,

fµ(v) ≡ iµ
∫

Γspk

1 v̄ds ∀v ∈ U .

We model the harmonic excitation generated by the speaker by a uniform Neumann condition
over Γspk; note that, under our normalization, the speaker velocity is unity. We model the
radiation into free space by a first-order accurate radiation boundary condition on Γrad. Thanks
to the radiation term, the problem is well posed for any µ ∈ D. We approximate the solution
in a 35,325-element P3 finite element space.

We briefly discuss our speaker model. We model the speaker as a harmonic oscillator driven
by an electromagnetic voice coil. The frequency-dependent transfer function of the speaker
diaphragm velocity V dim

spk with respect to the speaker input voltage Φdim
spk in terms of the voice

coil BL product (BL)dim
spk , the voice coil electrical resistance Rdim

e,spk, the voice coil electrical

inductance Ldim
e,spk, the speaker suspension stiffness kdim

spk , the speaker moving mass mdim
spk , and

the speaker mechanical damping bdim
spk is then given by

V dim
spk

Φdim
spk

=
(BL)dim

spk i2πf
dim(

Rdim
e,spk + i2πfdimLdim

e,spk

)(
kdim

spk −mdim
spk (2πfdim)

2
+ i2πfdimbdim

eff,spk

)
where we define the effective damping of the speaker as

bdim
eff,spk = bdim

spk +

(
(BL)dim

spk

)2
Rdim

e,spk + i2πfdimLdim
e,spk

.

Experiments were conducted to measure the various speaker parameters, yielding values which
differ from the manufacturer specified values. Both sets of values are listed in Table I. The
transfer function of the speaker for the measured parameter values is shown in Figure 13.

4.4. PBDW Spaces

4.4.1. Function Space U . We introduce a Hilbert space U ≡ H1(Ω) endowed with a weighted
H1 inner product and norm,

(w, v) ≡
∫

Ω

∇w · ∇v̄dx+ κ2

∫
Ω

wv̄dx and ‖w‖ ≡
√

(w,w),
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Figure 13. Speaker (Tang Band W2-1625SA) transfer function (magnitude and phase) for the measured
parameter values.

Table I. Manufacturer specified and measured speaker parameters

parameter specified value measured value units
Rdim

e,spk 6.6 7.2 Ohm

Ldim
e,spk 2.15× 10−4 2.64× 10−4 Henry

(BL)dim
spk 5.16 5.4 T·m

kdim
spk 772.2 1410.8 N/m

mdim
spk 2.3× 10−3 3.4× 10−3 kg

bdim
spk 0.05 0.24 N·s/m

for a reference wavenumber κ = 0.5. The reference wavenumber is chosen to induce an update
function qm ≡ RUM `om with a spatial decay on the order of the wavelength.

4.4.2. Background Spaces ZN . We employ the superdomain formulation described in
Section 2.7.3. We first apply the Week Greedy algorithm described in Algorithm 1 to form
WeakGreedyN (Mbk)→ Zbk

N , N = 1, . . . , 15 ≡ Nmax. We then restrict the functions in Zbk
N

to the domain of interest to form ZN = {z ∈ U| z = zbk|Ω, zbk ∈ Zbk
N }. We emphasize that

ZN ⊂ U is defined over Ω, not the (extended) best-knowledge domain Ωbk.

4.4.3. Experimentally Observable Update Spaces UM . We model the experimental obser-
vations provided by the microphone with Gaussians. Specifically, we consider `om(·) =
Gauss(·;xc

m, rm = 0.2). We choose a standard deviation rm that is consistent with an approxi-
mate filter width of the microphone; however, because the spatial extend of the microphone is
small compared to the pressure wavelength, the precise choice of rm is not too important. The
associated library is of the form L = {` ∈ U ′ | `(·) = Gauss(·;xc

m, rm), xc
m ∈ Ξ}; note that we

guarantee by construction that the observation points are in Ξ and hence the associated data
is in the dataset. We then obtain UM = SGreedyM (ZNmax), M = 1, . . . , 48 ≡Mmax.

4.5. Real-Time In-Situ Data Assimilation

We briefly summarize the timing associated with the online data acquisition and data
assimilation. The robotic observation platform requires approximately 3 seconds per
observation to reposition the microphone and to take the pressure measurement. The solution
of the PBDW saddle system requires less than 0.1 milliseconds on a laptop. The total online
time is thus dictated by the time for online data acquisition and is approximately 3M seconds,
where M is the number of observations.
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Figure 14. Measured (experiment) and predicted (best-knowledge ubk,µ̃ and PBDW estimate
u∗N=10,M=15) frequency responses at xc

m = (9.33, 2.67, 4.50).

4.6. Assessment

We compare the predicted and observed (complex) pressure at 36 assessment points not chosen
by the SGreedyM=48 procedure: Ξa = Ξ \ ΞSGreedyM=48

. We first introduce µ̃ = k̃ to reflect
the connection between the measured/specified frequency — which shall denote the system
configuration — and the parameter µ of our best-knowledge model. We then compare the
best-knowledge estimate, the PBDW estimate, and the truth defined by

P bk(m; µ̃) = Gauss(ubk,µ=µ̃;xc,a
m , 0.2)

P ∗N,M (m; µ̃) = Gauss(u∗N,M ;xc,a
m , 0.2)

P true(m; µ̃) = {normalized experimental pressure observation for mic at x = xc,a
m }

≡ Gauss(utrue;xc,a
m ),

respectively. Note that µ̃ is not in any way utilized in the PBDW data assimilation process;
the µ̃ argument in P ∗N,M (m; µ̃) is a label for the particular set of observations which inform
the state estimation procedure.

A typical frequency response obtained at an assessment point is shown in Figure 14. The
PBDW estimate, using a N = 10 background space and M = 15 experimental observations,
provides a more accurate prediction of the truth than the best-knowledge estimate.

To assess the behavior of the PBDW estimate in more detail, we show in Figure 15 the
variation in the (normalized) `2 norm of the error over Ξa,

Ea
avg ≡

(
1

Ma

Ma∑
m=1

|lobs
m − `om(·)|2

)1/2

,

as a function of the dimension of the background space N and the number of observations M
at select frequencies. We recall that Ma = |Ξa| = 36 and the assessment set provides a good
coverage of the domain Ω; hence the discrete sum serves as an approximation of the L2(Ω)
error. We observe that the error decreases rapidly with N and slowly (but steadily) with M .

We finally compare, similar to the synthetic case, the results obtained using two different
sets of observation points: the points selected by the SGreedyM and RandomUniformM . We
compare the estimated errors in Figures 16(a) and 16(b); we observe that the error is smaller
for SGreedyM than for RandomUniformM , especially when M is close to N . We then compare
the stability constants in Figures 16(c) and 16(d); we observe that the SGreedyM provides
better stability than RandomUniformM , and this likely results in the improved state estimate.
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Figure 15. The variation in the error with the background-space dimension N and the number of
observations M at four different frequencies.

We hence conclude that, even in the real data setting, we benefit from the algorithms informed
by the theory developed in the weak variational framework.

5. CONCLUSIONS AND PERSPECTIVES

We propose a PBDW formulation of the variational data assimilation problem for real-time
and in situ state estimation. The formulation provides a number of contributions: “actionable”
theory — in particular the a priori error bounds — that identifies the criteria for the selection
of the background spaces ZN and update spaces UM ; the high computational efficiency achieved
through an “optimal” selection of the background space ZN from the parametric manifold by
ProcessZN , an “optimal” selection of the observations functionals and the associated updated
space UM by ProcessUM , and real-time Online computation provided by the saddle system of
the size O(M); and simplicity and generality provided by the absence of the mathematical
model in the Online stage.

We demonstrate the features of the approach in a two-dimensional synthetic example; we
then assess the effectiveness of the approach applied to a physical acoustic resonator. The
state estimate converges rapidly with the background space dimension N if the parametric
manifold of anticipated uncertainty captures the dominant features in the true state; the state
estimate still converges (albeit slowly) with the update space dimension M even if the true
state exhibits features not reflected in the parametric manifold.
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Figure 16. Behavior of the error and stability constant as a function of M and N for two different set
of observation points (µ̃ = 0.921).

We are currently seeking a number of extensions to the existing PBDW framework in
terms of the class of problems, methodology, and physical domain. In terms of the class
of problems, we are extending the framework to time-dependent problems and nonlinear
problems. The treatment of time-dependent problems is based on the space-time variational
formulation and analysis, through which we encapsulate, in the background space, the space-
time structure of the evolutionary equation. The stability of the data assimilation procedure
is then reflected in the space-time inf-sup constant, and hence, in the selection of sensors and
the construction of the update space, we control the inf-sup constant while considering the
limitations imposed by the particular space-time data acquisition procedure. Once we form
the space-time background and update spaces in the Offline stage, we then solve the saddle
system in the Online stage as in the steady case considered in this paper. The treatment
of nonlinear problems requires the solution of an appropriate nonlinear PDE in the Offline
stage to construct the background spaces; however, once the state behavior is encoded in the
background space, we may readily apply the construction of the saddle problem considered in
this paper, as the PBDW formulation does not require the mathematical model in the Online
stage.

We are also pursuing various technical extensions to the PBDW framework. Here we list a
few: incorporation of available experimental data in the construction of the background space;
treatment of noisy experimental observations (as described in [30] for an earlier variant of
PBDW); an “extracted-domain approach” which introduces “artifical” parametrized Dirichlet
conditions to focus the data-assimilation effort to a local region of interest [7, 6]; spatial
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domain decomposition approaches in which we extend the extracted domain approach to
reflect continuity information between (multiple) subdomains; and parameter estimation. In
particular, in the presence of noisy observations, our update η∗N,M can no longer estimate the
contributions from the unanticipated uncertainties even in the limit ofM →∞; we nevertheless
obtain a stable estimate whose asymptotic error threshold depends on the noisiness of the data.

Finally, we are pursuing application of the PBDW framework to physical phenomena beyond
acoustics: elasticity, heat transfer, fluid flow, to name a few. The relevant problems in each
physical domain brings about new challenges; we wish to address these challenges through
various technical extensions, some of which we list above.
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Lermusiaux of MIT, and Tommaso Taddei of MIT for fruitful discussions. This work was supported by
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