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Abstract

Theβ-pdf has been widely assumed for the probability distribution of the mixture fraction in many turbulent mixing and turbulent non-
premixed combustion models in the literature. The numerical integration of theβ-pdf often encounters the singularity difficulties and only
few publications have addressed this issue. An efficient, accurate and robust numerical treatment of theβ-pdf integration was proposed. The
present treatment of theβ-pdf integration was implemented into a flamelet model to calculate turbulent methane–air combustion in a model
gas turbine combustor. Numerical results obtained using the presentβ-pdf integration method and those based on the properties of the beta
and gamma functions were compared to illustrate the accuracy of the present method. Effect of assuming theβ-pdf to the mass-weighted pdf
and unweighted pdf of the mixture fraction on the calculated density field was also investigated. 2002 Éditions scientifiques et médicales
Elsevier SAS. All rights reserved.

1. Introduction

The β-pdf has been widely assumed for the probability
density function of the mixture fraction in many turbulent
mixing and turbulent non-premixed combustion models,
see Refs. [1,2] and references cited therein. Among the
turbulent non-premixed combustion models developed in the
literature, the flamelet model [1] is attractive for turbulent
combustion modeling due to the decoupling of flow field and
chemical kinetics calculations. Because of this feature of the
flamelet model, detailed chemistry mechanisms can be used
in the construction of the flamelet library. In this model, only
the mean density calculated using the flamelet library and the
assumedβ-pdf is required by the flow solver. Subsequently,
species fields are calculated in a postprocessing fashion.
Therefore, the numerical integration of the density field
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using theβ-pdf should be accurate and efficient. Theβ-pdf
consists of two parametersa andb and is written as

p(f ) = f a−1(1− f )b−1∫ 1
0 f a−1(1− f )b−1 df

(1)

The numerical integration of theβ-pdf encounters difficul-
ties due to the singularity problem at either the oxidizer side
(f = 0) or the fuel side(f = 1), depending on theβ-pdf pa-
rameters, and the overflow problem when the pdf parameters
are sufficiently large.

Chen et al. [2], Lentini [3,4] and Lentini and Jones [5]
have recently made attempts to address these issues and
proposed their own treatments of the density integration
assuming aβ-pdf for Favre or mass-weighted pdf for the
mixture fraction. The work of Chen et al. [2] contained
incorrect approximations for thea < 1, a < b and a > b,
b < 1 cases. In addition, their treatment for the prevention
of overflow whena > 1, b > 1 anda or b is sufficiently
large is also inadequate. On the other hand, the work of
Lentini [4] relies on the premise that the flamelet density
distribution can be fitted to a specified functional form so
that the relationships between beta and gamma functions can
be used to calculate the integrations involved in the mean
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Nomenclature

a β-pdf parameter, Eq. (1)
b β-pdf parameter, Eq. (1)
c polynomial coefficients, Eq. (13)
d fitting coefficients, Eq. (15)
C1 k–ε turbulence model parameter, Eq. (31)
C2 k–ε turbulence model parameter, Eq. (31)
Cµ k–ε turbulence model parameter
Cg1 g-equation parameter, Eq. (33)
Cg2 g-equation parameter, Eq. (33)
f mixture fraction
g variance of the mixture fraction
G production rate of turbulence kinetic energy
k turbulence kinetic energy
p pressure, probability density function
r radial position
u axial velocity
v radial velocity

x coordinates

Greek symbols

ε dissipation rate of turbulence kinetic energy; a
small parameter defined in Eq. (18)

ρ density
σk k–ε turbulence model parameter, Eq. (30)
σε k–ε turbulence model parameter, Eq. (31)
σf f -equation parameter, Eq. (32)
σg g-equation parameter, Eq. (33)
µt turbulence viscosity

Subscript

fuel fuel
max maximum
ox oxidizer
ref reference

density calculation. However, this approach is in general
not applicable to mean species calculations or situations
where the flamelet density distribution cannot be fitted to the
specified function. The approach proposed by Lentini has
been employed recently by Kumar and Tamaru [6].

In this study, a robust and accurate treatment of theβ-
pdf density integration was proposed. The method suggested
here can also be easily extended to any other thermochemi-
cal scalars. It was implemented into a 3D finite-volume code
to calculate turbulent non-premixed methane-air combustion
in a model gas turbine combustor. Theβ-pdf integration ap-
proach of Lentini [4] was also used in the present study. Re-
sults based on the presentβ-pdf integration and the method
of Lentini were compared. Effects of assuming theβ-pdf to
the mass-weighted and unweighted pdf of the mixture frac-
tion on the results were also investigated.

2. Formulation

The Favre or mass-weightedβ-pdf is written as (symbols
with tilde denote mass-averaged quantities)

p̃(f ) = f a−1(1− f )b−1

∫ 1
0 f a−1(1− f )b−1 df

(2)

where a and b are two non-negative parameters and are
related to the mean and the variance of the mixture fraction,
calculated by the flow solver, through

f̃ =
1∫

0

f p̃(f )df (3)

g̃ =
1∫

0

(
f − f̃

)2
p̃(f )df (4)

It can be shown that

a = f̃

[
f̃ (1− f̃ )

g̃
− 1

]
(5)

b = (
1− f̃

)[ f̃ (1− f̃ )

g̃
− 1

]
(6)

Before proceeding further in the presentation of theβ-
pdf integration, some discussions are first given about the
relations between the values ofa and b and the mixture
fraction and its variance. The values of parametersa and
b as functions off and g, given in Eqs. (5) and (6), are
plotted in Fig. 1. It can be seen that these parameters vary
drastically from very small values near the boundary of
the positivity requirement ofa and b, i.e., g̃ � f̃ (1 − f̃ ),
to very large values asg approaches zero, especially for
intermediate values off around 0.5. The thickened solid
lines in Fig. 1(a) and (b) represent the contours ofa = 1 and
b = 1, respectively. The contour ofa = 1 is plotted again
in Fig. 1(b) as a dashed line for the reason given below. It
can be shown that the variances on contours ofa = 1 and
b = 1 peak atf = 0.382 andf = 0.618, respectively. The
corresponding value of the variance on the contours at these
two mixture fractions is 0.09. Four regions can be identified
in terms of the values ofa and b compared to unity, as
indicated in Fig. 1(b): (I)a < 1, b < 1, (II) a < 1, b > 1,
(III) a > 1, b > 1, and (IV)a > 1, b < 1. The corresponding
shapes of theβ-pdf in these four regions are schematically
plotted in Fig. 2. The pdfs in region I have two singularities
(where the value of the pdf approaches infinity), one occurs
at the oxidizer side (f → 0) and the other at the fuel side
(f → 1), and represent situations where the variance of the
mixture fraction is large as a result of strong fluctuations in
the mixture fraction. This type of pdf can occur anywhere in
the flow field since the mixture fraction in this region varies
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Fig. 1. Variations of parametersa andb as functions off andg. The two
contoursa = 1 andb = 1 divide thef −g plane into four regions: (I)a < 1,
b < 1, (II) a < 1, b > 1, (III) a > 1, b > 1, and (IV)a > 1, b < 1.

from 0 to 1. The pdfs in region II have only one singularity
at the oxidizer side and decays rapidly towards the fuel side.
Such type of pdf represents situations of relatively large
variances and relatively low mixture fractions and occurs
only when the mean mixture fractions are less than 0.5,
Fig. 1(b). In region III, the pdfs have no singularities and
can peak at a value anywhere between 0 and 1, Fig. 2,
and represent situations of relatively small variance of the
mixture fraction, i.e., relatively weak fluctuations of the
mixture fraction. Again, the pdfs in region III can occur
anywhere in the flow field. And lastly, the pdfs in region IV
are singular only at the fuel side (f → 1) and decay rapidly
towards the oxidizer side, Fig. 2. Such pdfs occur only at

Fig. 2. Representative shapes of theβ-pdf with parametersa andb falling
in the four different regions defined in Fig. 1.

relatively large variances and high mixture fractions (mean
mixture fractions greater than 0.5), Fig. 1(b).

The mass-weighted pdf is related to the unweighted pdf
through [7]

p̃(f ) = ρ

ρ̄
p(f ) (7)

The mean density is calculated as

ρ =
1∫

0

ρ(f )p(f )df = 1∫ 1
0

1
ρ(f )

p̃(f )df
(8)

It should be pointed out that the density in the flamelet
library is also dependent on the scalar dissipation rate.
However, the variation of the flamelet density with the
scalar dissipation rate was not taken into account in the
present study since the objective of this study is to develop
a robust and accurate treatment of theβ-pdf integration.
In addition, the integration over the scalar dissipation rate
can be done efficiently using the error function as described
by Lentini [4]. The density profile as a function of the
mixture fraction employed in the present calculations was
that obtained from a counterflow CH4/air diffusion flame
at a strain rate of 120 s−1 using detailed chemistry and
complex transport properties. This study is therefore directly
relevant to modeling turbulent diffusion combustion using
fast chemistry assumptions such as the one-step irreversible
reaction or the chemistry equilibrium model. The only
difference is that the flamelet density profile employed in the
present calculations will be slightly altered by using the one-
step irreversible reaction model or the chemical equilibrium
model.

Due to the approximate nature of the assumed pdf
method, it is also acceptable to assume that the unweighted
pdf, p(f ), has the form of theβ-pdf given in Eq. (1)
instead of the mass-weighted one,p̃(f ). The consequence
of making this assumption will be investigated in the
modeling of turbulent non-premixed combustion in a model
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gas turbine combustor. In the following discussion of the
numerical treatment of theβ-pdf integration, it was assumed
that the unweighted pdf of the mixture fraction has theβ-pdf
form given in Eq. (1) and the mean density is calculated as

ρ =
∫ 1

0 ρ(f )β(f )df∫ 1
0 β(f )df

(9)

where

β(f ) = f a−1(1− f )b−1 (10)

Using the property between the beta and gamma func-
tions [8], the denominator of Eq. (9) can be written as

1∫
0

f a−1(1− f )b−1 df = �(a)�(b)

�(a + b)
(11)

The values of these gamma functions can be readily obtained
by using the recurrence relation

�(x + 1) = x�(x) (12)

and the polynomial approximation for 0� x � 1 [8],

�(x + 1) = 1+
8∑

n=1

cnxn (13)

The coefficientsc’s are taken from Ref. [8] and given in
Table 1.

If the flamelet density distribution can be approximated
by a polynomial expression of the mixture fraction, the
numerator of Eq. (9) can also be easily evaluated using the
beta and gamma property similar to Eq. (11). Unfortunately
the flamelet density profile in general cannot be fit to a
simple polynomial expression due to the steep variation of
density around the reaction zone. However, it was shown by
Lentini [4] that the flamelet density distribution can be fit
accurately to the following expression

ρ(f ) = ρref

F(f )
(14)

where ρref is a reference density (taken as the oxidizer
densityρox in this study) andF(f ) is a polynomial function
of the mixture fraction given as

F(f ) =
J∑

j=0

djf j (15)

Table 1
Polynomial coefficients for calculation of the
gamma function in Eq. (13)

n cn

1 −0.577191652
2 0.988205891
3 −0.897056937
4 0.918206857
5 −0.756704078
6 0.482199394
7 −0.193527818
8 0.035868343

Fig. 3. Density distribution as a function of the mixture fraction calculated
from a counterflow diffusion CH4/air flame at 120 s−1.

Typically the value ofJ is about 20 to obtain accurate
fitting of Eq. (14) to the flamelet density profile. Fig. 3
shows the density distributions obtained from both the
flamelet calculation of a CH4/air flamelet at a strain rate
of 120 s−1 and a 20-order polynomial fitted result using
Eqs. (14) and (15). The fitted density distribution is in very
good agreement with the density profile of the flamelet
calculation.

In order to make use of the property between the beta
and gamma functions, Eq. (11), given the density expression
in Eq. (14), Lentini [4] apparently assumed that the mass-
weighted pdf has the form of theβ-pdf, though the mass-
weighted pdf concept was not explicitly used in the work
of Lentini. As a result, using the second part of Eq. (8), the
density integration becomes

ρ̄ = ρref

∫ 1
0 f a−1(1− f )b−1 df∫ 1

0 F(f )f a−1(1− f )b−1 df
(16)

The denominator of Eq. (16) can now also be evaluated using
the property of the beta and gamma functions as

1∫
0

F(f )f a−1(1− f )b−1 df =
J∑

j=0

dj
�(a + j)�(b)

�(a + j + b)
(17)

It is therefore advantageous to assume that mass-weighted
pdf has theβ-pdf form in order to make use of the
relationships between beta and gamma functions given in
Eqs. (11) and (17). However, these relationships cannot
be used if the unweighted pdf of the mixture fraction is
assumed to have theβ-pdf form. In general, the semi-
analytical approach of Lentini based on the properties of the
beta and gamma functions cannot be used for calculations
of the mean species concentrations since they cannot be fit
to a polynomial expression or Eq. (14) due to their orders of
magnitude variation across the reaction zone. Therefore, it is
desirable to develop a general, robust, efficient and accurate
numerical method for the scalar integration assuming the
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β-pdf to the mixture fraction with parameters in all the four
regions in thef −g plane shown in Fig. 1.

The functionβ(f ), Eq. (10), is singular atf = 0 if a < 1
and singular atf = 1 if b < 1 as shown in Fig. 2. To
remove these singularities in the numerical integration, the
integration of the numerator of Eq. (9) can be divided into
three parts as

1∫
0

ρ(f )f a−1(1− f )b−1 df

=
ε∫

0

ρ(f )f a−1(1− f )b−1 df

+
1−ε∫
ε

ρ(f )f a−1(1− f )b−1 df

+
1∫

1−ε

ρ(f )f a−1(1− f )b−1 df

≈ ρox
εa

a
+

1−ε∫
ε

ρ(f )f a−1(1− f )b−1 df + ρfuel
εb

b
(18)

whereε is a small parameter. An effective choice for the
value of ε was found to be 1.0 × 10−6 for the density
calculation. A too small value ofε will increase the difficulty
of the calculation of the integration in[ε,1− ε], the middle
term of the right-hand side of Eq. (18). A too large value of
ε will make the following approximations invalid:

(i) (1− f )b−1 ≈ 1 (a good approximation forb as large as
104) andρ(f ) ≈ ρox at the oxidizer side (f = 0), and

(ii) f a−1 ≈ 1 andρ(f ) ≈ ρfuel at the fuel side (f = 1).

Note that these approximations were employed in deriving
Eq. (18). The denominator of Eq. (9) can be calculated in a
similar way to Eq. (18) as

1∫
0

f a−1(1− f )b−1 df

≈ εa

a
+

1−ε∫
ε

f a−1(1− f )b−1 df + εb

b
(19)

Using Eqs. (18) and (19) for the evaluation of the numerator
and denominator therefore removes the singularity problem
of the β-pdf integration. It is worth noting that Eqs. (18)
and (19) are valid regardless of the values ofa and b.
Although both Eqs. (18) and (19) are inaccurate ifa � 1
andb is very large (say 106), they still result in the correct
mean density (ρox in this case) since the second and the third
terms in both equations are negligible compared to the first
term in these equations. Similarly Eqs. (18) and (19) can also

be used ifb � 1 anda is very large. In situations where both
a andb are greater than 1 and one or both of them are very
large, a special treatment is given later to prevent overflow.
Although Chen et al. [2] employed the same treatment as
Eqs. (18) and (19) to remove the singularity problem fora

or b or both smaller than 1, they suggested a very small value
of ε (about 10−20) and consequently the integration ofβ(f )

andρ(f )β(f ) in domain[ε,1 − ε] for a or b smaller than
1 is still difficult to calculate accurately and efficiently due
to the exponential variation of this function. In addition, it is
important to point out that the following two approximations
derived by Chen et al. [2]

ρ̄ ≈ ρox, if a < 1 anda < b (20)

ρ̄ ≈ ρfuel, if a > b andb < 1 (21)

are in general invalid unlessa is very small(� 10−4) andb

is greater than 1 in Eq. (20) orb is very small anda is greater
than 1 in Eq. (21).

When botha andb are greater than 1,β(f ) is no longer
singular, Fig. 2, and it can be easily shown that it has a
maximum that occurs at

fmax = 1

1+ (b − 1)/(a − 1)
(22)

If a or b is very large, overflow may occur. To overcome
this problem, Chen et al. [2] suggested to limit the bigger
value amonga andb while keeping their ratio constant. For
example, ifa is a very large value, its value is reset to a
modestly large value (say 500). The value ofb is then set to,

b′ = b

a
a′, a′ = 500 (23)

wherea and b are the original pdf parameters calculated
from Eqs. (5) and (6). Whenb is very large,a and b are
reset to

a′ = a

b
b′, b′ = 500 (24)

It should be pointed out that this procedure to prevent
overflow problem may significantly alter the shape of the
pdf determined by the original parametersa and b since
the value ofb′ calculated from Eq. (23) ora′ from Eq. (24)
might be reduced from a value greater than 1 to one smaller
than 1, and therefore qualitatively altering the shape of the
pdf as shown in Fig. 2. A better way to prevent overflow
problem while qualitatively preserving the shape of theβ-
pdf is to limit the bigger value ofa andb while keeping the
value offmax, i.e.,

b′ = a′ − 1− fmax(a
′ − 2)

fmax
, a′ = 500 if a is very large

(25)

It can be shown thatb′ calculated from Eq. (25) is still
greater than 1, therefore preserving the shape of the pdf.
On the other hand, ifb is very large and is to be reset, the
correspondinga is then calculated as
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a′ = 1+ fmax(b
′ − 2)

1− fmax
, b′ = 500 if b is very large

(26)

It can also be shown thata′ is also always greater than 1. As
an example, Fig. 4 shows the pdfs before and after resetting
the values ofa andb for a = 3 andb = 2000. It is clear from
this figure that resetting the values ofa andb using Eq. (26)
introduces smaller distortion to the shape of theβ-pdf than
using Eq. (24). Therefore, to prevent the overflow problem,
Eqs. (25) and (26) are preferred over Eqs. (23) and (24).

In the present treatment of theβ-pdf integration the
calculation of the middle terms of Eqs. (18) and (19) is
carried out as follows. Only the description of the term in
Eq. (18) is given to illustrate the method. It is noticed from
the behavior of the functionβ(f ) that it varies exponentially
nearf = 0 and nearf = 1. On the other hand,β(f ) varies
rather mildly for f not too close to 0 or 1 regardless the
values ofa andb as shown in Fig. 5 for three pairs ofa and
b. The values ofβ(f ) for a = 1.1 andb = 10 in this figure
are multiplied by 0.01 to reduce them to the magnitude of
β(f ) for a = 3 andb = 10. Based on these observations, the

Fig. 4. Effects of resetting parametersa andb on functionβ(f ) using two
different methods: (a) keeping the ratioa/b unchanged, and (b) keeping
fmax unchanged.

Fig. 5. Variation ofβ(f ) with its parametersa andb.

domain of integration is divided into several ranges whose
width also varies exponentially except the range[0.1,0.9]
for the reason given above. The integration ofρ(f )β(f )

over [ε,1− ε] is therefore calculated as

1−ε∫
ε

ρ(f )β(f )df =
10∑

i=1

fi+1∫
fi

ρ(f )β(f )df (27)

The values offi areε, 10−5, 10−4, 10−3, 10−2, 0.1, 0.9, 1−
10−2, 1− 10−3, 1− 10−4, 1− 10−5, and 1− ε. Integration
in each sub-range is performed by simply dividing the range
into N even segments, except in the range[0.1,0.9], and
the values of the function are evaluated at the center point
of each segment. The range[0.1,0.9] is divided into M

even segments. To demonstrate the convergence of this
algorithm for calculation over[10−6,0.1] and [0.1,0.9],
Fig. 6 shows the variation of the integrated density over
these two ranges withN and M for a = 0.1 and b =
3.0. It can be seen that the integrations ofρ(f )β(f ) over
these two ranges converge very rapidly with increasingN

and M. Similar evaluations have also been conducted for
other values ofa and b. It was found thatN = 20 and
M = 50 represent a good compromise between accuracy and
efficiency for density integration and therefore these values
of N and M were used in the calculations of the model
gas turbine combustor. It is worth noting that larger values
of N and M are in general required for the calculations

Fig. 6. Effects ofN andM on the integrated density over[1.0−6,0.1] and
[0.1,0.9].
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of mean species concentrations due to much more drastic
variation of the species concentrations with the mixture
fraction than the density around the reaction zone. Use of
large values ofN and M in the pdf integrations of the
species concentrations do not impose serious problems as
far as computational efficiency is concerned since these
integrations are decoupled from flow calculations.

3. Flow field calculation

The effects of turbulence on flow and combustion are ac-
counted for using thek–ε–f –g method [9]. The governing
equations solved in this method include conservation equa-
tions of mass, momentum, turbulence kinetic energy (k̃), dis-
sipation rate of turbulence kinetic energy (ε̃), mean mixture
fraction (f̃ ) and its variance (̃g). These equations can be
written in tensor notation as

∂

∂xk

(
ρ̄ũk

) = 0 (28)

∂

∂xk

(
ρ̄ũkũi

) = ∂

∂xk

[
µt

(
∂ũi

∂xk

+ ∂ũk

∂xi

)]

− ∂

∂xi

(
p + 2

3
ρ̄k̃ + 2

3
µt

∂ũl

∂xl

)
(29)

∂

∂xk

(
ρ̄ũkk̃

) = ∂

∂xk

(
µt

σk

∂k̃

∂xk

)
+ G − ρ̄ε̃ (30)

∂

∂xk

(
ρ̄ũk ε̃

) = ∂

∂xk

(
µt

σε

∂ε̃

∂xk

)
+ C1

ε̃

k̃
G − C2ρ̄

ε̃2

k̃
(31)

∂

∂xk

(
ρ̄f̃

) = ∂

∂xk

(
µt

σf

∂f̃

∂xk

)
(32)

∂

∂xk

(
ρ̄ũkg̃

) = ∂

∂xk

(
µt

σg

∂g̃

∂xk

)
+ Cg1µt

(
∂f̃

∂xk

)2

− Cg2ρ̄
ε̃

k̃
g̃ (33)

The rate of turbulence kinetic energy production term in
Eqs. (30) and (31) is given as

G = µt

(
∂ũj

∂xk

+ ∂ũk

∂xj

)
∂ũj

∂xk

(34)

and µt = Cµρ̄k̄2/ε̄ is the turbulent eddy viscosity. Values
of the model constants used in the present calculations are
those commonly employed in the literature and given as
Cµ = 0.09,C1 = 1.44,C2 = 1.92,σk = 1.0, σε = 1.3, σf =
0.9, σg = 0.9, Cg1 = 2.0, andCg2 = 2.0. The standard wall
function method was employed for the near wall treatment.

4. Numerical method

All the governing equations were discretized using the
multi-block finite volume method described by Ferziger
and Peric [10]. Convection terms were discretized using

the upwind scheme while diffusion terms were discretized
using the central differencing scheme. Non-staggered grid
arrangement was used such that velocities and scalars, in-
cluding pressure, are stored at the control volume centers.
The SIMPLE algorithm was employed to handle velocity
and pressure coupling [11]. The resultant algebraic equa-
tions were solved using Stone’s ILU, or SIP, method [10].

5. Results and discussions

To demonstrate the efficiency, accuracy and robustness
of the present numerical treatment of theβ-pdf integration
for mean density and flow field calculations, numerical
calculations were carried out to model turbulent methane/air
non-premixed combustion in a gas turbine simulator. The
geometry of the combustor and various dimensions are
shown in Fig. 7. The central fuel pipe radius is 4.225 mm.
The inner and outer radius of the annular air port are
31.75 mm and 38.0 mm, respectively. It was assumed
that the flow field in the combustor is axisymmetric. The
grid used to model this axisymmetric problem is wedge
shaped. Three blocks were used in the calculation. The
lengths of these blocks are 42 cm, 7.675 cm, and 7.685
cm, respectively. The computational mesh used in the
calculations is shown in Fig. 8. Block 1 is discretized using

Fig. 7. Experimental setup and dimensions of the gas turbine simulator.
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Fig. 8. Computational blocks and meshes used in the numerical calculations of the model gas turbine combustor.

Fig. 9. Density and near-field velocity and mixture fraction distributions obtained using the present method and assuming theβ-pdf to the unweighted pdf of
the mixture fraction.
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Fig. 10. Comparison of results obtained using the mass-weighted and unweightedβ-pdf of the mixture fraction.

161× 41 non-uniform grids with finer grids placed near
the inlet region to resolve the complex flow patterns in this
combustor. Blocks 2 and 3 are discretized using 9×41 grids.
It has been checked that these grids are sufficiently fine to
ensure grid independence of the calculated results.

Both fuel (CH4) and air enter the combustor at 300 K.
The pressure of operation is 1 atm. The inlet conditions
of the fuel stream areu = 19 m·s−1, v = 0, k = 0.9
m2·s−2, ε = 5.5 kg·m−1·s−3, f = 1.0, g = 0.0, andρ =
0.6517 kg·m−3. The inlet conditions for the air stream are
u = 29 m·s−1, v = 10.5 m·s−1, k = 1.125 m2·s−2, ε =
9.5 kg·m−1·s−3, f = 0, g = 0, andρ = 1.1718 kg·m−3.
Symmetry conditions are specified at the centerline of the
combustor and top and bottom planes (angular direction) of
the solution domain. Zero gradient conditions are imposed
at the exit.

The calculated density field and the near-field distribu-
tions of velocity and the mean mixture fraction are shown in
Fig. 9 assuming the unweightedβ-pdf for the mixture frac-
tion. Results displayed in the lower portion of Fig. 9 (r < 0)

are not calculated but created using the symmetry conditions
along the centerline. The flow pattern in the near field dis-
plays complex structure characterized by several recircula-
tion zones, Fig. 9(b). The contours of the mean mixture frac-
tion between 0.04 and 0.1 are also shown in Fig. 9(b) to indi-
cate the mixing characteristics and the structure of the reac-
tion zone. It is reasonable to assume that most of the chem-
ical reactions occur in this mixture fraction range. The fuel
entering the combustor through the central port first mixes
with the combustion products brought back by the reverse
flow around the stagnation point atx = 0.0396 m. The mix-
ture of the fuel and the combustion products is then pushed
outward away from the centerline and upstream by the re-
verse flow towards the air stream. As a result, there is a very
strong mixing layer, i.e., steep gradients in the mixture frac-
tion, right inside the annular air inlet port in the spatial region
defined by 0.032 m< r < 0.04 m andx < 0.06 m. Most of
the combustion takes place in this mixing layer and the cen-
terline region between 0.05 m< x < 0.25 m marked by the
mixture fraction contours.
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Fig. 11. Comparison of the density field calculated using the semi-analytical method of Lentini [4] and the present integration method assuming theβ-pdf to
the mass-weighted pdf of the mixture fraction.

Effects of assuming theβ-pdf to the mass-weighted and
unweighted pdf of the mixture fraction on the predictions
are shown in Fig. 10 by directly comparing the two results.
Although the two results are qualitatively similar, there are
some quantitative differences. Applying theβ-pdf to the
mass-weighted pdf of the mixture fraction results in lower
densities, Fig. 10(a), and the penetration of the central fuel
jet is correspondingly slightly longer, Fig. 10(b), relative to
that obtained using the unweightedβ-pdf.

Finally Fig. 11 compares the results calculated using
the semi-analytical method of Lentini [4] based on the
properties of the beta and gamma functions and the present
method of theβ-pdf integration assuming theβ-pdf to the
mass-weighted pdf of the mixture fraction. The density fields
calculated using these twoβ-pdf integration methods are
in very good agreement, confirming that the presentβ-pdf
integration method is very accurate. It was found that the
β-pdf integration approach of Lentini [4] is about three
times faster than the present method in the calculation of the
flow field in the model gas turbine combustor. However, the
present method does not suffer the limitations of the method
of Lentini.

6. Conclusions

A robust and accurate numerical integration method of
the β-pdf was proposed in this study. It was implemented
into a 3D multiblock finite volume code to simulate turbulent
CH4/air non-premixed combustion in a model gas turbine
combustor using the methodology of the flamelet model. The
numerical results obtained in this study lead to the following
conclusions:

(1) Assuming theβ-pdf to the mass-weighted and un-
weighted pdfs of the mixture fraction produce quantita-

tive differences in the calculated density and near-field
velocity distributions.

(2) The calculated density field using the presentβ-pdf
integration method is in excellent agreement with that
obtained using the semi-analytical approach of Lentini.

(3) Although the presentβ-pdf integration method is less
efficient than the method of Lentini, it is more general
and does not suffer the limitations of the method of
Lentini.
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