7. Turbulent Premixed Flames

- **Background:**
 - Structure of turbulent premixed flames;

![Diagram of turbulent premixed flames](image_url)
- Instantaneous flame fronts (left) and turbulent flame brush envelope (right).
• Definitions:
 - Laminar flame thickness:
 \[\delta_L \sim \frac{\alpha}{S_L} = \frac{D}{S_L} = \frac{\nu}{S_L} \] (1)
 - Above equality implies that we assumed,
 Schmidt Number: \(Sc = \frac{\nu}{D} = 1 \)
 Lewis Number: \(Le = \frac{\alpha}{D} = 1 \)
 Prandtl Number: \(Pr = \frac{\nu}{\alpha} = 1 \)
- Turbulent Reynolds number

\[\text{Re}_\Lambda = \frac{u' \Lambda}{\nu} \]

(2)

where \(\Lambda \) is the integral length scale of turbulence.

- Turbulent Damköhler number: ratio of characteristic flow time, \(\tau_{flow} \), to the characteristic chemical time, \(\tau_c \).

\[\text{Da} = \frac{\tau_{flow}}{\tau_c} \]

(3)
- Characteristic flow time: $\tau_{flow} = \Lambda / u'$
- Characteristic chemical time: $\tau_c = \delta_L / S_L$
- Then Damköhler number is:

$$Da = \frac{S_L \Lambda}{u' \delta_L}$$ \hspace{1cm} (3a)

- Turbulence length scales:
 λ: Taylor microscale
 η: Kolmogorov length scale
- Karlovitz number:

\[Ka = \left(\frac{\Lambda}{\eta} \right)^2 = \frac{\delta_L u'}{S_L \lambda} \] \hspace{1cm} (4)

- Turbulent Reynolds number based on \(\lambda \):

\[Re_\lambda = \frac{u' \lambda}{\nu} \] \hspace{1cm} (5)

- Turbulent Reynolds number based on \(\eta \):

\[Re_\eta = \frac{u' \eta}{\nu} \] \hspace{1cm} (6)

\[Re_\Lambda \approx Re_\lambda^2 \approx Re_\eta^4 \] \hspace{1cm} (7)
● **Turbulent Burning Velocity:**

- One of the most important unresolved problems in premixed turbulent combustion is the determination of the turbulent burning velocity.

- Above statement assumes that turbulent burning velocity is a well-defined quantity that only depends on local mean properties.

- However, there is no consensus in literature whether the turbulent burning velocity is a characteristic quantity that can be defined unambiguously for different geometries.
7. Turbulent Premixed Flames

- Weak Turbulence
- SI Engine regime
- Distributed reactions
- Reaction sheets

\[\frac{u'}{S_L} = 1 \]
\[\frac{\eta}{\delta_L} = 1 \]
\[\frac{\Lambda}{\delta_L} = 1 \]

Dampkohler Number, \(Da \)

Turbulent Reynolds Number, \(Re_{\Lambda} \)
- Turbulent premixed flame propagation was first investigated by Damköhler (1940).

- He identified two limiting cases based on the magnitude of the scale of turbulence as compared to the thickness of the laminar premixed flame.

- For large scale turbulence, Damköhler assumed that the interaction between a turbulent premixed flame (wrinkled flame) front and the turbulent flame front is purely kinematic.
Laminar flame structure.

\[u = \bar{u} + u' \]
- Damköhler equated the mass flux \dot{m} through the instantaneous turbulent flame surface area A_T with the mass flux through the cross-sectional area A_o. He used S_L for mass flux through A_T, and S_T for mass flux through A.

$$\dot{m} = \rho_u S_L A_T = \rho_u S_T A_o \quad (8)$$

$$\frac{S_T}{S_L} = \frac{A_T}{A_o} \quad (9)$$
- Using geometric approximations, Damköhler proposed that (for large-scale, small-intensity turbulence),

\[
\frac{A_T}{A_o} = 1 + \frac{u'}{S_L}
\] \hspace{1cm} (10)

In view of Eq.2,

\[
\frac{S_T}{S_L} = 1 + \frac{u'}{S_L}
\] \hspace{1cm} (11)

- \(u'\), turbulent fluctuating velocity in the unburned gas.
- Using similar geometric arguments, Schelkin showed that:

\[
\frac{S_T}{S_L} = \left[1 + \left(\frac{2u'}{S_L} \right)^2 \right]^{1/2}
\] (12)

- Relationship proposed by Klimov:

\[
\frac{S_T}{S_L} = 3.5 \left(\frac{u'}{S_L} \right)^{0.7}
\] (13)
- Clavin & Williams:

\[
\frac{S_T}{S_L} = \left\{ 0.5 \left[1 + \left(1 + 8 \frac{u'^2}{S_L^2} \right)^{1/2} \right] \right\}^{1/2}
\]

(14)

- Gülder:

\[
\frac{S_T}{S_L} = 1 + 0.62 \left(\frac{u'}{S_L} \right)^{1/2} \text{Re}_{\Lambda}^{1/4}
\]

(15)
- For small-scale and high-intensity turbulence, Damköhler argued that turbulence only modifies the transport between the reaction zone and the unburned gas.

\[\frac{S_T}{S_L} \sim \left(\frac{D_T}{D} \right)^{1/2} \]

(16)

Since \(D_T \propto u'\Lambda \) and \(D \propto S_L\delta_L \)

- Then we have,

\[\frac{S_T}{S_L} \sim \left(\frac{u'\Lambda}{S_L\delta_L} \right)^{1/2} \]

(17)
- For small-scale high-intensity turbulence conditions (usually called as distributed reaction regime), there are not many formulations available. In this regime, turbulent mixing is rapid as compared to the chemistry.

- For the distributed reaction regime the following semi-empirical model has been proposed, Gülder (1990):

\[
\frac{S_T}{S_L} = 6.4 \left(\frac{S_L}{u'} \right)^{3/4}
\]

(18)
State-of-the-art:

- Definition of turbulent burning velocity is not uniform/universal.
- Experimental data scatter is significant between different experimental rigs.
- Numerical simulation:
 - Flamelet model/assumption
 - Turbulent burning closure
 - Direct numerical simulation
Experimental Measurement Methods:

- Conical stationary flames on cylindrical nozzles.
- Swirling flames.
- Constant volume vessels.
- Stagnation point flames.
 - Laser-based diagnostics to study flame structure.
 - Statistical approaches to estimate the flame front surface area.