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Abstract

We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and
any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes
error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization
problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes.
First, our method performs a series of local solves to survey the behavior of the local error function. This
information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an
approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gra-
dient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to
produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems con-
taining a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated
in the context of output-based adaptation for the advection-diffusion equation using a high-order discontin-
uous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented
provides a unified framework for optimizing both the element size and anisotropy distribution using an
a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order
discretizations.

Key words: anisotropic adaptation, high-order methods, functional optimization, Riemannian metric
field, local solves

1. Introduction

As the combination of powerful computers and numerical methods enables increasingly complex sim-
ulations, developing an effective means of quantifying and controlling the numerical errors has become
increasingly important. Numerous localizable error estimates have been developed in the finite element
community, as summarized in work by, for example, Ainsworth and Oden for energy-based estimates [1] and
Becker and Rannacher for output-based estimates [2]. While these error estimates provide an assessment
of the solution quality, most estimates only assign a scalar value to each element and are insufficient for
making the anisotropic or hp adaptation decisions—the decisions necessary for extracting the full potential
of flexible finite element discretizations. In this work, we propose a general anisotropic mesh adaptation
framework that can be used with any discretization equipped with an element-wise localizable error estimate.
The framework naturally inherits the versatility of the underlying discretization and error estimate.

A popular approach to anisotropic adaptivity for simplex meshes is to incorporate the solution Hessian
information, which dictates the linear interpolation error. The early application of Hessian anisotropy
detection to feature-based adaptation include the work of Peraire et al. [3] and Castro-Diaz et al. [4].

∗Corresponding author
Email address: myano@mit.edu (Masayuki Yano)

Preprint submitted to J. Comput. Phys. April 11, 2012



More recently, several variants of Hessian-based anisotropic adaptation have been proposed for output error
control, including: Formaggia et al.’s approach based on the Hessian of the dual solution [5, 6]; Venditti and
Darmofal’s approach based on the Hessian of a scalar component of the primal solution [7]; and Fidkowski
and Darmofal’s [8] and Leicht and Hartmann’s [9] generalization of Venditti’s approach to higher-order
discretizations by using the p + 1 derivative. While the Hessian-based methods produce simplex meshes
with arbitrarily-oriented anisotropy, there are several limitations. In the context of output error control,
the anisotropy decision only accounts for either the primal or dual solution, which may exhibit different
directional features from the other solution. For a system of equations, the choice of a scalar field to guide
the anisotropic decision is arbitrary, and the decision requires a priori knowledge of the equation behavior.
For higher-order discretizations, the use of p+1 derivative may lead to a lack of robustness for underresolved
features.

This work develops a unified framework for anisotropic h-adaptation for problems with localizable error
estimates. We cast the mesh optimization problem as a continuous constrained optimization problem of a
parameter field describing the mesh. In the case of isotropic h-adaptation, a natural choice is to parametrize
the mesh by a scalar-valued field h = {h(x)}x∈Ω that describes the element diameter distribution. In the case
of anisotropic h-adaptation, a convenient choice is a tensor-valued field M = {M(x)}x∈Ω of Riemannian
metric tensors. In particular, utilizing the mesh-metric duality proposed by Loseille and Alauzet [10], we
pose the tensor field optimization problem as

M
∗ = arg inf

M
E(M) s.t. C(M) = N,

where E(·) is the error functional, C(·) is the cost functional, and N is the maximum permissible cost. To
evaluate the variation of the error functional with respect to the tensor field, we first survey the behavior
of the error function using a series of local solves. Then, we synthesize the information using a novel error
interpolation model that builds on the affine-invariant framework for tensor manipulation introduced by
Pennec et al. [11], creating a surrogate model for the error functional E(·). Finally, we propose an algorithm
that iterates toward optimality by manipulating the tensor-valued field.

The idea of using local solves to guide the anisotropy decision for the DWR-based adaptation has been
previously proposed. Both Georgoulis et al. [12] and Ceze and Fidkowski [13] used local solves to guide
their anisotropy decisions on quadrilateral1 meshes. However, the perspective set forth in those works is
that of steepest descent in the discrete space, in which the local solves are used to guide the sequence of
anisotropic subdivision of quadrilateral elements, which permit orthogonal directional decomposition. An
anisotropic error estimation and adaptation algorithm of Richter [14] and Leicht and Hartmann [15] also
rely on tensor-product structure of quadrilateral elements and perform discrete optimization. A similar
discrete optimization based approach for simplices were pursued by Park [16] and Sun [17] using a sequence
of edge splits. In this work, we consider a continuous optimization problem and use local solves to estimate
the gradient of the error functional. In other words, this work employs local solves as a means to solve the
infinite dimensional optimization problem on the metric tensor field; the previous approaches consider the
finite dimensional discrete optimization problem where the dimensionality is governed by the complexity
of the current mesh. In fact, the anisotropic mesh optimization formulation presented in this work is an
extension of the idea for isotropic h-adaptation presented by Brandt [18], Rannacher [19], and Section 5 of
Becker and Rannacher [2].

As the proposed method is entirely driven by the behavior of the a posteriori error estimate, it inherits
the versatility of the underlying discretization and error estimate. Thus, the method is particularly pow-
erful when combined with a versatile discretization and error estimate, such as a discontinuous Galerkin
(DG) method—which provides an arbitrarily high-order discretization of a wide class of PDEs on complex
geometries—and the dual-weighted residual (DWR) error estimate—a general output-based error estima-
tion framework. In the context of DG and DWR, the framework naturally incorporates all components of
primal and adjoint solutions and generates an anisotropic simplex mesh optimized for the output at the
given discretization order and degrees of freedom.

1hexahedrons in three dimensions
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This paper is organized as follows. Section 2 provides examples of error estimation and localization
techniques that can be used in conjunction with our general adaptation framework. Section 3 reviews mesh-
metric duality concepts that are essential to develop our algorithm. Section 4 presents our anisotropic simplex
mesh adaptation framework. Section 5 numerically verifies the ability of our algorithm to generate optimal
meshes in the context of L2 error control with known optimal mesh distributions. Section 6 demonstrates the
ability of the framework to effectively control the output error for a series of advection-diffusion problems.

2. Error Estimation and Localization

The anisotropic adaptation framework that we present in Section 4 assumes the presence of a discretiza-
tion and an element-wise localizable error estimate. We will use two combinations of a discretization and
an error estimate in conjunction with our adaptation algorithm in this work. The first is the L2 projector
with the L2 error control. The second is the discontinuous Galerkin method with the dual-weighted residual
output-error control.

2.1. L2 Projector and L2 Error Control

We consider a simple case of error control problems using the L2 projector as the “solver.” Our objective
is to control the L2 error of the solution. This solver-error pair eliminates the issues associated with the
stability of discretization and allows us to focus on the ability of the space to approximate, or represent, a
given function. Moreover, using polynomial interpolation theory and calculus of variations, we can compute
the optimal mesh distribution for representing the function, as we will demonstrate in Section 5. Thus, the
L2 error control is well-suited for initial verification of our adaptation algorithm.

The finite-dimensional approximation space we consider is denoted by Vh,p. The space is defined on a
triangulation, Th, of domain Ω ⊂ R

d into elements, κ, and is given by

Vh,p = {vh,p ∈ L2(Ω) : vh,p|κ ∈ Pp(κ), ∀κ ∈ Th},

where Pp(κ) is the space of degree p polynomials on element κ. We will use variable d to denote the physical
dimension of the domain throughout this work. Note that we do not enforce the continuity of the function
across the element interfaces.

The L2 projection “solver” finds the solution uh,p ∈ Vh,p that minimizes the square of the L2 projection
error, i.e.

uh,p = arg inf
vh,p∈Vh,p

E(vh,p),

where

E(vh,p) ≡ ‖u− vh,p‖2L2(Ω) =

∫

Ω

(u− vh,p)
2dx.

Because the approximation space Vh,p is discontinuous across element interfaces, the L2 projection problem
can be solved element-by-element. A straightforward localization of the error functional to elements yields

ηκ ≡ ‖u− uh,p‖2L2(κ) =

∫

κ

(u− uh,p)
2dx, κ ∈ Th,

and the local errors satisfy E =
∑

κ∈Th
ηκ.

Because the solution uh,p for an approximation space Vh,p is unique for a given u, we can directly associate
the error with the approximation space, i.e.

E(Vh,p) = E(uh,p(Vh,p)),

where uh,p(Vh,p) signifies that uh,p is a unique function of Vh,p. The localized errors, {ηκ}κ∈Th
, are also

uniquely determined by the approximation space Vh,p. Thus, the L
2 solver-error pair yields the global error,

E , and the local errors, {ηκ}κ∈Th
, as a function of the approximation space Vh,p. The unique association of

the global and local errors with the mesh configuration will be a key in developing our adaptation algorithm.
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2.2. Discontinuous Galerkin Methods and Output Error Control

The goal of output error control is to measure and control the error in a certain output quantity of a
process governed by a PDE. In this work, we consider a general steady state conservation law. The governing
equations are of the form

∇ · Fconv(u, x)−∇ · Fdiff(u,∇u, x) = S(u,∇u, x), ∀x ∈ Ω

where u(x) ∈ R
m is the state vector, Fconv is the convective flux function, Fdiff is the diffusive flux function,

S is the source function, and m denotes the number of components of the state. The output, J , is given by

J = J (u)

where J is the output functional of interest. For many engineering applications, J is an integral quantity
on select surfaces, e.g. drag or heat transfer rate, or volume, e.g. strain energy release rate.

An approximation to the desired output is obtained by discretizing the conservation law and evaluating
the discrete output functional. In particular, this work employs a high-order DG finite element method,
resulting in the weak form: Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0, ∀vh,p ∈ Vh,p, (1)

where Rh,p(·, ·) : Vh,p × Vh,p → R is the semilinear form corresponding to the conservation law. This
work uses an upwinding flux function for the convective flux and Bassi and Rebay’s second discretization
(BR2) [20] for the diffusive flux. Once uh,p ∈ Vh,p is obtained, the desired output is estimated by

Jh,p = Jh,p(uh,p),

where Jh,p : Vh,p → R is the discrete functional that maintains dual consistency [21, 22, 23].
The objective of functional error estimation is to approximate the true error,

Etrue ≡ J − Jh,p = J (u)− Jh,p(uh,p).

This work relies on the DWR method [24, 2] to estimate the output error and to localize the error. For
brevity, we omit the derivation of the method and state the main results. The output error can be expressed
as

Etrue = −Rh,p(uh,p, ψ), (2)

where ψ ∈ V is the adjoint solution satisfying

R̄′
h,p[u, uh,p](v, ψ) = J̄ ′

h,p[u, uh,p](v), ∀v ∈ V, (3)

where R̄′
h,p[u, uh,p](·, ·) and J̄ ′

h,p[u, uh,p](·) denote the mean value linearization of Rh,p(·, ·) and Jh,p(·) with
respect to the first argument evaluated about the interval [u, uh,p] of the true and finite element solutions.
We note that by Galerkin orthogonality we can rewrite Eq. (2) to arrive at another error representation

Etrue = R̄′
h,p[u, uh,p](u− uh,p, ψ − ψh,p), (4)

which states that the output error is a weighted product of the primal error, u − uh,p, and the adjoint
error, ψ − ψh,p. In practice, the true adjoint ψ is approximated by ψh,p̂ ∈ Vh,p̂ obtained by solving Eq. (3)
linearized about uh,p on an enriched space Vh,p̂ with p̂ = p+ 1. Thus, the DWR error estimate is provided
by

Etrue ≈ −Rh,p(uh,p, ψh,p̂).
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For the purpose of mesh adaptation, we define a more conservative error estimate that results from summing
locally positive quantities, i.e.

E ≡
∑

κ∈Th

ηκ,

where the element-wise localized error estimate κ is defined by

ηκ ≡ |Rh,p(uh,p, ψh,p̂|κ)|.

The combination of the DG solver and the DWR error estimate yields global and local errors, which will be
used by our adaptation algorithm.

Assuming the solution, uh,p ∈ Vh,p, to the discrete problem in Eq. (1) is unique for a given Vh,p, the
approximate output, Jh,p = Jh,p(uh,p), is uniquely determined for a given Vh,p. Thus, similar to the L2

error control case, we can associate the global error with the approximation space in the sense that

E(Vh,p) =
∑

κ∈Th

|Rh,p(uh,p(Vh,p), ψh,p̂(Vh,p̂)|κ)|.

The localized errors also are a function of the approximation space in the sense that

ηκ(Vh,p) = |Rh,p(uh,p(Vh,p), ψh,p̂(Vh,p̂)|κ)|.

Thus, we have a means of measuring the global and local errors as functions of the approximation space
Vh,p. Note that, because the output error is related to the primal and adjoint errors by Eq. (4), an effective
control of the output error requires Vh,p that accounts for the errors in both the primal and adjoint solutions.

3. Riemannian Metric and Metric Manipulation

In this section, we develop technical tools that will facilitate the presentation of our adaptation algorithm
in Section 4.

3.1. Description

Let us briefly review the concept of Riemannian metric field used to encode an anisotropic description of
element sizes. Notation used in here—and throughout the rest of the work—follows closely that of Loseille
et al. [10]. A Riemannian metric field M = {M(x)}x∈Ω is a smoothly varying field of symmetric positive

definite (SPD) matrices. The length of a vector
−→
ab under the metric is given by

ℓM(
−→
ab) =

∫ 1

0

√−→
abTM(a+

−→
abs)

−→
ab ds.

Then, a metric-conforming triangulation is defined as a triangulation such that all edges are unit length
under the metric. In practice, we relax the constraint to

1√
2
≤ ℓM(e) ≤

√
2, ∀e ∈ Edges(Th).

The metric-conforming triangulation is not unique; however, a family of metric-conforming triangulations
have similar approximation properties because the edges must meet the length constraints imposed by the
metric field. Thus, a metric field is a convenient means of encoding the approximability of a triangulation;
we will refer to this duality between the metric field and triangulation as metric-mesh duality. Loseille et
al. has carried out a rigorous study of the duality for linear interpolation error [10].
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3.2. Metric Manipulation Framework

The most intuitive method of manipulating a tensor, perhaps, is to simply treat the tensor as an array
of numbers and to directly modify the entries of the matrix in the standard Euclidean sense, i.e.

M = M0 + δM,

where M0 is the original matrix, δM is the modification to the matrix, and M is the new matrix. However,
this method is unsuited for our purpose, as the update, δM, must be chosen carefully to maintain the
positive definiteness of the tensor. Furthermore, the entries of the update δM are not strongly related to
the change in the approximation property of the space. The approximability of the space equipped with a
Riemannian metric can be described using the directional length, h(e), defined by

h(e;M) ≡ (eTMe)−1/2

where e is a unit vector specifying the direction of interest. The change in the approximability in a given
direction, or the ratio of the directional lengths between the configurations induced by M and M0, is

h(e;M)

h(e;M0)
=

(
eTM1/2

0 e

eTM1/2e

)1/2

.

With the entry-wise direct manipulation of M0, the change in this ratio of directional lengths is not strongly
related to the magnitude of the entries of δM.

Instead, we consider the tensor manipulation framework that results from endowing the tensor space
with an affine-invariant Riemannian metric introduced by Pennec et al. [11]. The affine-invariant metric
produces a manifold structure where matrices with zero and infinite eigenvalues are infinite distance from
any SPD matrix and a geodesic joining any two tensors is unique. On the Riemannian manifold induced by
the affine-invariant metric, the exponential map of a tangent vector S ∈ Symd in the tangent space about
M0 to the manifold is given by

M(S) ≡ M1/2
0 exp(S)M1/2

0 ,

where exp(·) is the matrix exponential. Conversely, the logarithmic map of a tensor M to the tangent space
about M0 is given by

S ≡ log(M−1/2
0 MM−1/2

0 ),

where log(·) is the matrix logarithm. The distance between two tensorsM andM0 is equal to ‖ log(M−1/2
0 MM−1/2

0 )‖F ,
where ‖ · ‖F denotes the Frobenius norm of the matrix [11]. As the tangent vector S specifies the change in
the metric field, S is referred to as the step matrix from hereon. With this choice, the ratio of the directional
length is bounded by

exp

(
−1

2
‖S‖F

)
≤ exp

(
−1

2
λmax(S)

)
≤ h(e;M(S))

h(e;M0)
≤ exp

(
−1

2
λmin(S)

)
≤ exp

(
1

2
‖S‖F

)
. (5)

In other words, we can control the change in the directional approximability by controlling the magnitude
of S. The proof of the relationship is provided in A.1.

By decomposing the step matrix, S, into the isotropic and the tracefree parts, we can gain a better
insight into the manipulation of the tensors in the tangent space. Let us denote the decomposition by

S = sI + S̃,

where s = tr(S)/d such that tr(S̃) = 0. The exponential map of the decomposed step tensor yields

M(sI + S̃) = M1/2
0 exp(sI + S̃)M1/2

0 = exp(s)M1/2
0 exp(S̃)M1/2

0 .
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The expression shows that the isotropic part, sI, simply scales the resulting tensor while preserving the
shape. In contrary, the change induced by the tracefree part, S̃, modifies the shape while preserving the
volume, or the determinant, i.e.

det(M(S̃)) = det(M1/2
0 exp(S̃)M1/2

0 ) = det(M0) det(exp(S̃))

= det(M0) exp(tr(S̃)) = det(M0).

The decomposition yields a convenient means of manipulating the size and the shape separately, which we
exploit in designing the optimization algorithm.

3.3. Practical Aspects of Metric-Mesh Duality

For completeness, let us describe a few practical aspects of mesh-metric duality. The Riemannian metric
associated with an element κ is a metric such that all edges of the element have unit length with respect to
the metric. That is, we solve a (d+ 1)(d+ 2)/2-dimensional linear system for the coefficients of Mκ,

eTMκe = 1, ∀e ∈ Edges(κ).

This metric associated with the element κ is representative of the metric field over the region covered by κ.
Many anisotropic mesh generators require metric specified at vertices of the mesh, which is used to

construct a smoothly varying metric field M within the meshing algorithm. Let us denote these vertex
metrics by {Mν}ν∈V , where V is the set of vertices of the triangulation. To reconstruct vertex-based
metrics {Mν}ν∈V from elemental metrics {Mκ}κ∈Th

, we take the mean of the elemental metrics of the
elements surrounding the vertex, i.e.

Mν = meanaffinv({Mκ}κ∈ω(ν)).

Here ω(ν) is the set of elements surrounding ν. The mean of the set of metrics is defined as the minimizer
of the sum of the squared distance in the affine invariance sense, as defined by Pennec et al. [11], i.e.

meanaffinv({Mκ}κ∈ω(ν)) = argmin
M

∑

κ∈ω(ν)

‖ log
(
M−1/2

κ MM−1/2
κ

)
‖2F .

The mean value is computed iteratively using the intrinsic gradient descent algorithm described in [11]. Using
these steps, we can generate either elemental (discontinuous) or vertex-based (continuous) representation of
the metric field associated with a triangulation.

To perform the inverse mapping, i.e. from a metric field to a mesh, we can use any metric-conforming
mesh generator. We have used Bidimensional Anisotropic Mesh Generator (BAMG) [25] for all the results
shown in this work.

4. Anisotropic Adaptation Algorithm

4.1. Output Error Minimization Problem

In Section 2, we introduced the means of expressing discretization errors as a function of the approxi-
mation space, Vh,p. The objective of our adaptation is to find the space V ∗

h,p that minimizes the error for a
given dimension of Vh,p, i.e.

V ∗
h,p = arg inf

Vh,p

E(Vh,p) s.t. dim(Vh,p) ≤ N,

where N is the maximum permissible dimension of Vh,p and is often set by the available computational
resource. In particular, if Vh,p consists of elements with a constant polynomial order p, then Vh,p is described
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by the triangulation Th and the scalar p, i.e. Vh,p = Vh,p(Th, p). Thus, for a fixed p ∈ R
+, the optimization

problem simplifies to that of finding the optimal triangulation T ∗
h such that

T ∗
h = arg inf

Th

E(Vh,p(Th, p)) s.t. dim(Vh,p(Th, p)) ≤ N. (6)

This is a discrete-continuous optimization problem, as the triangulation Th is defined by the node locations
and the connectivity of the nodes. In general, the problem is intractable.

In order to find an approximate solution to the problem, we consider a continuous relaxation of the
discrete problem, following the approach pursued by Loseille et al. [10]. In particular, we appeal to the fact
that the Riemannian metric field M = {M(x)}x∈Ω captures the approximability of the triangulation Th.
Thus, we can cast a continuous relaxation of the discrete problem, Eq. (6), as

M
∗ = arg inf

M

E(Vh,p(Th(M), p)) s.t. dim(Vh,p(Th(M), p)) ≤ N.

For brevity, we write the optimization problem as

M
∗ = arg inf

M

E(M) s.t. C(M) ≤ N, (7)

where E and C are the error and cost functionals that map the metric tensor field to the error and cost,
respectively. The expression assumes that the polynomial order, p, is constant and fixed. The extension of
the continuous optimization framework to hp-adaptation would require introduction of the solution order
field {p(x)}x∈Ω.

4.2. Error Locality Assumption

In order to solve the optimization problem Eq. (7), we need a means of approximating the behavior
of the error and cost functionals. If we use the degrees of freedom as the measure of cost, then the cost
functional takes the form

C(M) =

∫

Ω

c(M(x), x)dx,

where c(·, ·) : Sym+
d ×R

d → R
+ is the local cost function. In the view of metric-mesh duality [10], the local

cost function for the discontinuous piecewise polynomial space is given by

c(M(x), x) = cp
√
det(M(x)), (8)

where cp is the degrees of freedom associated with a reference element normalized by the size of the reference
element, κ̂. For example, the coefficient associated with a triangular element, whose reference element is the
unit equilateral triangle, is cp = (2/

√
3)(p+1)(p+2). This choice allows us to recover the correct elemental

cost, ρκ, when the local cost function is integrated over an element, i.e.

ρκ =

∫

κ

c(M(x), x)dx ≈
∫

κ

cp
√
det(Mκ)dx = cp|κ̂| = dof(κ̂).

To estimate the behavior of the error functional, we make an assumption that the functional results from
a sum of the local contributions, i.e.

E(M) =

∫

Ω

e(M(x), x)dx,

where e(·, ·) : Sym+
d × R

d → R
+ is the local error function that maps the local approximability described

by M(x) to the local contribution to the output error. This locality assumption is formally only applicable
to errors that only depend on local properties, e.g. L2 projection errors. However, we have found that the
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Figure 1: The original, edge split, and uniformly split configurations used to sample the local error function behavior. The
metrics implied by the sampled configurations are shown in dashed lines.

algorithm developed based on the assumption works well in practice for output-based error estimates for
DG discretizations. Under the locality assumption, we can write the elemental error contribution as

ηκ =

∫

κ

e(M(x), x)dx ≈
∫

κ

e(Mκ, x)dx ⇒ ηκ = ηκ(Mκ).

That is, the elemental error—or the error associated with the region covered by κ—is a function of the metric
Mκ that encodes the approximation properties of the region covered by κ. In general, the dependency of
ηκ on Mκ is not known a priori. Our goal is to estimate the behavior of ηκ(Mκ) using local sampling and
a novel metric-error interpolation scheme.

4.3. Local Error Sampling

The goal of local error sampling step is to probe the behavior of the local elemental error ηκ as a function
of the local metric Mκ. Here, we probe the functional dependency by directly monitoring the behavior of the
elemental error or a posteriori error estimate for several different local configurations. Let us first describe
the procedure in context of the L2 error control.

We consider nconfig configurations obtained by locally splitting the edges, as shown in Figure 1. We will
denote the configuration obtained by the i-th local modification by κi. By convention, κ0 is the original
configuration. For configuration κi, we resolve the L2 projection problem to obtain the associated solution
uκi

h,p, i.e.

uκi

h,p = arg inf
v
κi
h,p

∈Vh,p(κi)

‖u− vκi

h,p‖2L2(κ),

where Vh,p(κi) is the piecewise polynomial space associated with κi. Once we obtain the solution, we can
compute the error associated with the configuration, ηκi

, i.e.

ηκi
= ‖u− uκi

h,p‖2L2(κ).

We expect the error ηκi
, i > 0, to be lower than that of the original configuration, ηκ0

, because Vh,p(κi) ⊃
Vh,p(κ0), i > 0. Different configurations yield different reduction in the error, depending on how the
approximability of the space is modified by the edge split operation with respect to the function u. In
particular, we encode the approximability of configuration κi into the associated metric Mκi

, the affine
invariant mean of the elemental metric tensors of the split configuration, i.e.

Mκi
= meanaffinv({Mj

κi
}n

split

elem

j=1 ),
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where nsplitelem = 2 for edge split and nsplitelem = 4 for uniform split. Repeating the procedure for all nconfig
configurations, we construct metric-error pairs

{Mκi
, ηκi

}nconfig

i=1 .

These pairs capture the anisotropic behavior of the local error because anisotropic edge split configurations
are included in nconfig configurations.

The construction of metric-error pairs for the DG discretization with the DWR error estimate follows
a similar procedure. First, we solve an element-wise local problem associated with κi. The local solution,
uκi

h,p ∈ Vh,p(κi), is a function defined on the subdivided mesh, κi, that satisfies

Rκi

h,p(u
κi

h,p, v
κi

h,p) = 0, ∀vκi

h,p ∈ Vh,p(κi),

where the local semilinear form, Rκi

h,p(·, ·), sets the boundary fluxes on κi assuming the solution on the
neighbor elements does not change. Then, we recompute the localized DWR error estimate corresponding
to the subdivided mesh as

ηκi
≡ |Rh,p(u

κi

h,p, ψh,p+1|κ0
)|.

Due to the local Galerkin orthogonality of the DG scheme, we can rewrite the local error as

ηκi
= |Rh,p(u

κi

h,p, (ψh,p+1 − ψκi

h,p)|κ0
)|.

The equality signifies that the local sampling procedure automatically accounts for the improvement in
the adjoint approximability resulting from the local refinement even though the local adjoint problem is not
explicitly solved.2 Thus, the local sampling technique based on the a posteriori error estimate automatically
captures the behaviors of both primal and dual solutions. Finally, we compute the local metric associated
with κi, Mκi

, to construct metric-error pairs {Mκi
, ηκi

}nconfig

i=1 .
The construction of the local metric-to-error map in principle extends to any localizable error estimate.

The only requirement is that the local error estimates based on the local solves are representative of the
errors that may be observed by solving the global problems with a similar local approximability. While the
requirement is not formally satisfied for solver-error pairs that do not meet the error locality assumption,
such as the DG discretization with the DWR error estimate, the procedure works well in practice.

4.4. Local Error Model Synthesis

The goal of the model synthesis step is to construct a continuous metric-error function ηκ(·) : Sym+
d →

R
+ from the pairs {Mκi

, ηκi
}nconfig

i=1 collected in the sampling stage. We aim to improve the robustness and
the efficiency of the adaptation process by introducing a continuous model and optimizing the surrogate
model, as oppose to, for example, simply combining a fixed-fraction size selection strategy with a compet-
itive anisotropic selection based on the minimum error-to-dof configuration as often done for quadrilateral
meshes [12, 13]. The noisiness of an individual anisotropic error sample collected on a simplex element is
documented in [16]; We improve the robustness of the adaptation decision process by synthesizing the poten-
tially noisy metric-error samples using a regression-based framework. Further, the continuous error model
permits continuous adjustment of all elements in the mesh every adaptation cycle, reducing the number of
adaptation iterations required to reach optimality compared to a fixed-fraction type strategy.

Our interpolation framework builds on Pennec’s affine invariant framework for tensor manipulation [11]
briefly reviewed in Section 3.2. First, we recall that the logarithmic map of a metric about the original
configuration Mκ0

provides a convenient means of characterizing the change in the approximability of the
region, as discussed in Section 3.2. Thus, we will measure the changes in the configuration as

Sκi
= log

(
M−1/2

κ0
Mκi

M−1/2
κ0

)
, i = 0, . . . , nconfig.

2We have also experimented with solving the p + 1 local dual problems as done in [12] for quadrilateral elements, but
numerically observed no quantifiable difference in the quality of the error estimate and hence the adaptation efficiency.
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Note that, by construction, the original configuration, Mκ0
, maps to the origin, i.e. Sκ0

= 0. Similarly, we
measure the associated changes in the errors as

fκi
= log (ηκi

/ηκ0
) , i = 0, . . . , nconfig.

Again, the original error, ηκ0
, maps to zero by construction.

Once we have the pairs {Sκi
, fκi

}nconfig

i=1 that characterizes the change in the error as a function of the
change in the configuration, our objective is to construct a continuous function fκ(·) : Symd → R. We
choose to construct a linear function in the entries of Sκ,

fκ(Sκ) = tr(RκSκ). (9)

To find an appropriate d × d symmetric matrix Rκ that governs the behavior of the linear function, we
perform the least-squares regression of the known data, i.e.

Rκ = argmin
Q∈Symd

nconfig∑

i=1

(fκi
− tr(QSκi

))
2
.

Note that, if nconfig is equal to the degrees of freedom of the symmetric matrix Rκ (e.g. three in two
dimensions), the regression becomes an interpolation, and the resulting linear function matches exactly at
the data points. In our case, we use four configurations (i.e. three anisotropic edge splits and one uniform
refinement), so the linear function is not an interpolant.

The local error model is given as

ηκ(Sκ) = ηκ0
exp (tr (RκSκ)) .

One of the important properties of the proposed error reconstruction scheme is that the quality of the recon-
struction is not affected by the current configuration, Mκ0

. In other words, the quality of the model—and
subsequent adaptation decisions—is preserved even on high aspect ratio elements encountered in anisotropic
adaptation. This property is proved in A.2.

We can gain a better insight into the error function behavior by decomposing the rate tensor Rκ into
the isotropic and the tracefree parts, i.e.

Rκ = rκI + R̃κ,

where tr(R̃κ) = 0. Combined with the decomposition of the step tensor Sκ into Sκ = sκI + S̃κ, the local
error model simplifies to

ηκ(sκI + S̃κ) = ηκ0
exp

(
tr
(
(rκI + R̃κ)(sκI + S̃κ)

))

= ηκ0
exp

(
rκsκd+ tr

(
R̃κS̃κ

))

= ηκ0
exp(rκsκd) exp

(
tr
(
R̃κS̃κ

))
,

where the cross terms vanish because tr(R̃κI) = 0 and tr(S̃κI) = 0. The decomposition shows that the trace
of Rκ controls the change in the error under isotropic scaling, and the tracefree part of Rκ controls change
in the error under shape modification. Thus, the rate matrix Rκ can be thought of as a generalization of
the convergence rate for isotropic scaling to anisotropic manipulation. A precise relationship between our
anisotropic error model and the standard isotropic error model,

ηisoκ (h) = ηκ0

(
h

h0

)risoκ

,

where risoκ is the isotropic convergence rate, is derived in A.3.
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4.5. Local Cost Model

The element-wise cost function model, ρκ, is obtained by directly integrating the continuous local cost
function over an element, i.e.

ρκ(Sκ) =

∫

κ

c(M(x), x)dx =

∫

κ

cp
√

detM(x)dx =

∫

κ

cp

√
det(M1/2

κ0 exp(Sκ)M1/2
κ0 )dx

=

∫

κ

cp

√
det(M1/2

κ0 exp(sκI + S̃κ)M1/2
κ0 )dx = ρκ0

exp

(
1

2
tr(Sκ)

)
= ρκ0

exp

(
d

2
sκ

)
.

Note that the cost is only a function of sκ, which controls the scaling of the tensor, and not S̃κ, which
controls the shape.

4.6. Optimization of the Surrogate Model

The final step of the adaptation algorithm is to optimize the metric field M, described by vertex values
{Mν}ν∈V . The vertex-based metric can then be used to generate a metric-conforming mesh using an
anisotropic mesh generator. To manipulate the metric tensors at vertices, we describe the changes in the
tangent space about the original configuration, Mν0

, and use the exponential map, i.e.

Mν(Sν) = M1/2
ν0

exp (Sν)M1/2
ν0
. (10)

Here, Sν ∈ Symd describes the change in the metric at vertex ν. Thus, given {Mν0
}ν∈V , our objective is

to choose the step matrices {Sν}ν∈V to reduce the error.
To solve the optimization problem, we first need to write the objective function E and the cost constraint

C in terms of the optimization variables {Sν}ν∈V . Substitution of the local error model into the error
functional yields

E(M) =

∫

Ω

e(x,M(x))dx ≈
∑

κ∈Th

ηκ(Mκ(Sκ)). (11)

In other words, we have approximated the behavior of the error functional in terms of the changes in the
configuration in each region covered by κ, Sκ. We assign the change in the configuration over an element
Sκ as the simple arithmetic mean of the changes at its vertices. That is, denoting the vertices of κ by V(κ),
we have

Sκ = {Sν}ν∈V(κ) ≡
1

|V(κ)|
∑

ν∈V(κ)

Sν .

Substitution of the expression into the error model Eq. (11) yields our objective function,

E ({Sν}ν∈V) =
∑

κ∈Th

ηκ

(
{Sν}ν∈V(κ)

)
.

Similarly, we can write our cost constraint in terms of our {Sν}ν∈V as

C ({Sν}ν∈V) =
∑

κ∈Th

ρκ

(
{Sν}ν∈V(κ)

)
.

We note that the error model is a good approximation of the error behavior only in vicinity of the original
configuration, because the model is built from the local samples of the configuration. Thus, we need to limit
the change in the metric field in each step. This is accomplished by limiting the entries of Sν , ν ∈ V, i.e.

|(Sν)ij | ≤ α, i, j = 1, . . . , d, ∀ν ∈ V,
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where the constant α specifies the region over which the metric-error map is considered reliable. For this
work, we use α = 2 log(2), which limits the change in the approximability to 2 in any direction—the range
over which the sampling is performed and the error model is reliable.

By introducing the surrogate error and cost functions, we have turned our infinite dimensional opti-
mization problem of the metric tensor field (with an unknown error function) into a finite dimensional
optimization of vertex step matrices. The surrogate optimization problem for the optimal {Sν}ν∈V is

{S∗
ν}ν∈V = arg inf

{Sν}ν∈V

E ({Sν}ν∈V) (12)

s.t. C ({Sν}ν∈V) = N (13)

|(Sν)ij | ≤ α, i, j = 1, . . . , d, ∀ν ∈ V. (14)

We emphasize that we do not intend to solve the problem exactly, because our error model, based on local
sampling and surrogate model, is only an approximation to the true problem. Thus, investing a large
computational effort into solving the surrogate optimization problem would be counterproductive.

Assuming that the current configuration is sufficiently close to the optimal configuration such that the
constraints Eq. (14) are inactive, the first order optimality condition for the optimization problem Eq. (12)-
(13) is given by

∂E
∂sν

+ λ
∂C
∂sν

= 0, (15)

∂E
∂S̃ν

= 0, ∀ν ∈ V, (16)

for some Lagrange multiplier λ, where sν = tr(Sν)/d and S̃ν is the trace-free part of Sν . The first condition,
Eq. (15), is a global condition for the size distribution. In particular, if we define the “local” Lagrange
multiplier as

λν ≡ ∂E
∂sν

/ ∂C
∂sν

,

then we must have λν = λ, ∀ν ∈ V. The global coupling is provided by the Lagrange multiplier, λ. The local
Lagrange multiplier, λν , is interpreted as the marginal improvement in the local error for a given investment
in the local cost, which is the degrees of freedom in the context of mesh adaptation. The global condition
states that, at optimality, the investment to any element results in the same marginal improvement in the
error.

The second condition, Eq. (16), is a local condition that states that the error is stationary with respect
to the shape change. Note that this second optimality condition is satisfied if

R̃κ = 0, ∀κ ∈ Th. (17)

The shape change, induced by S̃ν , does not affect the cost. Thus, if R̃κ 6= 0, then we can reduce the error

by choosing a S̃ν such that tr
(
R̃κ{Sν}ν∈V(κ)

)
< 0 without affecting the cost. Thus, the stationarity with

respect to the shape change is required at optimality.
If the current configuration is far from the optimal configuration, then some of the constraints Eq. (14)

become active and the equalities in the two optimality conditions Eq. (15) and (16) are replaced by inequal-
ities on those constrained variables.

Let us now propose a gradient-based algorithm to solve the surrogate optimization problem Eq. (12)-
(14). We again emphasize that our objective is to only approximately solve the problem. Our algorithm for
solving the optimization problem is:

-1. Evaluate/reconstruct ρκ0
, ηκ0

, and Rκ that define local cost and error models
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0. Set δs = α/nstep, which controls the incremental change in the metric such that the maximum change
over nstep steps is limited to α. This enforces Eq. (14) and prevents large changes that would render
our error model inaccurate. S0

ν = 0, ∀ν ∈ V. Set n = 0.

1. Compute vertex derivatives, ∂E/∂sν , ∂E/∂S̃ν , and ∂C/∂sν and the local Lagrange multiplier λν ≡
(∂E/∂sν)/(∂C/∂sν) about {Sn

ν }ν∈V .

2. Work toward equidistributing the local Lagrange multiplier and satisfying the global optimality con-
dition, Eq. (15), by updating the isotropic part of Sν according to:

• Refine top 30% of the vertices ν with the largest λν by setting S
n+1/3
ν = Sn

ν + δsI

• Coarsen top 30% of the vertices ν with the smallest λν by setting S
n+1/3
ν = Sn

ν − δsI

This fixed-fraction type refinement results in a more robust mesh adaptation than a simple steepest
descent, which can behave poorly when the error is dominated by few elements.

3. Work toward satisfying the local shape optimality condition, Eq. (16), by updating the anisotropic

part of Sν according to S
n+2/3
ν = S

n+1/3
ν − δs(∂E/∂S̃ν)/(∂E/∂sν).

4. Rescale S
n+2/3
ν to obtain a metric field with desired degrees of freedom. That is, Sn

ν = S
n+2/3
ν + βI,

where β is selected to satisfy Eq. (13).

5. Set n = n+ 1. If n < nstep go back to 1.

After obtaining the desired field of vertex step matrices {Sν}ν∈V , we modify the vertex metrics using
the exponential map, Eq. (10). Finally, the resulting the metric field, described by the vertex values, is fed
to a metric-conforming mesh generator to generate a new mesh.

The proposed adaptation algorithm is independent of the particular coordinate representation of the
tensors. This property implies that the same physical problem represented in two different coordinate
systems produces an identical sequences of tensor fields with respect to the physical problem. The property
is proved in A.4.

4.7. Practical Considerations for Output-Based Adaptation

Let us now summarize properties of the optimization algorithm that are particularly important for
practical output-based mesh adaptation.

• The method handles any discretization order and mixed orders

• The method uses the simplex remeshing strategy, which allow for arbitrarily-oriented anisotropic ele-
ments.

• The method does not make any a priori assumption about the convergence behavior of the error.
Because no a priori assumptions are utilized on the convergence rate, the method is more robust when
features are under-resolved in the presence of a singularity or singular perturbation.

• Both the sizing and the anisotropy decisions are driven directly by the a posteriori error estimates,
which automatically captures the behaviors of both the primal and dual solutions as well as all com-
ponents of the states. Improved efficiency for problems in which primal and adjoint solutions exhibit
different directional features is expected.

• The local error model synthesis

• The method inherits the versatility of the adjoint-based error estimate, which exclusively governs
adaptation decisions. For example, the framework straightforwardly extends to different governing
equations (e.g. Navier-Stokes, structural elasticity, Maxwell’s).

• Of the three steps of the adaptation algorithm (local error sampling, error model synthesis, and
surrogate model optimization), the local error sampling constitutes majority (over 90%) of the compu-
tational cost. The error sampling for each element equates to residual evaluation and error estimation
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on approximately 10 elements (three 2-element edge split samples and one 4-element uniform refine-
ment sample). Thus, in theory, the proposed sampling strategy could increase the computational cost
by a factor of 10 for a small linear problem where the global linear solve cost is a small fraction of
the residual evaluation cost. However, in practice, the perfectly-scalable local solves become a smaller
fraction of the global solve, which scales superlinearly, as the problem size grows. The trend is more
pronounced for a nonlinear problem, in which local problems require much fewer Newton iterations
than the global problem. (For a typical two-dimensional Reynolds-averaged Navier-Stokes flow over
an isolated airfoil, the adaptation cost constitutes less than 10% of the flow solve [26].)

5. L
2 Error Control

We verify the ability of the proposed mesh optimization algorithm to produce optimal meshes in a
series of L2 error control problems. As previously mentioned, the L2 error control problems are suited for
verification purposes as the errors are truly localized and the analytical solutions are attainable from the
polynomial interpolation theory and calculus of variations. We will consider two problems; the first problem
is isotropic, and the second problem is anisotropic.

5.1. rα-Type Corner Singularity

We consider a solution with a rα-type corner singularity, where r is the distance from the singular corner
and α > 0 is a constant determining the strength of the singularity. In particular, we consider the solution
to the classical L-shaped domain Poisson problem, whose exact solution is given by

u = r2/3 sin

[
2

3

(
θ +

π

2

)]
,

where r2 = x21 + x22 and tan(θ) = x2/x1.

5.1.1. Analytical Solution

We analytically obtain the optimal mesh size distribution using polynomial interpolation theory and
calculus of variations, following a similar approach pursued by Schwab [27] and Loseille and Alauzet [10].
To simplify the analysis, let us restrict ourselves to a domain with circular outer boundary of the form

Ω = {x ∈ R
2 : ‖x‖ ≤ R, θ1 ≤ arctan(x2/x1) ≤ θ2}.

Then, the error functional can be expressed as

E(h) =
∫

Ω

Cph
2(p+1)

∣∣∣∣
∂p+1u

∂rp+1

∣∣∣∣
2

dx =

∫ R

0

Cα,p,θh
2(p+1)r2α−2p−1dr

Similarly, the cost functional on Ω is

C(h) =
∫

Ω

cph
−2dx =

∫ R

0

cp,θh
−2rdr

Forming the Lagrangian and solving for the stationary point, we obtain

h = Cα,p,θ1,θ2r
kanalytic

where the optimal grading coefficient is given by

kanalytic = 1− α+ 1

p+ 2
.

The expression shows that the grading becomes stronger as α decreases or p increases for the corner singu-
larity.
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(a) p = 1 (b) p = 3

Figure 2: The optimized meshes for the corner singularity problem containing approximately 200 elements.

5.1.2. Numerical Solution

We apply the proposed mesh optimization algorithm to a corner singularity problem with α = 2/3.
Examples of optimized meshes obtained for the problem using p = 1 and 3 approximation spaces are shown
in Figure 2. Each mesh contains approximately 200 elements. The stronger grading toward the singularity
located at the bottom left corner for the p = 3 mesh is evident from the figure.

A more quantitative assessment of the optimization strategy is obtained by studying the distribution of
the element size, h, against the distance from the singularity, r, and comparing the distribution with the
analytical result. Figure 3 shows the distribution of h against r for the optimized meshes. The element

size h is computed based on the volume, i.e. h = det (Mκ)
−1/4

where Mκ is the elemental implied metric.
The distance r is measured from the singularity to the centroid of elements. The optimization is performed
for p = 1 and p = 3 at the degrees of freedom count of 1000 and 4000. The optimal grading coefficient
calculated analytically for p = 1 and 3 are kanalytic = 0.44 and 0.67, respectively. Knowing the optimal
values of h and r varies linear in log-log space, we also plot the least-squares fit to log(h) vs. log(r). The
proposed optimization algorithm produces meshes with the grading factor of k = 0.47 and 0.67 for p = 1
and p = 3, respectively, at 4000 degrees of freedom. Thus, the optimal grading is automatically obtained
for each p without any a priori knowledge of the solution behavior for the two p’s.

5.2. Boundary Layer Problem

We consider a boundary layer solution resulting from a singular perturbation. The solution is essentially
one-dimensional, but we regularize the solution by adding a constant p+1 derivative in the parallel direction,
i.e.

u(x1, x2) = exp
(
−x1
ǫ

)
+

β

(p+ 1)!
xp+1
2 ,

where ǫ is the characteristic length of the singular perturbation, β is the regularization constant, and x1
and x2 are the coordinates perpendicular and parallel, respectively, to the boundary.

5.2.1. Analytical Solution

We employ anisotropic interpolation theory and calculus of variations to find the optimal anisotropic
element size distribution. Because all cross derivatives vanish for the function u considered, the error
functional takes on a particularly simple form

E(h1, h2) =
∫

Ω

h
2(p+1)
1 |u(p+1)

x1
|2 + h

2(p+1)
2 |u(p+1)

x2
|2dx1dx2

=

∫

Ω

h
2(p+1)
1

(
−1

ǫ

)2(p+1)

exp

(
−2x1

ǫ

)
+ h

2(p+1)
2 β2dx1dx2.
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Figure 3: The element size (h) vs. the distance of the element centroid from the corner (r) for the optimized meshes for the
corner singularity problem with α = 2/3. The lines and equations shown are the least-squares fit in log(h) vs. log(r).

The cost functional is

C(h1, h2) =
∫

Ω

Cph
−1
1 h−1

2 dx.

For convenience, let us express the solution in terms of h1 and the aspect ratio, AR = h2/h1, instead of in
terms of h1 and h2.

Finding the stationary point of the Lagrangian formed by the error and cost functionals, the optimality
condition for h1 is

h1 = Cp,ǫ exp(k
analytic
1 x1)

with the optimal characteristic thickness given by

δ =
1

kanalytic1

= ǫ

(
p+

3

2

)(
1− 1

4p2 + 12p+ 9

)
.

We note that this optimal characteristic thickness is close to that of the one-dimensional boundary layer
problem, δ1d = ǫ(p + 3/2). Unlike the corner singularity case, the optimal mesh grading decreases as p
increases.

Similarly, finding the stationary point of the Lagrangian, we find the optimal aspect ratio distribution
for this problem as

ARanalytic = ARanalytic
0 exp(kanalyticAR x1)

with the aspect ratio at the root, AR0, and the grading factor, kAR, given by

ARanalytic
0 =

1

β
1

p+1 ǫ
and kanalyticAR = − 1

ǫ(p+ 1)
.

Note that the maximum aspect ratio is achieved on the boundary, and it decreases exponentially away from
the boundary.
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(a) p = 1 (b) p = 3

Figure 4: Examples of optimized boundary layer meshes for p = 1 and p = 3 containing approximately 200 elements.

k1 AR0 kAR
p = 1 numerical 41.9 43.9 -50.3
p = 1 analytical 41.7 50.0 -50.0
p = 3 numerical 22.7 46.8 -23.3
p = 3 analytical 22.5 50.0 -25.0

Table 1: Summary of the optimized mesh parameters.

5.2.2. Numerical Solution

We apply the proposed optimization algorithm to the boundary layer problem with ǫ = 1/100 and
β = 2p+1, which results in AR0 = 50. Figure 4 shows examples of p = 1 and p = 3 optimized meshes.
Each mesh contains approximately 200 elements. Highly anisotropic elements are employed to resolve the
boundary layer on the left boundary. Visually, the p = 3 optimized mesh exhibits a weaker h1 grading
toward the boundary layer, as predicted by the analytical result.

Again, a more quantitative assessment of the optimized meshes is provided by Figure 5. The h1 and h2
value for each element is computed by first calculating the elemental implied metric Mκ, and then taking

h1 = (Mκ)
−1/2
11 and h2 = (Mκ)

−1/2
22 . Figure 5(a) shows the distribution of h1 against the distance from

the boundary x1 in log-linear scale for p = 1 discretization with 1000 and 4000 degrees of freedom. The
distribution is essentially linear in the log(h1)-x1 space, and the least-squares fit in the space shows that the
grading factor in the direction perpendicular to the boundary is k1 = 41.9 (for dof = 4000), which agrees

with the analytical optimal value of kanalytic1 = 41.7. Figure 5(b) shows the aspect ratio distribution, and
the least-squares fit in the log(AR)-x1 space. The aspect ratio at the boundary obtained using the algorithm

is AR0 = 43.9, which is slightly lower than the analytical result of ARanalytic
0 = 50.0; however, the values are

still in good agreement. The negative grading away from the boundary of kAR = 50.3 matches closely with
that of analytical result, kanalyticAR = 50.0. The comparison of the analytical and numerical mesh parameters
is summarized in Table 1.

Figure 5(c) and 5(d) show the same log(h1)-x1 and log(AR)-x1 analysis for p = 3 discretization. The
grading for h1 and AR are weaker for p = 3 than for p = 1, which is consistent with the theory. All parameters
of the optimized meshes match well with those of analytical results. Again, without relying on the a priori

error convergence behavior or the solution Hessian (or a higher derivative equivalent), our algorithm deduces
the optimal anisotropic mesh distribution.
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(c) h1, p = 3
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Figure 5: The element size in the perpendicular direction, h1, and the aspect ratio distribution, AR = h2/h1, for the boundary
layer problem with ǫ = 0.01 and β = 2p+1.
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Figure 6: The domain for the advection-diffusion cases.

6. Output-Based Adaptation: Advection-Diffusion Problems

6.1. Setup

We consider an application of the proposed adaptation framework to the advection-diffusion equation in
a rectangular domain Ω ≡ [−1.5, 1.5]× [0, 1] shown in Figure 6. The governing equation is given by

∇ · (βu)−∇ · (ǫ∇u) = f in Ω,

where β ∈ R
2 defines the advection field, ǫ ∈ R

+ is the viscosity, and f is the source function. For all
the problems considered, we set β = [1, 0] and ǫ = 10−3, so that the Peclet number is 103. The boundary
conditions are given by

−(β · n)u+ ǫ
∂u

∂n
= 0, on Γ1

ǫ
∂u

∂n
= 0, on Γ2

u = uΓ3
, on Γ3

u = 0, on Γ4,

where the boundaries Γi, i = 1, . . . , 4, are as specified in Figure 6, and uΓ3
specifies the solution value on

Γ3. The general form of the output functional considered is expressed as,

J (u) =

∫

Ω

gΩuds+

∫

Γ3

gΓ3
ǫ
∂u

∂n
ds,

where gΓ3
and gΩ are the two parameters that characterize the output. For the specified form of the output

and the boundary conditions, the dual problem is given by

−β · ∇ψ −∇ · (ǫ∇u) = gΩ in Ω

with the boundary conditions

ǫ
∂ψ

∂n
= 0, on Γ1

(β · n)ψ + ǫ
∂ψ

∂n
= 0, on Γ2

ψ = gΓ3
, on Γ3

ψ = 0, on Γ4.

We will consider three different combinations of the source function f , the boundary value uΓ3
, and the

output functional parameters gΩ and gΓ3
to produce primal and dual solutions suitable for assessing the

optimization algorithm. The choice of problem parameters and the corresponding primal and dual solutions
are summarized in Table 2. A pair of primal solutions, P1 and P2, and a pair of dual solutions, D1 and
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Primal-Dual Dual-Only Primal-Only

f 0 − sin
(
10π
3 x1

)
sin(πx2) 0

uΓ3
1 0 1

gΩ 0 0 1
2π(0.0012) exp

(
− 1

2 [
x2
1

0.022 + (x2−0.25)2

0.062 ]
)

gΓ3
1 1 0

Primal Solution P1 P2 P1

Dual Solution D1 D1 D2

Table 2: The set of parameters defining the three advection-diffusion problems. The solution identifications correspond to
those in Figure 7.

(a) primal solution P1 (b) primal solution P2

(c) dual solution D1 (d) dual solution D2

Figure 7: Solutions to the boundary layer problems.

D2, are shown in Figure 7. The first problem is called “primal-dual,” as the choice of parameters induces a
boundary layer in both primal and dual solutions (P1 and D1). The second problem is called “dual-only,”
as it exhibits a boundary layer in the dual solution (D1) but not in the primal solution (P2). Similarly, the
third problem is called “primal-only,” as a boundary layer appears only in the primal solution (P1) and not
in the dual solution (D2).

6.2. Assessment Procedure

In order to assess the effectiveness of the proposed mesh optimization method, we compare the approach
with two different strategies. First is the isotropic refinement based on the DWR error estimate. Second is
the anisotropic refinement that uses the DWR error estimate for the area decision and the primal solution for
the shape decision. Specifically, the method solves the p+ 1 discretization of the primal problem, takes the
first principal direction in the direction of the maximum p+1 derivative, selects the second principal length
to equidistribute the interpolation error in the two principal directions, and scales the principal lengths to
achieve the desired area. The detailed implementation of the algorithm is presented in [28]. We emphasize
that both of these approaches use the adjoint-based error estimate; the primary difference in the methods
lies in the anisotropy decision process.

For each of the advection-diffusion problems, the solutions are obtained using the p = 2 discretization
at 500, 1000, and 2000 degrees of freedom. The reference solution is obtained using the p = 3 discretization
at 40,000 degrees of freedom.
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Figure 8: Error convergence to the primal-dual boundary layer problem using p = 2 discretization.

(a) isotropic (b) primal anisotropy

(c) optimization

Figure 9: Adapted meshes for the primal-dual boundary layer problem. (p = 2, dof = 2000)

6.3. Primal-Dual Boundary Layer

The primal-dual boundary layer problem exhibit boundary layer in both primal (P1) and dual (D1)
solution, as shown in Figure 7. The output error convergence for the three adaptation schemes is shown in
Figure 8. The proposed anisotropic mesh optimization algorithm reduces the error by over three orders of
magnitude compared to isotropic adaptation, even for the moderate Peclet number of 103. The advantage
of the anisotropic boundary layer resolution further increases for higher Peclet number cases.

For this problem, the primal-based anisotropy detection is expected to perform well because the region
that the primal and dual solutions require high anisotropy match with each other. Thus, targeting the primal
anisotropic feature coincidentally results in resolving the dual anisotropic feature. Even then, Figure 8
shows that the optimization based approach outperforms the primal-based anisotropy detection, requiring
approximately half of the degrees of freedom for a given output error level.

The final meshes at 2000 degrees of freedom are shown in Figure 9. Because the primal and dual
solutions are mirror image of each other about x2 = 0, the isotropic adaptation produces a mesh whose
size functions are symmetric about x2 = 0, as shown in Figure 9(a). Recalling that the output error is a
(weighted) product of the primal and dual errors, the symmetry of the mesh (and hence the equal level of
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Figure 10: Error convergence to the dual-only boundary layer problem using p = 2 discretization.

the resolution of primal and dual solutions) agrees with our intuition. On the other hand, Figure 9(b) shows
that the primal-based anisotropy results in a scheme that is biased toward resolving the directional features
in the primal solution. The biased-treatment of the primal solution suggests that the element anisotropy
is not optimal. However, the primal-based anisotropy detection results in over 60% of the elements having
aspect ratio over 10 and 20% having the aspect ratio over 30, contributing to the efficient resolution of
the boundary layer and outperforming the isotropic adaptation. Figure 9(c) shows that our optimization
algorithm produces a mesh whose size and anisotropy distributions are symmetric about x2 = 0. This is
not surprising, as the method is driven completely by the behavior of the a posteriori error estimate and
automatically balances the influences of the primal and adjoint solutions for this case. On the optimized
mesh, over 80% of the elements have aspect ratio of over 10 and 20% have the aspect ratio of over 30.

6.4. Dual-Only Boundary Layer

The dual-only boundary layer problem produces a boundary layer in the dual solution (D1) but not in
the primal solution (P2), as shown in Figure 7. Figure 10 shows the output error convergence for the three
adaptation schemes. The proposed mesh optimization method requires approximately half the degrees of
freedom of the isotropic adaptation to achieve a given error tolerance. For this problem, the primal-based
anisotropy detection performs worse than the isotropic adaptation.

Figure 11 shows the final meshes at 2000 degrees of freedom. The isotropic adaptation targets the
boundary layer in the dual solution; however, its efficiency is limited due to the use of isotropic elements.
The primal-based anisotropy detection produces inappropriate anisotropy in the boundary layer, resulting in
the method performing worse than the isotropic adaptation. The proposed optimization method targets the
dual boundary layer using anisotropic elements. However, because the primal solution is not anisotropic near
the bottom wall, the elements are not as anisotropic as those in the primal-dual boundary layer problem. In
particular, the fraction of elements with the aspect ratio of over 30 are only 6% for this case, compared to
over 20% for the primal-dual boundary layer case. The result again demonstrates that the proposed method
automatically balances the resolution of the primal and dual solution to minimize the output error.

6.5. Primal-Only Boundary Layer

The primal-only boundary layer problem considers a regularized line output, and produces a boundary
layer in the primal solution (P1) but not in the dual solution (D2), as shown in Figure 7. The output error
convergence for the primal-only boundary layer problem is shown in Figure 12. The proposed optimiza-
tion approach performs significantly better than the isotropic adaptation or the primal-based anisotropy
detection.
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(a) isotropic (b) primal anisotropy

(c) optimization

Figure 11: Adapted meshes for the dual-only boundary layer problem. (p = 2, dof = 2000)
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Figure 12: Error convergence to the primal-only boundary layer problem using p = 2 discretization.
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(a) isotropic (b) primal anisotropy

(c) optimization

Figure 13: Adapted meshes for the primal-only boundary layer problem. (p = 2, dof = 2000)

Figure 13 shows the final meshes obtained using the three adaptation strategies. Figure 13(a) shows that
the isotropic adaptation targets the region of overlap between the primal boundary layer and dual shear
layer; however, similar to the other two cases, its efficiency is limited due to the use of isotropic elements.

Figure 13(b) shows that the primal-based anisotropy detection employs anisotropic elements suitable
for resolving the primal boundary layer. Because its sizing decision is based on DWR, smaller elements
are employed in vicinity of the dual source term and elements downstream of the source location are large.
We note that the apparent refinement in the region downstream the source is due to the use of highly
anisotropic elements. However, these anisotropic elements aligned with the primal boundary layer are
unsuited for resolving the dual solution that exhibit strong variation in the x1-direction just downstream
of the source. The poor performance of the primal-based anisotropy detection shows that anisotropy only
suited for resolving the primal solution is in fact worse than no anisotropy at all even for the problem that
exhibit strong anisotropic features in the primal solution.

The proposed optimization approach balances the anisotropy requirements for resolving the primal and
dual solutions, as shown in Figure 13(c). In the region upstream of the dual source, both the primal and
dual solution exhibit strong variation in the x2-direction, and the algorithm resolves these features using
highly anisotropic elements. However, in the vicinity of the Gaussian source, the algorithm uses isotropic
elements. This is a result of balancing the x2 resolution for the primal solution and x1 resolution for the
dual solution.

7. Conclusions

We present an optimization framework for anisotropic simplex mesh adaptation. Our method leverages
and supplements the recent advances in the discretization and error estimation technologies, extending the
DWR-based adaptation to anisotropic problems. The framework builds on a number of concepts recently
introduced including: a continuous mesh optimization perspective of Loseille et al. [10]; a local error sampling
technique based on local solves introduced by Georgoulis et al. [12]; and an affine-invariant metric tensor
manipulation framework of Pennec et al. [11]. A combination of these advances lead to a development of
a general adaptation framework based on parameterization of a mesh, selection of error and cost models,
identification of the model parameters, and optimization of the surrogate model. Our method inherits the
versatility of the underlying discretization and error estimate, handles any discretization order, and adapts
to arbitrarily oriented anisotropic features.

A pair of canonical L2 error control problems verify that the proposed method produces optimal meshes,
whose parameters match the optimal element size distributions analytically obtained using anisotropic in-
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terpolation theory and calculus of variations. For both the isotropic and anisotropic verification cases,
the method automatically deduces the optimal meshes for different polynomial orders without an a priori

knowledge of the error convergence behavior.
Application of the framework to output error control demonstrates the ability of the method to effec-

tively balance the primal and dual errors by appropriately choosing element anisotropy in a fully-automatic
manner based on the a posteriori error estimate. The proposed method outperforms other DWR-driven
adaptation methods with isotropic refinement and primal-based anisotropy detection for all cases consid-
ered. Considering the encouraging results for the simple problems, we expect the proposed framework to
bring further benefits in more complex problems encountered in engineering and science, where both the
primal and dual solutions exhibit complex, anisotropic behaviors that are not known a priori.

Lastly, we note that the proposed framework based on mesh parametrization, error and cost model
selection, sampling-based model parameter identification, and surrogate-model optimization is a general
formulation that can be applied to much wider classes of adaptation problems than those solved in this
work. First, our algorithm extends to three-dimensional problems in a straightforward manner. In three
dimensions, the metric tensor is described by six entries and the local error sampling would be performed
on (at least) six configurations obtained by splitting different edges of a tetrahedron; the error synthesis
and optimization procedures are dimension-independent, requiring no modifications. Another extension is
hp adaptation, in which the mesh is parameterized by not just a metric field but also a polynomial order
field. This would require an additional sampling strategy that measures error sensitivity to the solution
order. Another practical example is combining the method with structured (or layered) boundary layer
mesher that only offers limited mesh control parameters (e.g. grading ratio). In this case, the error and
cost sensitivity with respect to the metric field can be mapped to the mesh control parameters via chain
rule, and we can perform optimization on the control parameters. Assuming a suitable error estimate is
available, the framework also provides an unified treatment of time-dependent problems with varying degrees
of space-time mesh flexibility (e.g. method of lines, Rothe method, and fully unstructured). Depending on
the type of space-time mesh, the elemental error and cost sensitivity can be mapped to an appropriate set
of mesh control parameters. Extension of the framework, such as those mentioned above, are the areas of
ongoing research.
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A. Properties of the Adaptation Algorithm

A.1. Relationship between Step Matrix and the Change in Approximability

In designing our surrogate error model and optimization algorithm, we advocated the use of the step
matrix S (either elemental or vertex) rather than using the metric tensor M directly. This is because the
magnitude of the entries of a step matrix S is closely related to the change in the anisotropic approximability

of the space associated with M0 and M(S) ≡ M1/2
0 exp(S)M1/2

0 , as stated in Section 3.2. Here we prove
the relationship Eq. (5) between the change in the anisotropic approximability and the entries of the step
matrix S.

The change in the approximability in a given direction, or the ratio of the directional lengths between
the configurations induced by M0 and M(S), is

h(e;M(S))

h(e;M0)
=

(
eTM0e

eTM1/2
0 exp(S)M1/2

0 e

)1/2

.
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The lower bound of the ratio, i.e. the maximum increase in the approximability, is related to the eigenvalues
of S by

min
e∈Rd\0

h(e;M(S))

h(e;M0)
= min

e∈Rd\0

(
eTM0e

eTM1/2
0 exp(S)M1/2

0 e

)1/2

= min
f∈Rd\0

(
fT f

fT exp(S)f

)1/2

= (λmax(exp(S)))
−1/2 = exp

(
−1

2
λmax(S)

)
,

where λmax(S) denotes the maximum eigenvalue of S. Similarly, the upper bound of the ratio can be
expressed as

max
e∈Rd\0

h(e;M(S))

h(e;M0)
= exp

(
−1

2
λmin(S)

)
,

where λmin(S) denotes the minimum eigenvalue of S. Thus, we can control the maximum increase or
decrease in the approximability by controlling the maximum and minimum eigenvalue of S, respectively. In
particular, because

λ2min(S) ≤ ‖S‖2F and λ2max(S) ≤ ‖S‖2F ,

the magnitude of the entries in S is a good indicator of the maximal change in the approximability in
moving from M0 to M(S). Thus, expressing the manipulation in terms of the step tensor S ∈ Symd

and mapping the tensor to M(S) ∈ Sym+
d via the exponential map not only eliminates the potential of

generating a null-tensor but also provides a convenient means of controlling the change in the anisotropic
approximability.

A.2. Invariance of the Sampling Quality

One of the important features of the proposed error model and sampling strategy is that the quality of
the error reconstruction does not degrade on highly anisotropic elements. Recalling the error reconstruction
operates on the step matrices {Sκi

}nconfig

i=1 in the tangent space, the property requires that the set of step
matrices does not become degenerate on a highly anisotropic configuration. In fact, we will show that
{Sκi

}nconfig

i=1 are invariant with respect to the current configuration Mκ0
up to orthogonal transformation,

which does not influence the quality of reconstruction. The invariance is a consequence of the local coordinate
system induced by the affine-invariant metric. We note that, if the error reconstruction is performed directly
using the coefficients of the metric tensor, the error reconstruction would become ill-posed as the step tensors
Mκ0

−Mκi
becomes degenerate on highly anisotropic elements.

Let us denote the metric tensor associated with the unit reference element by M̂0. By definition,
M̂0 = I. Let us denote the mapping of the unit reference element to an element obtained by the i-th local
mesh operation of the reference element by Ĵi. The tensor corresponding to the split reference element is

M̂i = Ĵ−T
i M̂0Ĵ

−1
i .

The step tensor from M̂0 to M̂i is

Ŝi = log(M̂−1/2
0 M̂iM̂−1/2

0 ) = log(M̂i)

Let us now consider the step tensor from an arbitrary configuration Mκ0
to the configuration obtained

by the i-th local mesh operation, Mκi
. Let us denote the mapping from the unit reference triangle, M̂0, to

Mκ0
by J and the singular value decomposition of J by J = UΣV T . Then, Mκ0

can be expressed as

Mκ0
= J−TM̂0J

−1 = (UΣ−1V T )I(V Σ−1UT ) = UΣ−2UT .
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Similarly, using the mapping J , we can express the configuration obtained by i-th mesh operation as

Mκi
= J−TM̂iJ

−1 = UΣ−1V TM̂iV Σ−1UT .

The step matrix from Mκ0
to Mκi

is

Sκi
= log(M−1/2

κ0
Mκi

M−1/2
κ0

)

= log((UΣ−2UT )−1/2(UΣ−1V TM̂iV Σ−1UT )(UΣ−2UT )−1/2)

= UV T log(M̂i)V U
T = (V UT )T Ŝi(V U

T )

The step matrix from Mκ0
to Mκi

is related to the step matrix from M̂0 to M̂i by the orthogonal

transformation induced by V UT . Thus, as long as the samples {M̂i}nconfig

i=1 are chosen such that the linear
error reconstruction problem is well-posed on the reference element, the linear fitting problem on Mκ0

is
well-posed. In other words, the quality of the error model reconstruction is preserved even on high aspect
ratio elements encountered in anisotropic adaptation.

A.3. Inclusion of the Isotropic Error Model

As mentioned in Section 4.4, our anisotropic error model ηκ(Sκ) = ηκ0
exp(tr(RκSκ)) is a generalization

of the familiar isotropic error relationship based on the power law,

ηisoκ (h) = ηκ0

(
h

h0

)risoκ

, (18)

where risoκ is the convergence rate. In particular, the behavior of the error model under isotropic scaling is
consistent with that of the isotropic error model in the following sense. The isotropic metric M for mesh
size h is given by M = h−2I. The step tensor required to change from an isotropic tensor M0 = h−2

0 I to
M = h−2I is

Sκ = log
(
M−1/2

0 MM−1/2
0

)
= log

(
h20h

−2I
)
= −2 log

(
h

h0

)
I

We note that the trace-free part S̃κ vanishes as expected, and the isotropic part is sκ = −2 log(h/h0).
Substitution of the step tensor into the local error model yields

ηκ (Sκ) = ηκ

(
−2 log

(
h

h0

)
I

)
= ηκ0

exp

(
−2drκ log

(
h

h0

))
= ηκ0

(
h

h0

)−2drκ

.

If we define risoκ = −2drκ, then we recover the isotropic error relationship Eq. (18). Thus, our error model
can be thought of as an extension of the scalar error model to anisotropic deformations.

A.4. Invariance under Coordinate Transformation

In this section, we show that the tensor field optimization algorithm presented is independent of the
particular coordinate representation of the tensors. The property means that the same physical problem
represented in two different coordinate systems would produce the identical sequences of the tensor fields
with respect to the physical problem.

Let us consider two coordinate systems, x and x̄, that are related by the mapping

x̄ = g(x) = αUx+ x̄0,

where U is a d× d orthogonal matrix, α > 0 is the coordinate scaling factor, and x̄0 ∈ R
d is the coordinate

shift. A mesh defined in terms of x can be represented in the coordinate system x̄ by mapping each nodal
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coordinate according to x̄ = g(x). Then, the tensor field represented in the coordinate system x̄, {M̄}x̄∈Ω,
is related to that of the coordinate system x, {M}x∈Ω, by

M̄(x̄) = α−2UM(x)UT .

Now let us work through the adaptation procedure and show that it is invariant under coordinate transfor-
mation.

The first step of adaptation is local sampling. The elemental step tensor in x̄, S̄κi
, is related to that in

x, Sκi
, by

S̄κi
= log

(
M̄−1/2

κ0
M̄κi

M̄−1/2
κ0

)

= log
((
α−2UMκ0

UT
)−1/2 (

α−2UMκi
UT
) (
α−2UMκ0

UT
)−1/2

)

= U log
(
M−1/2

κ0
Mκi

M−1/2
κ0

)
UT = USκi

UT ,

where we have identified the step matrix in x coordinate system as Sκi
= M−1/2

κ0 Mκi
M−1/2

κ0 . We also map
the change in the error to the logarithmic space, i.e. fκi

= log (ηκi
/ηκ). Here, because the two coordinate

systems represent the same physical system, we assume that ηκi
/ηκ0

evaluates to the same value for all
i = 1, . . . , nconfig and κ ∈ Th, resulting in the same {fκi

}nconfig

i=1 for both coordinate systems. To identify the
rate matrix in the transformed coordinate system, R̄κ, we solve the minimization problem

R̄κ = argmin
Q̄∈Symd

nconfig∑

i=1

(
fκi

− tr(Q̄S̄κi
)
)
= argmin

Q̄∈Symd

nconfig∑

i=1

(
fκi

− tr
(
Q̄USκi

UT
))
.

Recalling Rκ in the original coordinate system is the solution to

Rκ = argmin
Q∈Symd

nconfig∑

i=1

(fκi
− tr (QSκi

)) .

and noting that similarity transforms do not alter the value of trace, we immediately recognize the solution
to the minimization problem on the transformed coordinate is related to that of the original coordinate by

R̄κ = URκU
T .

As a result, the two error models are identical in the sense that

η̄κ(S̄κ) = ηκ0
exp

(
tr
(
R̄κS̄κ

))
= ηκ0

exp
(
tr
(
URκU

TUSκU
))

= ηκ0
exp (tr (RκSκ)) = ηκ(Sκ).

Similarly, the cost model is identical because

ρ̄κ(S̄κ) = ρκ0
exp

(
1

2
tr(S̄κ)

)
= ρκ0

exp

(
1

2
tr(USκU

T )

)
= ρκ0

exp

(
1

2
tr(Sκ)

)
= ρκ(Sκ).

Finally, to create the new vertex representation of the metric field, we solve the optimization problem on
the surrogate model. Recall that the optimization algorithm relies entirely on the gradient of the surrogate
error and cost functions. Let us denote the surrogate error and cost functions in the transformed space by
Ē({S̄ν}) and C̄({S̄ν}). Because the error and cost models are invariant under the coordinate transformation,
their derivatives are related by simple coordinate transformations,

∂Ē
∂S̄ν

= U
∂E
∂Sν

UT and
∂C̄
∂S̄ν

= U
∂C
∂Sν

UT .
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Consequently, the proposed gradient descent algorithm produces the vertex step matrices in the transformed
coordinate, {S̄ν}, which are related to that solved in the original coordinate by

S̄ν = USνU
T .

The exponential map of the step matrices in the transformed coordinate yields

M̄ν

(
S̄ν

)
= M̄1/2

ν0
exp

(
S̄ν

)
M̄1/2

ν0

=
(
α−2UMν0

UT
)1/2

exp
(
USνU

T
) (
α−2UMν0

UT
)1/2

= α−2UM1/2
ν0

exp (Sν)M1/2
ν0
UT = α−2UM (Sν)U

T .

Because the relationship between M̄ν

(
S̄ν

)
and M (Sν) is identical to the transformation of the tensor for

the two coordinate systems, the two updated tensors {Mν}ν∈V and {M̄ν}ν∈V represent the same physical
tensor fields. Thus, our adaptation algorithm is invariant under coordinate transformation.

B. Comparison of Discrete and Continuous Optimization
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