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with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time
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space-time reduced basis approximation and associated Brezzi-Rappaz-Raviart a poste-
riori error bounds. We describe computational offline-online decomposition procedures

for the three key ingredients of the error bounds: the dual norm of the residual, a lower

bound for the inf-sup constant, and the space-time Sobolev embedding constant. Nu-
merical results demonstrate that our space-time formulation provides improved stability

constants compared to classical L2-error estimates; the error bounds remain sharp over
a wide range of Peclet numbers and long integration times T , in marked contrast to the
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1. Introduction

In this paper, we develop a certified reduced basis method for the parametrized

unsteady Burgers’ equation. Classically, parametrized parabolic partial differential

equations (PDEs) are treated by collecting solution snapshots in the parameter-

time space and by constructing the reduced basis space using the proper orthogonal

decomposition of the snapshots.5,6,11,8 Such a formulation enables rapid approxi-

mation of parametrized PDEs by an offline-online computational decomposition,

and the reduced basis solution converges exponentially to the truth finite element

solution for sufficiently regular problems. However, the quality of the associated L2-

in-time a posteriori error bound relies on the coercivity of the spatial operator. If the

spatial operator is noncoercive, the formulation suffers from exponential temporal

instability, producing error bounds that grow exponentially in time, and rendering

the bounds meaningless for long-time integration. In particular, limited applica-

bility of the classical a posteriori error bounding technique to unsteady Burgers’

and Boussinesq equations is documented by Nguyen et al.11 and Knezevic et al.8,

respectively.

In order to overcome the instability of the classical L2-in-time error-bound

formulation, we follow the space-time approach recently devised by Urban and

Patera15,14: we consider a space-time variational formulation and associated finite

element approximation that produces a favorable inf-sup stability constant; we then

incorporate the space-time truth within a space-time reduced basis approach. The

approach is inspired by the recent work on the space-time Petrov-Galerkin formu-

lation by Schwab and Stevenson13.

The main contribution of this work is twofold. First is the application of the

space-time finite-element and reduced-basis approach to the unsteady Burgers’

equation with quadratic nonlinearity. The formulation results in Crank-Nicolson-like

time-marching procedure but benefits from full space-time variational interpretation

and favorable inf-sup stability constant. The second contribution is the application

of the Brezzi-Rappaz-Raviart theory to the space-time formulation to construct an

error bound in the case of a quadratic nonlinearity. Particular attention is given to

the development of an efficient computation procedure that permits offline-online

decomposition for the three key ingredients of the theory within the space-time

framework: the dual norm of the residual, an inf-sup lower bound, and the Sobolev

embedding constant.

This paper is organized as follows. Section 2 reviews the spaces and forms used

throughout this paper and introduces a space-time Petrov-Galerkin variational for-

mulation and associated finite element approximation of the Burgers’ equation.

Section 3 first presents an hp interpolation-based reduced basis approximation and

then an associated a posteriori error estimate based on the Brezzi-Rappaz-Raviart

theory. We describe the calculation of the dual-norm of the residual, an inf-sup lower

bound, and the space-time Sobolev embedding constant, paying particular atten-

tion to the offline-online computational decomposition. Finally, Section 4 considers
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two examples of Burgers’ problems and demonstrates that the new space-time error

bound provides a meaningful error estimate even for noncoercive cases for which

the classical estimate fails. We also demonstrate that the hp interpolation method

provides certified solutions over a wide range of parameters using a reasonable num-

ber of points. Although we consider a single-parameter, one-dimensional Burgers’

equation in order to simplify the presentation and facilitate numerical tests, the

method extends to the multi-dimensional incompressible Navier-Stokes equations

and several parameters as will be considered in future work.17

2. Truth Solution

2.1. Governing Equation

This work considers a parametrized, unsteady, one-dimensional Burgers’ equation

of the form

∂ũ

∂t̃
+

∂

∂x

(
1

2
ũ2

)
− 1

Pe

∂2ũ

∂x2
= g(x), x ∈ Ω, t̃ ∈ Ĩ , (2.1)

where ũ is the state variable, Pe is the Peclet number, g is the forcing term,

Ω ≡ (0, 1) is the unit one-dimensional domain, and I ≡ (0, T̃ ] is the temporal in-

terval with T̃ denoting the final time of interest. We impose homogeneous Dirichlet

boundary conditions,

ũ(0, t) = ũ(1, t) = 0, ∀t ∈ I,

and set the initial condition to

ũ(x, 0) = 0, ∀x ∈ Ω.

Setting t = t̃/Pe and u = Pe · ũ, (2.1) simplifies to

∂u

∂t
+

∂

∂x

(
1

2
u2

)
− ∂2u

∂x2
= Pe2 · g(x), x ∈ Ω, t ∈ I. (2.2)

Note that the transformation makes the left-hand side of the equation independent

of the parameter Pe. The homogeneous boundary conditions and the initial condi-

tion are unaltered by the transformation. Moreover, note that T = O(1) represents

a long time integration from t = 0 to T̃ = O(Pe) based on the convection time scale.

From hereon, we will exclusively work with this transformed form of the Burgers’

equation, (2.2).

2.2. Spaces and Forms

Let us now define a few spaces and forms that are used throughout this paper.12

The standard L2(Ω)-Hilbert space over Ω ≡ (0, 1) is equipped with an inner product

(ψ, φ)L2(Ω) ≡
∫

Ω
ψφdx and induced norm ‖ψ‖L2(Ω) ≡

√
(ψ,ψ)L2(Ω) for functions

{ψ : ‖ψ‖L2(Ω) <∞}; for convenience, we set H ≡ L2(Ω). The space V is equipped

with an inner product (ψ, φ)V ≡
∫

Ω
∂ψ
∂x

∂φ
∂xdx and induced norm ‖ψ‖V ≡

√
(ψ,ψ)V
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for functions H1
0 (Ω). We define the Gelfand triple (V,H, V ′) and associated duality

paring 〈·, ·〉V ′×V . Here the norm of ` ∈ V ′ is defined by ‖`‖V ′ ≡ supφ∈V
〈`,φ〉V ′×V
‖φ‖V ,

which is identical to ‖R`‖V where the Riesz operator R : V ′ → V satisfies, for each

` ∈ V ′, (R`, φ)V = 〈`, φ〉V ′×V , ∀φ ∈ V .

Let us now define Bochner spaces, which play key roles in our space-time for-

mulation. The space L2(I;V ) is equipped with an inner product

(w, v)L2(I;V ) ≡
∫
I

(w(t), v(t))V dt

and induced norm ‖w‖L2(I;V ) ≡
√

(w,w)L2(I;V ). The dual space L2(I;V ′) is

equipped with an inner product

(w, v)L2(I;V ′) ≡
∫
I

(Rw(t), Rv(t))V dt =

∫
I

(w(t), v(t))V ′dt

and induced norm ‖w‖L2(I;V ′) ≡
√

(w,w)L2(I;V ′), where R : V ′ → V is the afore-

mentioned Riesz operator. The space H1
(0)(I;V ′) is equipped with an inner product

(w, v)H1(I;V ′) ≡ (ẇ, v̇)L2(I;V ′) and induced norm ‖w‖H1(I;V ′) ≡
√

(w,w)H1(I;V ′) for

functions {w : ‖w‖H1(I;V ′) < ∞, w(0) = 0}; here ẇ ≡ ∂w
∂t denotes the temporal

derivative of w. The trial space for our space-time Burgers’ formulation is

X ≡ L2(I;V ) ∩H1
(0)(I;V ′)

equipped with an inner product

(w, v)X ≡ (w, v)H1(I;V ′) + (w, v)L2(I;V ) + (w(T ), v(T ))H

and induced norm ‖w‖X ≡
√

(w,w)X , as introduced by Urban and Patera

for (linear) advection-diffusion equations.15,14 Note that ‖w‖2X = ‖w‖2H1(I;V ′) +

‖w‖2L2(I;V ) +‖w(T )‖2H . The test space is Y ≡ L2(I;V ) equipped with inner product

and norm in L2(I;V ).

Having defined spaces, we are ready to express the governing equation (2.2)

in a weak form. We may seek a solution to the Burgers’ equation expressed in a

semi-weak form: find ψ ∈ C1
(0)(I;L2(Ω)) ∩ L2(I;V ) such that12

(ψ̇(t), φ)H + a(ψ(t), φ) + b(ψ(t), ψ(t), φ) = f(φ; Pe), ∀φ ∈ V, ∀t ∈ I,

where Cp is the space of functions with continuous p-th derivative, and Cp(0) is the

subspace of Cp that consists of functions that satisfy the zero initial condition. The

bilinear form a(·, ·), the trilinear form b(·, ·, ·), and the parametrized linear form

f(·; Pe) are given by

a(ψ, φ) ≡
∫

Ω

∂ψ

∂x

∂φ

∂x
dx, ∀ψ, φ ∈ V,

b(ψ, ζ, φ) ≡ −1

2

∫
Ω

ψζ
dφ

dx
dx, ∀ψ, ζ, φ ∈ V,

f(φ; Pe) ≡ Pe2 · 〈g, φ〉V ′×V , ∀φ ∈ V.
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Note that the trilinear form b(·, ·, ·) is symmetric in the first two arguments. By

choosing µ = Pe2, we may express the linear form as a linear function of the

parameter µ, i.e.

f(φ;µ) ≡ µ · 〈g, φ〉V ′×V .

Thus, our linear form permits a so-called affine decomposition with respect to the

parameter µ. (We note that the certified reduced-basis formulation presented in

this work readily treats any f that is affine in a function of parameter µ though the

work is presented for the simple single-parameter case above.)

More generally, we may seek the solution to the Burgers’ equation in the space-

time space X . We have the following space-time weak statement: find u ∈ X such

that

G(u, v;µ) = 0, ∀v ∈ Y, (2.3)

where the semilinear form G( · , · ;µ) is given by

G(w, v;µ) =M(ẇ, v) +A(w, v) + B(w,w, v)−F(v;µ), ∀w ∈ X , ∀v ∈ Y, (2.4)

with the space-time forms

M(ẇ, v) ≡
∫
I

〈ẇ(t), v(t)〉V ′×V dt, ∀w ∈ X ,∀v ∈ Y,

A(w, v) ≡
∫
I

a(w(t), v(t))dt, ∀w ∈ X ,∀v ∈ Y,

B(w, z, v) ≡
∫
I

b(w(t), z(t), v(t))dt, ∀w, z ∈ X ,∀v ∈ Y,

F(v;µ) ≡ µ ·
∫
I

〈g, v(t)〉V ′×V dt, ∀v ∈ Y.

Note that the trilinear form B( · , · , · ) inherits the symmetry with respect to the

first two arguments. Furthermore, we will denote the Fréchet derivative bilinear

form associated with G by ∂G, i.e.

∂G(w, z, v) =M(ẇ, v) +A(w, v) + 2B(w, z, v), ∀w, z ∈ X , ∀v ∈ Y,

where z ∈ X is the linearization point.

Let us note a few important properties of our unsteady Burgers’ problem. First,

our space-time linear form F permits trivial affine-decomposition, i.e. F(v;µ) =

µF0(v) where F0 =
∫
I
〈g, v(t)〉V ′×V dt. Second, our trilinear form is bounded by

|B(w, z, v)| ≡
∣∣∣∣∫
I

∫
Ω

−1

2
wz

∂v

∂x
dxdt

∣∣∣∣ ≤ 1

2
ρ2‖w‖X ‖z‖X ‖v‖Y , ∀w, z ∈ X , ∀v ∈ Y,

where ρ is the L4-X embedding constant

ρ ≡ sup
w∈X

‖w‖L4(I;L4(Ω))

‖w‖X
.
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Recall that the Lp norm is defined as ‖w‖Lp(I;Lp(Ω)) ≡
(∫
I

∫
Ω
wpdxdt

)1/p
. This

second property plays an important role in the application of the Brezzi-Rappaz-

Raviart theory to construct an a posteriori error bound. We note that the existence

and boundedness of ρ is not trivial; we have a numerical demonstration in Ω ⊂ R1

and Ω ⊂ R2 but an indication that alternative norms will be required in R3.9

Although we consider only Burgers’ equation in this paper, we can readily extend

the formulation to any quadratically nonlinear equation which satisfies suitable

hypotheses on the forms, as implicitly verified above for Burgers’. (We can also

consider non-time-invariant operators subject to the usual affine restrictions.)

2.3. Petrov-Galerkin Finite Element Approximation

In order to find a discrete approximation to the true solution u ∈ X , let us in-

troduce finite dimensional subspaces Xδ ⊂ X and Yδ ⊂ Y. The notation used in

this section closely follows that of Urban and Patera.14 We denote the triangula-

tions of the temporal interval and spatial domain by T time
∆t and T space

h , respectively.

In particular, T time
∆t consists of non-overlapping intervals Ik = (tk−1, tk] of length

∆tk ≡ tk − tk−1, k = 1, . . . ,K, with t0 = 0 and tK = T ; here maxk(∆tk)/T ≤ ∆t

and the family {T∆t}∆t∈(0,1] is assumed to be quasi-uniform. Similarly, T space
h con-

sists of N + 1 elements with maxκ∈Th diam(κ) ≤ h, belonging to a quasi-uniform

family of meshes. We now introduce a temporal trial space S∆t, a temporal test

space Q∆t, and a spatial approximation space Vh defined by

S∆t ≡ {v ∈ H1
(0)(I) : v|Ik ∈ P1(Ik), k = 1, . . . ,K},

Q∆t ≡ {v ∈ L2(I) : v|Ik ∈ P0(Ik), k = 1, . . . ,K},
Vh ≡ {v ∈ H1

0 (Ω) : v|κ ∈ P1(κ), κ ∈ Th}.

Our space-time finite element trial and test spaces are given by

Xδ = S∆t ⊗ Vh and Yδ = Q∆t ⊗ Vh,

respectively, where δ ≡ (∆t, h) is the characteristic scale of our space-time dis-

cretization. Furthermore, we equip the space Xδ with a mesh-dependent inner

product15,14

(w, v)Xδ ≡ (w, v)H1(I;V ′) + (w̄, v̄)L2(I;V ) + (w(T ), v(T ))H ;

here w̄ ∈ Yδ is a temporally piecewise constant function whose value over Ik is the

temporal average of the function w ∈ Xδ, i.e.

w̄k ≡ 1

∆tk

∫
Ik
wdt, k = 1, . . . ,K.

We also introduce an associated induced norm ‖w‖2Xδ = (w,w)Xδ . The choice of this

mesh-dependent norm is motivated by the fact that the norm provides the unity

inf-sup and continuity constant for the Petrov-Galerkin finite element discretization

of the heat equation.15,14 In other words, ‖ ·‖Xδ is the natural norm associated with
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the Petrov-Galerkin finite element discretization of the heat equation. The space

Yδ inherits the inner product and induced norm from the space Y; i.e., (w, v)Yδ ≡
(w, v)Y and ‖w‖Yδ ≡ ‖w‖Y .

We have the following space-time finite element approximation to the Burgers’

equation (2.3): find uδ ∈ Xδ such that

G(uδ, vδ;µ) = 0, ∀vδ ∈ Yδ. (2.5)

The well-posedness of the space-time finite element formulation will be verified a

posteriori using the Brezzi-Rappaz-Raviart theory. The temporal integration re-

quired for the evaluation of the source term F is performed using the trapezoidal

rule.

2.4. Algebraic Forms and Time-Marching Interpretation

In this subsection, we construct algebraic forms of temporal, spatial, and space-time

operators required for the computation of our finite element approximation, various

norms, and inf-sup constants. In addition, we demonstrate that our Petrov-Galerkin

finite element formulation can in fact be written as a time-stepping scheme for a

particular set of trial and test basis functions.

Throughout this section, we will use standard hat-functions σk with the node

at tk, k = 1, . . . ,K, as our basis functions for S∆t; note that supp(σk) = Ik ∪ Ik+1

(except for σK , which is truncated to have supp(σK) = IK). We further choose

characteristic functions τk = χIk as our basis functions for Q∆t. Finally, let φi, i =

1, . . . ,N , be standard hat-functions for Vh. With the specified basis, we can express

a space-time trial function wδ ∈ Xδ in terms of basis coefficients {wki }
k=1,...,K
i=1,...,N as

wδ =
∑K
k=1

∑N
i=1 w

k
i σ

k ⊗ φi; similarly a trial function vδ ∈ Yδ may be expressed

as vδ =
∑K
k=1

∑N
i=1 v

k
i τ

k ⊗ φi. The following sections introduce temporal, spatial,

and space-time matrices and their explicit expressions that facilitate evaluation of

the residual, norms, and inf-sup constants in the subsequent sections.

2.4.1. Temporal Operators

First, let us form temporal matrices required for the evaluation of the Petrov-

Galerkin finite element semilinear form. We will explicitly determine the entries of

the matrices (i.e. the inner products) for our particular choice of basis functions,

which are later required to construct a time-marching interpretation. The Petrov-

Galerkin temporal matrices Mtime
h ∈ RK×K and Ṁtime

h ∈ RK×K are given by

(Ṁtime
∆t )lk = (σ̇k, τ l)L2(I) = δk,l − δk+1,l

(Mtime
∆t )lk = (σk, τ l)L2(I) =

∆tl

2
(δk,l + δk+1,l),

where δk,l is the Kronecker delta. Note that, with our particular choice of basis

functions for S∆t and Q∆t, the matrices are lower bidiagonal. The triple product
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resulting from the trilinear form evaluates to

(σkσm, τ l)L2(I) =
∆tl

6
(2δk,lδm,l + δk,lδm+1,l + δk+1,lδm,l + 2δk+1,lδm+1,l)

(no sum implied on l).

In addition, evaluation of the Xδ inner product requires matrices ṀS
∆t ∈ RK×K

and M
S

∆t ∈ RK×K associated with S∆t given by

(ṀS
∆t)lk = (σ̇k, σ̇l)L2(I) = − 1

∆tl
δk+1,l +

(
1

∆tl
+

1

∆tl+1

)
δk,l −

1

∆tl+1
δk−1,l

(M
S

∆t)lk = (σ̄k, σ̄l)L2(I) =
∆tl

4
δk+1,l +

∆tl + ∆tl+1

4
δk,l +

∆tl+1

4
δk−1,l

with an interpretation 1/∆tK+1 = 0 for ṀS
∆t and ∆tK+1 = 0 for M

S

∆t. Because

the support of the basis functions are unaltered by differentiation or the averaging

operation, both ṀS
∆t and M

S

∆t are tridiagonal. Finally, the evaluation of the Y
inner product requires a matrix MQ

∆t ∈ RK×K associated with Q∆t given by

(MQ
∆t)lk = (τk, τ l)L2(I) = ∆tlδk,l.

Because τk, k = 1, . . . ,K, have element-wise compact support, MQ
∆t is a diagonal

matrix.

2.4.2. Spatial Operators

The spatial matrices Mspace
h ∈ RN×N and Aspace

h ∈ RN×N associated with the

L2(Ω) inner product and the bilinear form a( · , · ) are given by

(Mspace
h )ji = (φi, φj)H and (Aspace

h )ji = a(φi, φj) ;

we omit explicit forms since these matrices are standard. To simplify the notation,

let us denote the spatial basis coefficients at time tk by the vector wk ∈ RN , i.e.

the j-th entry of wk is (wk)j = wkj . The vector zm ∈ RN is defined similarly. Then,

we can express the action of the quadratic term in terms of a function bspace
h :

RN × RN → RN , the j-th component of whose output is given by

(bspace
h (wk, zm))j =

N∑
i,n=1

wki z
m
n b(φi, φn, φj).

2.4.3. Space-Time Operators: Burgers’ Equation

Combining the expressions for the temporal inner products and the spatial oper-

ators, the space-time forms evaluated against the test function τ l ⊗ φj may be
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expressed as

M(ẇδ, τ
l ⊗ φj) =

K∑
k=1

N∑
i=1

wki (σ̇k, τ l)L2(I)(φi, φj)H = (Mspace
h (wl −wl−1))j

A(wδ, τ
l ⊗ φj) =

K∑
k=1

N∑
i=1

wki (σk, τ l)L2(I)a(φi, φj) =
∆tl

2

(
Aspace
h (wl + wl−1)

)
j

B(wδ, zδ, τ
l ⊗ φj) =

K∑
k,m=1

N∑
i,n=1

wki z
m
n (σkσm, τ l)L2(I)b(φi, φn, φj)

=

N∑
i,n=1

∆tl

6

(
2wliz

l
nb(φi, φn, φj) + wliz

l−1
n b(φi, φn, φj)

+wl−1
i zlnb(φi, φn, φj) + 2wl−1

i zl−1
n b(φi, φn, φj)

)
=

∆tl

6

(
2bspace
h (wl, zl) + bspace

h (wl, zl−1)

+bspace
h (wl−1, zl) + 2bspace

h (wl−1, zl−1)
)
j
.

The trilinear form further simplifies when the first two arguments are the same, as

in the case for the semilinear form of the Burgers’ equation, (2.4); i.e.

B(wδ, wδ, τ
l ⊗ φj) =

∆tl

3

(
bspace
h (wl,wl) + bspace

h (wl,wl−1) + bspace
h (wl−1,wl−1)

)
j
.

In addition, the integration of the forcing function using the trapezoidal rule results

in

F(τ l ⊗ φj ;µ) ≡ µ ·
∫
I

〈g0(t), τ l ⊗ φj〉V ′×V dt ≈ ∆tlµ · 1

2
〈g0(tl) + g0(tl−1), φj〉V ′×V

= ∆tlµ
1

2
(gl0,h + gl−1

0,h )j ,

where gl ∈ RN with (glh)j = 〈g(tl), φj〉V ′×V . Combining the expressions for our

particular choice of the Petrov-Galerkin test functions, the finite element residual

statement, (2.5), may be simplified to

1

∆tl
Mspace

h (wl −wl−1) +
1

2
Aspace
h (wl + wl−1)

+
1

3

(
bspace
h (wl,wl) + bspace

h (wl,wl−1) + bspace
h (wl−1,wl−1)

)
− µ1

2
(gl0,h + gl−1

0,h ) = 0 in RN ,

for l = 1, . . . ,K, with w0 = 0. Note that the treatment of the linear terms are

identical to that of the Crank-Nicolson time stepping, whereas the quadratic term

results in a different form. In any event, the Petrov-Galerkin space-time formulation

admits a time-marching interpretation; the solution can be obtained by sequentially

solving K systems of nonlinear equations, each having RN unknowns; thus, the

computational cost is equivalent to that of the Crank-Nicolson scheme.
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2.4.4. Space-Time Operators: Xδ and Yδ Inner Products

Combining the temporal matrices with the spatial matrices introduced in Sec-

tion 2.3, we can express the matrix associated with the Xδ inner product, X ∈
R(K·N )×(K·N ), as

X = ṀS
∆t ⊗

(
Mspace

h (Aspace
h )−1Mspace

h

)
+ M

S

∆t ⊗Aspace
h + diag(eK)⊗Mspace

h ,

where diag(eK) is a K×K matrix with one at the (K,K) entry and zero elsewhere.

Note that X is block-tridiagonal. The norm induced by the M
S

∆t ⊗Aspace
h part of

the X matrix is identical to the usual norm for the Crank-Nicolson scheme, i.e.

{wki }T (M
S

∆t ⊗Aspace
h ){wki } = ‖wδ‖2CN

≡
K∑
k=1

(
1

2
(wk + wk−1)

)T
Aspace
h

(
1

2
(wk + wk−1)

)
,

where {wki } ∈ RK·N is a vector of space-time basis coefficients for wδ. The identity

— together with the equivalence of our space-time Petrov-Galerkin formulation

with the Crank-Nicolson scheme for linear problems — suggests that the inclu-

sion of the averaging operator in our Xδ norm is rather natural for the particular

scheme we consider. Similarly, the matrix associated with the Yδ inner product,

Y ∈ R(K·N )×(K·N ), is given by

Y = MQ
∆t ⊗Aspace

h .

The matrix Y is block diagonal because MQ
∆t is diagonal.

Remark 2.1. As noted previously, the Xδ trial norm is in fact the natural norm

associated with the Petrov-Galerkin discretization of the heat equation with the Yδ
test norm. Thus, it follows that

X = GT
heatY

−1Gheat ,

where Gheat ∈ R(K·N )×(K·N ) is the space-time matrix associated with the heat

equation, Gheat = Ṁtime
∆t ⊗Mspace

h + Mtime
∆t ⊗ Aspace

h . This decomposition of the

block-tridiagonal matrix X allows a computationally efficient application of X−1 =

G−1
heatYG−Theat by a three-step procedure: 1) we first solve the space-time linear

system backward in time, i.e. the adjoint solve G−Theat; we then apply the block-

diagonal operator Y; and we finally solve the space-time linear system forward in

time (G−1
heat). The efficient application of X−1 plays an important role in our space-

time formulation, including in the computation of the L4-Xδ embedding constant

(as we will see in Section 3.2.3) and the adjoint residual (which would be required

for the primal-dual formulation of output error bounds).
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3. Certified Space-Time Reduced-Basis Approximation

3.1. Nµ-p Interpolation-Based Approximation

Here, we introduce a simple reduced-basis approximation procedure based on in-

terpolation (rather than projection). We choose interpolation as it is less expensive

than projection, sufficiently accurate in one parameter dimension, and also facili-

tates the construction of an inf-sup lower bound as we will show in Section 3.2.2.

We note that interpolation-based model reduction techniques have been employed

previously.1

We consider an hp-decomposition (or, more specifically, Nµ-p decomposition) of

the parameter domain D as considered in Eftang et al.4 In particular, we partition

D ⊂ R1 into Nµ subdomains, Dj = [µLj , µ
U
j ], j = 1, . . . , Nµ, and approximate the

solution variation over each subdomain using a degree-p polynomial. On each Dj ,
we use p+ 1 Chebyshev-Lobatto nodes µj,k, k = 1, . . . , p+ 1, defined by

µj,k − µLj
µUj − µLj

=
1

2
− 1

2
cos

(
k − 1

p
π

)
as the interpolation points. At each interpolation point, we obtain the truth solution

uδ,j,k ≡ uδ(µj,k) ∈ Xδ,j by solving the finite element approximation (2.5) for the

space-time finite element trial-test space pair Xδ,j and Yδ,j . Note that we employ

a different finite element space pair (Xδ,j ,Yδ,j) (induced by T time
∆t,j and T space

h,j ) for

each parameter domain Dj ; each space pair is tailored toward resolving the solution

encountered over the associated parameter range.

We now construct our reduced basis approximation to uδ = uδ(µ) by a direct

sum of Nµ polynomials

ũpδ =

Nµ⊕
j=1

ũpδ,j ,

where ũpδ,j is a degree-p polynomial over µ ∈ Dj given by

ũpδ,j(µ) =

p+1∑
k=1

uδ,j,kψ
p
k(µ) (3.1)

for j = 1, . . . , Nµ. Here ψpk, k = 1, . . . ,K, is the degree-p polynomial with the

interpolation property through Chebyshev points, i.e. ψpk ∈ Pp(Dj) such that

ψpk(xl) = δk,l, k, l = 1, . . . , p + 1. Given µ, we simply identify the parameter do-

main to which µ belongs and then evaluate (3.1); the Nµ-p strategy ensures that

the polynomial degree (and hence the cost associated with the interpolation) is

relatively small. Note that, unlike in the classical time-marching formulation,6,11,8

the computational cost of constructing the reduced-basis approximation using our

space-time formulation is independent of the number of time steps, K. In this work,

we do not assess the relative approximation properties of classical time-marching

formulation (e.g. POD-Greedy) and our Nµ-p interpolation method.
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3.2. Brezzi-Rappaz-Raviart Theory

We now construct error bounds for our Nµ-p interpolation-based reduced basis ap-

proximation. Our a posteriori error bound for the Burgers’ equation is a straight-

forward application of the Brezzi-Rappaz-Raviart (BRR) theory.2 The bound pro-

cedure separately applies to each of the Nµ parameter subdomains; hence, in this

section, we focus on the error certification for a single subdomain, and, to avoid

the notational clutter, we accordingly drop the subscript j for the subdomain des-

ignation: we indicate the “working” subdomain by Dwork and denote, for example,

the trial space associated with Dwork by Xδ (instead of Xδ,j) and the reduced basis

approximation by ũpδ (instead of ũpδ,j).

The following proposition states the main results of the theory; detailed proof

for a general case is provided in the original paper2 and for quadratic nonlinearity

is presented by Veroy and Patera.16

Proposition 3.1. Let ũpδ(µ) be the reduced basis approximation (3.1). We define

the dual norm of the residual, the inf-sup constant, and the L4-Xδ Sobolev embedding

constant by

εpδ(µ) ≡ sup
v∈Yδ

G(ũpδ(µ), v;µ)

‖v‖Yδ
,

βpδ (µ) ≡ inf
w∈Xδ

sup
v∈Yδ

∂G(w, ũpδ(µ), v)

‖w‖Xδ‖v‖Yδ
,

ρδ ≡ sup
w∈Xδ

‖w‖L4(I;L4(Ω))

‖w‖Xδ
.

In addition, let βpδ,LB(µ) be a lower bound of βpδ (µ), i.e. βpδ,LB(µ) ≤ βpδ (µ), ∀µ ∈ D.

Let the proximity indicator be τpδ (µ) ≡ 2ρ2
δε
p
δ(µ)/(βpδ,LB(µ))2. Then, for τpδ (µ) < 1,

there exists a unique solution uδ(µ) ∈ B(ũpδ(µ), βpδ (µ)/ρ2
δ) to the finite element

problem (2.5), where B(z, r) ≡ {x ∈ Xδ : ‖x − z‖Xδ < r}. Furthermore, ‖uδ(µ) −
ũpδ(µ)‖Xδ ≤ ∆p

δ(µ) where

∆p
δ(µ) ≡

βpδ,LB(µ)

ρ2
δ

(
1−

√
1− τpδ (µ)

)
.

Proof. Proof is provided in, for example, Veroy and Patera.16

The following subsections detail the computation of the three key ingredients

of the BRR theory: the dual norm of residual εpδ(µ); the inf-sup constant βpδ,LB(µ);

and the L4-Xδ Sobolev embedding constant ρδ. In particular, we will present effi-

cient means of computing these variables in the space-time context that permits an

offline-online decomposition.
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3.2.1. Residual Evaluation

Here, we briefly review a technique for efficiently computing the dual norm of the

residual in the online stage, the technique originally presented by Veroy et al.16 in

the space-only context. We first note that εpδ(µ) ≡ ‖G(ũpδ(µ), · ;µ)‖(Yδ)′ = ‖êp‖Yδ ,
where the Riesz representation of the residual is given by êp ≡ RG(ũpδ(µ), · ;µ) ∈ Yδ
and satisfies

(êp, v)Yδ = G(ũpδ(µ), v;µ)

=

p+1∑
k=1

ψpk(µ) [M(u̇δ,k, v) +A(uδ,k, v)]

+

p+1∑
k,l=1

ψpk(µ)ψpl (µ)B(uδ,k, uδ,l, v)− µ · F0(v), ∀v ∈ Yδ.

Let us introduce (pieces of) Riesz representations χ0, {χ1
k}
p+1
k=1, and {χ2

kl}
p+1
k,l=1 of

the residual contribution from the linear, bilinear, and trilinear form, respectively,

for the snapshots according to

(χ0, v)Yδ = F0(v), ∀v ∈ Yδ, (3.2)

(χ1
k, v)Yδ =M(u̇δ,k, v) +A(uδ,k, v), ∀v ∈ Yδ, k = 1, . . . , p+ 1, (3.3)

(χ2
kl, v)Yδ = B(uδ,k, uδ,l, v), ∀v ∈ Yδ, k, l = 1, . . . , p+ 1. (3.4)

Then, we can express êp as

êp = µ · χ0 +

p+1∑
k=1

ψpk(µ)χ1
k +

p+1∑
k,l=1

ψpk(µ)ψpl (µ)χ2
kl.

The dual norm of the residual can be expressed as

‖êp‖Yδ = µ2(χ0, χ0)Yδ + 2µ

p+1∑
m=1

(χ0, χ1
m)Yδ + 2µ

p+1∑
m,n=1

(χ0, χ2
mn)Yδ

+

p+1∑
k,m=1

ψpk(µ)ψpm(µ)(χ1
k, χ

1
m)Yδ + 2

p+1∑
k,m,n=1

ψpk(µ)ψpm(µ)ψpn(µ)(χ1
k, χ

2
mn)Yδ

+

p+1∑
k,l,m,n=1

ψpk(µ)ψpl (µ)ψpm(µ)ψpn(µ)(χ2
kl, χ

2
mn)Yδ . (3.5)

The offline-online decomposition is clear from the expression. In the offline

stage, we first solve (3.2)-(3.4) to obtain the Riesz representations χ0, {χ1
k}
p+1
k=1, and

{χ2
kl}

p+1
k,l=1. Note that there are 1 + (p+ 1) + (p+ 1)2 representations, each requiring

a Yδ-solve. Recalling that the matrix associated with the Yδ inner product is given

by Y = MQ
∆t ⊗Aspace

h , each Yδ-solve requires K inversions of the Aspace
h operator,

where K is the number of time steps. It is important to note that the computation

of the representations does not require a solution of a coupled space-time system,
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as the matrix Y is block diagonal. In other words, the computational cost is not

higher than that for the classical time-marching reduced basis formulation. After

computing the representations, we compute the Yδ inner product of all permutations

of representations, e.g. (χ0, χ0)Yδ , (χ0, χ1
k)Yδ .

In the online stage, we obtain the dual norm of the residual by evaluating (3.5)

using the inner products computed in the offline stage. The computational cost

scales as (p + 1)4 and is independent of the cost of the truth discretization. Note

that, unlike in the classical reduced-basis formulation based on time-marching, the

online residual evaluation cost of our space-time formulation is independent of the

number of time steps, K.

3.2.2. Inf-Sup Constant and Associated Lower Bound

Here, we present a procedure for computing an inf-sup lower bound, βpδ,LB(µ),

that permits an offline-online decomposition. The particular procedure presented is

specifically designed for the Nµ-p interpolation-based reduced basis approximation

introduced in Section 3.1. Let us first define the supremizing operator Sc : Xδ → Yδ
associated with the solution ucδ = u(µc) at the centroid of the subdomain Dwork,

µc, by

(Scw, v)Yδ = ∂G(w, ucδ, v), ∀w ∈ Xδ, ∀v ∈ Yδ.

The inf-sup constant for ucδ is given by

βcδ = inf
w∈Xδ

‖Scw‖Yδ
‖w‖Xδ

.

Let us also introduce the following correction factors at the interpolation points,

β−δ,k ≡ inf
w∈Xδ

∂G(w, uδ,k, S
cw)

‖Scw‖2Yδ
and β+

δ,k ≡ sup
w∈Xδ

∂G(w, uδ,k, S
cw)

‖Scw‖2Yδ
, (3.6)

for k = 1, . . . , p+ 1. Then, we construct an inf-sup lower bound according to

βpδ,LB(µ) = βcδ ·

 ∑
k=1,...,p+1
ψpk(µ)>0

β−δ,kψ
p
k(µ) +

∑
k=1,...,p+1
ψpk(µ)<0

β+
δ,kψ

p
k(µ)

 , ∀µ ∈ Dwork.

(3.7)

We have the following proposition:

Proposition 3.2. The inf-sup lower bound constructed using the above procedure

satisfies βpδ,LB(µ) ≤ βpδ (µ), ∀µ ∈ Dwork.

Proof. Since Scw ∈ Yδ, ∀w ∈ Xδ, we can bound the inf-sup constant from below
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as

βpδ (µ) ≡ inf
w∈Xδ

sup
v∈Yδ

∂G(w, ũpδ(µ), v)

‖w‖Xδ‖v‖Yδ
= inf
w∈Xδ

sup
v∈Yδ

p+1∑
k=1

ψpk(µ)
∂G(w, uδ,k, v)

‖w‖Xδ‖v‖Yδ

≥ inf
w∈Xδ

p+1∑
k=1

ψpk(µ)
∂G(w, uδ,k, S

cw)

‖w‖Xδ‖Scw‖Yδ
= inf
w∈Xδ

p+1∑
k=1

ψpk(µ)
‖Scw‖Yδ
‖w‖Xδ

∂G(w, uδ,k, S
cw)

‖Scw‖2Yδ

= inf
w∈Xδ

‖Scw‖Yδ
‖w‖Xδ

p+1∑
k=1

ψpk(µ)
∂G(w, uδ,k, S

cw)

‖Scw‖2Yδ
, ∀µ ∈ Dwork, (3.8)

Note that we have

‖Scw‖Yδ
‖w‖Xδ

≥ inf
z∈Xδ

‖Scz‖Yδ
‖z‖Xδ

= βδ(µ
c) ≡ βcδ > 0, ∀w ∈ Xδ,

and the first term of (3.8) is bounded from below by βcδ > 0. The second term

involving summation over p+1 terms may be bounded from below by the correction

factors defined in (3.6). Namely, if ψpk(µ) > 0, then we may bound the contribution

from the k-th term from below by using β−δ,k; if ψpk(µ) < 0, then the contribution

may be bounded from below by using β+
δ,k. In other words, the final expression of

(3.8) is bounded from below by

βpδ (µ) ≥
(

inf
w∈Xδ

‖Scw‖Yδ
‖w‖Xδ

) ∑
k=1,...,p+1
ψpk(µ)>0

ψpk(µ) inf
w∈Xδ

∂G(w, uδ,k, S
cw)

‖Scw‖2Yδ

+
∑

k=1,...,p+1
ψpk(µ)<0

ψpk(µ) sup
w∈Xδ

∂G(w, uδ,k, S
cw)

‖Scw‖2Yδ



= βcδ

 ∑
k=1,...,p+1
ψpk(µ)>0

β−δ,kψ
p
k(µ) +

∑
k=1,...,p+1
ψpk(µ)<0

β+
δ,kψ

p
k(µ)

 , ∀µ ∈ Dwork,

which concludes the proof.

Remark 3.1. For small intervals, the correction factors are close to unity. To see

this, we note that

|∂G(w, uδ,k, S
cw)|

‖Scw‖2Yδ
=
|∂G(w, ucδ + (uδ,k − ucδ), Scw)|

‖Scw‖2Yδ

≤ |∂G(w, ucδ, S
cw)|

‖Scw‖2Yδ
+
|B(w, uδ,k − ucδ, Scw)|

‖Scw‖2Yδ

≤ 1 +
1

2

ρ2
δ

βcδ
‖uδ,k − ucδ‖X .
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Thus, as |Dwork| → 0 and ‖uδ,k − ucδ‖Xδ → 0, the correction factors converge to 1.

Remark 3.2. The inf-sup lower bound construction procedure presented here pro-

duces a tighter lower bound than the natural norm Successive Constraint Method

(SCM)7 that uses the p+ 1 interpolations as the SCM sampling points, i.e.

βpδ (µ) ≥ βpδ,LB(µ) ≥ βpδ,LB,SCM(µ), ∀µ ∈ Dwork,

where βpδ,LB,SCM(µ) is the SCM inf-sup lower bound. A detailed derivation is pro-

vided in Appendix B.

Again, the offline-online decomposition is clear from the structure of (3.7). In

the offline stage, for each Dwork, we evaluate the inf-sup constant βcδ at the centroid

and correction factors β±δ,k at each of the p + 1 interpolation points. In the online

stage, we identify the parameter subdomain Dj to which µ belongs, set it as Dwork,

and evaluate βpδ,LB(µ) using (3.7).

Let us demonstrate that none of the offline computations require solutions to a

fully-coupled space-time problem, and the computational cost scales linearly with

K. The inf-sup constant at the centroid, βcδ , can be obtained by finding the largest

eigenvalue of a generalized eigenproblem Pv = λQv with

P ≡ X = ṀS
∆t ⊗

(
Mspace

h (Aspace
h )−1Mspace

h

)
+ M

S

∆t ⊗Aspace
h + diag(eK)⊗Mspace

h

Q ≡ (Gc)TY−1Gc

and setting βcδ = λ
−1/2
max . Here, Gc ∈ R(K·N )×(K·N ) is the Jacobian matrix of the

residual operator linearized about ucδ = uδ(µ
c); the (li)(kj) entry of the matrix is

given by

(Gc)(li)(kj) = ∂G(σk ⊗ φj , ucδ, τ l ⊗ φi).

Note that Gc is block lower bidiagonal due to our choice of the basis functions for

the spaces S∆t and Q∆t in the Petrov-Galerkin formulation. If the eigenproblem is

solved using a Lanczos-based method, each Lanczos step requires action of P, Q and

Q−1 on a vector in RK·N . The application of P requires O(K) operations due to the

tensor-product structure of the matrices that constitutes X; for instance, to compute

(M
S

∆t ⊗Aspace
h )v, we first compute Aspace

h vk, k = 1, . . . ,K, and then take a linear

combination of (at most) three Aspace
h vk’s according to the weights specified in M

S

∆t.

The application of Q requires the application of Gc, (Gc)T , and Y−1, each of which

requires O(K) operations due to the block bidiagonal or block diagonal structure of

the matrices. Finally, the application of Q−1 = (Gc)−1Y(Gc)−T is accomplished by

the following three-step procedure (analogous to that of X−1): 1) (Gc)−T , which

corresponds to a backward solve of a linearized K-step time marching problem;

2) Y, which requires application of Aspace
h onto K spatial vectors; and 3) (Gc)−1,

which corresponds to a forward solve of a linearized K-step time marching problem.

Thus, each Lanczos step of the inf-sup eigenproblem requires O(K) operations.
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The calculation of the correction factors require the extreme eigenvalues of a

generalized eigenproblem Pv = λQv with

P ≡ 1

2

(
(Gc)TY−1Gk + (Gk)TY−1Gc

)
Q ≡ (Gc)TY−1Gc.

Here, Gk ∈ R(K·N )×(K·N ) is the Jacobian matrix corresponding to the residual

operator linearized about the solution at the interpolation point uδ,k. Application

of P again requires O(K) operations due to the block bidiagonal and block diagonal

structure of Gc and Y, respectively. The Q matrix is identical to that used for the

inf-sup constant calculation; thus, application of Q and Q−1 can be carried out in

O(K) operations.

3.2.3. Sobolev Embedding Constant

The final piece required for the BRR theory is the L4-Xδ Sobolev embedding con-

stant. Details of the approximation of the embedding constant are provided in Ap-

pendix A; here we state the main results.

Due to the nonlinearity, we are not able to analyze the L4-Xδ embedding prob-

lem analytically. However, we can analyze closely related linear problems: L2-X
embedding and L2-Xδ embedding. Using the Fourier decomposition in space and

time, we can show that the L2-X embedding constant is bounded by

θ ≡ sup
w∈X

‖w‖L2(I;L2(Ω))

‖w‖X
≤
(

1

4T 2
+ π2

)−1/2

for Ω = (0, 1) and I = (0, T ] with T >
√

5/(4π).

For a uniform temporal discretization, the asymptotic behavior of the L2-Xδ
embedding constant in the limit of ∆t→ 0 (for a fixed T ) can also be analyzed; the

constant approaches a constant for T sufficiently small and grows weakly with the

final time for T sufficiently large. Specifically, as ∆t→ 0 (K →∞) for a fixed T ,

θδ ≡ sup
w∈Xδ

‖w‖L2(I;L2(Ω))

‖w‖Xδ
∼

{
( 1

4T 2 + π2)−1/2, T ≤ Tthresh

C
√
T , T > Tthresh

for some threshold time Tthresh and a constant C independent of T . The T -dependent

behavior of the embedding constant θδ is due to the mesh-dependent norm ‖ · ‖Xδ ,
which includes the mesh-dependent averaged term ‖̄·‖L2(I;V ). For T ≤ Tthresh, the

supremizer of θδ is the lowest frequency mode in time, which approximates the

supremizer of the continuous embedding constant θ; for T > Tthresh, the supremizer

of θδ is the highest frequency mode in time, and hence the behavior of the supremum

θδ is not predicted by the continuous counterpart θ. For an arbitrary temporal

discretization, we are unable to analytically analyze the L2-Xδ embedding constant;

however, numerical experiments suggest that, for T = 1, the constant is bounded

by θδ ≤ 0.41 on any quasi-uniform temporal discretization.
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Fig. 1. The solution to the Burgers problem Case 1 and Case 2 for Pe = 20.

The L4-Xδ embedding constant, ρδ, can be approximated using the fixed-point

iteration algorithm of Deparis3 (see also Manzoni10 for the analysis of the algo-

rithm). Numerical experiments suggest that the embedding constant depends rather

strongly on the temporal grading of the space-time mesh due to the mesh depen-

dence of the Xδ norm; thus, we compute the L4-Xδ embedding constant on a par-

ticular space-time mesh and use that constant to construct the BRR error bound.

We conclude the section with two remarks. We first emphasize that the mesh

dependence originates in the mesh-dependent norm and does not reflect any funda-

mental ill-posedness. We also note that the origin of the mesh dependence can be

traced back to the loss of L-stability for the Crank-Nicolson scheme; a more stable

temporal discretization removes the anomaly.17

4. Numerical Results

4.1. Model Problems

We consider two different forcing functions in this section. First is a constant func-

tion, g1 = 1, which results in F1(v;µ) = µ ·
∫
I

∫
Ω
vdxdt with µ = Pe2. The solution

over the space-time domain for the Pe = 20 case is shown in Figure 1(a). As the

Peclet number increases, the boundary layer at x = 1 gets thinner and the initial

transition time decreases. The second case uses a spatially linear source function,

g2 = 1
2 − x, which results in F2(v;µ) = µ ·

∫
I

∫
Ω

( 1
2 − x)vdxdt. The solution for this

second case with Pe = 20 is shown in Figure 1(b). This case develops an internal

layer at x = 1/2, which becomes thinner as the Peclet number increases. These two

cases exhibit different stability properties, as we will show shortly.

For purposes of comparison, we provide here a short summary of the time-

marching L2(Ω) error bound developed by Nguyen et al.11 A parameter that dictates

the effectivity of the time-marching L2(Ω) formulation is the stability parameter ωk,
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defined asa

ωk ≡ inf
v∈Vh

4b(v, u(µ), v) + a(v, v)

‖v‖L2(Ω)
, k = 1, . . . ,K.

In particular, a negative value of ωk implies that the L2(Ω) error estimate grows

exponentially over that period of time. All results shown in this section use the

exact value of ωk instead of a lower bound obtained using the successive constraint

method (SCM) as done in Nguyen et al.11; i.e. we use the most favorable stability

constant for the L2(Ω) time-marching formulation.

Finally, we provide details of the space-time meshes employed. For all cases

considered, the spatial mesh consisting of 128 uniformly spaced elements of size h =

1/128. On the other hand, the temporal mesh is varied as a function of the Peclet

number to effectively resolve the initial transient. Namely, for Pe ≤ 6, we employ a

temporal mesh consisting of 128 uniformly spaced elements of size ∆t = 1/128. For

Pe > 6, we divide the temporal mesh into two regions: the initial transient region,

t ∈ (0, 3/Pe], discretized by 64 uniformly spaced elements of size ∆t = (3/Pe)/64;

the remaining region, t ∈ (3/Pe, 1], discretized by 64 uniformly spaced elements of

size ∆t = (1− 3/Pe)/64. For each of Nµ temporal meshes, T time
∆t,j , j = 1, . . . , Nµ, we

use the Peclet number at the centroid of the associated parameter subdomain Dj
as the reference Peclet number over the domain.

4.2. Stability: Small Parameter Intervals

We will first demonstrate the improved stability of the space-time a posteriori er-

ror estimate compared to the L2(Ω) time-marching error estimate. For the space-

time formulation, we monitor the variation in the inf-sup constant, βpδ , and the

effectivity, ∆p
δ/‖e‖Xδ , with the Peclet number. For the L2(Ω) time-marching for-

mulation, we monitor several quantities: the minimum (normalized) stability con-

stant, mink ω
k/Pe; the final stability constant, ωK/Pe; the maximum effectivity,

maxk ∆k
L2/‖ek‖L2(Ω); and the final effectivity, ∆K

L2/‖eK‖L2(Ω).

For each case, the reduced basis approximation is obtained using the p = 2

interpolation over a short interval of D = [Pe− 0.1,Pe + 0.1]. Note that, the use of

the short interval implies that τpδ � 1, which reduces the BRR-based error bound

to

∆p
δ(µ) ≈ 1

βpδ,LB(µ)
εpδ .

In addition, as the supremizer evaluated at the centroid of the interval is close to

the true supremizer over a short interval, βpδ,LB(µ) ≈ βpδ (µ), ∀µ ∈ D. In other words,

we consider the short intervals to ensure a good inf-sup lower bound such that we

can focus on stability independent of the quality of the inf-sup lower bound ; we

aIn the original paper by Nguyen et al., the variable ρk is used for the stability constant. Here,

we use ωk to avoid confusion with the L4-Xδ embedding constant for the space-time formulation.
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space-time L2(Ω) time-marching

Pe βpδ
∆p
δ

‖e‖Xδ
mink

ωk

Pe
ωK

Pe maxk
∆k
L2

‖ek‖
∆K
L2

‖eK‖

1 0.993 1.14 9.87 9.87 3.87 1.30

10 0.665 2.22 0.982 1.32 3.18 2.11

50 0.303 7.00 0.114 0.924 7.73 5.10

100 0.213 9.75 0.0203 0.862 11.7 6.95

200 0.149 12.4 -0.0072 0.820 18.0 9.59

Table 1. Summary the inf-sup constant and effectivity for the space-time formulation and the
stability constant and effectivity for the L2(Ω) time-marching formulation for Case 1 with g = 1.

will later assess the effectiveness of the lower bound. The effectivity reported is the

worst case value observed on 40 sampling points over the interval.b

Table 1 shows the variation in the stability constant and the effectivity for

Case 1 for Pe = 1, 10, 50, 100, and 200. The stability constant for the space-time

formulation gradually decreases with Pe; accordingly, the effectivity worsens from

1.14 for Pe = 1 to 12.4 for Pe = 200. Note that the effectivity of O(10) is more

than adequate for the purpose of reduced-order approximation as the error typically

rapidly converges (i.e. exponentially) with the number of reduced bases. The L2(Ω)

time-marching formulation also performs well for this case. This is because, even

for the Pe = 200 case, the stability constant ωk/Pe takes on a negative value over

a very short time interval and is asymptotically stable. (See Nguyen et al.11 for the

detailed behavior of the stability constant over time.)

Table 2 shows the variation in the stability constant and the effectivity for Case

2 for Pe = 1, 10, 20, 50, and 100. Note that the asymptotic stability constant

for the L2(Ω) time-marching formulation is negative for Pe & 18.9; consequently,

the error bound grows exponentially with time even for a moderate value of the

Peclet number, rendering the error bound meaningless. The stability constant for the

space-time formulation is much better behaved. The effectivity of 41.2 at Pe = 50 is

a significant improvement over the 1028 for the L2(Ω) time-marching formulation,

and the error estimate remains meaningful even for the Pe = 100 case.

4.3. Nµ-p Interpolation over a Wide Range of Parameters

Now we demonstrate that our certified reduced basis method provides accurate and

certified solutions over a wide range of parameters using a reasonable number of

snapshots. Here, we employ a simple (and rather crude) Nµ-p adaptive procedure

to construct certified reduced basis approximations over the entire D with an error

bound of ∆tol = 0.01. Our Nµ-p approximation space is described in terms of a

bThe 40 sampling points are equally-spaced between [Pe− 0.099,Pe + 0.099]. We have found that
the variation in the effectivity across the sampling points is small (less than 10%) over the small

intervals considered.
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space-time L2(Ω) time-marching

Pe βpδ
∆p
δ

‖e‖Xδ
mink

ωk

Pe
ωK

Pe maxk
∆k
L2

‖ek‖
∆K
L2

‖eK‖

1 0.999 1.01 9.84 9.84 2.80 2.80

10 0.877 1.15 0.727 0.727 3.12 3.12

20 0.547 1.84 -0.0675 -0.0675 12.4 12.4

30 0.213 4.99 -0.606 -0.606 3.7× 104 3.7× 104

50 0.038 41.2 -1.67 -1.67 6.5× 1028 6.5× 1028

100 0.0077 237 -4.43 -4.43 − −

Table 2. Summary the inf-sup constant and effectivity for the space-time formulation and the

stability constant and effectivity for the L2(Ω) time-marching formulation for Case 2 with g =
1
2
− x.

set Peset consisting of Nµ + 1 points that delineate the endpoints of the parameter

intervals and an Nµ-tuple P set = (p1, . . . , pNµ) specifying the polynomial degree

over each interval. Starting from a single p = 1 interval over the entire D, we

recursively apply one of the following two operations to each interval [PeL,PeU] =

[Peset
j ,Peset

j+1] with polynomial degree pj :

(a) if minµ β
p
δ,LB(µ) ≤ 0, subdivide [PeL,PeU] into [PeL,PeM] ∪ [PeM,PeU]

where PeM = (PeL + PeU)/2, assign pj to both intervals, and update Peset

and P set.

(b) if minµ β
p
δ,LB(µ) > 0 but maxµ τ

p
δ (µ) ≥ 1 or maxµ ∆p

δ(µ) ≥ ∆tol, then

increase pj to pj + 1.

The operation (a) decreases the width of the parameter interval, which increases the

effectiveness of the supremizer Scj overDj and improves the inf-sup lower bound. The

operation (b) aims to decrease the residual (and hence the error) by using a higher-

order interpolation, i.e. p-refinement. Thus, in our adaptive procedure, the Nµ and

p refinement serves two distinct purposes: improving the stability estimate and im-

proving the approximability of the space, respectively. In particular, we assume that

the solution dependence on the parameter is smooth and use (only) p-refinement

to improve the approximability; this is in contrast to typical hp adaptation where

both h- and p-refinement strategies are used to improve the approximability for

potentially irregular functions.

The result of applying the Nµ-p adaptive procedure to Case 1 is summarized in

Figure 2. Here, we show variations over the parameter domain D = [1, 200] of key

quantities: a) the approximation polynomial degree; b) the error and error bound;

c) the error effectivity; and d) the inf-sup constant and associated lower bound.

First, Figure 2(a) shows that the entire parameter domain is covered using just

10 intervals consisting of 89 total interpolation points; this is despite the use of

the crude adaptation process whose inefficiency is reflected in excessively accurate

estimates in some of the intervals, as shown in Figure 2(b). Second, we note that
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Fig. 2. The error, effectivity, and inf-sup constant behaviors on the final Nµ-p adapted interpolation

for Case 1.

the maximum error bound of 10−2 is clearly satisfied over the entire parameter

range. Third, Figure 2(c) shows that the effectivity is of order 5. Finally, we observe

in Figure 2(d) that the inf-sup lower bound procedure provides relatively sharp

lower bounds thanks to the adaptive Nµ-p interpolation strategy that considers the

behavior of the stability estimate.

Table 3 shows the p-convergence behavior of our certified basis formulation over

the final interval, D10 = [175.13, 200.00].c Each variable is sampled at 40 equispaced

sampling points over D10 and the worst case values are reported. The table confirms

that the error (and the normalized residual) converges rapidly with p. The rapid

convergence suggests that the error effectivity of O(10) is more than adequate,

as improving the error by a factor of 10 only requires 1 or 2 additional points.

cUsing the Nµ-p adaptive procedure, this p = 8, D10 = [175, 13, 200.00] interval is created by

subdividing a p = 8, D9 = [150.25, 200.00] interval in the final step. This results in the use of the
p = 8 interpolant over the interval D10 in the final Nµ-p adapted configuration despite the error

meeting the specified tolerance for p = 5.
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p maxµ τ
p
δ (µ) maxµ ∆p

δ(µ) maxµ ‖e(µ)‖Xδ maxµ
∆p
δ(µ)

‖e(µ)‖Xδ
minµ

βpδ,LB(µ)

βpδ (µ)

1 1.82× 104 - 1.14× 101 - 0.61

2 3.57× 102 - 6.67× 10−1 - 0.62

3 3.03× 101 - 9.37× 10−2 - 0.61

4 2.06× 100 - 1.11× 10−2 - 0.61

5 2.53× 10−1 6.63× 10−3 1.48× 10−3 5.14 0.56

6 3.24× 10−2 7.71× 10−4 1.86× 10−4 5.06 0.52

7 4.39× 10−3 1.02× 10−4 2.38× 10−5 5.38 0.49

8 6.18× 10−4 1.30× 10−5 3.00× 10−6 5.77 0.47

Table 3. The p-convergence behavior over the final interval of Case 1, Pe ∈ [175.13, 200.00].

The higher p not only provides higher accuracy but also concomitantly enables

construction of the BRR-based error bounds by decreasing τpδ . Note also that the

inf-sup effectivity decreases with p in general as a larger number of “inf” operations

are required to construct βpδ,LB using the procedure introduced in Section 3.2.2.

Figure 3 summarizes the Nµ-p interpolation strategy, the error behavior, and the

stability constant variation for Case 2 over D = [1, 50]. We recall from Section 4.2

that this problem is less stable than Case 1; the classical formulation produces

exponentially growing error bounds. First, Figure 3(a) shows that the Nµ-p adaptive

procedure utilizes 7 intervals consisting of 31 total interpolation points. Second,

Figure 3(b) verifies that the maximum error bound incurred over D is less than

10−2; we note that the error (and error bound) is smaller for higher Peclet number

because the proximity condition of the BRR theory (τpδ (µ) < 1) forces a smaller

residual than actually necessary to meet the error tolerance. Third, Figure 3(c)

shows that, due to the unstable nature of the problem, the effectivity worsens as the

Peclet number increases; nevertheless, unlike in the classical time-marching based

formulation, our error bounds remain meaningful over the entire parameter range.

Finally, we note that the size of the interval in the high Peclet number regime is

dictated by the necessity to maintain a positive inf-sup lower bound; for instance,

for the p = 4 interpolation, we were unable to maintain a positive value of βpδ,LB

over a single interval of [46, 50], necessitating the split into two smaller intervals.

Table 4 shows the p-convergence behavior of the reduced basis formulation over

D8 = [46.94, 50]. Similar to the previous case, the normalized residual, the error

bound, and the error converge exponentially with p. The worst effectivity over the

40 sampling points is of O(100).

Appendix A. Sobolev Embedding Constants

In this appendix, we study the behavior of the L4-Xδ embedding constant required

for the Brezzi-Rappaz-Raviart theory. Unfortunately, due to the nonlinearity, we

are not able to analyze the L4-Xδ problem analytically. To gain some insight into

the behavior of the embedding constant using analytical techniques, let us consider
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Fig. 3. The error, effectivity, and inf-sup constant behaviors on the final Nµ-p adapted interpolation

for Case 2.

p maxµ τ
p
δ (µ) maxµ ∆p

δ(µ) maxµ ‖e(µ)‖Xδ maxµ
∆p
δ(µ)

‖e(µ)‖Xδ
minµ

βpδ,LB(µ)

βpδ (µ)

1 5.25× 103 - 7.43× 10−2 - 0.21

2 2.04× 101 - 1.03× 10−3 - 0.55

3 1.80× 100 - 2.79× 10−5 - 0.33

4 3.86× 10−2 8.36× 10−5 6.05× 10−7 91.30 0.35

5 3.15× 10−2 1.13× 10−5 1.54× 10−8 137.85 0.24

Table 4. The p-convergence behavior over the last interval of Case 2, Pe ∈ [46.94, 50.00].

two closely related linear problems, L2-X embedding and L2-Xδ embedding, in

Appendix A.1 and A.2. Then, we will numerical investigate the behavior of the
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L4-Xδ embedding constant in Appendix A.3.d

A.1. L2-X Embedding

Let us first consider L2-X embedding. The embedding constant is defined by

θ ≡ sup
w∈X

‖w‖L2(I;L2(Ω))

‖w‖X
,

which is related to the minimum eigenvalue of an eigenproblem: find (w, λ) ∈ X ×R
such that ‖w‖2L2(I;L2(Ω)) = 1 and

(w, v)X = λ(w, v)L2(I;L2(Ω)), ∀v ∈ X ;

the embedding constant is given by θ = λ
−1/2
min . The application of the Fourier decom-

position in the spatial domaine results in an eigenproblem in time: find eigenpairs

(wkx , λkx) ∈ H1
(0)(I)× R such that

1

k2
xπ

2

∫
I

v̇kx(t)ẇkx(t)dt+ k2
xπ

2

∫
I

vkx(t)wkx(t)dt+ vkx(T )wkx(T )

= λkx
∫
I

vkx(t)wkx(t)dt, ∀vkx ∈ H1
(0)(I),

where vkx ∈ H1
(0)(I) is the temporally-varying Fourier coefficient associated with

the kx-mode and H1
(0)(I) ≡ {v ∈ H1(I) : v(t = 0) = 0}. Note that the homogeneous

Dirichlet condition is enforced at t = 0 and a Robin condition, ẇ/(k2
xπ

2) + w = 0,

is enforced at t = T . The eigenmodes of the continuous problem are given by

vkx,kt(t) = sin(mkx,ktt), kt = 1, 2, . . . ,

where the wave number mkx,kt satisfies

tan(mkx,ktT ) = −mkx,kt

k2
xπ

2
, (A.1)

and the associated eigenvalues are given by

λkx,kt = k2
xπ

2 +
m2
kx,kt

k2
xπ

2
. (A.2)

Without loss of generality, we order the wave number such that, for each kx,

mkx,kt=1 < mkx,kt=2 < · · · .
We now deduce the minimum eigenvalue (and hence the embedding constant).

A close inspection of the root condition (A.1) shows that, for any given kx, the

minimum wave number, mkx,kt=1, lies in the interval (π/(2T ), π/T ). It follows that,

dAnalysis in this appendix is “formal”; for brevity, some of the assumptions or arguments required
related to completeness or compactness may be omitted.
eWe could directly analyze the spatial discretization with appropriate modification of the kx
Fourier symbol per the usual von Neumann analysis. Here we consider a continuous-in-space case

for simplicity.
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for T >
√

5/(4π), the minimum eigenvalue is given for kx = 1, and the eigenvalue

lies in λmin = λkx=1,kt=1 ∈ (π2 + 1/(4T 2), π2 + 1/T 2). (Appropriate bounding

constant may be deduced from the expression for the continuous problem even for

T ≤
√

5/(4π).) Thus, for T >
√

5/(4π), the L2-X embedding constant lies in(
π2 +

1

T 2

)−1/2

< θ <

(
π2 +

1

4T 2

)−1/2

.

Note that these bound for the L2-X embedding constant is not significantly different

from the standard L2-H1
0 embedding constant, θL2-H1

0
=
(
π2/T 2 + π2

)−1/2
. For

instance, for T = 1, the embedding constant lies in θ ∈ (0.3033, 0.3173); the direct

computation of the root condition (A.1) and the eigenvalue (A.2) produces the wave

number of mkx=1,kt=1 = 2.8596 and the embedding constant of θ = 0.3057.

We finally observe that the eigenvalues of the space-time eigenproblem (A.2)

is a sum of two terms, one of which increases with the Fourier coefficient kx and

the other which decreases with kx. This is precisely the subtlety introduced by the

space-time norms. In the case of L2-X embedding, this subtlety turns out not to

be an issue, bur rather just a complication; however, this subtlety is an issue in

proving the existence and boundedness of the L4-X embedding constant in higher

dimensions.

A.2. L2-Xδ Embedding

Now let us consider L2-Xδ embedding. The embedding constant is defined by

θδ ≡ sup
w∈Xδ

‖w‖L2(I;L2(Ω))

‖w‖Xδ
,

where we recall that ‖w‖2Xδ = ‖ẇ‖2L2(I;V ′) + ‖w̄‖2L2(I;V ) + ‖w(T )‖2H . Similar to the

L2-X embedding problem, the solution is given by the eigenproblem: find (w, λ) ∈
Xδ × R such that ‖w‖2L2(I;L2(Ω)) = 1 and

(w, v)Xδ = λ(w, v)L2(I;L2(Ω)), ∀v ∈ Xδ ;

the embedding constant is given by θδ = λ
−1/2
min . However, as the Xδ norm is depen-

dent on the temporal mesh by construction, we must consider temporally discrete

spaces for our analysis. Let V∆t ⊂ H1
0 (I) be the piecewise linear temporal approxi-

mation space. Then, the Fourier decomposition in the spatial domain results in an

eigenproblem: find eigenpairs (wkxδ , λkx) ∈ V∆t × R such that

1

k2
xπ

2

∫
I

v̇kx(t)ẇkx(t)dt+ k2
xπ

2

∫
I

v̄kx(t)w̄kx(t)dt+ vkx(T )wkx(T )

= λkx
∫
I

vkx(t)wkx(t)dt, ∀vkx ∈ V∆t,

where v̄kx over the Ik is given by (∆tk)−1
∫
Ik
vkxdx.
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We first analyze the embedding constant for V∆t with a constant time step,

∆t = ∆t1 = · · · = ∆tK . The k-th entry of the kt-th eigenmode vkx,kt ∈ RK is given

by

(vkx,kt)k = sin(mkx,ktt) ,

where the wave number mkx,kt is the kt-th root of

sin(mkx,ktT ) +
cos(mkx,ktT ) sin(mkx,kt∆t)

2 + cos(mkx,kt∆t)

(
3

k2
xπ

2∆t
− k2

xπ
2∆t

4

)
= 0 (A.3)

and the associated eigenvalue is given by

λkx,kt =

2
k2xπ

2∆t (1− cos(mkx,kt∆t)) +
k2xπ

2

2 ∆t(1 + cos(mkx,kt∆t))

1
3∆t(2 + cos(mkx,kt∆t))

; (A.4)

we have found the wave numbers associated with the continuous L2-X embedding

problem serves as good initializers for the root finding problem (A.3). Numerically,

we have observed that the eigenvalue is minimized for kt = 1 for T less than some

threshold Tthresh and for kt = K for T > Tthresh. We now separately analyze these

two branches of the solution.

The behavior of the kt = 1 branch is similar to that of the continuous L2-

X embedding problem. In particular in the limit of K → ∞ (and ∆t → 0), the

discrete root condition (A.3) becomes the continuous root condition (A.1); similarly,

the discrete eigenvalue (A.4) approaches the continuous eigenvalue (A.2).

The behavior of the kt = K branch is dissimilar to that of the continuous

problem. In the limit of K → ∞, this branch is approximated by mkx,kt∆t =

π − nkx,kt∆t for nkx,kt∆t → 0. For K → ∞, the discrete root condition (A.3)

simplifies to

tan(nkx,ktT ) =
3nkx,kt
k2
xπ

2

and the discrete eigenvalue expression (A.4) also simplifies to

λkx,kt = 3

(
4

k2
xπ

2∆t2
+
k2
xπ

2∆t2n2
kx,kt

4

)
.

We identify, for a given nkx,kt , the minimizing wave number k∗x based on a con-

tinuous relaxation as k∗x = 2/(π∆t
√
nkx,kt). The substitution of the minimizing

wave number k∗x in the expression for the eigenvalue yields λk
∗
x,kt = 6nk∗x,kt . For

T > 3/π2, the smallest positive root of (A.3) lies in the interval nmin ∈ [ πT ,
3
2
π
T ].

Thus, it follows that, as K →∞, the minimum eigenvalue asymptotically behaves

as λmin ∼ 1/T . In other words, the L2-Xδ embedding constant asymptotically be-

haves as θδ ∼
√
T for T > Tthresh. Thus, for a sufficiently large T , the embedding

constant scales weakly with the final time T .

Unfortunately, for V∆t with non-constant time stepping, we cannot deduce the

embedding constant analytically. Here, we numerically demonstrate that the L2-Xδ
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mesh grading factor, q

K -2 -1 0 1 2 3 4 5

2 0.3242 0.3336 0.3473 0.3689 0.3817 0.3989 0.4046 0.4076

4 0.3302 0.3237 0.3110 0.3461 0.3875 0.4036 0.4073 0.4080

8 0.3197 0.3099 0.3069 0.3464 0.3882 0.4036 0.4075 0.4081

16 0.3089 0.3067 0.3060 0.3457 0.3882 0.4034 0.4074 0.4081

32 0.3065 0.3060 0.3058 0.3458 0.3882 0.4034 0.4073 0.4081

64 0.3059 0.3058 0.3058 0.3458 0.3882 0.4034 0.4073 0.4078

Table 5. The variation in the L2-Xδ embedding constant with the number of time intervals, K,
and the mesh grading factor, q, for T = 1.

embedding constant is indeed bounded for all quasi-uniform meshes. In particu-

lar, we compute the embedding constant on temporal meshes characterized by the

number of elements, K, and a logarithmic mesh grading factor, q, where q = 0

corresponds to a uniform mesh, q > 0 implies that elements are clustered toward

t = 0. For q sufficiently large, the first temporal element is of order ∆t1 ≈ 10−qT .

Without loss of generality, we pick T = 1.

The result of the calculation is summarized in Table 5. The table confirms that,

on a uniform temporal mesh (q = 0), the embedding constant converges to the

semi-analytical value of 0.3057 as K increases. The embedding constant increases

with the mesh grading factor, q, due to the presence of the mesh dependent term

‖̄·‖L2(I;V ) in ‖ · ‖Xδ . In fact, the embedding constant supw∈Xδ ‖w‖L2(I;L2(Ω))/‖w‖X
associated with the norm ‖·‖X — which has ‖·‖L2(I;V ) in place of ‖̄·‖L2(I;V ) — is in

fact independent of mesh grading and is bounded from above for any mesh by the

L2-X embedding constant θ; for instance, 0.3057 for T = 1. In any event, Table 5

suggests that the L2-Xδ embedding constant asymptote to ≈ 0.41 as q → ∞ and

the constant is bounded for all quasi-uniform meshes.

A.3. L4-Xδ Embedding

Recall that the L4-Xδ embedding constant is defined as

ρδ ≡ sup
w∈Xδ

‖w‖L4(I;L4(Ω))

‖w‖Xδ
.

To solve the maximization problem, we employ the fixed-point iteration algorithm

of Deparis3 in the space-time setting.f We first define an operator z : X \ 0 →
L2(I;L2(Ω)),

z(w) =
1

‖w‖2L4(I;L4)

w2 .

fWe have found Deparis’ algorithm to be more robust than the Newton continuation algorithm of

Veroy and Patera.16
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mesh grading factor, q

K -2 -1 0 1 2 3 4

2 0.4147 0.4306 0.4638 0.5018 0.5561 0.6064 0.7032

4 0.4333 0.4407 0.4562 0.5618 0.6816 0.8437 1.0345

8 0.4372 0.4363 0.4555 0.6247 0.8072 1.0223 1.2773

16 0.4339 0.4351 0.5542 0.7387 0.9578 1.2115 1.5263

32 0.4321 0.4343 0.4770 0.8756 1.1303 1.4323 1.7746

64 0.4170 0.4166 0.4171 1.0276 1.3341 1.6840 1.8387

Table 6. The variation in the L4-Xδ embedding constant with the number of time intervals, K,
and the mesh grading factor, q, for T = 1.

We then introduce an eigenproblem: for a fixed u, find (w, λ) ∈ X × R such that

‖w‖X = 1 and ∫
I

∫
Ω

z(u)wvdxdt = λ(w, v)X , ∀v ∈ X ; (A.5)

we denote the largest eigenvalue and the associated eigenfunction by λmax(z(u))

and wmax(z(u)), respectively. Note that the L4-Xδ supremizer, u∗, is the fixed point

u∗ = wmax(z(u∗)) and the embedding constant is ρδ =
√
λmax(z(u∗)). Deparis’

fixed point algorithm is given as follows: initialize u0 = 1; for l ≥ 1, set

ul = wmax(z(ul−1)) and λl = λmax(z(ul−1)) .

As l→∞, the fixed-point algorithm locates at least a local supremizer.

Remark Appendix A.1. The construction of the Krylov space for an efficient so-

lution of the eigenproblem (A.5) by the Lanczos algorithm requires the application of

X−1. This space-time solve is efficiently carried out using the the block-tridiagonal

decomposition and time-marching solves noted in Remark 2.1.

The numerical values of the embedding constant on different meshes is shown in

Table 6. Similar to the L2-Xδ embedding constant, the L4-Xδ embedding constant

increases with the number of temporal time steps,K, and the mesh grading factor, q.

Based on the table alone, the boundedness of the embedding constant for any quasi-

uniform mesh is inconclusive. For this reason, we compute the L4-Xδ embedding

constant for each space-time finite element mesh and employ the constant in the

construction of BRR bounds. (It is worth noting that, the embedding constant

supw∈Xδ ‖w‖L4(I;L4(Ω))/‖w‖X associated with the continuous X -norm appears to

converge to ≈ 0.42 independent of the mesh grading factor.)

Appendix B. Comparison of Inf-Sup Lower Bound Construction

Procedures

This appendix details the relationship between the inf-sup lower bound constructed

using the procedure developed in Section 3.2.2 and the natural-norm Successive
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Constraint Method (SCM) method.7 For convenience, we refer to our method based

on the explicit calculation of the lower and upper bounds of the correction factors

as “LU” and that based on the Successive Constraint Method as “SCM.” Both LU

and SCM procedures are based on the decomposition

βpδ (µ) ≡ inf
w∈Xδ

sup
v∈Yδ

∂G(w, ũpδ , v)

‖w‖Xδ‖v‖Yδ
≥ inf
w∈Xδ

∂G(w, ũpδ , S
cw)

‖w‖Xδ‖Scw‖Yδ

≥
(

inf
w∈Xδ

‖Scw‖Yδ
‖w‖Xδ

)
︸ ︷︷ ︸

βcδ

·

(
inf
w∈Xδ

∂G(w, ũpδ , S
cw)

‖Scw‖2Yδ

)
︸ ︷︷ ︸

β̂cδ(µ)

,

where we have identified the inf-sup constant evaluated at the centroid by βcδ and

the correction factor by β̂cδ(µ). Note that the correction factor may be expressed as

β̂cδ(µ) = inf
w∈Xδ

∂G(w, ũpδ , S
cw)

‖Scw‖2Y
=

p+1∑
k=1

inf
w∈Xδ

ψpk(µ)
∂G(w, uδ,k, S

cw)

‖Scw‖2Yδ

=

p+1∑
k=1

inf
w∈Xδ

ψpk(µ)
(Skw, uδ,k, S

cw)Yδ
‖Scw‖2Yδ

.

Our LU method and SCM differ in the way they construct bounds of β̂cδ(µ).

Let us recast our LU formulation as a linear programming problem, the language

in which the SCM is described. We compute a lower bound of the correction factor,

β̂cδ,LB,LU(µ) ≤ β̂cδ(µ), ∀µ ∈ Dwork, by first constructing a box in Rp+1 that encap-

sulates the lower and upper bounds of contribution of each term of the correction

factor, i.e.

BLU =

p+1∏
k=1

[
inf
w∈Xδ

(Skw, uδ,k, S
cw)Y

‖Scw‖2Yδ
, sup
w∈Xδ

(Skw, uδ,k, S
cw)Y

‖Scw‖2Yδ

]
.

Then, we solve a (rather simple) linear programming problem

β̂cδ,LB,LU(µ) = inf
y∈BLU

p+1∑
k=1

ψpk(µ)yk,

the solution to which is given by choosing either extrema for each coordinate of the

bounding box BLU based on the sign of ψpk(µ), as explicitly stated in Section 3.2.2.

Let us now consider a special case of SCM where the SCM sampling points are

the interpolation points, µk, k = 1, . . . , p+1, of the Nµ-p interpolation scheme. The

SCM bounding box is given by

BSCM =

p+1∏
k=1

[
−γδ,k
βcδ

,
γδ,k
βcδ

]
.

where

γδ,k ≡ sup
w∈Xδ

‖Skw‖Yδ
‖w‖Xδ

.
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Since the kernel of BLU is bounded by∣∣∣∣∣ (Skw, uk, Scw)Yδ
‖Scw‖2Yδ

∣∣∣∣∣ ≤ ‖Skw‖Yδ‖w‖Xδ
‖w‖Xδ
‖Scw‖Yδ

≤ sup
w∈Xδ

‖Skw‖Yδ
‖w‖Xδ

(
inf

w∈cYδ

‖Scw‖Yδ
‖w‖Xδ

)−1

=
γδ,k
βcδ

,

for k = 1, . . . , p+ 1, we have

BLU ⊂ BSCM.

Furthermore, as the SCM sampling points correspond to the interpolation points,

the SCM linear programming constraints

p+1∑
k=1

ψpk(µl)yk ≥ β̂cδ(µl), l = 1, . . . , p+ 1

simplify to (using ψpk(µl) = δkl)

yk ≥ β̂cδ(µk), k = 1, . . . , p+ 1,

where

β̂cδ(µk) = inf
w∈Xδ

(Skw, uδ,k, S
cw)Yδ

‖Scw‖2Yδ
.

We recognize that the this constraint is in fact identical to the lower bound box

constraint of BLU. Thus, the space over which the SCM lower bound is computed,

DLB
SCM = {y ∈ BSCM : yk ≥ β̂cδ(µk), k = 1, . . . , p+ 1},

satisfies

BLU ⊂ DLB
SCM.

More specifically, DLB
SCM has the same lower bounds as BLU but has looser upper

bounds than BLU. Consequently, we have

inf
y∈DLB

SCM

p+1∑
k=1

ψpk(µ)yk = β̂cδ,LB,SCM(µ) ≤ β̂cδ,LB,LU(µ) = inf
y∈BLU

p+1∑
k=1

ψpk(µ)yk ≤ β̂cδ .

Thus, if the SCM sampling points are the same as the interpolation points of the

Nµ-p interpolation scheme, then our LU formulation gives a tighter inf-sup lower

bound than SCM.
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