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Abstract

This paper presents physics�based surrogate mod�
eling algorithms for systems governed by parame�
terized partial di�erential equations �PDEs� com�
monly encountered in design optimization and un�
certainty analysis� We �rst outline unsupervised
learning approaches that leverage advances in the
machine learning literature for a meshfree solution of
PDEs� Subsequently� we propose continuum and dis�
crete formulations for systems governed by parame�
terized steady�state PDEs� We consider the case of
both deterministically and randomly parameterized
systems� The basic idea is to embody the design
variables or uncertain parameters in additional di�
mensions of the governing PDEs along with the spa�
tial coordinates� We show that the undetermined
parameters of the surrogate model can be estimated
by minimizing a physics�based objective function de�
rived using a multidimensional least�squares collo�
cation or the Bubnov�Galerkin scheme� This poten�
tially allows us to construct surrogate models with�
out using data from computer experiments on a de�
terministic analysis code� Finally� we also outline
an extension of the present approach to directly ap�
proximate the density function of random algebraic
equations�

� Introduction

Supervised learning is essentially concerned with
the problem of discovering relationships in observa�
tional data D �� �xi� y�xi��� i � 	� 
� � � � �m� where
xi � R

p denotes the input vector and y � R is the
target� The learning task may be interpreted as a
function approximation or a classi�cation problem
depending on the case when the target y is a con�
tinuous variable or a class label� respectively� For
a wide class of techniques� the model used to learn
the input�output relationship can be written in the
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general form �y�x� �
Pn

j�� �jkj�x� ���
� where � and

� are undetermined parameters� k�x� �� is a kernel�
which is typically chosen to be a sigmoid or a radial
basis function� In supervised learning� � and � are
estimated by minimizing a loss function in terms of
the observed target y� A detailed exposition of suit�
able loss functions such as least�squares� robust loss
measures� and maximum likelihood can be found in
the literature����

One popular application of supervised learning
has been to construct surrogate models using data
from computer experiments� A driving factor be�
hind this has been the ever increasing need for com�
putationally cheap approximation models for appli�
cations such as design optimization and uncertainty
analysis� which require the analysis model to be eval�
uated repeatedly� This traditional approach involves
running the analysis code for a number of inputs to
generate a set of training�observational data� Sub�
sequently� a surrogate model is trained to learn the
input�output mapping using least�squares minimiza�
tion techniques or Bayesian formalisms�� Since� no
information about the governing equations is em�
ployed� we shall refer to this supervised learning ap�
proach as black�box surrogate modeling�

A major drawback of supervised black�box mod�
eling is that a large number of training points is re�
quired to construct an accurate surrogate� This is
particularly true for problems with large number of
input variables and highly nonlinear input�output
relationships� This in turn leads to a signi�cant in�
crease in the computational cost due to the require�
ment of running the analysis code at a large num�
ber of design points� A number of recent studies���

have examined strategies to circumvent this curse of
dimensionality� which arises from the fact that the
number of hypercubes required to �ll out a compact
region of a p�dimensional space grows exponentially
with p� Even though� promising results have been
reported for some problems� the fundamental di
�
culties associated with black�box supervised learning

�Examples include feedforward neural networks� radial ba�

sis networks� projection pursuit learning and support vector

machines�

	

American Institute of Aeronautics and Astronautics



approaches are not expected to disappear�

In contrast� unsupervised learning approaches
model the trends in the data without using the tar�
get y� In the machine learning and statistics liter�
ature� unsupervised learning is typically applied to
exploratory data analysis and visualization� exam�
ples include Hop�eld networks and Kohonen�s self
organizing maps�� In the context of function ap�
proximation� however� an unsupervised learning ap�
proach can be formulated only if it is possible to
de�ne a suitable loss function without using infor�
mation about the target y� This would allow the
model parameters � and � to be estimated via mini�
mization of an objective function that indicates how
well the model performs in the learning task�

In light of the foregoing discussion concerning su�
pervised and unsupervised learning� it is instructive
to consider a well�known PDE solution technique
such as the �nite element method� This technique
may be considered to be an unsupervised learning
approach since the �eld variables are approximated
�using a surrogate model involving a linear combi�
nation of local basis functions� without using any
observational data� Rather� the variational form of
the governing equations is employed to estimate the
model parameters�y

This interpretation of PDE solution techniques
paves the way forward for the application of mod�
els other than grid�based local basis functions of
the type used in �nite element schemes� For exam�
ple� radial basis functions and neural network mod�
els which share the attractive property of universal
approximation can be employed as trial functions
within a meshfree PDE solver� This idea was �rst
proposed by Kansa���� who investigated the appli�
cation of radial basis functions to solve PDEs via
collocation� Similarly� Lagaris et al����� proposed
using feedforward neural networks as trial functions
for solving PDEs� It was shown that these mesh�
free schemes may give more accurate solutions than
traditional grid�based algorithms� A review of re�
cent research on similar meshfree schemes has been
presented by Belytschko et al��	

In this paper� we consider the more general prob�
lem involving the numerical solution of PDEs in
which the operators are parameterized in terms of
deterministic or random variables� Our objective
is to develop new unsupervised learning strategies
to construct a physics�based surrogate model of the
�eld variables� The proposed approach embodies
the design variables or uncertain parameters in addi�

yIn the context of the �nite element method� the nodal

values of the �eld variables can be interpreted as the unde�

termined model parameters�

tional dimensions of the governing PDEs along with
the spatial coordinates� i�e�� we propose the inter�
pretation of a parameterized PDE as a multidimen�
sional operator problem with variable coe
cients�
We dub this approach physics�based surrogate model�
ing� since we estimate the model parameters by min�
imizing an objective function based on the equation
governing the physics of the problem� In contrast�
black�box approaches based on supervised learning
rely exclusively on observational data � no attempt
is made to ensure that the resulting surrogate sat�
is�es the governing equations in some sense� It is
worth noting that our approach is similar in spirit
to reduced basis methods employing subspace pro�
jection schemes� which have been applied with a
great deal of success to linear and nonlinear alge�
braic systems������ eigenvalue problems��� nonlinear
CFD analysis��� and linear stochastic PDEs���

A key idea exploited in the present work is that a
physics�based objective function can be de�ned for
many applications where the governing equations as
well as the numerical solution scheme are well under�
stood� We show that the undetermined parameters
of surrogate models such as neural networks or ra�
dial basis functions can be estimated by minimizing
the physics�based objective function� The implica�
tion of this development is that a surrogate model
can be constructed without using any observational
data about the output or target to be approximated�

To illustrate the genesis of our approach� we �rst
present an overview of the connection between the
problem of learning from scattered observational
data and that of solving PDEs� Subsequently� we
consider the more general problem of solving param�
eterized steady�state PDEs� We propose two unsu�
pervised approaches for surrogate modeling which
fully exploit the physics of the system under con�
sideration� The �rst approach can be interpreted
as a meshfree numerical scheme for solving PDEs
using parameter�dependent trial functions� The un�
determined parameters of the surrogate model are
estimated here by minimizing an objective function
formulated using a multidimensional least�squares
collocation or the Bubnov�Galerkin scheme� The
boundary conditions are implemented via inequal�
ity constraints�

The second approach utilizes a discretized model
of the governing PDEs to construct a surrogate
model� The objective behind this is to reuse ex�
isting analysis capability without intrusive modi��
cations to the source code� and also to alleviate
the requirement of explicitly satisfying the boundary
conditions� The structure of the surrogate model is
chosen to be same as in the earlier approach� How�
ever� the undetermined parameters of the surrogate




American Institute of Aeronautics and Astronautics



model are estimated by a modi�ed least�squares col�
location scheme� which minimizes the integral of the
residual error in the discretized PDEs over the pa�
rameter space� We also outline avenues for extend�
ing the present approach to directly approximate the
density function of random algebraic equations� Fi�
nally� numerical results are presented for some sim�
ple problems in structural mechanics�

� Preliminaries

In this paper� we will focus on a class of learning
models of the form �y�x� �

Pn
j�� �jkj�x� ��� where �

and � are model parameters� This class of models in�
cludes radial basis and feedforward neural networks�
The structure of radial basis kernels and their pa�
rameterization are shown in Table 	� The vector
ci � R

p appearing within the kernel is commonly re�
ferred to as the center� which can be varied to create
a family of kernels� The term �i which appears in
the parameterization of Gaussian kernels and Multi�
quadrics can be interpreted as a correlation param�
eter or a hyperparameter which governs the region
of in�uence of the basis function in Rp�

In the case of feedforward neural networks with
a single hidden layer� the model may be similarly
written as

�y�x� �
nX
i��

�i��ai�� ai �

pX
j��

wijxj � �j � �	�

where �� w and � are model parameters representing
the weights and bias terms of the network� ��x� is a
transfer function which is typically chosen to be the
sigmoid� i�e�� �	 � e�x��� or the hyperbolic tangent
function� Note that the total number of undeter�
mined parameters in the neural network is �p�
�n�
where n and p denote the number of neurons in the
hidden layer and the number of inputs� respectively�

Given a set of observational data D �� �xi� y�xi���
i � 	� 
� � � � �m� the learning task involves estimat�
ing the model parameters via minimization of a loss
function� Consider the case when the least�squares
error function is to be minimized� Then if the model
parameters within the kernels are kept �xed� the vec�
tor � can be computed by solving a linear least�
squares problem� In contrast� if the parameters
within the kernel are considered to be unknown� it is
necessary to solve a nonlinear least�squares problem�
More recently� greedy approximation algorithms��

have been proposed to improve the computational
e
ciency and memory requirements by adaptively
selecting the basis functions from an over�speci�ed
dictionary during the training phase� For a detailed

Table 	� Radial Basis Kernels

Nomenclature ki�x� ��

Linear Splines jjx� cijj
Thin Plate Splines jjx� cijj ln jjx� cijj
Cubic Splines jjx� cijj

�

Gaussian e
�
jjx�cijj

�

�i

Multiquadrics
q
	 � jjx�cijj�

�i

exposition of the computational aspects of super�
vised learning the reader is referred to the excellent
text by Bishop�	

Note that both radial basis and multilayer neural
network models are theoretically capable of univer�
sal approximation�	
 i�e�� they can approximate any
function to an arbitrary degree of accuracy� In the
next section� we brie�y outline how these learning
models can be employed in conjunction with classical
collocation schemes to solve PDEs� For the sake of
generality� we will use the notation k�x� �� to denote
basis functions which are parameter�free �such as lin�
ear� thin plate� and cubic splines� and also tunable
kernels �e�g�� the Gaussian function� Multiquadrics
and those in feedforward neural networks��

� Meshfree Solution of PDEs

To illustrate the application of unsupervised learn�
ing to numerical solution of PDEs� consider a mul�
tidimensional steady�state PDE of the form

Lu�x� � f�x� � �� �
�

subject to the boundary conditions �BCs�

Bu�x� � g�x� � ��� ���

where L and B are di�erential operators in space
x � R

d� and u�x� denotes the �eld variable� We
denote the computational domain and the boundary
using the symbols � and ��� respectively�

Meshfree collocation algorithms use a set of nodes
situated within the domain as well as on the
boundary�	� i�e��

C � f�xi�ji���nd � �� �xi�ji�nd���nd�nb � ��g�
���

where nd and nb denote the number of collocation
points on the domain and the boundary� respec�
tively�

Let us represent the �eld variable using learning
models capable of universal approximation as trial

�
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functions� i�e��

�u�x� �

nX
i��

�iki�x� �� ���

To compute the undetermined coe
cients � and � in
���� the governing equations can be collocated on the
set C to arrive at the following system of equations

Lu�xi� � L

nX
j��

�jkj�xi� � f�xi�� i � 	� � � � � nd ���

Bu�xi� � B

nX
j��

�jkj�xi�

� g�xi�� i � nd � 	� � � � � nd � nb ���

From the preceding equations� the connection be�
tween collocation schemes and the problem of super�
vised learning from scattered data may become clear
to the reader� If we replace the operator L with the
identity and f�xi� with the target� the collocation
principle becomes equivalent to that of supervised
learning from scattered input�output data� This is
the fundamental observation which motivates us to
leverage recent advances in machine learning to de�
velop new numerical schemes for solving PDEs�

Now consider the case when the kernel parame�
ters� i�e�� the centers ci and the parameter � are
considered to be known�z Then for linear steady�
state problems� if n is chosen to be equal to nd�nb�
a square linear algebraic system of equations of the
form �K� � �f can be obtained� For the cases when
n � nd � nb and n � nd � nb� an under�determined
or over�determined linear least�squares problem has
to be solved� respectively� It is worth noting that
this least�squares problem can be e
ciently solved
by employing the adaptive greedy approximation
framework proposed in Nair et al��� Interestingly�
such an approach would also allow the optimal set
of collocation points to be adaptively selected during
the solution process� For the case of nonlinear prob�
lems� similar iterative methods can be employed to
solve the collocation system of equations�

An alternative approach has to be employed for
the case when the parameters within the kernel are
considered to be unknown� Consider� for example�
the case when a feedforward neural network model
is used to approximate the �eld variable u�x�� Then
the following constrained optimization problem has
to be solved to estimate the model parameters�

Minimize �

ndX
i��

�L

nX
j��

�jkj�xi�� f�xi��
	 ���

zIn practice� the centers ci can be chosen to coincide with

the set of collocation points� The parameter � is either set to

a sensible constant or min
j ��i

jjxi � xj jj� for the ith basis�

Subject to �

nd�nbX
i�nd��

�B

nX
j��

�jkj�xi�� g�xi��
	 � ��

���

where � is a small parameter which indicates the
extent to which the BCs are to be satis�ed�

Lagaris et al��
 have examined in detail procedures
for handling the BCs in neural network approaches
to solving PDEs� They proposed the use of a hy�
brid approach wherein the neural network is com�
bined with radial basis functions to ensure that the
BCs are properly satis�ed� Extremely encouraging
results were presented for the solution of a class of
linear as well as nonlinear PDEs on geometrically
complex computational domains� An overview of
other meshfree techniques such as the element�free
Galerkin method and Petrov�Galerkin schemes can
be found elsewhere��	 Issues involved in applying
meshfree algorithms to time�dependent PDEs have
been presented by Kansa����

In the next section� we consider the more com�
plex scenario when the PDE operator L is param�
eterized in terms of a number of variables� These
variables are considered to be either deterministic
but bounded within an interval� or random in nature
with a speci�ed probability density function �pdf��

� A Continuum Formulation

for Physics�Based Surrogate

Modeling
In this section� we present a continuum formu�

lation for solving PDEs which are parameterized in
terms of deterministic or random variables� To illus�
trate� let us consider a model steady�state parame�
terized PDE of the form

L�x� 	�u � f�x� 	�� �	��

subject to the BCs

B�x� 	�u � g�x� 	�� �		�

where x � R
d denotes the spatial coordinates� 	 �

R
p denotes the vector of bounded design or random

variables� and u � R is the �eld variable to be com�
puted� L�x� 	� and B�x� 	� denote parameterized op�
erators�

Let �x � R
d and �� � R

p denote the domains
over which the spatial coordinates and the parame�
ter vector 	 are de�ned� respectively� For the case
of deterministic parameterization� �� can be inter�
preted as a bounded box formed using the bound
constraints for each element of 	�

�
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Let us now de�ne what we mean by a solution of
the governing parameterized equations in �	��		�� It
can be readily noted that the �eld variable is a func�
tion of x and 	� Hence� we may de�ne the solution
u�x� 	� as a model which can be employed to com�
pute the �eld variable u for any arbitrary value of x
and 	 in �x���� This de�nition of the solution nat�
urally suggests the interpretation of a parameterized
PDE as a multidimensional problem�x i�e�� we con�
sider the vector 	 as an additional set of coordinates
along with x�

θ
1

x

Layer

θ

Kernel

2

1

x
u

Output

θ

2

Layer
Hidden Layer

Input

p

Figure 	� The �eld variable model in terms of the spa�

tial coordinates x�� x� and the parameter vector � for a
typical �D parameterized PDE�

Clearly� from previous experiences with multidi�
mensional PDEs�	� it is well known that grid�based
methods can be highly ine
cient due to the curse
of dimensionality� Our objective is to circumvent
this di
culty by employing meshfree schemes which
tackle multidimensional problems more elegantly� In
particular� we propose to solve the governing PDE in
�	��		� using parameter�dependent trial functions�
i�e�� a model of the form

�u�x� 	� �

nX
i��

�iki�x� 	� ��� �	
�

where the kernel ki is a function of both the spatial
coordinates and the vector 	� The general structure
of this model for a typical 
D steady�state PDE is
graphically shown in Figure 	�

To compute the undetermined coe
cient vector
� and the kernel hyperparameters� one may use ei�
ther a Bubnov�Galerkin scheme� or a least�squares
multidimensional collocation procedure� Let us �rst

xStrictly speaking� we interpret a parameterized PDE as a

multidimensional operator problem with variable coe�cients�
�It may also be noted that other variational principles such

as the Petrov�Galerkin scheme can be applied to this problem�

consider a least�squares collocation procedure to es�
timate the parameters in �	
�� This involves the
solution of the following constrained optimization
problem to estimate � and ��

Minimize �

Z
�x

Z
��

R	
ddx p�	�d	 �	��

Subject to �

Z
�x

Z
��

R	
bdx p�	�d	 � �� �	��

The functions Rd and Rb �which enforce the satis�
faction of the the governing equations on the domain
and the boundary� respectively� are de�ned below as

Rd � L�x� 	�

nX
j��

�jkj�x� 	� �� � f�x� 	� �	��

Rb � B�x� 	�

nX
j��

�jkj�x� 	� �� � g�x� 	� �	��

The function p�	� in �	��	�� is chosen to be unity for
the case when the elements of 	 are bounded deter�
ministic variables� For the case when the elements
of 	 are random variables� p�	� denotes the joint pdf�

In the Bubnov�Galerkin scheme� it is desired to
estimate the model parameters in �	
� such that the
residual errors are orthogonal to the approximating
space �i�e�� kj�x� 	� ���� Hence� the objective func�
tion in �	�� can be rewritten as

nX
j��

�Z
�x

Z
��

kj�x� 	� ��Rddx p�	�d	

�	
�	��

Similarly� the constraint in �	�� becomes

nX
j��

�Z
�x

Z
��

kj�x� 	� ��Rbdx p�	�d	

�	
�	��

Note that when the elements of 	 are random vari�
ables� the preceding integrals essentially use the
probability measure p�	�d	 to enforce orthogonality�
However� for the case of deterministic parameteriza�
tion since we set p�	� � 	� the probability measure
reduces to the standard Lebesgue measure�

It can be seen from �	��	�� that the multidimen�
sional integrals for Rd and Rb cannot be simpli�
�ed except for some special cases�k In the present
research� we employ space��lling experimental de�
sign techniques to numerically compute the inte�
grals� The term space��lling is used here to indicate

kFor example� when basis functions obeying the product

correlation rule�� are applied to linear steady�state PDEs� it

can be shown that the multidimensional integral collapses into

a product of �D integrals�

�
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techniques which generate points by maximizing the
distance function minjjci� cj jj��i �� j� There exists
a wealth of techniques in the literature to generate
such experimental designs� In our current numerical
implementation� we use Latin hypercube sampling
techniques to choose the collocation points�

In order to solve the nonlinear programming prob�
lem e
ciently� it is required to compute the sensitiv�
ities of Rd and Rb with respect to the undetermined
parameters in �	
�� For example� the sensitivities of
Rd with respect to �i may be evaluated as

�Rd

��i
�

�L�x� 	� u�

�u

��u

��i
�	��

The term ��u
��i can be readily computed by dif�
ferentiating �	
�� This essentially entails computing
the sensitivities of a learning model with respect to
its inputs� A detailed exposition of computationally
e
cient techniques for sensitivity analysis �partic�
ularly for neural network models� can be found in
standard texts� see� for example� Bishop�� The sen�
sitivities of Rb can be computed in a similar fashion�

��� Remarks

It is worth noting that the constrained nonlinear op�
timization problem reduces to a linear least�squares
problem if the operators L and B are linear and
a �xed radial basis kernel is chosen in �	
�� Even
though the continuum approach is conceptually ap�
pealing� there are a number of problematic issues
facing its application in practice� One major con�
cern is how well the model will satisfy the BCs�
particularly for cases when 	 includes geometric pa�
rameters� From a theoretical point of view� one can
appeal to the ability of universal approximation of
the learning models considered here� This implies
that given su
cient number of basis functions �n�
in �	
�� the �eld variables can be approximated to
an arbitrary degree of accuracy� Another possible
criticism of the continuum approach is that it does
not leverage existing analysis capability � rather it is
necessary to write a new multidimensional solver� In
the next section� we present a discrete formulation
for physics�based surrogate modeling that alleviates
some of these concerns�

� A Discrete Formulation for

Physics�Based Surrogate

Modeling

In this section� we present a discrete formulation
which directly deals with the spatially discretized
version of the governing PDEs in �	��		�� In this
approach� we use a traditional analysis scheme such

as the �nite element method for spatial discretiza�
tion as well as to satisfy the BCs� The motivation for
this is to reuse existing analysis software and solve
an unconstrained optimization problem in contrast
to the more complex nonlinear programming prob�
lem obtained for the continuum approach�

To illustrate the discrete formulation� consider a

D nonlinear steady�state PDE with one �eld vari�
able u� Further� let the governing PDE be dis�
cretized using �nite elements �FE�� where each node
has two degrees of freedom u� and u	� The spatially
discretized version of the governing PDE after the
incorporating the BCs may then be written as

R�w� 	� � �� �
��

where w � R	q denotes the vector of discretized �eld
variables at the q unconstrained nodes of the FE
mesh� 	 � R

p is the vector of parameters which
are considered to be either deterministic or random
variables� Note that w may also be written as

w � fu��x�� y�� 	�� u	�x�� y�� 	�� � � �

� � � � u��xq � yq� 	�� u	�xq � yq� 	�g� �
	�

where xi� yi i � 	� 
� � � � � q are the x and y coordi�
nates of the q nodes in the FE mesh�

In contrast to the continuum approach� we pro�
pose to approximate the discretized �eld variables
at the unconstrained nodes of the FE mesh� For
the example 
D problem under consideration� we ap�
proximate u� and u	 using models of the form

�u��x� y� 	� �

nX
i��

��i ki�x� y� 	� ���� �

�

�u	�x� y� 	� �

nX
i��

�	i ki�x� y� 	� ���� �
��

As mentioned earlier� in the discrete approach�
we estimate the model parameters in �

�
�� such
that the discretized governing equations are satis�
�ed in some sense� Objective functions which en�
force satisfaction of �
�� may be derived either us�
ing the Bubnov�Galerkin scheme or a multidimen�
sional least�squares collocation procedure� In the
latter case� the following unconstrained optimization
problem has to be solved to estimate the model pa�
rameters in �

�
���

Minimize
�����������

J�w� �

Z
��

jjR� �w� 	�jjp�	�d	� �
��

where �w is the vector formed by substituting the
models �

�
�� in �
	��

�
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When the Bubnov�Galerkin is employed� we seek
to compute the undetermined parameters in �

�
��
such that the residual error vectorR�w� 	� is orthog�
onal to the approximating space� This leads us to
the following unconstrained optimization problem

Minimize
�����������

nX
i��

�Z
��

�i�	�
TR� �w� 	�p�	�d	

�	
�

�
��

where

�i�	�
T � fki�x�� y�� 	� ���� ki�x�� y�� 	� �	�� � � � �

� � � ki�xq � yq� 	� ���� ki�xq � yq� 	� �	�g � R
	q �
��

Similar to the continuum formulation� the probabil�
ity measure p�	�d	 reduces to the Lebesgue measure
when the elements of 	 are deterministic�

It can be seen that in contrast to the contin�
uum approach� we end up with a much simpler un�
constrained nonlinear optimization problem��� The
minimization of J may be carried out either using
evolutionary algorithms or gradient�based nonlinear
programming techniques� Further� if the Jacobian
matrix �R
�w is available from the existing anal�
ysis code� then �J
��� can be e
ciently computed
since �R
�w � �R
�w � �w
��� Recollect that
�w
�� can be readily calculated by di�erentiating
the models in �

�
�� and using �
	��

��� Implementation Issues

In this subsection� we brie�y discuss how the dis�
crete formulation can be implemented without any
intrusive modi�cations to an existing analysis code
which performs spatial discretization of the govern�
ing PDEs� We assume that � �	� a automatic mesh
generation�deformation tool is available to generate
meshes for various values of 	� �
� the vertices of
the resulting mesh �xi� yi� are available� and ��� the
analysis code when given the values of the �eld vari�
ables at the nodes of the mesh and 	 returns the
value of the residual error jjRjj� Note that these as�
sumptions are satis�ed by many commercially avail�
able FE software and in�house PDE solvers�

For the sake of illustration� consider the case when
a neural network is employed to model u� and u	
using the least�squares collocation procedure� The
steps involved in computing the objective function
J for this case are summarized below�

��For certain choices of the kernel and linear PDE opera�

tors� it can be shown that the solution of the unconstrained

optimization problem can be computed by solving a linear

least�squares problem�

� Initialize the values of the model parameters in
�

�
��� Generate k samples of 	 using Latin
hypercube sampling� say �	�� 		� � � � � 	k ��

� Set J � �� For each 	i�

DO for i � 	� k

� Generate FE mesh and extract the nodes
of the mesh �xj � yj��

� Use the learning models to generate the
�eld variables u� and u	 at all the nodes
of the mesh and construct �w�

� Call the analysis code with �w and 	i� and
request it to return the value of the resid�
ual jjRi� �w� 	i�jj�

� J � J � jjRijj�

END DO

It can be clearly seen from the above procedure
that an attractive feature of the present approach
is the possibility of massive parallelism since jjRijj
can be computed independently for each realization
of 	� A second level of parallelization arises from
the fact that for many governing equations such as
the Euler and Navier�Stokes equations� jjRjj may be
computed in parallel�

� Towards Density Estimation

for Random Equations

In the earlier sections� we proposed to solve ran�
domly parameterized PDEs by approximating the
solution process as a function of the spatial coordi�
nates and random parameters� In this section� we
explore the possibility of extending the present ap�
proach to directly approximate the density function
of the solution process� In other words� we consider
the following problem�

Problem �P�� Given the statistical moments �or
the pdf p�	�� of 	 � R

p and vectors of functions
A�u� 	� and b�	� � R

n� �nd the joint pdf of u �
R
n and 	� when u satis�es the following system of

random algebraic equations�

A�u� 	� � b�	� �P �

It is straightforward to list a set of constraints that
the joint density function p�u� 	� must satisfy� One
fundamental constraint is that p�u� 	� must be a
bona�de density function� i�e��

Z ��

��

p�u� 	�dud	 � 	��� and p�u� 	� 	 � �
��

�
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Further� since p�	� is assumed to be given� the fol�
lowing equation must be validZ ��

��

p�u� 	�du � p�	�� �
��

However� in practice� when the statistics of 	 are es�
timated from limited samples obtained via physical
experimentation� only the �rst few statistical mo�
ments may be available� In such cases� �
�� has to
be substituted with the set of conditions�Z ��

��

	ki p�u� 	�dud	 � h	ki i� i � 	� 
� � � � � p� �
��

So far� we have only listed the trivial constraints that
the desired solution p�u� 	� must satisfy� To proceed
further� we need to rigorously de�ne what it means
to solve �P�� We now introduce the notions of strong
and weak solutions to �P� and see how far we can go
from there�

De�nition �� p�u� 	� is called a strong solution of
�P�� i� for any realization ui and 	i drawn from
p�u� 	�� A�u� 	� � b�	� holds with probability one�

De�nition �� p�u� 	� is called a weak solution of
�P� in the Lq sense� ifZ ��

��

jjA�u� 	�� b�	�jjqp�u� 	�dud	 � � ����

The notion of strong solution is rather stringent and
may� in practice� be impossible to meet� It can be
noted that De�nition 
 is motivated by the physics�
based objective function de�ned earlier in �
��� We
now examine whether a numerical scheme can be
developed for approximating p�u� 	� by enforcing the
notion of weak solution in the Lq sense�

��� A Variational Formulation for

p�u� ��

At the time of writing this paper� it is not clear
whether the conditions mentioned earlier are su
�
cient to ensure the well�posedness of the density esti�
mation problem� Hence� it makes sense to introduce
regularization �such as Tikhonov regularization� to
ensure that a meaningful solution is obtained� An
alternative approach would be to employ the con�
cept of maximum information entropy		 to ensure
that the computed solution p�u� 	� is honest� i�e��
we choose the solution which is maximally uncer�
tain given that the constraint equations are satis�ed�
The constrained entropy maximization formulation
based on Shannon�s entropy measure can be stated
as a variational problem of the form�

Maximize �

Z ��

��

�p�u� 	� ln p�u� 	�dud	 ��	�

Subject to�

Z ��

��

jjA�u� 	�� b�	�jjqp�u� 	�dud	 � � ��
�

Z ��

��

hi�u� 	�p�u� 	�dud	 � �i� i � 	� 
� � � � � l ����

where ���� is a generalized representation of the con�
straints mentioned earlier in �
��
���

Introducing a set of Lagrange multipliers �
i� i �
�� 	� � � � � p�� the solution for p�u� 	� turns out to be

p�u� 	� � a
e
���jjA
u����b
��jjq�

P
l
i�� �ihi � ����

where a
 is an undetermined parameter to ensure
normalization� Conceptually� the Lagrange multipli�
ers can be computed by substituting ���� back into
the constraint equations and solving a deterministic
nonlinear system of equations� Unfortunately� the ��
nal solution ���� does not obey the product correla�
tion rule� due to which computation of the Lagrange
multipliers involves evaluation of multidimensional
integrals� In the next subsection� we examine a nu�
merically tractable procedure which results when a
kernel expansion is used for approximating p�u� 	��

��� Numerical Approximation of

p�u� ��

Consider the case when we wish to approximate the
weak solution of �P� in the L	 sense given the statis�
tics of 	� In order to avoid dealing with a variational
problem� let us approximate p�u� 	� using the expan�
sion

�p�u� 	� �
mX
i��

�iki�u� 	�� ����

where ki is the Gaussian kernel which obeys the
product correlation rule� This restriction ensures
that �p will be a bona�de density� and further the
multidimensional integrals collapse into a product
of one�dimensional integrals�

To compute the undetermined vector � � Rm� we
use the following equations�

mX
i��

�i

Z ��

��

jjA�u� 	�� b�	�jj	ki�u� 	�dud	 � �

����
mX
i��

�i � 	 ����

mX
i��

�i

Z ��

��

hj�u� 	�ki�u� 	�dud	 � �j � j � 	� � � � � l

����

�
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It can be noted that the above equations can be
written as a system of under�determined linear equa�
tions for �� when m � l � 
� Hence� conventional
Tikhonov regularization� can be readily employed to
ensure well�posedness� It is also worth noting that
the formulations presented here can be applied even
when a complete statistical characterization of 	 is
not available�

	 Examples

We illustrate the application of the present ap�
proach to two simple example problems from struc�
tural mechanics� The �rst problem shown in Figure

 involves a stepped cantilevered rod subject to a
axial load� We choose this problem since it corre�
sponds to a simple 	D problem for which graphical
visualization of the performance is readily possible�
In the physics�based surrogate modeling approach�
we seek to approximate the axial displacement u as
a function of the coordinate x and the variables A�

and A	� We consider the case when both these latter
variables lie in the box ����� 	����

P
2A1A

LL

Figure 
� A stepped cantilevered rod with two design
variables� EA� � ��	
������ � L � ��
� and P � ������

We use a feedforward neural network with 	�
nodes in the hidden layer to model the relationship
u�x�A�� A	�� Due to ease of implementation� we ap�
plied the discrete formulation to this test problem�
This involved the use of a standard �nite element
procedure with two elements to discretize the gov�
erning di�erential equations in x to arrive at a sys�
tem of linear algebraic equations similar to �
��� The
objective function was computed using a Latin hy�
percube with �� samples� Recollect that the sam�
pling procedure is applied only to evaluate the mul�
tidimensional integral in �
��� in contrast to super�
vised black�box surrogate modeling� we do not use
any samples of the �eld variable u� To estimate the
neural network parameters� we used a genetic algo�
rithm search followed by a BFGS optimizer�

Figure � shows the residual error in the discretized
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Figure �� Residual Error in the discretized governing

equations as a function of A� and A�

governing equations for the rod problem as a func�
tion of the parameters A� and A	� Recollect that
this error can be computed as jjK�A�� A	� �w � P jj�
whereK is the sti�ness matrix� P is the force vector�
�w � f�u�x�� A�� A	�� �u�x	� A�� A	�g

T� and x� � ���
and x	 � 	�� are the x�coordinates of the two nodes�
This residual error may be interpreted as an a pos�
teriori error estimate which tells us how well the
learning model �in this case a neural network with
	� nodes in the hidden layer� approximates the true
value of the �eld variables� In practice� this infor�
mation may be employed to decide the complexity
of the learning model �i�e�� the number of terms n�
required to model the underlying relationship�
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Figure �� Percentage Error in u�x�� as a function of A�

and A�

The axial displacements at x� and x	 were pre�
dicted using the trained physics�based surrogate
model for a range of values of A� and A	� The per�
centage error in the axial displacements at x� and x	

�
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Figure �� Percentage Error in the Tip Displacement of
the Cantilevered Beam as a function of A� and A�

are shown in Figures � and �� It can be clearly seen
that the physics�based strategy works extremely well
for this problem with maximum error of ������

We also applied the discrete formulation to a
stepped cantilevered Euler�Bernoulli beam with two
design variables� The discretized displacement vec�
tor for the case of 
 elements can be written as

�w � f�u�x�� A�� A	��
��u

�x
�x�� A�� A	�� �u�x	� A�� A	��

��u

�x
�x	� A�� A	�� g

T�

where �u is a feedforward neural network model with
three inputs �i�e�� x� A�� and A	� which is employed
as a surrogate model for the transverse displacement
of the beam�

For this problem� we were able to drive the inte�
gral of the residual error to ��	��� using 
� nodes in

the hidden layer� The percentage error in the trans�
verse displacement at the tip �i�e�� x	� were then
computed over a range of values of A� and A	� The
trends are shown in Figure �� The results show that
the mean and maximum percentage error are ����
and 
�	
� respectively� This accuracy level is very
impressive considering the fact that only �� colloca�
tion points are chosen to compute the physics�based
cost function�

� Concluding Remarks

In this paper� we have introduced a physics�based
unsupervised learning strategy for solving parame�
terized steady�state PDEs arising in the domain of
design optimization and uncertainty analysis� In
particular� we considered the cases when the pa�
rameters in the PDE operators are bounded design
variables or random with speci�ed density functions�
Our approach interprets a parameterized PDE as
a multidimensional operator problem with variable
coe
cients� It is shown that this interpretation al�
lows us to postulate a model for the �eld variables in
terms of the spatial coordinates and the parameters
within the PDE operators�

We propose the application of neural networks
and radial basis expansions which are capable of
universal approximation to learn the underlying re�
lationships� Continuum and discrete formulations
of physics�based surrogate modeling have been pre�
sented for computing the undetermined parameters
in the learning model� It is shown that both the for�
mulations lead to a nonlinear programming problem�
Some theoretical and implementation aspects of the
formulations are also discussed� It is worth noting
that our formulations unify both deterministic and
stochastic system analysis since the probability mea�
sure used in the de�nition of the physics�based cost
functions reduces to the Lebesgue measure for de�
terministic parameterization�

An important contribution of the present re�
search is that � �using universal learning mod�
els as parameter�dependent trial functions� a sur�
rogate model can be constructed for deterministi�
cally and randomly parameterized PDEs without us�
ing any input�output training data� This has impor�
tant rami�cations for at least two application areas�
�rstly� design optimization of systems governed by
steady�state PDEs� and secondly� numerical solution
of PDEs whose coe
cients are modeled as random
or convex variables�

We presented some preliminary results for physics�
based surrogate modeling of one�dimensional prob�
lems with two parameters� It is shown that the dis�
crete formulation works extremely well for the prob�

	�
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lems considered� Further numerical studies are cur�
rently underway to test our formulations on more
complex problems with larger number of variables�

We also outlined some avenues for extending the
present approach to directly approximate the den�
sity function of the solution process� The notion of
weak solutions and the principle of entropy maxi�
mization were leveraged to tackle the density esti�
mation problem� Since the emphasis of the present
work was on examining some of the theoretical issues
relevant to this challenging problem� we have chosen
to omit numerical studies� We hope that the ideas
presented in this paper will lead to a more rigorous
approach for modeling deterministic and uncertain
systems governed by parameterized PDEs�
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