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Abstract

We introduce a Petrov-Galerkin regularized saddle approximation which incorporates a “model”
(partial differential equation) and “data” (M experimental observations) to yield estimates for both
state and model bias. We provide an a priori theory which identifies two distinct contributions to
the reduction in the error in state as a function of the number of observations, M : the stability
constant increases with M ; the model-bias best-fit error decreases with M . We present results for
a synthetic Helmholtz problem and an actual acoustics system.

Résumé

Nous présentons une approximation de Petrov-Galerkin pour un problème de point selle incorporant
un “modèle” (équation aux dérivées partielles) et des “données” (M observations expérimentales)
afin d’obtenir une estimation conjointe de la variable d’état et du biais de modèle. Notre théorie
a priori identifie deux contributions à la décroissance de l’erreur sur l’état en fonction du nombre
d’observations expérimentales, M : la croissance de la constante stabilité avec M ; la décroissance
de l’estimation par moindre carré du biais de modèle avec M . Nous présentons des résultats pour
un problème de Helmholtz synthétique ainsi que pour un système acoustique réel.

1. Problem Statement

We are given Hilbert spaces X , Y (with associated inner products (·, ·)X , (·, ·)Y and induced
norms ‖ · ‖X , ‖ · ‖Y) and respective dual spaces X ′,Y ′ (with associated dual norms ‖ · ‖X ′ , ‖ · ‖Y ′).
We introduce an inverse Riesz representation operator X : X → X ′ that satisfies, for each w ∈ X ,
〈Xw, v〉X ′×X = (w, v)X , ∀v ∈ X , and an inverse Riesz representation operator Y : Y → Y ′ that
satisfies, for each w ∈ Y, 〈Y w, v〉Y ′×Y = (w, v)Y , ∀v ∈ Y.

We first postulate a linear operator A : X → Y ′ which is inf-sup stable and continuous such that
β0 ≡ infw∈X supv∈Y〈Aw, v〉Y ′×Y/(‖w‖X ‖v‖Y) > 0 and γ0 ≡ supw∈X supv∈Y〈Aw, v〉Y ′×Y/(‖w‖X ‖v‖Y) <
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∞; we also define a functional f ∈ Y ′. The pair {A, f} defines a mathematical model which reflects
our “best knowledge” of a physical system; we then introduce ubk ∈ X solution of Aubk = f in the
weak sense, 〈Aubk, v〉Y ′×Y = 〈f, v〉Y ′×Y , ∀v ∈ Y.

We now introduce a field utrue ∈ X which represents the true state of the physical system of
interest and subsequently a model bias g ≡ Autrue − f ; we also define a model-bias representation
p ≡ X−1A∗Y −1g, where ∗ denotes adjoint. We shall refer to both g ∈ Y ′ and p ∈ X as model bias
with the context to determine the particular representation of interest. The model bias reflects
the effects not included in the “best-knowledge” model {A, f}; note that utrue satisfies Autrue =
f + g, and hence ubk = utrue if and only if g = 0. Finally, we introduce observation functionals
`om ∈ X ′, 1 ≤ m ≤ M ≤ dim(X ). In any given experiment we invoke observations `om(uobs),
m = 1, . . . ,M , where uobs = utrue − qobs is the experimentally observable state; we presume the
“observation perturbation” qobs is bounded in X .

Our goal is to estimate utrue and g — both assumed deterministic and stationary — from
the model {A, f} and M experimental observations. Most state and bias estimation, and related
parameter estimation, approaches ([5, 7, 6, 4]) are informed by minimization of a least–squares
objective function which reflects regularization and model-observation misfit. One (Galerkin) ver-
sion of our method, too, can be derived from such a least-squares formulation. However, we pose
the problem in a (regularized) saddle form which thus admits interpretation and analysis from a
variational approximation perspective ([10]); the latter, in turn, suggests and permits extensions
and improvements — and, in particular, Petrov-Galerkin formulations which can not be derived
from a least–squares mimimization principle.

2. Model-Data Weak Formulation

We first consider a least-squares minimization: for given ν ∈ R≥0, find uM ∈ X such that

uM = arg min
w∈X

(‖f −Aw‖2Y ′ + ν−1‖ΠM (uobs − w)‖2X ) ; (1)

here ΠM : X → XM is the projection operator onto an M -dimensional subspace XM defined shortly,
and, for any given z ∈ X , ΠMz ∈ XM satisfies (ΠMz, v)X = (z, v)X , ∀v ∈ XM . We then state the
Euler-Lagrange equation, written in a mixed form, associated with the minimization problem: find
(uM , χM ) ∈ X × XM such that

s(uM , v)− (χM , v)X = 〈A∗Y −1f, v〉X ′×X , ∀v ∈ X ,
−(uM , φ)X − ν(χM , φ)X = −(uobs, φ)X , ∀φ ∈ XM , (2)

where s(w, v) ≡ 〈A∗Y −1Aw, v〉X ′×X , ∀w, v ∈ X . We choose XM = E{`
o
m}

M ≡ span{φm}Mm=1 =
span{X−1`om}Mm=1 such that (uobs, φm)X can be evaluated as (uobs, φm)X = 〈Xφm, uobs〉X ′×X =
`om(uobs); in other words, the inner product that constitutes the right-hand side of the second
equation is experimentally observable in the appropriate basis. Equation (2) constitutes a Galerkin
approximation in the sense that the trial and test spaces are identical.

However, we may also consider different trial and test spaces, X trial
M 6= X test

M , to obtain a Petrov-
Galerkin approximation: find (uM , χM ) ∈ X × X trial

M such that

s(uM , v)− (χM , v)X = 〈A∗Y −1f, v〉X ′×X , ∀v ∈ X ,
−(uM , φ)X − ν(χM , φ)X = −(uobs, φ)X , ∀φ ∈ X test

M ; (3)
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here we choose X test
M = E{`

o
m}

M , the experimentally observable space, but X trial
M 6= X test

M need no
longer be an experimentally observable space. The Galerkin approximation (2) is a particular
instance of the Petrov-Galerkin approximation (3) with X trial

M = X test
M ≡ XM . Note that uM and

χM depend on ν ∈ R≥0, which we will specify in each instance as required. Alternative saddle
formulations may also be pursued and several advantageous choices are described in [11].

To facilitate the error analysis of (3), we may now introduce an abstract variational problem:
find (u, χ) ∈ X × X such that

s(u, v)− (χ, v)X = 〈A∗Y −1f, v〉X ′×X , ∀v ∈ X ,

−(u, φ)X − ν(χ, φ)X = −(uobs + qobs, φ)X − ν(p, φ)X ∀φ ∈ X . (4)

We readily verify that the solution to the abstract problem is given by u = utrue (the true state)
and χ = p (the true model bias). Note that the Petrov-Galerkin approximation (3) results from (i )
neglecting the perturbation terms νp and qobs in (4), and (ii ) replacing the trial space for the model
bias, and the test space for the second equation of (4), with respective M -dimensional subspaces
X trial
M ⊂ X and X test

M ⊂ X . Hence, (3) constitutes our “limited-observations” approximation to the
unlimited-observations problem (4); note also that ubk = uM=0.

In the Galerkin case we can demonstrate stability; however we can not expect rapid conver-
gence for the de rigeur experimentally observable trial spaces, as demonstrated in [11] for certain
illustrative cases. In the Petrov-Galerkin case, we choose a suitable trial space for model-bias ap-
proximation and then choose the associated test space to provide maximum stability [2, 3]; although
we cannot generally demonstrate stability for arbitrary spaces, the Petrov-Galerkin formulation of-
fers the advantage of potentially rapidly convergent trial spaces.

3. Analysis: Galerkin Formulation

We now proceed to the a priori analysis of the error in the state estimate uM ∈ X and the
model-bias estimate χM ∈ X trial

M with respect to the true state utrue ∈ X and true model bias
p ∈ X , respectively. We shall restrict our analysis (but not numerical results) in this Note to the
Galerkin case. By way of preliminaries, we first introduce an energy norm

|||w|||M,ν ≡
(
s(w,w) + ν−1‖ΠMw‖2X

)1/2
, ∀w ∈ X , (5)

parametrized by M and ν. We may then define our stability constant

βM,ν ≡ inf
w∈X

|||w|||M,ν

‖w‖X
. (6)

We in addition introduce a continuity constant associated with the s(·, ·) bilinear form, γ, which in
fact is the square of the continuity constant of A: γ = γ2

0 .
We then have the following proposition for the error in our state and model-bias estimates:

Proposition 1. In the Galerkin case, the state error utrue − uM ∈ X and the model-bias error
p− χM ∈ X satisfy

‖utrue − uM‖X ≤
1

βM,νopt

(
1

β2
M,2νopt

‖p−ΠMp‖2X + 8‖p‖X ‖qobs‖X

)1/2

,

‖p− χM‖X ≤
γ

βM,νopt

(
1

β2
M,2νopt

‖p−ΠMp‖2X + 8‖p‖X ‖qobs‖X

)1/2

, (7)
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respectively, for νopt ≡ ‖qobs‖X /‖p‖X .

There are three contributions to the error in the state: the observation perturbation term ‖qobs‖X ,
which we do not control and which ultimately dictates the achievable error; the error in the best-fit
approximation to p in XM (= X trial

M ); and finally, the stability constant βM,νopt . As regards the
latter, we can prove

Proposition 2. For given ν ∈ R≥0,

βM ′,ν ≥ βM ′−1,ν , M ′ = 1, . . . ,M . (8)

Furthermore, βM=0,ν = β0 and βM ′,ν ≥ β0, M ′ = 1, . . . ,M , where β0 is the inf-sup constant of the
operator A (hence absent any observations).

It is possible based on SVD considerations [1] to prove that for certain idealized hierarchical test
spaces X test

M ′ that include the M ′ least stable trial singular functions of A ∈ L(X ,Y ′), the stability
constant βM ′,ν=0 is equal to the (M ′ + 1)th generalized singular value of A: a form of E-stability
from design of experiments [4]. We may devise an SVD-based anti-node heuristic for development of
experimentally observable spaces which roughly replicates the ideal trial singular function choice;
we may alternatively choose the observation locations based on other methods, for example the
Empirical Interpolation Method [8, 9].

Finally, we may consider the special but important “perfect-observations” case in which qobs ≡ 0
and we may hence choose ν = 0. In this case our state and model-bias approximation (2) reduces
to a true saddle problem which in the Galerkin case furthermore corresponds to constrained least
squares (or constrained estimation). We may then demonstrate

Proposition 3. For the Galerkin case, and qobs ≡ 0 and ν = 0, the state error, utrue − uM ∈ X ,
and model-bias error, p− χM ∈ X , satisfy

‖utrue − uM‖X ≤
1

β2
M,ν=0

‖p−ΠMp‖X

‖p− χM‖X ≤
γ

β2
M,ν=0

‖p−ΠMp‖X . (9)

Proof. Application of the Brezzi-Babuška theory (for example, Theorem 7.4.3 of [10]) to the saddle
problem (2) (for qobs ≡ 0, ν = 0) yields the desired result.

The general result of Proposition 1 reduces to the perfect-observations case of Proposition 3 in the
limit qobs → 0. In both Proposition 1 and Proposition 3, in fact we can sharpen the bound: we
can transfer the A∗ in s(·, ·) to the test function to reduce the dependence on the inf-sup constant
from quadratic to linear [11].

4. Computational Results

We first consider a synthetic model Helmholtz problem over Ω ≡]0, 1[2 in which we specify not
only the best–knowledge model {A, f} and observation functionals but also the quantities which
in actual practice would be “provided” by the physical system (and unknown to us): the model
bias g, which (with A and f) determines utrue from Autrue = f + g; and the actual experimental
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trial space I trial space II
M βM,ν=0 ‖utrue − uM‖X ‖p− χM‖X ‖utrue − uM‖X ‖p− χM‖X
0 0.0011 5.9134 0.0591 5.9134 0.0591
1 0.0011 5.2537 0.0591 6.5791 2.8844
2 0.0147 0.7396 0.0591 8.0641 1.8068
5 0.0589 0.3053 0.0557 0.2020 0.1499
10 0.0700 0.2636 0.0537 0.0889 0.0358
20 0.1946 0.0931 0.0391 0.0110 0.0032

Table 1: The stability constant βM,ν=0, state error ‖utrue − uM‖X , and model-bias error ‖p− χM‖X as a function of
the number of observations M for the synthetic two-dimensional Helmholtz problem.

observations, which we presume are perfect (qobs ≡ 0, and hence νopt = 0). In what follows k ∈ R
denotes the reduced frequency or wavenumber; we shall choose k = 3π + 0.01 which lies slightly
above a resonance. We further set X ≡ H1(Ω) and Y ≡ H1(Ω) and equip both spaces with inner
product

∫
Ω∇w · ∇vdx + k2

∫
Ωwvdx and induced norm ‖w‖X ≡ ‖w‖Y ≡

√
(w,w)X . (In practice,

and in general, we replace the continuous spaces X and Y with a discrete counterpart, for this
problem a 512-element P5 continuous finite element space.)

We first specify the best-knowledge model {A, f}: the Helmholtz operator A : X → Y ′ is given
by 〈Aw, v〉Y ′×Y =

∫
Ω∇w · ∇vdx − k2

∫
Ωwvdx, ∀w ∈ X , ∀v ∈ Y; the functional f is given by

〈f, v〉Y ′×Y =
∫

Ω(2x2 + y)vdx, where (x, y) denotes a point in Ω; we impose homogeneous Neumann
boundary conditions everywhere on ∂Ω. We next specify the observation functionals `om, m =
1, . . . ,M : functional `om is a bivariate Gaussian with center xo

m and standard deviation 0.02; the
centers xo

m are obtained by application of the Empirical Interpolation Method [8] to Pp(M)(Ω),
the space spanned by the first M hierarchically ordered members of the bivariate (complete, not
tensorized) polynomials (1, x, y, x2, xy, y2, x3, x2y, . . . ). Finally, we prescribe the synthetic model
bias as 〈g, v〉Y ′×Y =

∫
Ω(cos(1.3πx) + y7/2)vdx.

It remains to choose the approximation spaces. The test space X test
M is completely determined

by the observation functionals: X test
M = span{φm}Mm=1 = span{X−1`om}Mm=1. For the trial space we

consider two options: for trial space I, in the Galerkin framework, we choose X trial
M ≡ X test

M ; for trial
space II, now in the Petrov-Galerkin framework, we choose X trial

M ≡ Pp(M)(Ω), the aforementioned
hierarchical polynomial space.

The results are summarized in Table 1. For trial space I, Galerkin, we expect from Proposition 2
an improvement in the stability constant and indeed we observe a rapid decrease in error for
small M . (Note that k = 3π is a degenerate resonance wave number with multiplicity two, for
which (special) reason the stability constant βM,ν=0 improves only with the second observation.)
However, the asymptotic convergence rate is slow given the relatively poor approximation properties
of experimentally observable spaces. In contrast, for trial space II, Petrov-Galerkin, we can not yet
prove and hence presume a uniform improvement in the stability constant, and indeed we do not
observe any significant decrease in error for small M . However, the asymptotic convergence rate is
rapid given the high–order approximation spaces (accommodated by the Petrov-Galerkin recipe)
and the quite regular model bias, p.

We now consider a second problem for which we invoke real data: a raised–box acoustic res-
onator [11]. In this three-dimensional acoustic problem with real data, we apply the complex-field
extension of the framework developed in Sections 1 and 2. The physical system is a bottomless
(5-sided) acrylic box of interior dimensions 12×7×5 inches and wall thickness 0.06 inches which is
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Figure 1: (a) Pressure response (normalized by Zdim
0 V dim

spk , where Zdim
0 is the acoustic impedance of air and V dim

spk

is the speaker diaphragm velocity) as a function of frequency at a particular assessment point in the raised box as
predicted by the “best-knowledge” model (M = 0) and our model-data weak formulation (M = 5) and as measured
in practice (experiment). (b) The stability constant βM,ν as a function of frequency for M = 0 and M = 5. Note
(·)dim refers to dimensional quantities.

raised 0.22 inches above a larger acrylic floor panel; a speaker (Tang Band W2-1625SA) is placed
symmetrically in one of the two 7× 5 “end-walls” of the raised box to serve as a mono-chromatic
sound source of prescribed frequency (in Hz). The pressure may be measured by a microphone as a
function of time at any spatial point and then reduced to complex form (frequency description) by
standard regression methods. The errors in the observations are quite small relative to the desired
accuracy [11] such that (i ) we may assume qobs is effectively zero, uobs ≈ utrue, and choose ν = 0
in our formulation, and furthermore (ii ) experiment may serve as a surrogate for the truth for
purposes of assessment.

We choose for our best–knowledge model A and f the Helmholtz operator with Neumann condi-
tions on the speaker (inhomogeneous, uniform) and walls (homogeneous) and radiation conditions
in the farfield. Note that the speaker is modeled as a calibrated electromechanical harmonic oscil-
lator from which we derive a transfer function from speaker input voltage (measured) to normal
diaphragm velocity — which is then incorporated in f [11]. In the best–knowledge model the walls
are of finite thickness but rigid.

We considerM = 5 experimental observation Gaussians (at randomly selected centers, {xo
m}5m=1)

and apply the Galerkin framework (for ν = 0, as motivated above). We plot in Figure 1(a) the
amplitude of the state estimate, as a function of frequency, calculated as the application of an
assessment Gaussian with center xa = (8.60, 2.82) (a distance of 1.46 inches from the nearest ob-
servation Gaussian center); we also present the corresponding experimental observations at this
same spatial point. The dramatic improvement in the prediction of the pressure by incorporation
of just M = 5 experimental observations is due to the sizable increase of the stability constant, as
demonstrated in the plot of βM,ν=0 in Figure 1(b).
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