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We present a hydrodynamic stability theory for incompressible viscous fluid flows
based on a space-time variational formulation and associated generalized singular value
decomposition of the (linearized) Navier-Stokes equations. We first introduce a linear
framework applicable to a wide variety of stationary or time-dependent base flows: we
consider arbitrary disturbances in both the initial condition and the dynamics measured
in a “data” space-time norm; the theory provides a rigorous, sharp (realizable), and
efficiently computed bound for the velocity perturbation measured in a “solution” space-
time norm. We next present a generalization of the linear framework in which the
disturbances and perturbation are now measured in respective selected space-time semi-
norms; the semi-norm theory permits rigorous and sharp quantification of, for example,
the growth of initial disturbances or functional outputs. We then develop a (Brezzi-
Rappaz-Raviart) nonlinear theory which provides, for disturbances which satisfy a certain
(rather stringent) amplitude condition, rigorous finite-amplitude bounds for the velocity
and output perturbations. Finally, we demonstrate the application of our linear and
nonlinear hydrodynamic stability theory to unsteady moderate Reynolds-number flow in
an eddy-promoter channel.
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1. Introduction

The field of hydrodynamic stability theory [11] is vast with many applications
from engineering to meteorology to astrophysics. Most early work of both an
analytical and computational nature focused on modal analysis relevant to long-
time behavior. More recently, the emphasis has turned to nonmodal analysis
of finite-time stability as introduced by Butler and Farrell [9], Reddy and
Henningson [30], and Trefethen et al. [36, 35] (see also a review by Schmid [32]
and references therein). The finite-time framework can be extended to consider
a variety of base flows as well as disturbances in the initial condition and the
dynamics.

The hydrodynamic stability theory presented in this work addresses the same
goals as nonmodal stability theory. However, we provide a new formulation
which yields certain earlier results more easily and also admits extension in
several important directions. The foundation for our computational framework is a
variational formulation and associated error estimation theory for approximation
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of partial differential equations. In particular, the framework is inspired by the
space-time variational a posteriori error analysis recently introduced by Schwab
and Stevenson [34] for wavelet methods and subsequently applied to finite element
and reduced basis discretizations of linear parabolic equations [37], the Burgers’
equation [41], and the Boussinesq equations [40]. (For previous applications of
variational frameworks to hydrodynamic theory, see for example Joseph [20] and
Johnson et al. [19].)

The linear theory developed in Section 3 provides a sharp bound for a velocity
perturbation about a given base flow subject to arbitrary disturbances in both
the initial condition and the dynamics over a finite time interval. The “solution”
(respectively, “data”) norms for the perturbation (respectively, disturbance) are
the norms with respect to which the (linearized) partial differential equation is
well posed and hence as strong (respectively, weak) as possible. Moreover, our
global perturbation bound is sharp in the sense that there exists a disturbance —
provided by the theory — for which the perturbation bound is achieved.

In the absence of disturbances to the dynamics, our method is equivalent to
finite-time stability analysis based on the singular-vector structure of the linear
tangent propagator as first proposed by Lorenz [24] and employed, for example,
in the context of weather prediction by Buizza et al. [8, 7] and in the context
of hydrodynamic stability by Schmid and Kytömaa [33], Barkley et al. [4], and
Abdessemed et al. [1]; these singular vectors are related to the (norm-dependent)
Lyapunov vectors in the infinite-time limit [23]. (For review of Lyapunov vectors,
we refer to classical work by Eckmann and Ruelle [12] and recent work by Kuptsov
and Parlitz [22].)

In the presence of disturbances to the dynamics — in which the linear tangent
propagator is no longer exact — earlier analyses considered time-independent base
flows subject to harmonic excitation [36] or temporally-white stochastic noise [14],
and time-harmonic base flows subject to impulsive noise [16]. We generalize these
results in two important ways: we permit arbitrary (well-posed) disturbances; we
permit arbitrary time-dependent base flows (in which, for example, resonances
may occur [5]). Note furthermore that we do not prescribe either the spatial
or the temporal shape of the disturbances but rather deduce the most-sensitive
space-time disturbance from our infimization principle.

In Section 4, we generalize the linear stability bounds to the case in which
we measure the perturbation and disturbance in respective semi-norms. We first
develop an abstract framework which provides sharp perturbation bounds for the
semi-norm pair. As a first example of the semi-norm framework, we reproduce
the classical initial-to-final perturbation growth analysis based on the singular
value decomposition of the linear tangent propagator. As a second example, we
quantify the sensitivity of a scalar output — defined by a functional of the field,
which we recast as rank-one semi-norm — with respect to arbitrary disturbances
in the initial condition and the dynamics: we provide conditions under which
outputs can be quite insensitive to disturbances; we also discuss the connection
between the semi-norm treatment of outputs and the more standard adjoint
formulation of outputs — and the potential advantage of the former in the case
of multiple outputs. As a third example of the semi-norm framework, we consider
an application to optimal flow control. For related discussion of semi-norm-based
hydrodynamic stability we refer to recent work by Foures et al. [15].
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The quantification of the uncertainty in outputs is relevant in many settings.
One example is the experimental setting, in which the analysis precisely quantifies
the stability of a given measurement to perturbations; this information may then
serve to choose an experimental protocol which is less sensitive to undesirable
noise. Another example is the design setting, in which the analysis provides an
assessment of potential degradation of performance in the presence of noise (and
the development of mitigation strategies, i.e., robust design).

In Section 5, we turn our attention to the development of a nonlinear
(finite-amplitude) perturbation theory. The additional critical ingredient of the
nonlinear theory is the Brezzi-Rappaz-Raviart theory developed for nonlinear
a posteriori error estimation of variational discretizations [6]. We exploit this
theory here to provide a rigorous velocity perturbation bound for the full Navier-
Stokes equations under a certain (unfortunately, rather stringent) condition on
the magnitude of the disturbance. We also develop associated nonlinear output
bounds.

Finally, in Section 6, we apply the space-time hydrodynamic stability theory
to an eddy-promoter channel considered by Karniadakis et al. [21]. The numerical
results demonstrate the capabilities — as well as the limitations — of the
proposed linear and nonlinear theory to characterize hydrodynamic stability of
time-dependent flows.

2. Governing equations

(a)Model problem: eddy-promoter channel

We consider flow through a planar periodic channel equipped with eddy
promoters — cylindrical obstacles designed to increase mixing in the channel.
This flow has been extensively studied by Karniadakis et al. [21]. The geometry
of the channel is described in figure 1: the channel is characterized by a half-
height h̃, cylinder separation length L̃, cylinder diameter d̃, and cylinder-center
height b̃; in this section, (̃·) denotes a dimensional quantity. The flow is governed
by the incompressible Navier-Stokes equations and is driven by a prescribed
fixed pressure-gradient of magnitude ˜̄px; note that Karniadakis et al. consider
a prescribed fixed flowrate. No-slip boundary conditions are imposed along the
top (Γ4) and bottom (Γ3) walls, and periodic boundary conditions are imposed
on Γ1-Γ2. (We do not aim to analyze the spatial growth of perturbations [18], as
considered by Schatz et al. [31].)

We introduce the following characteristic time, length, velocity, and
pressure scales for normalization: h̃2/ν̃, h̃, ũPoiseuille

c ≡ (− ˜̄pxh̃
2)/(2ρ̃ν̃), and

− ˜̄pxh̃, respectively; here, ν̃ is the kinematic viscosity, and ρ̃ is the density.
With this nondimensionalization, the geometry of the channel is described
in terms of h≡ h̃/h̃= 1, L≡ L̃/h̃, d≡ d̃/h̃, and b≡ b̃/h̃. Throughout the rest
of this work, we denote the nondimensionalized spatial domain of interest
by Ω and the nondimensionalized time interval of interest by I ≡ (0, T ]. Our
nondimensionalization differs from that of Karniadakis et al. [21] in two regards:
our time scale is based on diffusion (rather than convection); our velocity scale is
based on the prescribed pressure gradient (rather than the prescribed flowrate).
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Figure 1. A single periodic section of the eddy-promoter channel with a cylinder separation L=
6.666, channel half-height h= 1.0, cylinder diameter d= 0.4, and cylinder-center height b= 0.5.

Consequently, our pressure-gradient-based Reynolds number is given by Re ≡
ũPoiseuille
c h̃/ν̃.

(b)Governing equations: strong form

We first present the incompressible Navier-Stokes equations in a familiar strong
form:

∂u

∂t
+ Re((u · ∇)u) =−2∇p− 2e1 +∇2u in Ω for t∈ I ≡ (0, T ] , (2.1)

∇ · u= 0 in Ω for t∈ (0, T ] , (2.2)

where u is the nondimensional velocity, p is the nondimensional (periodic part of)
pressure, and 2e1 (for e1 the unit vector in the first coordinate direction (x1)) is
the nondimensional prescribed mean pressure gradient. The associated boundary
conditions are

u(x, t) = 0 on Γ3 and Γ4 ,

u(x+ Le1, t) =u(x, t) on Γ1 ,

∂u

∂x1
(x+ Le1, t) =

∂u

∂x1
(x, t) on Γ1 , (2.3)

p(x+ Le1, t) = p(x, t) on Γ1 ;

the initial condition is

u(x, t= 0) =u0 in Ω , (2.4)

where u0 represents the initial velocity field.
In addition, for the eddy-promoter problem of interest, we choose two specific

outputs. The first output is the time-averaged flowrate through the channel,

J1(u) =
1

L

∫
I

∫
Ω
u1dxdt ; (2.5)

here, we take advantage of the divergence free condition in defining the flowrate
output. The second output is the local x1-velocity 1.5d downstream of the cylinder
along the cylinder center line in the wake region; in particular, we measure the
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regularized quantity

J2(u) =

∫
I

∫
Ω

(
1

2πσ
e−
‖x−x0‖

2

2σ2

)
u1dxdt , (2.6)

with a standard deviation σ= 0.1 and center x0 = (xc + 2d, b) for xc the x1-
coordinate of the cylinder center.

(c)Governing equations: space-time weak form

The solution to the unsteady Navier-Stokes equations is most generally
described in a space-time variational setting. The multiplication of the strong
form by a test function and the integration of the resulting equation over the
spatial domain Ω and the temporal interval I yields a weak statement for the
Navier-Stokes equations: Find the nondimensional velocity u∈X such that

G(u,v) = 0, ∀v ∈Y, (2.7)

where X and Y are the space-time trial (or “solution”) and test spaces, respectively,
defined shortly in Section 2(d), and G :X × Y →R is the space-time semilinear
form given by

G(w,v)≡Ṁ(w,v) + C(w,w,v) +A(w,v) + (w(0),v(2))L2(Ω) (2.8)

− 〈[2e1,u0],v〉Y ′×Y . (2.9)

Here the evolution term Ṁ, the convective term C, and the diffusion term A are
given by

Ṁ(w,v) =

∫
I

∫
Ω
v

(1)
i

∂wi

∂t
dxdt (2.10)

C(w, z,v) =−Re
2

∫
I

∫
Ω

∂v
(1)
i

∂xj
(ziwj + zjwi)dxdt (2.11)

A(w,v) =

∫
I

∫
Ω

∂v
(1)
i

∂xj

∂wi

∂xj
dxdt , (2.12)

respectively, where v= [v1,v2] is a test function “couple” whose first component
enforces the evolution equation and whose second component enforces the initial
condition. Here and throughout the rest of this work, we shall assume summation
over repeated indices, aibi ≡

∑n
i=1 aibi for a, b∈Rn, unless stated otherwise.

The above variational formulation, with the choice of X and Y to be clarified
shortly, incorporates appropriate boundary conditions and the initial condition;
periodicity of flux on Γ1-Γ2 (2.3) is a natural boundary condition (weakly
imposed).

To facilitate the subsequent stability analysis in the space-time setting, we also
introduce here the linear form associated with the Fréchet derivative of G,

∂G(u;w,v)≡Ṁ(w,v) + 2C(w,u,v) +A(w,v) + (w(0),v(2))L2(Ω) , (2.13)
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where u∈X is the base flow — a solution of (2.7) — about which the equations
are linearized. Note we take advantage here and later of the symmetry of C in the
first two arguments.

In addition, to quantify output perturbations in the space-time setting, we
introduce a (bounded) linear functional `∈X ′ of the form

`(w) =

∫
I

∫
Ω
gIiuidxdt+

∫
Ω
gTi ui(T )dx ; (2.14)

the superscripts I and T stand for the time interval I and the final time T ,
respectively. Note that both of the output functionals for the eddy-promoter
channel problem, J1 and J2 given by (2.5) and (2.6), respectively, conform to
the form given by (2.14) for gT = 0. In Section 5, we also consider quadratic
output functionals.

(d) Space-time spaces, inner products, and norms

We present precise definitions of the spaces, inner products, and norms used
throughout this work. We will adopt the standard notations used in the partial
differential equation community (e.g., [29]). We note that the well-posedness of the
space-time formulation of the Navier-Stokes equations has recently been placed
on a firm theoretical foundation [17], albeit for spaces slightly different from those
considered in this work.

The L2(Ω) space over the domain Ω∈Rd is equipped with an inner
product (w, v)L2(Ω) ≡

∫
Ωwvdx and induced norm ‖w‖L2(Ω) ≡

√
(w,w)L2(Ω) for

scalar-valued functions {w : ‖w‖L2(Ω) <∞}. The space (L2(Ω))d is equipped
with an inner product (w,v)L2(Ω) ≡

∫
Ωwividx and induced norm ‖w‖L2(Ω) ≡√

(w,w)L2(Ω) for vector-valued functions {w : ‖w‖L2(Ω) <∞}; to avoid notational
clutter, we denote the “vector” inner product (and norm) as (·, ·)L2(Ω) instead
of (·, ·)(L2(Ω))d (and ‖ · ‖L2(Ω) instead of ‖ · ‖(L2(Ω))d). The H1(Ω) space is
equipped with an inner product (w, v)H1(Ω) ≡

∫
Ω∇w · ∇vdx and induced norm

‖w‖H1(Ω) =
√

(w,w)H1(Ω) for scalar-valued functions {w : ‖w‖H1(Ω) <∞}. The

(H1(Ω))d space is equipped with an inner product (w,v)H1(Ω) ≡
∫

Ω∇wi · ∇vidx
and induced norm ‖w‖H1(Ω) =

√
(w,w)H1(Ω) for vector-valued functions {w :

‖w‖H1(Ω) <∞}. The (non-divergent-free) velocity space W is equipped with an
inner product (w,v)W ≡ (w,v)H1(Ω) and induced norm ‖w‖W ≡ ‖w‖H1(Ω) for
functions {w ∈ (H1(Ω))d : w|Γ3 =w|Γ4 = 0, w|Γ1 =w|Γ2}; here, w|Γ3 =w|Γ4 = 0
enforces the no-slip boundary conditions on Γ3 and Γ4, and w|Γ1 =w|Γ2 enforces
the periodic boundary conditions on Γ1 and Γ2.

We next introduce a divergence-constraint bilinear form

b(q,w) =−
∫

Ω
q∇ ·wdx, ∀q ∈L2(Ω), ∀w ∈W .

The space V of divergence-free velocities is equipped with an inner product
(w,v)V ≡ (w,v)H1(Ω) and induced norm ‖w‖V ≡ ‖w‖H1(Ω) for functions {v ∈W :
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b(q,v) = 0, ∀q ∈L2(Ω)}. Note that the (square of the) V -norm of the velocity u
is the volume integral of the viscous dissipation rate.

The dual space of V , denoted by V ′, is equipped with the induced norm ‖j‖V ′ ≡
supw∈V j(w)/‖w‖V for (bounded) functionals {j : V →R|‖j‖V ′ <∞}. We may
express the action of a linear functional in V ′ as either j(v) or by the duality
pairing 〈j,v〉V ′×V . By the Riesz representation theorem, ‖j‖V ′ = ‖Rj‖V where
the Riesz operator R : V ′→ V satisfies, for given j ∈ V ′, (Rj, v)V = j(v), ∀v ∈ V .

The solution to the (unsteady) Navier-Stokes equations is most succinctly
described in the space-time setting. We introduce a space-time space L2(I;V )
equipped with an inner product (w,v)L2(I;V ) ≡

∫
I(w(t),v(t))V dt and induced

norm ‖w‖L2(I;V ) ≡
√

(w,w)L2(I;V ) for functions {w : ‖w‖L2(I;V ) <∞}. We also

introduce a space H1(I;V ′) equipped with an inner product (w(t),v(t))H1(I;V ′) =∫
I(Rẇ(t), Rv̇(t))V dt and induced norm ‖w‖H1(I;V ′) ≡

√
(w,w)H1(I;V ′) for

functions {w : ‖w‖H1(I;V ′) <∞}; recall that R : V ′→ V is the Riesz operator.
We seek our velocity solution in the space-time trial space

X ≡H1(I;V ′) ∩ L2(I;V )

equipped with an inner product

(w,v)X ≡ (w,v)H1(I;V ′) + (w,v)L2(I;V ) + (w(T ),v(T ))L2(Ω)

and induced norm ‖w‖X =
√

(w,w)X . The (square of the) second term in the
norm, ‖w‖2L2(I;V ), measures the total viscous dissipation over the time interval I.
The space X is continuously embedded in C0([0, T ]; (L2(Ω))d) [13, 2], and thus in
particular w(0) and w(T ) are meaningful in (L2(Ω))d for w ∈X . The dual-space
of X , X ′, is equipped with norm ‖`‖X ′ ≡ supw∈X `(w)/‖w‖X ; we may express
the action of a linear functional in X ′ as either `(w) or by the duality pairing
〈`,w〉X ′×X . Note that ‖`‖X ′ = ‖L‖X where L∈X is the Riesz representation
satisfying (L,w)X = 〈`,w〉X ′×X , ∀w ∈X .

We also introduce an associated test space

Y ≡L2(I;V )⊕ (L2(Ω))d

with inner product

(w,v)Y ≡ (w(1),v(1))L2(I;V ) + (w(2),v(2))L2(Ω)

and induced norm ‖w‖Y =
√

(w,w)Y . We again elaborate upon the couple
[w(1),w(2)]∈Y: the first component, w(1) ∈L2(I;V ), enforces the evolution
equation; the second component, w(2) ∈ (L2(Ω))d, enforces the initial condition.
The dual-space of Y, Y ′, is equipped with a norm ‖f‖Y ′ ≡ supv∈Y f(v)/‖v‖Y ;
we may express the action of a linear functional in Y ′ as either f(v) or by the
duality pairing 〈f ,v〉Y ′×Y . Note that ‖f‖Y ′ = ‖F‖Y where F ∈Y is the Riesz
representation satisfying

(F,v)Y = 〈f ,v〉Y ′×Y , ∀v ∈Y. (2.15)

We may think of Y ′ as our “data” space.
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3. Linear theory

(a)Linearized perturbation equations

In order to develop a linear hydrodynamic stability theory within our
space-time setting we first introduce the linear perturbation equations. Given
disturbances to the dynamics f (1) and the initial condition f (2), the linearized
evolution of the velocity perturbation u′ about the base flow u is governed by the
usual linearized Navier-Stokes equations:

u′t + Re((u ·∇)u′ + (u′ ·∇)u) =−2∇p′ +∇2u′ + f (1) in Ω× I ,

∇ · u′ = 0 in Ω× I ,
with the boundary conditions

u′(x, t) = 0 on Γ3 and Γ4

u′(x+ Le1, t) =u′(x, t) on Γ1 ,

∂u′

∂x1
(x+ Le1, t) =

∂u′

∂x1
(x, t) on Γ1 ,

p′(x+ Le1, t) = p′(x, t) on Γ1 ,

and the initial disturbance condition

u′(x, t= 0) = f (2) in Ω .

For u+ u′ to approximate well the solution to the full Navier-Stokes equations,
f (1) and f (2) must be suitably small; we address nonlinear considerations in
Section 5.

We may also express the linearized Navier-Stokes equations in a space-time
variational form, which is more amenable to our hydrodynamic stability analysis:
Find u′ ∈X such that

∂G(u;u′,v) = 〈f ,v〉Y ′×Y , ∀v ∈Y , (3.1)

where u is the base flow field, u′ is the perturbed velocity field, f ≡ [f (1),f (2)]∈Y ′
is the disturbance, and ∂G is the linearized form (2.13). Note that the right-hand
side of the equation may be decomposed into

〈f ,v〉Y ′×Y = 〈[f (1),f (2)],v〉Y ′×Y = 〈f (1),v(1)〉L2(I;V ′)×L2(I;V ) + (f (2),v(2))L2(Ω)

corresponding to a disturbance to the “dynamics,” f (1) ∈L2(I;V ′), and to the
initial condition, f (2) ∈ (L2(Ω))d. Again, periodicity of flux is weakly imposed in
(3.1).

Note that (3.1) is well-posed and a unique solution exists for any f ∈Y ′
if the bilinear form ∂G(u; ·, ·) :X × Y →R satisfies the three conditions of the
Banach-Nečas-Babuška theorem (also referred to as the Babuška-Lax-Milgram
theorem or the Babuška-Aziz theorem) [13, 27, 3]: the boundedness condition,
∃C(u)<∞ such that ∂G(u;w,v)≤C(u)‖w‖X ‖v‖Y , ∀w ∈X , ∀v ∈Y; the inf-sup
condition, ∃β(u)> 0 such that infw∈X supv∈Y ∂G(u;w,v)/(‖w‖X ‖v‖Y)≥ β(u);
and the adjoint injectivity condition, (∂G(u;w,v) = 0, ∀w ∈X )⇒ (v= 0).
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In addition, we may express (3.1) in distributional form: Find u′ ∈X such that

〈Gu′,v〉Y ′×Y = 〈f ,v〉Y ′×Y , ∀v ∈Y , (3.2)

where G :X →Y ′ is the linearized forward operator satisfying

〈Gw,v〉Y ′×Y = ∂G(u;w,v) , ∀w ∈X , v ∈Y .

In operator form, (3.2) may be expressed as

Gu′ = f in Y ′ .

Note that the inverse operator, G−1 :Y ′→X , exists if the three conditions of the
Banach-Nečas-Babuška theorem stated above are satisfied.

Remark 1. The action of (the finite element approximation of) G−1 can be
computed very efficiently: thanks to the discontinuous-in-time test space Y, in fact
G−1f admits evaluation in a time-marching fashion as a sequence of decoupled
spatial problems [37]. The space-time framework informs the theory but does not
encumber the computations.

(b)Global stability: space-time inf-sup constant

We wish to quantify the velocity perturbation u′ in the X norm. To this
end, we introduce a critical ingredient of our hydrodynamic stability analysis: the
space-time inf-sup constant

β(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

‖w‖X ‖v‖Y
. (3.3)

We may also express the inf-sup constant in distributional form:

β(u) = inf
w∈X

sup
v∈Y

〈Gw,v〉Y ′×Y
‖w‖X ‖v‖Y

.

By the definition of the dual norm,

β(u) = inf
w∈X

‖Gw‖Y ′
‖w‖X

= inf
f∈Y ′

‖f‖Y ′
‖G−1f‖X

=

(
sup
f∈Y ′

‖G−1f‖X
‖f‖Y ′

)−1

;

the inverse of the inf-sup constant is thus the norm of the inverse operator G−1 :
Y ′→X measured in ‖ · ‖L(Y ′,X ). In addition, we may introduce a linear operator
Su :X →Y such that

(Suw,v)Y = ∂G(u;w,v), ∀w ∈X , ∀v ∈Y , (3.4)

and substitute the operator Su into the inf-sup definition (3.3) to yield yet another
expression for the inf-sup constant:

β(u) = inf
w∈X

(Suw,v)Y
‖w‖X ‖v‖Y

= inf
w∈X

‖Suw‖Y
‖w‖X

, (3.5)

where the second equality follows from the Cauchy-Schwarz inequality. We observe
that Su may be interpreted as a supremizer operator.

As regards the relationship between the perturbation u′ and the disturbance
f , we have the following proposition:
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Proposition 1. For a given disturbance f , the velocity perturbation u′

governed by (3.1) is bounded by

‖u′‖X ≤
1

β(u)
‖f‖Y ′ ,

where β(u) is the space-time inf-sup constant defined by (3.3). This bound is sharp
in the sense that there exists a disturbance f for which the relationship holds with
equality.

Proof. For any u′ ∈X , the solution of (3.1) for given f , we obtain

β(u) = inf
w∈X

sup
v∈Y

∂G(u;w,v)

‖w‖X ‖v‖Y
≤ sup

v∈Y

∂G(u;u′,v)

‖u′‖X ‖v‖Y
= sup

v∈Y

〈f ,v〉Y ′×Y
‖u′‖X ‖v‖Y

=
‖f‖Y ′
‖u′‖X

.

A straightforward algebraic manipulation yields the desired inequality. The
sharpness of the bound follows from the Banach-Nečas-Babuška theorem which
ensures the existence of f = f∗ ∈Y ′ corresponding to the infimizer u′ =u′∗ ∈X
and for which

β(u) = sup
v∈Y

∂G(u;u′∗,v)

‖u′∗‖X ‖v‖Y
= sup

v∈Y

〈f∗,v〉Y ′×Y
‖u′∗‖X ‖v‖Y

=
‖f∗‖Y ′
‖u′∗‖X

.

This concludes the proof. �

The above proposition shows that the velocity perturbation u′ measured in
the X norm is bounded by the disturbance f measured in the Y norm multiplied
by the reciprocal of the space-time inf-sup constant. In this sense, the inf-sup
constant quantifies the global stability of the linearized flow equation (3.1). A
small inf-sup constant implies that the flow is unstable or “sensitive” such that
a small disturbance in the initial condition or the dynamics may lead to a large
perturbation in the velocity; the sharpness of the inf-sup bound guarantees that
such a large perturbation is realizable and in fact provides a construction. It
follows from (2.15) that the Riesz representation of f∗ in Proposition 1 is given by
F∗ = Suu

′
∗. Conversely, a large inf-sup constant implies that the flow is relatively

stable and insensitive to disturbances.
Proposition 1 is general in the sense that 1) it applies to perturbations

linearized about any base flow condition, and 2) it accounts for arbitrary
disturbances in the initial condition and the dynamics (in Y ′). The feature 1)
implies that application is not limited to steady or time-periodic flows: the
technique can address hydrodynamic stability of transient flows and aperiodic
flows. The feature 2) implies that application is not limited to disturbances in
initial conditions: the technique can address hydrodynamic stability with respect
to time-dependent forcing (for example, harmonic forcing near resonance). Under
these general conditions, the statement provides a rigorous and sharp quantitative
bound for the resulting velocity perturbation measured in the strongest possible
solution norm in terms of the disturbances measured in the weakest possible data
norm. In Appendix A, for some simple but representative ODEs, we demonstrate
the ability of the space-time inf-sup constant to identify the least stable mode
and to quantify the perturbation growth.
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(c)A space-time generalized eigenproblem

We now pose β(u) as an eigenproblem. The solution to the infimization
problem (3.5) is the square root of the minimum eigenvalue of a symmetric
positive-definite eigenproblem: Find (ξi, λi)∈X × R such that

(Suξi, Suw)Y = λi(ξi,w)X , ∀w ∈X . (3.6)

Without loss of generality, we order the eigenpairs such that 0<λ1 ≤ λ2 ≤ · · ·
and normalize the eigenfunctions such that ‖ξi‖X = 1, i= 1, 2, . . . . Thus, we have
β(u) =

√
λ1. Due to the symmetry of the eigenproblem, we also obtain (ξi, ξj)X =

δij , where δij is the Kronecker delta.
We can also express the eigenproblem (3.6) in operator form. To this end, we

introduce the following operators:

G∗ :Y →X ′, 〈Gw,v〉Y ′×Y = 〈w, G∗v〉X×X ′ , ∀w ∈X , v ∈Y , (3.7)

Y :Y →Y ′, 〈Yw,v〉Y ′×Y = (w,v)Y , ∀w,v ∈Y , (3.8)

X :X →X ′, 〈Xw,v〉X ′×X = (w,v)X , ∀w,v ∈X . (3.9)

Then, for a given w ∈X , the supremizer defined by (3.4) may be expressed
as Suw= Y −1Gw (in Y). We can then express the eigenproblem (3.6) in
distributional form: Find (ξi, λi)∈X × R such that

〈G∗Y −1Gξi,w〉X ′×X = λi〈Xξi,w〉X ′×X , ∀w ∈X .

Equivalently, we may express the eigenproblem in an operator form: Find (ξi, λi)∈
X × R such that

G∗Y −1Gξi = λiXξi in X ′ . (3.10)

We remark on the computability of the inf-sup constant.
Remark 2. The operator form of the symmetric positive-definite eigenproblem,

(3.10), permits a direct transcription to an efficient computational procedure
based on a Krylov method, in particular the Lanczos method with X -
orthonormalization. The Krylov space suitable for the evaluation of the minimum
eigenvalue is generated via inverse iteration

K(G−1Y G−∗X)≡ {zj : zj =G−1Y G−∗Xzj−1, j = 1, 2, . . . } ,

where z0 is a random element in X .
The generation of a new element of the Krylov space requires the following

operations: the application of X; the linearized backward solve (an adjoint solve,
as discussed in greater detail in Appendix B), G−∗; the application of Y ; and the
linearized forward solve, G−1. The computation of the Krylov space invokes only a
linearized forward solution and backward solution, and hence, from Remark 1, no
fully coupled space-time procedures are required. Furthermore, we have observed
in practice that the Lanczos method converges quite rapidly as the minimum
eigenvalue is often well separated from the rest of the spectrum. The inf-sup
calculation may be readily implemented as a post-processing procedure typically
at cost similar to the base flow solution. (See also Buizza et al. [8, 7] and Barkley et
al. [4] for a related computational method.)
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(d)A space-time generalized singular value decomposition

We now describe the space-time formulation in terms of the singular value
decomposition (SVD). The inf-sup constant is the minimum generalized singular
value of ∂G(u; ·, ·) :X × Y →R with respect to the X -Y norm pair; “generalized”
refers to the fact that the trial (right) and test (left) spaces are equipped with
the X and Y norm, respectively, instead of the usual `2 norm. We now make this
connection explicit.

We construct above a X -orthonormal trial space basis {ξj}j . Similarly,
we can construct a Y-orthonormal test space basis {ηi}i ≡ {λ

−1/2
i Suξi}i;

the Y-orthonormality follows from (ηj ,ηi)Y = (λ
−1/2
j Suξj , λ

−1/2
i Suξi)Y =

λ−1
j λj(ξj , ξi)Y = δij . We now express an arbitrary element w ∈X in the X -

orthonormal basis {ξj}j , w=
∑

j αjξj , and an arbitrary element v ∈Y in the
Y-orthonormal basis {ηi}i, v=

∑
i θiηi. In these bases, our linearized form

simplifies to

∂G(u;w,v) =
∑
i,j

αjθi∂G(u; ξj ,ηi) =
∑
i,j

αjθi(Suξj , Suλ
−1/2
i ξi)Y =

∑
i

αiθiλ
1/2
i .

Thus, the X -orthonormal trial basis {ξj}j and Y-orthonormal test basis {ηi}i
diagonalize the bilinear form ∂G(u; ·, ·) : {ξj}j is a set of trial (i.e. right) singular
vectors, {ηi}i is a set of test (i.e. left) singular vectors, and {σi}i ≡ {λ1/2

i }i are
the singular values. In particular, β(u) = λ

1/2
1 = σ1.

Let us express the perturbed velocity u′ in terms of the singular triple
{ξj ,ηj , σj}j . We first expand u′ in the basis of {ξj}j , u′ =

∑
j αjξj ; the coefficient

αi then follows from testing the linearized equation against ηi, i.e., ∂G(u;u′,ηi) =∑
j αj∂G(u; ξj ,ηi) = αiσi = 〈f ,ηi〉Y ′×Y (no sum on i). Hence, the perturbed

velocity is given by

u′ =
∑
j

〈f ,ηj〉Y ′×Y
σj

ξj ;

furthermore, from the X -orthonormality of {ξj}j , we have ‖u′‖2X =∑
j(〈f ,ηj〉Y ′×Y/σj)2. In addition, the perturbed output may be expressed as

`(u′) =
∑
j

〈f ,ηj〉Y ′×Y`(ξj)
σj

. (3.11)

Note we adopt the convection that summation over a single index without
explicitly indicated limits implies summation over all modes 1, . . . ,∞ (or finite
truncation in the case of numerical approximation).

We can also express the dual norm ‖f‖Y ′ in terms of {ηi}i. By the
Riesz representation theorem, there exists a unique F ∈Y such that (F,v)Y =
〈f ,v〉Y ′×Y , ∀v ∈Y. By Y-orthonormality of {ηi}i, we have F =

∑
i〈f ,ηi〉Y ′×Yηi.
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Thus, the dual norm of the disturbance f is

‖f‖Y ′ = ‖F‖Y =

(∑
i

〈f ,ηi〉2Y ′×Y

)1/2

. (3.12)

By the same argument, there exists a unique L∈X such that (L,w)X = `(w),
∀w ∈X . By X -orthonormality of {ξj}j , we have L=

∑
i `(ξi)ξi. Thus, the dual

norm of the output functional ` is

‖`‖X ′ = ‖L‖X =

(∑
i

(`(ξi))
2

)1/2

. (3.13)

We will appeal to this space-time generalized SVD and associated perturbed
velocity, perturbed output, and dual norm representations to discuss various
aspects of our space-time formulation in the subsequent sections. We note that
our space-time generalized SVD is related to, but different from, the SVD of the
finite-time linear tangent propagator [24, 8, 7]; the precise relationship is discussed
in Section 4(b).

(e)Limitation of global stability theory: output stability

In the following section, we shall focus on the quantification of stability in
norms weaker than the norms ‖ · ‖X and ‖ · ‖Y ; one particular application of such
a “semi-norm” bound is uncertainty quantification of the output, which we shall
characterize as a “rank-one” norm. We motivate here why this generalization is
required.

Due to the linearity of our output functional, we have `(u+ u′)− `(u) = `(u′).
Arguably the simplest way to bound the output perturbation is to first construct
the global perturbation bound of Proposition 1 and to then appeal to the dual
norm of the output functional,

|`(u′)| ≤ sup
w∈X

|`(w)|
‖w‖X

‖u′‖X = ‖`‖X ′‖u′‖X ≤
‖`‖X ′‖f‖Y ′

β(u)
≡∆

(1)
` .

The expression shows that the output bound scales with the inverse of the inf-
sup constant β(u): the bound considers the least-stable mode (i.e., the inf-sup
infimizer) regardless of whether this mode affects the output. As a result, the
above output bound is, in general, not sharp: there does not exist a perturbation
f for which the bound holds with equality.

To illustrate the lack of sharpness, we express ∆
(1)
` in terms of the singular

triple {ξi,ηi, σi}i. We appeal to β(u) = σ1, (3.12), and (3.13), to write

∆
(1)
` =

1

σ1

(∑
i

(`(ξi))
2

)1/2(∑
i

〈f ,ηi〉2Y ′×Y

)1/2

. (3.14)

A comparison of the bound ∆
(1)
` with the SVD-based output representation

(3.11) reveals that the lack of sharpness arises from the misalignment between
the supremizer of the output functional ` and the infimizer of the stability
constant β(u). In the most extreme case in which `(ξ1) = 0, we immediately lose
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σ2/σ1 in sharpness; more generally, the loss of sharpness will be significant if
|`(ξ1)| � ‖`‖X ′ . The following section provides a construction for sharp output
perturbation bounds and, more generally, any semi-norm quantity.

4. Linear theory: semi-norm generalization

(a)Abstract formulation

Motivated by the lack of sharpness in the quantification of the output
perturbation based on the global inf-sup constant, we consider a generalization
of the global inf-sup that can provide a sharp bound for any semi-norm quantity,
including functional outputs. Toward this end, we consider a decomposition of Y
into Y-orthogonal subspaces

Y1 = {v ∈Y : v=Ez, z ∈D}

Y2 = {v ∈Y : (v, z)Y = 0, ∀z ∈Y1} ,
where E :D→Y is a bounded linear operator for D some suitable Banach space.
Let | · |Y1 be a semi-norm on the test space Y defined by |v|Y1 ≡ ‖v1‖Y , where
v= v1 + v2 with v1 ∈Y1 and v2 ∈Y2. In addition, let | · |X1 be a semi-norm on the
trial space X induced by a symmetric bilinear form (·, ·)X1 , |w|X1 =

√
(w,w)X1 .

We now introduce a semi-norm generalized space-time inf-sup constant:

β̃(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

|w|X1 |v|Y1
. (4.1)

As regards the relationship between the perturbation u′ and the disturbance
f measured in the respective semi-norms, we have the following proposition:

Proposition 2. Let the disturbance f be a bounded functional with respect
to the Y1-norm, i.e., |f |Y ′1 ≡ supv∈Y〈f ,v〉Y ′×Y/|v|Y1 <∞. Then, the velocity
perturbation u′ governed by (3.1) is bounded by

|u′|X1 ≤
1

β̃(u)
|f |Y ′1 ,

where β̃(u) is the generalized semi-norm space-time inf-sup constant defined by
(4.1). This bound is sharp in the sense that there exists a disturbance f for which
the relationship holds with equality.

Proof. The replacement of the infimizer with the solution to (3.1), u′ ∈X , for
f such that ‖f‖Y1 <∞ yields

β̃(u)≤ sup
v∈Y

∂G(u;u′,v)

|u′|X1 |v|Y1
= sup

v∈Y

〈f ,v〉Y ′×Y
|u′|X1 |v|Y1

=
|f |Y ′1
|u′|X1

.

A straightforward manipulation yields the desired inequality.
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We now prove sharpness. We first introduce the supremizers associated with
Y1 and Y2,

S1w ∈Y1 : (S1w,v)Y = ∂G(u;w,v), ∀w ∈X , v ∈Y1 ,

S2w ∈Y2 : (S2w,v)Y = ∂G(u;w,v), ∀w ∈X , v ∈Y2 .

We then express the generalized semi-norm inf-sup constant as

β̃(u) = inf
w∈X

sup
v∈Y

∂G(u;w,v1) + ∂G(u;w,v2)

|w|X1 |v1 + v2|Y1

= inf
w∈X

sup
v∈Y

(S1w,v1)Y + (S2w,v2)Y
|w|X1‖v1‖Y

.

We next proceed by contradiction: suppose w∗ is the infimizer such that
(S2w∗,v2)Y 6= 0 for some v2 ∈Y2; the corresponding supremizer is thus S2w∗ ∈Y2

since this yields ‖S2w∗‖2Y for the numerator but zero for the denominator; the
ratio would then be infinite, and hence w∗ cannot be the infimizer. Thus, the
infimizer must be in the space

X̃ ≡ {w ∈X : ∂G(u;w,v) = 0, ∀v ∈Y2} . (4.2)

By the definition of the supremization operators S1 and S2, any w ∈ X̃ is the
solution to (3.1) for disturbance fw whose Riesz representation is Fw = S1w ∈Y1.
Restricting the infimizer to w ∈ X̃ ,

β̃(u) = inf
w∈X̃

sup
v∈Y

(S1w,v1)Y
|w|X1‖v1‖Y

= inf
w∈X̃

(S1w, S1w)Y
|w|X1‖S1w‖Y

= inf
w∈X̃

‖S1w‖Y
|w|X1

=
‖fw∗∗‖Y ′
‖w∗∗‖X

(4.3)

for w∗∗ the infimizer and fw∗∗ satisfying 〈fw∗∗ ,v〉Y ′×Y = (S1w∗∗,v)Y , ∀v ∈Y.
Hence the bound is sharp. �

While the above proof is mathematically straightforward, the infimization
problem posed on the constrained space X̃ defined by (4.3) is computationally
cumbersome for some choices of D and E. In the following proposition (and its
corollary), we present a form of the generalized semi-norm inf-sup constant that
is more amenable to computation.

Proposition 3. The generalized inf-sup constant associated with the semi-
norms | · |Y1 and | · |X1 is equivalent to

β̃(u) = inf
F∈Y1

‖F‖Y
|G−1Y F |X1

.

Proof. For a given w ∈X , let Fw ∈Y satisfy (Fw,v)Y = 〈Gw,v〉Y ′×Y , ∀v ∈Y;
in other words, Gw= Y Fw in Y ′. Then,

β̃(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

|w|X1 |v|Y1
= inf

w∈X
sup
v∈Y

〈Gw,v〉Y ′×Y
|w|X1 |v|Y1

= inf
F∈Y

sup
v∈Y

(F,v)Y
|G−1Y F |X1 |v|Y1

= inf
F∈Y

sup
v∈Y

(F,v)Y
|G−1Y F |X1‖v1‖Y

.



16

We again proceed by contradiction: assume the infimizer F∗ = F1 + F2 /∈Y1 (that
is, F2 6= 0); then the supremizer is v= v1 + v2 for v1 = 0 and v2 = F2 since the
numerator would be ‖F2‖2Y while the denominator would vanish; the ratio would
thus be infinite, and hence the infimizer must be in Y1. In addition, if F ∈Y1,
then (F,v)Y = (F,v1)Y , ∀v= v1 + v2 ∈Y, by orthogonality. Thus,

β̃(u) = inf
F∈Y1

sup
v∈Y

(F,v1)Y
|G−1Y F |X1‖v1‖Y

= inf
F∈Y1

‖F‖Y
|G−1Y F |X1

,

where the last equality follows from the Cauchy-Schwarz inequality. �

We have the following corollary to Proposition 3:

Corollary 1. The generalized inf-sup constant associated with the semi-
norms | · |Y1 and | · |X1 may be expressed as

β̃(u) = inf
d∈D

‖Ed‖Y
|G−1Y Ed|X1

, (4.4)

where E :D→Y is the operator associated with Y1 as introduced in Proposition 2.

Proof. The equivalence follows from the fact that every member F ∈Y1 may
be expressed as F =Ed for some d∈D by the construction of Y1. �

The inf-sup problem (4.4) is associated with a symmetric positive-definite
eigenproblem: Find (χi, λ̃i)∈D × R such that

(Eχi, Ed)Y = λ̃i(G
−1Y Eχ, G−1Y Ed)X1 , ∀d∈D . (4.5)

The inf-sup constant is the square root of the minimum eigenvalue, i.e., β̃(u) =

λ̃
1/2
i . In addition, if we introduce operators

E∗ :Y ′→D′, 〈Ed,v〉Y×Y ′ = 〈d, E∗v〉D×D′ , ∀d∈D, v ∈Y ′ ,

X1 :X →X ′, 〈X1w,v〉X ′×X = (w,v)X1 , ∀w,v ∈X ,

then we can write the eigenproblem in operator form: Find (χi, λ̃i)∈D × R such
that

E∗Y Eχi = λ̃iE
∗Y G−∗X1G

−1Y Eχi in D′ . (4.6)

Let us make a few remarks.
Remark 3. The “full-norm” X -Y inf-sup considered in Section 3 corresponds

in (4.6) to the spaces and operators D=Y, E = Id, and X1 =X. In this case,
a straightforward manipulation reduces (4.6) to (3.10), and, in particular, the
eigenfunction χi of (4.6) is the test (i.e. left) singular vector of ∂G in (X ,Y), ηi.

Remark 4. The operator form (4.6) admits direct transcription to
a computational procedure. Similarly to the full-norm X -Y inf-sup
eigenproblem (3.10), the semi-norm eigenproblem (4.6) may be solved efficiently
by a Krylov space method.
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(b) Initial disturbance-to-final perturbation stability

As the first application of the semi-norm generalized inf-sup framework, we
consider the classical hydrodynamic stability problem: bound the perturbation
in the final condition as a function of the initial disturbance. To this end, we
choose our disturbance space D= (L2(Ω))d and the extension operator E :D→
Y with Ez = [0, z], where we recall that, for v ∈Y, v= [v(1),v(2)]∈L2(I;V )⊕
(L2(Ω))d ≡Y. The corresponding space Y1 ⊂Y is

Y1 = {v ∈Y : v= [0,v(2)], v(2) ∈ (L2(Ω))d} ,

Y2 = {v ∈Y : v= [v(1), 0], v(1) ∈L2(I;V )} .
The associated semi-norm is

|v|Y1 = ‖[0,v(2)]‖Y = ‖v(2)‖L2(Ω) .

We choose for the trial-space semi-norm

|w|X1 = ‖w(T )‖L2(Ω) ,

which measures the perturbation at the final time.
We now note that the associated supremizer S1w ∈Y1 = (L2(Ω))d is

(S1w,v
(2))L2(Ω) = ∂G(u;w, [0,v(2)]) = (w(0),v(2))L2(Ω), ∀v(2) ∈ (L2(Ω))d ,

which implies S1w=w(0). By (4.1) and (4.3), the associated inf-sup constant for
the initial-final stability is

β̃IF(u) = inf
w∈X

sup
v∈Y

∂G(u;w,v)

‖w(T )‖L2(Ω)‖v(2)‖L2(Ω)

= inf
w∈X̃IF

‖w(0)‖L2(Ω)

‖w(T )‖L2(Ω)
, (4.7)

where the application of (4.2) to this case yields

X̃IF = {w ∈X : ∂G(u;w, [v(1), 0]) = 0, v(1) ∈L2(I;V )} . (4.8)

It follows that w ∈ X̃IF solves the homogeneous equation subject to any given
initial condition w(0)≡ f (2). By Proposition 2, the semi-norm inf-sup provides a
sharp bound

‖u′(T )‖L2(Ω) ≤
1

β̃IF(u)
‖f (2)‖L2(Ω) =

1

β̃IF(u)
‖u′(0)‖L2(Ω) ,

with the equality realized for f (2)
∗ =w∗(0) for w∗ the infimizer.

Remark 5. The eigenmodes and eigenvalues of the initial-final inf-sup stability
problem are related to the singular values and singular vectors, respectively, of
the linear tangent propagator over (0, T ].

(c)Output stability: rank-one inf-sup constant

We now revisit the problem that motivated the general semi-norm inf-sup
stability framework: output uncertainty quantification. Specifically, we wish to
bound the perturbation in a functional output `(u′) due to disturbances in
both the initial condition and the dynamics. Since we consider the effect of all
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disturbances, we have E = Id, Y1 =Y, and Y2 = ∅. The associated norm for the
test space and semi-norm for the trial space are

|v|Y1 = ‖v‖Y and |w|X1 = |`(w)| .
The resulting rank-one inf-sup constant for the output is

β`(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

|`(w)|‖v‖Y
. (4.9)

We suggest the name rank-one inf-sup for the stability constant because the
output |`(·)| plays the role of a rank-one semi-norm.

The rank-one inf-sup constant is the square root of the minimum eigenvalue
of the eigenproblem: Find (ξ̂i, λ̂i)∈X × R such that

(Suξ̂i, Suw)Y = λ̂i`(ξ̂i)`(w), ∀w ∈X . (4.10)

Without loss of generality, we scale ξ̂i such that `(ξ̂i) = 1. As shown in
Appendix B, the eigenfunction associated with the minimum eigenvalue is closely
related to the adjoint of the output.

By Proposition 2, the rank-one inf-sup provides a sharp bound

|`(u′)| ≤ 1

β`(u)
‖f‖Y ′ ≡∆

(2)
` . (4.11)

To compare the sharpness of the output perturbation bound based on the rank-
one inf-sup, ∆

(2)
` defined by (4.11), and the output perturbation bound based on

the global inf-sup, ∆
(1)
` defined by (3.14), we express ∆

(2)
` in terms of the singular

triple {ξi,ηi, σi}i. Toward this end, we express w ∈X in terms of X -orthonormal
trial basis {ξi}i, w=

∑
i αiξi. We then write

β`(u)−2 = sup
w∈X

`(w)2

(Suw, Suw)Y
= sup

α

(∑
j αj`(ξj)

)2∑
i,j αiαj(Suξj , Suξi)Y

= sup
α

(∑
j αj`(ξj)

)2∑
i σ

2
jα

2
j

.

We can construct an upper bound for β`(u)−2: we invoke the Cauchy-Schwarz
inequality to the numerator to obtain (

∑
j αj`(ξj))

2 = (
∑

j σjαjσ
−1
j `(ξj))

2 ≤
(
∑

j σ
2
jα

2
j )(
∑

j σ
−2
j `(ξj)

2); we then cancel the first term with the denominator
to arrive at the upper bound β`(u)−1 ≤

∑
j `(ξj)

2/σ2
j . On the other hand, we

can construct a lower bound: we choose a particular candidate αi = `(ξi)/σ
2
i to

deduce β`(u)−2 ≥ (
∑

j `(ξj)
2/σ2

j )
2/(
∑

j `(ξj)
2/σ2

j ) =
∑

j `(ξj)
2/σ2

j . As upper and
lower bound coincide, we conclude

β`(u)−1 =

∑
j

`(ξj)
2

σ2
j

1/2

.
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Thus, our upper bound (4.11) can be expressed as

∆
(2)
` ≡

(∑
i

1

σ2
i

(`(ξi))
2

)1/2(∑
i

〈f ,ηi〉2Y ′×Y

)1/2

. (4.12)

Unlike ∆
(1)
` , the perturbation bound ∆

(2)
` does not amplify the energy in the

disturbance ‖f‖Y ′ by the stability constant of the least-stable mode; rather, each
mode of the output is attenuated by the respective singular value. This bound
can be significantly sharper than ∆

(1)
` if the output functional is insensitive to the

least-stable modes, i.e. |`(ξi)| � ‖`‖X ′ for those modes with small σi.
Remark 6. The generalized semi-norm formulation permits construction of

a sharp error bound for multiple functional outputs based on a single inf-sup
constant. For instance, given linear output functionals `(j) ∈X , j = 1, . . . ,M ,
we may form a semi-norm ‖w‖2X1

=
∑M

j=1(`(j)(w))2, find the semi-norm inf-sup
constant β̃{`(j)}j (u), and construct a bound ‖f‖Y ′/β̃{`(j)}j (u). In this sense the
semi-norm is more attractive than the more standard adjoint approach discussed
in Appendix B.

Remark 7. We can further improve the stability of the output by “filtering”
the least stable modes. Our strategy derives directly from the space-time
output bound modal decomposition. By the X -orthonormality of the space-time
eigenmodes {ξ}i, we can define an M -mode-filtered output functional ˆ̀

M ∈X ′ as

ˆ̀
M = `−

M∑
i=1

`(ξi)Xξi, in X ′ ,

where X :X →X ′ is the operator defined in (3.9). For such a filtered output, we
realize

∆
(2)
ˆ̀
M

=

(∑
M+1

1

σ2
i

(`(ξi))
2

)1/2(∑
i

〈f ,ηi〉2Y ′×Y

)1/2

.

The modified output is significantly less sensitive to the perturbation f if the
singular values σ1 ≤ · · · ≤ σM are well-separated from σM+1 ≤ . . . . It would remain
to identify the relevance of the filtered output in any particular application.

(d)Optimal control

We consider an application of the semi-norm generalized inf-sup stability
framework to optimal control. Here, D is the space of control functions, and the
operator E :D→Y defines the realizable shape of the control inputs. The linear
perturbation equation (3.1) for a given control c∈D is as follows: Find u′ ∈X
such that

∂G(u;u′,v) = (Ec,v)Y , ∀v ∈Y ;

our goal is to control a single output quantity `(u′). Accordingly, we set ‖w‖X1 =
|`(w)|.
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To deduce the space-time optimal control, we reinterpret the least-stable mode
and the associated disturbance as the most-sensitive mode and the associated
control input. The generalized space-time inf-sup constant (4.1) in this context
yields

β̃OC(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

|`(w)||v|Y1
= inf

w∈X
sup
d∈D

∂G(u;w, Ed)

|`(w)|‖Ed‖Y
≤ sup

d∈D

∂G(u;u′, Ed)

|`(u′)|‖Ed‖Y

= sup
d∈D

(Ec, Ed)Y
|`(u′)|‖Ed‖Y

=
‖Ec‖Y
|`(u′)|

.

It follows that |`(u′)| ≤ β̃OC(u)−1‖Ec‖Y , ∀c∈D. By Proposition 2, there exists
a control (direction) c∗ for which the relationship holds with equality: |`(u′∗)|=
β̃OC(u)−1‖Ec∗‖Y . This optimal control c∗ is precisely the supremizer of the inf-
sup infimizer; the associated change in the flow takes the shape of the inf-sup
infimizer. Note that, by appealing to Corollary 1, the optimal control (and the
associated sensitivity) may be computed directly from the eigenproblem (4.5) (or
(4.6)).

We note that β̃OC(u)−1 = |`(u′∗)|/‖y∗‖Y , y∗ =Ec∗, quantifies the largest
possible change in |`(u′)| for given control effort (measured as ‖y∗‖Y). Within
linear theory, if we wish to achieve a prescribed change in the output of magnitude
δ, the most effective control is αy∗ ∈D, where the scaling factor α∈R satisfies
|α|= βOC(u)δ. The sign of α must be deduced independently: one sign will give
the largest per-unit-control increase and the other sign the largest per-unit-control
decrease. Of course, within the real (nonlinear) flow control context, our prediction
for the amplitude will only be accurate if the prescribed change in the output is
small enough such that nonlinear terms are unimportant.

5. Nonlinear theory

(a)Nonlinear perturbation equations

We now wish to develop a theory which characterizes nonlinear propagation of
perturbations. We consider the fully-nonlinear perturbation dynamics governed
by

G(ũ,v) = 〈f ,v〉Y ′×Y , ∀v ∈Y , (5.1)

where, as before, f = [f (1),f (2)]∈Y ′ for f (1) ∈L2(I;V ′) and f (2) ∈ (L2(Ω))d the
disturbances to the dynamics and the initial condition, respectively.

(b)Nonlinear global bound: Brezzi-Rappaz-Raviart theory

We wish to quantify the upper bound of the velocity perturbation ‖ũ− u‖X
in terms of the energy in the disturbance ‖f‖Y ′ . To this end, we appeal to the
Brezzi-Rappaz-Raviart a posteriori error estimation theory [6]. Note that, in the
space-time context, unlike in the space-only context, the theory applies without
complications arising from branch isolation of nonlinear solution trajectories.
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Proposition 4 (Brezzi-Rappaz-Raviart perturbation bound). Let γ be the
continuity constant that satisfies

C(w, z,v)≤ γ2‖w‖X ‖z‖X ‖v‖Y , ∀w, z ∈X , v ∈Y . (5.2)

Suppose the disturbance ‖f‖Y ′ is sufficiently small in the sense that

‖f‖Y ′ <
β2(u)

4γ2
, (5.3)

where β(u) is the inf-sup constant defined in (3.3). Then, the perturbation in the
solution is bounded by

‖ũ− u‖X ≤
2‖f‖Y ′
β(u)

. (5.4)

Proof. The proposition is a specialization of the more general result of Brezzi et
al. [6] to a quadratic nonlinearity; the proof follows accordingly as shown for
example in Veroy and Patera [38]. We provide the proof in Appendix C. �

The Brezzi-Rappaz-Raviart statement provides a rigorous nonlinear bound of
the velocity perturbation for a given small but finite-amplitude disturbance f
in the initial condition or the dynamics. The amplitude of the disturbance for
which the theory is valid is precisely governed by (5.3); note that the maximum
amplitude of the perturbation is a function of the space-time inf-sup constant,
which measures the stability of the flow, and the continuity constant, which
measures the extent of nonlinearity. As the bound statement (5.4) is of the same
form as that of the linear theory (identical save a factor of two), we can interpret
(5.3) as providing a condition under which the linear theory is valid. In essence, the
proposition permits a non-asymptotic (finite-amplitude) interpretation of linear
stability.

For the Navier-Stokes equations with the quadratic convection operator and
in particular our C as expressed in (2.11), the continuity constant of (5.2) is given
by

γ2 =Re · ρ2 ,

where ρ2 is the L4(I;L4(Ω))-X Sobolev embedding constant

ρ= sup
w×X

‖w‖L4(I;L4(Ω))

‖w‖X
, (5.5)

and ‖w‖4L4(I;L4(Ω)) ≡
∫
I

∫
Ω(wiwi)

2dxdt. For our choice of the X norm, it can
be shown [25] (and numerically confirmed in the sense of asymptotic mesh
independence [40]) that, in two dimensions, the continuous embedding indeed
holds and hence ρ is bounded; we restrict attention in this paper to two-
dimensional flows. However, in three dimensions, the continuous embedding no
longer holds; future work will consider alternative norms. An efficient fixed-point
algorithm for evaluating the constant has been devised by Deparis [10] and in
particular employed in the space-time setting in [40].

Remark 8. The BRR perturbation bound permits a rigorous quantification of
nonlinear hydrodynamic stability by identifying the amplitude condition under
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which the linear theory is valid. The approach is different from a direct nonlinear
analysis of the most sensitive finite-amplitude initial disturbance conducted, for
example, by Pringle et al. [28] and Monokrousos et al. [26]. The latter, unlike
our BRR perturbation bound, on the one hand incorporates fully nonlinear
information, but on the other hand does not provide a rigorous global bound
statement in the presence of multiple local optima.

(c)Nonlinear output bounds for quadratic outputs

For our nonlinear theory, we consider a quadratic output functional ` :X →R
of the form

`(w) = `1(w) + `2(w,w) ,

where `1 ∈X ′ and `2 :X × X →R is a symmetric, bounded bilinear form with a
continuity constant γ2

`2 , i.e.,

`2(w,w)≤ γ2
`2‖w‖

2
X , ∀w ∈X . (5.6)

The output functional linearized about z is

∂`(z;w) = `1(w) + 2`2(z,w) .

Accordingly, we redefine the rank-one inf-sup constant as

β`(u)≡ inf
w∈X

sup
v∈Y

∂G(u;w,v)

|∂`(u;w)|‖v‖Y
. (5.7)

This generalization of the output to the quadratic form enables us to consider
quantities such as the time-averaged dissipation,

∫
I

∫
Ω∇ui · ∇uidxdt.

The following proposition establishes a bound on output perturbation due to
finite-amplitude disturbances in the initial condition and the dynamics.

Proposition 5. Suppose the disturbance is sufficiently small in the sense that
(5.3) is satisfied. Then, the perturbation in the output quantity is bounded by

|`(ũ)− `(u)| ≤ ‖f‖Y
′

β`(u)
+ 4

(
γ2

β`(u)
+ γ2

`2

) ‖f‖2Y ′
β(u)2

. (5.8)

where β`(u) is the rank-one inf-sup constant, (5.7), γ is the continuity constant
for C, (5.2), γ`2 is the continuity constant for `2, (5.6), and β(u) is the inf-sup
constant.

Proof. See Appendix D. �

6. Demonstration: eddy-promoter channel

We apply the hydrodynamic stability analysis developed in the previous sections
to the eddy-promoter channel flow described in Section 2(a). The unsteady Navier-
Stokes equations are discretized by a P2-P1 Taylor-Hood continuous Galerkin
discretization in space and a P2 discontinuous Galerkin discretization in time;
details are provided in [40]. The space-time L4-X embedding constant for the
eddy-promoter channel geometry is ρ≈ 0.420. We note that many of the earlier
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(a) Case I (Re= 1)

 

 

(b) Case II (Re= 150)

 

 

(c) Case III-A (Re= 300, steady-periodic)

 

 

(d) Case V-A (Re= 600, steady-periodic)

Figure 2. Snapshots of several base states: velocity streamlines.

finite-time stability analyses focus on three-dimensional flow instability [9, 30, 36,
35, 32]. Our purpose here is only to demonstrate the generality of our formulation
and in particular to emphasize disturbances to dynamics especially for unsteady
base flows; hence we restrict attention to less computationally intensive two-
dimensional flow. Future work will address the three-dimensional case.

We study variation in the space-time stability constant for five different values
of the Reynolds number, with each case assigned a Roman numeral: Re= 1, which
results in essentially Stokes flow (Case I); Re= 150, which results in a moderate
Reynolds number steady flow as t→∞ (Case II); and Re= 300, 450, and 600,
which exhibit steady-periodic behavior in time as t→∞ (Case III, IV, and V,
respectively). For Cases I and II, the base flow u is taken to be the respective
steady state solution. For Cases III, IV, and V, we consider two different base
flows u, distinguished by letters A and B: the steady-periodic state (for some
arbitrary phase) that naturally arises from a long-time integration of the Navier-
Stokes equations (Sub-case A); and the steady but unstable equilibrium state
(Sub-case B). The combination of the Reynolds number and sub-case designations
yields the particular case number; for example, the Re= 450 case with the steady-
periodic base state is denoted as Case IV-A. Note that Sub-case A is the physically
meaningful analysis; Sub-case B is considered for purposes of comparison and
illustration. The time integration is carried out to T = 1/4 diffusive time units,
which corresponds to many convective time units (in all cases except for Case I,
which is not of primary interest). Representative velocity fields for selected cases
are shown in Figure 2. (Note that Cases III-B, IV-B, and V-B do correspond to
a solution of the initial value problem (2.7), though in practice these unstable
states are obtained by direct calculation of the steady equations.)

Figure 3 shows the variation in the global inf-sup constant, defined by (3.3),
with the Reynolds number. The space-time inf-sup constant is unity for the Stokes
flow (c.f. proof in [40]) and, in general, decays with the Reynolds number. The
result demonstrates that a small disturbance f can be more rapidly amplified in
higher Reynolds number flows, as expected. The inf-sup constant associated with
the unstable equilibrium base flow decays rapidly with the Reynolds number,
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Figure 3. The (global) inf-sup stability constant for different base flows considered.

decreasing to β(u)≈ 1.0× 10−5 for Case V-B. On the other hand, the inf-sup
constant for the (more physically relevant) steady-periodic base flow — which
in fact corresponds to nonlinear saturation of the linear unstable mode — is
much better controlled: β(u)≈ 1.7× 10−3 for Case V-A. The result confirms
that the linearized theory based on the unstable equilibrium condition grossly
overestimates the sensitivity of (saturated) periodic flows, as might be expected.

In order to understand the difference in the inf-sup constant behavior for the
two base flows, we show in Figure 4 the inf-sup infimizer (i.e., the least-stable
mode) for Case V-A and Case V-B. Both infimizers are effectively traveling waves.
The snapshot of the inf-sup infimizer for Case V-B at t= T is similar to the
least-stable (Tollmien-Schlichting-like) normal mode associated with the unstable
equilibrium condition reported by Karniadakis et al. [21]; the temporal history
demonstrates that this mode grows exponentially in time. The spatial structure
of the inf-sup infimizer for Case V-A still bears some resemblance to a Tollmien-
Schlichting wave; however, and more importantly, the time history demonstrates
that the mode grows linearly in time — indicative of resonance.

Figure 5 shows the variation in the rank-one inf-sup constant associated with
the two outputs. Recall that the first output is the flowrate represented as the
integral of the x-velocity over the entire domain, and the second output is the
regularized aft-cylinder local x-velocity. We report relative sensitivity by scaling
each rank-one inf-sup constant by the respective output value. Not surprisingly,
the flowrate output is less sensitive to disturbances than the local velocity output.
Both output inf-sup constants are significantly less sensitive to the Reynolds
number than the global inf-sup constant. The result suggests that, while the
growth of the least-stable mode increases rapidly with Reynolds number (as
implied by the rapid decay of β(u)), the impact of this growth on time-averaged
outputs is relatively small (as implied by the slow decay of β`(u)). The result
confirms our assertion that time-averaged outputs are not strongly influenced by
the least-stable, traveling-wave mode; for instance, for the flowrate output of Case
V-A, |`(ξ1)| ≈ 2.3× 10−4�‖`‖X ′ ≈ 9.5× 10−2.

The Brezzi-Rappaz-Raviart threshold value, β2/(4γ2), varies from O(1) for
low Reynolds number to O(10−8) for Re= 600. While the BRR theory provides
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(a) t= 0, Case V-A

 

 

(b) t= 0, Case V-B
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(d) t= T , Case V-B
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Figure 4. The (global) inf-sup infimizers ξ1 for the steady-periodic base flow (Case V-A) and
the unstable equilibrium base flow (Case V-B) at Re= 600.
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Figure 5. Output rank-one inf-sup constants for the eddy-promoter channel flow.
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rigorous bounds for the velocity perturbation governed by the full nonlinear
dynamics, for high Reynolds number flows, application is clearly limited to very
small disturbances.

Remark 9. As both the global and output bounds developed are (at least
asymptotically) sharp, they cannot be improved for the particular norms
considered in this work. Specifically, the decrease of the BRR threshold with
the Reynolds number suggests that there may be a limit in bounding nonlinear
growth of perturbations in the deterministic sense. Thus, statistical quantification
of the perturbation — for example by incorporating ergodic theory (e.g. [12, 22])
or by appealing to recent work on sensitivity calculation for chaotic systems [39]
— may be crucial to constructing output perturbation bounds for higher Reynolds
number and eventually turbulent flows.
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A. Asymptotic behaviors of the space-time inf-sup constant for simple
representative ODEs

In this appendix, we consider the asymptotic behavior of the space-time inf-sup
constant for some simple ODEs using analytical tools. Through the analysis, we
will demonstrate that the behavior of the inf-sup constant indeed agrees with the
known worst-case perturbation growth behavior for the ODEs considered.

(a)Preliminary

The ODEs we consider are of the form

ẇ + αw= 0, t∈ I ≡ (0, T ] ,

for some fixed parameter α∈C. The appropriate function space for analyzing the
ODE is V = `2 (the vector `2 norm). To simplify the analysis, we restrict the
trial space to functions that vanish at t= 0; consequently, X =H1

(0)(I; `2) and
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Y =L2(I; `2). We have

∂G(w, v) =

∫T
0
v∗(ẇ + αw)dt,

‖w‖2X =

∫T
0

(
|ẇ|2 + |w|2

)
dt+ |w(T )|2,

‖v‖2Y =

∫T
0
|v|2dt ,

where v∗ is the complex conjugate of v. We then identify the supremizer as v=
ẇ + αw to express the inf-sup constant as

β2 = inf
w∈X

∫T
0 (ẇ∗ + α∗w∗)(ẇ + αw)dt∫T

0 (|ẇ|2 + |w|2) dt+ |w(T )|2
.

We have the associated eigenproblem: Find (ξ, λ)∈C1(I)× R such that∫T
0
ẇ∗ξ̇ + α∗w∗ξ̇ + αẇ∗ξ + |α|2w∗ξdt= λ

(∫T
0

(
ẇ∗ξ̇ + w∗ξ

)
dt+ w∗(T )ξ∗(T )

)
,

∀w ∈C1(I) .

We then invoke integration by parts to arrive at the strong form of the
eigenproblem

−(1− λ)ξ̈ + (α∗ − α)ξ̇ + (|α|2 − λ)ξ = 0 , (A.1)

ξ(0) = 0, (1− λ)ξ̇(T ) + (α− λ)ξ(T ) = 0 . (A.2)

We now consider two special cases.

(b)Exponentially unstable system: α= ρ∈R, ρ< 0, T →∞
The first case we consider is unstable dynamics with α= ρ∈R, ρ< 0, with

T →∞. Let us represent eigenvectors as ξ(t) = eσt for some σ and eigenvalues as
λ= ε, where we expect ε→ 0 as ρT →−∞. Then, (A.1) becomes

−(1− ε)σ2 + (ρ2 − ε) = 0 .

Solving the quadratic equation and using asymptotic expansions (ε→ 0), we
deduce σ± is

σ± =±σ=±
(
ρ2 − ε
1− ε

)1/2

≈±|ρ|
(

1 +
ε

2

(
1− 1

ρ2

))
.

Given σ± ∈R, we represent eigenvectors as ξ(t) = c1 sinh(σt) + c2 cosh(σt). The
initial condition requires c2 = 0, hence, without loss of generality, ξ(t) = sinh(σt).



28

The final condition (A.2) requires

(1− ε)σ cosh(σT ) + (ρ− ε) sinh(σT ) = 0 .

We rearrange the expression and substitute the approximation for σ to obtain

tanh

(
|ρ|T

(
1 +

ε

2

(
1− 1

ρ2

)))
≈ (1− ε)

(
1− ε

|ρ|

)(
1 +

ε

2

(
1− 1

ρ2

))
.

We then obtain the asymptotic expansion (as T →∞, ε→ 0)

1− 2e−2|ρ|T e−|ρ|Tε(1−ρ
−2) ≈ 1− ε

2

(
1 +

1

|ρ|

)2

.

If we assume |ρ|Tε→ 0, then

ε= 4(1 + |ρ|−1)−2e−2|ρ|T ;

we subsequently confirm that |ρ|Tε= 4|ρ|T (1 + |ρ|−1)−2e−2|ρ|T → 0 as T →∞.
Consequently, the space-time inf-sup constant behaves asymptotically as

β = λ1/2 = ε1/2 = 2(1 + |ρ|−1)−1e−|ρ|T =O(e−|ρ|T ), ρ < 0, T →∞ .

Thus, for a system in which the perturbation grows exponentially with time, the
space-time inf-sup constant decays exponentially with final time. We also note
that the infimizer, sinh(σt), grows exponentially in time.

(c)Purely oscillatory system: α= iζ ∈ iR, ζ > 0, T →∞
The second case we consider is neutrally stable oscillatory dynamics: α= iζ ∈

iR, ζ > 0, and T →∞. As before, substituting ξ(t) = eσt and taking λ= ε, the
eigenproblem (A.1) becomes

−(1− ε)σ2 − 2iζσ + (ζ2 − ε) = 0 .

Evaluating the quadratic equation and making asymptotic approximations,

σ± =
−iζ ±

√
−ζ2 + (1− ε)(ζ2 − ε)

1− ε
≈ (1 + ε)(−i(ζ ±

√
ε(ζ2 + 1))) .

Enforcing the condition ξ(0) = 0, our eigenfunction is of the form

ξ(t) = e−iζ(1+ε)t sin(
√
ε(ζ2 + 1)(1 + ε)t) .

Substitution of the expression to the final condition (A.2) yields, after tedious but
straightforward manipulation,

iζε2 sin(θ) + (1− ε2)
√
ε(ζ2 + 1) cos(θ)− ε sin(θ) = 0 ,

where θ=
√
ε(ζ2 + 1)(1 + ε)T . As ε→ 0, the second term is dominant. Thus, we

require cos(θ) = 0 as ε→ 0. In other words,√
ε(ζ2 + 1)(1 + ε)T = π

(
1
2 + n

)
, n∈Z .
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We invoke asymptotic approximations and chose the minimizer n= 0 to obtain

β = λ1/2 = ε1/2 =
π

2
√
ζ2 + 1T

=O(T−1), as ζ→∞ .

Thus, the inverse of the space-time inf-sup constant grows linearly with time. This
is consistent with the fact that excitation of a purely oscillatory system leads to
resonance, in which the amplitude of the oscillation grows linearly with time.
Indeed, the frequency of oscillation associated with the eigenfunction is ζ.

B. Relationship between the rank-one inf-sup and adjoint

We present another sharp output bound based on an adjoint. Recall that, for a
given output characterized by (2.14) with g= (gI , gT ), the adjoint Navier-Stokes
equations written in the strong form is

−ψt + Re(−(u ·∇)ψ +∇u ·ψ) =−2∇q +∇2ψ + gI , in Ω× I

∇ ·ψ= 0, in Ω× I,

where (∇u ·ψ)i ≡ ∂uj
∂xi
ψj , and q is the continuity adjoint. The associated

boundary conditions are

ψ(x, t) = 0 on Γ3 and Γ4

ψ(x+ Le1, t) =ψ(x, t), on Γ1

∂ψ

∂x1
(x+ Le1, t) =

∂ψ

∂x1
(x, t), on Γ1

q(x+ Le1, t) = q(x, t), on Γ1 ,

and the terminal condition is

ψ(x, t= T ) = gT in Ω .

The adjoint equation is solved backward in time starting from the terminal
condition gT and forced by gI .

We may express the adjoint Navier-Stokes equations in a space-time weak
form: Find ψ ∈Y such that

∂G(u;w,ψ) = `(w), ∀w ∈X . (B.1)

Note the reversal of the trial-test roles played by the spaces X and Y. We assume
well-posedness.

The operator form of this equation is

G∗ψ= ` in X ′ ,

where G∗ :Y →X ′ is the adjoint operator defined already in (3.7).
Using the adjoint, we arrive at the following output perturbation bound:
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Proposition 6. For any arbitrary disturbance f and solution u′ to (3.1), the
perturbation in the output `(u′) is bounded by

|`(u′)| ≤ ‖ψ‖Y‖f‖Y ′ ≡∆
(3)
` .

The bound is sharp in the sense that, for any `, there exists a disturbance f for
which the relationship holds with equality.

Proof. The bound is a direct consequence of the definition of the adjoint,

|`(u′)|= |∂G(u;u′,ψ)|= |〈f ,ψ〉Y ′×Y | ≤ ‖ψ‖Y‖f‖Y ′ .
The sharpness follows from the definition of the dual norm and the Riesz
representation theorem. �

While derived from a different principle, we have the following proposition
regarding the rank-one inf-sup and adjoint-based bound:

Proposition 7. The rank-one inf-sup output bound ∆
(2)
` and the adjoint-based

output bound ∆
(3)
` are identical. In particular, β`(u) = ‖ψ‖−1

Y .

Proof. By definition of the adjoint and the supremizing operator,

β`(u) = inf
w∈X

sup
v∈Y

∂G(u;w,v)

|∂G(u;w,ψ)|‖v‖Y
= inf

w∈X
sup
v∈Y

(Suw,v)Y
|(Suw,ψ)Y |‖v‖Y

= inf
w∈X

‖Suw‖Y
|(Suw,ψ)Y |

=
1

‖ψ‖Y
,

where the last equality follows from noting that Suw=ψ is the infimizer. �

Remark 10. Note that the infimizer of the rank-one inf-sup constant, ξ̂1 defined
by the eigenproblem (4.10), is related to the adjoint by Suξ̂1 = ‖ψ‖−2

Y ψ, and hence
furthermore the adjoint is the supremizer associated with the rank-one inf-sup
infimizer. (The scaling factor of ‖ψ‖−2

Y is required to satisfy the normalization
condition: (Suξ̂1, Suξ̂1)Y = ‖ψ‖−2

Y = λ̂2
1.) This also implies that the least stable

mode may be explicitly expressed as ξ̂1 = ‖ψ‖−2
Y S−1

u ψ. In other words, we do not
need an iterative procedure to locate the minimum eigenvalue (and the associated
eigenfunction) of (4.10).

Remark 11. We may consider an alternative proof of the β`-‖ψ‖−1
Y equivalence

by appeal to the generalized SVD. We have already shown that β−2
` =∑

i σ
−2
i `(ξi)

2. We now express the adjoint ψ ∈Y in terms of the Y-orthonormal
test basis {ηi}i, ψ=

∑
i θiηi. From the definition of the adjoint and the SVD

triple, `(ξj) = ∂G(u; ξj ,ψ) =
∑

i θi∂G(u; ξj ,ηi) = θjσj . Thus, ψ=
∑

i σ
−1
i ηi`(ξj)

with norm ‖ψ‖2Y =
∑

i σ
−2
i (`(ξj))

2. Thus, β−1
` = ‖ψ‖Y .
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C. Proof of Brezzi-Rappaz-Raviart perturbation bounds

We prove Proposition 4. Let H :X →X be a map satisfying

∂G(u;H(w),v) = ∂G(u;w,v)− G(w,v) + 〈f ,v〉Y ′×Y , ∀v ∈Y .

The above equation is well-posed since ∂G(u; ·, ·) is inf-sup stable; ũ is a fixed
point of H.

We note that

∂G(u;H(w1)−H(w2),v) = ∂G(u;w1 −w2,v)− (G(w1,v)− G(w2,v))

= ∂G(u;w1 −w2,v)− ∂G
(

1

2
(w1 +w2);w1 −w2,v

)
= C(2u− (w1 +w2),w1 −w2,v) .

By the definition of the inf-sup constant and the continuity constant, it follows
that

β(u)‖H(w1)−H(w2)‖X ≤ γ2‖2u− (w1 +w2)‖X ‖w1 −w2‖X .

Thus, H is a contraction mapping for γ2β(u)−1‖2u− (w1 +w2)‖X < 1 or,
conservatively, for w1 and w2 in the ball B(u;α1) with α1 ∈ [0, β(u)/(2γ2)).

In addition, we have

∂G(u;H(w)− u,v) = ∂G(u;w − u,v)− (G(w,v)−G(u,v)) + 〈f ,v〉Y ′×Y

= ∂G(u;w − u,v)− ∂G
(

1

2
(w + u);w − u,v

)
+ 〈f ,v〉Y ′×Y

= C(u−w,w − u,v) + 〈f ,v〉Y ′×Y .
By the definition of the dual norm, the inf-sup constant, and the continuity
constant, we have

β(u)‖H(w)− u‖X ≤ ‖f‖Y ′ + γ2‖w − u‖2X .

Simple algebraic manipulation shows that, provided that 4γ2β(u)−2‖f‖Y ′ < 1
— this condition is precisely the BRR condition (5.3) — we may choose
α2 ∈ 1

2β(u)γ−2[1−
√

1− 4γ2β(u)−2‖f‖Y ′ , 1 +
√

1− 4γ2β(u)−2‖f‖Y ′ ] such that
H maps B(u;α2) to itself. By the contraction mapping theorem, it follows that
ũ is unique in the ball B(u;β(u)/(2γ2)) and furthermore

‖ũ− u‖X ≤
β(u)

2γ2

(
1−

√
1− 4γ2‖f‖Y ′

β(u)2

)
≤ 2‖f‖Y ′

β(u)
,

which is the BRR bound (5.4).
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D. Proof of quadratic output bounds

We prove Proposition 5. To this end, we appeal to the equivalence of β`(u) and
‖ψ‖−1

Y and prove (5.8) expressed in terms of the adjoint:

|`(ũ)− `(u)| ≤ ‖ψ‖Y‖f‖Y ′ + 4
γ2‖ψ‖Y + γ2

`2

β(u)2
‖f‖2Y ′ ;

here, the adjoint is redefined as the solution to the dual problem: Find ψ ∈Y such
that

∂G(u;w,ψ) = ∂`(u;w), ∀w ∈X . (D.1)

For notational convenience, let δu≡ ũ− u. Because the semilinear form G is
quadratic,

G(ũ,v)− G(u,v) =
1

2
(∂G(ũ; δu,v) + ∂G(u; δu,v)) , ∀v ∈Y ,

Similarly, for the quadratic output,

`(ũ)− `(u) = ∂`(u; δu) + `2(δu, δu) .

The combination of the above two equations, the definition of the adjoint (D.1),
and G(u,v) = 0, ∀v ∈Y, yields an output error representation formula,

`(ũ)− `(ũ) = ∂`(u; δu) + `2(δu, δu) = ∂G(u; δu,ψ) + `2(δu, δu)

=

[
G(ũ,ψ)− 1

2
(∂G(ũ; δu,ψ) + ∂G(u; δu,ψ))

]
+ ∂G(u; δu,ψ) + `2(δu, δu)

= G(ũ,ψ) +
1

2
(∂G(u; δu,ψ)− ∂G(ũ; δu,ψ)) + `2(δu, δu)

= 〈f ,ψ〉Y ′×Y + C(δu,u− ũ,ψ) + `2(δu, δu)

= 〈f ,ψ〉Y ′×Y − C(δu, δu,ψ) + `2(δu, δu) ,

where the second-to-last equality follows from the linearized form (2.13). The
definitions of the continuity constants γ and γ`2 and the application of the (global)
BRR perturbation bound on ‖δu‖X yield the desired result.
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