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Abstract. We extend our optimization-based framework for anisotropic simplex mesh adap-
tation to three dimensions and apply it to high-order discontinuous Galerkin discretizations
of steady-state aerodynamic flows. The framework iterates toward a mesh that minimizes the
output error for a given number of degrees of freedom by considering a continuous optimiza-
tion problem of the Riemannian metric field. The adaptation procedure consists of three key
steps: sampling of the anisotropic error behavior using element-wise local solves; synthesis of
the local errors to construct a surrogate error model in the metric space; and optimization of
the surrogate model to drive the mesh toward optimality. The anisotropic adaptation decisions
are entirely driven by the behavior of the a posteriori error estimate. As a result, the method
handles any discretization order, naturally incorporates both the primal and adjoint solution
behaviors, and robustly treats irregular features. Numerical results demonstrate the effec-
tiveness of the adaptive high-order discretization applied to the compressible Navier-Stokes
equations in three dimensions.
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1. INTRODUCTION

Despite ever-increasing computational power, a reliable simulation of complex three-
dimensional flows remains one of the challenges in the computational fluid dynamics (CFD).
For instance, in a careful study following the 3rd AIAA Drag Prediction Workshop, Mavriplis
demonstrated that a combination of a second-order accurate discretization and a priori gener-
ated best practice meshes is insufficient for accurately predicting the drag, even for a routinely-
solved wing-only configuration [16]. In order to improve the reliability and efficiency of
CFD simulations, significant research effort have been devoted to the development of adaptive
higher-order methods, including a notable multi-organizational initiative, ADIGMA [10]. A
recent review of adaptive higher-order CFD technology is provided by, for example, Hartmann
and Houston [8] and Fidkowski and Darmofal [5].

One popular approach to enable adaptive higher-order discretizations for complex aero-
dynamic flows is to combine the discontinuous Galerkin (DG) discretization with the dual-
weighted residual (DWR) method [2]. While the DWR error estimate can readily drive isotropic



adaptation, it is insufficient for making anisotropy decisions as it only assigns a single scalar
value that indicates the magnitude of the error to each element. In order to enable anisotropic
adaptation necessary for high Reynolds number flows, several researchers have augmented
the DG and DWR methods with a means of estimating the anisotropic behavior of the error.
Notable anisotropy detection approaches for compressible flows include: 1) Fidkowski and
Darmofal who incorporated the higher derivatives of the Mach number field [7]; 2) Leicht and
Hartmann who used the jump in the primal solution across element interfaces [11]; 3) Ceze
and Fidkowski who used element-wise local solves on tensor-product elements (i.e. quadri-
laterals and hexahedrons) [3]; and 4) Leicht and Hartmann who devised an anisotropic error
estimate for tensor-product elements [12]. While these methods produce anisotropic meshes,
approaches 1) and 2) incorporate only the behavior of the primal solution and not the dual so-
lution in determining the anisotropy, resulting in a suboptimal mesh for the purpose of output
prediction. On the other hand, approaches 2), 3), and 4) are only applicable for tensor-product
elements, which prevents anisotropic resolution of arbitrarily-oriented features not aligned
with the initial mesh.

To overcome some of the limitations of the aforementioned anisotropic adaptation
strategies, we have recently introduced a general optimization-based anisotropic simplex mesh
adaptation framework [26]. The key ingredients of the mesh optimization framework are: 1)
casting of the (discrete) mesh optimization problem as a continuous optimization problem of
the metric field, using a higher-order extension of the original mesh-metric duality proposed
by Loseille et al. [13]; 2) sampling of the local anisotropic error using local solves, inspired
by the work of Houston et al. [9] and Ceze and Fidkowski [3]; 3) synthesis of the metric-error
relationship and construction of an anisotropic error model using the affine-invariant (metric)
tensor manipulation framework of Pennec et al. [18]; and 4) optimization of the surrogate error
model. To date, we have successfully applied the framework to the two-dimensional advection-
diffusion equation [26] and various two-dimensional aerodynamic flow problems governed by
the Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations [27]. (We have also
presented various results at the 1st International Workshop on High-Order Methods [24].) This
work extends our framework to three dimensions and presents result of applying the frame-
work to three-dimensional steady-state compressible Navier-Stokes equations.

2. AN OPTIMIZATION FRAMEWORK FOR ANISOTROPIC MESH ADAPTATION

This section describes our optimization framework for anisotropic h-adaptation. The
overall information flow for the feedback-based algorithm is illustrated in Figure 1. The input
to the PDE solver are the geometry, boundary conditions, and the output of interest; the solver
outputs the engineering quantity of interest and the associated error estimate.

2.1. Output Error Estimation and Localization

Let us define the output estimation problem for a steady-state conservation law on a
domain Ω ⊂ Rd, with d = 3. The conservation law is of the form

∇ · F inv(u, x)−∇ · Fvis(u,∇u, x) = 0, ∀x ∈ Ω,

where u(x) ∈ Rm is the state vector, F inv is the inviscid flux function, Fvis is the viscous flux
function, and m denotes the number of components of the state. The output is given by

J = J (u),
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Figure 1. The information flow for the adaptive algorithm. The numbers in parenthesis corre-
spond to the section numbers in this paper.

where J is the output functional of interest. For all applications considered in this work, J is
a functional on the domain boundary.

This work employs a high-order discontinuous Galerkin (DG) method to approximate
the output, resulting in a weak form: Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p, (1)

where Vh,p is the space of discontinuous, p-th order piecewise polynomial functions defined on
the tessellation Th of Ω, andRh,p(·, ·) : Vh,p×Vh,p → R is the semilinear form. This work uses
Roe’s approximate Riemann solver [21] for the inviscid flux, and Bassi and Rebay’s second
discretization [1](BR2) for the viscous flux. The nonlinear algebraic system resulting from
Eq. (1) is solved using Newton’s method with pseudo-time continuation. The linear system
is solved using GMRES [22], preconditioned with an in-place block-ILU(0) factorization [4]
with minimum discarded fill ordering [19]. Once uh,p ∈ Vh,p is obtained, the desired output is
estimated by

Jh,p = Jh,p(uh,p),

where Jh,p : Vh,p → R is a dual-consistent formulation of the output functional.
The objective of the functional error estimation is to approximate the true error,

Etrue ≡ J − Jh,p = J (u)− Jh,p(uh,p),

and to identify the elements causing a large error for the purpose of adaptation. This work
relies on the DWR method [2] to estimate the output error and to localize the error. For
brevity, we omit the derivation of the method and state the main results. The DWR method
requires the approximate adjoint ψh,p̂ ∈ Vh,p̂ that satisfies

R′h,p[uh,p](vh,p̂, ψh,p̂) = J ′h,p[uh,p](vh,p̂), ∀vh,p̂ ∈ Vh,p̂, (2)

where Vh,p̂ ⊃ Vh,p with p̂ = p+1 is the enriched space andR′h,p[uh,p](·, ·) and J ′h,p[uh,p](·) de-
note the Fréchet derivative ofRh,p(·, ·) and Jh,p(·) with respect to the first argument evaluated
about the finite element approximation uh,p, respectively. The DWR error estimate is provided
by

Etrue ≈ −Rh,p(uh,p, ψh,p̂).

We note that by Galerkin orthogonality we can rewrite the equation to arrive at another error
representation

Etrue ≈ R′h,p[u, uh,p](u− uh,p, ψh,p̂ − vh,p), ∀vh,p ∈ Vh,p (3)



where R̄′h,p[u, uh,p](·, ·) is the mean-value linearized semilinear form as defined in [2]. The
expression states that the output error is a weighted product of the primal error, u − uh,p, and
the adjoint approximation error, ψ − vh,p.

For the purpose of mesh adaptation, we define a more conservative error estimate that
results from summing locally positive quantities, i.e.

E ≡
∑
κ∈Th

ηκ,

where the element-wise localized error estimate ηκ is defined by

ηκ ≡ |Rh,p(uh,p, ψh,p̂|κ)|.

Assuming the primal solution uh,p to Eq. (1) and the adjoint solution ψh,p̂ to Eq. (2) are unique
for a given approximation space Vh,p, we can associate the (conservative) error estimate to Vh,p,
i.e. E = E(Vh,p). Note that, because the output error is related to the primal and adjoint errors
by Eq. (3), an effective control of the output error requires Vh,p that accounts for the behaviors
of both the primal and adjoint solutions.

2.2. Output Error Minimization Problem

The objective of the output-based adaptation is to find the space V ∗h,p that minimizes
the output error for a given dimension of Vh,p, i.e.

V ∗h,p = arg inf
Vh,p
E(Vh,p) s.t. dim(Vh,p) ≤ N,

where N is the maximum permissible dimension of Vh,p. In particular, if Vh,p consists of
elements with a constant polynomial order p, then Vh,p is described by the triangulation Th
and the scalar p, i.e. Vh,p = Vh,p(Th, p). Thus, for a fixed p ∈ R+, the optimization problem
simplifies to that of finding the optimal triangulation T ∗h such that

T ∗h = arg inf
Th
E(Vh,p(Th, p)) s.t. dim(Vh,p(Th, p)) ≤ N. (4)

This is a discrete-continuous optimization problem, as the triangulation Th is defined by the
node locations and the connectivity of the nodes. In general, the problem is intractable.

In order to find an approximate solution to the problem Eq. (4), we consider a con-
tinuous relaxation of the discrete problem, following the approach pursued by Loseille et
al.[14, 13, 15]. In particular, we invoke the concept of mesh-metric duality, which states that
ability of an anisotropic simplex mesh to approximate a function is described by the metric
field associated with the tessellation. Here, the metric field M = {M(x)}x∈Ω consists of
symmetric positive definite (SPD) matricesM(x) ∈ Sym+

d such that all edges of the triangu-
lation are close to unit length with respect to the metric, i.e.√

eTM(xc)e ≈ 1, ∀e ∈ Edges(Th),

where xc is the midpoint of the edge. The metric field provides an anisotropic element size
specification that guides anisotropic mesh generation. Our extension of the original mesh-
metric duality for piecewise linear functions by Loseille et al. [13] to higher-degree polynomi-
als is described in details in [25]. As the metric field captures the approximation properties of
the mesh, we can cast a continuous relaxation of the discrete problem Eq. (4) as

M∗ = arg inf
M
E(Vh,p(M, p)) s.t. dim(Vh,p(M, p)) ≤ N.



For notational simplicity, we write the optimization problem as

M∗ = arg inf
M
E(M) s.t. C(M) ≤ N, (5)

where E and C are the error and cost functionals that map the metric tensor field to the error
and cost, respectively. The expression assumes that the polynomial order, p, is fixed.

2.3. Metric Tensor Field Optimization Algorithm

This section describes our approach to approximately solving Eq. (5). The optimization
algorithm consists of three steps: sampling of the local error behavior, synthesis of the local
error model, and optimization of the surrogate model. The full derivation and rationales behind
the choices are provided in our recent work [26].

2.3.1 Error Localization

In order to solve the error minimization problem, Eq. (5), we must estimate the be-
havior of the error functional E and the cost functional C. In particular, assuming the error is
localizable, we decompose the error and cost functionals as

E(M) =
∑
κ∈Th

ηκ(Mκ) and C(M) =
∑
κ∈Th

ρκ(Mκ).

Our goal then is to develop the local error models ηκ : Sym+
d → R+, κ ∈ Th, and the local

cost models ρκ : Sym+
d → R+, κ ∈ Th. Here, Mκ should be understood as the “mean”

metric associated with the region covered by κ; the exact interpretation of the “mean” will be
presented shortly.

2.3.2 Local Error Sampling

The goal of the local error sampling step is to probe the anisotropic behavior of the
local elemental error ηκ as a function of the local metric Mκ. Here, we directly monitor
the a posteriori error for several different configurations obtained by local mesh refinement.
The six split configurations κi, i = 1, . . . , nconfig = 6, and the associated metrics in three
dimensions are shown in Figure 2. The original, unsplit configuration is denoted by κ0. For
each configuration κi, we solve an element-wise local problem. The local solution, uκih,p ∈
Vh,p(κi), satisfies

Rκi
h,p(u

κi
h,p, v

κi
h,p) = 0, ∀vκih,p ∈ Vh,p(κi),

where the local semilinear form, Rκi
h,p(·, ·), sets the boundary fluxes on κi by freezing the

solution on the neighbor elements. Then, we recompute the localized DWR error estimate
corresponding to the split mesh as

ηκi ≡ |R
κi
h,p(u

κi
h,p, ψh,p̂|κ0)|.

Due to the local Galerkin orthogonality of the DG scheme, we can rewrite the local error as

ηκi ≡ |R
κi
h,p(u

κi
h,p, ψh,p̂|κ0)| = inf

v
κi
h,p∈Vh,p(κi)

|Rκi
h,p(u

κi
h,p, (ψh,p̂ − v

κi
h,p)|κ0)|.



The second equality signifies that the local sampling procedure automatically accounts for the
improvement in the adjoint approximability resulting from the local refinement even though
the local adjoint problem is not explicitly solved. Thus, the local sampling technique based
on the local solve and a posteriori error estimate automatically captures the behaviors of both
primal and dual solutions. Finally, we compute the local metric associated with κi, Mκi , to
construct metric-error pairs {Mκi , ηκi}

nconfig
i=1 .

2.3.3 Local Error Model Synthesis

The goal of the error model synthesis step is to construct an element-wise continuous
metric-error function ηκ(·) : Sym+

d → R+ using the pairs {Mκi , ηκi}
nconfig
i=1 collected in the

sampling stage. In order to build a continuous error model, we need means of interpolating
metric tensors (i.e. SPD matrices). The Euclidean framework (i.e. entry-wise manipulation)
is unsuited for manipulation of SPD matrices as SPD matrices define a convex cone and none-
SPD matrices are finite distance away from SPD matrices. Our tensor interpolation framework
builds on Pennec’s affine-invariant Riemannian framework for tensor manipulation [18], which
is briefly reviewed here.

In the affine-invariant framework, the difference between two tensorsM andM0 are
measured in terms of a symmetric matrix S ∈ Symd given by a logarithmic map,

S(M) = log(M−1/2
0 MM−1/2

0 ),

where log(·) : Sym+
d → Symd is the matrix logarithm. We will refer to this matrix as the step

matrix. Conversely, an exponential map of a step matrix, S, induces a change in a tensorM0,

M(S) =M1/2
0 exp(S)M1/2

0 ,

where exp(·) : Symd → Sym+
d is the matrix exponential. To gain some insight, let us decom-

pose the step matrix into the isotropic and tracefree parts, i.e.

Sκ = sκI + S̃κ, (6)

where sκ = tr(Sκ)/d such that tr(S̃κ) = 0. The isotropic part, sκI , scales the tensor without
changing its shape, and the tracefree part, S̃κ, changes the shape of the tensor without changing
its volume.

Applying the affine-invariant tensor interpolation framework to the metric tensor sam-
ples collected in the error sampling stage, we measure the changes in each configuration as

Sκi = log
(
M−1/2

κ0
MκiM−1/2

κ0

)
, i = 0, . . . , nconfig.

Note that, by construction, the original configuration,Mκ0 , maps to the origin, i.e. Sκ0 = 0.
Similarly, we measure the associated changes in the errors as

fκi = −| log (ηκi/ηκ0) |, i = 0, . . . , nconfig. (7)

Note that we take the negative of the absolute value of the change to ensure that the model
predicts reduction in the error when the element is refined; without the change, inaccurate
error estimate on very coarse meshes could produce a model which predicts increase in the
error with refinement. Again, the original error, ηκ0 , maps to zero by construction.
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Figure 2. The original and edge split configurations for sampling the anisotropic error behav-
ior in three dimensions. The metric implied by the sampled configurations are shown in red
ellipsoids.



Once we have the pairs {Sκi , fκi}
nconfig
i=1 that characterize the change in the error as a

function of the change in the configuration, our objective is to construct a continuous function
fκ(·) : Symd → R. We choose to construct a linear function in the entries of Sκ,

fκ(Sκ) = tr(RκSκ). (8)

To find an appropriate d × d symmetric matrix Rκ that governs the behavior of the linear
function, we perform the least-squares regression of the known data, i.e.

Rκ = arg min
Q∈Symd

nconfig∑
i=1

(fκi − tr(QSκi))
2 .

Thus, from Eq. (7) and (8), the local error model over the region covered by κ is given by

ηκ(Sκ) = ηκ0 exp(tr(RκSκ)).

The tensor, Rκ, can be thought of as a generalization of the convergence rate for isotropic
scaling to anisotropic manipulation. If we consider the decomposition

Rκ = rκI + R̃κ, (9)

where rκ = tr(Rκ)/d and tr(R̃κ) = 0, then rκ and R̃κ capture the sensitivity of the error to the
change in the element size and shape, respectively.

2.3.4 Local Cost Function Model

The element-wise cost function model, ρκ, is given in terms of the step matrix Sκ =
sκI + S̃κ by

ρκ(Sκ) = ρκ0 exp

(
1

2
sκd

)
,

where ρκ0 is the number of degrees of freedom associated with an element, e.g. (p + 1)(p +
2)(p + 3)/6 for a tetrahedron. Note that the cost is only a function of sκ, which controls the
volume of the tensor, and not S̃κ, which changes the shape of the tensor without changing the
volume.

2.3.5 Optimization and Optimality Conditions

The final step of the adaptation algorithm is to optimize the metric field,M, described
by the vertex values {Mν}ν∈V . The vertex-based metric can then be used to generate a metric-
conforming mesh using an anisotropic mesh generator. Starting from the original configuration
{Mν0}ν∈V implied by the current mesh, we manipulate the metric tensorMν at vertex ν using
a step matrix Sν ∈ Symd, i.e.

Mν(Sν) =M1/2
ν0

exp (Sν)M1/2
ν0
. (10)

Given {Mν0}ν∈V , our objective is to choose the step matrices {Sν}ν∈V to reduce the error.



Using the surrogate error model and the cost model, we approximate the functionals
appearing in the optimization problem Eq. (5) as

E(M) ≈ Ẽ({Sν}ν∈V) ≡
∑
κ∈Th

ηκ

(
{Sν}ν∈V(κ)

)
C(M) ≈ C̃({Sν}ν∈V) ≡

∑
κ∈Th

ρκ

(
{Sν}ν∈V(κ)

)
,

where the {Sν}ν∈V(κ) is the approximate step matrix over the region covered by κ and is
defined as the mean of the vertex step matrices on its vertices, V(κ), i.e.

{Sν}ν∈V(κ) ≡
1

|V(κ)|
∑
ν∈V(κ)

Sν .

Using the surrogate error and cost functions, we have turned our infinite dimensional opti-
mization problem Eq. (5) into a finite dimensional optimization of vertex step matrices. The
surrogate optimization problem for the optimal {Sν}ν∈V is

{S∗ν}ν∈V = arg inf
{Sν}ν∈V

E ({Sν}ν∈V) (11)

s.t. C ({Sν}ν∈V) = N (12)
|(Sν)ij| ≤ α, i, j = 1, . . . , d, ∀ν ∈ V . (13)

The last constraint, Eq. (13), is added to prevent a large charge in the metric field that would
render our sampling-based error model inaccurate. Our procedure for solving the optimization
problem is detailed in [26] and is omitted here for brevity.

Let us describe the features of the optimal mesh by appealing to the optimality condi-
tions of the optimization problem Eq. (11)-(13). For simplicity, let us assume that the current
configuration is sufficiently close to the optimal configuration such that the constraints Eq. (13)
are inactive. The first order optimality condition is given by

∂E
∂sν

+ λ
∂C
∂sν

= 0, ∀ν ∈ V , (14)

∂E
∂S̃ν

= 0, ∀ν ∈ V , (15)

for some Lagrange multiplier λ, where sν = tr(Sν)/d and S̃ν is the trace-free part of Sν . The
first condition, Eq. (14), is a global condition for the size distribution. In particular, if we
define the “local” Lagrange multiplier as

λν ≡
∂E
∂sν

/ ∂C
∂sν

,

then we must have λν = λ, ∀ν ∈ V . The global coupling is provided by the (global) Lagrange
multiplier, λ. The local Lagrange multiplier, λν , is interpreted as the marginal improvement
in the local error for a given investment in the local cost, which is the number of degrees of
freedom in the context of mesh adaptation. The global condition states that, at optimality, the
investment to any element results in the same marginal improvement in the error.



The second condition, Eq. (15), is a local condition that states that the error is stationary
with respect to the shape change. Note that this second optimality condition is satisfied if

R̃κ = 0, ∀κ ∈ Th, (16)

where R̃κ is the tracefree part of Rκ. The shape change, induced by S̃ν , does not affect
the cost. Thus, if R̃κ 6= 0, then we can reduce the error by choosing an S̃ν such that
tr
(
R̃κ{Sν}ν∈V(κ)

)
< 0 without affecting the cost. Thus, the stationarity with respect to the

shape change is required at optimality.

2.4. High-Order Three-Dimensional Mesh Generation

From the new requested metric field, an anisotropic mesh is generated using a metric-
conforming mesh generator. This work uses Edge Primitive Insertion and Collapse (EPIC) [17]
developed by The Boeing Company to generate all meshes.

2.5. Properties of the Optimization Method

We summarize the key features of the proposed optimization method in the context of
output-based adaptation:

• The method automatically takes into account all components of both the primal and
adjoint solutions, as the a posteriori error estimate automatically captures the behaviors
of both solutions.

• The method handles any discretization order.

• Unlike the previous optimization-based methods that rely on a priori assumption of
the error behavior [20, 23, 6], the proposed method approximates the convergence rate
based on the behavior of the local a posteriori error estimates. This makes the proposed
method more robust when features are underresolved, e.g., due to the presence of a
singularity, and the convergence rate is lower than the optimal a priori convergence rate
for smooth functions.

• The method operates on simplex meshes, which allow for arbitrarily oriented anisotropic
elements. This is in contrast to the anisotropic adaptation methods based on hierarchi-
cal subdivision of parent elements, e.g. [3, 12], in which the allowable anisotropy is
restricted by the topology of the initial mesh.

• The majority of the computational cost stems from the six local element-wise solves. As
the local solves are perfectly scalable while the global flow solve scales superlinearly,
the adaptation cost becomes a small fraction of the flow solve with the problem size.

3. RESULTS

3.1. Assessment Procedure

We assess the effectiveness of the adaptation algorithm using two three-dimensional
laminar flow cases considered by Leicht and Hartmann [12]. These two cases were originally
designed for the ADIGMA project [10] and were also selected as test cases in the recent High-
Order Workshop [24]. In particular, we compare the drag convergence obtained using our



Figure 3. The normalized density, ρ/ρ∞, for the streamlined body case. The color scale ranges
from 0.938 (blue) to 1.154 (red).

adaptive algorithm and that obtained on the meshes prepared for the workshop. Note that
the workshop meshes are designed for the particular flow conditions considered and can be
thought of as representative of “best-practice” meshes. These workshop meshes consist of
hexahedral elements with anisotropic boundary layer and wake refinement.

The convergence history for the adaptive algorithm is obtained by optimizing the mesh
at several numbers of degrees of freedom. In particular, for each select number of degrees of
freedom, we apply several iterations of the adaptation algorithm illustrated in Figure 1 until
no further improvement in the error estimate is observed. The number of adaptation iterations
required to produce an optimal mesh is dependent on the starting mesh; as we use the mesh
optimized for a lower number of degrees of freedom as the starting mesh, few adaptation
iterations are required to achieve optimality.

3.2. Streamlined Body

The first case we consider is flow over a three-dimensional streamlined body, consid-
ered by Leicht and Hartmann [12] and in Case 2.3 of the High-Order Workshop [24]. The
precise geometry definition is provided on the workshop website [24]. The laminar flow has
a freestream Mach number of M∞ = 0.5, a length-based Reynolds number of ReL = 5000,
and an angle of attack of α = 1.0◦. The viscosity is assumed constant with a Prandtl number
of Pr = 0.72. Adiabatic wall boundary condition is imposed on the body. The normalized
density distribution on the body and the symmetry plane are shown in Figure 3. The reference
drag coefficient value computed for the ADIGMA project is CD = 0.06317 [12].

Figure 4 shows the drag error convergence results using the p = 1 and p = 2 DG dis-
cretizations. The results for the a priori generated workshop meshes are from the report by the
University of Michigan group [24]. Even for this relatively simple case, output-based adapta-
tion significantly improves the error-to-dof efficiency. For instance, the number of degrees of
freedom required to meet the 0.1% drag error tolerance is reduced by an order of magnitude
for the p = 2 discretization. The p = 1 discretization also benefits from adaptation, though
the improvement is harder to quantify because of the noisy convergence behavior on the a
priori generated meshes due to output error cancellation. Note that the difference between the
p = 1 and p = 2 discretization is more pronounced on the adapted meshes than on the a priori
generated meshes. This is partially due to the presence of a weak edge singularity along the
trailing edge, which prevents the p = 2 discretization to converge at the optimal rate on a pri-
ori generated meshes. Thus, even for this simple flow, adaptive mesh refinement that controls
the influence of the singularity is crucial to realize the full potential of the p = 2 discretization.
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Figure 4. Drag error convergence for the streamlined body case. The a priori results are from
the High-Order Workshop [24].

(a) p = 1, dof = 90, 000, E ≈ 5.0× 10−4 (b) p = 2, dof = 90, 000, E ≈ 2.4× 10−5

Figure 5. Adapted meshes for the streamlined body case.

Figure 5(a) and 5(b) show p = 1 and p = 2 adapted meshes, each having approxi-
mately 90,000 degrees of freedom. Both p = 1 and p = 2 adapted meshes employ anisotropic
elements in the boundary layer, providing the highest resolution in the wall-normal direction
and the next higher resolution in the azimuthal direction. Note that the p = 2 mesh is signifi-
cantly coarser than the p = 1 mesh particularly in the boundary layer region; the fact that the
p = 2 discretization achieves 20 times lower error than the p = 1 discretization on this coarser
mesh highlights the effectiveness of the p = 2 discretization in resolving smooth features such
as the boundary layer.

3.3. Delta Wing

The second case we consider is laminar flow over a delta wing at a high angle of attack,
the case originally considered by Leicht and Hartmann [12] and in Case 2.4 of the High-Order
Workshop [24]. The delta wing has a sharp leading edge and a blunt trailing edge. The
freestream Mach number is M∞ = 0.3, the angle of attack is α = 12.5◦, and the Reynolds
number based on the root chord is Recr = 4000. The viscosity is assumed to be constant
and the Prandtl number is set to 0.72. Isothermal no-slip boundary condition with the wall
temperature equal to the freestream condition is imposed on the wing.

The Mach number distribution and streamlines of the flow around the delta wing are
shown in Figure 6. The flow rolls up over the sharp leading edge and creates large vortices



Figure 6. The Mach number distribution for the delta wing case.
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Figure 7. Drag error convergence for the flow over a delta wing. The a priori results are
from the High-Order Workshop [24]. “L&H” corresponds to the result reported by Leicht and
Hatrmann in [12].

on the upper surface of the wing. Both the singularity along the leading edge and the smooth
vortices on the upper surface must be captured to accurately compute the drag. The reference
value of the drag coefficient computed for the ADIGMA project is CD = 0.1658 [12].

Figure 7 shows the convergence of the drag coefficient using several different methods.
The results for the a priori generated workshop meshes are from the report by the University
of Michigan group [24]. The label “L&H” corresponds to the result reported by Leicht and
Hatrmann in [12] using their hexahedron-based, anisotropic hierarchical subdivision adapta-
tion. The initial mesh for our adaptation consists of only 26 elements; as shown in Figure 8(a),
the upper surface of the delta wing covered by a single face of a tetrahedron.

Due to the presence of multiple geometry-induced singularities, both the p = 1 and
p = 2 discretizations achieve the same low convergence rate on a priori generated meshes. In
particular, the benefit of higher-order discretization is not realized on this family of meshes.
Our adaptive algorithm significantly improves the quality of the drag prediction. For the p = 1
discretization, our adaptive algorithm produces a family of meshes that are more efficient
than the meshes generated a priori or those generated through hexahedron-based anisotropic



(a) initial mesh (b) p = 2, dof = 160, 000 adapted mesh

Figure 8. Initial and adapted meshes for the delta wing case.

hierarchical subdivision.1 The adaptation significantly improves the performance of the p = 2
discretization, reducing the number of degrees of freedom required to achieve 10 drag counts
of error by over an order of magnitude. For a higher-fidelity simulation requiring a tighter
error tolerance, the adaptation achieves more drastic improvement in the error-dof efficiency.
The higher-efficiency is achieved through aggressive mesh refinement toward the geometric
singularities, as shown in Figure 8(b).

4. Summary and Conclusion

We applied our output-based anisotropic simplex mesh adaptation framework to three-
dimensional laminar flows over a streamlined body and a delta wing. For both cases con-
sidered, adapted meshes significantly improved the error-to-dof efficiency for drag prediction
compared to the a priori generated workshop meshes. The difference is pronounced for the
delta wing case with the leading edge singularity, whose resolution is crucial for an accurate
prediction of the vortex roll up. The results suggest that a combination of a higher-order dis-
cretization and fully-automated mesh adaptation is a positive step forward in realizing reliable
output prediction for three-dimensional aerodynamic flows.
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