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‘We present a space-time interpolation-based certified reduced basis method for Burgers’
equation over the spatial interval (0,1) and the temporal interval (0,7] parametrized
with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time
finite element discretization which enjoys a favorable inf-sup constant that decreases
slowly with Peclet number and final time 7. We then consider an hp interpolation-based
space-time reduced basis approximation and associated Brezzi-Rappaz-Raviart a poste-
riori error bounds. We describe computational offline-online decomposition procedures
for the three key ingredients of the error bounds: the dual norm of the residual, a lower
bound for the inf-sup constant, and the space-time Sobolev embedding constant. Nu-
merical results demonstrate that our space-time formulation provides improved stability
constants compared to classical L2-error estimates; the error bounds remain sharp over
a wide range of Peclet numbers and long integration times 7', in marked contrast to the
exponentially growing estimate of the classical formulation for high Peclet number cases.
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1. Introduction

In this paper, we develop a certified reduced basis method for the parametrized
unsteady Burgers’ equation. Classically, parametrized parabolic partial differential
equations (PDEs) are treated by collecting solution snapshots in the parameter-
time space and by constructing the reduced basis space using the proper orthogonal
decomposition of the snapshots.>%118 Such a formulation enables rapid approxi-
mation of parametrized PDEs by an offline-online computational decomposition,
and the reduced basis solution converges exponentially to the truth finite element
solution for sufficiently regular problems. However, the quality of the associated L-
in-time a posteriori error bound relies on the coercivity of the spatial operator. If the
spatial operator is noncoercive, the formulation suffers from exponential temporal
instability, producing error bounds that grow exponentially in time, and rendering
the bounds meaningless for long-time integration. In particular, limited applica-
bility of the classical a posteriori error bounding technique to unsteady Burgers’
and Boussinesq equations is documented by Nguyen et al.!'! and Knezevic et al.®,
respectively.

In order to overcome the instability of the classical L2-in-time error-bound
formulation, we follow the space-time approach recently devised by Urban and

15,14, we consider a space-time variational formulation and associated finite

Patera
element approximation that produces a favorable inf-sup stability constant; we then
incorporate the space-time truth within a space-time reduced basis approach. The
approach is inspired by the recent work on the space-time Petrov-Galerkin formu-
lation by Schwab and Stevenson'?.

The main contribution of this work is twofold. First is the application of the
space-time finite-element and reduced-basis approach to the unsteady Burgers’
equation with quadratic nonlinearity. The formulation results in Crank-Nicolson-like
time-marching procedure but benefits from full space-time variational interpretation
and favorable inf-sup stability constant. The second contribution is the application
of the Brezzi-Rappaz-Raviart theory to the space-time formulation to construct an
error bound in the case of a quadratic nonlinearity. Particular attention is given to
the development of an efficient computation procedure that permits offline-online
decomposition for the three key ingredients of the theory within the space-time
framework: the dual norm of the residual, an inf-sup lower bound, and the Sobolev
embedding constant.

This paper is organized as follows. Section 2 reviews the spaces and forms used
throughout this paper and introduces a space-time Petrov-Galerkin variational for-
mulation and associated finite element approximation of the Burgers’ equation.
Section 3 first presents an hp interpolation-based reduced basis approximation and
then an associated a posteriori error estimate based on the Brezzi-Rappaz-Raviart
theory. We describe the calculation of the dual-norm of the residual, an inf-sup lower
bound, and the space-time Sobolev embedding constant, paying particular atten-
tion to the offline-online computational decomposition. Finally, Section 4 considers
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two examples of Burgers’ problems and demonstrates that the new space-time error
bound provides a meaningful error estimate even for noncoercive cases for which
the classical estimate fails. We also demonstrate that the hp interpolation method
provides certified solutions over a wide range of parameters using a reasonable num-
ber of points. Although we consider a single-parameter, one-dimensional Burgers’
equation in order to simplify the presentation and facilitate numerical tests, the
method extends to the multi-dimensional incompressible Navier-Stokes equations
and several parameters as will be considered in future work.'”

2. Truth Solution
2.1. Governing Equation

This work considers a parametrized, unsteady, one-dimensional Burgers’ equation
of the form

ou 0 (1., 1 0%u -

— 4+ — =) - — == =gz reQ, tel 2.1

ot Oz (2 ) Pe 022 9(x), ’ (2.1)
where @ is the state variable, Pe is the Peclet number, g is the forcing term,
Q= (0,1) is the unit one-dimensional domain, and I = (0,7 is the temporal in-
terval with T denoting the final time of interest. We impose homogeneous Dirichlet
boundary conditions,

@(0,t) = a(1,t) =0, Vtel,
and set the initial condition to
(z,0) =0, Vzel.
Setting t = £/Pe and u = Pe - i, (2.1) simplifies to

2
?Z+£C(;u2>—g;;:Pez-g(m), zeQ tel (2.2)
Note that the transformation makes the left-hand side of the equation independent
of the parameter Pe. The homogeneous boundary conditions and the initial condi-
tion are unaltered by the transformation. Moreover, note that T = O(1) represents
a long time integration from ¢t = 0 to T = O(Pe) based on the convection time scale.
From hereon, we will exclusively work with this transformed form of the Burgers’
equation, (2.2).

2.2. Spaces and Forms

Let us now define a few spaces and forms that are used throughout this paper.'?

The standard L?(Q2)-Hilbert space over 2 = (0, 1) is equipped with an inner product
(¥, ®)12(0) = [, ddx and induced norm |[¢[|r2(q) = +/(¥,¥)2(q) for functions
{¥ : |¥]lL2(q) < oo}; for convenience, we set H = L?(£2). The space V is equipped

with an inner product (¢, ¢)yv = | %%dm and induced norm |[¢|v =/ (¥, ¥)v
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for functions Hg (£2). We define the Gelfand triple (V, H, V') and associated duality
paring (-, -)v/xy. Here the norm of £ € V' is defined by ||£|ly: = supyey %,
which is identical to || R¢||y where the Riesz operator R : V' — V satisfies, for each
te Vlv (R£7¢)V = <£7¢>V’><V7 VoeV.

Let us now define Bochner spaces, which play key roles in our space-time for-
mulation. The space L?(I;V) is equipped with an inner product

(w, 0) 21y = /I(w(t),v(t))vdt

and induced norm |lw||p2rvy = /(w,w)r2(vy. The dual space L2(I; V') is
equipped with an inner product

(’LU7U)L2(I;V/) = /I(Rw(t),Rv(t))vdt = /(w(t),v(t))v/dt

I

and induced norm |[wl|z2(7,v7y = \/(w, w) L2(1,v7), where R : V' — V is the afore-
mentioned Riesz operator. The space H, (10) (I; V') is equipped with an inner product

(w,v)H1(I;V/) = ('u.),’l'])LZ([;VI) and induced norm Hw”Hl(I;V’) = (’w,l,U)Hl(I;V/) for
functions {w : |Jwl| g1 (7, < o0, w(0) = 0}; here w = %—f denotes the temporal

derivative of w. The trial space for our space-time Burgers’ formulation is
X = L(L;V) N Hgy (I; V')
equipped with an inner product
(w,v)x = (w,v) g (v + (w,0) L2y + (W(T),v(T)) 1

and induced norm |w|x = /(w,w)x, as introduced by Urban and Patera
for (linear) advection-diffusion equations.'®!* Note that ||w|3% = ||w||?{1(1;vl) +
||wH2L2(1-v) + ||w(T)||%. The test space is Y = L?(I; V') equipped with inner product
and norm in L3(I; V).

Having defined spaces, we are ready to express the governing equation (2.2)

in a weak form. We may seek a solution to the Burgers’ equation expressed in a
semi-weak form: find ¢ € C(lo)(I; L3(Q)) N L3(I; V) such that!?

W), o) + a(¥(t), d) + b(¥(t), ¥(t),¢) = f(¢:Pe), VoeV, Vtel,

where C? is the space of functions with continuous p-th derivative, and Cpo) is the
subspace of C? that consists of functions that satisfy the zero initial condition. The
bilinear form af(-,-), the trilinear form b(-,-,-), and the parametrized linear form
f(;Pe) are given by

at.o)= [ 25 de. wwoeV,
1 d
bw.C.0) = 5 [ wCGhde. WCoE,

f(¢;Pe) =Pe* - (g, d)vixv, VYpeV.
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Note that the trilinear form b(-,-,-) is symmetric in the first two arguments. By
choosing = Pe?, we may express the linear form as a linear function of the
parameter p, i.e.

f(dsu) = p- (g, d)vixv.

Thus, our linear form permits a so-called affine decomposition with respect to the
parameter p. (We note that the certified reduced-basis formulation presented in
this work readily treats any f that is affine in a function of parameter p though the
work is presented for the simple single-parameter case above.)

More generally, we may seek the solution to the Burgers’ equation in the space-
time space X. We have the following space-time weak statement: find © € X such
that

G(u,v; ) =0, Yve, (2.3)
where the semilinear form G( -, -; u) is given by
G(w,v; ) = M(w,v) + Alw,v) + B(w,w,v) — F(uv;u), YweX,Yve), (2.4)

with the space-time forms
Mwo) = [ (ile), o(O)vrnvdt, Vo e 270 ey,
T

Alw,v) = /a(w(t),v(t))dt, Yw e X,Yv e,

I

B(w, z,v) = /Ib(w(t),z(t),v(t))dt, Yw,z € X,Yv € Y,

Flo;p) =p- /<g,v(f)>wxvdt, Yve .
I

Note that the trilinear form B(-, -, -) inherits the symmetry with respect to the
first two arguments. Furthermore, we will denote the Fréchet derivative bilinear
form associated with G by 9G, i.e.

G (w, z,v) = M(w,v) + A(w,v) + 2B(w, z,v), Yw,z€ X, Vv €Y,

where z € X is the linearization point.

Let us note a few important properties of our unsteady Burgers’ problem. First,
our space-time linear form F permits trivial affine-decomposition, i.e. F(v;u) =
pFo(v) where Fo = [;(g,v(t))v/xvdt. Second, our trilinear form is bounded by

|B(w, z,v)| = 5 -

1 0 1
// L Pazar| < 22lwlxllzlxllvlly, Y,z € X, Vo e Y,

where p is the L*-X embedding constant

w .
p= sup || ||L4(I,L4(Q))
weX ||’LU||X
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Recall that the LP norm is defined as ||wl|pr(r;00)) = (/[ [, wPdadt) P This
second property plays an important role in the application of the Brezzi-Rappaz-
Raviart theory to construct an a posteriori error bound. We note that the existence
and boundedness of p is not trivial; we have a numerical demonstration in Q C R!
and Q C R? but an indication that alternative norms will be required in R3.°
Although we consider only Burgers’ equation in this paper, we can readily extend
the formulation to any quadratically nonlinear equation which satisfies suitable
hypotheses on the forms, as implicitly verified above for Burgers’. (We can also
consider non-time-invariant operators subject to the usual affine restrictions.)

2.3. Petrov-Galerkin Finite Element Approximation

In order to find a discrete approximation to the true solution u € X, let us in-
troduce finite dimensional subspaces X5 C X and )5 C ). The notation used in
this section closely follows that of Urban and Patera.'* We denote the triangula-

ime

tions of the temporal interval and spatial domain by TA™® and 7,7%°, respectively.
In particular, 7£m¢ consists of non-overlapping intervals I k= (t*=1 t*] of length
AtF =tk — k=1 k =1,... K, with t° = 0 and t¥ = T’; here max(AtF)/T < At
and the family {7a¢}ate(0,1] is assumed to be quasi-uniform. Similarly, 7,7 con-
sists of A+ 1 elements with max,c7, diam(x) < h, belonging to a quasi-uniform
family of meshes. We now introduce a temporal trial space Sa¢, a temporal test

space Qa¢, and a spatial approximation space V}, defined by
Sar={v e Hi(I) vl e PH(I*), k=1,..., K},
Qar={ve L*() v e PPUIF), kE=1,..., K},
Vi ={ve H(Q) :v|. € P (r),k €T}
Our space-time finite element trial and test spaces are given by
Xs =A@V, and Vs = Qar® Vp,

respectively, where § = (At, h) is the characteristic scale of our space-time dis-
cretization. Furthermore, we equip the space X5 with a mesh-dependent inner
product!®14

(’LU, ’U)Xa = (waU)Hl(I;V’) + (wva)LQ(l;V) + (w(T), U(T))H;

here w € Y is a temporally piecewise constant function whose value over I* is the
temporal average of the function w € Xy, i.e.

1
T —
= dt kzl...K.
w Atk/lkw ) ) )

We also introduce an associated induced norm [Jwl|%, = (w, w) ;. The choice of this
mesh-dependent norm is motivated by the fact that the norm provides the unity
inf-sup and continuity constant for the Petrov-Galerkin finite element discretization
of the heat equation.!51* In other words, | - || x; is the natural norm associated with
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the Petrov-Galerkin finite element discretization of the heat equation. The space
Vs inherits the inner product and induced norm from the space Y; i.e., (w,v)y, =
(w,v)y and [wlly, = [lw]ly-

We have the following space-time finite element approximation to the Burgers’
equation (2.3): find us € X5 such that

g(U(;,U(;;,U/) = 07 VU5 S y5- (25)

The well-posedness of the space-time finite element formulation will be verified a
posteriori using the Brezzi-Rappaz-Raviart theory. The temporal integration re-
quired for the evaluation of the source term F is performed using the trapezoidal
rule.

2.4. Algebraic Forms and Time-Marching Interpretation

In this subsection, we construct algebraic forms of temporal, spatial, and space-time
operators required for the computation of our finite element approximation, various
norms, and inf-sup constants. In addition, we demonstrate that our Petrov-Galerkin
finite element formulation can in fact be written as a time-stepping scheme for a
particular set of trial and test basis functions.

Throughout this section, we will use standard hat-functions o* with the node
at t*, k =1,..., K, as our basis functions for Sas; note that supp(c*) = I* U I*+1
(except for o, which is truncated to have supp(c®) = I). We further choose
characteristic functions 7% = y» as our basis functions for Qa;. Finally, let ¢;, i =

., N, be standard hat-functions for V;,. With the specified basis, we can express

a space-time trial function ws € Xs in terms of basis coefficients {wk}kzl’”"j{,{ as

ws = Ek, Zz 0 ® ¢;; similarly a trial function vs € )5 may be expressed
as vs = Zk 1 ZZ L vFT* ® ¢;. The following sections introduce temporal, spatial,
and space-time matrices and their explicit expressions that facilitate evaluation of
the residual, norms, and inf-sup constants in the subsequent sections.

2.4.1. Temporal Operators

First, let us form temporal matrices required for the evaluation of the Petrov-
Galerkin finite element semilinear form. We will explicitly determine the entries of
the matrices (i.e. the inner products) for our particular choice of basis functions,
which are later required to construct a time-marching interpretation. The Petrov-
Galerkin temporal matrices M{™¢ € RE*K and M}jme € REXK are given by

(M) = (6%, T r2(1) = 6kt — St
. Atl
(MR )ik = (0%, 7 201 = 7(%,1 + Op41,0)s

where d;,; is the Kronecker delta. Note that, with our particular choice of basis
functions for Sa¢ and Qa¢, the matrices are lower bidiagonal. The triple product
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resulting from the trilinear form evaluates to

l

At
(cFo™ T 2y = e (20k,10m,1 + Ok, 10m41,0 + Okt1,10m,1 + 20k41,10m+1,1)

(no sum implied on 1).

In addition, evaluation of the X5 inner product requires matrices Mit € REXK
—S . . .
and M, € REXE associated with Sa; given by

- k- 1 1 1 1
(M) = (6%,6") 2y = — gkt (Atl + Atl+1> Ot = Ay Ok—1.
—5 e At Ath + AT Attt
(Mg = (Ukaal)LZ(I) =1 Okt1,0 + ffsk,l + 1 Ok—1,1

with an interpretation 1/AtX+1 = 0 for Mg, and At5+1 = 0 for M2,. Because
the support of the basis functions are unaltered by differentiation or the averaging
operation, both Mit and Mit are tridiagonal. Finally, the evaluation of the )
inner product requires a matrix Mgt € REXE associated with Qa; given by

(Mgt)lk = (Tk,Tl)Lz(]) = Atlék,l.

Because 7%, k = 1,..., K, have element-wise compact support, Mgt is a diagonal
matrix.

2.4.2. Spatial Operators

The spatial matrices M;P* € RV and AjP*° ¢ RV*N associated with the
L?(Q) inner product and the bilinear form a( -, -) are given by

(MP*) i = (¢, ) and  (APP*) ;5 = al¢i, ¢5) :

we omit explicit forms since these matrices are standard. To simplify the notation,
let us denote the spatial basis coefficients at time t* by the vector w* € RV i.e.
the j-th entry of w* is (wk)j = wf The vector 2 € RV is defined similarly. Then,
we can express the action of the quadratic term in terms of a function b;"* :
RY x RN — RV the j-th component of whose output is given by

N
(bzpace(wk’ Zm))j = Z wfz;"b(@, Pn,s ¢J)

i,n=1

2.4.3. Space-Time Operators: Burgers’ Equation

Combining the expressions for the temporal inner products and the spatial oper-
ators, the space-time forms evaluated against the test function 7' ® ¢; may be
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expressed as

K N
Mas, 7 @ ¢5) =D w6, ) L2y (60, ¢5)m = (M (w' —w'™1));

k=1 1=1
K At

Alws, 7' @ ¢;) = kZE;wf(okﬁ Jeana(di 65) = == (A" (w' +w'™h),
=1 1i=

B(ws, z5, 7' @ ¢;) ) L2 ()b dns ;)

Il
M=
JMZ

g

S

:Ng

5
Q

XA
= Z 7 (2’[1}2 b<¢w¢n7¢j)+w 1b(¢17¢n;¢])

+wi 2, b(0i, bn, b7) + 201 2 0 b, 65))
= (Qb;pace(wl,zl) + bzpace(,wl’ zlfl)
_’_binaCE(u’l—l7 Zl) + 2bzpace(,u]l—17 Zl_l))j .
The trilinear form further simplifies when the first two arguments are the same, as
in the case for the semilinear form of the Burgers’ equation, (2.4); i.e
At
B(ws, ws, ' @ ¢;) = 3
In addition, the integration of the forcing function using the trapezoidal rule results
in

Fr' @ g5:0) = i /<go<> ' gyhurevdt = Al S {go(t) + go(t' )00 vy

(bzpace(wl )+bSpaCE(wl ’lU )+bspace( lflvwlfl))j'

= At'p (90h+90h>

where g' € RV with (g}); = (g(t'), #;)v'xv. Combining the expressions for our
particular choice of the Petrov-Galerkin test functions, the finite element residual
statement, (2.5), may be simplified to

Space — ]‘ Sspace —
EMP ( l,wl 1)+§Ahp (wl+wl 1)
1 l

g B (w0l w) + 5wl )+ B (o wl )

(Gt g =0 RN,

for | = 1,...,K, with w® = 0. Note that the treatment of the linear terms are
identical to that of the Crank-Nicolson time stepping, whereas the quadratic term
results in a different form. In any event, the Petrov-Galerkin space-time formulation
admits a time-marching interpretation; the solution can be obtained by sequentially
solving K systems of nonlinear equations, each having R unknowns; thus, the
computational cost is equivalent to that of the Crank-Nicolson scheme.

—p
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2.4.4. Space-Time Operators: Xs and Vs Inner Products

Combining the temporal matrices with the spatial matrices introduced in Sec-

tion 2.3, we can express the matrix associated with the X5 inner product, X €
RENX(KN) g

X = Mit ® (szace(Azpace)—lepace) + Mit ® Azpace + d1ag(eK) ® szace,

where diag(ek) is a K x K matrix with one at the (K, K) entry and zero elsewhere.

Note that X is block-tridiagonal. The norm induced by the Mit ® AP part of
the X matrix is identical to the usual norm for the Crank-Nicolson scheme, i.e.

il space
{wi} (Ma, ® ARP*){w]'} = wsEn

K 1 T 1
=2 (2(w‘“ + w’“)) AP <2(w’“ + w“)) ,
k=1

where {wF} € REV is a vector of space-time basis coefficients for ws. The identity
— together with the equivalence of our space-time Petrov-Galerkin formulation
with the Crank-Nicolson scheme for linear problems — suggests that the inclu-
sion of the averaging operator in our X5 norm is rather natural for the particular
scheme we consider. Similarly, the matrix associated with the )5 inner product,
Y € REN)IX(EN) g given by

Y = Mg, @ AP
The matrix Y is block diagonal because Mgt is diagonal.

Remark 2.1. As noted previously, the X5 trial norm is in fact the natural norm
associated with the Petrov-Galerkin discretization of the heat equation with the Vs
test norm. Thus, it follows that

X = GgeatY_lGheat ;

where Gpeay € RE NI (EN) g the space-time matrix associated with the heat
equation, Gpeae = MU™e @ MSP*® 4 M4M® @ ASP*°. This decomposition of the
block-tridiagonal matrix X allows a computationally efficient application of X! =
GgelatYGgegt by a three-step procedure: 1) we first solve the space-time linear
system backward in time, i.e. the adjoint solve Gﬁe:gﬁ we then apply the block-
diagonal operator Y; and we finally solve the space-time linear system forward in
time (G}:elat). The efficient application of X! plays an important role in our space-
time formulation, including in the computation of the L*-X5 embedding constant
(as we will see in Section 3.2.3) and the adjoint residual (which would be required
for the primal-dual formulation of output error bounds).
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3. Certified Space-Time Reduced-Basis Approximation
3.1. N,-p Interpolation-Based Approzimation

Here, we introduce a simple reduced-basis approximation procedure based on in-
terpolation (rather than projection). We choose interpolation as it is less expensive
than projection, sufficiently accurate in one parameter dimension, and also facili-
tates the construction of an inf-sup lower bound as we will show in Section 3.2.2.
We note that interpolation-based model reduction techniques have been employed
previously.!

We consider an hp-decomposition (or, more specifically, N,,-p decomposition) of
the parameter domain D as considered in Eftang et al.* In particular, we partition
D C R! into N, subdomains, D; = [Mf,,u;]], j=1,...,N,, and approximate the
solution variation over each subdomain using a degree-p polynomial. On each Dj,
we use p + 1 Chebyshev-Lobatto nodes p; %, k =1,...,p+ 1, defined by

Pik = 1} _1_lcos<k_17r)
py —py o202 p

as the interpolation points. At each interpolation point, we obtain the truth solution
us ik = us(pjx) € Xsj by solving the finite element approximation (2.5) for the
space-time finite element trial-test space pair Xj; and Y5 ;. Note that we employ
a different finite element space pair (Xs ;, Vs ;) (induced by Et";e and T}fsace) for
each parameter domain D;; each space pair is tailored toward resolving the solution
encountered over the associated parameter range.

We now construct our reduced basis approximation to us = us(u) by a direct
sum of NNV, polynomials

Nﬂ
~D __ ~D
Us = @“64’
j=1

where @ jisa degree-p polynomial over p € D; given by

p+1

() = usRth(p) (3.1)
k=1

for j = 1,...,N,. Here ¢}, k = 1,..., K, is the degree-p polynomial with the
interpolation property through Chebyshev points, i.e. ¢} € PP(D;) such that
Yo(xr) = gy, k= 1,...,p+ 1. Given p, we simply identify the parameter do-
main to which p belongs and then evaluate (3.1); the NN,-p strategy ensures that
the polynomial degree (and hence the cost associated with the interpolation) is
relatively small. Note that, unlike in the classical time-marching formulation,®118
the computational cost of constructing the reduced-basis approximation using our
space-time formulation is independent of the number of time steps, K. In this work,
we do not assess the relative approximation properties of classical time-marching
formulation (e.g. POD-Greedy) and our N,,-p interpolation method.
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3.2. Brezzi-Rappaz-Raviart Theory

We now construct error bounds for our N,-p interpolation-based reduced basis ap-
proximation. Our a posteriori error bound for the Burgers’ equation is a straight-
forward application of the Brezzi-Rappaz-Raviart (BRR) theory.? The bound pro-
cedure separately applies to each of the N, parameter subdomains; hence, in this
section, we focus on the error certification for a single subdomain, and, to avoid
the notational clutter, we accordingly drop the subscript j for the subdomain des-
ignation: we indicate the “working” subdomain by Dy and denote, for example,
the trial space associated with Dyor by X5 (instead of X5 ;) and the reduced basis
approximation by @j (instead of @j ;).

The following proposition states the main results of the theory; detailed proof
for a general case is provided in the original paper? and for quadratic nonlinearity
is presented by Veroy and Patera.'®

Proposition 3.1. Let @§(p) be the reduced basis approzimation (3.1). We define
the dual norm of the residual, the inf-sup constant, and the L*-X;5 Sobolev embedding
constant by

G(ah(p), v; p
() = sup I vk
vEYs ||'U||3;5
O ~P
B = inf sup ST L1 V)
wWEXs ye Yy ”wHXS”UHy(;

[wllLa;20(0))

ps = Sup
wE X5 HwHXs

In addition, let 85 | p(1) be a lower bound of B3 (1), i-e. By (1) < B5 (), Y € D.
Let the prozimity indicator be T8 (p) = 2p§e§(u)/(5§L3(u))z. Then, for 7§ () < 1,
there exists a unique solution us(p) € B(af(w), S5 (n)/p2) to the finite element
problem (2.5), where B(z,r) = {z € Xs : || — z||x, < r}. Furthermore, |us(p) —
()|, < AL() where

AP() = 5“@?” (1 e —né’(u)) .

Proof. Proof is provided in, for example, Veroy and Patera.'6 D

The following subsections detail the computation of the three key ingredients
of the BRR theory: the dual norm of residual §(u); the inf-sup constant 5§ p(1);
and the L*-X;s Sobolev embedding constant ps. In particular, we will present effi-
cient means of computing these variables in the space-time context that permits an
offline-online decomposition.
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3.2.1. Residual Evaluation

Here, we briefly review a technique for efficiently computing the dual norm of the
residual in the online stage, the technique originally presented by Veroy et al.'6 in
the space-only context. We first note that €f(u) = [|G(af (1), - 1)l vs) = €7 lyss
where the Riesz representation of the residual is given by é¥ = RG(af(p), -5 1) € Vs
and satisfies

(€7, v)y, = G(ags(p), v; )
p+1l

= Z wz(/j,) [./\/l(?lg,k, 11) + -A('U«S,kv U)}

p+1

57 WU (0)Blus s w5, v) — - Fov), Vo € s,
k=1
+1
Let us introduce (pieces of) Riesz representations xY, {Xk}k 1, and {Xkl}il 1
the residual contribution from the linear, bilinear, and trilinear form, respectlvely,

for the snapshots according to
(X" 0)y; = Fo(v), Vo€, (3:2)
(X1, V) ys = M5 5, v) + Alus g, v), Yw € Vs, k=1,...,p+1, (3.3)
(X3, v)y; = B(usy,us,v), Yo € Vs, kil=1,....,p+1.

Then, we can express éP as

p+1 p+1
& =X+ VR + Y VR ()X
k=1 k=1

The dual norm of the residual can be expressed as

p+1 p+1
€% lys = 2O X ws + 200 ) O ) vs 20 > (X0 X s
m=1 m,n=1
p+1 p+1
+ > WRUR (1) (s X)) ws T2 > VR WR, ()WR (1) (Xks Xin) s
k,m=1 k,m,n=1
p+1
Y R ()Eh, (PR (1) (XRts X ) Vs (3.5)

k,l,m,n=1

The offline-online decomposition is clear from the expression. In the offline
stage, we first solve (3.2)-(3.4) to obtain the Riesz representations x°, {x} }ﬁi}, and
{Xil}ijil. Note that there are 1+ (p+1) + (p+ 1)? representations, each requiring
a YVs-solve. Recalling that the matrix associated with the )5 inner product is given
by Y = Mgt ® AP, each Ys-solve requires K inversions of the AjP*“® operator,
where K is the number of time steps. It is important to note that the computation

of the representations does not require a solution of a coupled space-time system,
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as the matrix Y is block diagonal. In other words, the computational cost is not
higher than that for the classical time-marching reduced basis formulation. After
computing the representations, we compute the Vs inner product of all permutations
of representations, e.g. (x°, x°)y;, (X", X%)y;-

In the online stage, we obtain the dual norm of the residual by evaluating (3.5)
using the inner products computed in the offline stage. The computational cost
scales as (p 4+ 1)* and is independent of the cost of the truth discretization. Note
that, unlike in the classical reduced-basis formulation based on time-marching, the
online residual evaluation cost of our space-time formulation is independent of the
number of time steps, K.

3.2.2. Inf-Sup Constant and Associated Lower Bound

Here, we present a procedure for computing an inf-sup lower bound, ﬁf{ Le(m),
that permits an offline-online decomposition. The particular procedure presented is
specifically designed for the N,-p interpolation-based reduced basis approximation
introduced in Section 3.1. Let us first define the supremizing operator S¢ : X5 — Vs
associated with the solution u§ = u(u®) at the centroid of the subdomain Dyork,

pe, by
(Sw,v)y, = 0G(w,u§,v), Yw e Xs, Vv € Vs.
The inf-sup constant for u§ is given by

Sw
g iag 150l
weXs ||wl|x,
Let us also introduce the following correction factors at the interpolation points,

0G(w, us. 1, SCw) 0G(w, us. i, SCw)

B, = inf and B, = sup , 3.6
5k T e, ||SC“’H§75 L 7 ||SCwH§,6 (3.6)
for k=1,...,p+ 1. Then, we construct an inf-sup lower bound according to

s =851 D Bavbw+ D BLtw) |, i€ Dyone
k=1,...,p+1 k=1,...,p+1
P (1)>0 PP () <0

(3.7)

We have the following proposition:

Proposition 3.2. The inf-sup lower bound constructed using the above procedure
satisfies 5§7L3(u) < B5(1), Yiu € Dyork-

Proof. Since S°w € Y5, Yw € Xj, we can bound the inf-sup constant from below
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as
o =P p+1 9
Py = inf sup 9T 10) e S, 090 ek, 0)
weXs pey;  |wllx, [|v]ly, wEXs veys 1 llwllxs V][5
ptl p+1
0 S S¢ 0 Sc
> inf Zwk %f:w: inf pr 15wy, g(w,«;{s,ké w)
wexs Tl Sewly,  wews £ ol 5wl
+1
g 150lys — 8Q (w, us j, SCw)
= J— e YneD 3.8
wEXS ||T,U||X§ Zw ||S(. ||y6 ,LL work ( )

Note that we have

[1S“wlly, 152y, ey _ ge

Toln, = - Telly, W) =550, Vwe s
and the first term of (3.8) is bounded from below by 8§ > 0. The second term
involving summation over p+1 terms may be bounded from below by the correction
factors defined in (3.6). Namely, if /¥ (1) > 0, then we may bound the contribution
from the k-th term from below by using S ,; if Yr(p) < 0, then the contribution
may be bounded from below by using B;fk. In other words, the final expression of
(3.8) is bounded from below by

55( ) <ll’lf ||Scw||y5) Z sz(ﬂ) inf 8g(wgu5,k;50’w)

wire Tuly, ) |, 2= VWi T s,
Pp(p)>0

n Z Y2 (1) sup 0G(w, us 1, Sw)

wexy  |1Sew]3),

=85 D Bwtw+ > BLUkw |, Vi€ Dyon

k=1,.. ,p+1 k=1,....p+1
P (1)>0 ¥y, (1)<0
which concludes the proof. O

Remark 3.1. For small intervals, the correction factors are close to unity. To see
this, we note that

10G (w, us , STw)| _ |0G(w, uf + (us — uf), Sw)|

ISewll, 15ewly,
106 (w, ug, Sw)| | |B(w, usp — ug, S°w)|
- IISCwH%& ISewll3,

1p
<1—|—f ||U5k u§||X.

2 B¢
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Thus, as [Dyork| — 0 and ||us ; — u$||x; — 0, the correction factors converge to 1.

Remark 3.2. The inf-sup lower bound construction procedure presented here pro-
duces a tighter lower bound than the natural norm Successive Constraint Method
(SCM)7 that uses the p + 1 interpolations as the SCM sampling points, i.e.

B5 (1) = B51s(k) = B5 e som(i), Vit € Dyork,

where 851 g gop(#2) is the SCM inf-sup lower bound. A detailed derivation is pro-
vided in Appendix B.

Again, the offline-online decomposition is clear from the structure of (3.7). In
the offline stage, for each Dyork, we evaluate the inf-sup constant 5§ at the centroid
and correction factors ﬁfk, at each of the p + 1 interpolation points. In the online
stage, we identify the par/ameter subdomain D; to which u belongs, set it as Dyork,
and evaluate f§y (p) using (3.7).

Let us demonstrate that none of the offline computations require solutions to a
fully-coupled space-time problem, and the computational cost scales linearly with
K. The inf-sup constant at the centroid, 3§, can be obtained by finding the largest
eigenvalue of a generalized eigenproblem Pv = AQv with

P=X= Mit ® (Mipace (Azpace)flepace) + Mit ® Azpace + diag(eK) ® szace
Q = (GC)TY—ch

and setting 8§ = )\r_n;{(z. Here, G¢ € RUECN)X(EN) g the Jacobian matrix of the
residual operator linearized about u§ = us(u®); the (Ii)(kj) entry of the matrix is
given by

(G) iy (kj) = 0G(0* ® ¢, u§, 7' @ ).

Note that G¢ is block lower bidiagonal due to our choice of the basis functions for
the spaces Sa; and Qa¢ in the Petrov-Galerkin formulation. If the eigenproblem is
solved using a Lanczos-based method, each Lanczos step requires action of P, Q and
Q! on a vector in REV. The application of P requires O(K) operations due to the
tensor-product structure of the matrices that constitutes X; for instance, to compute
(Mit ® AP*%)v, we first compute AJP*vF k =1,... K, and then take a linear

. . . . . v
combination of (at most) three A;****v*’s according to the weights specified in M4, .

The application of Q requires the application of G¢, (G¢)T', and Y ~!, each of which
requires O(K) operations due to the block bidiagonal or block diagonal structure of
the matrices. Finally, the application of Q! = (G¢)~'Y(G¢)~7 is accomplished by
the following three-step procedure (analogous to that of X~1): 1) (G¢)~7, which
corresponds to a backward solve of a linearized K-step time marching problem;
2) Y, which requires application of A}P* onto K spatial vectors; and 3) (G¢)~1,
which corresponds to a forward solve of a linearized K-step time marching problem.

Thus, each Lanczos step of the inf-sup eigenproblem requires O(K) operations.
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The calculation of the correction factors require the extreme eigenvalues of a
generalized eigenproblem Pv = A\Qv with

1

P=-

2

Q= (GH)T'y G-

((GC)TYfle + (Gk)TYfch)

Here, GF € REEN)X(EN) 5 the Jacobian matrix corresponding to the residual
operator linearized about the solution at the interpolation point us ;. Application
of P again requires O(K) operations due to the block bidiagonal and block diagonal
structure of G and Y, respectively. The Q matrix is identical to that used for the
inf-sup constant calculation; thus, application of Q and Q~! can be carried out in
O(K) operations.

3.2.3. Sobolev Embedding Constant

The final piece required for the BRR theory is the L*-X5 Sobolev embedding con-
stant. Details of the approximation of the embedding constant are provided in Ap-
pendix A; here we state the main results.

Due to the nonlinearity, we are not able to analyze the L*-Xs5 embedding prob-
lem analytically. However, we can analyze closely related linear problems: L2-X
embedding and L2-Xs5 embedding. Using the Fourier decomposition in space and
time, we can show that the L?-X embedding constant is bounded by

llwllL2(r;02(0)) ( 1 2)1/2
f=sup —————— 2L < | — +71
ver Jwllx AT?

for Q = (0,1) and I = (0, T] with T > \/5/(4x).

For a uniform temporal discretization, the asymptotic behavior of the L?-Xj
embedding constant in the limit of At — 0 (for a fixed T') can also be analyzed; the
constant approaches a constant for 7' sufficiently small and grows weakly with the
final time for T sufficiently large. Specifically, as At — 0 (K — oo) for a fixed T,

fs = su

lwllz2(r;22(0)) N (a1= + 72)Y2 T < Tipresh
weXs Hw”?fzs

C\/T, T > Tthresh

for some threshold time Tiyesn and a constant C' independent of T'. The T-dependent
behavior of the embedding constant 65 is due to the mesh-dependent norm || - || x;,
which includes the mesh-dependent averaged term [[*|| 27,1y, For T < Tipresn, the
supremizer of 5 is the lowest frequency mode in time, which approximates the
supremizer of the continuous embedding constant 6; for T' > Tinresh, the supremizer
of 85 is the highest frequency mode in time, and hence the behavior of the supremum
fs is not predicted by the continuous counterpart 6. For an arbitrary temporal
discretization, we are unable to analytically analyze the L2-Xs embedding constant;
however, numerical experiments suggest that, for 7" = 1, the constant is bounded
by 6s < 0.41 on any quasi-uniform temporal discretization.
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Fig. 1. The solution to the Burgers problem Case 1 and Case 2 for Pe = 20.

The L*-X5 embedding constant, ps, can be approximated using the fixed-point
iteration algorithm of Deparis® (see also Manzoni'® for the analysis of the algo-
rithm). Numerical experiments suggest that the embedding constant depends rather
strongly on the temporal grading of the space-time mesh due to the mesh depen-
dence of the X5 norm; thus, we compute the L*-X5 embedding constant on a par-
ticular space-time mesh and use that constant to construct the BRR error bound.

We conclude the section with two remarks. We first emphasize that the mesh
dependence originates in the mesh-dependent norm and does not reflect any funda-
mental ill-posedness. We also note that the origin of the mesh dependence can be
traced back to the loss of L-stability for the Crank-Nicolson scheme; a more stable
temporal discretization removes the anomaly.'”

4. Numerical Results
4.1. Model Problems

We consider two different forcing functions in this section. First is a constant func-
tion, gy = 1, which results in Fy(v;p) = - [; [, vdedt with g = Pe?. The solution
over the space-time domain for the Pe = 20 case is shown in Figure 1(a). As the
Peclet number increases, the boundary layer at x = 1 gets thinner and the initial
transition time decreases. The second case uses a spatially linear source function,
g2 = 3 — x, which results in Fo(v;pu) = p- [, [(3 — z)vdadt. The solution for this
second case with Pe = 20 is shown in Figure 1(b). This case develops an internal
layer at = 1/2, which becomes thinner as the Peclet number increases. These two
cases exhibit different stability properties, as we will show shortly.

For purposes of comparison, we provide here a short summary of the time-
marching L?(Q2) error bound developed by Nguyen et al.'! A parameter that dictates
the effectivity of the time-marching L?(2) formulation is the stability parameter w*

)
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defined as®

4
wk, = inf b(’U,U(M), U) + &(U,U)
VeV, [vllL2(0)

. k=1,....K.

In particular, a negative value of w* implies that the L?(Q) error estimate grows
exponentially over that period of time. All results shown in this section use the
exact value of w”* instead of a lower bound obtained using the successive constraint
method (SCM) as done in Nguyen et al.'l; i.e. we use the most favorable stability
constant for the L?(£2) time-marching formulation.

Finally, we provide details of the space-time meshes employed. For all cases
considered, the spatial mesh consisting of 128 uniformly spaced elements of size h =
1/128. On the other hand, the temporal mesh is varied as a function of the Peclet
number to effectively resolve the initial transient. Namely, for Pe < 6, we employ a
temporal mesh consisting of 128 uniformly spaced elements of size At = 1/128. For
Pe > 6, we divide the temporal mesh into two regions: the initial transient region,
t € (0,3/Pe], discretized by 64 uniformly spaced elements of size At = (3/Pe)/64;
the remaining region, ¢t € (3/Pe, 1], discretized by 64 uniformly spaced elements of
size At = (1 —3/Pe)/64. For each of N, temporal meshes, Aitrf}e, j=1,...,N,, we
use the Peclet number at the centroid of the associated parameter subdomain D;
as the reference Peclet number over the domain.

4.2. Stability: Small Parameter Intervals

We will first demonstrate the improved stability of the space-time a posteriori er-
ror estimate compared to the L?(§) time-marching error estimate. For the space-
time formulation, we monitor the variation in the inf-sup constant, 3§, and the
effectivity, AL/||e||x,, with the Peclet number. For the L?(€2) time-marching for-
mulation, we monitor several quantities: the minimum (normalized) stability con-
stant, miny w* /Pe; the final stability constant, w /Pe; the maximum effectivity,
maxy A%, /||le¥| 12(q); and the final effectivity, ALK, /[e| 12q)-

For each case, the reduced basis approximation is obtained using the p = 2
interpolation over a short interval of D = [Pe — 0.1, Pe 4 0.1]. Note that, the use of
the short interval implies that 7§ < 1, which reduces the BRR-based error bound
to

1

~ pieg.
Bé,LB(M)

In addition, as the supremizer evaluated at the centroid of the interval is close to
the true supremizer over a short interval, Bg’LB (n) = B5 (1), Vi € D. In other words,
we consider the short intervals to ensure a good inf-sup lower bound such that we
can focus on stability independent of the quality of the inf-sup lower bound; we

Af(n)

aIn the original paper by Nguyen et al., the variable pF is used for the stability constant. Here,
we use wk to avoid confusion with the L*-X5 embedding constant for the space-time formulation.
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space-time L?(Q) time-marching
AP . k K Ak AK
Pe | By  mop [™imede B maxkphy ok
1 0.993 1.14 9.87 9.87 3.87 1.30
10 | 0.665  2.22 0.982 1.32 3.18 2.11

50 | 0.303 7.00 0.114  0.924 7.73 5.10
100 | 0.213  9.75 0.0203  0.862 11.7 6.95
200 | 0.149 124 | -0.0072  0.820 18.0 9.59

Table 1. Summary the inf-sup constant and effectivity for the space-time formulation and the
stability constant and effectivity for the L?(§2) time-marching formulation for Case 1 with g = 1.

will later assess the effectiveness of the lower bound. The effectivity reported is the
worst case value observed on 40 sampling points over the interval.”

Table 1 shows the variation in the stability constant and the effectivity for
Case 1 for Pe = 1, 10, 50, 100, and 200. The stability constant for the space-time
formulation gradually decreases with Pe; accordingly, the effectivity worsens from
1.14 for Pe = 1 to 12.4 for Pe = 200. Note that the effectivity of (O(10) is more
than adequate for the purpose of reduced-order approximation as the error typically
rapidly converges (i.e. exponentially) with the number of reduced bases. The L?(12)
time-marching formulation also performs well for this case. This is because, even
for the Pe = 200 case, the stability constant w®/Pe takes on a negative value over
a very short time interval and is asymptotically stable. (See Nguyen et al.!! for the
detailed behavior of the stability constant over time.)

Table 2 shows the variation in the stability constant and the effectivity for Case
2 for Pe = 1, 10, 20, 50, and 100. Note that the asymptotic stability constant
for the L2(f2) time-marching formulation is negative for Pe > 18.9; consequently,
the error bound grows exponentially with time even for a moderate value of the
Peclet number, rendering the error bound meaningless. The stability constant for the
space-time formulation is much better behaved. The effectivity of 41.2 at Pe = 50 is
a significant improvement over the 10%® for the L?(Q) time-marching formulation,
and the error estimate remains meaningful even for the Pe = 100 case.

4.3. N,-p Interpolation over a Wide Range of Parameters

Now we demonstrate that our certified reduced basis method provides accurate and
certified solutions over a wide range of parameters using a reasonable number of
snapshots. Here, we employ a simple (and rather crude) N,-p adaptive procedure
to construct certified reduced basis approximations over the entire D with an error
bound of Ay, = 0.01. Our N,-p approximation space is described in terms of a

PThe 40 sampling points are equally-spaced between [Pe — 0.099, Pe + 0.099]. We have found that
the variation in the effectivity across the sampling points is small (less than 10%) over the small
intervals considered.
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space-time L?(Q) time-marching
k K
Pe By % miny, %Z % maxy, fe—iz“ HAe—ffn
1 0.999 1.01 9.84 9.84 2.80 2.80
10 0.877 1.15 0.727 0.727 3.12 3.12
20 0.547 1.84 -0.0675  -0.0675 124 124
30 0.213 4.99 -0.606 -0.606 3.7 x 104 3.7 x 10*
50 | 0.038  41.2 -1.67 -1.67 6.5 x 10 6.5 x 10%
100 | 0.0077 237 -4.43 -4.43 — —

Table 2. Summary the inf-sup constant and effectivity for the space-time formulation and the

stability constant and effectivity for the L?(Q) time-marching formulation for Case 2 with g =

1
3 xZ.

set Pe®* consisting of N 1 + 1 points that delineate the endpoints of the parameter
intervals and an N,-tuple P*°* = (pq,... ,PN, ) specifying the polynomial degree
over each interval. Starting from a single p = 1 interval over the entire D, we
recursively apply one of the following two operations to each interval [Per,, Pey]| =
[Pe;'-et, Pej—ffl] with polynomial degree p;:

(a) if min, 85, 5(p) < 0, subdivide [Per,Pey] into [Per,, Pem] U [Pey, Pey]
where Pey; = (Per, + Pey)/2, assign p; to both intervals, and update Pe**t
and Pset,

(b) if min,, 5 5(p) > 0 but max, 75(n) > 1 or max, Af(u) > Agl, then
increase p; to p; + 1.

The operation (a) decreases the width of the parameter interval, which increases the
effectiveness of the supremizer S5 over D; and improves the inf-sup lower bound. The
operation (b) aims to decrease the residual (and hence the error) by using a higher-
order interpolation, i.e. p-refinement. Thus, in our adaptive procedure, the N, and
p refinement serves two distinct purposes: improving the stability estimate and im-
proving the approximability of the space, respectively. In particular, we assume that
the solution dependence on the parameter is smooth and use (only) p-refinement
to improve the approximability; this is in contrast to typical hp adaptation where
both h- and p-refinement strategies are used to improve the approximability for
potentially irregular functions.

The result of applying the N,-p adaptive procedure to Case 1 is summarized in
Figure 2. Here, we show variations over the parameter domain D = [1,200] of key
quantities: a) the approximation polynomial degree; b) the error and error bound;
c¢) the error effectivity; and d) the inf-sup constant and associated lower bound.
First, Figure 2(a) shows that the entire parameter domain is covered using just
10 intervals consisting of 89 total interpolation points; this is despite the use of
the crude adaptation process whose inefliciency is reflected in excessively accurate
estimates in some of the intervals, as shown in Figure 2(b). Second, we note that
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Fig. 2. The error, effectivity, and inf-sup constant behaviors on the final N,-p adapted interpolation
for Case 1.

the maximum error bound of 1072 is clearly satisfied over the entire parameter
range. Third, Figure 2(c) shows that the effectivity is of order 5. Finally, we observe
in Figure 2(d) that the inf-sup lower bound procedure provides relatively sharp
lower bounds thanks to the adaptive N,-p interpolation strategy that considers the
behavior of the stability estimate.

Table 3 shows the p-convergence behavior of our certified basis formulation over
the final interval, Dyg = [175.13,200.00].© Each variable is sampled at 40 equispaced
sampling points over D;g and the worst case values are reported. The table confirms
that the error (and the normalized residual) converges rapidly with p. The rapid
convergence suggests that the error effectivity of O(10) is more than adequate,
as improving the error by a factor of 10 only requires 1 or 2 additional points.

©Using the N,-p adaptive procedure, this p = 8, Dig = [175,13,200.00] interval is created by
subdividing a p = 8, Dy = [150.25,200.00] interval in the final step. This results in the use of the
p = 8 interpolant over the interval D1g in the final N,-p adapted configuration despite the error
meeting the specified tolerance for p = 5.



July 16, 2013

12:5 WSPC/INSTRUCTION FILE

burgers

A Space-Time Certified Reduced Basis Method for Burgers’ Equation 23

pmax, 7H()  max, ARG max,fle(un)x,  max, a0 min, Sget)
1 1.82x10* - 1.14 x 10* - 0.61
2 3.57 x 102 - 6.67 x 1071 - 0.62
3  3.03 x 10! - 9.37 x 1072 - 0.61
4 2.06 x 10° - 1.11 x 1072 - 0.61
5 2.53x107' 6.63x10°3 1.48 x 1073 5.14 0.56
6 3.24x1072 7.71x1074 1.86 x 1074 5.06 0.52
7 439x1073% 1.02x 1074 2.38 x 1075 5.38 0.49
8 6.18x107% 1.30x107° 3.00 x 1076 5.77 0.47

Table 3. The p-convergence behavior over the final interval of Case 1, Pe € [175.13,200.00].

The higher p not only provides higher accuracy but also concomitantly enables
construction of the BRR-based error bounds by decreasing 77. Note also that the
inf-sup effectivity decreases with p in general as a larger number of “inf” operations
are required to construct 5§,LB using the procedure introduced in Section 3.2.2.

Figure 3 summarizes the IN,,-p interpolation strategy, the error behavior, and the
stability constant variation for Case 2 over D = [1,50]. We recall from Section 4.2
that this problem is less stable than Case 1; the classical formulation produces
exponentially growing error bounds. First, Figure 3(a) shows that the N,,-p adaptive
procedure utilizes 7 intervals consisting of 31 total interpolation points. Second,
Figure 3(b) verifies that the maximum error bound incurred over D is less than
1072; we note that the error (and error bound) is smaller for higher Peclet number
because the proximity condition of the BRR theory (7§ (1) < 1) forces a smaller
residual than actually necessary to meet the error tolerance. Third, Figure 3(c)
shows that, due to the unstable nature of the problem, the effectivity worsens as the
Peclet number increases; nevertheless, unlike in the classical time-marching based
formulation, our error bounds remain meaningful over the entire parameter range.
Finally, we note that the size of the interval in the high Peclet number regime is
dictated by the necessity to maintain a positive inf-sup lower bound; for instance,
for the p = 4 interpolation, we were unable to maintain a positive value of ﬁgLB
over a single interval of [46, 50], necessitating the split into two smaller intervals.

Table 4 shows the p-convergence behavior of the reduced basis formulation over
Dg = [46.94,50]. Similar to the previous case, the normalized residual, the error
bound, and the error converge exponentially with p. The worst effectivity over the
40 sampling points is of O(100).

Appendix A. Sobolev Embedding Constants

In this appendix, we study the behavior of the L*-Xs embedding constant required
for the Brezzi-Rappaz-Raviart theory. Unfortunately, due to the nonlinearity, we
are not able to analyze the L*-X; problem analytically. To gain some insight into
the behavior of the embedding constant using analytical techniques, let us consider
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Fig. 3. The error, effectivity, and inf-sup constant behaviors on the final N,-p adapted interpolation

for Case 2.

p max, 7i(n) max, Af(n) max, |le(p)]x, max, HeA(li)(ﬂLié . ﬁ%?(gx)
1 5.25x 103 - 7.43 x 1072 - 0.21
2 2.04 x 10t - 1.03 x 1073 - 0.55
3 1.80 x 10° - 2.79 x 10~° - 0.33
4 3.86x107%2 8.36x107° 6.05 x 10~7 91.30 0.35
5 3.15x1072 1.13x10°° 1.54 x 10~8 137.85 0.24

Table 4. The p-convergence behavior over the last interval of Case 2, Pe € [46.94,50.00].

two closely related linear problems, L?-X embedding and L?-X; embedding, in
Appendix A.1 and A.2. Then, we will numerical investigate the behavior of the
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L*- X5 embedding constant in Appendix A.3.4

A.1. L?-X Embedding
Let us first consider L2-X embedding. The embedding constant is defined by

w .
0 = su 7” HL2(1’L2(Q))
wex  |wllx

)

which is related to the minimum eigenvalue of an eigenproblem: find (w,\) € X xR
such that ||w\|%2(I;L2(Q)) =1 and

(wm);( = )\(w,v)Lz([;Lz(Q)), Yve X ;

;1111{ ? The application of the Fourier decom-
position in the spatial domain® results in an eigenproblem in time: find eigenpairs

(wh=, Ake) € H(lo)([) x R such that

the embedding constant is given by 6 = A

1
S / ok (i (t)dt + k2 / oFe (Hywhs (t)dt + v*= (T)w*= (T)
kacﬂ' 1 I

— A / o' (whe ()dt, Yok € Hig (D),
I

where v** € H (10) (I) is the temporally-varying Fourier coefficient associated with

the k,-mode and H(lo)(I) = {v e H(I): v(t = 0) = 0}. Note that the homogeneous

Dirichlet condition is enforced at ¢ = 0 and a Robin condition, w/(k27?) + w = 0,
is enforced at ¢t = T'. The eigenmodes of the continuous problem are given by

Kookt (4) — o —
v () = sin(myg, g, t), ke=1,2,...,
where the wave number my,, ;, satisfies

tan(mg, k, T) = —";’;;’;t ) (A1)

and the associated eigenvalues are given by
2
My kot
2.2
k2w

Without loss of generality, we order the wave number such that, for each k.,

Nrwobt = |22 4

(A.2)

My k=1 < Mk, k=2 < "

We now deduce the minimum eigenvalue (and hence the embedding constant).
A close inspection of the root condition (A.1) shows that, for any given k,, the
minimum wave number, my, ,=1, lies in the interval (7/(2T), 7/T). It follows that,

d Analysis in this appendix is “formal”; for brevity, some of the assumptions or arguments required
related to completeness or compactness may be omitted.

¢We could directly analyze the spatial discretization with appropriate modification of the kg
Fourier symbol per the usual von Neumann analysis. Here we consider a continuous-in-space case
for simplicity.
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for T > \/5/(4r), the minimum eigenvalue is given for k, = 1, and the eigenvalue
lies in Apin = Ae=bR=1 ¢ (72 4 1/(4T%), 72 + 1/T?). (Appropriate bounding
constant may be deduced from the expression for the continuous problem even for
T < +/5/(4r).) Thus, for T > +/5/(47), the L?-X embedding constant lies in

) 1 —-1/2 ) 1 —-1/2
<7T +p> <9<(7T +m> .

Note that these bound for the L?-X embedding constant is not significantly different
from the standard L2-H} embedding constant, Opzpp = (7T2/T2 +7r2)71/2. For
instance, for T' = 1, the embedding constant lies in 6 € (0.3033,0.3173); the direct
computation of the root condition (A.1) and the eigenvalue (A.2) produces the wave
number of my, —; r,=1 = 2.8596 and the embedding constant of # = 0.3057.

We finally observe that the eigenvalues of the space-time eigenproblem (A.2)
is a sum of two terms, one of which increases with the Fourier coefficient k, and
the other which decreases with k.. This is precisely the subtlety introduced by the
space-time norms. In the case of L2-X embedding, this subtlety turns out not to
be an issue, bur rather just a complication; however, this subtlety is an issue in
proving the existence and boundedness of the L*-X embedding constant in higher
dimensions.

A.2. L%?-X5 Embedding
Now let us consider L2-Xs embedding. The embedding constant is defined by

lwllz2(;22(0))

0s = sup ,
wEXs Hw”X&
where we recall that [|w|[%, = (W72 + 1©0[|72 7y + [0(T)][7- Similar to the

L2-X embedding problem, the solution is given by the eigenproblem: find (w, \) €
Xs x R such that ||w||2L2(I;L2(Q)) =1 and

(w,v) x5 = Mw,v)2(1;02(0)), Vv € Xs ;

. L =172 i .

the embedding constant is given by s = A ;,~. However, as the X5 norm is depen-
dent on the temporal mesh by construction, we must consider temporally discrete
spaces for our analysis. Let Va; C H}(I) be the piecewise linear temporal approxi-
mation space. Then, the Fourier decomposition in the spatial domain results in an
eigenproblem: find eigenpairs (w(’;”, A=) € Vay x R such that

1
k272

/ oFe ()" (t)dt 4 k27 / o (t)w"s (t)dt 4 v*= (T)w"= (T)
I I

_ ke / o (= (t)dt, Vot € Vay,
I

where 9"+ over the I* is given by (At*)~! [, vF=dz.
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We first analyze the embedding constant for Va; with a constant time step,
At = Att = .. = At The k-th entry of the ks-th eigenmode vF=*t € RX is given
by

(vFek)y = sin(my, k1) |
where the wave number my,_ , is the k;-th root of

cos(myg, k, T) sin(my, r, At) 3 k2m2 At ~0 (A.3)
2 + cos(mg, k, At) k2m2 At 4 N '

Sin(mkw’ktT) +

and the associated eigenvalue is given by

2 _2
kym

m(l — cos(mp, k, Al)) + ~5—At(1 4 cos(my, x, Al))
A2 + cos(my, i, At))

Nkt —

;o (A4

we have found the wave numbers associated with the continuous L?-X embedding
problem serves as good initializers for the root finding problem (A.3). Numerically,
we have observed that the eigenvalue is minimized for k; = 1 for T less than some
threshold Tinresn and for ky = K for T > Tinresh. We now separately analyze these
two branches of the solution.

The behavior of the k; = 1 branch is similar to that of the continuous L2-
X embedding problem. In particular in the limit of K — oo (and At — 0), the
discrete root condition (A.3) becomes the continuous root condition (A.1); similarly,
the discrete eigenvalue (A.4) approaches the continuous eigenvalue (A.2).

The behavior of the k; = K branch is dissimilar to that of the continuous
problem. In the limit of K — oo, this branch is approximated by my, At =
T — ng, kAt for ng_ ik, At — 0. For K — oo, the discrete root condition (A.3)
simplifies to

3Nk, k
tan(ng 1) = zrt
( z Kt ) kgﬂ_g

and the discrete eigenvalue expression (A.4) also simplifies to

)\’C:ﬂ)kt =3 4 + kiﬂ-QAthzz,kt
AL 1 '

We identify, for a given ny, x,, the minimizing wave number k) based on a con-
tinuous relaxation as kj = 2/(wAt,/ng, k,). The substitution of the minimizing
wave number k) in the expression for the eigenvalue yields ez ke — 6ngx k,. For
T > 3/m?, the smallest positive root of (A.3) lies in the interval ny, € [%,2Z].
Thus, it follows that, as K — oo, the minimum eigenvalue asymptotically behaves
as Amin ~ 1/T. In other words, the L?-X; embedding constant asymptotically be-
haves as 05 ~ /T for T > Tinresn. Thus, for a sufficiently large 7', the embedding
constant scales weakly with the final time 7.

Unfortunately, for Va; with non-constant time stepping, we cannot deduce the

embedding constant analytically. Here, we numerically demonstrate that the L2-X;s
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mesh grading factor, ¢
-2 -1 0 1 2 3 4 5
0.3242 0.3336 0.3473 0.3689 0.3817 0.3989 0.4046 0.4076
0.3302 0.3237 0.3110 0.3461 0.3875 0.4036 0.4073 0.4080
0.3197 0.3099 0.3069 0.3464 0.3882 0.4036 0.4075 0.4081
0.3089 0.3067 0.3060 0.3457 0.3882 0.4034 0.4074 0.4081
0.3065 0.3060 0.3058 0.3458 0.3882 0.4034 0.4073 0.4081
64 | 0.3059 0.3058 0.3058 0.3458 0.3882 0.4034 0.4073 0.4078

B E o X

Table 5. The variation in the L?-Xs5 embedding constant with the number of time intervals, K,
and the mesh grading factor, ¢, for T' = 1.

embedding constant is indeed bounded for all quasi-uniform meshes. In particu-
lar, we compute the embedding constant on temporal meshes characterized by the
number of elements, K, and a logarithmic mesh grading factor, ¢, where ¢ = 0
corresponds to a uniform mesh, ¢ > 0 implies that elements are clustered toward
t = 0. For g sufficiently large, the first temporal element is of order At! ~ 1079T.
Without loss of generality, we pick T = 1.

The result of the calculation is summarized in Table 5. The table confirms that,
on a uniform temporal mesh (¢ = 0), the embedding constant converges to the
semi-analytical value of 0.3057 as K increases. The embedding constant increases
with the mesh grading factor, ¢, due to the presence of the mesh dependent term
IFll2(r;vy in || - [ x5 In fact, the embedding constant sup,,ex, w222 () /llwllx
associated with the norm ||-||x — which has |- | z2(7;vy in place of ||| 27,1y — is in
fact independent of mesh grading and is bounded from above for any mesh by the
L2-X embedding constant #; for instance, 0.3057 for 7' = 1. In any event, Table 5
suggests that the L?-Xs embedding constant asymptote to ~ 0.41 as ¢ — oo and
the constant is bounded for all quasi-uniform meshes.

A.3. L*-X5 Embedding
Recall that the L*-Xs embedding constant is defined as

w .
ps = su lwllzar;Le )
wexs  |lwla

To solve the maximization problem, we employ the fixed-point iteration algorithm
of Deparis® in the space-time setting.! We first define an operator z : X \ 0 —
L*(I; L*()),

1 2

z(w) w

B ||w||%4([;L4)

fWe have found Deparis’ algorithm to be more robust than the Newton continuation algorithm of
Veroy and Patera.l6
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mesh grading factor, ¢
-2 -1 0 1 2 3 4
0.4147 0.4306 0.4638 0.5018 0.5561 0.6064 0.7032
0.4333 0.4407 0.4562 0.5618 0.6816 0.8437 1.0345
0.4372 0.4363 0.4555 0.6247 0.8072 1.0223 1.2773
0.4339 0.4351 0.5542 0.7387 0.9578 1.2115 1.5263
0.4321 0.4343 0.4770 0.8756 1.1303 1.4323 1.7746
64 | 0.4170 0.4166 0.4171 1.0276 1.3341 1.6840 1.8387

N I

Table 6. The variation in the L*-X;5 embedding constant with the number of time intervals, K,
and the mesh grading factor, ¢, for T' = 1.

We then introduce an eigenproblem: for a fixed wu, find (w,A\) € X x R such that
|lw||lx =1 and

// z(w)wvdzdt = Aw,v)y , Yve€X; (A.5)
1Jo

we denote the largest eigenvalue and the associated eigenfunction by Amax(z(u))
and Wyax (2(u)), respectively. Note that the L4-Xs supremizer, u*, is the fixed point
u* = Wmpax(z(u*)) and the embedding constant is ps = \/Amax(z(u*)). Deparis’

fixed point algorithm is given as follows: initialize u® = 1; for [ > 1, set
ul = wmax(z(ul_l)) and M\ = )\max(z(ul_l)) )
As | — o0, the fixed-point algorithm locates at least a local supremizer.

Remark Appendix A.1. The construction of the Krylov space for an efficient so-
lution of the eigenproblem (A.5) by the Lanczos algorithm requires the application of
X 1. This space-time solve is efficiently carried out using the the block-tridiagonal
decomposition and time-marching solves noted in Remark 2.1.

The numerical values of the embedding constant on different meshes is shown in
Table 6. Similar to the L?-X;5 embedding constant, the L*-Xs embedding constant
increases with the number of temporal time steps, K, and the mesh grading factor, q.
Based on the table alone, the boundedness of the embedding constant for any quasi-
uniform mesh is inconclusive. For this reason, we compute the L*-X5 embedding
constant for each space-time finite element mesh and employ the constant in the
construction of BRR bounds. (It is worth noting that, the embedding constant
SUPyex, |wllLar;ne())/l|wl|x associated with the continuous X-norm appears to
converge to ~ 0.42 independent of the mesh grading factor.)

Appendix B. Comparison of Inf-Sup Lower Bound Construction
Procedures

This appendix details the relationship between the inf-sup lower bound constructed
using the procedure developed in Section 3.2.2 and the natural-norm Successive
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Constraint Method (SCM) method.” For convenience, we refer to our method based
on the explicit calculation of the lower and upper bounds of the correction factors
as “LU” and that based on the Successive Constraint Method as “SCM.” Both LU
and SCM procedures are based on the decomposition
B(u) = inf sup 9G(w, g, v) > inf 9G(w, a5, S°w)
weXs yeYs Hw”-’(& ”UHMS wEXs Hw||X5 ”SCU}”)]J

c ~P c
(g 1570 (g 0600500
wEXs ||’w||)((S wEXs HSCwHyS

Bs

%

B5 (1)
where we have identified the inf-sup constant evaluated at the centroid by 85 and
the correction factor by f§(u). Note that the correction factor may be expressed as

o 0G(w, i, Sew) TR 0G (w, us g, S°w)
3 (p) = inf — 10— 72 = inf 1/)p —_—
L e DB - A e
p+1 k c
B ey (STw us g, SCw)y,
= Zwlé1£6 (A0 ISewl?,
k=1 J

Our LU method and SCM differ in the way they construct bounds of Bg(,u)

Let us recast our LU formulation as a linear programming problem, the language
in which the SCM is described. We compute a lower bound of the correction factor,
BE,LBLU(M) < Bg(u), Vi € Dyork, by first constructing a box in RPT! that encap-
sulates the lower and upper bounds of contribution of each term of the correction

factor, i.e.
p+1 k k c
S Se S S
Bry = inf ( wvuc5,ka2 ’w)y’ sup ( wvuj,ka w)y
U v i A ES

Then, we solve a (rather simple) linear programming problem
p+1

56 LB,Lu inf Z Vi (L)Y,

GBLU

the solution to which is given by choosing elther extrema for each coordinate of the
bounding box Br,y based on the sign of 1 (), as explicitly stated in Section 3.2.2.

Let us now consider a special case of SCM where the SCM sampling points are
the interpolation points, u*, k = 1,...,p+1, of the N,-p interpolation scheme. The
SCM bounding box is given by

fas Vo, Yok
Bsow = [ |- 22, 25
k=1 5 05

where

Skw
Yok = sup [S™wl|y,
weXs |[wlx;
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Since the kernel of By is bounded by

-1
'l ol o g 15"l (4 1570ls) ™ _ s
Hw”?f'& ||ScwHy5 T weX;s HwHXs wecYs Hw”?fzs g’

(S*w, ug, Sw)y,
[Sewll3,

fork=1,...,p+ 1, we have
By C Bscm-

Furthermore, as the SCM sampling points correspond to the interpolation points,
the SCM linear programming constraints

p+1
Zwm Bs(u), l=1,....p+1
simplify to (using ¢} (1) = o)
ykZBg(uk)7 kZl""’p+17

where

A . (Skw7u5 k?SCw)yS
< = inf :
) = s,

We recognize that the this constraint is in fact identical to the lower bound box
constraint of Byy. Thus, the space over which the SCM lower bound is computed,

DEEy ={y e BSM 1y, > B5(e), k=1,....p+1},
satisfies
BLU C DIS"(E;M

More specifically, D58,; has the same lower bounds as By but has looser upper
bounds than Bry. Consequently, we have

p+1 p+1
inf P — B¢ < 3e = inf p < AC.
yeDin, ; ¢k(ﬂ)yk Bé,LB,SCM(H) = 55,LB,LU ye B £ Z U’ myk < B5

Thus, if the SCM sampling points are the same as the interpolation points of the
N,-p interpolation scheme, then our LU formulation gives a tighter inf-sup lower
bound than SCM.
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