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We present and assess non-intrusive surrogate modeling approaches to estimating the

probability of flutter in the presence of model uncertainties for a range of flight conditions.

Our goal is to provide a probabilistic characterization of the flutter boundary that accounts for

uncertainties in model parameters and operating conditions to better inform design and testing

decisions in the certification of new aircraft. We use adaptively constructed Gaussian process

surrogate models and high-fidelity computational aeroelasticity models to efficiently characterize

sensitive features like the transonic dip while controlling the cost of many-query uncertainty

analysis. To obtain acquisition functions for adaptive sampling, we derive relationships between

misclassification of flutter risk and existing sequential design strategies, propose a new sampling

strategy, and use the strategies to accurately approximate flutter probability within a limited

sampling budget. We assess the efficiency of these methods using synthetic test functions, a

traditional aeroelasticity model with Theodorsen’s aerodynamics model, and a computational

aeroelasticity model based on the Euler equations.

I. Introduction

Flutter, a dynamic instability caused by interactions between aerodynamic and structural forces, poses a critical

challenge in aircraft design and certification. Ensuring an aircraft’s safety within its flight envelope requires

rigorous testing, often involving substantial time and expense [1]. The flutter boundary is often initially estimated using

analytical or computational aeroelasticity models [2], which provide boundaries about some minimal level of structural

damping. However, evaluating the safety of an aircraft with respect to a failure boundary inevitably carries the notion of

risk and uncertainties [3]. Previous studies have shown that variation in design parameters, such as mass and stiffness,
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can result in flutter occurring at speeds far below that predicted by deterministic analysis [4]. We hence wish to quantify

this uncertainty and provide a probabilistic assessment of the safety of an aircraft.

Pettit [5], Dai and Yang [6], and Beran et al. [3] review many methods for uncertainty quantification (UQ) in

flutter, including many Monte Carlo (MC) and perturbation-based approaches. However, due to the high computational

cost of each computational aeroelasticity (CAE) simulation, the “brute-force” application of MC with thousands of

full-order model evaluations is often infeasible. To reduce the computational cost, the original full-order model is

typically replaced by a reduced-order surrogate model. One approach common in forward UQ applications in flutter

is the non-intrusive polynomial chaos (NIPC) method [3, 7]. Hosder et al. [8] use NIPC to assess the impact of

uncertainty in flight conditions on flutter prediction. Hantrais-Gervois and Savin [9] use polynomial surrogates to

perform UQ on various quantities of interest (QoI) under structural uncertainties. Scarth et al. [10] use NIPC to

propagate uncertainties in composite ply angles to the aeroelastic response of the composite wing. NIPC is non-intrusive

and hence readily applicable to any CAE models and flutter configurations; however, NIPC suffers from the curse of

dimensionality [11], where the number of full-order model evaluations required to construct a surrogate model increases

possibly exponentially with the number of uncertain input variables.

To mitigate the effect of the curse of dimensionality, we explore in this work the use of adaptive Gaussian process

(GP) surrogate models. These models use an acquisition function that targets the lower-dimensional flutter-boundary

manifold to accelerate the UQ of the flutter boundary. Our goal is to provide the probability of flutter occurring for a

range of flight conditions. For each flight condition, the probability of flutter is defined as the percentage of random

aircraft configurations yielded by uncertain parameters that experience flutter for that flight condition. Unlike NIPC, GP

models (GPMs) can be constructed from an unstructured set of parameter samples. In combination with the statistical

estimates, GPMs can be constructed adaptively about the flutter boundary, greatly reducing the number of full-order

model evaluations required to accurately capture the boundary.

GPs have been used to develop adaptive sampling strategies for quantifying the flutter boundary in deterministic

contexts. For example, Marques et al. [12] develop a multi-fidelity approach to sampling near the flutter boundary, where

GP-estimated error determines an appropriate model to evaluate at candidate sample points. Goizueta et al. [13] use

GP-informed sampling to efficiently construct a surrogate representation of the flutter envelope. Allen and Camberos [4]

assess the efficacy of existing GP sampling strategies for determining an aeroelastic response surface for UQ purposes,

which show that GP surrogates may show good agreement with MC results, but require a judicious selection of sampling

methodology. In this work, we derive relationships between existing GP sampling strategies and a flutter boundary error

metric, propose a new sampling strategy, and assess the efficacy of the strategies for the UQ of the flutter boundary.

The primary contributions of this work are the following: First, we derive GP sampling strategies starting from a

flutter boundary error metric, thereby characterizing relationships among various sampling strategies in terms of fidelity

and computational cost in the context of the UQ of the flutter boundary. Second, we apply the sampling strategies to UQ
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problems with a moderate number (i.e., 4–6) of parameters, demonstrate that adaptive GPMs are significantly more

efficient than widely used NIPC method for flutter boundary UQ, and compare the efficacy of the various sampling

strategies.

The remainder of this paper is organized as follows. In Section II, we provide a mathematical description of the

flutter UQ problem considered in this work. Section III reviews key aspects of GPMs that are relevant to the present work.

Section IV introduces various acquisition functions for GPMs and relates the functions to the flutter boundary error

metric. Sections V–VII assess various adaptive GPMs using a synthetic test function, a traditional aeroelasticity model

based on Theodorsen’s aerodynamics model, and a computational aeroelasticity model based on the Euler equations.

II. UQ for flutter prediction

A. Aeroelastic flutter

We introduce an abstract aeroelastic system, which is parameterized by a set of 𝑃 input parameters 𝑧 ∈ Z ⊂ R𝑃 .

The parameters may characterize the system configuration, such as structural stiffness and geometry, and/or flight

condition, such as the velocity and altitude. The set of 𝑛dof generalized equations of motion for the 𝑛dof structural

degrees of freedom in an aeroelastic system can be written as

𝑀 (𝑧) ¥𝑞(𝑡; 𝑧) + 𝐶 (𝑧) ¤𝑞(𝑡; 𝑧) + 𝐾 (𝑧)𝑞(𝑡; 𝑧) = Ξ(𝑞(𝑡; 𝑧), ¤𝑞(𝑡; 𝑧), ¥𝑞(𝑡; 𝑧); 𝑧), (1)

where 𝑞(·; 𝑧) : [0,∞) → R𝑛dof is the (time-dependent) generalized coordinates; 𝑀 (𝑧) ∈ R𝑛dof×𝑛dof , 𝐶 (𝑧) ∈

R𝑛dof×𝑛dof , and 𝐾 (𝑧) ∈ R𝑛dof×𝑛dof are the generalized mass, damping, and stiffness matrices, respectively; and

Ξ(𝑞(𝑡; 𝑧), ¤𝑞(𝑡; 𝑧), ¥𝑞(𝑡; 𝑧); 𝑧) ∈ R𝑛dof is the generalized aerodynamic forces. Below the flutter velocity, the solu-

tion of this system exhibits damped oscillatory motion, where perturbations decay exponentially; i.e., ∥𝑞(·; 𝑧)∥2 → 0 as

𝑡 →∞. Above the flutter velocity however, oscillatory modes may have negative damping factors, causing exponential

growth in oscillations that lead to potential damage; i.e., ∥𝑞(·; 𝑧)∥2 →∞ as 𝑡 →∞. The behaviour of these modes may

be studied either through analysis of the solution in the time domain or through eigenvalue analysis in the frequency

domain using the 𝑝-𝑘 method [14], among other methods. In this work, we assume that the dominant mode determining

flutter is known.

B. Stochastic flutter boundary estimation

In this work, we focus on non-intrusive forward UQ that propagates parametric uncertainty in an aeroelastic model

to the resulting damping coefficients, and use this to determine the probabilistic characteristics of the resulting flutter

boundary. In the following discussion, we partition a subset of inputs 𝑧 ∈ Z ⊂ R𝑃 to the CAE solver into two sets: a set

of 𝑃1 configuration parameters 𝑥 ∈ X ⊂ R𝑃1 , such as parameters characterizing structural stiffness and geometry; and a
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set of 𝑃2 operational parameters 𝑦 ∈ Y ⊂ R𝑃2 , which are the equivalent velocity and Mach number corresponding

to the domain of the aeroelastic stability margin defined in [2]. We consider a single quantity of interest in the CAE

solution: the dominant damping coefficient 𝑓 (𝑥, 𝑦), which is used as a flutter indicator and is a function of the input

parameters 𝑥 ∈ X and 𝑦 ∈ Y. To evaluate (𝑥, 𝑦) ↦→ 𝑓 (𝑥, 𝑦), we first invoke the CAE solver based on OpenFOAM [15]

to obtain the unsteady time series response for the configuration (𝑥, 𝑦), and then apply the matrix pencil method [16]

to the time series to obtain the damping coefficient 𝑓 (𝑥, 𝑦). A negative coefficient 𝑓 (𝑥, 𝑦) < 0 corresponds to flutter,

while a positive coefficient 𝑓 (𝑥, 𝑦) > 0 corresponds to damped motion free of flutter. The contour 𝑓 (𝑥, 𝑦) = 0 defines

the crucial flutter boundary.

While the flutter boundary must be determined over a range of operating conditions 𝑦 ∈ Y, we also must consider

uncertainty in configuration parameters 𝑥 ∈ X. Abstractly, we endow the configuration space X with a probability

measure 𝑃𝑋 and the associated density 𝜌𝑋 : X → R≥0. In the present context of forward UQ, we assume 𝑃𝑥

exists and is known. For any given operating condition 𝑦 ∈ Y, we now wish to determine the probability of flutter

𝑃[ 𝑓 (·, 𝑦) < 0] = 𝑃𝑋 ({𝑥 ∈ X | I[ 𝑓 (𝑥, 𝑦) < 0]}), where I is the indicator function that evaluates to 1 if the argument is

true and to 0 otherwise. The probability of flutter for 𝑦 ∈ Y is given by

𝐹 (𝑦) B
∫
X
I[ 𝑓 (𝑥, 𝑦) ≤ 0]𝑑𝑃𝑋 (𝑥). (2)

Figure 1 shows a concrete example of deterministic and probabilistic classifications of the flutter boundary for the

Isogai aeroelastic model [17] based on an Euler aerodynamics model and two degrees of freedom structural model; a

more detailed description of the CAE model, including specific configuration parameter values, can be found in [15].

The deterministic classification is compared to a probabilistic classification, where uncertainties in heave and pitch

stiffness 𝑘ℎ and 𝑘 𝑝 are considered, with the mean values 𝐸 [𝑘ℎ] = 3.4 × 105 and 𝐸 [𝑘 𝑝] = 3.0 × 105 (which are the

values in the deterministic analysis) and the variance Var[𝑘ℎ] = (0.25 × 105)2 and Var[𝑘 𝑝] = (0.3 × 105)2. The

objective of this work is to develop methods that can rapidly and reliably construct this probabilistic flutter boundary, to

further inform decisions on safe operational limits.

III. Gaussian Process models
For many UQ applications involving a CAE model, it is computationally intractable to conduct UQ using “brute-force”

MC simulations, which potentially require thousands of evaluations of the original expensive CAE model. To overcome

this computational challenge, we first train a GP surrogate model 𝑓GP : X ×Y → R that approximates the expensive

𝑓 : X ×Y → R and then use the surrogate model to perform MC simulations. In this section, we briefly motivate and

review the use of GPMs.

GPMs provide a data-driven and non-intrusive approach to surrogate modeling, yielding a probabilistic estimate
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(a) Deterministic classification (b) Probabilistic classification

Fig. 1 Failure regions (flutter boundary) computed using both deterministic and probabilistic analysis

of a response surface given a set of sampling points and the associated responses. GPMs also permit unstructured

sampling, which makes them particularly suitable for constructing a surrogate model that targets localized and/or

lower-dimensional features in the sample space, such as the flutter boundary.

To facilitate concise presentation of GPMs, we recall variable 𝑧 B (𝑥, 𝑦) ∈ X × Y B Z ⊂ R𝑃B𝑃1+𝑃2 , since

the aforementioned distinction of input variables into 𝑥 and 𝑦 is unnecessary for the formulation or evaluation of

a GPM. The model provides a probabilistic approximation of the quantity of interest 𝑧∗ ↦→ 𝑓 (𝑧∗) given training

dataset {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛𝑖=1 of size 𝑛; e.g., evaluations of the CAE model 𝑓 (𝑧) at select parameter values {𝑧𝑖}𝑛𝑖=1. The GP

approximation of the quantity of interest is a normal distribution

𝑓GP (𝑧∗; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛𝑖=1, 𝑘) ∼ N (𝜇GP (𝑧∗), 𝜎GP (𝑧∗)2)

with the posterior mean and variance

𝜇GP (𝑧∗) B 𝐸 [ 𝑓GP (𝑧∗; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛𝑖=1, 𝑘)] = 𝐾 (𝑧∗, 𝑍) [𝐾 (𝑍, 𝑍) + 𝜎
2
meas𝐼]−1 𝑓 (𝑍), (3)

𝜎GP (𝑧∗)2 B Var[ 𝑓GP (𝑧∗; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛𝑖=1, 𝑘)] = 𝐾 (𝑧∗, 𝑧∗) − 𝐾 (𝑧∗, 𝑍) [𝐾 (𝑍, 𝑍) + 𝜎
2
meas𝐼]−1𝐾 (𝑍, 𝑧∗),

respectively, where 𝑍 = (𝑧1, . . . , 𝑧𝑛) is the set of 𝑛 training parameter values; 𝑘 : R𝑃 × R𝑃 → R is a covariance

kernel used to evaluate covariance matrices 𝐾 (𝑍, 𝑍) ∈ R𝑛×𝑛 such that 𝐾 (𝑍, 𝑍)𝑖, 𝑗 = 𝑘 (𝑧𝑖 , 𝑧 𝑗 ) for 𝑖, 𝑗 = 1, . . . , 𝑛;

𝐾 (𝑍, 𝑧∗) ∈ R𝑛×1 such that 𝐾 (𝑍, 𝑧∗)𝑖 = 𝑘 (𝑧𝑖 , 𝑧∗) for 𝑖 = 1, . . . , 𝑛; 𝐾 (𝑧∗, 𝑍) ∈ R1×𝑛 such that 𝐾 (𝑧∗, 𝑍) 𝑗 = 𝑘 (𝑧∗, 𝑧 𝑗 ) for
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𝑗 = 1, . . . , 𝑛; and 𝐾 (𝑧∗, 𝑧∗) = 𝑘 (𝑧∗, 𝑧∗). In this work, we choose the anisotropic squared exponential kernel

𝑘 (𝑧1, 𝑧2) := 𝜎2
SE exp

(
−

𝑃∑︁
𝑖=1

(𝑧1𝑖 − 𝑧2𝑖)2

2𝑙2
𝑖

)
(4)

with hyperparameters consisting of the signal variance 𝜎2
SE ∈ R>0; dimension-dependent length scales 𝑙𝑖 ∈ R>0,

𝑖 = 1, . . . , 𝑃; and measurement variance 𝜎2
meas ∈ R≥0, which is included in the optimization of the other hyperparameters

to avoid conditioning issues [18]. Hyperparameters are found by maximizing the log-marginal likelihood. In this work,

we use SciKit-Learn’s [19] GP package. To mitigate the effect of multiple local minima, we initialize the optimization

with multiple sets of random hyperparameter values and take the result with the highest log-marginal likelihood.

In addition to a model estimate given by the posterior mean of the GP model, the posterior variance also informs the

confidence of the model at an evaluation point and can serve as an error indicator. This variance estimate plays a crucial

role in the adaptive selection of sampling points, which will be reviewed in section IV. When the (standard) dataset

{𝑧𝑖 , 𝑓 (𝑧𝑖)}𝑛𝑖=1 of size 𝑛 is used to construct a GPM, we will also use an abbreviated notation∗

𝑓𝑛 (𝑧∗) B 𝑓GP (𝑧∗; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛𝑖=1, 𝑘),

and denote the associated mean and variance by 𝜇𝑛 (𝑧∗) B 𝐸 [ 𝑓𝑛 (𝑧∗)] and 𝜎𝑛 (𝑧∗)2 B Var[ 𝑓𝑛 (𝑧∗)].

Some of the GP sampling strategies that we will consider require computationally efficient ways to update to

the posterior mean 𝜇̂(𝑧∗) and variance 𝜎̂2 (𝑧∗) when the training set is augmented by point 𝑧𝑛+1 and the associated

measurement 𝑓 (𝑧𝑛+1) while holding hyperparameters constant. We appeal to the linearity of the predictor to efficiently

update the posterior mean and variance:

𝜇𝑛+1 (𝑧∗) = 𝜇𝑛 (𝑧∗) + cov(𝑧∗, 𝑧𝑛+1) [𝜎2
𝑛 (𝑧𝑛+1) + 𝜎2

meas]−1 ( 𝑓 (𝑧𝑛+1) − 𝑓𝑛 (𝑧𝑛+1)), (5)

𝜎2
𝑛+1 (𝑧∗) = 𝜎

2
𝑛 (𝑧∗) − cov(𝑧∗, 𝑧𝑛+1) [𝜎2

𝑛 (𝑧𝑛+1) + 𝜎2
meas]−1cov(𝑧𝑛+1, 𝑧∗), (6)

where cov(𝑧∗, 𝑧𝑛+1) = 𝐾 (𝑧∗, 𝑧𝑛+1) − 𝐾 (𝑧∗, 𝑍) [𝐾 (𝑍, 𝑍) + 𝜎2
meas𝐼]−1𝐾 (𝑍, 𝑧𝑛+1).

IV. Gaussian Process sampling methods

A. Sequential sampling strategy

Given the high evaluation cost of 𝑓 in the intended setting of this work, we now consider an adaptive sequential

construction of GPMs. To control the computational cost, sampling points for the GPM must be chosen efficiently to

ensure sufficient accuracy with relatively few evaluations. As discussed in the introduction, in the context of deterministic
∗However, a rather verbose notation 𝑓GP (𝑧∗; { (𝑧𝑖 , 𝑓 (𝑧𝑖 ) ) }𝑛𝑖=1, 𝑘 ) will be needed to precisely describe some of the sampling strategies that use a

non-standard construction of GPM.
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flutter boundary identification, Goizueta et al. [13] use GPM-informed sampling to efficiently construct a surrogate

representation of the flutter envelope, and Marques et al. [12] demonstrate efficient sampling with multi-fidelity GPMs

for the flutter boundary of the Isogai model.

Sampling strategies for sequential (as opposed to batch) sampling, for both a deterministic and stochastic model,

take the general form in Algorithm 1.

Algorithm 1: Sequential sampling for GPM using an acquisition function 𝑆.
input: Acquisition function: 𝑆 : R𝑃 → R
output: GPM 𝑓𝑁 based on dataset {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑁𝑖=1

1 Initialize dataset {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛0
𝑖=1 and construct the GPM 𝑓𝑛0 B 𝑓GP (·; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛0

𝑖=1)
2 for 𝑛 = 𝑛0, . . . , 𝑁 do
3 Find 𝑧𝑛+1 = arg max𝑧∈Z 𝑆(𝑧)
4 Evaluate the full-order model at 𝑧𝑛+1 to obtain 𝑓 (𝑧𝑛+1)
5 Update the GPM and retrain hyperparameters to obtain to 𝑓𝑛+1 B 𝑓GP (·; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛+1𝑖=1 ; 𝑘)
6 end

The efficacy of the sequential sampling strategy depends on the choice of the acquisition function 𝑆. In the

remainder of this section, we discuss eight different acquisition functions that are designed to accurately capture the

stochastic flutter boundary. We roughly classify these into three groups based on their primary metric: straddle-based

strategies (Sections IV.B–IV.C); misclassification-based strategies (Sections IV.D–IV.F); and entropy-based strategies

(Sections IV.G–IV.I). We elaborate more on these groupings in Section IV.J.

B. Straddle sampling

The first strategy explored is the level set straddling heuristic [20], from which many similar methodologies [21–23]

have originated. The sampling strategy is based on the following acquisition function:

Definition 1 (Straddle sampling (𝑆st)) The acquisition function for the straddle sampling strategy is given by

𝑆st (𝑧𝑛+1) B 𝛽𝑡𝜎𝑛 (𝑧𝑛+1) − |𝜇𝑛 (𝑧𝑛+1) − 𝑇 |, (7)

where 𝛽𝑡 ∈ R≥0 is a user-specified parameter that balances exploitation and exploration and 𝑇 is the threshold of the

level set being classified. We set 𝛽𝑡 = 1.96 following the original straddle heuristic proposed in [20] and 𝑇 = 0 since

the flutter boundary corresponds to the zero level set.

C. Input-probability-weighted straddle sampling

For probabilistic (as opposed to deterministic) failure boundary identification, we expect sampling strategies that

account for the input probability distribution 𝜌𝑋 : X → R≥0 to provide more efficient sampling. A modification of the

straddle heuristic to account for uncertainty in the input 𝑥 ∈ X is given by the following acquisition function:
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Definition 2 (Input-probability-weighted straddle sampling (𝑆wst)) The acquisition function for input-probability-

weighted straddle sampling is

𝑆wst (𝑥𝑛+1, 𝑦𝑛+1) B [𝛽𝑡𝜎𝑛 (𝑥𝑛+1, 𝑦𝑛+1) − |𝜇𝑛 (𝑥𝑛+1, 𝑦𝑛+1) |] 𝜌𝑋 (𝑥𝑛+1). (8)

This modifies 𝑆st to provide a higher score for points (𝑥𝑛+1, 𝑦𝑛+1) with a higher input probability density. Consequently,

the resulting model is more accurate about input parameter values that are more likely to occur in a UQ analysis. This

strategy is also referred to as contour upper confidence bound (cUCB) in [24].

D. Stepwise uncertainty reduction

Stepwise uncertainty reduction (SUR) is a powerful strategy for sequential design, with the goal of optimal reduction

in error of a quantity of interest at each step. In this section, we review the integrated stepwise uncertainty reduction

strategy first proposed by Bect et al. [25]. In particular, we show that an “ideal” greedy sampling strategy that selects

successive sampling points (𝑥𝑛+1, 𝑦𝑛+1) that is expected to most reduce the approximation error of the flutter probability

function 𝐹 (𝑦) in an 𝐿2 (Y) sense can be reduced to a computable form equivalent to the scoring heuristic presented by

Bect et al.

To begin, we introduce a flutter probability function 𝐹 : Y → [0, 1] given by

𝐹 (𝑦) B
∫
X
I[ 𝑓 (𝑥, 𝑦) ≤ 0]𝑑𝑃𝑋 (𝑥).

The approximation of 𝐹 using a GPM with a dataset of size 𝑛 is given by

𝐹𝑛 (𝑦) B
∫
X
I[ 𝑓𝑛 (𝑥, 𝑦) ≤ 0]𝑑𝑃𝑋 (𝑥).

Unlike 𝐹 (𝑦) which is a real number, 𝐹𝑛 (𝑦) is a random variable since 𝑓𝑛 (𝑥, 𝑦) is a stochastic function. An “ideal” point

with which to augment this training set is taken to be the minimizer of

𝑆ideal (𝑥𝑛+1, 𝑦𝑛+1) = 𝐸
[∫
Y
(𝐹 (𝑦) − 𝐹𝑛+1 (𝑦))2 d𝑦

]
, (9)

where 𝐹𝑛+1 (𝑦) is based on 𝑓𝑛+1 (𝑧 ≡ (𝑥, 𝑦)) B 𝑓GP (𝑥, 𝑦; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛+1𝑖=1 , 𝑘), and we take the expectation since 𝐹𝑛+1 (𝑦)

is a random variable. The “ideal” acquisition function 𝑆ideal, however, cannot be evaluated without prior knowledge of

the true function 𝑓 (𝑥, 𝑦), which is unavailable in this scenario in which surrogate modeling is necessary in the first place.

To evaluate an approximate form of the ideal acquisition using available information, we first replace the exact

𝑛 + 1-point GPM based flutter probability function 𝐹𝑛+1 (𝑥, 𝑦) with an estimated 𝑛 + 1-point GPM formed by augmenting
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𝑓𝑛 with the candidate point:

𝑓𝑛+1 (𝑧 ≡ (𝑥, 𝑦)) B 𝑓GP (𝑧; {(𝑧1, 𝑓 (𝑧1)), . . . , (𝑧𝑛, 𝑓 (𝑧𝑛)), (𝑧𝑛+1, 𝑔𝑛+1 B 𝑓𝑛 (𝑧𝑛+1))}, 𝑘),

where the input data value at 𝑧𝑛+1 is approximated using the 𝑛-point GPM as 𝑔𝑛+1 B 𝑓𝑛 (𝑧𝑛+1) in a one step lookahead.

Note that 𝑓𝑛 is a stochastic function for two distinct reasons: (i) it is a GPM; and (ii) the input data for the 𝑛 + 1-st point,

𝑔𝑛+1 B 𝑓𝑛 (𝑧𝑛+1), is a random variable. We also introduce the associated lookahead flutter probability

𝐹𝑛+1 (𝑦) B
∫
X
I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤ 0]𝑑𝑃𝑋 (𝑥),

and rewrite 𝑆ideal using the estimated lookahead flutter probability

𝑆ideal (𝑥𝑛+1, 𝑦𝑛+1) = 𝐸
[∫
Y
(𝐹 (𝑦) − 𝐹𝑛+1 (𝑦))2𝑑𝑦

]
,

where the expectation is now taken over both the GPM 𝑓𝑛+1 and its 𝑛 + 1-st data point value 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1).

However, we must still approximate the acquisition function in a form that can be evaluated without knowledge of 𝐹 (𝑦)

for all 𝑦 ∈ Y.

To this end, we appeal to the probability of misclassification to construct a computable bound to 𝑆ideal. Consider

an approximation of the exact (deterministic) damping coefficient 𝑓 (𝑥, 𝑦) by the stochastic surrogate 𝑓𝑛 (𝑥, 𝑦). In the

construction of 𝐹𝑛, we are concerned only with whether or not this damping coefficient corresponds to a flutter condition,

indicated by the sign of 𝑓𝑛. We also recall that 𝑓𝑛 (𝑥, 𝑦) ∼ N (𝜇𝑛 (𝑥, 𝑦), 𝜎𝑛 (𝑥, 𝑦)2), with the mean 𝜇̂𝑛 (𝑥, 𝑦) serving as

the estimate itself and standard deviation 𝜎̂𝑛 (𝑥, 𝑦) serving as the confidence in the estimate. The probability that the

mean estimate 𝜇𝑛 (𝑥, 𝑦) lies on the wrong side of the failure boundary 𝑓 (𝑥, 𝑦) = 0 can be estimated using the portion of

the Gaussian distribution with sign opposite to the mean, as illustrated in figure 2. Therefore,

𝑃[sign( 𝑓 (𝑥, 𝑦)) ≠ sign( 𝑓𝑛 (𝑥, 𝑦)] = Φ

(
− |𝜇𝑛 (𝑥, 𝑦) |
𝜎𝑛 (𝑥, 𝑦)

)
, (10)

where Φ : R→ [0, 1] is the cumulative distribution function of the standard normal distribution.
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𝑓𝑛 (𝑥, 𝑦; 𝜃) = 0 𝜇̂𝑛

flutter no flutter

Fig. 2 Estimate of damping coefficient at (𝑥, 𝑦) by GPM 𝑓𝑛 (𝑥, 𝑦) with mean 𝜇𝑛 (𝑥, 𝑦) and standard deviation
𝜎𝑛 (𝑥, 𝑦). The area of the shaded region of the resultant normal distribution is the probability that the mean
𝜇𝑛 (𝑥, 𝑦) of the GPM has the wrong sign compared to the unknown true value 𝑓 (𝑥, 𝑦): i.e., the probability of
misclassification.

We now use the probability of misclassification to approximate 𝑆ideal (𝑥, 𝑦). To this end, we note that

𝑆ideal (𝑥𝑛+1, 𝑦𝑛+1) = 𝐸
[∫
Y

(∫
X
(I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤ 0])𝑑𝑃𝑋 (𝑥)

)2
𝑑𝑦

]
≤ 𝐸

[∫
Y

∫
X
(I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤ 0])2𝑑𝑃𝑋 (𝑥)𝑑𝑦

]
=

∫
R

∫
F

∫
Y

∫
X
(I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤ 0])2𝑑𝑃𝑋 (𝑥)𝑑𝑦𝑑𝑃 𝑓𝑛+1

( 𝑓𝑛+1)𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1)

=

∫
R

∫
Y

∫
X

∫
R
(I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤ 0])2𝑑𝑃 𝑓𝑛+1 (𝑥,𝑦) ( 𝑓𝑛+1 (𝑥, 𝑦))𝑑𝑃𝑋 (𝑥)𝑑𝑦𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1)

=

∫
R

∫
Y

∫
X
Φ

(
− |𝜇𝑛+1 (𝑥, 𝑦) |
𝜎𝑛+1 (𝑥, 𝑦)

)
𝑑𝑃𝑋 (𝑥)𝑑𝑦𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1),

where the first equality follows from the definition of 𝑆ideal, 𝐹 (𝑦), and 𝐹𝑛+1 (𝑦); the first inequality follows from Cauchy–

Schwarz; the second equality follows from taking the expectation over the GPM 𝑓𝑛+1 whose set of all realizations

is denoted by F and its 𝑛 + 1-st data point value 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1); and the final equality follows from the

interpretation of the most inner integral as the integrated misclassification probability
∫
R
(I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛+1 (𝑥, 𝑦) ≤

0])2𝑑𝑃 𝑓𝑛+1 (𝑥,𝑦) ( 𝑓𝑛+1 (𝑥, 𝑦)) = 𝑃[sign( 𝑓 (𝑥, 𝑦)) ≠ sign( 𝑓𝑛+1 (𝑥, 𝑦)] = Φ

(
− | 𝜇̃𝑛+1 (𝑥,𝑦) |

𝜎̃𝑛+1 (𝑥,𝑦)

)
, a result proven in greater detail

in [26]. This bound is equivalent to the SUR strategy developed by Bect et al. [25].

Definition 3 (Step-wise uncertainty reduction (SUR)) The acquisition function for SUR sampling is given by

𝑆SUR (𝑥𝑛+1, 𝑦𝑛+1) = −
∫
R

∫
Y

∫
X
Φ

(
− |𝜇𝑛+1 (𝑥, 𝑦) |
𝜎𝑛+1 (𝑥, 𝑦)

)
𝑑𝑃𝑋 (𝑥)𝑑𝑦𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1) (11)

where 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1) is the 𝑛 + 1-st data point used in the construction of 𝑓𝑛+1 that yields 𝜇̃𝑛+1 and 𝜎̃𝑛+1, and

the sign has been flipped such that the maximum of 𝑆SUR selects the minimizer of the bound of 𝑆ideal.
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For each candidate point, the 𝑃-dimensional integral
∫
Y

∫
X · 𝑑𝑃𝑋 (𝑥)𝑑𝑦 is approximated using importance

sampling [27], and the one-dimensional integral
∫
R
· 𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1) is approximated using Gauss–Hermite quadrature.

E. Gradient SUR

While the SUR acquisition function 𝑆SUR (unlike 𝑆ideal) is computable, it is still computationally expensive to

evaluate as it requires integrating over a 𝑃 + 1-dimensional space,
∫
R

∫
Y

∫
X · 𝑑𝑃𝑋 (𝑥)𝑑𝑦𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1). To further

reduce the computational cost, we may neglect the integration over X ×Y and analyze the local(ized) reduction in the

misclassification error at the candidate point (𝑥𝑛+1, 𝑦𝑛+1). This modification is proposed in [24] using the knowledge

gradient strategy developed in [28].

Definition 4 (Gradient step-wise uncertainty reduction (gSUR)) The acquisition function for the gSUR strategy is

given by

𝑆gSUR (𝑥𝑛+1, 𝑦𝑛+1) =
(
Φ

(
−

���� 𝜇𝑛 (𝑥𝑛+1, 𝑦𝑛+1)𝜎𝑛 (𝑥𝑛+1, 𝑦𝑛+1)

����) − ∫
R
Φ

(
−

���� 𝜇̃𝑛+1 (𝑥𝑛+1, 𝑦𝑛+1)𝜎̃𝑛+1 (𝑥𝑛+1, 𝑦𝑛+1)

����) 𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1)
)
𝜌𝑋 (𝑥𝑛+1), (12)

where 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1) is the 𝑛 + 1-st data point used in the construction of 𝑓𝑛+1 that yields 𝜇̃𝑛+1 and 𝜎̃𝑛+1.

F. Local misclassification probability

These misclassification-based strategies can be further localized by directly using the probability itself as an

acquisition function, selecting the candidate point 𝑧𝑛+1 with the highest probability of misclassification. This behaves

similarly to the heuristic proposed by Echard et al. [29] that balances between exploration and exploitation about the

contour,

𝑧𝑛+1 = arg max
𝑧∈Z

− |𝜇𝑛 (𝑧) |
𝜎𝑛 (𝑧)

, (13)

though also weighed by the input distribution such that the score reflects the point most likely to be classified erroneously.

We refer to this max-misclassification strategy as 𝑆MEE, after the maximization of empirical error [24]:

Definition 5 (Maximum misclassification (𝑆MEE)) The acquisition function for the maximum misclassification metric

is given by

𝑆MEE (𝑥𝑛+1, 𝑦𝑛+1) B Φ

(
−

���� 𝜇𝑛 (𝑥𝑛+1, 𝑦𝑛+1)𝜎𝑛 (𝑥𝑛+1, 𝑦𝑛+1)

����) 𝜌𝑋 (𝑥𝑛+1). (14)

We note that the MEE metric suffers from ambiguity in selection in the limit of infinite candidate points, i.e. densely

sampling the parameter space: the cumulative distribution function in 𝑆MEE always evaluates to 0.5 for candidate points

directly on the target contour. However, since in practice we use random finite sets of candidate points, this typically

does not cause problems for the algorithm’s mechanics.

11



G. Entropy reduction

Other sampling methods developed more recently focus on reducing the (information) entropy of the uncertain failure

boundary predicted by the surrogate model. These include entropy-based contour location [30], and Contour Location

Via Entropy Reduction (or CLoVER) [31], which has been used to accelerate the determination of the deterministic

flutter boundary in [12]. Although the methods have been developed for use with models of multiple fidelities, we will

present the single-fidelity version here for comparison with other sampling strategies.

The previous three methods reviewed (SUR, gSUR, MEE) focus on reducing probabilities of point misclassification

by the surrogate model. The concept of entropy allows us to extend these methods further, providing a formal measure

of uncertainty regarding the classifications. First, we must define the notion of contour entropy in the context of the

failure boundary as estimated by our uncertain surrogate model.

Given a normal random variable 𝑉 ∼ N(𝜇(𝑉), 𝜎(𝑉)2) (e.g., 𝑉 = 𝑓𝑛 (𝑧) or 𝑉 = 𝑓𝑛+1 (𝑧)), we define a discrete

random variable𝑊 (𝑉) ↦→ {𝑆(𝑉), 𝐸 (𝑉),𝑈 (𝑉)} associated with three possible events:

• S(V): 𝑉 < −𝜖 (configuration is stable),

• E(V): |𝑉 | < 𝜖 (configuration is approximately in equilibrium), and

• U(V): 𝑉 > 𝜖 (configuration is unstable),

where 𝜖 ∈ R≥0 is a threshold parameter introduced in [31].

Contour entropy is a measure of the uncertainty in the classification of a stochastic function evaluation. Choosing

𝜖 = 0 recovers the classification definitions used previously, but choosing 𝜖 > 0 introduces a third possible event

denoting approximate equilibrium and allows the tuning of exploration vs. exploitation; the choice of 𝜖 = 2𝜎(𝑧) for 𝜎

associated with the stochastic function, used in [31], encourages exploration.

Definition 6 (Contour entropy) As 𝑉 ∼ N(𝜇(𝑉), 𝜎(𝑉)2), we can integrate the normal probability density function

(cf. Figure 2) and obtain the probability of these events associated with𝑊 (𝑉):

𝑃(𝑆(𝑉)) = Φ

(
−𝜖 (𝑉) − 𝜇(𝑉)

𝜎(𝑉)

)
,

𝑃(𝑈 (𝑉)) = Φ

(
−𝜖 (𝑉) + 𝜇(𝑉)

𝜎(𝑉)

)
,

𝑃(𝐸 (𝑉)) = 1 − 𝑃(𝑆(𝑉)) − 𝑃(𝑈 (𝑉)).

The entropy of the random variable𝑊 (𝑉) is then given by

𝐻 (𝑉) = −𝑃(𝑆(𝑉)) ln 𝑃(𝑆(𝑉)) − 𝑃(𝐸 (𝑉)) ln 𝑃(𝐸 (𝑉)) − 𝑃(𝑈 (𝑉)) ln 𝑃(𝑈 (𝑉)). (15)

Figure 3 shows the probability of misclassification, compared to the entropy using those classification probabilities.

12



Fig. 3 Illustrative comparison of the misclassification probability and the entropy in classification. Entropy-2
refers to entropy purely for stable and unstable cases (i.e., 𝜖 (𝑧) = 0), while Entropy-3 includes the possibility of
approximate equilibrium (i.e., 𝜖 (𝑧) > 0). The solid blue curve is a (one-dimensional) reference function 𝑓 . The
dashed orange curve and the shaded region are the mean 𝜇𝑛 and the 1𝜎 region [𝜇𝑛 −𝜎𝑛, 𝜇𝑛 +𝜎𝑛] of the GPM 𝑓𝑛.

The CLoVER algorithm is designed to minimize the “global” entropy of 𝑓𝑛 in each step. The integrated metric we

use in this work is given by

H( 𝑓𝑛 (𝑥, 𝑦)) B
∫
Y

∫
X
𝐻 ( 𝑓𝑛 (𝑥, 𝑦)) 𝑑𝑃𝑋 (𝑥)𝑑𝑦, (16)

where we have modified the original definition in [31] to account for the input parameter distribution. In the present

single-fidelity setting, the point selected is therefore the one that reduces the entropy of the 𝑓𝑛-estimated flutter boundary

the most in a one-step lookahead procedure.

Definition 7 (Contour Location Via Entropy Reduction (CLoVER)) The acquisition function for CLoVER is given

by

𝑆CLoVER (𝑥𝑛+1, 𝑦𝑛+1) B
∫
Y

∫
X

(
𝐻 ( 𝑓𝑛 (𝑥, 𝑦)) −

∫
R
𝐻 ( 𝑓𝑛+1 (𝑥, 𝑦))𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1)

)
𝑑𝑃𝑋 (𝑥) 𝑑𝑦, (17)

where 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1) is the 𝑛 + 1-st data point used in the construction of 𝑓𝑛+1.

The integral
∫
R
· 𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1) can be evaluated in closed form:

∫
R
𝐻 ( 𝑓𝑛+1 (𝑧))𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1) =

𝜎̃𝑛+1 (𝑧)
𝑒𝜎𝑛 (𝑧)

1∑︁
𝑖=0

1∑︁
𝑗=0

exp

(
−1

2

(
𝜇𝑛 (𝑧) + (−1)𝑖𝜖 (𝑧)

𝜎𝑛 (𝑧)
+ (−1) 𝑗 𝜎̃𝑛+1 (𝑧)

Φ(𝑒−1)𝜎𝑛 (𝑧)

)2)
;

details of the approximation are provided in [31]. In this work, the integral
∫
Y

∫
X · 𝑑𝑃𝑋 (𝑥)𝑑𝑦 is approximated using

importance sampling [27].
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H. Gradient entropy reduction

In this section, we outline a strategy that reduces the contour entropy by comparing the current entropy at a candidate

point and the expected entropy conditional on an additional sample at that point. The criterion is similar to CLoVER

but considers primarily local information gains and omits the potentially expensive integral over the input space X ×Y:

Definition 8 (Gradient entropy reduction (GER)) The acquisition function for the GER strategy is given by

𝑆GER (𝑥𝑛+1, 𝑦𝑛+1) =
(
𝐻 ( 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1)) −

∫
R
𝐻 ( 𝑓𝑛+1 (𝑥𝑛+1, 𝑦𝑛+1))𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1)

)
𝜌𝑋 (𝑥𝑛+1), (18)

where 𝑔𝑛+1 B 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1) is the 𝑛 + 1-st data point used in the construction of 𝑓𝑛+1, and 𝐻 (·) is the contour entropy.

To our knowledge, GER is a new sampling method for sequential design of experiments for failure boundary

determination. The method can be regarded as a compromise between CLoVER’s integrated metric and more local

methods such as contour UCB, allowing for quicker prediction of information gain in a local context. In particular as

we consider parameter domains reaching six dimensions or more, [30] shows that the integration schemes required by

global methods begin to struggle for moderate sample sizes compared to local entropy metrics, which are still able to

ensure improvement in a region about the sample point due to the regularity of GPs with appropriate kernels.

I. Local entropy

Lastly, we may also use the contour entropy itself as an acquisition function and select the maximizer of the entropy

as 𝑧𝑛+1:

Definition 9 (Entropy-based contour locator (ECL)) The acquisition function for the ECL strategy is given by

𝑆ECL (𝑥𝑛+1, 𝑦𝑛+1) = 𝐻 ( 𝑓𝑛 (𝑥𝑛+1, 𝑦𝑛+1))𝜌𝑋 (𝑥𝑛+1). (19)

In this work, we use the definition of contour entropy defined by Cole et al. [30], which results from choosing 𝜖 (𝑧) = 0,

for the ECL strategy.

J. Summary of acquisition functions

Table 1 summarizes the eight acquisition functions discussed in Sections IV.B–IV.I. For ease of reading we classify

the acquistion functions into three groups: straddle-based, misclassification-based, and entropy-based. All eight methods

provide contour-targeting adaptive sequential construction of the surrogate model, compared to grid-based approaches

used in, e.g., NIPC. Within the straddle family, the straddle and weighted-straddle are distinguished by whether the

input uncertainty 𝑃𝑋 is considered or not. The remaining six acquisition functions in the misclassification and entropy

families are all countour-aware and input-uncertainty-aware (using the same score modification as weighted-straddle
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contour- 𝑃𝑋- one-step global-
type aware aware lookahead aware cost section

straddle
straddle

✓ ✗ ✗ ✗ low IV.B
weighted-straddle ✓ ✓ ✗ ✗ low IV.C
SUR

misclassification
✓ ✓ ✓ ✓ high IV.D

gSUR ✓ ✓ ✓ ✗ medium IV.E
MEE ✓ ✓ ✗ ✗ low IV.F
CLoVER

entropy
✓ ✓ ✓ ✓ high IV.G

GER ✓ ✓ ✓ ✗ medium IV.H
ECL ✓ ✓ ✗ ✗ low IV.I

Table 1 Summary of acquisition functions.

if not inherently input-uncertainty aware). There are three further subclasses of acquisition functions we consider in

our groupings: globally-aware one-step lookahead; local one-step lookahead, and local without a lookahead. This

subgrouping provides a heirarchy of the computational cost (or complexity) of each method, which is typically

small compared to the cost of a CAE model but does potentially limit integration accuracy in higher dimensions for

global-aware methods [30]. Table 2 in Section VII.C provides the numerical evaluation time per candidate point of each

of these methods observed in a typically flutter prediction case, which we leave in general terms in this section.

K. Batch-sequential sampling strategy

Sequential sampling methods are designed to select optimal sampling points in a greedy/sequential fashion. However,

modern computers often allow parallel/simultaneous evaluation of 𝑓 at multiple different points. This motivates batch

sampling, where 𝑓 is evaluated for multiple different points in each iteration, which may yield a less optimal sequence

of points but at a lower wall-clock time. To this end, we propose a batch-sequential strategy Algorithm 2, which can be

used in conjunction with any acquisition function discussed.

Although existing lookahead methods can be modified for simultaneous multi-step lookup given a candidate point

batch [25, 32], the cost scales exponentially with 𝑁𝑝 and is often computationally impractical. We propose the greedy

batch selection algorithm as a compromise in such situations. We will see that accuracy of the batch selection remains

comparable to sequential selection.

V. Application to a synthetic problem

A. Problem description

We now assess the GPM sampling methods using the six-dimensional Hartmann function [33] over X × Y ≡

R4 × [0, 1]2 with the input parameter distribution 𝑥𝑖 ∼ N(0.5, 0.132) for 𝑖 = 1, . . . , 4. Each GPM sampling method is

initialized with a dataset of size 𝑛 + 0 = 3, chosen randomly in X × Y according to the distribution in 𝑥𝑖 and uniformly
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Algorithm 2: Batch-sequential sampling for GPM using an acquisition function 𝑆.
input: Acquisition function: 𝑆 : R𝑃 → R

Number of parallel executable processes: 𝑁𝑝

output: GPM 𝑓𝑁 based on dataset {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑁𝑖=1

1 Initialize dataset {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛0
𝑖=1 and construct the GPM 𝑓𝑛0 B 𝑓GP (·; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}𝑛0

𝑖=1)
2 while 𝑛 ≤ 𝑁 do
3 Find 𝑧𝑛+1 = arg max𝑧∈Z 𝑆(𝑧)
4 for 𝑖 = 𝑛 + 1, . . . ,max{𝑛 + 𝑁𝑝 − 1, 𝑁 − 1} do
5 Construct an approximate GPM

˜̃𝑓𝑖 B 𝑓GP (·; {(𝑧1, 𝑓 (𝑧1)), . . . , (𝑧𝑛, 𝑓 (𝑧𝑛)), (𝑧𝑛+1, 𝑓𝑛 (𝑧𝑛+1 | )), . . . , (𝑧𝑖 , 𝑓𝑛 (𝑧𝑖))}, 𝑘)
6 Find 𝑧𝑖+1 = arg max𝑧∈Z

˜̃𝑆(𝑧), where ˜̃𝑆 is based on ˜̃𝑓𝑖
7 end
8 Evaluate the full-order model at {𝑧𝑖}

𝑛+𝑁𝑝

𝑖=𝑛+1 in parallel to obtain { 𝑓 (𝑧𝑖)}
𝑛+𝑁𝑝

𝑖=1
9 Update the GPM and retrain hyperparameters to obtain to 𝑓𝑛+1 B 𝑓GP (·; {(𝑧𝑖 , 𝑓 (𝑧𝑖))}

𝑛+𝑁𝑝

𝑖=1 ; 𝑘)
10 Set 𝑛← max{𝑛 + 𝑁𝑝 , 𝑁}
11 end

in 𝑦. Then, in each iteration, the method selects the next point 𝑧𝑛+1 from a candidate point set of 1000 scrambled Sobol

points. Hyperparameters are updated each iteration. The integrals over
∫
Y

∫
X · 𝑑𝑃𝑋 (𝑥)𝑑𝑦 in SUR and CLoVER are

approximated using importance sampling with 2500 points. The integral over
∫
R
· 𝑑𝑃𝑔𝑛+1 (𝑔𝑛+1) in SUR and gSUR is

approximated using five-point Gauss–Hermite quadrature. Due to the high computational cost of lookahead methods

(i.e., SUR, gSUR, CLoVER, and GER), MEE is used as a preliminary filter to reduce the size of the candidate set to

500 for gSUR and GER and 100 for SUR and CLoVER.

In this work, we assess the accuracy of the sampling algorithms using the relative 𝐿2 (Y) error of the flutter

probability function 𝐹 : Y → R: i.e.,
∫
Y (𝐹 (𝑦) − 𝐹𝑛 (𝑦))

2 𝑑𝑦/
∫
Y (𝐹 (𝑦))

2 𝑑𝑦 =
∫
Y

∫
X (I[ 𝑓 (𝑥, 𝑦) ≤ 0] − I[ 𝑓𝑛 (𝑥, 𝑦) ≤

0])2𝑑𝑃𝑋 (𝑥)𝑑𝑦/
∫
Y

∫
X (I[ 𝑓 (𝑥, 𝑦) ≤ 0])2𝑑𝑃𝑋 (𝑥)𝑑𝑦, where we approximate the integral

∫
Y · 𝑑𝑦 using a Riemann sum

with 25 points in each dimension and the integral
∫
X · 𝑑𝑃𝑋 (𝑥) using MC with 10,000 points. To account for variability

with respect to initial sample points, candidate point sets, and stochastic hyperparameter optimization, we run each

design method 40 times for each test function and compare the statistics.

B. Results

Figures 4a and 4b summarize the error statistics in the solution obtained by all sequential design methods considered

for two different full-order model evaluation sizes of 100 and 200. Given its popularity, we also provide NIPC as a

reference; we use a degree-4 NIPC approximation with a fixed Gaussian quadrature sample size of 15,625. The order

the strategies are presented corresponds to their groupings in Section IV.J and Table 1. First, we observe that all of

these contour-targeting GPM-based methods resolve the probabilistic flutter boundary far more quickly than NIPC;

these methods achieve a target median error of 0.02–0.1 using fewer than 100 function evaluations, whereas NIPC
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has an error of 0.16–0.17 using over 15,000 function evaluations. Second, we observe that all methods that take into

account the input parameter distribution over X (i.e., all methods except the standard straddle) perform far better than

the standard straddle heuristic which does not. Third, of these methods, we observe that local entropy-based metrics

(i.e., GER and ECL) provide the most accurate results when the allocated budget is exhausted (i.e., for the evaluation

size of 200), though the difference in performance is not large in relation to the next best probability-weighted methods

such as SUR. Our results agree with Cole et al [30], which finds that ECL performs more reliably than CLoVER in

cases where moderate- or high-dimensional integration over X ×Y is a challenge.

Figures 4c and 4d summarize the error statistics for all sampling methods considered in this study using the proposed

batch-sequential (instead of sequential) selection procedure Algorithm 2. The batch size is fixed to 𝑁𝑝 = 5. For the

chosen batch size, there is little, if any, drop in performance for each sampling strategy compared to sequential sampling

in Figure 4a for the same number of total function evaluations, and additional evaluations show improvements for

CLoVER, with smaller improvements for GER.

VI. Application to TAE model

A. Problem description

In this section, we apply sequential design methods to determine the flutter boundary of an airfoil experiencing

pitch-and-plunge motion modeled by a “textbook” 2-DoF TAE model [34]. Figure 5 illustrates the two-dimensional

aeroelastic system. The equations of motion for this system are

𝑚( ¥ℎ + 𝑏𝑥𝛼 ¥𝛼) + 𝑚𝜔2
ℎℎ = −𝐿, (20)

𝐼𝑃 ¥𝛼 + 𝑚𝑏𝑥𝛼 ¥ℎ + 𝐼𝑃𝜔2
𝛼𝛼 = 𝑀 1

4
+ 𝑏

(
1
2
+ 𝑎

)
𝐿, (21)

where 𝑥𝛼 = 𝑒 − 𝑎 = 𝑅𝑥/𝑏 is the non-dimensionalized static imbalance between the elastic axis EA and center of gravity

CG respectively, 𝜔𝛼 and 𝜔ℎ are the uncoupled natural frequencies of the pitch and plunge modes, 𝑚 is the airfoil section

mass, and 𝐼𝑃 = 𝐼EA + 𝑚𝑏2𝑥2
𝛼 for 𝐼EA being the moment of inertia about point EA. The dynamics model is coupled with

the unsteady aerodynamics model based on Theodorson’s unsteady thin-airfoil theory [35]. Assuming simple harmonic

motion in an incompressible flow, the lift and pitching moment for the airfoil are modeled by

𝐿 = 2𝜋𝜌∞𝐶 (𝑘)
[
¤ℎ +𝑈𝛼 + 𝑏

(
1
2
− 𝑎

)
¤𝛼
]
+ 𝜋𝜌∞𝑏2 ( ¥ℎ +𝑈 ¤𝛼 − 𝑏𝑎 ¥𝛼),

𝑀 1
4
= −𝜋𝜌∞𝑏3

[
1
2
¥ℎ +𝑈 ¤𝛼 + 𝑏

(
1
8
− 𝑎

2

)
¥𝛼
]
,
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(a) sequential sampling: 100 evaluations

(b) sequential sampling: 200 evaluations

(c) batch sampling: 200 evaluations

(d) batch sampling: 300 evaluations

Fig. 4 A summary of approximation errors for the six-dimensional Hartmann test function failure boundary
obtained by each strategy with sequential and batch sampling with a batch size of 5. Each box indicates the four
quartiles of errors observed over 40 stochastic runs. NIPC is provided as a reference, for a fixed evaluation size of
15,625.
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Fig. 5 Geometry of wing section with linear pitch and plunge restraints. (Source: [15]. Figure used with
permission)

where 𝜌∞ is the free stream density,𝑈 is the free stream velocity, and 𝐶 (𝑘) is Theodorsen’s function where 𝑘 B 𝑏𝜔
𝑈

is

the reduced frequency.

We use the 𝑝-𝑘 method [14] of flutter analysis to extract solution eigenvalues 𝑝 = 𝛾𝑘 ± 𝑖𝑘 for a given parameter

configuration. The flutter determinant for the 𝑝-𝑘 method for this problem can be expressed in dimensionless form as��������
𝑝2 + Ω2

𝑅

𝑉2 − 𝑘2

𝑀𝑅
+ 2𝑖𝑘𝐶 (𝑘 )

𝑀𝑅

𝑝2𝑀𝑅𝑥𝛼+𝑘 (𝑖+𝑎𝑘 )+[2+𝑖𝑘 (1−2𝑎) ) ]𝐶 (𝑘 )
𝑀𝑅

𝑝2𝑀𝑅𝑥𝛼+𝑎𝑘2−𝑖𝑘 (1+2𝑎)𝐶 (𝑘 )
𝑀𝑅

8𝑀𝑅𝑟
2 (𝑝2+ 1

𝑉2 )+4𝑖 (1+2𝑎) [2𝑖−𝑘 (1−2𝑎) ]𝐶 (𝑘 )−𝑘 [𝑘−4𝑖+8𝑎 (𝑖+𝑎𝑘 ) ]
8𝑀𝑅

�������� ,
where 𝑟2 =

𝐼𝑃
𝑚𝑏2 is the the squared radius of gyration, Ω𝑅 =

𝜔ℎ

𝜔𝛼
is the frequency ratio, 𝑀𝑅 = 𝑚

𝜌∞ 𝜋𝑏2 is the mass ratio,

and 𝑉 = 𝑈
𝑏𝜔𝛼

is the reduced velocity. Our quantity of interest is thus the speed-independent representation for damping

𝜂 = − Γ
𝜔𝛼

= −ℜ(𝑉𝑝) [34].

The following parameters and uncertainties are used in our analysis:

𝑎 = −1/5, 𝑒 = −1/10, 𝑟2 =
6
25
× 10𝑥1 , Ω𝑅 =

2
5
× 10𝑥2 , 𝑉 = 𝑦2, 𝑀𝑅 = 20 × 10𝑦2

for structural uncertainty 𝑥 ∼ N((0, 0), diag((0.062, 0.062))), and operational domain Y = [1.3, 3] × [−0.2, 0.2].

B. Results

We apply the sequential design algorithms to the TAE model and test their efficacy using the same procedure

applied to the test function in section V.A. Figures 6a and 6b summarize the error statistics for the GPM-based

methods with adaptive sampling. We also provide a degree-4 NIPC approximation which uses 625 evaluations as a

reference. Observations are similar to those made for the test function in Section V. First, we again observe that all

probability-weighted GPM-based methods with adaptive sampling require significantly fewer TAE evaluations than

NIPC to achieve a given error level; NIPC does not resolve the probabilistic flutter boundary to a normalized error of
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less than 10−2 using 625 function evaluations, while input probability weighted methods do achieve this target error

with fewer than 100 samples. Second, the approaches that take into account the input parameter distribution over X

perform far better than the standard straddle heuristic which does not; in fact, straddle with 100 samples is less accurate

than the NIPC approximation (with 625 samples). Lastly, local entropy-based metrics ECL and GER achieve the highest

accuracy at the end of the evaluation budget. Figures 6c and 6d show the errors given a batch sequential sampling

strategy, with a batch size of 5. For this case as well, there is minimal if any loss in performance compared to purely

sequential sampling for an equivalent number of function evaluations, with GER performing best by a marginal amount

at the end of the new sampling budget.

VII. Application to CAE model

A. Problem description

We now apply the sequential design methods to a two-dimensional CAE model. We consider the Isogai benchmark

configuration [17], which features the NACA64A010 airfoil and a simple 2-DoF pitch-and-plunge motion, outlined in

Section VI.A. The aerodynamic model is based on the Euler equations. We use a second-order finite volume method

with 9313 cells to discretize in space, and second-order backward differentiation formula with 1256 time steps to

discretize in time. More details of the solver are provided in [15].

The configuration parameters that define the space Y are the freestream Mach number 𝑀∞ ∈ [0.75, 0.9] and the

reduced velocity𝑉 ∈ [0.25, 2]. Note that the parameter range corresponds to the region in the Mach–velocity space where

we anticipate the so-called transonic dip [17]. The random structural parameters that define the space X are the distance

between center of rotation and center of mass 𝑅𝑥 ∼ N(0.9, 0.092), the heave stiffness 𝑘ℎ ∼ N(3.3 × 105, (3.3 × 104)2),

and the plunge damping coefficient 𝑐plunge ∼ Lognormal(1.5, 0.47). For any given parameter (𝑥, 𝑦) ∈ X × Y ⊂ R5, the

CAE solver yields time history of the flow field as well as the pitch and plunge data. We apply the matrix pencil analysis

to the pitch and plunge data to estimate the damping parameter, which we obtain from the first mode. We then filter the

damping parameter using the hyperbolic tangent function to suppress the effect of outliers (particularly those associated

with the rapid initial growth of LCOs) as well as to ensure the model is most accurate near the flutter boundary. This

filtered aeroelastic damping parameter defines the output of the function 𝑓 (𝑥, 𝑦) considered in the abstract framework

introduced in Section II.B.

In practice the CAE model would be (directly) used to evaluate 𝑓 (𝑥, 𝑦) for any parameter sample (𝑥, 𝑦); however,

in the present setting where we wish to assess eight different sequential sampling strategies using error statistics that

require Monte Carlo methods to compute, the direct use of the CAE model to evaluate 𝑓 (𝑥, 𝑦) would be too expensive.

In order to make the assessment computationally tractable, we use a “truth” GP surrogate model in place of the true

CAE model. We construct the “truth” GPM for the filtered aeroelastic damping using an unscrambled Sobol point set of
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(a) sequential sampling: 40 evaluations

(b) sequential sampling: 100 evaluations

(c) batch sampling: 100 evaluations

(d) batch sampling: 200 evaluations

Fig. 6 A summary of approximation errors for the TAE flutter boundary obtained by each strategy with
sequential and batch sampling with a batch size of 5. Each box indicates the four quartiles of errors observed
over 40 stochastic runs. NIPC is provided as a reference, for a fixed sample size of 625.
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(a) Damping (mode 1) for constant Mach number 𝑀∞ = 0.83.
Smaller and larger shaded areas correspond to the 50% and
95% credible regions, respectively.

(b) Probability of flutter throughout Mach number and veloc-
ity domain

Fig. 7 Probabilistic characterization of damping for failure mode used to create probabilistic flutter boundary

512 points, and 1649 points selected by the straddle heuristic with exploration parameter 𝛽𝑡 = 3. The resulting dataset

encourages both exploitation in accurately capturing the transonic dip and exploration in detecting the effects of high or

low structural damping, which may result in stability or instabilities deep within regions of Mach–velocity space that are

nominally unstable or stable, respectively. A validation using 10 randomly selected points near the flutter boundary

suggest that the “truth” GPM has a median error of 0.0286 relative to the true CAE model.

Figure 7 illustrates the way the stochastic analysis extends the typical analysis of aeroelastic damping for flutter.

Figure 7a shows the (filtered) aeroelastic damping coefficient as a function of speed index 𝑉 ∈ [0.25, 2] for a fixed

Mach number of 𝑀∞ = 0.83. The stochastic analysis provides not just the nominal damping coefficient curve, but

also the credible region of all damping coefficient curves associated with variations in the structural and geometric

variables. This damping curve can be constructed for any value of the freestream Mach number 𝑀∞ ∈ [0.75, 0.9].

The information can be further compiled into the Figure 7b, which shows the probability of flutter over the entire

Mach–velocity space under the structural and geometric uncertainties. This is the function 𝐹 : Y → R given by (2),

which we wish to characterize.

B. Results

We now assess the ability of various surrogate modeling strategies to efficiently capture the function 𝐹. We apply

the sequential design algorithms to the CAE model and test their efficacy using the same procedure applied with the test

function in Section V.A. Figures 8a and 8b summarize the error statistics for the GPM-based methods with adaptive

sampling. We also provide a degree-5 NIPC approximation which uses 3,027 function evaluations as a reference.

Using 100 sequential samples, all adaptive GPM-based methods achieve a lower median error than NIPC (using 3,027
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samples), which has an error of little less than 10−1. At 250 sequential samples, all lookahead-based adaptive methods

achieve a median error of under 10−2. Here, we see a notable hierarchy in the relative errors that corresponds to the

hierarchy of computational complexity noted in Table 1. The expensive global one-step lookahead methods (i.e., SUR

and CLoVER), which are derived to be most closely related to the error in Section IV.D, achieve the lowest error at

little over 10−3. The local one-step lookahead methods (i.e., GER and gSUR), which make use of lower cost local one

step lookaheads, have the next lowest errors. The remaining methods, which are local rather than lookahead, have the

highest errors. Unlike the TAE case, it appears that the CAE dataset exhibits more non-local behavior and rewards

greater exploration, which results in the global lookahead methods standing out. The stronger emphasis on exploration

also explains the relatively better performance of unweighted straddle.

Figure 8c shows the error observed for the batch sample size of 250. Similarly to the Hartmann-6 and TAE cases,

the batch sampling results are similar to the sequential sampling results. However, GER shows improvement over gSUR

in this setting.

C. Computational cost

Table 2 compares the average wall clock time for 100 iterations of each sequential design strategy across each restart.

We also report the time to evaluate the score of a single candidate point, as the number of candidates points are different

across methods due to the use of the aforementioned filtering strategy. The non-lookahead methods (i.e., straddle and

wt. straddle) are much cheaper than lookahead-based methods, although the surrogate models are not as accurate in

comparison to lookahead methods. Of the lookahead methods, GER offers a reasonably cheap alternative to SUR and

CLoVER. However, the total time taken to operate all these acquisition functions remains quite small compared to the

time required for a single run of the CAE model used, which is on the order of 104 seconds.

Table 2 Evaluation time at iteration 100 of sequential design algorithms

Method Total time (s) Time per point (s)
Straddle 1.49 9.53 × 10−6

Wt. Straddle 1.57 8.82 × 10−6

SUR 152.27 2.44 × 10−2

gSUR 159.17 7.15 × 10−3

MEE 1.59 1.08 × 10−5

CLoVER 117.77 2.08 × 10−2

GER 110.87 5.4 × 10−3

ECL 1.62 1.10 × 10−5
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(a) sequential sampling: 100 evaluations

(b) sequential sampling: 250 evaluations

(c) batch sampling: 250 evaluations

Fig. 8 A summary of approximation errors for the CAE flutter boundary obtained by each strategy with
sequential and batch sampling with a batch size of 5. Each box indicates the four quartiles of errors observed
over 40 stochastic runs. NIPC is provided as a reference, for a fixed sample size of 3,027.

VIII. Conclusions
We have (i) introduced a computationally efficient framework to provide a probabilistic estimate of the stochastic

flutter boundary and (ii) derived relationships between existing GP sampling strategies and a reduction of error in the

flutter boundary. This includes a new sampling method, GER, which offers a balance between local methods like

contour UCB and globally integrated methods such as CLoVER to allow for faster prediction of information gain

within a local context. We demonstrated the efficacy of adaptive GPM-based methods relative to the commonly used

NIPC method. Based on the results, we recommend global one-step lookahead methods (e.g., SUR and CLoVER)

for exploration-focused or low- to moderate-dimensional problems, and the local entropy methods (e.g., GER) for
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exploitation-focused or higher-dimensional problems.
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