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Numerical modeling is an attractive option for cost-effective development of new high-
efficiency, soot-free combustion devices. However, the inherent complexities of hydro-
carbon combustion require that combustion models rely heavily on engineering approx-
imations to remain computationally tractable. More efficient numerical algorithms for
reacting flows are needed so that more realistic physics models can be used to provide
quantitative soot predictions. A new, highly-scalable combustion modeling tool has
been developed specifically for use on large multiprocessor computer architectures. The
tool is capable of capturing complex processes such as detailed chemistry, molecular
transport, radiation, and soot formation/destruction in laminar diffusion flames. The
proposed algorithm represents the current state of the art in combustion modeling, mak-
ing use of a second-order accurate finite-volume scheme and a parallel adaptive mesh
refinement (AMR) algorithm on body-fitted, multiblock meshes. Radiation is modeled
using the discrete ordinates method (DOM) to solve the radiative transfer equation and
the statistical narrow-band correlated-k (SNBCK) method to quantify gas band absorp-
tion. At present, a semi-empirical model is used to predict the nucleation, growth, and
oxidation of soot particles. The framework is applied to two laminar coflow diffusion
flames which were previously studied numerically and experimentally. Both a weakly-
sooting methane–air flame and a heavily-sooting ethylene–air flame are considered for
validation purposes. Numerical predictions for these flames are verified with published
experimental results and the parallel performance of the algorithm analyzed. The effects
of grid resolution and gas-phase reaction mechanism on the overall flame solutions were
also assessed. Reasonable agreement with experimental measurements was obtained for
both flames for predictions of flame height, temperature and soot volume fraction. Over-
all, the algorithm displayed excellent strong scaling performance by achieving a parallel
efficiency of 70% on 384 processors. The proposed algorithm proved to be a robust,
highly-scalable solution method for sooting laminar flames.

Keywords: numerical modeling; laminar diffusion flames; soot formation; adaptive
mesh refinement; parallel computation

1. Introduction

The combustion of hydrocarbon fuels in practical combustion devices such as industrial fur-
naces, gas turbine combustors, and diesel engines typically generates soot, which adversely
affects performance and is detrimental to human health. Numerical modeling is an attrac-
tive option for the development of new high-efficiency and soot-free burner designs since
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794 M.R.J. Charest et al.

it helps minimize costly trial-and-error experimentation. However, mathematical models
representing realistic combusting flows must rely heavily on engineering approximations to
ensure that computations remain tractable. Hydrocarbon combustion is inherently complex
and these approximate models are not accurate enough to capture the interactions between
gas-phase chemistry, turbulence, radiation transport, soot formation/oxidation, and multi-
phase transport. As such, efficient numerical algorithms for reacting flows are needed so
that realistic physics models can be used to provide quantitative soot predictions. These
algorithms should exploit state-of-the-art numerical methods such as adaptive mesh refine-
ment (AMR), high-order discretization schemes, and implicit nonlinear relaxation/time-
evolution schemes. They should also take advantage of today’s trend towards large-scale
parallel computing. In this study, a new highly-scalable finite-volume scheme for predicting
laminar reactive flows with detailed chemistry, radiation, and soot formation/destruction is
formulated and described.

A low-cost numerical framework for solving laminar reacting flows was developed by
Ern et al. [1] and later applied to the study of soot formation [2]. This framework solves
the vorticity–velocity formulation of the Navier–Stokes equations in the low-Mach-number
limit on adaptively refined meshes. Velocity–vorticity formulations automatically satisfy
the divergence-free condition and cope with the velocity–pressure coupling by eliminating
the pressure gradient term from the momentum equations. They do not require staggered
meshes, are easily applied to non-orthogonal curvilinear coordinates, and can be solved
with standard techniques. However, one drawback of velocity–vorticity formulations is the
difficulty in accurately treating boundary conditions as appropriate values for the vorticity
are not always known at the boundary [3].

The framework developed by Ern et al. [1] used a damped Newton method [4], a
Krylov-based linear matrix solver, and an implicit Euler time-marching scheme for startup.
It was applied in parallel on multiple processors via domain decomposition to reduce the
overall solution time. Moderate scaling was achieved with a parallel efficiency of 64%
on 16 processors (relative to four). This performance is largely attributed to the lack of a
global preconditioner. Additionally, the domain decomposition was only performed in one
direction which strongly limits the degree of partitioning of the problem and is generally
not applicable for more complex geometry.

Smooke et al. [2] later added detailed descriptions for soot formation and oxidation
based on a sectional representation of the aerosol dynamics [5]. Radiative losses from CO,
CO2, H2O and soot emission were accounted for with the optically thin approximation
(OTA). When the authors compared numerical and experimental results for a methane–air
coflow diffusion flame, they obtained good agreement for temperature and soot but only
moderate agreement for CH4 and C2H2. Problems were initially experienced predicting
bulk flame properties and thus inlet temperatures were increased to improve the predictions.
More complex calculations were performed by Smooke et al. [6] using the discrete transfer
method (DTM) [7] and a narrow-band approximation for the absorption spectrum [8].

Dworkin et al. [9] proposed improvements to the velocity–vorticity formulation of Ern
et al. [1] that reduced spurious mass losses/gains for flows with large vorticity gradients.
Despite these improvements, the approach does not fully conserve mass and introduces
additional numerical instabilities. The modified formulation was applied to the transient
analysis of soot formation in laminar coflow diffusion flames using a sectional aerosol
representation [10].

A numerical framework for studying hydrocarbon growth in laminar coflow diffu-
sion flames was developed by D’Anna and coworkers [11]. Conservation equations are
solved in two dimensions using a first-order finite-volume advective scheme [12] and
radiation was modeled with the DTM [7]. Major simplifications include the use of
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Combustion Theory and Modelling 795

empirically-tuned gray absorption coefficients and approximate transport properties based
on nitrogen. The solver employed an alternating-direction implicit (ADI) scheme and a
tri-diagonal matrix algorithm (TDMA) to relax the linearized equations. A point-wise
Newton–Raphson scheme has also been used [13]. Soot formation/oxidation was later
included using a moment model [14] and a sectional model [15].

Liu et al. [16] and Guo et al. [17] have also developed a mathematical model for
studying soot formation in laminar coflow diffusion flames. Their implementation solves
the primitive form of the governing equations for mass, momentum, energy and species
conservation in the low-Mach-number limit on structured meshes. Two additional equa-
tions were solved for the conservation of soot mass and number as per the monodisperse
soot models proposed by Fairweather et al. [18] and Leung et al. [19]. Radiation was
modeled with the discrete ordinates method (DOM) [20] and a wide-band model for the
gas absorption properties [21]. As with previous investigators, the soot spectral absorption
coefficient was determined from Rayleigh scattering theory. Solutions were obtained using
the SIMPLE finite-volume scheme which decouples the mass and momentum equations to
deal with pressure-velocity couplings [22]. Their overall algorithm solves the equations in
a decoupled manner by first solving for mass, momentum and energy using a TDMA. The
equations for the individual gas-phase species masses, soot mass, and soot number density
are then solved with a multigrid method [23]. This method is not applicable for time ac-
curate studies and the employed low-Mach-number assumption limits its applicable range
of operating conditions. Recently, Zhang and coworkers [24] have extended the framework
to utilize an advanced fixed-sectional aerosol model. The original solution algorithm was
modified to deal with the stiff nature of the soot transport equations and parallel imple-
mentation was carried out via a simple domain decomposition in one coordinate direction.
The predictions of the modified scheme agree well with experimental measurements and
reasonable parallel performance was achieved. Although such a domain decomposition of
the problem cannot be carried out to large numbers of processors, a parallel efficiency of
82% was achieved on 12 processors.

While not specifically designed for the study of soot formation, Day and Bell [25]
developed a highly efficient parallel solution algorithm. They have studied both steady
and time-dependant complex reacting flows by solving the low-Mach-number form of the
compressible flow equations. Borrowing from Pember et al. [26], the scheme employs a
fractional step method and AMR to solve the equations on a single grid. Excellent parallel
performance up to 4096 processors was observed when the scheme was applied to turbulent
flames [27]. A major drawback of this particular framework is the restriction to low-Mach-
number flows as the equation of state is only satisfied to order Mach number squared.

In this research, a new framework for the study of soot formation in complex react-
ing laminar flows is presented. It solves the unmodified equations governing compressible
flows which are applicable for all speeds with a Newton–Krylov-based implicit solver. Dis-
cretization is performed using a high-order upwind-reconstructed finite-volume scheme on
multiblock, body-fitted meshes with AMR. Soot is modeled as monodisperse with a sim-
ple acetylene-based kinetic mechanism for nucleation, growth, coagulation, and oxidation.
The effects of both gas and soot emission/absorption are included using the DOM coupled
with a wide-band formulation for the gas absorption coefficients. This framework extends
the previous work of Northrup and Groth [28, 29] and provides a robust, highly-scalable
solution method for sooting laminar flames. Details of the proposed solution method are
presented and verification is sought via comparisons to published experimental and nu-
merical results for two laminar coflow diffusion flames. Following this, the performance
of the new algorithm is assessed to demonstrate its general applicability and potential for
performing large-scale, detailed combustion computations.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
0
2
:
2
5
 
1
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



796 M.R.J. Charest et al.

2. Governing equations

Gaseous combusting laminar flow is described herein mathematically using the conservation
equations for continuous, multicomponent, compressible, thermally-perfect mixtures of
gases [30]. The equations consist of the conservation of total mass, individual species
mass, mixture momentum, and mixture energy. However, modeling soot formation and
destruction in gaseous combustion requires tracking an additional solid phase and capturing
the interactions that occur between phases. An approach similar those developed by Leung
et al. [19] and Fairweather et al. [18] is used in this work. In this approach, the soot particle
size distribution is approximated by an average size that varied via surface reactions and
coagulation. The representation requires only two additional transport equations for soot
mass and number.

Assuming Newtonian flow, the conservation of global mass, momentum, energy, indi-
vidual species mass, soot mass, and particle number can be summarized as

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂

∂t
(ρv) + ∇ · (ρvv + pI) = ∇ · τ + ρg (2)

∂

∂t
(ρe) + ∇ ·

[
ρv

(
e + p

ρ

)]
= ∇ · (v · τ ) − ∇ · q + ρg · v (3)

∂

∂t
(ρYk) + ∇ · [ρYk(v + Vk)] = ω̇k, k = 1, . . . , N (4)

∂

∂t
(ρYs) + ∇ · [ρYs(v + VY )] = SY (5)

∂

∂t
(ρNs) + ∇ · [ρNs(v + VN )] = SN (6)

where t is the time, ρ is the mixture density, p is the total mixture pressure, v is the mixture
velocity vector, e is the total mixture energy, Yk is the mass fraction of species k, Ys is the
mass fraction of soot, Ns is the soot number density (number of particles per unit mass of
mixture), Vk is the diffusion velocity of gas species k, VY is the diffusion velocity related
to soot mass, VN is the diffusion velocity related to soot number, ω̇k is the time rate of
change of the kth species mass, SY is the time rate of change of the soot mass, SN is the
time rate of change of the soot number, τ is the fluid stress tensor, g is the acceleration
vector due to gravity, N is the number of gaseous species in the mixture, and q is the heat
flux vector. The time rate of change of gaseous species includes contributions from both
gas-phase chemistry and soot surface reactions.

The density of the mixture was calculated using the following state equation

ρ = p

RuT
(∑N

k=1 Yk/Mk

) (7)

where Ru is the universal gas constant, T is the temperature, and Mk is the species molar
mass. The heat flux vector contains contributions from conduction, diffusion, and radiation.
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Combustion Theory and Modelling 797

It is given by

q = −κ∇T + ρ

N+1∑
k=1

hkYkVk + qrad (8)

where κ is the mixture thermal conductivity, hk is the individual species enthalpy, and qrad

is the radiative heat flux. In Equation (8), and throughout this work, the (N + 1)th species
refers to soot. The enthalpy of soot was approximated using the properties of graphite.

Multispecies diffusion was modeled here using the first-order Hirschfelder–Curtiss
approximation [31] while soot was assumed to diffuse primarily by thermophoresis using
a model based on the limit of free-molecular flow [2]. The gas-phase diffusion velocity is
given by

Vk = −Dk

Yk

∇Yk (9)

where Dk is the individual species mixture averaged diffusion coefficient. In addition to
contributions from thermophoresis, a small Fickian diffusive flux was included in the soot
particle transport equations. This was required to enhance numerical stability even though
the transport of soot via Brownian motion is generally negligible. A similar procedure was
adopted by Kennedy et al. [32]. The resulting diffusion velocities for soot are

VY = −Ds

Ys
∇Ys + VT (10)

VN = −Ds

Ns
∇Ns + VT (11)

where Ds = 10−8 m s−2 is the soot diffusion coefficient. Similarly, Kennedy et al. [32] spec-
ified a diffusion coefficient for soot equal to 1% of the gas diffusivity. The thermophoretic
velocity, VT, for the soot particles is [33]

VT = −0.55
µ

ρT
∇T (12)

where µ is the mixture dynamic viscosity.

2.1. Soot chemistry model

Soot formation and destruction was modeled using the simplified soot kinetics described
by Liu et al. [16]. This model is based on the reduced soot mechanisms of Leung et al.
[19] and Fairwaether et al. [18] which describe the evolution of soot through basic steps
for nucleation, surface growth, coagulation, and oxidation. Acetylene is assumed to be the
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798 M.R.J. Charest et al.

only precursor responsible for the presence of soot. The resulting mechanism is

C2H2 → 2C(s) + H2

C2H2 + n · C(s) → (n + 2) · C(s) + H2

n · C(s) → Cn(s)

C(s) + 1

2
O2 → CO

C(s) + OH → CO + H

C(s) + O → CO

It follows from the mechanism above that the source term in Equation (5) can be written as

SY = 2Ms(R1 + R2) − (2R3 + R4 + R5)As (13)

where Ms is the molar mass of soot (assumed equal to the molar mass of carbon, 12 kmol
kg−1) and As is the surface area of soot per unit volume of aerosol. The terms R3, R4, and
R5 are the soot oxidation rates for reactions involving O2, OH, and O, respectively. The
terms R1 and R2 are the soot nucleation and surface growth rates defined by

R1 = k1[C2H2] (14)

R2 = k2f (As)[C2H2] (15)

The function f (As) incorporates the dependence of soot surface growth on the soot surface
area per unit volume, As. Proposed forms of f (As) include: f (As) = A0.5

s [19] and f (As) =
As [18]. Here we have used the first relationship. The corresponding rate constants k1 and
k2 are given by [16]

k1 = 1000 exp(−16 103/T ) (16)

k2 = 1750 exp(−10 064/T ) (17)

Surface area As is related to the soot mass and number density by

As = π

(
6

π

1

ρs

Ys

Ns

)2/3

(ρNs) (18)

where ρs is the density of soot, taken to be 1900 kg m−3 [16]. The oxidation reaction rates
per unit surface area are modeled by

R3 = 120

{
kaXO2χ

1 + kzXO2

+ kbXO2 (1 − χ )

}
, χ =

{
1 + kT

kbXO2

}−1

(19)

R4 = ϕOHk4T
−1/2XOH (20)

R5 = ϕOk5T
−1/2XO (21)
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Combustion Theory and Modelling 799

where XO2 , XOH, and XO denote the mole fractions of O2, OH and O. The collision
efficiencies for OH, ϕOH, and O, ϕO, were both assumed equal to 0.2. The rate of soot
oxidation by O2 was based on the Nagle–Strickland–Constable model [34] with the rate
constants ka , kb, kz, kT , and k4 taken from Moss et al. [35]. The rate constant k5 was equal
to the value used by Bradley et al. [36].

The source term in Equation (6) represents the production and destruction of the soot
particle number density with nucleation and agglomeration. It is modeled herein as follows:

SN = 2

Cmin
NaR1 − 2Ca

(
6Ms

πρs

)1/6 (6kBT

ρs

)
[C(s)]1/6(ρNs)

11/6 (22)

where Na is Avogadro’s number (6.022 × 1026 kmol−1), kB is the Boltzmann constant
(1.38 × 10−23 m2 kg s−2 K−1), Cmin = 700 is the number of carbon atoms in the incip-
ient carbon particle, Ca is the agglomeration rate constant, and [C(s)] = ρYs/Ms is the
molar concentration of soot. In this work, agglomeration was neglected (Ca = 0) based on
recommendations made by Liu et al. [16] and Ezekoye and Zhang [37].

Several issues related to numerical stability and convergence were encountered using
the previously described soot model. First, both SY and SN are functions of Ys and Ns raised
to sub-unity powers. For example,

SY ∝ Y 1/3
s N1/6

s and SN ∝ Y 1/6
s (23)

As a result, derivatives of SY and SN with respect to Ys or Ns become infinite as Ys → 0 and
Ns → 0. Additionally, oscillations in Ys or Ns caused by round-off or numerical diffusion
errors can produce large fluctuations in the source terms when Ys and Ns are small. Both
of these issues caused the proposed Newton–Krylov time-marching algorithm to stall. To
overcome this stall, As was modified by applying a blending function to eliminate any
on/off switching experienced by SY and smooth its derivative with respect to Ys and Ns.
The modified surface area is given by

A∗
s = β(Ys)β(Ns)As (24)

where the blending function, β(x), is defined as

β(x) = 1.0 − exp

[
− 5

( x

10−6

)2
]

(25)

The modification was applied by replacing As with A∗
s in Equations (13) and (15).

3. Radiation model

Detailed treatment of thermal radiation is necessary for accurate prediction of the flame
structure, species concentrations, and formation of soot [38]. The discrete ordinates method
(DOM) [20] was implemented to evaluate the radiation flux term in Equation (3). Spectral
absorption coefficients for H2O, CO2, and CO were approximated using the wide-band
model developed by Liu et al. [21] which is based on the statistical narrow-band correlated-
k (SNBCK) method [39].

In the DOM, the directional dependence of the equation of transfer is discretized and
integrals over the solid angle are approximated by numerical quadrature. The radiative
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800 M.R.J. Charest et al.

intensity field is represented by a set of M different directions in the polar and azimuthal
coordinates. For a non-grey absorbing-emitting medium, the steady-state equation of trans-
fer for a single wavelength and discrete direction of propagation is given by

∂Iη,m

∂s
= ŝm · ∇Iη,m = κη

(
Ibη − Iη,m

)
, for m = 1, . . . ,M (26)

where η is the wavenumber, m is the direction index, Iη,m is the spectral intensity in the
direction of ŝm, κη is the spectral absorption coefficient, and Ibη is the spectral black-
body intensity. Equation (26) is solved using the space-marching finite-volume approach of
Carlson and Lathrop [20] with the T3 angular quadrature scheme [40] and centered differ-
ences for the spatial derivatives. The simplified angular redistribution technique proposed
by Jendoubi et al. [41] was adopted to evaluate the angular gradient which results from
expanding the first term in Equation (26) for axisymmetric coordinate systems.

In the SNBCK method, the spectral domain is discretized into wavelength intervals of
size 
η within which Ibη can be assumed constant and the radiative transfer in each interval
is computed. Radiative quantities are integrated over the narrow bands by introducing a
cumulative distribution function for the absorption coefficient, g(κ), that can be interpreted
as a dimensionless wavenumber coordinate which varies monotonically from 0 to 1. The
cumulative distribution function is derived by taking the inverse Laplace transformation of
the statistical narrow-band transmissivity [39]. Integrating Equation (26) over each narrow
band yields

∫ 1

0

∂I
η,m

∂s
dg =

∫ 1

0
κ
η(g)

(
Ib
η − I
η,m

)
dg (27)

where the subscript, 
η, refers to the specific wavenumber interval. Using Gauss–Legendre
quadrature, the DOM equation is solved for each quadrature point, gi , and the spectrally
integrated intensity for each band is computed from

I
η,m =
Ng∑
i=1

wiI
η,m(gi) (28)

where Ng is the number of Gauss quadrature points and wi are the weights. Four Gauss
quadrature points were found to provide a reasonable balance between accuracy and com-
putational expense.

After the DOM equation is solved for each direction m and quadrature point i in each
band, the divergence of the radiative heat flux is then evaluated as

∇ · qrad ≈
Nb∑
j=1

Ng∑
i=1

wiκ
ηj
(gi)

(
4πIb
ηj

−
M∑

m=1
ωmI
ηj ,m(gi)

)

ηj (29a)

where Nb are the number of narrow bands, ωm are the ordinate weights, and 
ηj is the
narrow band width for the j th spectral interval. The blackbody intensity within each range,
Ib
ηj

, is evaluated at the band center. In this study, the narrow-band data of Soufiani and
Taine [42] for H2O, CO2, and CO was used to construct the cumulative distribution function.
To reduce the number of unknowns required for non-gray radiation in mixtures, the three
radiating gases are approximated by a single gas with effective narrow-band parameters
based on the optically thin limit [43]. Additional computational savings are achieved by
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Combustion Theory and Modelling 801

combining bands to form several wide bands using the lumping procedure described by
Liu et al. [21]. Based on the recommendations of Goutière et al. [44], a total of nine
non-uniformly spaced wide bands are employed.

The soot spectral absorption coefficient is determined in the Rayleigh limit for small
spherical particles and is given by [45]

κη,soot = Cfvη (30)

where fv is the soot volume fraction and C is an empirical constant. The constant C was
taken to be 5.5, which is similar to the value used by Liu et al. [16].

4. Solution procedure

Numerical solutions of Equations (1)–(6) are obtained using the parallel, implicit, finite-
volume scheme with block-based AMR previously developed by Groth and cowork-
ers [46, 47]. The scheme solves conservation equations on body-fitted, multiblock, quadri-
lateral meshes. In this finite-volume approach, the physical domain is discretized into
finite-sized computational cells and the integral forms of conservation laws are applied to
each individual cell. For cell (i, j ), as shown in Figure 1, the approach results in the follow-
ing coupled system of nonlinear ordinary differential equations (ODEs) for cell-averaged
solution quantities:

dWij

dt
= ∂W

∂U

∣∣∣∣
ij

·
⎧⎨
⎩− 1

Aij

∑
faces, k

(Fk · n̂k
lk)ij + Sij

⎫⎬
⎭ (31)

where

Uij = [ρ, ρu, ρv, ρe, ρY1, . . . , ρYN, ρYs, ρNs]
T

Wij = [p, u, v, T , Y1, . . . , YN, Ys, Ns]
T

are the cell-averaged conserved and primitive solution vectors, respectively, Aij is the cell
area, n̂k and 
lk are the normal vector and edge length for the kth face, and Sij is the source
term which includes contributions from axisymmetric terms, gravitational forces, finite

nk∆lkCell (i, j) ˆ

Figure 1. Two-dimensional quadrilateral computational cell.
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802 M.R.J. Charest et al.

rate-chemistry, and radiation. The numerical flux Fk = (F, Fv) comprises both inviscid, F,
and viscous, Fv, components which must be evaluated separately. The evaluation of these
terms and the solution of Equation (31) are described in the following sections.

4.1. Low-Mach-number preconditioning

Solution of the nonlinear ODEs given by Equation (31) can be somewhat challenging as
large differences between spatial and temporal scales can make the ODEs stiff. The stiffness
of the ODEs is also significantly enhanced at very low flow speeds, which are of primary
interest here, when the disparities between the convective and acoustic velocities become
large [48]. Additionally, the nature of upwind discretizations for the inviscid fluxes can
produce excessive dissipation at low speeds, corrupting overall solution accuracy.

Preconditioning replaces physical time derivatives with artificial ones in order to al-
ter the speeds at which waves propagate. As per Weiss and Smith [49], application of
the preconditioning to Equations (1)–(6) leads to the following system for axisymmetric
coordinates:

�
∂W

∂t
+ ∂

∂r
F + ∂

∂z
G = ∂

∂r
Fv + ∂

∂z
Gv + S (32)

where � is the preconditioning matrix for the primitive variables, F and G are the inviscid
fluxes in the r- and z-directions, respectively, and Fv and Gv are the corresponding viscous
fluxes. The preconditioning matrix, modified to include the equations for soot mass fraction
and number density, is given by

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 0 ρT ρY1 · · · ρYN+1 0

u� ρ 0 uρT uρY1 · · · uρYN+1 0

v� 0 ρ vρT vρY1 · · · vρYN+1 0

H� − (1 − ρhp) ρu ρv HρT + ρhT HρY1 + ρhY1 · · · HρYN+1 + ρhYN+1 0

Y1� 0 0 Y1ρT Y1ρY1 + ρ · · · Y1ρYN+1 0

...
...

...
...

...
. . .

...
...

YN+1� 0 0 YN+1ρT YN+1ρY1 · · · YN+1ρYN+1 + ρ 0

Ns� 0 0 NsρT NsρY1 · · · NsρYN+1 ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where u and v are the r- and z-components of velocity, respectively, H is the total mixture
enthalpy, and � is given by

� = 1

V 2
p

− ρT (1 − hp)

ρhT

(34)

The variables ρp, ρT , hp, hT , ρYk
, and hYk

are thermodynamic quantities that describe
the properties of the fluid. The subscripts denote partial derivatives. For a perfect gas,
ρp = 1/(RT ), ρT = −ρ/T , hT = cp, hp = 0, ρYk

= −ρM/Mk , hYk
= hk , R is the mixture

ideal gas constant, M is mixture molar mass, and cp is the mixture specific heat. The
eigenvalues for the preconditioned Jacobian matrix in the r-direction, �−1∂F/∂W, become:

λ = [
u′ − a′, u, u, u′ + a′, u, . . . , u

]T
(35)
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where

u′ = u (1 − α)

a′ =
√

α2u2 + V 2
p

α = 1

2

(
1 − βV 2

p

)
β = ρp + ρT (1 − hp)

ρhT

The preconditioned velocity scale, Vp, is an artificial sound speed defined as

Vp = min[ max
(
Vinv, Vpgr, Vvis, Mref · a

)
, a ] (36)

where a is the speed of sound. The inviscid, pressure-gradient-induced, and viscous velocity
scales, Vinv, Vpgr, and Vvis, respectively, are given by [49, 50]

Vinv =
√

u2 + v2 (37)

Vpgr =
√

|
p|
ρ

(38)

Vvis = µ/ρ


x
(39)

where 
p is the cell pressure gradient and 
x is the length of the computational cell. The
term Mref in Equation (36) is a reference Mach number included to prevent singularities at
stagnation points. A value of 10−4 is used throughout this work.

4.2. Round-off error control

Another difficulty for flame computations with low flow velocities is the increasing signifi-
cance of machine round-off errors that begin to denominate at Mach numbers below 10−3.
Following the procedure described by Choi and Merkle [51], a reference pressure, p0, is
introduced to minimize the influence of round-off errors at low Mach numbers. As a result,
the pressure, p, is given by

p = p0 + p′ (40)

where p0 is a constant equal to the ambient pressure and p′ represents the deviation of
the local pressure from p0. The reference pressure is subtracted from Equation (2) and p′

replaces p in the definition of the solution vector, W, when numerical solutions are sought.

4.3. Inviscid flux evaluation

To determine the numerical flux at the cell face, a high-order upwind Godunov scheme is
used. Godunov’s method [52] begins by assuming that the solution in each cell is piecewise-
constant and that the intermediate solution state at the cell interface is approximated
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804 M.R.J. Charest et al.

by upwinding. It is this upwinding that ensures monotonicity of solutions and prevents
unwanted oscillations. In two dimensions, given the left and right solution states, WL and
WR, the numerical flux the cell interface is defined as

F · n̂ = F (WL, WR, n̂) (41)

where F is a flux function which solves a Riemann problem, R, in a direction aligned along
the face normal, n̂.

Roe’s approximate Riemann solver was used throughout this work to evaluate the
inviscid fluxes [53, 54]. Additionally, the correction proposed by Harten [55] was added to
ensure that the entropy condition is never violated at the sonic point. The numerical flux in
one direction is given by

F (R (WL, WR)) = 1

2
(FR + FL) − 1

2
|Â|
W (42)

where FL and FR are the inviscid fluxes evaluated based on WL and WR, 
W = WR − WL,
|Â| = R̂|�̂|R̂−1, R̂ is the matrix of primitive variable right eigenvectors and �̂ is the
eigenvalue matrix. The matrix Â is the linearized flux Jacobian evaluated at a reference state,
Ŵ. For simplicity, a reference state which relaxes Roe’s conditions is used when dealing
with multispecies, reacting flows [56, 57]. As such, the Roe-averaged flow variables, f̂ ,
are defined in terms of a mass weighting of the left and right flow variables, fL and fR , as
given by

f̂ = ρRfR + ρLfL

ρR + ρL

(43)

where fL and fR can be any of the variables u, v, h, Yk , Ys, and Ns. The Roe-average
density is given by ρ̂ = √

ρRρL.
The dissipation associated with the upwind discretization procedure can be controlled in

the low-Mach-number limit by re-deriving Equation (42) based on the preconditioned wave
speeds. Following the procedure outlined by Weiss and Smith [49], |Â|
W in Equation
(42) is modified as follows:

|Â|
W 	 Â
W = �

(
�−1 ∂F

∂W

)

W = �|A�|
W (44)

where |A�| = R�|��|R�
−1. The subscript � denotes that the matrix of eigenvectors and

eigenvalues were derived based on the preconditioned system. The resulting numerical flux
function has the form

F (R (WL, WR)) = 1

2
(FR + FL) − 1

2
�|A�|
W (45)

and ensures the correct scaling of the numerical dissipation in the low-Mach-number limit.

4.4. High-order spatial accuracy

The extension of Godunov’s scheme to second-order can prove challenging as second-order
schemes with constant coefficients can generate unwanted non-physical oscillations near
solution discontinuities or locations where the solution is under-resolved [58]. Godunov’s
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scheme is first-order because the projection of the cell-averaged solution in each cell occurs
on piecewise-constant states. This projection is completely decoupled from the upwinding
process and thus one can easily modify the spatial approximation to increase solution accu-
racy. For this work, second-order spatial accuracy is achieved by interpolating the solution
state at the cell interface between two adjacent cells. Monotonicity is ensured by using
slope limiters to control gradients and locally reduce the scheme to first-order as necessary,
thereby damping out any over- and under-shoots in the reconstructed solution [59]. In two
dimensions, the reconstructed left and right states for interface (i + 1

2 , j ) are

WL = Wij + φij

[
∂W

∂r

∣∣∣∣
ij

(ri+ 1
2 ,j − rij ) + ∂W

∂z

∣∣∣∣
ij

(zi+ 1
2 ,j − zij )

]
(46)

WR = Wi+1,j + φi+1,j

[
∂W

∂r

∣∣∣∣
i+1,j

(ri+ 1
2 ,j − ri+1,j ) + ∂W

∂z

∣∣∣∣
i+1,j

(zi+ 1
2 ,j − zi+1,j )

]

(47)

where φ is a slope limiter. Slope limiting is performed with a limiter specifically designed for
use in multiple dimensions [60]. The cell gradients are computed using linear reconstruction
from Green–Gauss theory [61].

4.5. Viscous flux evaluation

The centrally-weighted diamond-path method described by Coirier and Powell [62, 63] was
employed to evaluate the viscous component of the numerical flux at the cell faces. The
viscous component is given by

Fv · n = G(W,∇W, n) (48)

where G is the viscous flux function.
In the diamond-path method, the gradients at each face are found by applying the

divergence theorem to a four-sided polygon, or diamond path, whose vertices are defined
as shown in Figure 2. The four vertices correspond to the two neighboring cell centers
and the nodes of the interface separating the two cells. While the solution data at the
cell centers is easily interpreted from the cell averages, the solution state at the vertices

(i, j)

(i + 1
2 , j − 1

2 )

(i + 1
2 , j + 1

2 )

(i + 1, j)

Figure 2. Diamond path viscous flux reconstruction for a quadrilateral cell.
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806 M.R.J. Charest et al.

must be interpolated. A linearity-preserving weighting scheme that linearly constructs the
nodal data from the cell-centered solution states of the neighboring cells was used [64].
This diamond path technique avoids instabilities due to even/odd decoupling that occur in
standard cell-centered formulations [62] and reduces to standard centered differences on
Cartesian grids with uniform mesh spacing.

4.6. Steady-state relaxation method

Newton’s method is applied to obtain steady-state solutions for the coupled set of nonlinear
ODEs, given by Equations (1)–(6). It is used to relax the semi-discrete form of the governing
equations to a steady-state solution such that

R(W) = dW

dt
= 0 (49)

The Newton algorithm developed by Groth and Northrup [65] specifically for use on large
multiprocessor computer architectures is used here. The implementation makes use of a
Jacobian-free inexact Newton method coupled with an iterative Krylov subspace linear
solver. In Newton’s method, a solution to Equation (49) is sought by iteratively solving a
sequence of linear systems given an initial estimate, W0. Successively improved estimates
are obtained by solving the linear system

(
∂R

∂W

)n


Wn = J(Wn)
Wn = −R(Wn) (50)

where J = ∂R/∂W is the residual Jacobian. The improved solution at step n is then
determined from

Wn+1 = Wn + 
Wn (51)

The Newton iteration proceeds until some desired reduction in the norm of the residual is
achieved and the condition ‖R(Wn)‖ < ε‖R(W0)‖ is met. The tolerance, ε, used in this
work was 10−7.

As mentioned, each step of Newton’s method requires the solution of the linear problem

Jx = b (52)

where x = 
W and b = −R(W). This system is relatively large, sparse, and non-
symmetric. It is solved using the generalized minimal residual (GMRES) technique de-
veloped by Saad and coworkers [66–69], which is widely used for solving systems of this
type. GMRES is an Arnoldi-based solution technique which generates orthogonal bases
of the Krylov subspace to construct the solution. The technique is particularly attractive
because the matrix J is not explicitly formed and instead only matrix-vector products are
required at each iteration to create new trial vectors. This greatly reduces the required
storage associated with forming J [70]. Termination also generally only requires solving
the linear system to some specified tolerance, ‖Rn + Jn
Wn‖ < ζ‖R(Wn)‖, where ζ is
typically in the range 0.1–0.5 [71]. Lastly, a restarted version of the GMRES algorithm,
GMRES(m), was used that minimizes storage by restarting every m iterations.
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GMRES requires preconditioning to be effective. Right preconditioning the matrix J
is performed to help facilitate the solution of Equation (52) without affecting the solution
residual vector, b. The preconditioning takes the form

(
JM−1

)
(Mx) = b (53)

where M is the preconditioning matrix. A combination of an additive Schwarz global pre-
conditioner and a block incomplete lower-upper (BILU) local preconditioner is used which
is easily implemented in the block-based AMR scheme. In additive Schwarz precondition-
ing, the solution in each block is updated simultaneously and shared boundary data is not
updated until a full cycle of updates has been performed on all domains. The preconditioner
is defined as follows

M−1 =
NB∑
k=1

BT
k M−1

k Bk (54)

where NB is the number of blocks and Bk is the gather matrix for the kth domain. The local
preconditioner, M−1

k , in Equation (54) is based on block ILU(p) factorization [69] of the
Jacobian for the first-order approximation of each domain. In this study, the level of fill, p,
was maintained at four in order to minimize storage requirements.

Newton’s method can fail when initial solution estimates fall outside the radius of
convergence. To ensure global convergence of the algorithm, the implicit Euler startup
procedure with switched evolution/relaxation (SER) that was proposed by Mulder and van
Leer [72] was used. Application of this startup procedure to the semi-discrete form of the
governing equations gives

[
− �


tn
+
(

∂R

∂W

)n]

Wn = −Rn (55)

where 
tn is the time step. In the SER approach, the time step is varied from some
small finite value and gradually increased as the steady state solution is approached. As

tn → ∞, Newton’s method is recovered.

In the quasi-Newton and SER methods, the time step size was determined by considering
the inviscid Courant–Friedrichs–Lewy (CFL) and viscous Von Neumann stability criteria
only. Time scales associated with gas-phase and soot chemistry were not incorporated into
the time step size estimates. The time step size is determined by


tn = CFL · min

[

x

u + a
,

ρ
x2

µ

]
(56)

where CFL is a constant greater than zero which determines the time step size. During the
startup phase of the Newton calculation, a value for CFL between 10 and 100 is typically
used.

4.7. Parallel adaptive mesh refinement scheme

Modeling practical combustion devices with complex chemistry, turbulence and radiation
transport can quickly tax computational resources even on relatively coarse meshes. Un-
fortunately, high mesh densities are required in areas with steep gradients and small length
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A
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0
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Level Tree

A

B

C

Adaptive Blocks

Figure 3. Adaptive mesh refinement quad-tree data structure and associated solution blocks for a
quadrilateral mesh.

scales to accurately capture these processes. These locations can change over time and
would normally require the use of large, fine uniform meshes. A flexible block-based AMR
scheme is adopted here to limit the number of necessary computational cells by dynamically
adapting the mesh to meet solution requirements. Details of the scheme and its implemen-
tation in parallel are described by Sachdev et al. [73, 74]. The extension of the scheme
to three dimensions is described by Gao and Groth [75]. In this approach, block-based
domain decomposition is applied to a body-fitted quadrilateral mesh. The grid blocks are
organized in a hierarchical quad-tree data structure to facilitate automatic solution-directed
mesh adaptation with physics-based criteria. The scheme borrows aspects from previous
work by Berger and coworkers [76–79], Quirk [80], and De Zeeuw and Powell [81] for
Cartesian grids, and has similarities with the block-based approaches described by Quirk
and Hanebutte [82] and Berger and Saltzman [78].

Relaxation of Equation (31) with AMR proceeds as follows. The equations are first
integrated forward in time on an initial structured, multiblock mesh to obtain updated
volume-averaged solution quantities. The mesh is then adapted by coarsening or refining
the blocks designated by the refinement criteria. A hierarchical tree-like data structure,
shown in Figure 3, is used to retain connectivity between solution blocks and track their
refinement history. The blocks requiring refinement are termed ‘parents’ and are divided
into four new blocks called ‘children’. Each child is a new block with the same number of
cells as its parent, doubling the mesh resolution in the region. Coarsening flagged blocks is
carried out by reversing this process and combining four children into one single parent.

For reacting flows, refinement is based on the gradients of both species mass fractions
and temperature. The refinement criteria employed here are defined by

ε1 ∝ |∇T |
T

(57)

ε2 ∝ |∇Yk| (58)

Based on either of these criteria, the mesh is refined and blocks are added wherever ε1 or ε2

are large. In the present work, grids were refined based on temperature in addition to fuel,
acetylene, and soot mass fractions.

To further decrease the overall computational time, integration of the governing equa-
tions is performed in parallel. This is carried out by distributing the computational blocks
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Figure 4. Sample multiblock grid and solution blocks depicting ghost cells.

among the available processors and simultaneously computing the solutions for each block
on each processor. An even distribution of solution blocks is generally sought on homoge-
neous architectures while a weighted distribution is permissible for computations performed
on heterogeneous systems such as networked workstations or computational grids. To en-
sure efficient load balancing, blocks are organized using a Morton ordering space filling
curve which collocates nearest neighbors on the same processor [79]. This minimizes the
amount of necessary communication and improves the overall parallel efficiency of the
implementation. The proposed AMR scheme was implemented using the message passing
interface (MPI) library and the C++ programming language [83].

As shown by Figure 4, ghost cells which surround the solution block and overlap cells on
neighboring blocks are used to share solution content through inter-block communication.
The conservation properties of the finite-volume discretization are retained across blocks
with resolution changes by using the fine-grid interface flux to correct the flux computed
on neighboring coarse blocks [76, 77]. Passing these flux corrections and the overlapping
cell solution content between processors at each stage of the integration scheme accounts
for the main source of inter-processor communication.

The serial nature of the space-marching technique employed in the DOM is problem-
atic for large-scale parallel CFD solution algorithms. Several authors developed optimized
sweeping procedures that simultaneously solve the DOM equations in different direc-
tions [84, 85]. However, they do not scale well to a large number of processors. A new
highly-scalable time-marching algorithm for solving the DOM discretization of the radia-
tive transfer equation was recently developed by Charest et al. [86]. However, this approach
is not considered here. As such, no special treatment was implemented for solving the DOM
equations. The DOM is solved in a parallel fashion at each time-step on the multiblock mesh
along with Equations (1)–(6) by simultaneously sweeping all directions on the domain local
to each processor. Solution content was shared among the processors by exchanging the
state at the face-center of cells aligned with the block boundaries. Changes in mesh resolu-
tion were handled by linearly interpolating the coarse-mesh solution onto the fine-mesh and
averaging the fine-mesh solution onto the coarse-mesh. Since the radiation solver employs
a point-implicit space-marching technique, iteration is required to propagate information
from upstream boundaries to downstream blocks. As a result, a penalty in terms of parallel
efficiency was incurred because the number of iterations required to solve the radiation
field increased with the number of blocks.
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Figure 5. Schematic of laminar coflow diffusion flame.

5. Framework validation for laminar diffusion flames

In an effort to validate the proposed computational framework, two different laminar coflow
diffusion flames were modeled under atmospheric conditions: the weakly-sooting methane–
air flame studied extensively by Smooke et al. [2] and the heavily-sooting ethylene–air
flame examined numerically by Liu et al. [16]. A schematic illustrating the computational
domain and applied boundary conditions for both flames is provided in Figure 5. Reflection
boundary conditions are applied along the centerline and in the far-field. At the outlet,
temperature, velocity, species mass fractions, and soot number density are extrapolated
while pressure is held fixed. The gas/soot mixture is specified at the inlet along with
velocity and temperature while pressure is extrapolated. These boundary conditions where
found to closely mimic boundary schemes based on a characteristic analysis [87].

The thermodynamic and transport properties were evaluated using CANTERA [88], an
open-source software package for chemically-reacting flows. CANTERA was also used to
compute the gas-phase kinetic rates.

5.1. Methane–air flame

For the methane–air flame, the burner configuration consisted of a central fuel tube with
a 5.556 mm inner radius and a 0.794 mm wall thickness. Coflow air was supplied by
a concentric tube of inner radius 47.625 mm. Both fuel and air were assumed to have
uniform inlet velocity and temperature profiles with a fuel velocity of 5.5 cm s−1, an air
velocity of 12.54 cm s−1, and an inlet temperature of 298 K. The original investigators [2]
found that an inlet temperature of 420 K was required to obtain better agreement with the
predicted flame height and local temperatures. This was later verified by Liu et al. [89]
who also investigated this particular flame configuration numerically. The axisymmetric
computational domain was rectangular with 0 ≤ r ≤ 47.625 mm and 0 ≤ z ≤ 85 mm and
the initial mesh consisted of 72 cells in the r- and 112 in the z-direction for a total of
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8064 cells. The initial mesh was divided amongst 96 blocks of 14 by 6 cells. The cells
were clustered towards the centerline in the radial direction and towards the burner exit
plane in the axial direction. Finite-rate chemistry was modeled using a modified version of
the GRI-Mech 3.0 mechanism for CH4 combustion [90]. In this modified version, N2 was
assumed inert and all reactions and species related to NOx formation were removed. The
final reduced mechanism consisted of 36 species and 219 reactions.

5.2. Ethylene–air flame

The heavily-sooting ethylene–air flame studied experimentally by Snelling et al. [91] and
numerically by Liu et al. [16] used a configuration similar to the one described in the
previous section. The burner fuel tube inner radius, wall thickness, and coflow-air tube
inner radius are 4.45, 0.95, and 50 mm, respectively. Fuel and air are delivered at room
temperature (294 K) with specified volume flow rates of 194 ml min−1 and 284 l min−1.
Unlike the methane flame, a parabolic laminar pipe flow velocity profile was assumed for
the fuel inlet while a uniform velocity profile with a boundary layer along the outer fuel tube
wall was assumed for the coflow air inlet. For this flame, the rectangular computational
domain was defined in the range 0 ≤ r ≤ 30 mm and 0 ≤ z ≤ 97.3 mm with a similar
initial grid to that used for the methane–air flame: 72 by 112 non-uniformly spaced cells
divided into 96 blocks of 14 by 6 cells. The simulations were performed using the skeletal
mechanism of Law [92] for ethylene–air combustion which consisted of 33 species and 205
elementary reactions. This mechanism was derived from the detailed mechanism proposed
by Qin et al. [93] using a skeletal reduction technique which eliminates unimportant species
and reactions based on a sensitivity analysis.

6. Numerical results

All computations were performed on a high performance parallel cluster consisting of 104
IBM P6-575 nodes with 128 GB RAM per node and a high-speed interconnect. The nodes
each have 32 IBM POWER6 cores (4.7GHz) and are connected to a non-blocking switch
with four 4x-DDR InfiniBand links.

For both flames, a converged solution was obtained on the initial 96 block mesh, the
mesh was adapted, and then a new solution was obtained. This procedure was repeated and
the meshes were adapted several more times to yield a final computational grid roughly
8–12 times the original size. Solutions were terminated when the two-norms of the mass,
momentum, and energy residuals were reduced by approximately seven orders of magnitude.
In the sections to follow, the grid convergence is discussed, the numerical predictions are
verified, and the performance of the proposed algorithm is assessed.

6.1. Adaptive mesh refinement

The mesh statistics for each flame and level of refinement are given in Table 1. The table
also provides the maximum predicted values for temperature and soot volume fraction in
each calculation. For both flames, the maximum values converge asymptotically towards
a final value. The minimum grid spacing for the finest mesh in the r- and z-directions are
0.017 and 0.009 mm for the methane flame and 0.017 and 0.01 mm for the ethylene flame,
respectively.

The mesh adaption process is illustrated in Figures 6(a) and 6(b) for the methane–
and ethylene–air flames, respectively. These figures depict the mesh solution blocks at
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Table 1. Mesh statistics for both flames.

Methane–air Ethylene–air

Level Blocks Cells Tmax (K) fv,max × 107 Blocks Cells Tmax (K) fv,max × 106

0 96 8064 2010.43 8.50 96 8064 2102.01 8.46
1 144 12096 2012.53 8.77 159 13356 2103.53 8.55
2 294 24696 2013.33 8.86 282 23688 2103.06 8.58
3 462 38808 2013.69 8.92 402 33768 2104.30 8.63
4 765 64260 2013.68 8.92 822 69048 2104.09 8.60
5 1167 98028 2104.07 8.61

each level of refinement superimposed upon contours of soot volume fraction. In both
cases, the AMR algorithm correctly identified the locations with high gradients and locally
refined the mesh in the corresponding areas. This resulted in substantial reductions in
computational cost and storage since equivalent uniform meshes with the same resolution
as the finest meshes would require approximately 535 500 and 515 937 cells for the methane
and ethylene flames, respectively. This corresponds to a factor of 5 and 8 reduction in mesh
size.

In both cases, refinement occurred primarily in regions with high soot mass frac-
tion gradients. Additional blocks were identified for refinement in the ethylene–air case.
These blocks were outside the high-soot region and near the outer radius of the flame
where temperature gradients were steep. Temperature gradients in the ethylene–air flame
were much larger compared to the methane–air flame due to increased radiative heat losses
to the surroundings. This increased radiative heat loss in the ethylene–air flame was con-
firmed by comparing the predicted ∇ · qrad for the two flames. It was approximately four
times larger in the ethylene flame as compared to the methane flame.

Further investigation revealed that the finest mesh used in the ethylene–air case was pos-
sibly over-refined in the high-temperature-gradient areas. Cells were added along the flame
sheet (defined by the peak temperature) where temperature gradients are high. However,
temperature varies almost linearly with radius on both sides of the peak, Figure 9(a). As
such, fewer cells are required to resolve these gradients near the peak since the second-order
scheme is capable of accurately resolving them with few cells. While the ε1 refinement cri-
teria (Equation 57) may be easily adjusted to reduce the amount of refinement with respect
to temperature gradients, such an adjustment is case-specific and therefore not performed
here. These results emphasize the importance of improved error-based mesh adaptation
techniques that do not rely on gradient- or physics-based refinement criteria [94, 95]. This
is especially relevant for reacting flows which have a large numbers of chemical species
and where the most effective refinement criterion is not readily apparent.

To further investigate the effect of grid resolution, predicted radial profiles of soot
volume fraction as a function of mesh refinement level were compared in Figure 7. For
the methane–air flame, illustrated in Figure 7(a), the profile along z = 27.5 mm clearly
converges asymptotically after three levels of refinement. It is also evident that the minimum
mesh spacing of 0.2 mm in the radial direction used by Liu et al. [89] for the same flame
is not sufficient to fully describe the soot volume fraction peaks. Grid convergence is not
strictly obtained for the ethylene–air flame, illustrated in Figure 7(b), as slight changes
in the profile along z = 30 mm are still observed after the final refinement operation.
The differences in the grid convergence characteristics between the two sets of flame
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Figure 6. Refined multiblock computational mesh showing the solution blocks after each level of
refinement superimposed on contours of soot volume fraction for (a) the CH4 and (b) the C2H4

flame.

calculations are explained by comparing the contours for soot volume fraction depicted
in Figures 6(a) and 6(b). The figures indicate that the number of mesh points in areas of
high soot concentration is significantly lower in the ethylene flame and suggest that further
refinement in these areas may be required.
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Figure 7. Effect of grid resolution on radial profiles of soot volume fraction for (a) the CH4 flame
at z = 27.5 mm and (b) the C2H4 flame at z = 30 mm.

6.2. Comparison to experimental data

6.2.1. Methane flame

The results for the methane flame were compared with the numerical and experimental
results obtained by Smooke et al. [2] to verify and validate the models used. Overall, the
flame structure is predicted reasonably well and the results are similar to those obtained by
Smooke et al. [2]. Experimental measurements indicated that the flame height based on the
location where the centerline temperature reached a maximum was 40 mm. The proposed
framework slightly over-predicted the flame height based on temperature. A value of 55 mm
is obtained here, which is similar to the predicted value of approximately 50 mm obtained
by the previous investigators.

Predicted radial profiles for temperature, methane mole fraction, acetylene mole frac-
tion, and soot volume fraction at various axial locations are compared with the previously
published experimental measurements in Figure 8. The temperature profiles, Figure 8(a),
are under-predicted by about 100–200 K along the centerline and over-predicted at the
outer edges of the flame. Agreement between numerical and experimental results along the
centerline is worse lower in the flame, at z = 10 mm, and improves with increasing axial
distance from the burner exit plane. Similar agreement between numerical and experimental
results are reported by Smooke et al. [2].

Comparisons between the predicted and measured radial profiles for methane and
acetylene mole fraction are depicted in Figures 8(b) and 8(c), respectively. Although the
general trends are captured, the quantitative agreement between experimental and numerical
results is somewhat poor. Methane is over-predicted on average by a factor of 2 along
the centerline and a factor of 4 at an axial height of 25 mm above the burner. Smooke
et al. [2] obtained similar results and attributed this poor agreement to low computed
flame temperatures, despite having increased inlet temperatures to improve predictions. As
a result, methane is consumed at a slower rate and penetrates further downstream in the
calculations. This poor agreement for the methane concentrations may also be a result of
uncertainties at the fuel inlet boundary. Large gradients in methane concentration exist
at the mouth of the burner which suggest that combustion may actually begin slightly
upstream of the fuel tube exit plane. The predictions of acetylene concentration agree well
with the measurements although the predicted profiles are narrower and the values along
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Figure 8. Comparison between the experimental measurements of Smooke et al. [2] (dots) and
numerical predictions (lines) for (a) temperature, (b) CH4 mole fraction, (c) C2H2 mole fraction, and
(d) soot volume fraction for the methane–air laminar diffusion flame.

the centerline are slightly under-predicted. Acetylene concentrations rapidly vanish near
the edges of the flame in the numerical results but measurements indicate that they slowly
decrease. The under-prediction along the centerline may be a direct result of the delayed
methane decomposition and under-predicted flame temperatures.

The predictions for soot volume fraction are compared with the measurements in
Figure 8(d). A large improvement over the numerical results obtained by Smooke et al. [2]
is observed which may be due to differences in the gas-phase and soot kinetics employed.
The overall structure of soot is properly captured and the predicted values agree with
experimental measurements. Smooke et al. [2] predicted a peak soot volume fraction three
times larger than the measured value while the proposed framework only over-predicted
by a factor of 1.7. These predicted peaks occurred in an annular region approximately
28 mm above the burner for Smooke et al. [2] and 33 mm here. Both numerical studies
obtained values along the centerline that were a full order-of-magnitude lower than the
experimentally measured values.

The predictions for the methane–air flame described in this section also agree with other
numerical predictions obtained by Liu et al. [89] for the same flame. As with the original
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Figure 9. Comparison between the experimental measurements of Snelling et al. [91] (dots) and
numerical predictions (lines) for (a) temperature, and (b) soot volume fraction for the ethylene–air
laminar diffusion flame.

investigators, these authors used the artificially-increased fuel and air inlet temperatures to
reduce the discrepancies between the predicted and measured peak flame temperatures.

6.2.2. Ethylene flame

The results obtained using the proposed algorithm are similar to those reported by Liu et al.
[16]. Comparing the two sets of predictions, the computed temperature field in the present
study is in slightly better quantitative agreement with the experimental measurements. The
proposed framework calculated a peak temperature of 2104 K as compared to a measured
peak of 2156 K and the prediction of 2010 K by Liu et al. [16]. The predicted radial
profiles of temperature along selected axial heights are compared with the measurements
in Figure 9(a). While the predicted temperature profiles agree well with the measurements
near the peaks, the values near the centerline and outer portion of the flame are significantly
under-predicted. These low predicted flame temperatures are attributed to the neglect of
fuel preheating and other uncertainties in the inlet boundary conditions.

As shown in Figure 9(b), the predictions of soot volume fraction are also in reasonable
quantitative agreement with the experimental measurements. A peak value of 8.6 ppm
was predicted using the current implementation compared to the measured peak of
8.021 ppm. Liu et al. [16] obtained slightly better quantitative agreement, predicting a
peak soot volume fraction of 8.0 ppm. The computed structure of the soot distributions
differs significantly from the experimental results. This is observed in Figure 9(b), which
compares the predicted soot volume fraction along various radial profiles with the previously
published experimental measurements. The calculations predict a more annular structure
with lower soot concentrations along the centerline than the measurements. Similar results
were obtained by Liu et al. [16].

6.3. Effect of gas phase mechanism

Calculations of the ethylene–air flame with the initial coarse mesh were performed a second
time using the modified form of GRI-Mech 3.0 to assess the sensitivity of soot formation to
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Figure 10. Predicted radial profiles of temperature, soot volume fraction, C2H2 and fuel mass fraction
for the C2H4 flame at z = 30 mm obtained using different gas-phase mechanisms.

gas-phase kinetics. A comparison of the radial profiles along z = 30 mm for ethylene and
acetylene mass fraction, temperature, and soot volume fraction which were obtained using
both mechanisms is illustrated in Figure 10. Calculations using GRI-Mech 3.0 predicted a
slightly lower peak soot volume fraction and a 25% lower centerline fuel mass fraction when
compared to calculations using the skeletal mechanism of Law [92]. Negligible differences
are observed between predictions for temperature and acetylene concentrations. The large
differences in fuel mass fraction can be attributed to the higher laminar flame speeds
predicted by GRI-Mech 3.0. Egolfopoulos and Dimotakis [96] found that this mechanism
drastically over-predicted the laminar flame speeds in ethylene–air mixtures. In contrast,
the skeletal mechanism of Law [92] was demonstrated to accurately reproduce laminar
flame speeds under atmospheric conditions. Despite these large differences in the predicted
ethylene concentrations, acetylene and soot concentrations are not affected by the change
in mechanism.

6.4. Parallel performance

The parallel performance of the algorithm was assessed for both strong and weak scaling.
These two properties are a measure of the ability to demonstrate a proportionate increase
in parallel speedup with more processors. For the strong scaling test, the problem size
is held fixed while the number of processors used to perform the computation is varied.
Weak scaling is measured by holding the work load per processor fixed and varying the
problem size with the number of processors. These two scaling properties are measured by
the parallel speedup Sp and efficiency ηp which are defined as

Sp = t1

tp
(59)

ηp = Sp

p
(60)

where t1 and tp are the total wall times required to solve the problem with 1 and p processors,
respectively.
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Figure 11. Parallel performance of the proposed solution algorithm showing the (a) strong and
(b) weak scaling performance obtained for the methane- and ethylene–air laminar diffusion flame
simulations.

In both the strong and weak scaling tests, solutions were also obtained using the
OTA for radiative heat transfer [16]. The OTA assumes that radiation leaving a surface
travels through the domain unattenuated. As a result, the radiative intensity field is known
everywhere and ∇ · qrad can be evaluated directly without solving the radiative transfer
equation. The parallel performance of the current DOM implementation is quantified by
comparing the results using both the OTA and DOM.

6.4.1. Strong scaling

Strong scaling of the algorithm applied to both flames was measured using fixed-size meshes
consisting of 384 equally-sized blocks of 14 by 6 cells (32 256 total cells). The work load
per processor was varied without affecting the partitioning of the mesh by changing the
number of blocks assigned to each processor. As a result, only the effect of inter-processor
communication on parallel efficiency is taken into account. The negative effects of mesh
partitioning on the effectiveness of Schwarz preconditioning and the parallel efficiency of
the implemented DOM space-marching technique were neglected for this study.

The resulting relationship between parallel speedup, efficiency, and number of proces-
sors is shown in Figure 11(a) for the two flames. Excellent parallel performance is achieved
with an efficiency greater than 70% up to 384 processors. Slight differences between the
results for both flames exist which are caused by changes in governing equation stiffness
with soot production and gas-phase kinetic mechanism. Comparing the results obtained
using the two radiation models, the parallel performance of the overall algorithm improved
when the OTA was used to evaluate ∇ · qrad. Parallel efficiencies of 70 and 77% on 384
processors were obtained using the DOM and OTA, respectively. This improvement is at-
tributed to the added communication required when solving the DOM equations. When
using the DOM with the proposed algorithm, both the fluid solution for the surrounding
ghost cells and the radiative intensities along the block boundaries are communicated. Only
the fluid solution states are be passed when using the OTA.
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Table 2. Wall-clock times for methane flame on 96-block mesh using 96 processors and various
gas-phase reaction mechanisms.

Gas-phase mechanism Gaseous species Wall time (min) Newton steps

Kazakov and Frenklach [97] 24 16.8 620
Gri-Mech 3.0 36 29.8 662
Appel et al. [98] 101 176.5 609

6.4.2. Weak scaling

The weak scaling performance of the proposed solution algorithm is observed in
Figure 11(b) for the two different flames and radiation models. It was obtained by as-
signing each processor a single block and iterating for a fixed number of Newton steps. Due
to the known performance degradation of the Newton–Krylov algorithm with number of
solution blocks [65], true weak scaling should be measured by the time required to obtain a
fully converged solution. However, weak scaling with full convergence was not carried out
here. As a result, the procedure performed in this study only yields an approximate measure
of weak scaling performance. The parallel inefficiencies of the DOM implementation are
still accounted for since the DOM is fully converged at each Newton iteration.

When the OTA was used, excellent weak scaling performance is observed with a parallel
efficiency of 92% achieved on 1167 processors. A significant reduction in parallel perfor-
mance is observed when the DOM radiation model is used. Using the DOM, increasing
the mesh size by a factor of 8 produced a two-fold decrease in parallel efficiency for the
methane flame. This large decrease in parallel performance is due to the serial nature of the
space-marching technique used to solve the DOM equations. The lowest parallel efficien-
cies achieved using the DOM were 54% for the methane–air flame on 765 processors and
67% for the ethylene–air flame on 822 processors.

6.4.3. Computational cost for methane flame

The computational cost as measured in terms of the wall-clock time for the methane flame
calculations on the 96-block mesh (8064 cells) is provided in Table 2 for several different
gas-phase mechanisms with varying levels of complexity. All computations use the DOM
for radiation and solve the full set of governing equations (1)–(6). They were each started
from the same initial guess. The results show that although wall time increases as more
species are introduced to describe the gaseous phase, the number of Newton iterations
remains virtually unaffected. This demonstrates the effectiveness of the Newton–Krylov
approach advocated here. The calculation with 101 species is completed in less than three
hours when 96 processors are used.

The performance of the proposed algorithm was also compared to similar numerical
frameworks for studying soot that were discussed in Section 1. Zhang et al. [24] performed
computations for the same methane flame that is studied here on a mesh with 16 512 cells
using the modified version of GRI-Mech 3.0. They reported wall-clock times of 350 min
to obtain converged flame solutions when soot was neglected using 12 processors with
similar floating point performance as those used in the the present work. Assuming a 50%
parallel efficiency on 96 processors (this a valid assumption since parallel performance
decays exponentially as more processors are used [99]) and that computation time varies
linearly with the number of cells, their solution algorithm is expected to take 35 min using
96 processors on a mesh with 8064 cells. The new algorithm proposed here required only
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29.8 min to solve the full governing equations, which included soot. This would seem
to provide a substantial reduction in the computational time required to perform detailed
simulations of laminar flames since the estimated computation time for the solution method
of Zhang et al. [24] does not include the additional cost of solving the equations governing
soot. Additionally, the computational framework described herein provides a much more
general approach for laminar flames by solving the unmodified, fully-compressible, gas-
phase equations on complex domains using multiblock, body-fitted mesh. The proposed
framework would also seem to offer similar performance improvements over the methodol-
ogy proposed by Ern et al. [1]. Although, the comparison is made difficult by uncertainties
in the relative computational performance of the computer processors used and because
Earn et al. [1] only report wall-clock times for a portion of the overall solution.

7. Summary and future work

A new numerical framework for modeling laminar flames with detailed gas-phase chemistry,
soot formation/oxidation, and radiative heat transfer has been developed. The framework
uses a parallel implicit solver for fast, efficient solution and a block-based AMR scheme
to capture small-scale processes on computationally tractable grids. Validation was per-
formed by applying the framework to two different laminar coflow diffusion flames and
evaluating the algorithm’s predictive accuracy. Both a weakly-sooting methane–air and a
heavily-sooting ethylene–air flame were studied. The effectiveness of the AMR procedure
at providing grid-independent results in an efficient manner was shown. Although small
changes in the radial soot volume fraction profile for the ethylene flame were still observed
after the final level of refinement, grid-converged results were obtained for the most part
for both the methane and ethylene flames. This was achieved with a substantial reduction
in mesh size compared to meshes with uniform spacing. Good agreement with published
experimental data for temperature and soot volume fraction was achieved in both cases. The
algorithm demonstrated excellent strong scaling performance by achieving a parallel effi-
ciency greater than 70% up to 384 processors. Outstanding weak scaling performance (92%
parallel efficiency on 1167 processors) was observed when the OTA was used to model
radiation. However, weak scaling performance degraded when the DOM was employed.

The algorithm proved to be a robust, accurate, and highly-scalable solution method for
sooting laminar flames. It successfully tackled large problems using domain decomposition
and effectively minimized the sizes of computational meshes using AMR. Future devel-
opments should focus on improving the scalability, refinement efficiency, and predictive
accuracy of the algorithm. Since the main parallel inefficiencies were attributed to the
space-marching DOM, advanced DOM solution techniques specifically designed for use
on large, parallel architectures would significantly improve the proposed algorithm’s scala-
bility [86]. Refinement efficiency can be improved using more advanced a posteriori error
estimates which do not rely solely on gradients of solution quantities [94, 95]. The currently
employed gradient-based AMR criteria incorrectly flagged blocks for refinement in some
cases where the solution was already adequately resolved. Lastly, the predictive accuracy of
the proposed framework is improved by employing more realistic gas-phase chemistry and
soot models. Detailed gas-phase kinetic mechanisms that describe the formation of large
molecular weight soot precursors coupled with advanced descriptions for soot kinetics and
aerosol dynamics were found to offer excellent quantitative predictions [15]. The enhanced
computational efficiency offered by the proposed numerical scheme should allow tractable
computations using these generally more advanced and complex chemical kinetic schemes
and soot models.
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