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Abstract

We present a model reduction formulation for parametrized nonlinear partial differential equations
(PDEs). Our approach builds on two ingredients: reduced basis (RB) spaces which provide rapidly
convergent approximations to the parametric manifold; sparse empirical quadrature rules which
provide rapid evaluation of the nonlinear residual and output forms associated with the RB spaces.
We identify both the RB spaces and the sparse quadrature rules in the offline stage through a
greedy training procedure over the parameter domain; the procedure requires the dual norm of the
finite element (FE) residual at many training points in the parameter domain, but only very few
FE solutions — the snapshots retained in the RB space. The quadrature rules are identified by
a linear program (LP) empirical quadrature procedure (EQP) which (i) admits efficient solution
by a simplex method, and (ii) directly controls the solution error induced by the approximate
quadrature. We demonstrate the formulation for a parametrized neo-Hookean beam: the dimension
of the approximation space and the number of quadrature points are both reduced by two orders
of magnitude relative to FE treatment, with commensurate savings in computational cost.

Keywords: reduced basis method; parametrized nonlinear PDEs; hyperreduction; empirical
quadrature; linear programming; neo-Hookean hyperelasticity

1. Introduction

In this work we consider rapid solution of parametrized nonlinear partial differential equations
(PDEs) in continuum mechanics. In particular, we wish to evaluate an engineering quantity of
interest (output) — such as displacement and local strain energy — for a given configuration
parameter (input) — such as material properties and load conditions. Our interest is in many-
query scenarios, which require the input-output evaluation for a large number of different parameter
values; we will also typically demand real-time response. One approach in this context is model
reduction based on offline-online computational decomposition: in the offline stage, we construct,
once, a reduced model through a relatively expensive exploration of the parameter domain; in the
online stage, we invoke, many times, the reduced model to evaluate the input-output map. This
work focuses on model reduction for parametrized nonlinear PDEs.

To make the setting mathematically precise, we define an abstract parametrized second-order
PDE. We introduce a parameter domain D ⊂ RP , a spatial domain Ω ⊂ Rd, and a function (Hilbert)
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space V such that H1
0 (Ω) ⊂ V ⊂ H1(Ω); we associate to V an inner product (·, ·)V and induced

norm ‖ · ‖V (equivalent to the H1(Ω) norm). We further define an N -dimensional “truth” finite
element (FE) approximation space Vh ⊂ V for N relatively large, and an associated N -dimensional
RB space VN ⊂ Vh ⊂ V for N � N . Our reduced basis approximation is given as follows: given
µ ∈ D, find uN (µ) ∈ VN such that∫

Ω
∇v ·A(uN (µ);µ)dx =

∫
Ω
vB(uN (µ);µ)dx ∀v ∈ VN , (1)

and then evaluate an output

sN (µ) ≡
∫

Ω
C(uN (µ);µ)dx; (2)

here A : V × D → (L2(Ω))d, B : V × D → L2(Ω), and C : V × D → L1(Ω) are respectively the
parametrized nonlinear flux, source, and output operators associated with our weak form. The
objective of model reduction is to approximate the input-output map µ 7→ sN (µ) for any µ ∈ D
in online complexity O(N q) � O(N ) for q a small positive integer. (We will henceforth denote
complexity Iα, for 0 ≤ α ≤ 3, simply as O(I ·).) A naive approach to the problem is to directly
evaluate the requisite integrals or, more precisely, to approximate these integrals using “truth” FE
quadrature rules. The latter will comprise O(N ) points and hence, even though our test and trial
spaces are of dimension N � N , the overall online complexity is O(N )� O(N ·).

A special case arises if the operators are linear (or polynomially nonlinear) in the state and
moreover admit a decomposition that is affine in functions of parameters:

A(w;µ) =

QA∑
q=1

ΘA
q (µ)Aqw

for some ΘA
q ∈ L∞(D) and linear Aq : V → (L2(Ω))d, q = 1, . . . , QA, with similar representations

for B and C. This is the setting typically considered by the reduced basis (RB) method; we refer
to the review paper [18] for further details. The RB method exploits the affine decomposition
to precompute all required integrals in the offline stage and thus reduce the online complexity
to O(N ·) — rapid response. In addition, the RB method provides an O(N ·)-complexity error
indicator, often error bound, for any µ ∈ D — reliable response. Hence, for linear PDEs which
admit affine decomposition — often the case in linear elasticity, acoustics, and heat transfer — the
RB method provides rapid and reliable solution.

However, many PDEs in continuum mechanics are nonlinear: A, B, and C in (1) and (2) are
now nonlinear operators. Over the past decade, much work has been done to extend the efficiency
and reliability of the RB method to nonlinear PDEs (see, e.g., [16]) in particular by hyperreduction
approaches. A popular approach is interpolation-then-integration: we first approximate, for µ ∈ D,
the nonlinear sets A(u(µ)), B(u(µ)), and C(u(µ)), by construction of a suitable reduced basis and
associated sparse interpolation system; we may then precompute all required integrals in the offline
stage. We do not provide here a comprehensive survey of model reduction techniques based on
interpolation-then-integration, but rather cite a few representative approaches. The gappy POD
method, pioneered by Everson and Sirovich in the context of image reconstruction [11], has since
been adapted to model reduction in the (Galerkin) gappy POD method [5], the missing point
estimation (MPE) method [2], and the Gauss-Newton approximate tensor (GNAT) method [7].
The empirical interpolation method (EIM) [3, 13], and closely related methods such as the best
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point interpolation method (BPIM) [14, 15], also provide a foundation for treatment of nonlinear
problems. Although these interpolation-then-integration approaches are quite effective in practice,
the objectives of interpolation and integration are arguably quite different. Moreover, while error
bounds for certain interpolatory procedures exist (e.g., [10] for EIM), to our knowledge most if not
all of the interpolation-then-integration approaches do not quantify the effect of the interpolation
error on the solution error (in norm ‖ · ‖V) — the quantity we wish to control; a judicious, or
conservative, selection of the interpolation tolerance is often required to ensure that the solution
error tolerance is satisfied.

An alternative approach to (1) and (2) is to forgo the interpolation of the nonlinear operators
A, B, and C, and directly approximate the integrals with an empirical quadrature rule specialized
for the relevant parametrized integrands. An `2 framework for empirical quadrature procedure of
parametrized functions is developed by An et al. [1] and further extended by Farhat et al. [12]. In
the `2 framework, sparsity must be introduced explicitly, either through a heuristic sequential point
selection process (as in [1]) or through an approximate `0 optimization (as in [12]); in both cases,
a somewhat challenging non-negative least-squares problem must be addressed. In [19], Ryu and
Boyd propose an `1 framework to empirical quadrature construction; the stronger norm naturally
yields quadrature rules that are sparse and furthermore the offline problem can be cast as a linear
program (LP) efficiently treated by a simplex method. This LP quadrature framework is further
developed in DeVore et al. [9] and extended to the parametric context in [17].

The current paper builds on [17] to provide an LP empirical quadrature procedure (EQP)
approach for RB approximation of nonlinear PDEs. The new contribution is threefold. First, we
introduce an LP EQP which invokes a preconditioned residual to provide, assuming a sufficiently
dense training set, direct control of the RB solution error induced by the approximate quadrature.
Second, we devise an efficient offline training procedure which exploits the dual norm of the residual
to simultaneously identify an appropriate RB space VN and the associated empirical quadrature
rule; our approach is related to the simultaneous training procedure for RB and EIM introduced
in [8]. Third, we demonstrate the efficiency and error control of our model reduction formulation
for a parametrized neo-Hookean beam.

This paper is organized as follows. In Section 2, we review the LP EQP and error analysis first
presented in [17]. In Section 3, we present the LP EQP RB method: we describe the formulation,
present an error analysis, and then provide a greedy algorithm for offline training. In Section 4, we
demonstrate the approach for a parametrized neo-Hookean beam.

2. Linear programming (LP) empirical quadrature procedure (EQP)

In this section, we review the LP EQP first presented in [17].

2.1. Formulation

We first introduce a compact parameter domain D ⊂ RP and a bounded integration domain
Ω ⊂ Rd. We next introduce a parametrized vector-valued function g : D × Ω→ RM for M a finite
positive integer. We now state our integration problem: given µ ∈ D, find I(µ) ∈ RM given by

I(µ) =

∫
Ω
g(µ;x)dx. (3)

We will approximate the integral (3) using a quadrature rule.
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Towards this end, we introduce a “truth” FE quadrature rule defined by Kh points {xhk ∈ Ω}Kh

k=1

and the associated weights {ρhk ∈ R+0}K
h

k=1; we require the “truth” quadrature to integrate exactly
the constant function,

Kh∑
k=1

ρhk = |Ω|.

We then state the “truth”-quadrature integration problem: given µ ∈ D, find Ih(µ) ∈ RM such
that

Ih(µ) =
Kh∑
k=1

ρhkg(µ;xhk). (4)

(Here R+ and R+0 refer to the positive and non-negative real numbers, respectively.) Following the
custom in the reduced-basis community, we use the word “truth” to refer to sufficiently accurate
(computable) FE approximations to our (in general, uncomputable) continuous problem (3); we
characterize the “truth” FE approximations by a discretization parameter h. For instance, our
“truth” quadrature may be a piecewise Gauss quadrature associated with a tessellation of Ω by
elements of maximum diameter h.

We wish to approximate (4) for all µ ∈ D by an empirical quadrature rule specifically constructed

for the parametrized integrand. To begin, we define an empirical quadrature operator, Îh : RKh ×
D → RM , such that

Îh(ρ;µ) ≡
Kh∑
k=1

ρkg(µ;xhk) ∀ρ ∈ RK
h

+0 , ∀µ ∈ D.

We note that, for the “truth” quadrature weight ρh ∈ RKh
, Îh(ρh;µ) = Ih(µ), ∀µ ∈ D. Our goal

is to find a quadrature rule {xhk , ρ?k}K
h

k=1 that is accurate — ‖Ih(µ)− Îh(ρ?;µ)‖∞ ≤ ε, ∀µ ∈ D, for
ε small — and sparse — |{k | ρ?k > 0}| � Kh. (Here ‖ · ‖m refers to the usual `m norm.)

We now introduce an empirical quadrature procedure (EQP) to find ρ? ∈ RKh
. To this end,

we specify an accuracy parameter δ ∈ R+ and a parameter training set Ξtrain
J ≡ {µtrain

j }Jj=1 ⊂ D of

size J . We then define our hyperparameter ν ≡ {h, δ,Ξtrain
J }; the hyperparameter summarizes the

dependence of our empirical quadrature rule on the underlying “truth” quadrature, as characterized
by h, the accuracy parameter δ, and the parameter training set Ξtrain

J . We can now define our EQP

linear program LPνEQP: find a basic feasible solution ρ? ∈ RKh
such that

ρ? = arg min
ρ∈RKh

Kh∑
k=1

ρk

subject to Kh non-negativity constraints

ρk ≥ 0, ∀k = 1, . . . ,Kh, (5)

an accuracy constraint associated with the constant function,

||Ω| −
Kh∑
k=1

ρk| ≤ δ, (6)
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and MJ accuracy constraints associated with functions on the parameter manifold,

‖Ih(µ)− Îh(ρ;µ)‖∞ ≤ δ ∀µ ∈ Ξtrain
J . (7)

We then extract the (strictly) positive quadrature weights {xνk, ρνk}K
ν

k=1 ≡ {{xhi , ρ?i } | i ∈ {k | ρ?k >
0}}. The resulting empirical quadrature rule is given by

Iν(µ) ≡ Îh(ρ?;µ) ≡
Kν∑
k=1

ρνkg(µ;xνk). (8)

We make a few remarks. First, we observe that LPνEQP is feasible: the “truth” quadrature

weight ρh ∈ RKh
satisfies (5), (6), and (7). Second, numerical evidence suggests that there

exist basic feasible solutions of LPνEQP which are sparse — Kν � Kh; indeed, given that our
objective function is the `1 norm of ρ, the existence of a sparse basic feasible solution is antici-
pated. Third, numerical evidence suggests that the solution to LPνEQP achieves rapid convergence

— maxµ∈D ‖Ih(µ) − Iν(µ)‖∞ → δ rapidly as J → ∞; we provide a proof of convergence, if not
rapid convergence, in Section 2.2. Fourth, for a strictly positive (or negative) integral, we may
control the relative error instead of the absolute error; we replace (6) and (7) by

||Ω| −
Kh∑
k=1

ρk| ≤ δ|Ω|,

|Ih(µ)− Îh(ρ;µ)|i ≤ δ|Ih(µ)|i, ∀i = 1, . . . ,M, ∀µ ∈ Ξtrain
J ,

respectively, where the subscript i denotes the i-th entry of the M -vector.
We finally comment on the offline and online computational cost. The offline stage consists

of two tasks: the formation of the LP constraint matrix; the solution of the LP. The LP has Kh

unknowns, Kh positivity constraints, and MJ+1 absolute value bound constraints, one of which is
associated with the constant function, (6), and MJ of which are associated with the manifold, (7).
(In practice, the absolute value bounds are recast as 2(MJ + 1) one-sided inequality constraints.)
To populate entries of the LP constraint matrix associated with the manifold accuracy constraints,
we must evaluate the integrand g(·; ·) for all J training parameter values in Ξtrain

J and all Kh

“truth”-quadrature points {xhk}K
h

k=1. We then proceed to find a basic feasible solution to the LP
by application of the (dual) simplex method. In the online stage, given µ ∈ D, we evaluate the
integrand g(·; ·) for the specified µ at the EQP points {xνk}K

ν

k=1, and then evaluate (8); hence the
online reduction in computational cost (relative to FE truth quadrature) is ≈ Kν/Kh.

2.2. A priori error analysis

We now provide convergence proofs. The results were first provided in [17], which we reproduce
here for completeness. We first provide a general error bound.

Proposition 2.1. For any µ ∈ D,

‖Ih(µ)− Iν(µ)‖∞ ≤ max
m∈{1,...,M}

 inf
α∈RJ

δ
J∑
j=1

|αj |+ 2|Ω||gm(µ; ·)−
J∑
j=1

αjgm(µtrain
j ; ·)|L∞(Ω)

 (9)
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Proof. See the proof of Lemma 2.1 in [17].

To interpret (9), we consider an interpolatory approximation of g(µ; ·) by our snapshots
∑J

j=1 αjg(µtrain
j ; ·).

The equation (9) quantifies (first term) the stability and (second term) the best-fit approximation
error for any µ ∈ D.

We note that Proposition 2.1 is not actionable. However, under a suitable regularity assumption
on g(·; ·), we arrive at the following error bound.

Proposition 2.2. Suppose the integrand g ∈ (L∞(D;L∞(Ω)))M satisfies a Lipschitz condition

sup
(µ′,µ′′)∈D2

‖g(µ′; ·)− g(µ′′; ·)‖(L∞(Ω))M ≤ Lg‖µ′ − µ′′‖2

for Lg a finite constant and ‖ · ‖2 the usual Euclidean norm in RP . We in addition let

∆ν ≡ max
µ∈D

min
µ′∈Ξtrain

J

‖µ− µ′‖2.

Then, for a fixed J and any µ ∈ D,

‖Ih(µ)− Iν(µ)‖∞ ≤ δ + 2|Ω|Lg∆ν .

Proof. See the proof of Lemma 2.2 in [17].

3. Reduced-basis empirical-quadrature-procedure (RB-EQP) method

The LP EQP introduced in Section 2 identifies a sparse quadrature rule for a family of parametrized
integrals and admits an offline-online computational decomposition. We now apply the technique
to RB approximations to provide online-efficient solution of parametrized nonlinear PDEs. The
formulation is quite general, however, to present the method in a concrete manner, we consider a
model problem: parametrized neo-Hookean hyperelasticity.

3.1. Model problem: neo-Hookean hyperelasticity

We first introduce a vector-valued function space V ≡ {v ∈ (H1(Ω))d | v|ΓD = 0} over a Lipschitz
domain Ω ⊂ Rd with a non-empty Dirichlet boundary ΓD ⊂ ∂Ω. We associate displacement fields
with V. We then introduce the deformation gradient tensor field F (w) = ∇w+I ∈ (L2(Ω))d×d for a
given displacement field w ∈ V. We next recall the strain energy density function for a neo-Hookean
solid:

Ψ(F (w);µ) =
λ2(µ)

2
tr(F T (w)F (w)− I)− λ2(µ) log(det(F (w))) +

λ1(µ)

2
log2(det(F (w))), (10)

where the Lamé first and second constants, respectively λ1(µ) and λ2(µ), are in general functions of
the parameter µ ∈ D. The differentiation of the potential with respect to the deformation gradient
tensor F (w) yields the first Piola-Kirchhoff stress:

P (F (w);µ) = λ2(µ)(F (w)− F−T (w)) + λ1(µ) log(det(F (w)))F−T (w),

where T denotes algebraic transpose.

6



The parametrized residual form r : V ×V ×D → R associated with a neo-Hookean solid subject
to a parametrized external volume load f : D → L2(Ω) is then given by

r(w, v;µ) ≡
∫

Ω
η(w, v;µ;x)dx, ∀w, v ∈ V, ∀µ ∈ D, (11)

where the integrand η : V × V ×D × Ω→ R is defined as

η(w, v;µ; ·) ≡ ∇v(·) : P (µ;F (w(·)))− v(·) · f(µ; ·), ∀w, v ∈ V, ∀µ ∈ D. (12)

We can now state our model nonlinear problem: given µ ∈ D, find u(µ) ∈ V such that

r(u(µ), v;µ) = 0 ∀v ∈ V. (13)

We assume the problem (13) is well posed and that, for all µ ∈ D, we remain on a single solution
branch (i.e., no bifurcation). For the example problem considered in Section 4, the FE convergence
study indeed supports the assumption of well-posedness of the continuous (infinite-dimensional)
problem.

3.2. FE “truth” approximation

We now consider a finite element approximation of (13). To this end, we first provide a “truth”
finite element space

Vh ≡ {v ∈ V | v|κ ∈ (Pp(κ))d, κ ∈ T h} ⊂ V;

here T h is a tessellation of the domain Ω into non-overlapping elements {κ}, and Pp(κ) is the

space of degree-p polynomials over κ. We next introduce a “truth” quadrature rule {xhk , ρhk}K
h

k=1

for the piecewise polynomial function space. As the neo-Hookean model exhibits non-polynomial
nonlinearity, the exact integration of the residual (11) is not possible; in practice, we choose a
rule that exactly integrates piecewise polynomials of degree up to 4p. We then define a “truth”
quadrature approximation of the residual form (11):

rh(w, v;µ) ≡
Kh∑
k=1

ρhkη(w, v;µ;xhk), ∀w, v ∈ V, ∀µ ∈ D, (14)

where η is the integrand (12). We can now state our finite element “truth” problem: given µ ∈ D,
find uh(µ) ∈ Vh such that

rh(uh(µ), v;µ) = 0 ∀v ∈ Vh. (15)

We again assume the problem is well posed and refer to the solution uh(µ) ∈ Vh as the “truth”
solution.

In practice, we find the solution to (15) by application of a damped Newton’s method. We here
outline our nonlinear solution strategy for neo-Hookean hyperelasticity; however, we note that the
choice of nonlinear solution strategy is highly dependent on the particular form of the governing
equation. Given a fixed µ ∈ D, we first initialize the solution to uh,i=0 = 0 ∈ Vh. We now describe
the steps by which we proceed from iterate i to iterate i+ 1. We first solve for the Newton update:
find ∆uh,i ∈ Vh such that

(rh)′(uh,i,∆uh,i, v;µ) = −rh(uh,i, v;µ) ∀v ∈ Vh,
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where (rh)′(uh,i,∆uh,i, v;µ) is the Gâteaux derivative of rh(·, v;µ) : Vh → R at uh,i ∈ Vh in the
direction ∆uh,i ∈ Vh; note the bilinear from (rh)′(uh,i, ·, ·;µ) : Vh × Vh → R induces the Jacobian.
We next update the solution according to

uh,i+1 = uh,i + αi∆uh,i

for a damping parameter αi ∈ (0, 1]. We choose the damping parameter such that the total
potential energy decreases after each damped Newton update: we require Ψh

total(u
h,i+1(µ);µ) <

Ψh
total(u

h,i(µ);µ), where the (“truth”-quadrature approximation of the) total potential energy is
given by

Ψh
total(w;µ) ≡

Kh∑
k=1

ρhk [Ψ(F (w);µ)− w · f(µ)] (xhk), ∀w ∈ V, ∀µ ∈ D,

for Ψ : RN × D → R the strain energy density function (10). We terminate the Newton iteration
when the residual is sufficiently small.

We remark on the computational cost and storage for the “truth” solve. (We here distinguish
between O(N ) and O(Kh) to differentiate the requirements which originate in the dimension of
the approximation space, N , and in the number of quadrature points, Kh; of course, in practice
O(N ) = O(Kh).) Throughout the FE computation, we exploit the sparsity of the Jacobian matrix.
In each Newton iteration, the evaluation of the residual and Jacobian requires O(Kh) operations.
Then, the solution of the linear system requires O(N ·) operations: the exponent is unity in the most
favorable case (e.g. multigrid); more generally, the exponent is greater than unity (but less than
2 for d ≤ 3 for a sparse direct solver). Finally, the evaluation of the total potential energy to find
the damping parameter requires O(Kh) operations. These three steps are repeated several times
— typically 5 to 15 times — to achieve convergence. The storage requirement is O(N ·), where the
dominant storage is the Jacobian: O(N ) for an iterative solver; O(N ·), with an exponent greater
than unity (but less than 4/3 for d ≤ 3), for a sparse direct solver.

3.3. “Truth”-quadrature RB approximation

We now consider a reduced basis approximation of (15). Towards this end, we introduce a
reduced basis space VN ≡ span{uh(µ)}µ∈ΞRB

N
⊂ Vh associated with a snapshot parameter set ΞRB

N ⊂
D of size N . We choose snapshot parameter sets and the associated reduced basis approximations
that are hierarchical: ΞRB

N=1 ⊂ · · · ⊂ ΞRB
N=Nmax

and VN=1 ⊂ · · · ⊂ VN=Nmax ; we defer to Section 3.6
the discussion of a systematic procedure to select a hierarchical parameter set. We can now state
the “truth”-quadrature reduced basis problem: given µ ∈ D, find uN (µ) ∈ VN such that

rh(uN (µ), v;µ) = 0 ∀v ∈ VN . (16)

We assume the problem is well posed and refer to uN (µ) ∈ VN as the RB solution or, more explicitly,
the “truth”-quadrature RB solution.

We now introduce a discrete form of the RB problem. By way of preliminaries, we introduce a
V-orthonormal basis {φi}Nmax

i=1 such that VN = span{φ}Ni=1, N = 1, . . . , Nmax; the V-orthonomality
implies (φi, φj)V = δij for δij the Kroncker delta. We then introduce an associated operator
ZN : RN → VN which maps a generalized coordinate v ∈ RN to the associated field v = ZNv ≡∑N

i=1 viφi ∈ VN . Throughout this work, we denote the generalized coordinate associated with a
function in a reduced basis space by a corresponding boldface letter; e.g. v ∈ RN , w ∈ RN , and
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z ∈ RN are associated with v = ZNv ∈ VN , w = ZNw ∈ VN , and z = ZNz ∈ VN , respectively.
We note that because the basis is V-orthonormal, (w, v)V = (ZNw, ZNv)V = (w,v)2 and ‖v‖V =
‖ZNv‖V = ‖v‖2; here (·, ·)2 and ‖ · ‖2 are the Euclidean `2 inner product and norm given by
(w,v)2 = vTw and ‖w‖2 =

√
(w,w)2, respectively.

We next define a discrete residual operator associated with the “truth”-quadrature RB approx-
imation (16), RhN : RN ×D → RN , such that

(RhN (w;µ))i = rh(ZNw, φi;µ) ∀i = 1, . . . , N, ∀w ∈ RN , ∀µ ∈ D, (17)

where (RhN (w;µ))i denotes the i-th component of RhN (w;µ) ∈ RN . We can then state the discrete
counterpart of the “truth”-quadrature RB problem (16): given µ ∈ D, find uN (µ) ∈ RN such that

RhN (uN (µ);µ) = 0 in RN ; (18)

we note uN (µ) = ZNuN (µ). We find the solution to (18) using the damped Newton’s method
described in Section 3.2 adapted to the RB approximation. The latter requires the RB Jacobian:
the (i, j)-entry of the RB Jacobian JhN (w;µ) ∈ RN×N is given by

(JhN (w;µ))(i,j) ≡
∂(RhN (v;µ))i

∂vj

∣∣∣∣
(w,µ)

= (rh)′(ZNw, φj , φi;µ), ∀w ∈ RN , ∀µ ∈ D. (19)

Note that in both (18) and (19) we invoke the “truth” FE quadrature.
We remark on the online computational cost and storage for the “truth”-quadrature RB solve.

(There are several implementations, all quite similar, of the “truth”-quadrature RB approach;
we present the simplest complexity estimates, in particular since in actual practice the “truth”-
quadrature RB serves only for purposes of exposition and is never implemented.) In each New-
ton iteration, the evaluation of the RB residual and Jacobian by the “truth” quadrature requires
O(N2Kh) operations. Then, the solution of the (dense) linear system requires O(N3) � O(N ·)
operations. Finally, the evaluation of the total potential energy to find the damping parameter
requires O(Kh) operations. As in the FE case in Section 3.2, these three steps are repeated several
times to achieve convergence. We note that the cost to evaluate the residual, Jacobian, and total
potential energy for the “truth”-quadrature RB approximation scales as Kh — hence expensive;
on the other hand, the linear solve cost is reduced, since the RB solution is sought in the N(� N )
dimensional RB space. The online storage is dominated by the RB basis function values {φi}Ni=1

and gradients {∇φi}Ni=1 evaluated at the “truth” quadrature points; the online storage is thus
O((d + 1)NKh) for N � Kh. In summary, we observe that the “truth”-quadrature RB approxi-
mation does not meet the online complexity goal of model reduction set forth in the Introduction:
the online computational cost and storage are both O(N ,Kh).

3.4. RB-EQP approximation

We now consider an EQP approximation of (18). To this end, we first introduce an empirical

quadrature operator now specialized for the RB residual: R̂hN : RKh × RN ×D → RN is given by

(R̂hN (ρ;w;µ))i ≡
Kh∑
k=1

ρkη(w ≡ ZNw, φi;µ;xhk), ∀i = 1, . . . , N, ∀ρ ∈ RK
h

+0 , ∀w ∈ RN , ∀µ ∈ D;

(20)
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note that, for the “truth” quadrature weight ρh ∈ RKh
, R̂hN (ρh;w;µ) = RhN (w;µ), ∀w ∈ RN ,

∀µ ∈ D. Our goal is to find a sparse quadrature rule {xhk , ρ?k}K
h

k=1 such that the associated RB
solution satisfies our error tolerance (in the ‖ · ‖V norm) for any µ ∈ D. We emphasize that we
place our error tolerance on the RB solution, and not on the intermediate integrals required to
form the RB system.

Our LP EQP for the RB approximation is a specialization of the general procedure outlined in
Section 2.1. To this end, we specify i) an accuracy parameter δ ∈ R0+, ii) a parameter training set
Ξtrain
J ≡ {µtrain

j ∈ D}Jj=1 of size J , and iii) the associated state training set U train
J ≡ {utrain

N (µ) ∈
VN}µ∈Ξtrain

J
≡ {ZNutrain

N (µ)}µ∈Ξtrain
J

; we identify the hyperparameter ν as ν ≡ {h, δ,Ξtrain
J , U train

J }.
We now define our linear program LP

ν,N
EQP: find a basic feasible solution ρ? ∈ RKh

such that

ρ? = arg min
ρk∈RKh

Kh∑
k=1

ρk

subject to Kh non-negativity constraints

ρk ≥ 0, ∀k = 1, . . . ,Kh,

the constant-function accuracy constraint

||Ω| −
Kh∑
k=1

ρk| ≤ δ, (21)

and NJ manifold accuracy constraints

‖(JhN (utrain
N (µ);µ))−1R̂hN (ρ;utrain

N (µ);µ)‖∞ ≤ δ, ∀µ ∈ Ξtrain. (22)

We then extract the (strictly) positive quadrature weights {xνk, ρνk}K
ν

k=1 ≡ {{xhi , ρ?i } | i ∈ {k | ρ?k >
0}}. The LP EQP approximation to the RB residual (17) is given by

(RνN (w;µ))i ≡ (R̂hN (ρ?;w;µ))i ≡
Kν∑
k=1

ρνkη(ZNw, φi;µ;xνk), ∀i = 1, . . . , N, ∀w ∈ RN , ∀µ ∈ D.

(23)
Note that M of the general LP EQP formulation of Section 2 instantiates here to N .

We make a few remarks. First, the motivation behind the form of the accuracy constraints (22)
may not be clear at the moment; the constraints are in fact informed by an error analysis presented
in Section 3.5. Second, the accuracy constraints (22) are linear in ρ ∈ RKh

— as required for

the LP — since R̂hN (ρ;utrain
N (µ);µ) is linear in ρ ∈ RKh

; a more explicit representation is provided
in Appendix A. Third, we have not addressed the selection of the state training set U train

J ≡
{utrain

N (µ)}µ∈Ξtrain
J

; the issue will be addressed in Section 3.6. Fourth, we may control the relative,

as opposed to absolute, error by replacing (21) and (22) by

||Ω| −
Kh∑
k=1

ρk| ≤ δ|Ω|,

|(JhN (utrain
N (µ);µ))−1R̂hN (ρ;utrain

N (µ);µ)|i ≤ δ‖utrain
N (µ)‖2, ∀i = 1, . . . , N, ∀µ ∈ Ξtrain,
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respectively; in our numerical results, we appeal to this relative from of the LP EQP. Finally, we
note that the LP has Kh unknowns, Kh positivity constraints, and NJ + 1 absolute-value bound
constraints.

We can now state the RB-EQP problem: given µ ∈ D, find uN (µ) ∈ RN such that

RνN (uνN (µ);µ) = 0 in RN . (24)

The equivalent problem in functional form is as follows: given µ ∈ D, find uνN (µ) ∈ V such that

rν(uνN (µ), v;µ) = 0 ∀v ∈ VN , (25)

where

rν(w, v;µ) ≡
Kν∑
k=1

ρνkη(w, v;µ;xνk) ∀w, v ∈ V, ∀µ ∈ D. (26)

We note that uνN (µ) = ZNu
ν
N (µ). We find the solution using the damped Newton’s method

described in Section 3.2, but with all the ingredients — the residual, Jacobian, and total potential
energy — evaluated using the EQP. The Jacobian JνN (w;µ) ∈ RN×N and the total potential energy
are given by

(JνN (w;µ))(i,j) ≡
∂(RνN (v;µ))i

∂vj

∣∣∣∣
(w,µ)

= (rν)′(ZNw, φj , φi;µ) =

Kν∑
k=1

ρνkη
′(ZNw, φj , φi;µ;xνk),

and

Ψν
total(w;µ) ≡

Kν∑
k=1

ρνk [Ψ(F (w);µ)− w · f(µ)] (xνk),

respectively.
We now remark on the online storage requirement. The evaluation of the residual (26) (and

the associated Jacobian and total potential energy) requires i) the EQP weights {ρνk}K
ν

k=1, ii) the
RB values evaluated at the EQP quadrature points {{φi(xνk)}Ni=1}K

ν

k=1, and iii) the RB gradient

values evaluated at the EQP quadrature points {{{ ∂φi∂xj
(xνk)}Ni=1}K

ν

k=1}dj=1. The total online storage

is hence Kν(1 +N(d+ 1))� O(N ,Kh); we note a significant reduction in the storage requirement
relative to the “truth”-quadrature RB approximation, which requires the RB values and gradients
evaluated at all “truth” quadrature points.

We next remark on the online computational cost. In each Newton iteration, the evaluation of
the RB-EQP residual and Jacobian requires O(N2Kν)� O(Kh) operations. Then, the solution of
the (dense) linear system requires O(N3)� O(N ·) operations. Finally, the evaluation of the total
potential energy to find the damping parameter requires O(Kν) � O(Kh) operations. In short,
with respect to the “truth”-quadrature RB approximation, the RB-EQP online cost, thanks to the
EQP quadrature rule, replaces all appearances of Kh with Kν � Kh. The RB-EQP method hence
achieves the online complexity goal of model reduction set forth in the Introduction: the online
computational cost and storage are O(N ·,Kν) and in particular independent of N and Kh.

3.5. A priori error analysis

Our a priori error analysis builds on the Brezzi-Rappaz-Raviart theorem [4]. In earlier work [20],
the Brezzi-Rappaz-Raviart framework is applied within the RB context to develop a posteriori
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error estimators relative to the “truth” finite element approximation; in our current context, we
apply Brezzi-Rappaz-Raviart to understand and control the RB error associated with empirical
quadrature. Towards that end, we first reproduce the Brezzi-Rappaz-Raviart theorem in the form
presented in [6] and with specialization to the `2(RN ) Euclidean space relevant to our context:

Lemma 3.1. [Brezzi-Rappaz-Raviart theorem [4, 6] for `2(RN )] We introduce a C1 mapping G :
RN → RN , v ∈ RN such that the Jacobian DG(v) ∈ RN×N is non-singular, and constants ε, γ,
and L(α) such that

‖G(v)‖2 ≤ ε, (27)

‖DG(v)−1‖2 ≤ γ, (28)

sup
w∈B̄(v,α)

‖DG(v)−DG(w)‖2 ≤ L(α), (29)

for B̄(v, α) ≡ {z | ‖z− v‖2 ≤ α}. Suppose

2γL(2γε) ≤ 1. (30)

Then, for all β ≥ 2γε such that γL(β) < 1, there exists a unique solution u ∈ RN that satisfies
G(u) = 0 in the ball B̄(v, β). Moreover, ∀w ∈ B̄(v, 2γε),

‖w − u‖2 ≤ 2γ‖G(w)‖2. (31)

Proof. See [6].

We now specialize Lemma (3.1) to analyze the error in the RB-EQP solution uνN (µ) with respect
to the “truth”-quadrature RB solution uN (µ) and, hence, uνN (µ) with respect to uN (µ).

Proposition 3.2. We first fix µ ∈ D. We then introduce ûN (µ) ∈ RN such that

‖uN (µ)− ûN (µ)‖2 ≤ εtrain (32)

for some εtrain ∈ R+0 and such that JhN (ûN (µ)) is non-singular. Suppose the EQP-approximated
residual form and Jacobian satisfy

‖JhN (ûN (µ);µ)−1RνN (ûN (µ);µ)‖∞ ≤ δR, (33)

‖JhN (ûN (µ);µ)−1JνN (ûN (µ);µ)− I‖max ≤ δJ , (34)

for some δR ∈ R+0 and
δJ ∈ [0, 1/N). (35)

We in addition define

L(α) ≡ 2 sup
w∈B̄(ûN (µ),α)

‖JhN (ûN (µ);µ)−1JνN (w;µ)− I‖2. (36)

Suppose

L

(
2N1/2δR
1−NδJ

)
≤ 1−NδJ

2
. (37)

Then, for all β ≥ 2N1/2δR/(1 − NδJ) such that L(β) ≤ 1 − NδJ , there exists a unique solution
uνN (µ) ∈ RN to (24) in the ball B̄(ûN , β). Moreover,

‖uN (µ)− uνN (µ)‖V = ‖uN (µ)− uνN (µ)‖2 ≤
2N1/2δR
1−NδJ

+ εtrain. (38)
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Proof. Throughout the proof, we suppress the parameter µ in the forms and solutions for notational
brevity. Our plan is to identify appropriate conditions of Lemma 3.1 given by (27)–(29) in the
context of the RB-EQP approximation, and then invoke Lemma 3.1. Towards this end, we set
G(·) and v in Lemma 3.1 equal to the preconditioned RB-EQP residual operator and ûN which
satisfies (32), respectively: G(·) ≡ JhN (ûN )−1RνN (·) and v ≡ ûN . We then invoke a) ∀v ∈ RN ,
‖v‖2 ≤ N1/2‖v‖∞, and b) the assumption (33), to obtain ε in (27):

‖G(v)‖2 = ‖JhN (ûN )−1RνN (ûN )‖2 ≤ N1/2‖JhN (ûN )−1RνN (ûN )‖∞ ≤ N1/2δR ≡ ε.

We similarly invoke i) the assumption (34), ii) condition (35), iii) ∀A ∈ RN×N , ‖A‖2 ≤ N‖A‖max

and iv) ∀A ∈ RN×N such that ‖A‖2 < 1, (I + A)−1 exists, and ‖(I + A)−1‖2 ≤ (1 − ‖A‖2)−1, to
obtain γ in (28):

‖DG(v)−1‖2 = ‖(JhN (ûN )−1JνN (ûN ))−1‖2 = ‖(I + JhN (ûN )−1JνN (ûN )− I)−1‖2
≤ (1− ‖JhN (ûN )−1JνN (ûN )− I‖2)−1 ≤ (1−N‖JhN (ûN )−1JνN (ûN )− I‖max)−1

≤ (1−NδJ)−1 ≡ γ;

here, i), ii), and iii) imply ‖JhN (ûN )−1JνN (ûN ) − I‖2 ≤ 1, which in turn allows us to invoke iv) to
obtain the first inequality. We then invoke a) the triangle inequality, and b) ûN ∈ B̄(ûN , α), to
specialize (29) to (36):

sup
w∈B̄(v,α)

‖DG(v)−DG(w)‖2 = sup
w∈B̄(ûN ,α)

‖JhN (ûN )−1JνN (ûN )− JhN (ûN )−1JνN (w)‖2

≤ ‖JhN (ûN )−1JνN (ûN )− I‖2 + sup
w∈B̄(ûN ,α)

‖JhN (ûN )−1JνN (w)− I‖2

≤ 2 sup
w∈B̄(ûN ,α)

‖JhN (ûN )−1JνN (w)− I‖2 ≡ L(α).

Then, (37) is a restatement of (30) for the above specializations of ε, γ, and L(·). We next note
that uνN ∈ RN is a solution to G(uνN ) ≡ JhN (ûN )−1RνN (uνN ) = 0 by (24). The uniqueness of the
solution uνN in B̄(ûN , β) for β ≥ 2γε = 2N1/2δR/(1−NδJ) such that L(β) ≤ 1/γ = 1−NδJ then
follows directly from the uniqueness statement of Lemma 3.1. Finally, we invoke a) the triangle
inequality, b) condition (32), and c) (31) for w ≡ ûN ∈ B̄(ûN , 2γε), to obtain

‖uN − uνN‖2 ≤ ‖uN − ûN‖2 + ‖ûN − uνN‖2 ≤ εtrain + 2γ‖G(ûN )‖2 ≤ εtrain +
2N1/2δR
1−NδJ

,

which is the desired bound (38).

Corollary 3.3. Suppose all conditions of the Proposition 3.2 are satisfied with (32), (33), and (37)
replaced by

‖uN (µ)− ûN (µ)‖2 ≤ εtrain‖ûN (µ)‖2,
‖JhN (ûN (µ);µ)−1RνN (ûN (µ);µ)‖∞ ≤ δR‖ûN (µ)‖2,

L

(
2N1/2δR‖ûN (µ)‖2

1−NδJ

)
≤ 1−NδJ

2
.
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respectively; we now further assume εtrain < 1. Then, for ‖ûN (µ)‖ > 0 and εtrain < 1, the relative
error in the RB-EQP solution with respect to the “truth”-quadrature RB solution is bounded by

‖uN (µ)− uνN (µ)‖V
‖uN (µ)‖V

=
‖uN (µ)− uνN (µ)‖2
‖uN (µ)‖2

≤ 1

1− εtrain

[
2N1/2δR
1−NδJ

+ εtrain

]
. (39)

Proof. In Proposition 3.2, we first replace δR and εtrain with δR‖ûN (µ)‖2 and εtrain‖ûN (µ)‖2, re-
spectively, to obtain ‖uN − uνN‖2/‖ûN‖2 ≤ 2N1/2δR/(1−NδJ) + εtrain. We then invoke ‖uN‖2 ≥
‖ûN‖2 − ‖ûN − uN‖2 ≥ ‖ûN‖2(1 − εtrain) which implies, for ‖ûN‖2 > 0 and εtrain < 1, ‖uN −
uνN‖2/‖uN‖2 ≤ (1− εtrain)−1‖uN − uνN‖2/‖ûN‖2 to obtain (39).

We note that ûN (µ) plays the role of utrain
N (µ) in (22). Since we wish to control the error of

uνN (µ) relative to uN (µ), we know from Proposition 3.2 that we prefer the choice (ûN (µ) and hence)
utrain
N (µ) = uN (µ) such that εtrain = 0. In actual practice, and as discussed in Section 3.6, we choose

a slightly different training strategy which improves computational performance at apparently very
little compromise in EQP error control.

Proposition 3.2 (and its relative-error counterpart Corollary 3.3) identifies sufficient conditions
to control the difference between the RB-EQP solution (25) and the “truth”-quadrature RB solu-
tion (16). We first consider the case in which the empirical quadrature is the “truth” quadrature
(i.e., ρ = ρh) and furthermore εtrain = 0. In this case, the conditions (33) and (34) are trivially
satisfied with δR = 0 and δJ = 0, respectively. Moreover, the condition (37) is satisfied because
L(2N1/2δR/(1−NδJ)) = L(0) = 0 ≤ 1/2. Hence ‖uN (µ)− uνN (µ)‖V = 0, ∀µ ∈ D, as expected.

We next observe that LP
ν,N
EQP outlined in Section 3.4 incorporates (33) as the accuracy con-

straint (22), but does not include the conditions (34) and (37). We exclude these two conditions
from the LP

ν,N
EQP for the following reasons. First, the condition (34) would correspond in our LP to

N2J constraints; we thus prefer to omit (34) and hence retain many fewer constraints, in particular
NJ(+1). By way of justification, we note that the tolerance δJ in (34) only weakly influences the
error bound (38) for NδJ � 1; at least for the parameterized PDEs we have considered, numerical
evidence suggests that the condition δR � 1 is sufficient to control the error ‖uN (µ) − uνN (µ)‖V .
Second, the condition (37) does not directly influence the error bound: the condition only identifies
a neighborhood of ûN (µ) over which our Brezzi-Rappaz-Raviart error bound, based on a linearized
analysis, holds. We finally note that, although the conditions (34) and (37) are omitted in our for-
mulation, (34) could be readily incorporated into the LP problem (but at the considerable expense
of O(N2) scaling), and (37) can be confirmed a posteriori for certain nonlinearities.

We also observe that LP
ν,N
EQP outlined in Section 3.4 incorporates the constant-function condi-

tion (21) even though the latter does not appear in Proposition 3.2. The constant-function accuracy
constraint may contribute to satisfaction of (34) and is furthermore a plausible condition for any
quadrature scheme; in the context of our residual integration objective we require this (or similar)
additional constraint to ensure a nontrivial (generic) solution to the LP.

3.6. Greedy algorithm: simultaneous RB and EQP training

We presented in Section 3.4 a procedure to construct an RB-EQP approximation assum-
ing we have already identified a reduced basis {φi}Ni=1 and EQP state training set U train

J =
{utrain

N (µ)}µ∈Ξtrain
J

. If the offline computational cost could be entirely neglected, we could iden-

tify {φi}Nmax
i=1 and U train

J as follows. We first identify an effective reduced basis {φi}Nmax
i=1 in
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two steps: solve the “truth” FE problem (15) for each µ ∈ Ξtrain
J ⊂ D; apply the POD or

the strong greedy algorithm to the “truth” data. We then identify the EQP state training set
for each N ∈ {1, . . . , Nmax} by solving the “truth”-quadrature RB problem (16) and setting
U train
J = {utrain

N (µ) = uN (µ)}µ∈Ξtrain
J

. This approach requires J ≡ |Ξtrain
J | “truth” FE solves to

identify {φi}Ni=1 and NJ “truth”-quadrature RB solves to identify U train
J . (We recall from Sec-

tion 3.3 that the “truth”-quadrature RB solve is almost as expensive as the “truth” FE solve.)
While the emphasis of model reduction is often on the online efficiency, the offline training cost
cannot be neglected in engineering practice, and J “truth” FE solves and NJ “truth”-quadrature
RB solves may be prohibitive. Here we propose an algorithm that identifies {VN}Nmax

N=1 using only
Nmax “truth” solves (and no “truth”-quadrature RB solves).

Our greedy algorithm is outlined in Algorithm 1. Algorithm 1 considers control of the quadra-
ture contribution to absolute solution error. We may also choose to control the quadrature contri-
bution to relative solution error, assuming uh(µ) 6= 0, ∀µ ∈ D: we need only replace line 6 with
µ(N) = arg supµ∈Ξtrain

J
‖rh(uνN−1(µ), ·;µ)‖(V h)′/‖uνN−1(µ)‖V , and invoke in line 16 the relative-error

version of LP
ν,N
EQP; we invoke this relative-error version of the greedy algorithm in our numerical

example of Section 4. The inputs to the greedy algorithm, for either absolute error control or
relative error control, are the parameter training set Ξtrain

J ≡ {µtrain
j }Jj=1 ⊂ D of size J , the EQP

tolerance δ ∈ R+0, and the RB residual tolerance εRB ∈ R+; the parameter training set Ξtrain
J is

used for both RB and EQP training. The outputs are the reduced basis {φn}Nmax
n=1 and an empirical

quadrature rule {xνk, ρνk}K
ν

k=1.
In each iteration we perform two distinct tasks: the identification of the next snapshot parameter

µ(N) ∈ Ξtrain
J , and the evaluation of the associated “truth” snapshot; the construction of the

associated EQP quadrature rule. The first task, the identification of an appropriate snapshot
parameter µ(N), is performed as follows (line 6). For each µ ∈ Ξtrain

J , we compute the RB-EQP
solution uνN−1(µ) and the associated dual norm of the residual with respect to the “truth” space Vh,

‖rh(uνN−1(µ), ·;µ)‖(Vh)′ ≡ supv∈Vh |rh(uνN−1(µ), v;µ)|/‖v‖V . The evaluation of J “truth” residual
dual norms makes the procedure more expensive than the (original) weak greedy algorithm [18]
which appeals to an online-efficient a posteriori error bound. However, in the context of nonlinear
equations, the evaluation of a “truth” residual dual norm is substantially less expensive than the
evaluation of the “truth” solution. In particular, the former requires a residual evaluation and
solution of a (sparse and parameter-independent) SPD linear system. In contrast, the latter requires
for each Newton iteration the evaluation of the residual and Jacobian as well as the solution of a
non-symmetric and perhaps indefinite linear system; furthermore, a substantial number of Newton
iterations may be required for highly nonlinear systems. Hence, the RB-EQP greedy algorithm,
while not as efficient as the (original) weak greedy algorithm, achieves significant computational
savings relative to the strong greedy algorithm.

The second task, the update of the EQP quadrature rule (line 16), is based on the LP EQP
described in Section 3.4. We recall that the LP procedure requires as inputs a parameter training
set Ξtrain

J and a state training set U train
J ≡ {utrain

N (µ)}µ∈Ξtrain
J

. It is clear from Proposition 3.2 that
the best choice for error control is the “truth”-quadrature RB solution, which in fact corresponds to
the following modifications to Algorithm 1: in line 12 set Neqp,smooth = 1; in line 14 set utrain

N (µ) =
uN (µ). But, as previously noted, this choice is rather expensive. As such, in the greedy algorithm,
we set utrain

N (µ) = uνN (µ) — the current RB-EQP approximation based on the empirical quadrature
rule. The state training set and the empirical quadrature rule itself are then simultaneously updated
using Neqp,smooth smoothing iterations (lines 12–17); we have found Neqp,smooth ∈ {2, 3} is sufficient.
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Algorithm 1: Greedy algorithm for simultaneous RB and EQP training.

inputs : Parameter training set: Ξtrain
J ⊂ D

EQP tolerance: δ ∈ R+0

RB residual tolerance: εRB ∈ R+

outputs: Reduced basis: {φi}Nmax
i=1

EQP rule: {xνk, ρνk}K
ν

k=1

1 Initialize the EQP state training set: set U train
J ≡ {utrain

N (µ) = 0}µ∈Ξtrain
J

and Ξtrain,exact = ∅.
2 for N = 1, . . . , Nmax do
3 if N = 1 then

4 Set µ(N) = arg infµ∈Ξtrain
J
‖µ̄− µ‖ for µ̄ ≡ 1

N

∑
µ∈Ξtrain

J
µ.

5 else

6 Find the parameter µ(N) that maximizes the “truth” dual-norm of the residual:

µ(N) = arg sup
µ∈Ξtrain

J

‖rh(uνN−1(µ), ·;µ)‖(Vh)′ .

7 end

8 If ‖rh(uN−1(µ(N));µ)‖(Vh)′ < εRB, terminate.

9 Find the “truth” FE solution uh(µ(N)) ∈ Vh.
10 Update reduced basis

{φi}Ni=1 = Gram-SchmidtV{φ1, . . . , φN−1, u
h(µ(N))}.

11 Update EQP state training set: utrain
N (µ(N)) = uh(µ(N)), Ξtrain,exact = Ξtrain,exact ∪ µ(N).

12 for i = 1, . . . , Neqp,smooth do
13 if i 6= 1 then
14 For µ ∈ Ξtrain

J but µ /∈ Ξtrain,exact, solve for uνN (µ) and set utrain
N (µ) = uνN (µ).

15 end

16 Solve LP
ν,N
EQP for ν ≡ {h, δ,Ξtrain

J , U train
J ≡ {utrain

N (µ)}µ∈Ξtrain
J
} to update {xνk, ρνk}K

ν

k=1.

17 end

18 end
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We note that a similar simultaneous update strategy has been introduced in the context of RB-
EIM [8]. We report in the next section empirical results which demonstrate that (38) and (39) hold
even for εtrain = 0; however, we have at present no theoretical control over the error induced by the
“bootstrap” training set.

We also note a subtle, but important, feature of the greedy algorithm (implemented in line 11);
the EQP state training set associated with the RB snapshot parameters are the “truth” solution.
This construction guarantees that for {µ(n)}Nn=1, ‖uN (µ) − uνN (µ)‖V = ‖uh(µ) − uνN (µ)‖V is O(δ)
and hence ‖rh(uνN (µ), ·;µ)‖(Vh)′ is O(δ). This feature is important for the stability of the greedy
procedure; without the feature, the dual-norm of the RB-EQP solution for a snapshot parameter
may be large, and the algorithm may attempt to add the associated snapshot that already belongs
to the RB.

We finally comment on the computational cost for a single step of the greedy algorithm. We
decompose the algorithm into three parts: “truth” residual sampling; “truth” solution; and EQP
update. The “truth” residual sampling requires J RB-EQP solves in O(JN ·) operations and
J “truth” residual dual-norm evaluations in O(JN ·) operations. The “truth” solution requires
O(N ·) operations. We again note that although the computation of the “truth” residual dual
norm and the computation of the “truth” solution each requires O(N ·) operations, the latter is
much more expensive than the former; for this reason we avoid all reference to the “truth” solution
except for the (relatively few) snapshots which form the RB space. Finally the EQP update
requires JNeqp,smooth RB-EQP solves in O(JNeqp,smoothN

·) operations and Neqp,smooth solves of

LP
ν,N
EQP. The LP

ν,N
EQP has Kh unknowns, Kh non-negativity constraints, and JN + 1 absolute-value

bound constraints; the preparation of the absolute-value bounds in particular requires O(JN2Kh)
operations as shown in Appendix A. The storage requirement is dominated by the LP constraint
matrix and is O(Kh(JN + 1)).

3.7. Functional output evaluation

In many engineering scenarios, our interest is certain (integral) quantities. As before, to fix
notation and to provide a concrete description, we introduce a model problem: the evaluation of
local strain energy associated with a neo-Hookean solid,

s(µ) ≡ ψ(u(µ);µ) ∈ R, (40)

where

ψ(w;µ) ≡
∫

Ωo
Ψ(F (w(x));µ)dx ∀w ∈ V (41)

for Ψ : RN ×D → R the strain energy density function (10) and Ωo ⊂ Ω a region of interest.
We now introduce an associated “truth” FE approximation of the output form (41). As before,

we also define a “truth” quadrature rule {xo,hk ∈ Ωo} and the associated weights {ρo,hk ∈ R+}. We
then define a “truth”-quadrature output form,

ψh(w;µ) ≡
Ko,h∑
k=1

ρo,hk Ψ(F (w(xo,h);µ), ∀w ∈ V, ∀µ ∈ D. (42)

Our “truth” FE approximation to (40) is as follows: given µ ∈ D, find sh(µ) ≡ ψh(uh(µ);µ) ∈ R.
Similarly, our “truth”-quadrature RB approximation to (40) is as follows: given µ ∈ D, find
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sN (µ) ≡ ψh(uN (µ);µ) ∈ R. Given the solution (field), the computational cost for the evaluation of
the output using the “truth” quadrature is O(Kh); the approach hence does not meet the online
complexity goal of model reduction set forth in the Introduction.

We thus introduce an EQP approximation for the output form (41). As before, we introduce

an empirical quadrature rule {xo,νk ∈ Ωo} ⊂ {xo,hk } and the associated weights {ρo,νk ∈ R+}; we
recall that an empirical rule is (hyper)parametrized by ν ≡ {h, δ,ΞJ} for h the “truth”-quadrature
parameter, δ the threshold tolerance, and ΞJ the parameter training set. We then define an EQP-
quadrature output form,

ψν(w;µ) ≡
Ko,ν∑
k=1

ρo,νk Ψ(F (w(xo,νk ));µ), ∀w ∈ V, ∀µ ∈ D.

Our RB-EQP approximation to (40) is as follows: given µ ∈ D, find sν(µ) ≡ ψν(uνN (µ);µ) ∈ R. We
invoke the LP EQP described in Section 2.1 on the integrand Ψ(F (uνN (·;µ));µ), µ ∈ D, to identify
the quadrature rule; the linear program has Ko,h unknowns and J + 1 constraints. Given the
solution (field) evaluated at the EQP quadrature points, the computational cost for the evaluation
of the output using the EQP quadrature is O(Kν)� O(Kh); we hence meet the online complexity
goal of model reduction.

4. Numerical example: neo-Hookean beam

4.1. Problem description

We consider a neo-Hookean beam subject to self-weight load. The geometry of the beam is
shown in Figure 1; the beam is characterized by a height h̃, length L̃, hole radius r̃hole, and hole
position (x̃hole, ỹhole) with respect to the origin fixed at the bottom left corner. The beam is clamped
(homogeneous Dirichlet) at the left end, free (homogeneous Neumann) on all other surfaces, and
subject to gravity of magnitude g̃. The beam is modeled as a (plain-strain) neo-Hookean solid
with a density ρ̃, Young’s module Ẽ, and Poisson ratio ν. The two parameters of the problem
are the gravity angle θg ∈ [−π/2, π/2] and the Poisson ratio ν ∈ [0.35, 0.45]; the former should be
interpreted to result from a variation in the orientation of the beam with respect to the vertical.
We hence set µ ≡ (θg, ν) and D ≡ [−π/2, π/2] × [0.35, 0.45]. The output of interest is the strain
energy density integrated over the annular region Ω̃annulus of radius r̃annulus; the output serves as
an indicator of stress concentration in the vicinity of the hole.

We introduce characteristic length and pressure scales of h̃ and Ẽ, respectively. With this
normalization, the geometry of the problem is described in terms of h ≡ h̃/h̃ = 1, L ≡ L̃/h̃ ≡ 4,
xhole = x̃hole/h̃ ≡ 1, yhole = ỹhole/h̃ ≡ 1/2, rhole = r̃hole/h̃ ≡ 0.15, rannulus = r̃annulus/h̃ ≡ 0.3, and
body-force density ρg = (ρ̃g̃)/(Ẽ/h̃) ≡ 0.005. The particular value of body-force density results
from typical values of the density and Young’s modulus for a soft-rubber-like material. (We however
consider the range of Poisson’s ratio away from the incompressible limit ν = 1/2; treatment of near-
incompressibility introduces complications not specifically related to our LP EQP RB approach.)

Figure 2(a) shows the deformed beam for (θg, ν) = (0, 0.4) and the associated strain energy
density distribution over Ωannulus. Figure 2(b) shows the variation in the output as a function of θg
for a fixed ν ≡ 0.4; the nonlinear effect of the neo-Hookean model is clearly evident in the response.
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Figure 1: Geometry of the neo-Hookean beam problem.

(a) deformed beam (θg = 0, ν = 0.4)
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Figure 2: Response of the neo-Hookean beam problem.

4.2. Results

We apply the (relative-error version of the) greedy algorithm, Algorithm 1, to the neo-Hookean
beam problem. The “truth” space of P2 triangular finite elements has 1568 degrees of freedom; the
“truth” quadrature rule contains Kh = 6878 points over Ω, of which Ko,h = 1216 are in Ωannulus.
(The p-convergence study for 3×3 parameter points uniformly distributed over D confirms that the
maximum relative error in the P2 “truth” output is ≈ 1.9× 10−3 with respect to the P4 solutions
with 6032 degrees of freedom; the convergence study also suggests that the continuous (infinite-
dimensional) problem is indeed well posed and we remain on a single solution branch.) The inputs
to the greedy algorithm are as follows: the parameter training set Ξtrain

J ⊂ D which consists of
|Ξtrain
J | = 31× 5 points uniformly distributed over D; the EQP tolerance of δ = 10−3 for both the

residual and output; and RB dual-norm tolerance of εRB = 10−2.
We first test the RB-EQP model for all parameter values in Ξtrain

J ; this test does not account
for the “generalization error” associated with the fact that Ξtrain

J is a finite subset of D. Table 1
summarizes the behavior of the RB-EQP model. We first observe that the dual-norm of the
“truth” residual over the parameter training set Ξtrain

J decreases rapidly with N , with the algorithm
terminating for Nmax = 7. We next assess the quality of the RB spaces: the solutions (field) and
outputs associated with the “truth”-quadrature RB approximation converge rapidly with N .

We now assess the quality of the RB-EQP solutions (field) and make the following observations.
The EQP quadrature rules are sparse: Kν ≤ 32 � 6878 ≡ Kh for all values of N . The relative

error between the RB and RB-EQP solutions, supµ∈Ξtrain
J

‖uN (µ)−uνN (µ)‖V
‖uN (µ)‖V is bounded by ≈ 2N1/2δ

for N > 2 as predicted by Proposition 3.2; this error control provided by the RB-EQP procedure
is more clearly depicted in Figure 3. We emphasize that the error here is measured relative to
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residual RB assessment RB-EQP assessment

N
‖rh(uνN ,·)‖(Vh)′

‖uν
N
‖V

‖uh−uN‖V
‖uh‖V

|s(uh)−s(uN )|
|s(uh)| Kν ‖uN−uνN‖V

‖uN‖V
‖uh−uνN‖V
‖uh‖V

Ko,ν |s(uνN )−sν(uνN )|
|s(uν

N
)|

|s(uh)−sν(uνN )|
|s(uh)|

1 1.50× 102 1.00× 100 10.00× 10−1 5 1.35× 10−1 1.00× 100 4 1.00× 10−3 10.00× 10−1

2 1.89× 10−1 7.87× 10−1 9.26× 10−1 14 4.47× 10−3 7.87× 10−1 11 1.00× 10−3 9.26× 10−1

3 1.77× 10−1 7.69× 10−1 9.21× 10−1 18 1.67× 10−3 7.69× 10−1 11 1.00× 10−3 9.20× 10−1

4 2.91× 10−2 1.65× 10−1 1.42× 10−1 25 1.78× 10−3 1.65× 10−1 9 1.00× 10−3 1.38× 10−1

5 2.61× 10−2 1.24× 10−1 1.60× 10−1 29 1.98× 10−3 1.24× 10−1 13 1.00× 10−3 1.66× 10−1

6 1.51× 10−2 1.23× 10−1 1.58× 10−1 29 2.43× 10−3 1.24× 10−1 13 1.00× 10−3 1.68× 10−1

7 8.87× 10−3 1.65× 10−2 4.09× 10−2 32 2.29× 10−3 1.53× 10−2 14 1.00× 10−3 4.50× 10−2

Table 1: The convergence of RB-EQP approximations over all parameter values in Ξtrain
J . All entries are supremum

over the parameter training set Ξtrain
J ; e.g., the first column is supµ∈Ξtrain

J

‖rh(uνN (µ),·;µ)‖(Vh)′

‖uν
N

(µ)‖V
.

1 2 3 4 5 6 7
10-3

10-2

10-1

Figure 3: The error in the RB-EQP approximation with respect to the “truth”-quadrature RB solution.

uN (µ) and hence implicitly assumes εtrain = 0 in (39); this in turn justifies (empirically) the
bootstrap approach for our particular problem. For N = 1 and 2, it is likely that the conditions
that are not explicitly enforced in LP

ν,N
EQP, (34) and (37), are violated and hence the bound does

not hold. The error in the RB-EQP solution relative to the “truth” is comparable to the error in
the “truth”-quadrature RB solution relative to the “truth”; the use of the EQP quadrature, which
has over two orders of magnitude fewer quadrature points, does not compromise the accuracy of
the approximation. Figure 4(a) shows the EQP quadrature points associated with the N = 7
RB-EQP residual form; the EQP points are distributed in a nontrivial manner and are clustered
in the regions of high stress concentration at the root and around the hole.

We next assess the quality of the RB-EQP output approximations and make the following

(a) residual quadrature points {xνk}K
ν=32

k=1 (b) output quadrature points {xo,νk }
Ko,ν=14
k=1

Figure 4: Residual and output quadrature points for N = 7.
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residual RB assessment RB-EQP assessment

N
‖rh(uνN ,·)‖(Vh)′

‖uν
N
‖V

‖uh−uN‖V
‖uh‖V

|s(uh)−s(uN )|
|s(uh)| Kν ‖uN−uνN‖V

‖uN‖V
‖uh−uνN‖V
‖uh‖V

Ko,ν |s(uνN )−sν(uνN )|
|s(uν

N
)|

|s(uh)−sν(uνN )|
|s(uh)|

1 1.46× 10−1 7.80× 10−1 9.84× 10−1 5 1.18× 10−1 7.84× 10−1 4 9.59× 10−4 9.88× 10−1

2 1.51× 10−1 7.74× 10−1 9.19× 10−1 14 5.04× 10−3 7.74× 10−1 11 1.00× 10−3 9.18× 10−1

3 1.59× 10−1 7.54× 10−1 9.14× 10−1 18 6.85× 10−3 7.54× 10−1 11 9.96× 10−4 9.13× 10−1

4 2.11× 10−2 1.58× 10−1 1.41× 10−1 25 1.53× 10−3 1.57× 10−1 9 9.83× 10−4 1.37× 10−1

5 1.40× 10−2 1.12× 10−1 1.47× 10−1 29 1.89× 10−3 1.12× 10−1 13 9.37× 10−4 1.48× 10−1

6 1.37× 10−2 1.11× 10−1 1.46× 10−1 29 1.91× 10−3 1.11× 10−1 13 1.02× 10−3 1.51× 10−1

7 8.35× 10−3 1.47× 10−2 4.06× 10−2 32 3.82× 10−3 1.37× 10−2 14 9.36× 10−4 4.41× 10−2

Table 2: The convergence of RB-EQP approximation for Ξtest 6= Ξtrain
J comprises 50 random uniformly dis-

tributed points over D. All entries are supremum over the parameter training set Ξtest; e.g., the first column is

supµ∈Ξtest

‖rh(uνN (µ),·;µ)‖(Vh)′

‖uν
N

(µ)‖V
.

observations. As before, Ko,ν ≤ 14 � 1216 ≡ Ko,h for all values of N and hence EQP again
achieves sparsity. The integration error due to the use of the EQP quadrature instead of the
“truth” quadrature is exactly controlled for this test case (without generalization error, i.e., the
supremum is over Ξtrain

J ). The error in the RB-EQP output relative to the “truth” is comparable
to the error in the “truth”-quadrature RB output relative to the “truth” despite the significant
sparsity of the RB-EQP quadrature rule. Figure 4(b) shows the EQP quadrature points associated
with the output evaluation of the N = 7 approximation.

We now test the RB-EQP model for Ξtest ⊂ D which consists of |Ξtest| = 50 random points
uniformly sampled over D; this test, unlike the previous test, accounts for the “generalization error.”
Table 2 shows that the results over Ξtest are largely unchanged from the results over Ξtrain

J shown in
Table 1. The result is consistent with Proposition 2.2, which predicts a small generalization error
for a sufficiently dense parameter training set Ξtrain

J ⊂ D.
We finally report the online computational savings. Both the “truth” FE solver and the RB-

EQP solver are implemented in Matlab and solve the nonlinear problem using the damped Newton
strategy described in Section 3.2. All computations are performed on a commodity laptop. Over
the 50 test cases defined by Ξtest, the RB-EQP solver (N = 7) on average reduces wall-clock time
by ≈ 60.

4.3. A perspective on generality

We have observed that the RB-EQP formulation introduced in this work is rather “blackbox”
in the sense that i) it requires minimal hyperparameter specification and ii) it is quite robust with
respect to applications. As regards i), the greedy algorithm discussed in Section 3.6 requires as input
only the parameter training set and EQP and RB tolerances; the algorithm then yields an online-
efficient reduced model for the parametrized nonlinear PDE. As regards ii), in addition to the neo-
Hookean hyperelasticity problem reported here, we have also successfully applied the formulation
to a nonlinear reaction-diffusion equation with a cubic reaction term, nonlinear elasticity based on
the Saint Venant-Kirchhoff model, and the compressible Navier-Stokes equations.
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Appendix A. Explicit representation of RB-EQP accuracy constraints

We provide an explicit presentation of the RB-EQP accuracy constraints (22). We first repro-
duce the expression:

‖JhN (utrain
N (µ);µ)−1R̂hN (ρ;utrain

N (µ);µ)‖∞ ≤ δ, ∀µ ∈ Ξtrain
J . (A.1)

The i-th entry of the empirical quadrature operator is given by (20),

(R̂hN (ρ;utrain
N (µ);µ))i =

Kh∑
k=1

ρkη(ZNu
train
N (µ), φi;µ;xhk), i = 1, . . . , N,

where η(ZNu
train
N (µ), φi;µ;xhk) is the residual integrand (12) evaluated for the trial function ZNu

train
N (µ),

the test function φi, parameter µ, and point xhk . The (i, j)-entry of the “truth”-quadrature Jacobian
matrix is given by

(JhN (utrain
N (µ);µ))i,j = (rh)′(ZNu

train
N (µ), φj , φi;µ) =

Kh∑
k=1

ρhkη
′(ZNu

train
N (µ), φj , φi;µ;xhk), i, j = 1, . . . , N,

where η′(ZNu
train
N (µ), φj , φi;µ;xhk) is the Gâteaux derivative of η(·, φi;µ;xhk) : V → R at ZNu

train
N (µ) ∈

VN in the direction φj ∈ VN . We denote the (i, j)-entry of the inverse of JhN (utrain
N (µ);µ) by

(JhN (utrain
N (µ);µ)−1)i,j . Then, the constraints (A.1) (or equivalently (22)) can be explicitly written

as∣∣∣∣∣∣
N∑
j=1

(JhN (utrain
N (µ);µ)−1)i,j(R̂

h
N (ρ;utrain

N (µ);µ))j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Kh∑
k=1

ρk

 N∑
j=1

(JhN (utrain
N (µ);µ)−1)i,jη(ZNu

train
N (µ), φj ;µ;xhk)

∣∣∣∣∣∣ ≤ δ, ∀i = 1, . . . , N, ∀µ ∈ Ξtrain
J .

In practice, we compute the quantity in the bracket for each µ ∈ Ξtrain
J as follows: we evaluate

the residual kernel η(ZNu
train
N (µ), φj ;µ;xhk) for j = 1, . . . , N and k = 1, . . . ,Kh and store it as a

N ×Kh matrix; we then apply (JhN (utrain
N (µ);µ))−1 (from left) to compute N ×Kh entries of LP

accuracy constraints. The evaluation of the residual kernel requires O(NKh) operations, whereas
the application of the inverse Jacobian requires O(N2Kh) operations. (In practice, the constant
associated with the former is typically much greater than the constant associated with the latter.)
We repeat the procedure for all µ ∈ Ξtrain

J to populate the (NJ) ×Kh entries of the LP accuracy
constraints.
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