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Abstract
We develop efficient hyperreduction methods for projection-based model reduction of nonlinear partial
differential equations (PDEs) with a large number of parameters and/or large parametric extents. Our
formulation is based on the empirical quadrature procedure (EQP), which solves an optimization problem
that involves “residual-matching constraints” over a training parameter set to find a sparse quadrature rule
that yields rapid yet accurate approximations of the PDE residual, and solves the constrained optimization
via non-negative least squares (NNLS). Specifically, we extend the EQP and NNLS to provide more efficient
offline training for problems that (i) demand tight hyperreduction tolerances, (ii) involve a large number
of residual-matching constraints, and/or (iii) involve a high-dimensional parameter space. To address (i),
we develop second-order accurate constraints for EQP and a rounding-error stable NNLS formulation
that efficiently provides a solution to the optimization problem with a tight tolerance. To address (ii), we
develop NNLS with constraint reduction (NNLS-CR), which exploits the fact that many constraints are often
redundant and systematically constructs a reduced orthogonal set of constraints that still represents all the
original constraints. To address (iii), we introduce an EQP method that adaptively constructs the training
parameter set and solves the associated constrained optimization problem using a version of NNLS-CR
that admits incremental constraint update. We demonstrate the offline efficiency of the methods, as well
as the parametric robustness of the resulting ROMs, using parameterized Navier–Stokes and Reynolds-
averaged Navier–Stokes equations in four different contexts: shape parameter sweep; flight parameter sweep;
ensemble-based data assimilation; and forward uncertainty quantification.
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1 INTRODUCTION

Many engineering tasks—such as parametric studies, design optimization, and uncertainty quantification—require accurate
approximation of parameterized partial differential equations (PDEs) for many different parameter values. One approach to
provide rapid and reliable solutions in these many-query scenarios is projection-based model-order reduction (MOR) [5, 33, 28].
MOR leverages offline–online computational decomposition: in the offline stage, which is expensive but performed only once,
we invoke the full-order model (FOM) for select parameter values to learn a low-dimensional approximation of the solution
manifold and construct a reduced-order model (ROM); in the online stage, we rapidly evaluate the ROM for many different
parameter values. For nonlinear PDEs, MOR must also incorporate hyperreduction, which constructs a reduced approximation
of the PDE residual. The offline training cost of hyperreduction can be significant for problems with many parameters and/or
significant parametric extent; moreover, many hyperreduction methods involve user-defined parameters that must be tuned to
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obtain optimal performance. The goal of this work is to develop a hyperreduction method that is more efficient (i.e., reduces
offline training cost to yield a ROM of given accuracy) and automated (i.e., requires minimal user input).

Many hyperreduction methods have been developed over the last two decades. The goal of these meth-
ods is to provide a rapidly evaluatable approximation of the ROM residual, which typically arises from a
(Petrov–)Galerkin projection of the (weak form of the) FOM residual onto the N-dimensional space spanned by the reduced basis
(RB). Hyperreduction methods can be broadly classified into two categories. The first class of methods first approximates the
functions that constitutes the residual using interpolation or regression, and then (exactly) integrates the approximated functions.
Hyperreduction methods in this class include (but are not limited to) gappy POD [21, 9], the empirical interpolation method
(EIM) [3, 26]; its discrete variant DEIM [13]; unassembled DEIM [38] tailored for finite element (FE) methods; QDEIM [17],
which incorporates QR factorization to improve scalability of DEIM for large-scale problems; and the Gauss–Newton with
approximation tensor method [11].

The second class of methods, which is the focus of the present work, directly approximates the ROM residual using a sparse
quadrature rule. Hyperreduction methods in this class include (but are not limited to) the optimal cubature formulation [2]; the
energy conserving sampling and weighting (ECSW) method [23, 22]; the empirical cubature method [27]; and the empirical
quadrature procedure (EQP) [32, 42]. The offline stage of these direct-integration hyperreduction methods proceeds as follows:
we first introduce a set of training parameter values and the associated solution training states; we next construct a set of “residual
matching constraints”, which measures the extent by which the reduced-quadrature (RQ) approximation violates the original
full-quadrature residual for the training configurations; we then solve the constraint minimization problem that seeks to minimize
the number of non-zero entries in the RQ rule while satisfying the residual-matching constraints to the target tolerance. In the
online stage, the residual is approximated using the RQ rule to provide rapid approximation of the PDEs. Mathematically, the set
of residual-matching constraints takes on the form |Aρ− b| ≤ δ, where ρ ∈ RKh is the set of Kh (but sparse) RQ weights sought;
A ∈ Rm×Kh is the array of quadrature-point-wise residuals, such that Aρ ∈ Rm is the RQ approximation of the m residual values;
b ∈ Rm is the full-quadrature residual values; and δ ∈ Rm is the array of residual-matching tolerances.

The solution to the constrained minimization problem can be approximated using linear programming (LP) [32, 40] or
non-negative least squares (NNLS) [23, 22, 12, 36]. A scalable and parallel implementation of NNLS, which also incorporates
efficient incremental QR factorization, presented in [12] is the baseline method used in the present work. The NNLS algorithm
employs an iterative active set method to determine a minimal set of positive quadrature weights that satisfies the given
constraints [30]. Previous improvements to the NNLS algorithm include the sequential NNLS method [6], which employs QR
factorization to efficiently update the solution on each iteration of NNLS, and the fast NNLS method [7], which accelerates the
NNLS solution for problems with many more constraints than variables (which is not the case for hyperreduction).

In the present work, we propose three improvements to the standard NNLS algorithm for the cases that (i) demand tight
tolerance δ, (ii) involve a large number of constraints, and (iii) requires sampling in a high-dimensional parameter space. The
first extension involves a reformulation of the residual Aρ− b, so that the NNLS algorithm behaves numerically more stably,
especially when we wish to achieve very tight tolerance. The second extension, which is arguably the key contribution of the
present work, is the development of NNLS with constraint reduction (NNLS-CR) for problems that involve many constraints.
The method builds on the assumption that, just like the parametric solution manifold, the residual associated with parameterized
PDEs is also amenable to “low-dimensional approximation”. Building on this assumption, we devise a systematic procedure to
reduce the m constraints in |Aρ− b| ≤ δ ∈ Rm to m̃ orthogonalized constraints |Qρ− bQ| ≤ bQ for m̃≪ m which still represent
all the original constraints. We then apply NNLS to the reduced set of constraints. The third extension is the development of an
incremental version of the NNLS-CR, which we name NNLS-CRi, where “i” stands for incremental. Specifically, the algorithm
provides efficient NNLS solution when the set of constraints are updated/augmented incrementally in some iterative process. As
we discuss next, the NNLS-CRi meshes particularly well with adaptive/incremental update of the training parameter set often
demanded in high-dimensional problems.

The offline cost of RB and RQ construction (via NNLS), as well as the parametric robustness of the resulting ROM, depend
on the choice of the training parameter set. The training parameter set must provide sufficient coverage of the entire parameter
space to yield a parametrically robust ROM, but the set must not be excessively large to avoid excessive offline training cost. The
selection of an appropriate training parameter set can be challenging, especially in high-dimensional parameter spaces. For the
RB construction, one approach to provide effective sampling is a weak greedy algorithm [39], which uses an online-efficient
error estimate/bound of the ROM to efficiently assess the quality of the ROM over a large set of sampling points and then
chooses the next snapshot evaluation location. Extensions of the weak greedy algorithm to high-dimensional problems include
that based on a “saturation assumption” [29], Hessian-based methods [10, 14], and their low-rank approximations [25, 31].
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The aforementioned works on RB construction for high-dimensional parameter spaces are for linear PDEs, which do not
require hyperreduction. Weak greedy algorithms have been extended to treat nonlinear PDEs by incorporating hyperreduction
via EIM [15, 18] and EQP [41]; however, they do not necessarily scale well to high-dimensional problems unless an appropriate
training set is somehow identified a priori. To this end, we propose an EQP method for high-dimensional problems that adaptively
enriches the training set. The formulation leverages the idea of a “low-dimensional approximation” of the residual manifold
developed for NNLS-CR, and attempts to find a minimal training set required to well represent the manifold under the saturation
assumption (cf. [29] for RB). The adaptive EQP methods compliments NNLS-CR; the former attempts to restrict the size of the
training set a priori, while the latter further reduces the constructed constraints a posteriori. The key computational ingredient of
adaptive EQP is NNLS-CRi, which allows efficient augmentation of constraints.

We summarize the sixfold contributions of the present work:

1. We develop a rounding-error stable variant of NNLS which provides faster and robust convergence to tighter error tolerances.
2. We appeal to the concept of reducible constraint manifold and develop NNLS with constraint reduction (NNLS-CR)—

which first constructs a reduced set of orthogonalized constraints that represent the original constraints and then solves the
reduced problem using NNLS—to reduce the NNLS cost for problems with a larger number of constraints.

3. We develop NNLS-CRi, a variant of NNLS-CR that provides an incremental and adaptive update of the reduced constraints
for problems where the original constraints are incrementally introduced.

4. We develop a simultaneous RB and RQ greedy training procedure for high-dimensional problems, which incorporates an
adaptive EQP method that incrementally enriches the training set to provide sufficient, but not excessive, coverage of the
parameter space based on a saturation assumption.

5. We introduce second-order constraints for the EQP for primal residual, which, when combined with rounding-error stable
NNLS and NNLS-CR, provides tighter output error control for a moderate offline training cost.

6. We demonstrate the efficacy of the proposed NNLS-CR/i and adaptive EQP for compressible Navier–Stokes and Reynolds-
averaged Navier–Stokes (RANS) equations in four different contexts: shape parameter sweep; flight parameter sweep;
ensemble-based data assimilation; and forward uncertainty quantification (UQ).

It is worth noting here that contributions 1–3 are applicable in general contexts requiring the solution to a NNLS problem,
such as other hyperreduction methods or sparse nonlinear regression. In particular, these methods will perform well in the
presence of tight tolerances and a large number of constraints.

The remainder of this paper is organized as follows. Section 2 reviews various components of projection-based model
reduction. Section 3 reviews the EQP for primal residual, output functional, and DWR, and in addition introduces the EQP for
primal residual that provides second-order error control. Section 4 reviews the scalable NNLS solver introduced in [12], which
is used as the baseline NNLS solver in the present work. Section 5 introduces the rounding-error stable variant of the NNLS
solver. Section 6 introduces NNLS-CR, which provides constraint reduction to reduce the NNLS cost for problems with many
constraints. Section 7 introduces NNLS-CRi, adaptive EQP, and simultaneous RB–RQ greedy training algorithms. Section 8
assesses the NNLS-CR and adaptive EQP using four different aerodynamics problems governed by the compressible Euler and
RANS equations. Section 9 summarizes the work and provide additional perspectives.

2 PROJECTION-BASED MODEL REDUCTION

In this section, we review the projection-based ROM formulation that builds on RBs and RQs and set the notations used
throughout this work. We first state the general form of the parameterized problems considered in this work (Section 2.1) and
then introduce the finite element (FE) approximation (Section 2.2), RB approximation (Section 2.3), RB–RQ approximation
(Section 2.4), and the associated error estimate (Section 2.5).

2.1 Problem statement

We introduce the general form of nonlinear systems of parameterized PDEs considered throughout this work. For simplicity, we
consider time-independent problems, though the formulation readily extends to time-dependent problems. We first introduce a
d-dimensional spatial domain Ω ⊂ Rd and a P-dimensional parameter space D ⊂ RP. We next introduce a vector-valued Hilbert
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space V on Ω. Our problem is as follows: given µ ∈ D, find u(µ) ∈ V such that

r(u(µ), v;µ) = 0 ∀v ∈ V , (1)

where r : V × V ×D → R is a semi-linear form associated with the system of PDEs. Given the solution u(µ), we evaluate the
output

s(µ) = q(u(µ);µ), (2)

for some output functional q : V × D → R. Our goal is to rapidly and accurately approximate the parameter-to-output map
µ 7→ u(µ) 7→ s(µ) in many-query scenarios.

2.2 Finite element (FE) method

We now consider finite element approximation of the output prediction problem given by (1) and (2). To begin, we first introduce
a finite element space Vh of dimension Nh. We next introduce a FE semi-linear form rh : Vh × Vh ×D → R and a FE output
form qh : Vh ×D → R that result from an approximation of the integrals in the forms r(·, ·; ·) and q(·; ·), respectively, using a
piecewise Gauss-like quadrature rule†: i.e.,

rh(w, v;µ) :=
Kh∑
i=1

ρirh,i(w, v;µ) and qh(w;µ) :=
Kh∑
i=1

ρiqh,i(w;µ),

where Kh is the number of quadrature of quadrature points, {ρi}Kh
i=1 are the quadrature weights, and {rh,i : V × V ×D → R}Kh

i=1
and {qh,i : V ×D → R}Kh

i=1 are the integrands evaluated at the associated quadrature points {xi}Kh
i=1. For instance, if r(w, v;µ) :=∫

Ω
∇v · a(µ)∇wdx, then rh,i(w, v;µ) := ∇v(xi) · a(xi;µ)∇w(xi). The quadrature rule may be associated with the boundary ∂Ω

to enforce boundary conditions or element interfaces for stabilized FE methods. Accurate integration in rh(·, ·; ·) and qh(·; ·)
requires Kh = O(Nh). In this work, we use the DG discretization and its point-wise decomposition considered in [20], but the
methods we develop apply to any discretization that admits a point-wise decomposition of residual and output forms.

We also introduce the associated algebraic form of the FE problem. To this end, we introduce a FE basis operator Φfe : RNh 7→
Vh such that Φfewh =

∑Nh
j=1 ϕ

fe
j wh,j = wh, where {ϕfe

j }Nh
j=1 is the FE basis for Vh, and wh ∈ RNh are the FE basis coefficients

associated with the FE function wh ∈ Vh. We then introduce the associated residual operator rh : RNh × D → RNh such that
rh(wh;µ)i := rh(Φfewh,ϕfe

i ;µ), i = 1, . . . , Nh, for all wh ∈ RNh . We similarly introduce the output functional qh : RNh ×D → R
such that qh(wh;µ) = qh(Φfewh;µ) for all wh ∈ RNh . The associated quadrature-point-wise decomposition of the operators are
given by

rh(wh;µ) =
Kh∑
i=1

ρirh,i(wh;µ) and qh(wh;µ) =
Kh∑
i=1

ρiqh,i(wh;µ), (3)

where the quadrature-point-wise operators satisfy rh,i(wh;µ)i := rh,i(Φfewh,ϕfe
i ;µ), i = 1, . . . , Nh, and qh,i(wh;µ) := qh,i(Φfewh;µ)

for all wh ∈ RNh . We will use this algebraic form of the problem to describe various concepts from hereon.
We now introduce the FE problem: given µ ∈ D, find uh(µ) ∈ RNh such that

rh(uh(µ);µ) = 0 in RNh (4)

and evaluate the associated output
sh(µ) := qh(uh(µ);µ). (5)

We use a Newton-like method to solve the FE problem (4); the process requires the evaluation of the Jacobian Jh(·;µ) : RNh →
RNh×Nh associated with rh(·;µ) : RNh → RNh .

2.3 RB method

To accelerate the solution of the FE problem (4) and the evaluation of the FE output (5), we consider a RB approximation of the
FE problem. Specifically, we assume that the parametric solution manifold Uh := {uh(µ)}µ∈D is amenable to a low-dimensional

† The forms rh(·, ·; ·) and qh(·; ·) may also include additional stabilization terms. This is the case for the DG method considered in this work.
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approximation, introduce a V-orthonormal RB {ϕi ∈ RNh }N
i=1 for the manifold Uh where N ≪ Nh, and construct the associated

RB operator (for the FE coefficients) ΦN : RN → RNh such that ΦNwN =
∑N

i=1 ϕiwN,i. The RB may be formed using, for
example, proper orthogonal decomposition or the Greedy algorithm [33]. We then define the associated RB (Galerkin) residual
rN : RN ×D → RN and RB output functional qN : RN ×D → R such that, ∀wN ∈ RN ,

rN(wN ;µ) = ΦT
Nrh(ΦNwN ;µ) :=

Kh∑
i=1

ρirN,i(wN ;µ), (6)

qN(wN ;µ) = qh(ΦNwN ;µ) :=
Kh∑
i=1

ρiqN,i(wN ;µ), (7)

where rN,i(wN ;µ) := ΦT
Nrh,i(ΦNwN ;µ) and qN,i(wN ;µ) = qh,i(ΦNwN ;µ), i = 1, . . . , Kh. Our RB problem is as follows: given

µ ∈ D, find uN(µ) ∈ RN such that
rN(uN(µ);µ) = 0 in RN (8)

and evaluate the associated output
sN(µ) := qN(uN(µ);µ). (9)

We again use a Newton-like method to solve the RB problem, which requires the evaluation of the Jacobian JN(·;µ) : RN →
RN×N associated with rN(·;µ) : RN → RN .

The RB problem (8) and RB output (9) requires the evaluation of the FE forms (3), which use the quadrature rules with
Kh = O(Nh) points. Hence, even though the dimension of the approximation space has been reduced to N ≪ Nh, the evaluation
of the solution of the RB problem still requires O(Nh) operations.

2.4 RB–RQ method

We now hyperreduce the RB problem (8) and RB output evaluation (9). Namely, we approximate the FE residual and output
forms (3) using RQ rules specifically designed for each problem. We will defer the discussion of the construction of the RQ rules
using EQP to Section 3; in this section, we assume that RQ rules are given and present the evaluation of the solution, output, and
error estimate using the RQ rules.

To hyperreduce the RB problem (8), we introduce an RQ approximation r̃N(·; ·) of the residual form rN(·; ·) in (6):

r̃r
N(wN ;µ) :=

Kh∑
i=1

ρr
i rN,i(wN ;µ), (10)

where {ρr
i }

Kh
i=1 is a set of sparse quadrature weights such that ∥ρr∥0 := Kr ≪ Kh. We then solve the RB–RQ problem: given

µ ∈ D, find ũN(µ) ∈ RN such that
r̃r

N(ũN(µ);µ) = 0 in RN . (11)

The solution is again obtained using a Newton-like method, which requires the evaluation of the Jacobian J̃r
N(·;µ) : RN → RN×N

associated with r̃r
N(·;µ) : RN → RN . As Kr ≪ Kh, the RQ residual form (10) can be evaluated in O(Kr) operations, and the

solution cost of the RB–RQ problem (11) is independent of Kh (and Nh).
To hyperreduce the RB output evaluation (9), we analogously introduce an RQ approximation q̃N(·; ·) of the output form

qN(·; ·) in (7):

q̃q
N(wN ;µ) :=

Kh∑
i=1

ρq
i qN,i(wN ;µ), (12)

where {ρq
i }Kh

i=1 is a set of sparse quadrature weights such that ∥ρq∥0 := Kq ≪ Kh. We then evaluate the RB–RQ output
s̃N(µ) := q̃q(ũN(µ);µ).
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2.5 Output error estimation: dual-weighted residual (DWR) method

We also wish to equip our ROM with an output error estimate. To this end, we use the DWR method [4] adopted to the ROM
error estimation [41]. To begin, we introduce a dual FE problem: given µ ∈ D, find zh(µ) ∈ RNh such that

Jh(uh(µ);µ)Tzh(µ) = gh(uh(µ)) in RNh , (13)

where gh(uh(µ);µ) ∈ RNh is the gradient of qh(·;µ) evaluated at uh(µ). We next assume that the parametric dual solution
manifold Zh := {zh(µ)}µ∈D is amenable to low-dimensional approximation, introduce a V-orthonormal dual RB {ϕdu

i ∈ RNh }N
i=1

for the manifold Zh, and construct the associated dual RB operator Φdu
N : RN → RNh such that Φdu

N vN =
∑N

i=1 ϕ
du
i vN,i. We then

introduce the associated dual RB problem: given µ ∈ D, find zdu
N (µ) ∈ RN such that

Jdu
N (uN(µ);µ)Tzdu

N = gdu
N (uN(µ);µ) in RN , (14)

where Jdu
N (wN ;µ) := Φdu

N
TJh(ΦNwN ;µ)Φdu

N ∈ RN×N and gdu
N (wN ;µ) := Φdu

N
Tgdu

h (ΦNwN ;µ) ∈ RN . Note that Jdu
N (wN ;µ) is not

the Jacobian of rN(·;µ) (i.e., Jdu
N (wN ;µ) ̸= JN(wN ;µ)) since it is obtained through the Galerkin projection of the dual problem

onto the dual RB space. Similarly, gdu
N (wN ;µ) is not the gradient of qN(·;µ). We then evaluate the DWR error estimate

ηN(µ) := zdu
N

Trdu
N (uN(µ);µ), (15)

where rdu
N (wN ;µ) := Φdu

N
Trh(ΦNwN ;µ) ∈ RN , ∀wN ∈ RN . The error estimate ηN(µ) approximates the output error sN(µ)− sh(µ).

The solution of the RB dual problem (14) and the RB error estimate (15) requires the evaluation of the FE forms (3) with
Kh = O(Nh) quadrature points, and hence the evaluation of the error estimate also requires O(Nh).

We now reduce the computational cost of the DWR error estimate given by (14) and (15) through hyperreduction. To this end,
we introduce RQ approximations of the residual rdu

N (·; ·), Jacobian Jdu
N (·; ·), and the output gradient gdu

N (·; ·) used in DWR:

r̃du,η
N (wN ;µ) :=

Kh∑
i=1

ρηi rdu
N,i(wN ;µ), J̃du,η

N (wN ;µ) :=
Kh∑
i=1

ρηi Jdu
N,i(wN ;µ), g̃du,η(wN ;µ) :=

Kh∑
i=1

ρηi gdu
N,i(w;µ), (16)

where {ρηi }Kh
i=1 is a set of sparse quadrature weights such that ∥ρη∥0 := Kη ≪ Kh, and the quadrature forms are given by

rdu
N,i(wN ;µ) := Φdu

N
Trh,i(ΦNwN ;µ), Jdu

N,i(wN ;µ) := Φdu
N

TJh,i(ΦNwN ;µ)Φdu
N , and gdu

N,i = Φdu
N

Tgh,i(ΦNwN ;µ). (We again defer the
discussion of the construction of the RQ rules to Section 3 and assume that they are given.) To compute the hyperreduced DWR
error estimate, we first solve the dual RB–RQ problem: given µ ∈ D, find z̃du

N (µ) ∈ RN such that Jdu,η(ũN(µ);µ)T z̃du,η
N (µ) =

gη(ũN(µ);µ). We then evaluate the error estimate η̃N(µ) := z̃du
N

Trdu,η(ũN(µ);µ). The cost to evaluate this error estimate is
independent of Kh (and Nh).

We have now defined the RB–RQ problem and its associated RB–RQ output error estimation method, which require three
distinct RQ rules: {ρr

i }
Kh
i=1, {ρq

i }Kh
i=1, and {ρηi }Kh

i=1. The following section will discuss how to construct these RQ rules such that the
error in the output and our error estimator are controlled.

3 EMPIRICAL QUADRATURE PROCEDURE

In this section, we review the EQP, which we use to construct RQ rules. We first state the general form of the constrained
optimization problem (Section 3.1). We then review the EQP constraints for first-order output control (Section 3.2) and DWR
error estimation (Section 3.4). We also propose new EQP constraints for second-order output error control (Section 3.3). We
then conclude the section with a discussion of computational cost (Section 3.5).

3.1 EQP: general form

We use the EQP to construct RQ rules ρ• ∈ RKh for • ∈ {r, q, η} so that we can control the error in the RB–RQ output s̃N(µ) and
error estimate η̃N(µ) due to hyperreduction. As discussed in the introduction, the EQP recasts the sparse quadrature identification
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problem as an optimization problem that involves “(weighted-)residual matching conditions” over a training set ΞEQP ⊂ D of
the size NEQP. The general form of the EQP is as follows:

Definition 1 (Generic EQP: EQP•(ΞEQP, δ•)). Given a set of parameter values ΞEQP ⊂ D, find a sparse set of quadrature weights
ρ• ∈ RKh such that

ρ• = arg min
ρ∈RKh

||ρ||0,

subject to the non-negativity constraint ρ ∈ RKh
≥0, constant-function accuracy constraint

∣∣∣|Ω|−
∑Kh

i=1 ρi

∣∣∣ < δc for δc ∈ R>0, and
manifold accuracy constraints, or “(weighted-)residual matching conditions”, of the form∣∣c•(ρ;µ)

∣∣
i < δ•i , i = 1, . . . , N•

c , ∀µ ∈ ΞEQP, (17)

where c• : RKh ×D → RN•
c is a parameterized constraint function that is linear in the first argument.

The choice of the manifold accuracy constraints (17) dictates the behavior of EQP. We now introduce specific manifold
accuracy constraints that we use to control the error in the RB–RQ output s̃N(µ) and the RB–RQ error estimate η̃N(µ).

3.2 EQP for first-order output error control

The goal of output-based EQP is to provide direct control of output (as opposed to solution field) error. In this section, as a
preliminary to introduce the “second-order” output error control in Section 3.3, we first briefly review the “first-order” output
error control developed in [41]; for a complete presentation, we refer to [41]. To begin, we decompose the hyperreduction output
error |sN(µ)− s̃N(µ)| into two parts:∣∣sN(µ)− s̃N(µ)

∣∣ ≤ ∣∣qN(uN(µ);µ)− qN(ũN(µ);µ)
∣∣ +
∣∣qN(ũN(µ);µ)− q̃N(ũN(µ);µ)

∣∣ ;
the two terms are (i) the output error due to the approximation of the RB solution by the RB–RQ solution (i.e., uN(µ) associated
with rN(·; ·) vs ũN(µ) associated with r̃r(·;µ)) and (ii) the output error due to the evaluation of the output functional using an RQ
rule (i.e., qN(·;µ) vs q̃q

N(·;µ)).
We first address (i) using the DWR relation for output errors. To this end, we first define a “modified” dual solution coefficient,

which serves as the weight in our DWR-based EQP:

Definition 2. Let µ ∈ D and ûN(µ) ∈ RN be the RB solution uN(µ) given by (8) or its approximation (of arbitrary fidelity). Let
ẑpr

N (µ) ∈ RN be the solution to the dual RB problem (14) linearized about ûN(µ) (instead of ũN(µ)) and solved using the primal
RB ΦN (instead of Φdu

N ). We then cap the minimum value of the dual solution coefficient to obtain the modified dual solution
coefficient: ẑpr,mod

N (µ)i := max{|ẑpr
N (µ)i|, zmin(µ)}, i = 1, . . . , N, where zmin(µ) := N1/2

√
δr ||ẑpr

N (µ)||2.

We now restate a proposition from [41] that motivates the choice of our manifold constraints:

Proposition 3.1 (Output error due to RB–RQ approximation r̃N(·; ·) ≈ rN(·; ·))
Let ûN(µ) ∈ RN be the RB solution uN(µ) given by (8) or its approximation, and ẑpr,mod

N (µ) ∈ RN be the associated modified
dual solution given by Definition 2. Suppose

|ẑpr,mod
N ◦ (rN(ûN(µ);µ)− r̃N(ûN(µ);µ)|i ≤

2δr

3N
, i = 1, . . . , N, (18)

|I− JN(ûN(µ);µ)−1J̃N(ûN(µ);µ)|ij ≤ δJ , i, j = 1, . . . , N, (19)

where I ∈ RN×N is the identity matrix, ◦ denotes the Hadamard product, and the absolute values in the left hand sides are
applied to each entry of the vector or matrix. Then∣∣qN(uN(µ);µ)− qN(ũN(µ);µ)

∣∣ ≤ δr +O((δJ)2) +O(δ̂2) +O(δ̃2), (20)

where δ̂ ≡ ||uN(µ)− ûN(µ)||2 and δ̃ ≡ ||uN(µ)− ũN(µ)||2.
Proof. See [41]. □
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From Proposition 3.1, we obtain the EQP constraints proposed in [41] aimed to control the leading (i.e., first-order) term of
the output error

∣∣qN(uN(µ);µ)− qN(ũN(µ);µ)
∣∣.

Definition 3 (EQP for primal residual with first-order output error control: EQPr(ΞEQP, δr)). The EQP constraints cr : RKh×D →
RNr

c :=N to find the RQ weights {ρr
i }

Kh
i=1 for the primal residual that controls the first-order output error is given by

|cr(ρ;µ)|i = |ẑpr,mod
N ◦ (rN(ûN(µ);µ)−

Kh∑
j=1

ρjrN,j(ûN(µ);µ))|i ≤
2δr

3N
, i = 1, . . . , N, (21)

where ûN(µ) ∈ RN is RB solution uN(µ) or its approximation, and ẑpr,mod
N (µ) ∈ RN is the associated modified dual solution given

by Definition 2. The number of constraints per training parameter value is Nr
c := N.

Remark 1. The constraints (21) corresponds to (18), which controls the first-order error δr in the output error bound (20) but not
the second-order error O(δJ)2 associated with the integration of the Jacobian. The choice was justified in [41] as (i) the error is
of higher order, (ii) we expect that the residual RQ control by (18) controls the Jacobian RQ error to some degree, and (iii) the
explicit control of Jacobian RQ error requires N2 constraints (instead of N for the residual error control). Section 3.3 will discuss
situations when the Jacobian RQ error must be explicitly controlled.

Having controlled the error source (i), we now present the EQP constraints proposed in [41] aimed to find {ρq
i }Kh

i=1 that controls
the error source (ii): |qN(ũN(µ);µ)− q̃N(ũN(µ);µ)|.

Definition 4 (EQP for output functional: EQPq(ΞEQP, δq)). The EQP constraints cq : RKh ×D → RNq
c :=1 to find the RQ weights

{ρq
i }Kh

i=1 for the output functional are given by

|cq(ρ;µ)| = |qN(ũN(µ);µ)−
Kq∑
j=1

ρjqN,j(ũN(µ);µ)| < δq, (22)

where ũN(µ) ∈ RN is the RB–RQ solution given by (11). The number of constraints per training parameter value is Nq
c := 1.

3.3 EQP for second-order output error control

As discussed in Remark 1, the EQPr constraint in Definition 3 explicitly controls the first-order term but not the second-order
terms. In cases that demand a very tight error tolerance, or in cases where the parameter space is sparsely sampled, the constraints
given by (21) can be insufficient to control the output error. The inadequacy of the first-order constraints will be demonstrated
in Section 8.2.2. In order to train our model for these cases, we add second-order constraints such that we control δJ to an
acceptable value. We thereby introduce an updated EQP procedure that controls second-order errors.

Definition 5 (EQP for primal residual with second-order output error control: EQPr2(ΞEQP, δr)). The EQP constraints cr2 :
RKh ×D → RNr

c :=N+N2
to find the RQ weights {ρr

i }
Kh
i=1 for the primal residual that controls the second-order output error are given

by cr2(ρ;µ) =
(

cr2
1 (ρ;µ)T cr2

2 (ρ;µ)T
)T

where

|cr2(ρ;µ)|i = |ẑpr,mod
N ◦ (rN(ûN(µ);µ)−

Kh∑
j=1

ρjrN,j(ûN(µ);µ))|i ≤ δr, i = 1, . . . , N, (23)

|cr2
2 (ρ;µ)|ij = |I− JN(ûN(µ);µ)−1

Kh∑
j=1

ρjJN,j(ûN(µ);µ)|ij ≤ δr, i, j = 1, . . . , N, (24)

where ûN(µ) ∈ RN is the RB solution uN(µ) or its approximation, and ẑpr,mod
N (µ) ∈ RN is the associated modified dual coefficients

given by Definition 2. The number of constraints per training parameter value is Nr2

c := N + N2.

Remark 2. The constraint tolerance in (24) is chosen to be δr. We were unable to determine a priori a strict relation between δr

and δJ , as presented in Proposition 3.1; however, given that the contributions to the output error are on the order of δr and (δJ)2,
we deem choosing δJ = δr is a reasonable approximation. We also note that this likely introduces some conservativeness in the
error estimate.
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3.4 EQP for DWR error control

For completeness, we finally reproduce the EQP constraints for DWR introduced in [41].

Definition 6 (EQP for DWR error estimate: EQPη(ΞEQP, δη)). The EQP constraints cη : RKh ×D → RNη
c :=3N to find the RQ

weights {ρηi }Kh
i=1 for the DWR are given by cη(ρ;µ) =

(
cη1 (ρ;µ)T cη2 (ρ;µ)T cη3 (ρ;µ)T

)T
where

|cη1 (ρ;µ)|i = |rdu,mod(ûN(µ);µ) ◦ Jdu
N (ûN(µ);µ)−T (Jdu

N (ûN(µ);µ)T ẑdu
N (µ)−

Kη∑
j=1

ρjJdu
N,j(ûN(µ);µ)T ẑdu

N (µ))|i ≤
δη

4N
, (25)

|cη2 (ρ;µ)|i = |rdu,mod
N (ûN(µ);µ) ◦ Jdu

N (ûN(µ);µ)−T (gdu
N (ûN(µ);µ)−

Kh∑
j=1

ρjgdu
N,j(ûN(µ);µ))|i ≤

δη

4N
(26)

|cη3 (ρ;µ)|i = |zdu,mod ◦ (rdu
N (ûN(µ);µ)−

Kh∑
j=1

ρjrdu
N,j(ûN(µ);µ))|i ≤

δη

2N
(27)

for i = 1, . . . , N, where ûN(µ) ∈ RN is the RB solution uN(µ) or its approximation, and ẑpr,mod
N (µ) ∈ RN is the associated modified

dual coefficients given by Definition 2, rdu,mod
N (ûN(µ);µ) := {|rdu

N (ûN(µ);µ), rdu,min(µ)} and ẑdu,mod
N (µ) := {|ẑdu

N (µ)|, zdu,min(µ)} for

rdu,min(µ) := 1
2

√
δη

α(µ)N , zdu,min(µ) := 1
2

√
α(µ)δη

N , and α(µ) := ∥ẑdu
N (µ)∥2/∥rdu

N (ûN(µ))∥2. The number of constraints per training
parameter value is Nη

c := 3N.

3.5 Summary and computational cost

In summary, the EQP (Definition (1)) requires the solution of a constrained minimization problem, which takes on the form

ρ⋆ = arg min
ρ∈RKh

||ρ||0, (28)

subject to Kh non-negativity constraints
ρ⋆i ≥ 0, i = 1, . . .Kh, (29)

and manifold constraints given by ∣∣Aρ− b
∣∣ < δ, (30)

where A ∈ Rm×Kh
, b ∈ Rm, and δ ∈ Rm describe various manifold constraints for (first-order) residual (21); output func-

tional (22); second-order residual (23) and (24); or DWR (25), (26) and (27). Note that the inequality in (30) is imposed on
each of the m entries of

∣∣Aρ− b
∣∣. There are N × NEQP

train constraints (given by (21)) for the first-order primal residual RQ rule,
(N + N2) × NEQP

train constraints (given by (21) and(24)) for the second-order primal residual RQ rule, NEQP
train constraints (given

by (22)) for the output RQ rule, and 3Ndu × NEQP
train constraints (given by (25), (26) and (27)) for the DWR RQ rule. For time-

dependent problems with Nt time-steps, the number of constraints for each of these methods will increase by a factor of the
number of time steps Nt. In the subsequent sections, we will develop methods to efficiently solve these optimization problems
with many constraints. We conclude the section with a few remarks.

Remark 3. The constraints constructed by Definitions 3, 4, 5, or 6 may potentially be ill-conditioned. For a parameter set
ΞEQP that densely-samples D, we construct a set of constraints for which the constraint manifold C is well-represented, as
desired. However, the proximity of some of the parameter values in ΞEQP will result in a high degree of similarity between
many of the constraints; i.e., the set of constraints contains many nearly redundant (or entirely redundant) constraints and is thus
ill-conditioned. Section 6 will discuss the idea of ill-conditioned constraints in more detail.

Remark 4. In this work, we use the EQP to generate the “residual matching constraints” (30). However, as discussed in the
introduction, the solution methods that will be developed in the subsequent sections are applicable to any other hyperreduction
methods that require the solution of the constrained optimization problem of the form (28)–(30), such as ECSW.



10 HUMPHRY AND YANO

4 NNLS: STANDARD METHOD WITH INCREMENTAL QR

In this section, we review the baseline NNLS algorithm used in this work. We review the NNLS formulation (Section 4.1) and
the incremental QR update (Section 4.2) and then discuss the computational cost (Section 4.3) to motivate the subsequent work.

4.1 Standard NNLS algorithm

One way to approximate the solution to the constrained optimization problem (28)–(30) is the NNLS algorithm introduced
by Lawson and Hanson [30]. This algorithm employs an active set approach to find the RQ rule, whereby at each iteration a
single quadrature point (or equivalently, a single column of our constraint matrix A) is added to the active set, and the process is
repeated until all constraints are satisfied.

The NNLS algorithm [30] is reproduced in Algorithm 1. We first define two sets of quadrature points. The set Z contains all
inactive quadrature points; i.e. quadrature points whose weight is set to zero. The set P contains all active quadrature points;
i.e. quadrature points with nonzero (and positive) weight. The first step of the NNLS algorithm populates the set Z with all
of the quadrature points and sets P = ∅ and ρ = 0 (line 1). At each iteration, a Lagrange multiplier λ = AT(b− Aρ) ∈ RKh

for each candidate quadrature point is computed (lines 3 and 4). The quadrature point with the largest Lagrange multiplier is
then removed from Z and added to P (lines 6 and 7). Given exact calculation of the Lagrange multipliers, this ensures that at
each iteration, we select the quadrature point that results in the largest decrease in the ℓ2 norm of the residual b− Aρ, while
also ensuring that the associated quadrature weight will be positive. We then solve the least squares problem that minimizes
APρ− b to get ρ̃ (line 8), where AP ∈ Rm×|P | comprises columns of A associated with the set P and ρ̃ ∈ R|P | represents our
temporary solution for the quadrature weights. This least squares solve uses the QR factorization AP = QR. While we do ensure
that the weight of the most recently added quadrature point is positive, there is no guarantee that the other weights given by the
least-squares solution will remain positive. In the case of negative weights, we note that somewhere in the space between our
current solution (containing at least one negative weight) and our previous non-negative solution lies a non-negative solution with
small residual. We then set our new solution to this intermediate solution, driving the negative weights to non-negative values
(lines 10 and 11). Finally, we prune away any zero-valued weights, removing these quadrature points from P and adding them
back to Z (lines 12 to 17). Our solution ρ is updated by ρ̃ (line 19). When all of the constraints are satisfied (i.e. |Aρ− b| ≤ δ),
we terminate and return ρ. The NNLS algorithm is a guaranteed solution method [30]; i.e. given the solution exists, the NNLS
algorithm is guaranteed to find ρ such that |Aρ− b| ≤ δ, at least in exact-precision arithmetic.

4.2 Incremental QR

The majority of the cost of the NNLS algorithm is in the least-squares solve (line 8 of Algorithm 1), which requires QR
factorization of AP . To compute the factorization in an incremental manner, we perform the factorization using Householder
reflectors; i.e. at the kth iteration, when a column ak ∈ Rm is added to AP , we calculate Qk ∈ Rm×m and Rk ∈ R|P |×|P | such that

Ak
P = Qk

[
Rk

0

]
,

where we compute the matrix Qk by the product of Householder reflectors

Qk = H1H2 . . .H|P |, (31)

for a Householder reflector H|P | ∈ Rm×m given by H|P | = I − 2akaT
k

||ak ||2 . Thus, at each iteration, we simply update the matrix Q and
R by Qk = Qk−1H|P | and

Rk =
[

Rk−1 r1

0 r2

]
, where

r1

r2

0

 = (Qk)T ak

||ak ||
. (32)

We then solve the least squares problem by solving for our temporary solution ρ̃ such that

Rkρ̃ = (Qk)Tb, (33)
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Algorithm 1 Non-negative least squares [30]

Input: A ∈ Rm×Kh
, b ∈ Rm, δ ∈ RKh

Output: ρ ∈ RKh

1: Z ← {1, 2, . . . , Kh}, P ← ∅, ρ← 0
2: while

∣∣Aρ− b
∣∣ ≮ δ do

3: r← b− Aρ

4: λ← ATr
5: i← arg maxi∈Z (λi)
6: Z ← Z\{i}
7: P ← P ∪ {i}
8: ρ̃← arg minx∈R|P | ∥APx− b∥2

9: if any ρ̃ < 0 then
10: a← mini∈P :ρ̃i<0{ρi/(ρi − ρ̃i)}
11: ρ̃← ρ̃ + a(ρ− ρ̃)
12: for i ∈ P do
13: if ρ̃i = 0 then
14: Z ← Z ∪ {i}
15: P ← P\{i}
16: end if
17: end for
18: end if
19: ρ← ρ̃

20: end while

where the quantity (Qk)Tb is updated simply by (Qk)Tb = H|P |
T(Qk−1)Tb. This update scheme is more efficient than repeatedly

performing the entire QR factorization; in each iteration, the cost to update the QR matrices is O(m2) and the cost to solve (33)
is O(|P |2).

Remark 5. The update scheme for the QR factorization described here applies only when we add new columns to the matrix AP ,
and not when we remove columns in the inner loop on lines 9–18 of Algorithm 1. In the case where columns are pruned from
AP , we must recompute the QR factorization from scratch and cannot perform the simple update of (Qk)Tb. This motivates us to
limit the number of inner loop iterations, which we attempt to do in Sections 5 and 6.

To compute the iterative QR update, as well as other matrix operations, in a parallel manner, we employ the ScaLAPACK
library. Specifically, following [12] for NNLS in ECSW, we employ pdormqr to compute (32), pdgeqrf to compute (31),
pdormqr to compute the right-hand-side of (33), and pdtrsm to solve (33).

4.3 Computational requirements

We now derive the estimate of the computational complexity of NNLS (Algorithm 1). Let m and Kh be the total number
of constraints and quadrature points, respectively, let Ki be the number of quadrature points in the nonzero set P on the ith
iteration, and let Kf be the final number of points in the nonzero set. Then, in each iteration, we must compute the Lagrange
multipliers AT(b− Aρ) and perform least squares on the columns of A that are in the nonzero set P , which require O(mKh)
and O(m2 + K2

i ) operations, respectively. Given that m > Ki, this simplifies to O(m2) operations. All other operations during
one NNLS iteration require negligible computation time. Thus, for an NNLS method taking n iterations, the computational
complexity is O(nm2 + nmKh). The number of iterations, however, is not so easily determined. In the case of very few redundant
constraints in A—such as when constraint reduction is performed beforehand, as will be discussed in Section 6—, we typically
observe that n ≈ m; however, for systems with a poorly condition A (i.e., with many nearly redundant constraints) or tight
tolerances δ, the number of iterations increase to much larger than m; i.e., n ≈ Cm for a potentially large C. Thus, in practice,
the computational complexity of the NNLS algorithm is approximately O(m3 + m2Kh).
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Remark 6. Due to the approximation n ≈ Cm, and the difficulty of comparing the magnitude of the two terms in our cost
expression, we cannot derive a strict relationship between the number of constraints m and the cost. We can, however, conclude
that the computational cost scales superlinearly with m.

5 NNLS WITH ROUNDING-ERROR STABLE RESIDUAL EVALUATION

The process of solving the EQP problem (28)–(30) with a very tight tolerance δ using NNLS often suffers from significant
machine precision errors in the residual calculation (r = b− APρ) due to the relative size of (large) APρ and (small) residual.
When the rounding-errors are on the order of the residual itself, the algorithm makes a poor selection of columns (line 5 of
Algorithm 1), which causes the algorithm to iterate many more times than is necessary or completely stall. Specifically, the
algorithm often selects columns of A that will immediately be pruned due to a negative quadrature weight, wasting many
iterations and preventing the use of the incremental QR algorithm described in Section 4.2 in the inner loop (lines 9 to 18); cf.
Remark 5.

To mitigate the inefficiency, we propose a more stable form of residual evaluation that is less prone to rounding error, taking
advantage of the already computed QR factorization. We first note that, for the least-squares solution ρ that satisfies Rρ = QTb,
APρ = QRρ = QQTb, which represents the successive projection of b onto the orthonormal basis represented by the columns of
Q . We hence deduce that

r = b− APρ = (I−QQT )b. (34)

The evaluation of r using Q requires two matrix multiplications, which is more expensive than the direct evaluation via
r = b− APρ. To avoid the higher cost, we employ the more stable residual evaluation (34) only when it is necessary; i.e., we
use it only when the target tolerance δ is tight and when the residual is small, in later iterations of the NNLS algorithm. In order
to detect the onset of significant rounding-errors, we simply wait until a column that results in a negative weight is selected
and pruned in the same iteration. A theoretical comparison of the computational cost of the two residual evaluation methods is
difficult, thus we defer comparison to numerical results in Section 8.1.2.

6 NNLS WITH CONSTRAINT REDUCTION

In this section, we present an NNLS algorithm with constraint reduction. We first discuss the concept of reducibility of constraints
(Section 6.1), then introduce three key ingredients of the algorithm (Sections 6.2–6.4), and finally present the algorithm
(Section 6.5).

6.1 Reducibility of constraints: similarity and redundancy

Given that our NNLS cost scales superlinearly with the number of constraints (Remark 6), the hyperreduction time can be
significant for problems with many time-steps, large RB sizes, or many training points. To mitigate this issue, we first recall an
observation that underpins many MOR ideas: the solution to our parameterized problem lies on a manifold that is amenable to
low-dimensional approximation. We here extend the idea and presume that the parametric constraint manifold C is amenable to
a low-dimensional approximation. Thus we should be able to identify a reduced number m̃≪ m of constraints such that the
solution to (28) with the m̃ constraints satisfies all m original constraints, which provides a good approximation for C.

We recall from Remark 3 that if our parameter and temporal spaces are densely sampled, the set of constraints {A, b, ρ}
is ill-conditioned for the NNLS method. This is due to a high degree of similarity between constraints, often to the point of
many completely redundant constraints. In this work, a redundant constraint refers to a constraint cj that would be satisfied
even if it were excluded from our set {A, b, ρ} due to the similarity with other constraints in the set. This similarity is apparent
when we consider that constraints are sampled from a parametric constraint manifold C. For a densely-sampled parameter
space or a finely discretized temporal domain, some of the parameter values or time steps will be close, resulting in similar or
redundant constraints. In fact, if we consider the limit as ∆t→ 0 or ΞEQP → D, we would have innumerable identical constraints.
The similarity in constraints causes “interference”(see Remark 7) in the necessary quadrature weights, and causes our NNLS
algorithm to often enter the inner loop (lines 9 to 18) and remove quadrature points from our nonzero set P . This substantially
increases the total number of iterations and the number of particularly expensive inner loop iterations (cf. Remark 5).



EFFICIENT HYPERREDUCTION BY EQP WITH CONSTRAINED REDUCTION FOR LARGE-SCALE PARAMETRIZED NONLINEAR PROBLEMS 13

Remark 7. To describe what “interference” means in the context of EQP constraints and how it leads to increased inner loop
NNLS iterations, we first note that we typically observe correlation between similarity in rows of A (i.e., constraints) and
similarity in columns of A. In other words, we have empirically observed that if the constraints are nearly colinear, then the
columns of A are also nearly colinear. For such a set of similar constraints the fact that columns of A are nearly colinear results
in “interference”; i.e. a newly introduced column of A may cause a previously determined quadrature weight to become negative,
due to cancellation between the nearly colinear columns. We note that while this is not a theoretical result, we have observed in
practice that, for “well-conditioned" matrices with a low amount of similarity between constraints, the NNLS algorithm is much
less likely to require expensive inner iterations.

Remark 8. We note that the desire to have a well-conditioned constraint matrix presents a conflict in our objectives. To obtain
a robust ROM we require a dense sampling of C in order to ensure accuracy of the model over D, but a dense sampling of
C will result in a poorly-conditioned constraint matrix. Luckily, the proposed constraint reduction methods will allow us to
achieve both objectives: we take in a large set of ill-conditioned constraints that represent C adequately and then produce a
smaller, well-conditioned set of constraints that represents C. Effectively, the constraint reduction method extracts the important
information and removes redundancy from a set of constraints.

The goal of constraint reduction is to construct a smaller and orthogonal (and thus well-conditioned) set of constraints {~A, ~b, ρ̃}
(i) that can be solved efficiently by the NNLS method and (ii) whose solution satisfies the original constraints {A, b, ρ}, implying
that the parametric constraint manifold C is well-approximated. Our constraint reduction method requires three ingredients to
(I) generate constraints, (II) rank constraints, and (III) determine appropriate m̃ < m. We presents the three ingredients in the
following sections.

6.2 Generation of constraints

To generate a set of reduced and orthogonal constraints, we employ QR factorization. To this end, we first define “row-wise” QR
factorization.

Definition 7 (Row-wise QR factorization). For a matrix A ∈ Rm×n, define the “row-wise” QR factorization by the matrices
Q ∈ Rm×n and R ∈ Rm×m such that A = RQ; here, Q = Q⋆T and R = R⋆T, where Q⋆ ∈ Rn×m and R⋆ ∈ Rm×m are the standard
(column-wise) QR factorization matrices that satisfy AT = Q⋆R⋆.

The row-wise QR factorization A = RQ generates an orthonormal basis for the rows of A (i.e., the constraints), which is
represented by the rows of Q. We now replace the (potentially ill-conditioned) A with orthogonal Q in the NNLS problem using
the following proposition.

Proposition 6.1 (QR-based constraints for NNLS)
Given a matrix A ∈ Rm×Kh

, vectors b ∈ Rm, and δ ∈ Rm, define Q ∈ Rm×Kh
and R ∈ Rm×m by a row-wise QR factorization

A = QR. Suppose bQ ∈ Rm and δQ ∈ Rm
>0 satisfy

RbQ = b, (35)

RabsδQ ≤ δ, (36)

where Rabs denote the element-wise absolute value of R; i.e., (Rabs)ij = |Rij|. If there exists ρ⋆ ∈ RKh
such that∣∣Qρ⋆ − bQ

∣∣ < δQ, (37)

then ρ⋆ also satisfies ∣∣Aρ⋆ − b
∣∣ < δ.

Proof. We first write (37) as
bQ − δQ < Qρ⋆ < bQ + δQ.

We then multiply by R to get
RbQ − RδQ < RQρ⋆ = Aρ⋆ < RbQ + RδQ,
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We next invoke (35) to obtain ∣∣Aρ⋆ − b
∣∣ < RδQ.

We note that, for positive δQ, RδQ ≤ RabsδQ and invoke (36) to obtain∣∣Aρ⋆ − b
∣∣ < RδQ ≤ RabsδQ ≤ δ,

which is the desired result.

Remark 9. Note that the element-wise absolute value on R is necessary to ensure that our new tolerances δQ are positive. This
introduces some conservativeness in our tolerance selection in the sense that, even if our new tolerances are exactly met (i.e.,
|Qρ−bQ| = δQ), some of our original constraints might be satisfied to a tolerance that is substantially smaller than the prescribed
tolerance. In Section 6.4, we will introduce an a posteriori check of constraint satisfaction to ensure that the QR-based constraints
are not overly conservative.

Informed by Proposition 6.1, we use (35) to find the target values bQ for reduced constraints. As for the tolerances δQ, the
inequality in RabsδQ ≤ δ allows for some choice in the selection of δQ. In an attempt to equidistribute tolerances δQ, we choose
to evaluate each tolerance by

δQ,i = min
j∈{1,...,i}

1
i
∣∣Rji
∣∣δj, i = 1, . . . , m. (38)

The tolerance selection (38) is defined such that a constraint tolerance δj has approximately equal (or smaller) contributions from
the tolerances δQ,i, i = 1, . . . , m. In other words, for a tolerance δj ≥

∑m
i=1

∣∣Rji
∣∣ δQ,i, the terms {

∣∣Rji
∣∣ δQ,i}m

i=1 are approximately
equal except when other constraints restrict δQ,i to a smaller value, as represented by the minimization in (38).

6.3 Ranking of constraints

We now develop a method to rank the constraints represented by {Q, bQ, δQ} so that important constraints can be identified and
unnecessary constraints can be discarded. If we normalize our constraints such that all entries of δQ are equal, we can consider
the magnitude of any row of our constraint matrix Q as a measure of the amount of information introduced by that constraint.
Thus we first select the constraint with the largest magnitude as our most important constraint. We then orthogonalize the rest of
the constraints with respect to this first constraint and find our second most important constraint. We repeat the process for all m
constraints. This is precisely QR factorization with reordering. Thus we make a small change to the procedure described in
Section 6.2: we instead use the row-wise QR factorization with reordering given by PA = RQ, where P is a permutation matrix
such that the constraints {Q, bQ, δQ} are organized in descending order of importance. As the matrix P simply represents a
reordering of the rows of

∣∣Qρ⋆ − bQ
∣∣ < δQ, Proposition 6.1 still applies and the computational cost is not affected.

We recall that Rii decreases with i for QR factorization with reordering. This implies that the tolerances δQ given by (38)
increase (i.e., loosen) with i. Given that the rows of Q are normalized and have equal magnitude, this implies that more important
constraints (near the top of Q) will have tighter tolerances, while less important constraints (near the bottom of Q) will have
looser tolerances, to the point that many of these later constraints will be unnecessary.

6.4 Truncation of reduced constraints

Thus far, we have determined a set of m constraints that accurately (and conservatively) represent our m original constraints
and that are ranked in order of importance. The next step is to truncate our constraint matrix Q to the first m̃ < m constraints
needed to represent our original constraints. Here, we use the word “represent” to mean that the reduced set of constraints
ensures that all original constraints are satisfied. It is unclear if we can determine a priori m̃ such that |Aρ− b| < δ is satisfied.
However, given that the computational cost to evaluate |Aρ− b| < δ is small compared to the cost of the NNLS solve (which
scales superlinearly with m̃), we can check a posteriori if original constraints are satisfied. Thus we propose an iterative method:
in each iteration, we increase m̃, solve for ρ associated with the first m̃ constraints of {Q, bQ, δQ}, and then check if |Aρ− b| < δ

holds. This method ensures that we select an acceptable value for m̃; however, the method involves many NNLS solves that
becomes increasingly more expensive with m̃.
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To increase the efficiency, we attempt to predict m̃ a priori at each iteration of our method, rather than blindly increasing m̃ by
a predetermined value. To this end, we first denote the i-th row of Q and A by qi and ai, respectively. Our goal is to find m̃ such
that, for some solution ρ ∈ RKh that satisfies

|qT
i ρ− bQ,i| < δQ,i i = 1, . . . , m̃,

our solution ρ will also satisfy
|aT

i ρ− bi| < δi i = 1, . . . , m.

To begin, we introduce ρprev ∈ RKh that satisfies the first m̃prev < m̃ QR-based constraints from the previous iteration of the
iterative constraint-enrichment algorithm. We then note that

|aT
i ρ− bi| = |

m∑
j=1

Rij(qT
j ρ)− bi| = |

m̃∑
j=1

Rij(qT
j ρ) +

m∑
j=m̃+1

Rij(qT
j ρ)− bi|

≈ |
m̃∑

j=1

RijbQ,j +
m∑

j=m̃+1

Rij(qT
j ρ)− bi| ≈ |

m̃∑
j=1

RijbQ,j +
m∑

j=m̃+1

Rij(qT
j ρprev)− bi|, (39)

where the first equality follows from ai =
∑m

j=1 Rijqj, and the second equality follows from splitting the sum at m̃. The last two
approximations require two additional assumptions. The first approximation follows from the assumption that the tolerances δQ,j,
j = 1, . . . , m̃, are negligible compared to the truth values bQ,j. The second approximation follows from the assumption that the
residual associated with ρ is well approximated by ρprev: i.e.,

∑m
j=m̃+1 Rij(qT

j ρ) ≈
∑m

j=m̃+1 Rij(qT
j ρprev); see Remark 10. The final

expression of (39) contains only known values and is computable for any m̃. We find the smallest integer m̃ that satisfies∣∣∣∣∣∣
m̃∑

j=1

RijbQ,j +
m∑

j=m̃+1

Rij(qT
j ρprev)− bi

∣∣∣∣∣∣ < δi, i = m̃ + 1, m̃ + 2, . . . , m̃ + m̃extra, (40)

and perform the NNLS solve. As the constraints are ranked in order of importance, we presume that the satisfaction of the m̃extra

constraints implies the satisfaction of the rest of the constraints. In practice, we choose m̃extra = 5.

Remark 10. In the last approximation in (39), while ρ may not be well-approximated by ρprev, we expect that the sum of the
projection of ρ onto the constraints qj is well-approximated using the previous solution ρprev. We again note that the a posteriori
check will ensure satisfaction of all constraints, even if the approximations in (40) are poor.

Remark 11. The total number of constraints m is somewhat arbitrary, in that m represents the number of constraints we have
sampled from the constraint manifold C, but does not reflect the complexity of approximating C using a set of constraints. On
the other hand, the number of reduced constraints m̃ reflects the complexity of C, and approximates the minimal number of
constraints needed to represent C to the degree of accuracy implicit in our selection of the original tolerances δ.

Remark 12. While m̃ hints at the complexity of C, we also note that it is a conservative estimate; i.e., the minimal value of m̃ such
that C is well-represented is likely lower than that determined by the constraint reduction methods due to various conservative
choices.

6.5 Algorithm: NNLS with constraint reduction

We put together the three ingredients of constraints reduction introduced in Sections 6.2–6.4 and present the NNLS with
constraint reduction (NNLS-CR) in Algorithm 2. We start by normalizing the rows {A, b, δ} such that they all have the same
tolerance (line 1). We then initialize m̃ = 0.1m (line 2), where m is the number of constraints in A. On each iteration, we perform
partial row-wise QR factorization with reordering, denoted by QRProw, on A to obtain the first m̃ + m̃extra orthogonal constraint
vectors represented by Q(m̃+m̃extra) (line 6). We then use (35) and (38) with row-reordering to calculate bQ and δQ (lines 7 and 8).
We iterate through increasing m̃, performing QR factorization and calculating bQ and δQ until the termination condition (40) is
satisfied (lines 4–9). Note that the QR factorization step represents an incremental update; i.e., we do not recalculate the already
computed rows of Q, but bQ and δQ will be recalculated each iteration. We then perform NNLS on the m̃ constraints represented
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by {Q(m̃), b(m̃)
Q , δ(m̃)

Q } to get a solution ρ (line 10). If ρ satisfies |Aρ− b| < δ, then we return ρ; otherwise, we iterate through this
whole process, adding new constraints such that m̃ = m̃ + 0.1m, until ρ satisfies all constraints (lines 11 and 5).

Algorithm 2 Non-negative least squares with constraint reduction

Input: A ∈ Rm×Kh
, b ∈ Rm, δ ∈ RKh

Output: ρ ∈ RKh

1: Normalize rows of A, b, δ by the tolerances δ

2: m← #rows(A), m̃← 0, ρ← 0, m̃extra ← 5
3: while m̃ < m do
4: while Condition (40) is not satisfied do
5: m̃← m̃ + 0.1m
6: Construct {Q(m̃+m̃extra), R(m̃+m̃extra), P(m̃+m̃extra)}← QRProw(A, m̃ + m̃extra)
7: bQ

(m̃+m̃extra) ← (R(m̃+m̃extra))−1P(m̃+m̃extra)b
8: δ(m̃+m̃extra)

Q,i ← minj
1

i|Rji| (P
(m̃+m̃extra)δ)j, i = 1, . . . , m̃ + m̃extra

9: end while
10: Solve NNLS(Q(m̃), bQ

(m̃), δ(m̃)
Q ) for ρ

11: if |Aρ− b| < δ then
12: Terminate.
13: end if
14: end while

Remark 13. The constraint reduction in NNLS-CR occurs at the constraint-by-constraint level, which is finer than reducing the
parameter set ΞEQP, since each parameter value yields many constraints. This results in a greater reduction in the number of
constraints and more well-conditioned constraint matrix with less redundancy.

Remark 14. As the proposed method is purely algebraic, the constraint reduction method can be applied to any constrained
minimization problem of the form (28) regardless of how {A, b, δ} are formed. Potential applications include other hyperreduction
methods such as ECSW [23] as well as compressive sensing [24] and sparse nonlinear regression [8]; see Remark 4.

7 HIGH-DIMENSIONAL PROBLEMS: ADAPTIVE EQP TRAINING AND GREEDY
ALGORITHM

We have so far considered constraint reduction, where we start with a set of constraints {A, b, δ} associated with the EQP
training parameter set ΞEQP and identify a smaller but representative set of constraints {Q, bQ, δQ}. An implicit assumption in
the constraint reduction is that the original parameter set ΞEQP may be large, but not excessively large, so that we can form
{A, b, δ}. This assumption, however, may be violated in high-dimensional problem, where it is difficult to select a priori the
set ΞEQP that provides (i) a sufficient coverage of the parameter space D but (ii) is not excessively large so that the constraints
{A, b, δ} can be formed. To address the problem, we propose a formulation that adaptively and incrementally enriches the training
parameter set ΞEQP, so that the resulting set meets both criteria (i) and (ii). We first present a key ingredient of the algorithm,
NNLS for incrementally updated constraints, in Section 7.1. We then present a simultaneous RB–RQ training algorithm for
high-dimensional problems in Section 7.2.

7.1 NNLS-CRi for incrementally updated {A, b, δ}

In order to develop an adaptive EQP sampling strategy, we first develop a modified version of the NNLS-CR algorithm for the
cases where ΞEQP is incrementally enriched. To this end, we develop an NNLS-CRi algorithm, which incrementally update
{Q, bQ, δQ} with ΞEQP. To begin, suppose we have formed a reduced set of m̃prev constraints {Qprev, bQ,prev, δQ,prev} associated
with original mprev constraints {Aprev, bprev, δprev} in the previous iteration, and we are now given a new set of mnew constraints
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{Anew, bnew, δnew} that augment the original constraints. To find a new set of reduced constraints that represent also the new
constraints, we first orthogonalize the new constraints Anew with respect to the previous reduced constraints Qprev, and make
the associated adjustments to bnew and δnew. To obtain the orthogonalized constraints {Â, b̂, δ̂} from {Anew, bnew, δnew}, we first
orthogonalize and adjust the i-th constraint {anew,i, bnew,i, δnew,i} as

âi = anew,i −
m̃Q,prev∑

j=1

(aT
new,iqprev,j)qprev,j, (41)

b̂i = bnew,i −
m̃Q,prev∑

j=1

(aT
new,iqprev,j)bQ,prev,j, (42)

for i = 1, . . . , mnew. As for the tolerances δ̂, we need to make two adjustments: first, we need to ensure that the tolerances δQ,prev

are sufficiently small for the part of anew,i that they now represent; second, we need to adjust the tolerances δnew to account for
the orthogonalization. To handle the second adjustment we first consider a “naive” adaptation of the tolerances that follows (41)
and (42), given by

δ̂naive
i = δnew,i −

m̃Q,prev∑
j=1

|aT
new,iqprev,j|δQ,prev,j, (43)

where the absolute value accounts for the fact that constraints can be satisfied to δnew above or below bnew. However, the naive
tolerances may yield an ill-defined δ̂naive that contains negative values. We may need to tighten the previously determined
tolerances δQ to ensure the tolerance is positive, which ensures that the previously determined set of reduced constraints captures
the information contained in the part of the constraint that was removed in (41):

∑m̃Q,prev
j=1 (aT

new,iqprev,j)qprev,j. We make this
adjustment by setting

δ̂Q,prev,i = min

{
δQ,prev,i, min

j

(
δj

(aT
new,jqprev,i)m̃Q,prev

)}
, i = 1, . . . , m̃Q,prev. (44)

We then make the second adjustment (to replace our naive attempt)

δ̂i = δi −
m̃Q,prev∑

j=1

|aT
new,iqprev,j|δ̂Q,prev,i, i = 1, . . . , mnew. (45)

By following (41), (42), (44), and (45), we obtain the orthogonalized constraints {Â, b̂, δ̂} that augment the reduced constraint set
{Qprev, bQ,prev, δ̂Q,prev} with adjusted tolerances δ̂Q,prev. We then apply the NNLS-CR algorithm (Algorithm 2) to {Atot, btot, δtot},
where

Atot :=
(

Qprev

Â

)
, btot :=

(
bQ,prev

b̂

)
, and δtot :=

(
δ̂Q,prev

δ̂

)
;

the only modification is that, in line 2, we set m̃ = m̃prev so that the first m̃prev rows of the new reduced constraints is
{Qprev, bQ,prev, δ̂Q,prev}. We name the resulting algorithm NNLS-CRi, where the “i” designates that it is designed for iterative
update. The procedure is summarized in Algorithm 3. Note that, as we initialize m̃ = m̃prev, the iterative enrichment of the
constraints using QR factorization with reordering (lines 4–9) is applied only to the subset of newly added constraints {Â, b̂, δ̂}.

7.2 Greedy algorithm and adaptive EQP for high-dimensional problems

We now present a simultaneous greedy RB–RQ training algorithm that uses an adaptive EQP to tackle high-dimensional problems.
We provide an overview of the greedy algorithm in Algorithm 4 and details of the adaptive EQP in line 19 in Algorithm 5.

At high level, Algorithm 4 is a “standard” greedy algorithm but with two modifications: (i) the use of separate and additional
accuracy testing (lines 9–13); and (ii) the use of adaptive EQP (line 19). Given a ROM of dimension N equipped with an online-
efficient a posteriori error estimate, we first find the least-well-approximated parameter µN+1 from a randomly constructed
training set Ξtrain

J (line 7). We then check if the maximum error over the training set Ξtrain
J is less than the target tolerance. If the
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Algorithm 3 Non-negative least squares with constraint reduction for iterative update

Input: Qprev ∈ Rmprev×Kh
, bQ,prev ∈ Rmprev, δQ,prev ∈ Rmprev

Anew ∈ Rmnew×Kh
, bnew ∈ Rmnew, δnew ∈ Rmnew

Output: ρ ∈ RKh

1: Apply (41), (42), (44), and (45) to {Anew, bnew, δnew} to obtain {Â, b̂, δ̂} and δ̂Q,prev

2: Normalize {Â, b̂, δ̂}

3: Form augmented constraints

{
Atot =

(
Qprev

Â

)
, btot =

(
bQ,prev

b̂

)
, δtot =

(
δ̂Q,prev

δ̂

)}
4: Apply NNLS-CR (Algorithm 2) to {Atot, btot, δtot} starting with m̃ = m̃prev

target tolerance is met over all Ξtrain
J , then we re-test the ROM over a separate and larger test set Ξtest

K and terminate if the ROM
meets the target tolerance over also the test set. If the ROM does not meet the target error tolerance (over Ξtrain

J or Ξtest
K ), then

we solve the FOM problem at µN+1 to obtain the primal and dual snapshot (line 16); we perform adaptive mesh refinement as
necessary so that each snapshot meets the target error tolerance. We then update the RB parameter set ΞRB

N , primal RB ΦN , and
the dual RB Φdu

N (lines 17 and 18). We finally update the sparse RQ rules using the adaptive EQP (line 19).

Algorithm 4 Simultaneous greedy RB-RQ training

Input: ROM tolerance: δROM

EQP tolerances: δr, δq,δη

FOM tolerance: δFOM

training and test set sizes: J, K
Output: primal and dual RBs: ΦN, Φdu

N

primal residual, output functional, and DWR RQ weights: ρr, ρq, ρη

1: for N = 0, 1, 2, . . . do
2: Reset training set Ξtrain

J with J random µ ∈ D
3: if N = 0 then
4: Choose centroidal parameter: µN+1 = Centroid(Ξtrain

J )
5: else
6: Evaluate error estimate η̃N(µ) = z̃du

N
Trdu,η(ũN(µ);µ) for all µ ∈ Ξtrain

J

7: Find parameter that maximizes error estimate: µN+1 = arg maxµ∈Ξtrain
J

η̃N(µ)
8: end if
9: if ηN(µN+1) < δROM then
10: Populate test set Ξtest

K with K − J random µ ∈ D
11: Evaluate error estimate η̃N(µ) = z̃du

N
Trdu,η(ũN(µ);µ) for all µ ∈ Ξtest

K

12: if maxµ∈Ξtest
K
η̃N(µ) < δROM then

13: Terminate.
14: end if
15: end if
16: Solve primal and dual FOM problems: {uh(µN+1), zh(µN+1)}← FOM(µN+1; δFOM)
17: Update the RB parameter set: ΞRB

N+1 ← ΞRB
N ∪ {µN+1}

18: Update the primal and dual RBs: ΦN ← GS({ΦN , uh(µN+1)}), Φdu
N ← GS({Φdu

N , zh(µN+1)})
19: Update the RQ weights ρr, ρq, and ρη using adaptive EQP Algorithm 5.
20: end for

Given an online-efficient a posteriori error estimate, the “standard” greedy algorithm permits the use of a large training set
Ξtrain

J without incurring a significant additional cost. For instance, if the cost of the ROM solve and error estimate isO(10−3) of a
single FOM solve, then we can use |Ξtrain

J | = O(103) without making the error sampling a significant computational bottleneck. In
Algorithm 4, we incorporate a separate and additional test set Ξtest

K so that an even larger set can be used to validate the accuracy
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of the ROM at convergence. In this sense, if we did not have to consider the cost of EQP, then the greedy method readily scales
to high-dimensional problem that may require a large Ξtrain

J (and Ξtest
K ) to provide a sufficient coverage of D. However, if we use

the same Ξtrain
J as the training parameter set for EQP• in (line 19), then the method would become computationally prohibitive

for a large Ξtrain
J as the number of constraints scales with |Ξtrain

J |. We hence wish to devise an EQP that uses adaptively chosen,
and ideally much smaller, subset ΞEQP ⊂ Ξtrain

J as the EQP training set, so that the greedy algorithm scales to high-dimensional
problems.

We present in Algorithm 19 an EQP that adaptively enriches the training set ΞEQP to ensure that the training set provides a
sufficient, but not excessive, coverage of the parameter space D. We first set our additional set size nadd to 25 and our “saturation”
test set size ntestSat to 10 (line 1). We then iterate through the following steps. We first use EQPr (or EQPr2) to construct the
constraints {Anew, bnew, δnew} associated with the additional parameter set Ξadd (line 5). We then invoke NNLR-CRi (Algorithm 3)
on the new constraints {Anew, bnew, δnew} to updated the reduced constraints {Q, bQ, δQ} and the primal residual RQ weights ρr

(line 7). We next re-populate the sets Ξadd and ΞtestSat (lines 8 and 9). We finally test for saturation of constraints using ΞtestSat

(line 11). If the constraints are not satisfied, then we restart the loop, adding Ξadd to the training set. If the constraints are satisfied,
then we then construct the output functional and error estimate RQ rules using the training set ΞEQP found through the iterative
process (lines 15–18).

Algorithm 5 EQP with adaptive selection of training set

Input: EQP tolerances: δr, δq, δη

training parameter set: Ξtrain
J

RB parameters ΞRB
N

Output: EQP weights: ρr, ρq, ρη

EQP training set of parameters: ΞEQP

1: Set nadd ← 25, ntestSat ← 10
2: Initialize empty constraints {Q←, bQ ←, δQ ←}.
3: Set Ξadd ← ΞRB

N

4: while
∣∣ΞEQP

∣∣ <
∣∣Ξtrain

J

∣∣ do
5: Construct constraints {Aadd, badd, δadd} using EQPr(Ξadd, δr)
6: Set ΞEQP ← ΞEQP ∪ Ξadd

7: Obtain new {Q, bQ, δQ} and ρr using NNLS-CRi({Q, bQ, δQ}, {A, b, δ})
8: Populate Ξadd with nadd random µ ∈ Ξtrain

J \ΞEQP

9: Populate ΞtestSat with ntestSat random µ ∈ Ξadd

10: Construct constraints {AtestSat, btestSat, δtestSat} using EQPr(ΞtestSat, δr)
11: if

∣∣AtestSatρ− btestSat
∣∣ < δtestSat then

12: Terminate.
13: end if
14: end while
15: Construct constraints {A, b, δ} using EQPq(ΞEQP, δq)
16: Obtain ρq using NNLS-CR({A, b, δ})
17: Construct constraints {A, b, δ} using EQPη(ΞEQP, δη)
18: Obtain ρη using NNLS-CR({A, b, δ})

Remark 15. Algorithm 5 uses the same set of EQP training parameters ΞEQP for EQPr (or EQPr2), EQPq and EQPη, with an
implicit assumption that ΞEQP that provides sufficient coverage for EQPr is sufficient for the other two. Numerical studies in
Section 8.4 support this assumption, at least for problems considered. For problems where the assumption may be violated, we
could instaed apply the adaptive EQP training procedure separately to find each RQ rule for additional cost.

Remark 16. We have found through numerical experiments that the parameters nadd and ntestSat that specify the enrichment
behavior do not have much of an effect on the overall performance of the greedy algorithm. We choose nadd = 25 based on an
observation that |ΞEQP| < 200 for all test cases that we have considered; nadd = 25 provides a balance between minimizing the
number of enrichment iterations in Algorithm 5 and providing sufficient granularity to not substantially overshoot the minimum
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F I G U R E 1 Deformed NACA0012 airfoil for two different lattice configurations [19].

required size of ΞEQP. For the second parameter, we set ntestSat = 10 heuristically to balance sufficient check and computational
cost. We again note that the choice of nadd and ntestSat have little impact on the overall performance of the greedy algorithm.

8 EXAMPLES

In this section, we assess the developed methods using four test cases: compressible Navier–Stokes flow over shape-parameterized
airfoils (Section 8.1), the Reynolds-averaged Navier–Stokes (RANS) flow over the ONERA M6 wing (Section 8.2), data
assimilation of unsteady Navier–Stokes flow (Section 8.3), and UQ of RANS flow over the RAE2822 airfoil (Section 8.4).

8.1 Navier–Stokes flow over shape-parametrized airfoil

8.1.1 Case description

We first consider model reduction of compressible Navier–Stokes flow over an airfoil whose shape is parameterized by free-form
deformation (FFD) [35]. The undeformed airfoil is NACA0012, with the leading edge at (0,0) and normalized to have a unit
chord length. We then introduce a 4× 2 equispaced FFD control lattice over [−1.1, 2.1]× [−0.16, 0.16], where each lattice
point can be deformed in the x2 direction by ∆x ∈ [−0.02, 0.02]. The eight variable lattice points define our parameter space,
D := [−0.02, 0.02]8 ⊂ R8. Figure 1 shows the NACA0012 airfoil, under FFD for different lattice configurations. For more
detailed discussion of FFD and its incorporation in the RB–RQ method, we refer to [19, 20].

The flow condition is given by a fixed chord-based Reynolds number Rec = 4000, freestream Mach number M∞ = 0.3, and
angle of attack α = 1◦. Under these conditions, the flow remains laminar and, while compressibility effect is present, there are
no shock waves. Our output quantity of interest is the drag coefficient on the airfoil, which, for the given flow condition and
shape-parameter range, lies in cd ∈ [0.055, 0.065]. We thus consider error tolerances in our output of 0.0006 for 1% error or
0.0003 for 0.5% error.

We obtain the “truth” FE solution using an adaptive high-order DG method. A p = 2 mesh is generating through anisotropic
adaptive mesh refinement such that the DWR error estimate for all training parameter values is less than 0.5%; i.e., ηh(µ) ≤
0.0003, ∀µ ∈ Ξtrain. The resulting FE approximation space has Nh = 10,968 degrees of freedom with Kh = 22,602 quadrature
points.

We demonstrate two important elements of the EQP, NNLS, and NNLS-CR methods: (i) the need for rounding-error
stable residual computation (as described in Section 5) to achieve tight tolerances δ; and (ii) the substantial reduction in the
number of constraints needed to determine our RQ rules, and the associated reduction in the offline training time achieved
by employing NNLS-CR (as discussed in Section 6). To this end, we consider large predetermined parameter training sets
Ξtrain = ΞRB = ΞEQP = {µi ∈ D}Ntrain

i=1 of Ntrain parameter values drawn from a uniform random distribution.

8.1.2 Rounding-error stable residual calculation

We first assess the rounding-error stable residual calculation introduced in Section 5. To this end, we set Ntrain = 10 and construct
an RB of size N = 10. We then apply the rounding-error-stable and standard formulation to EQPr2(Ξtrain, δr) to find the residual
RQ rules. Output RQ rules are found using EQPq(Ξtrain, δr/10) such that the output functional calculation error is an order of
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F I G U R E 2 Comparison of the ℓ∞ norm of the NNLS residual as a function of time for the rounding-error-stable and
standard residual calculation methods for the FFD NACA case.

T A B L E 1 Comparison of NNLS iterations and solve time for the standard and rounding-error stable residual calculation
method for the FFD NACA case.

outer loop inner loop normalized NNLS
iterations iterations solve time

standard 14994 23247 1.0
rounding-error stable 7058 11693 0.51

magnitude smaller than the prescribed tolerance δr. To demonstrate the ability to achieve arbitrarily tight NNLS tolerances, we
consider a (very) tight tolerance given by δr = 1× 10−10. While we recognize that this may be of a limited practical interest, the
ability to achieve arbitrarily tight precision is (arguably) desired in any algorithm. All constrained minimization problems are
solved using NNLS-CR.

Figure 2 compares the rounding-error-stable and standard NNLS residual calculation methods. Namely, we present the ℓ∞

norm of the NNLS residual as a function of computation time for the final NNLS solve of the NNLS-CR method applied to
EQPr2(Ξtrain, δr). As discussed in Section 5, the stable residual calculation is activated after we encounter significant rounding
error, which corresponds to the point where the two lines diverge. The rounding-error stable residual calculation method reduces
the residual more rapidly after that point. Table 1 presents the number of iterations for the inner loop (lines 9–18 of Algorithm 1)
and the outer loop (lines 2–20 of Algorithm 1) of the NNLS method, and the total NNLS solve time. The rounding-error residual
calculation method reduces the number of inner and outer loop iterations, as well as the total solve time.

8.1.3 Comparison of NNLS and NNLS-CR methods

We next compare the NNLS-CR method (Algorithm 2) to the standard NNLS method (Algorithm 1), in terms of the offline
training time as well as the resulting RQ rules. In this study, we consider various values of Ntrain = |Ξtrain|. Both methods use
POD on Ξtrain to construct an RB of size N = 25 and use EQPr2(Ξtrain, δr) and EQPq(Ξtrain, δr/10) to find the primal residual
and output RQ rules, for a prescribed output error tolerance of 0.5%, i.e. δr = 0.0003. Both methods are compared to the full
quadrature RB solution (i.e. with the Kh FE quadrature points) for a random set of 40 test parameters Ξtest

40 .
Table 2 characterizes the constraint reduction and the ROMs obtained by employing these two methods. We see that the

constraint reduction methods are able to reduce the number of constraints by up to almost 10 times (i.e., m̃ ≈ m/10), which
results in a substantial reduction in the NNLS solve time. The size of the set of reduced constraints converges to ≈ 4000, from
which we infer a key result: for the prescribed tolerance δr and RB size N, the entire continuous constraint manifold C is well
represented by ≈ 4000 constraints.

Table 2 also shows that the output errors for the ROM constructed using NNLS-CR is smaller than those using NNLS, which
indicates that our constraint tolerances δQ for the NNLS-CR method are conservative compared to the tolerances for the original
constraints. We also observe that we need a training set size of ≈ 50 to sufficiently sample our parameter space such that the
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T A B L E 2 Comparison of ROMs obtained by employing NNLS and NNLS-CR for the FFD NACA case. Online solve times
are for a single core and are normalized by the single FOM evaluation time.

(a) NNLS

Ntrain m Kr Kq maxµ∈Ξtest
40

|̃sN (µ) − sN (µ)| online solve time
25 16302 2122 17 2.21 × 10−4 0.0074
30 19562 2024 18 2.57 × 10−3 0.0084
35 22822 2270 18 2.84 × 10−4 0.0043
40 26082 2067 17 9.38 × 10−4 0.0090
45 29342 2252 19 4.09 × 10−4 0.0057
50 32602 2157 19 3.33 × 10−4 0.0075

(b) NNLS-CR

Ntrain m̃ Kr Kq maxµ∈Ξtest
40

|̃sN (µ) − sN (µ)| online solve time
25 3667 3647 17 2.12 × 10−4 0.018
30 3423 3418 18 6.89 × 10−4 0.017
35 3993 3971 18 7.45 × 10−5 0.0097
40 3260 3253 17 4.50 × 10−4 0.025
45 3667 3658 19 3.90 × 10−5 0.016
50 4075 4065 19 4.59 × 10−5 0.0091

T A B L E 3 Comparison of hyperreduction time for the NNLS and NNLS-CR methods for the FFD NACA case, normalized
by the total hyperreduction time for the NNLS method with Ntrain = 50. “Constraint reduction” refers to the row-wise QR
factorization performed for constraint reduction.

(a) NNLS

Ntrain constraint construction NNLS solve total
25 0.078 0.257 0.334
30 0.117 0.350 0.467
35 0.164 0.462 0.626
40 0.215 0.427 0.642
45 0.272 0.640 0.911
50 0.347 0.653 1.000

(b) NNLS-CR

Ntrain constraint construction constraint reduction NNLS solve total
25 0.078 0.0406 0.0576 0.176
30 0.115 0.0454 0.0554 0.216
35 0.163 0.0602 0.0689 0.293
40 0.217 0.0541 0.0284 0.299
45 0.279 0.0678 0.0473 0.394
50 0.344 0.0834 0.0729 0.501

desired output error is achieved for all test parameter values. (We recall that the prescribed error is an estimate and not an upper
bound.) The online evaluation time for the ROMs based on NNLS-CR is greater than those based on NNLS, as the conservative
choice of the δQ tolerance results in RQ rules with nearly twice as many points.

Table 3 summarizes the training times. We normalize the times by the total offline hyperreduction time for the NNLS method
applied to a training set of size J = 50. The NNLS-CR method is approximately twice as fast as the NNLS method. We further
note that the constraint construction, which is identical for the NNLS and NNLS-CR methods, is the largest contributor to the
hyperreduction time for NNLS-CR.

Remark 17. We were unable to obtain converged ROM solutions for few parameter values in µ ∈ Ξtest
40 in some cases. Both

full quadrature solution and the RQ solution exhibited these numerical instabilities, and, for all parameter values for which the
full-quadrature ROM converged, so did the RQ ROM. We thus conclude that these issues are not caused by the hyperreduction
method, but rather by the Galerkin projection itself. Improving the stability of the projection is beyond the scope of this work and
is not the focus of the present work, and hence we have excluded the results for unconverged cases from the error calculation.

8.2 Reynolds-averaged Navier–Stokes flow over ONERA M6 wing

8.2.1 Case description

We next consider turbulent flow over an ONERA M6 wing governed by the Reynolds-averaged Navier–Stokes (RANS) equation
with the Spalart–Allmaras (SA) turbulence model [37]. The varied parameters are the freestream Mach number M∞ ∈ [0.3, 0.5]
and angle of attack α ∈ [0◦, 3◦], which together define our parameter spaceD = [0.3, 0.5]× [0◦, 3◦] ⊂ R2. The Reynolds number
is fixed to Re = 106. The quantity of interest is the drag coefficient, which, for the given flow conditions, lies approximately
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T A B L E 4 Comparison of ROMs obtained by employing EQPr and EQPr2 for the ONERA case. For all tolerances smaller
than 10−6, the EQPr results are similar. Online solve times are normalized by the single FOM evaluation time.

(a) EQPr

δr Kr Kq maxµ∈Ξtest
9

|̃sN (µ) − sN (µ)| online solve time
10−4 67 7 9.28 × 10−6 1.19 × 10−4

10−5 67 8 8.78 × 10−6 1.17 × 10−4

< 10−6 67 9 2.06 × 10−6 ∼ 1.2 × 10−4

(b) EQPr2

δr Kr Kq maxµ∈Ξtest
9

|̃sN (µ) − sN (µ)| online solve time
10−4 460 7 9.22 × 10−6 1.54 × 10−4

10−5 541 8 1.19 × 10−6 1.61 × 10−4

10−6 622 9 2.66 × 10−7 1.86 × 10−4

10−7 703 9 6.31 × 10−8 1.87 × 10−4

10−8 784 9 2.11 × 10−9 1.90 × 10−4

10−9 804 9 1.44 × 10−10 1.69 × 10−4

T A B L E 5 Comparison of time to find primal residual RQ rule for the ONERA case, normalized by time for EQPr trial with
δr = 10−9. For all tolerances, the EQPr incurred a similar hyperreduction time. “Constraint reduction” refers to the row-wise QR
factorization performed for constraint reduction.

(a) EQPr

δr constraint construction NNLS solve total
all ∼ 0.97 ∼ 0.031 ∼ 1.0

(b) EQPr2

δr constraint construction constraint reduction NNLS solve total
10−4 4.58 3.04 0.84 9.30
10−5 4.57 4.04 1.57 11.0
10−6 4.57 5.30 2.15 12.8
10−7 4.56 6.76 2.59 14.7
10−8 4.57 8.56 3.94 17.9
10−9 4.62 9.03 5.37 19.9

within the range CD ∈ [0.02, 0.03]. The “truth” FE solution is obtained using an adaptive high-order DG methods. A p = 2 mesh
is generated through anisotropic adaptive mesh refinement such that the DWR error estimate for all training parameter values is
less than 0.5%; i.e., ηh(µ) ≤ 0.0001, ∀µ ∈ Ξtrain. The resulting mesh has Nh = 864,720 degrees of freedom with Kh = 4,881,708
quadrature points. This case involves a three-dimensional spatial domain and tests the ability of EQP to handle a large FE space
size Nh and quadrature set size Kh. We also demonstrate that the second-order constraints discussed in Section 3.3 are necessary
to achieve tight output error tolerances. For this problem, we use 200 cores for all calculations.

8.2.2 Second-order constraints

We first illustrate the need for second-order constraints introduced in Section 3.3 to achieve tight error tolerances in large
problems. To this end, we first generate N = 9 RB associated with a set Ξtrain

9 of 3× 3 parameter points equidistributed over
the two-dimensional parameter space D. We then find the RQ rules using the first-order EQPr(Ξtrain

9 , δr) and the second-order
EQPr2(Ξtrain

9 , δr). EQPr is solved using the standard NNLS method as the small number of constraints (m = 83) does not
require constraint reduction; EQPr2, which involves many more constraints (m = 812), is solved by the NNLS-CR method. The
output functional is reduced using EQPq(Ξtrain

9 , δr/10), such that the output functional evaluation error is an order of magnitude
smaller than the prescribed output error tolerance δr. For this case, we set our test parameter set to be equal to the training set
(i.e. Ξtest

9 = Ξtrain
9 ) to show that, even in the reproductive case, the second-order constraints are required to achieve very small

tolerances δr.
Tables 4 and 5 summarize the ROMs and offline training time for EQPr(Ξtrain

9 , δr) and EQPr2(Ξtrain
9 , δr) for output error

tolerances ranging from 0.5% (δr = 10−4) to 5× 10−6% (δr = 10−9). We also plot the output error in Figure 3. We first observe
that the first-order method is unable to achieve a tolerance tighter than 2× 10−6, while the second-order method achieves the
desired tolerances for each test. We conclude that the second-order constraints is needed to achieve very tight tolerances. We
next observe that, due to an increase in the number of constraints from m = 83 to m = 812, both the offline training time and
the RQ rule size are increased by about 10–20 times and 10 times, respectively, when the second-order constraints are used.
We hence recommend using second-order constraints only when a tight tolerance necessitates it. In practice, as the solution
of EQPr(Ξtrain

9 , δr) is relatively fast, we may first solve EQPr(Ξtrain
9 , δr), check whether the target tolerances are met, and solve

EQPr2(Ξtrain
9 , δr) only if we fail to meet the target. In this study, we set the second-order tolerance δJ equal to δr as discussed in

Remark 2; however, the choice may be conservative for larger tolerances, leading to a large RQ rule size.
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F I G U R E 3 Comparison of the output error for the EQPr and EQPr2 methods applied to the ONERA case.

T A B L E 6 Comparison of ROMs obtained by employing NNLS and NNLS-CR for the ONERA case. Online solve times are
for 200 cores and are normalized by the single FOM evaluation time.

RQ rule size maximum output errors for µ ∈ Ξtest
20 online time

Kr Kq |̃sN − sN | |sN − sh | |̃sN − sh |
NNLS 660 10 4.65 × 10−5 1.23 × 10−4 7.93 × 10−5 2.07 × 10−4

NNLS-CR 1179 10 4.53 × 10−5 1.23 × 10−4 8.10 × 10−5 2.26 × 10−4

T A B L E 7 Comparison of constraint reduction and hyperreduction time for the NNLS and NNLS-CR methods applied to
the primal residual RQ rule for the ONERA case. All times are normalized by the single FOM evaluation time. “Constraint
reduction" refers to the row-wise QR factorization performed for constraint reduction.

m or m̃ constraint construction constraint reduction NNLS solve total
NNLS 2498 5.99 — 6.28 12.3
NNLS-CR 1179 5.99 5.19 3.51 14.9

8.2.3 Comparison of NNLS and NNLS-CR

We now compare the application of the NNLS and NNLS-CR methods to determine the RQ rules for the ONERA wing case. We
apply POD on Ξtrain

16 of 4× 4 equispaced training points over D to find an RB of size N = 12; this value was picked such that we
achieve a maximum RB error maxµ∈Ξtest

20
|sN(µ)− sh(µ)| ≈ 0.0001. We then construct the primal residual RQ rule by solving

EQPr2(Ξtrain
16 , δr) using NNLS and NNLS-CR for a prescribed output error tolerance of δr = 0.0001 (0.5% error). In both cases,

the output functional RQ rule is constructed using EQPq(Ξtrain
16 , δr/10) using NNLS; the constraint reduction is unnecessary for

output functional since the number of constraints is only 16. We then assess the maximum output error maxµ∈Ξtest
20

|̃sN(µ)− sN(µ)|
for a set of 20 random test parameters Ξtest

20 . We employ the rounding-error stable residual calculation method for all NNLS and
NNLS-CR.

Tables 6 and 7 summarize the ROMs constructed and the associated training times for NNLS and NNLS-CR. The NNLS and
NNLS-CR methods both obtain RQ rules that achieve the desired output error tolerance for all test parameter values. Similarly
to the previous case, NNLS-CR yields a larger RQ rule than NNLS; in this case, Kr is twice as large as for NNLS-CR. As for the
hyperreduction time, we observe that the NNLS solve time itself is reduced by a factor of ∼ 2 through constraint reduction;
however, the constraint reduction requires an additional QR factorization, thus the total time is slightly higher for NNLS-CR. This
is not discouraging for a few reasons: first, the hyperreduction times are similar, so NNLS-CR can be applied without a substantial
increase in time; second, this case represents a small parameter space and thus a small constraint space, which is not amenable to
much reduction in the number of constraints. For a problem with a “larger” parameter space (i.e., in higher dimension and/or
with larger parametric ranges), we observe that NNLS-CR is more efficient, as we will see shortly in the subsequent examples.
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(a) “true" solution field for a random initial state (b) “true" drag coefficient history

F I G U R E 4 Multi-fidelity ensemble Kalman filter study [16].

8.3 Multi-fidelity ensemble Kalman filter

8.3.1 Case description

As our third example, we consider data assimilation by a multi-fidelity ensemble Kalman filter (MF-EnKF) [16] for a NACA0012
airfoil under unsteady compressible Navier-Stokes flow. This multi-fidelity data assimilation method combines a FOM, a ROM,
and observation data from probes to provide rapid and reliable state estimation. We refer to [36] for the RB–RQ formulation for
unsteady problems and to [16] for the MF-EnKF formulation; we here provide only a brief case description that is particularly
relevant to the present comparison of the NNLS and NNLS-CR techniques. Specifically, we note that MF-EnKF requires the
solution of EQP problem for an ensemble of sets of snapshots associated with unsteady flow solutions. The flow condition is
given by the chord-based Reynolds number of Rec = 700, freestream Mach number M∞ = 0.2, and angle of attack α = 20◦,
which yields a separated, unsteady flow. The output is the drag coefficient which, for the given flow conditions, lies approximately
within the range cd ∈ [0.4, 0.5]. We thus consider error tolerances in our output of 0.002 for 0.5% error. Figure 4 shows the
separated flow about the NACA airfoil, the location of the velocity probes and the periodic nature of the output.

The “truth” FE solution uses an adaptive p = 2 DG method for spatial discretization and a third-order diagonally-implicit
Runge-Kutta (DIRK) formulation [1] for the time discretization. The POD and EQP training snapshots are associated with
various trajectories, each starting with a random initial condition drawn from the periodic “truth” solution for this problem and
stepped forward over Nt time steps. This unsteady case demonstrates the use of the constraint reduction methods for an unsteady
problem with a large “parameter” training set (i.e., time steps and ensemble trajectories). We use 160 cores for all computations.

8.3.2 Single trajectory

We first compare NNLS and NNLS-CR with a single unsteady solution trajectory as the training set (i.e., without an ensemble of
trajectories). We also construct an unsteady DWR error estimator for the time-averaged drag. The setup for this case is replicated
from [36], but we use a prescribed RB size N and training snapshots Ξtrain, instead of the greedy algorithm in [36]. We use a time
step of δt = 0.25 over the time interval of [0, 12] to generate Ξtrain

Nt
= {ti}Nt

i=1 and solution snapshots {uh(ti)}Nt
i=1 for Nt = 49. We

use adaptive mesh refinement to drive the FOM error estimate to 0.5%; i.e., ηh ≤ 0.002. The resulting FE approximation space
has Nh = 51,912 degrees of freedom and Kh = 105,198 quadrature points. We then apply POD to the snapshots to obtain an RB
of size N = 22; the RB size is chosen such that the RB error for is less than 0.5%, i.e.,

∣∣sN(t0)− sh(t0)
∣∣
t0∈Ξtest ≤ 0.002. We then

construct RQ for the primal residual, output functional, and DWR using EQPr(Ξtrain
Nt

, δr), EQPq(Ξtrain
Nt

, δr/10), and EQPη(Ξtrain
Nt

, δr),
respectively, for a prescribed output error tolerance of 0.5%, i.e. δr = 0.002.

Tables 8 and Table 9 summarize the resulting ROMs and the training times, respectively. We first note that both ROMs yield
output errors that are within the prescribed tolerance for both NNLS and NNLS-CR, and the error estimates bound the true
errors. The NNLS-CR result exhibits a “lucky cancellation” of the RB error |sN − sh| and the RQ error |̃sN − sN |, resulting in a
total RB-RQ error |̃sN − sh| that is lower than either of these error sources individually; this lucky cancellation contributes to the
relatively conservative error estimate. We next note that the RQ rules associated with NNLS-CR are approximately twice the
size of those associated with NNLS due to the conservative estimate of the transformed tolerance δQ; however, there is only
≈ 25% increase in the online evaluation time, due to the fixed parallel overhead associated with using 160 cores on a small
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T A B L E 8 Comparison of ROMs obtained by NNLS and NNLS-CR for the single-trajectory unsteady flow case. Online solve
times are normalized by the single FOM evaluation time.

RQ rule size output errors online
Kr Kq Kη |̃sN − sN | |sN − sh | |̃sN − sh | η̃N time

NNLS 361 9 464 3.80 × 10−4 1.65 × 10−3 1.27 × 10−3 5.63 × 10−3 0.0221
NNLS-CR 838 13 836 8.52 × 10−4 1.65 × 10−3 7.98 × 10−4 4.08 × 10−3 0.0276

T A B L E 9 Comparison of constraint set size and hyperreduction time for the NNLS and NNLS-CR methods applied to the
single-trajectory unsteady flow case. All times are normalized by the single FOM evaluation time. “Constraint reduction” refers
to the row-wise QR factorization performed for constraint reduction.

(a) primal residual RQ rule

m or m̃ constraint construction constraint reduction NNLS solve total
NNLS 4226 0.121 — 1.31 1.43
NNLS-CR 839 0.130 0.744 0.627 1.53

(b) output functional RQ rule

m or m̃ constraint construction constraint reduction NNLS solve total
NNLS 192 0.0078 — 0.0011 0.0089
NNLS-CR 13 0.0076 0.00033 0.0013 0.0092

(c) DWR RQ rule

m or m̃ constraint construction constraint reduction NNLS solve total
NNLS 8450 0.465 — 2.57 3.04
NNLS-CR 839 0.462 1.44 0.392 2.33

ROM. We next observe in Table 9 that the offline training time is slightly smaller for NNLS-CR. For NNLS-CR, the constraint
reduction time dominates the hyperreduction time. The total hyperreduction time is not reduced by much when NNLS-CR is
used for this case; due to the increased quadrature rules sizes Kr, Kq, and Kη , the NNLS method may be preferred.

8.3.3 Multiple trajectories

We now construct ROMs from an ensemble of four solution trajectories for MF-EnKF. We define a parameter set Ξtrain
4Nt

=
{{tj

i}
Nt
i=1}4

j=1 and solution snapshots {{uh(tj
i)}

Nt
i=1}4

j=1, where Nt varies with the time step size ∆t ∈ [0.15, 0.4]. The adaptive DG
method yields an approximation space with Nh = 55,296 degrees of freedom and Kh = 108,050 quadrature points to meet the
output error tolerance of ηh ≤ 0.002. We apply POD to the snapshots to construct an RB of size N = 22, such that the RB error
is controlled to within 0.5%. We then invoke EQPr

glob(Ξtrain
4Nt

, δr) and EQPq(Ξtrain
4Nt

, δr/10) to find the primal residual and output
function RQ rules, for a prescribed error tolerance of 0.5%, i.e. δr = 0.002. The EQPr

glob [16] is a version of EQP that uses the
entropy variables and different forms of the manifold accuracy constraints (21) to control the global solution error. For this case,
we modify the NNLS-CR procedure (Algorithm 2) in the following manner: instead of starting with m̃ = 0.05m and increasing m̃
by 0.05m each iteration, we start with m̃ = 600 and increase m̃ by 100 each iteration. This is simply to ensure that the NNLS-CR
method tries the same values of m̃ for all cases with different ∆t and thus different constraint set sizes m.

Table 10 summarizes the constraint reduction details for various time-step sizes ∆t. We focus on the construction of the
primal residual RQ rule, since the construction of output functional RQ rules are a few orders of magnitude faster. We observe
that for all the time-step sizes the NNLS-CR method is able to determine a set of approximately m̃ ≈ 700 reduced constraints
that represent the original m = 10,000–30,000 constraints. For the largest step size of ∆t = 0.40, we see the smallest number of
reduced constraints m̃, which suggests that ∆t may be too large to sufficiently sample the parametric constraint manifold C. As
the step size is reduced, the number of reduced constraints converges to 700. This convergence suggests that we have sufficiently
sampled our constraint space and that C is amenable to approximation by a set of ≈ 700 constraints. As discussed in Remark 12,
the true minimum value of required m̃ is likely slightly lower than this. We finally note that the hyperreduction time is dominated
by the QR factorization used in constraint reduction, which scales with the number of original constraints.

Remark 18. The NNLS method is too computationally expensive to use in the multi-trajectory case without constraint reduction
of some kind. Results in [16] use a heuristic constraint reduction algorithm, that generates a reduced set of constraints but does
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T A B L E 10 Comparison of size of reduced set of constraints, RQ rule size and hyperreduction time for various time-step
values for the EnKF case. All times are normalized by the single FOM evaluation time for ∆t = 0.25. “Constraint reduction”
refers to the row-wise QR factorization performed for constraint reduction.

hyperreduction time
∆t m m̃ Kr constraint construction constraint reduction NNLS solve Total

0.40 10082 600 589 0.344 0.863 0.0970 1.30
0.30 14082 800 778 0.280 1.60 0.344 2.22
0.25 16898 800 785 0.342 1.92 0.334 2.60
0.20 21122 700 685 0.416 2.07 0.208 2.70
0.15 29442 700 690 0.583 2.86 0.217 3.66

F I G U R E 5 Illustration of the RANS UQ problem for the RAE2822 airfoil [19].

not ensure that all original constraints are satisfied. In comparison, the proposed NNLS-CR method ensures that all original
constraints are satisfied, and is able to find a smaller set of reduced constraints that represents C for a given tolerance.

8.4 UQ of RANS flow

8.4.1 Case description

As the final case, we consider UQ of the RANS flow over an RAE2822 airfoil. Specifically, we wish to quantify the impact of the
uncertainties in the SA turbulence model [37] on the drag. The SA turbulence model involves many coefficients whose values
are empirically calibrated, leading to uncertainty in the output. We wish to rapidly and reliably quantify this uncertainty using a
ROM to calculate the drag value for many different realizations of the empirical parameters. Following [34], we treat seven
empirical parameters of the SA model as independent uniform random variables: σ ∈ [0.6, 1.0], κ ∈ [0.38, 0.42], cv1 ∈ [6.9, 7.3],
cw2 ∈ [0.055, 0.3525], cw3 ∈ [1.75, 2.5], cb1 ∈ [0.12893, 0.137], and cb2 ∈ [0.60983, 0.6875]. The flow condition is fixed with
the freestream Mach number M∞ = 0.3, the angle of attack α = 2◦, and the Reynolds number Rec = 6.5× 106. We hence have
a seven-dimensional parameter domain D. For these parameter values and flow conditions, our output of interest lies in the
range cd ∈ [0.0076, 0.0092]; we hence set the error tolerances to 9× 10−5 for 1% error or 4.5× 10−5 for 0.5% error. Figure 5
illustrates the uncertainty propagation process.

In order to efficiently sample this high-dimensional parameter space such that we can construct a ROM that exhibits δROM-
robustness ∀µ ∈ D, we employ the greedy training procedures outlined in Section 7. Specifically, we use Algorithms 4
and 5 to adaptively determine our training sets ΞRB and ΞEQP, while simultaneously constructing our ROM. We select the
following algorithmic parameters. We set the training and test set sizes to J = 300 and K = 1000. We set the FOM tolerance of
δFOM = 4.5×10−5, so that each adaptive P2 DG snapshot yields the DWR error estimate of less than 0.5%; i.e., ηh(µ) ≤ 4.5×10−5,
∀µ ∈ ΞRB; at the end of the greedy algorithm, this yields in an adapted mesh with Nh = 41,490 degrees of freedom and
Kh = 67,848 quadrature points. We similarly set the ROM tolerance to δROM = 4.5× 10−5: i.e., 0.5% error. We finally set the
EQP tolerances to δr = 2.25× 10−5, δq = 2.25× 10−6 and δη = 2.25× 10−5, so that EQP tolerances are small relative to the
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F I G U R E 6 Output errors and error estimates for the RAE2822 RANS UQ case.

T A B L E 11 Constraint reduction and ROM details for each greedy iteration for the RAE2822 RANS UQ case.

primal residual output functional DWR
iteration N |ΞEQP | m m̃ Kr m m̃ Kq m m̃ Kη

1 2 6 28 14 13 6 2 1 26 18 17
2 4 32 206 71 67 32 4 3 258 169 168
3 6 48 392 122 119 48 6 5 578 309 309
4 8 104 1050 224 223 104 10 9 1666 664 664
5 10 55 666 237 237 56 7 6 1102 495 494
6 12 56 790 308 307 56 7 6 1346 469 469
7 14 57 918 353 352 57 9 8 1598 712 711
8 16 58 1050 418 417 58 9 8 1858 829 829
9 18 59 1186 490 489 59 11 10 2126 848 846

10 20 60 1326 567 566 60 11 10 2402 1080 1075
11 22 61 1470 630 629 61 12 12 2686 804 804

FOM and ROM errors. In each iteration, we collect two RB functions, one for RANS mean-flow equation and the other for the
SA equation; hence, the RB size N is twice the number of greedy iterations. We use 40 cores for all computations.

8.4.2 Results

We now present the results of applying the greedy procedures to the seven-dimensional RANS UQ problem for the RAE2822
airfoil. Figure 6 shows the convergence of the output error with greedy iterations. The test set Ξtest contains 10 randomly chosen
parameter values over D. The greedy algorithm obtains a ROM that meets the target output error tolerance δROM on the 11th
iteration. Throughout the iterations, the DWR error estimate η̃(µ) is quite accurate, even on the test set Ξtest which is different
from the training set; i.e., the error estimate is accurate in predictive setting.

Table 11 shows details of constraint reduction and ROM in each greedy iteration. We observe that the size of the EQP training
set constructed by the adaptive EQP (Algorithm 5) saturates to ∼ 60, and the constraint reduction method consistently reduce the
number of constraints by another factor of 2 to 3. At the last iteration, the primal residual EQP have |Ξtrain| = 61 training points,
which yields m = 1470 constraints, which is reduced to m̃ = 630 constraints. However, due to the saturation check performed
by the algorithm, this reduced set of 630 constraints approximately represent all of the approximately 7,200 constraints that
would be constructed for all parameter values in Ξtrain

J and in C. Thus, the combination of the a priori reduction by the adaptive
ΞEQP selection and the a posteriori reduction by the constraint reduction yields significant reduction in the effective number of
constraints.

Table 12 shows the timing details of the greedy algorithm. The error estimate sampling for the last two iterations is much more
computationally expensive than for previous iterations, since the “termination check” using the richer parameter set Ξtest

K with
K = 1000 parameter values is used check δROM-robustness (lines 9–13 of Algorithm 4). Table 13 summarizes the computation
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T A B L E 12 Breakdown of computation time for each iteration of the greedy algorithm as applied to the RAE2822 RANS
UQ case. Online solve times are normalized by the single FOM evaluation time without error estimate.

EQP
err. est. FOM primal output

iteration sampling solve residual functional DWR total
1 – 6.74 0.187 0.0190 0.13 7.30
2 0.432 1.38 0.703 0.0297 0.76 3.89
3 0.916 1.36 1.02 0.0360 1.80 5.67
4 0.605 1.41 2.83 0.0611 7.40 13.5
5 0.783 1.43 1.90 0.0420 3.93 8.76
6 1.03 1.92 2.28 0.0427 4.08 9.96
7 1.16 1.52 3.18 0.0455 7.25 13.8
8 1.26 1.52 3.46 0.0466 9.48 16.5
9 1.28 1.39 5.25 0.0510 10.5 19.2

10 3.62 1.61 5.71 0.0499 16.9 26.6
11 4.72 1.75 7.10 0.0538 11.3 28.0
12 7.57 – – – – –

Total 23.4 22.0 33.6 0.477 73.5 153

T A B L E 13 Summary of computation time for the entire greedy algorithm as a percentage of the total greedy training time
for the RAE2822 RANS UQ case.

err. est. FOM constraint constraint NNLS
sampling solves construction reduction solves others

14.5% 13.7% 19.5% 26.7% 19.4% 6.18%

T A B L E 14 Summary of the ROM constructed for the RAE2822 RANS UQ case. Online solve times are normalized by the
single FOM evaluation time without error estimate.

RQ rule size maximum output errors for µ ∈ Ξtest online time
N Kr Kq Kη |̃sN − sN | |sN − sh | |̃sN − sh | η

22 629 12 804 6.20 × 10−7 5.76 × 10−6 6.30 × 10−6 6.26 × 10−6 0.0070

time for the entire greedy algorithm by the key operations. The QR factorization performed for constraint reduction is the largest
contributor to the total greedy algorithm time, followed by the constraint construction and NNLS solve operations.

Finally, Table 14 shows details for the ROM obtained at the end of the greedy algorithm. By the design of the greedy algorithm,
we hope that the ROM exhibits δROM-robustness for all of D for δROM = 4.5 × 10−5 (i.e., 0.5%); indeed, the ROM achieves
output errors of less than 0.5% for all parameters in the test set Ξtest. The DWR error estimate is also effectively estimates the
error in the RB–RQ approximation. The online computational speedup is approximately 150×.

9 SUMMARY

In this work, we proposed improvements to EQP for cases that (i) demand tight hyperreduction tolerances, (ii) involve a large
number of residual-matching conditions, and (iii) involve a high-dimensional parameter space. To address (i), we developed
constraints for the EQP that provides second-order error control (Section 3.3) and a rounding-error stable NNLS (Section 5).
To address (ii), we developed NNLS-CR, which incorporates a constraint reduction strategy that identifies a reduced set of
orthogonal constraints whose solution satisfies all of the original constraints (Section 6). To address (iii), we developed a
greedy algorithm that incorporates an adaptive EQP (Section 7.2) and NNLS-CRi which enables efficient solution of the EQP
problem (Section 7.1). We then demonstrated the algorithms developed using four different classes of numerical examples
(Section 8). We also emphasize that, while we demonstrated the algorithmic improvements using EQP, all modifications to the
NNLS are equally applicable to other hyperreduction methods based on direct integration (cf. Remarks 4 and 14).

While numerical examples show that the techniques developed improves the performance of EQP hyperreduction, there are
still a number of limitations that warrant further studies. For instance, as discussed and observed, NNLS-CR can yield constraints
that are too conservative; it may be possible to improve the form of constraints {Q, bQ, δQ} as well as the method to determine
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m̃ to mitigate this conservativeness. Similarly, current constraints for second-order error control in EQPr2 do not exploit the
quantitative connection between δJ and the error. Finally, while it was not a focus of the present work, some of the ROMs
constructed in Sections 8.1 suffered from numerical instabilities (cf. Remark 17); the development of more stable ROMs, and
the associated hyperreduction methods, remains an important topic.
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