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I. Code Description

ProjectX is a high-order, adaptive discontinuous Galerkin finite element solver. The DG discretization
uses Roe’s approximate Riemann solver1 for the inviscid numerical flux and Bassi and Rebay’s second
discretization (BR2)2 for the viscous numerical flux. In the presence of shocks, artificial viscosity is added
in a smooth manner using a jump-based discontinuity sensor and the shock PDE introduced by Barter and
Darmofal3 with a few additional modifications.4 The solution to the discretized system is obtained using a
Newton-based nonlinear solver with pseudo-time continuation. The linear system arising in each pseudo-time
step is solved using GMRES,5 preconditioned with an in-place block-ILU(0) factorization6 with minimum
discarded fill reordering and p = 0 algebraic coarse correction.7

An output-based, anisotropic simplex adaptation algorithm is used to control the discretization error.8

The algorithm iterates toward a mesh that minimizes the output error for a given number of degrees of free-
dom. The anisotropic adaptation decisions are entirely driven by the behavior of an output-based a posteriori
error estimate; thus, the method handles any discretization order, naturally incorporates both the primal
and adjoint solution behaviors, and robustly treats irregular features. The output error estimate uses the
dual-weighted residual (DWR) method of Becker and Rannacher.9 A new mesh that conforms to the metric
request is generated using using BAMG (Bidimensional Anisotropic Mesh Generator),10 and higher-order,
globally curved meshes are constructed through linear elasticity.11

II. Case Description

II.A. Flow Conditions

Case C1.3 considers three separate flows over a NACA 0012 airfoil:

1. Subsonic, inviscid flow with M∞ = 0.5, α = 2◦

2. Transonic, inviscid flow with M∞ = 0.8, α = 1.25◦

3. Subsonic, laminar flow with M∞ = 0.5, α = 1◦, Rec = 5, 000, Pr = 0.72 (adiabatic wall)

For each flow condition, we specify the appropriate total temperature, the total pressure, and the flow angle
at the inflow and the static pressure at the outflow.

II.B. Domain Specification

The (modified) NACA 0012 airfoil is defined by

y = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4).
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In order to determine an appropriate farfield boundary location that results in the drag sensitivity of less
than 10−6, a square outer domain boundary is parametrized by the half-edge length, R (i.e. the square is
2R× 2R). The farfield locations of

R ∈ {50c, 200c, 800c, 3200c, 10000c, 40000c}

are considered for the parametric study. Figure 1 shows the sensitivity of the drag coefficient to the farfield
location for the subsonic inviscid and subsonic laminar flow conditions. Each solution is obtained using the
adaptive p = 3, dof = 40000 discretization, which results in the cd error of approximately 3×10−8; thus each
solution is grid converged (for the purpose of the sensitivity study), and the cd variation is essentially due
to the difference in the farfield location. To capture the leading error due to the vortex singularity (and the
source singularity for the laminar case), we have fit the cd against 1/R. The result suggests that R = 104c
is sufficient to meet the required cd variation of less than 0.01 counts.

Note that sensitivity study is not performed for the transonic inviscid flow due to the difficulty of con-
trolling the discretization error to less than 0.01 counts. Without the ability to drive the discretization
error to less than the required farfield error level, the parametric study could not be performed. Thus, for
consistency, R = 104c mesh is used for the transonic case.
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(c) subsonic laminar cd vs. R
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Figure 1. Farfield location sensitivity for the subsonic inviscid and laminar flows.
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II.C. Convergence Criterion

The `2 norm of the DG residual of non-dimensionalized Navier-Stokes equations is used to monitor conver-
gence to the steady state. Our solver operates on non-dimensionalized variables

ρ∗ =
ρ

ρ∞
, u∗ =

u

‖V∞‖
, v∗ =

u

‖V∞‖
, p∗ =

p

ρ∞‖V∞‖2
, e∗ =

e

‖V∞‖2
,

R∗ =
R

cv
, T ∗ =

T

‖V∞‖2/cv
, and µ∗ =

µ

ρ∞L∞V∞
.

The DG residual is computed against the Lagrange test functions with equidistributed nodes, and the `2

norm of the residual is converged to 1×10−9. (Note that the solver time would not be significantly influenced
for any reasonable choice of the tolerance (say < 1×10−7), as we achieve Newton convergence in this regime.
With the specified non-dimensionalization, the difference between the `2 residual and the mass residual is
well within this offset.)

II.D. Hardware Specification

All computations are performed in serial on a Linux machine with an Intel i7-2600 processor and 16 Gbytes
of RAM. The machine produces a Taubench time of 6.60 seconds.

II.E. Residual Timing

The time for performing a single dof = 250, 000 residual evaluation, including the full Jacobian for the
implicit solver, is summarized in Table 1. The residual evaluation for subsonic inviscid, transonic inviscid, and
subsonic laminar cases are performed on meshes containing 13076, 26954, and 13844 elements, respectively,
and the timings are scaled to 250,000 degrees of freedom. The laminar case is slower than the inviscid case
due to the additional evaluation of the viscous flux. The transonic case is slower than the subsonic inviscid
case due to the evaluation of the shock capturing term, which adds an extra PDE, and the viscous term
arising from the addition of artificial viscosity.

time (work unit)

p subsonic inviscid transonic inviscid subsonic laminar

1 0.64 2.61 1.11

2 0.54 2.06 0.96

3 0.66 - 1.15

Table 1. dof = 250, 000 residual evaluation time (including the full Jacobian construction).

II.F. Initial Mesh

The initial mesh used for all three cases is shown in Figure 2. The airfoil geometry is represented using q = 3
simplex elements. After each mesh refinement, the geometry representation is refined by re-sampling from
the analytical NACA 0012 geometry.

II.G. Adaptation Procedure and Data Reported

The ranges of the solution orders, p, and the number of degrees of freedom, dof, considered for the subsonic
inviscid and subsonic laminar cases are

p ∈ {1, 2, 3} and dof ∈ {2500, 5000, 10000, 20000},

and those for the transonic inviscid case are

p ∈ {1, 2} and dof ∈ {2500, 5000, 10000, 20000, 40000}.

For each p-dof combination, a family of optimized meshes are generated using our anisotropic simplex mesh
adaptation algorithm.8 The output adapted is the drag on the airfoil for the all cases.
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Figure 2. Initial 303-element mesh.

As in Case 1.1, the performance of each p-dof is assessed by averaging the error obtained on five realization
of meshes in the family. The time reported is the total time required to reach the first realization of the
p-dof-optimized mesh starting from the initial mesh shown in Figure 2; this includes multiple flow solves and
adaptation overhead. (See the description provided in Case 1.1 for details.)

III. Results: Subsonic Inviscid (M∞ = 0.5, α = 2◦)

III.A. Error Convergence

The reference solution is obtained using the adaptive p = 3, dof = 80000 discretization. The reference cd
and cl values used for this case are

cd = 3.511× 10−7 ± 3× 10−10

cl = 0.28653.

The error estimate for cd is based on the adjoint-based error estimate and the fluctuation in the cd value for
this family of optimized meshes. We caution that the cl reference value is likely less accurate than the drag
value due to the ill-behaved lift output with the weakly enforced Kutta condition.

Figure 3(a) shows the convergence of the drag coefficient against the number of degrees of freedom. With
the aggressive refinement toward the trailing edge singularity, the adaptive scheme effectively contains the
effect of the singularity and recovers the optimal convergence rate of h2p+1 = (dof)−(p+1/2) for the drag
output. (Note that the optimal output convergence rate for an inviscid problem is h2p+1 for dual-consistent
discretizations. The higher convergence rate observed for the p = 3 case is due to the dof = 10000 solution
not being in the asymptotic range.) The higher-order discretizations outperform the p = 1 scheme in terms
of cd accuracy per degree of freedom. In fact, even for the cd error as high as a few drag counts, the p > 1
discretizations are more effective than the p = 1 discretization. Figure 3(b) shows that the higher-order
discretizations are advantageous than the p = 1 discretization also in terms of computational time.

Figures 3(c) and 3(d) show the convergence of (or the lack there of) the lift coefficient with mesh refine-
ment. The lift output is not well-behaved due to the weakly enforced Kutta condition.

III.B. Comparison of Adapted Meshes

Drag-adapted meshes for this subsonic inviscid flow at select p-dof combinations are shown in Figure 4. In
general, adaptation targets the singularities at the trailing and leading edges. Even though an anisotropic
adaptation algorithm is employed, refinement is essentially isotropic.

Comparison of the p = 1, dof = 20, 000 mesh (Figure 4(a)) and the p = 3, dof = 5, 000 mesh (Figure 4(b))
reveals the diffeences in the meshes required to achieve the drag error level of approximately 3× 10−5 using
the p = 1 and p = 3 discretizations. The p = 3 mesh is significantly sparser than the p = 1 mesh in the
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Figure 3. Error convergence for the subsonic inviscid case.

smooth region. It is worth noting that the adaptive p = 3 discretization achieves the drag error level of less
than 0.3 counts using only 500 elements.

Comparison of the p = 3, dof = 5, 000 mesh (Figure 4(b)) and the p = 3, dof = 20, 000 (Figure 4(c)) mesh
shows how the mesh evolves for a given p to achieve a lower error level. In increasing the number of degrees
of freedom by a factor of four, the diameter of the trailing edge elements decreases from hte = 5 × 10−2

to 2 × 10−5, i.e. the trailing edge element diameter decreases by a factor of approximately 2500, whereas
uniform refinement would have resulted in the diameter decreasing by a factor of two. The refinement is
clearly not uniform. The aggressive refinement toward the trailing edge is necessary to contain the effect of
the geometry-induced singularity.

III.C. Adaptive vs. Uniform Refinement

Figure 5 compares the drag error convergence results obtained using adaptive refinement and a step of uniform
refinement starting from select adapted meshes. Due to the trailing edge singularity, the convergence rate
of the uniform refinements are limited by the regularity of the solution. Thus, the aggressive refinement
towards the trailing edge is necessary to recover the optimal convergence rate of (dof)−(p+

1
2 ) (or h2p+1). In

particular, even if an optimal mesh distribution is obtained at a lower number of degrees of freedom, all
successive refinement must be adaptive to realize the benefit of the higher-order discretization.
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(a) p = 1, dof = 20, 000, Ecd = 2.9× 10−5

(b) p = 3, dof = 5, 000, Ecd = 2.8× 10−5

(c) p = 3, dof = 20, 000, Ecd = 2.9× 10−8

Figure 4. Select adapted meshes for the subsonic inviscid problem. Overview (left) and trailing edge zoom in the

region [c− δ, c+ δ]× [−δ, δ] with δ = 10−2c (right).
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Figure 5. Comparison of adaptive refinement and a step of uniform refinement starting from adapted meshes for the
subsonic inviscid case.

IV. Results: Transonic Inviscid (M∞ = 0.8, α = 1.25◦)

IV.A. Error Convergence

The reference solution is obtained using the adaptive p = 2, dof = 160000 discretization. The reference cd
and cl values used for this case are

cd = 0.022628± 1× 10−6

cl = 0.35169.

The error estimate for cd is based on the adjoint-based error estimate and the fluctuation in the cd value for
this family of optimized meshes. We caution that the cl reference value is likely less accurate than the drag
value due to the ill-behaved lift output with the weakly enforced Kutta condition.

Figure 6 summarizes the convergence of the drag and lift coefficients against the number of degrees
of freedom and the work unit. Despite the use of strongly graded anisotropic meshes as will be seen in
Section IV.B, the p = 2 discretization is not more efficient than the p = 1 discretization in terms both
the degrees of freedom and work unit. Furthermore, note that work unit for a given p-dof combination is
substantially higher than in the subsonic inviscid case: for the p = 2, dof = 20, 000 combination, 87 work
units are required compared to the 15 work units for the subsonic case. The increase in the work unit is
not only due to the more expensive residual evaluation with the addition of the viscous term and the shock
PDE, but also due to a poorer convergence of the nonlinear solver in the presence of the shock.

IV.B. Comparison of Adapted Meshes

Drag-adapted meshes for the transonic inviscid flow at select p-dof combinations are shown in Figure 7.
The flow exhibits a number of additional features that are absent in the subsonic condition, including: the
shocks on the upper and lower surfaces; the primal solution discontinuity across the stagnation streamline
downstream of the trailing edge; the dual solution discontinuity across the stagnation streamline upstream
of the leading edge; and the adjoint discontinuity emanating from the root of the shock that reflects off
the sonic line. Note that highly anisotropic elements are employed to resolve the directional features (e.g.
shocks).

Comparison of the p = 1, dof = 10, 000 mesh (Figure 7(a)) and the p = 2, dof = 10, 000 mesh (Figure 7(b))
reveals the diffeences in the meshes required to achieve the drag error level of approximately 2× 10−4 using
the p = 1 and p = 2 discretizations. At this error level, the p = 2 adaptation focuses on resolving the shock
and the discontinuity emanating from the trailing edge; the mesh is very sparse outside of these regions. The
p = 1 discretization employs more elements to resolve the feature near the leading edge and the stagnation
streamline.

Comparison of the p = 2, dof = 10, 000 mesh (Figure 7(c)) and the p = 2, dof = 40, 000 mesh shows how
the mesh evolves for a given p to achieve a lower error level. With the addition of the degrees of freedom,

7 of 12

American Institute of Aeronautics and Astronautics



2500 5000 10000 20000 40000
10

−6

10
−5

10
−4

10
−3

10
−2

dof

c
d
 e

rr
o
r

 

 

p=1

p=2

(a) cd vs. dof

0 50 100 150 200
10

−6

10
−5

10
−4

10
−3

10
−2

work unit

c
d
 e

rr
o
r

 

 

p=1

p=2

(b) cd vs. work unit

2500 5000 10000 20000 40000
10

−5

10
−4

10
−3

10
−2

dof

c
l e

rr
o
r

 

 

p=1

p=2

(c) cl vs. dof

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

work unit

c
l e

rr
o
r

 

 

p=1

p=2

(d) cl vs. work unit

Figure 6. Error convergence for the transonic inviscid case.

the adaptation algorithm reveals and resolves more primal and adjoint features. The refinement towards
the shock on the upper surface is also stronger than what would have been achieved by uniform refinement;
the shock-normal length of the anisotropic elements decrease from h⊥ ≈ 3 × 10−3c at dof = 10, 000 to
h⊥ ≈ 1 × 10−4c at dof = 40, 000, i.e. refinement by a factor of 30 as oppose to a factor of two. However,
despite these solution-specific refinements, the adaptive algorithm is incapable of realizing the benefit of
higher-order discretization for this shock-dominated case.

V. Results: Subsonic Laminar (M∞ = 0.5, α = 1◦, Rec = 5, 000, Pr = 0.72)

V.A. Error Convergence

The reference solution is obtained using the adaptive p = 3, dof = 80000 discretization. The reference cd
and cl values used for this case are

cd = 0.0553167± 3× 10−9

cl = 0.018274

The error estimates are based on the adjoint-based error estimates and the fluctuation in the output values
for this family of optimized meshes.

Figure 8(a) shows the convergence of the drag coefficient against the number of degrees of freedom.
With the proper mesh refinement, we recover the optimal output-error convergence rate of h2p = (dof)−p
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(a) p = 1, dof = 10, 000, Ecd = 1.6× 10−4

(b) p = 2, dof = 10, 000, Ecd = 2.5× 10−4

(c) p = 2, dof = 40, 000, Ecd = 4.8× 10−6

Figure 7. Select adapted meshes for the transonic inviscid problem.
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for the viscous problem. (Note that the optimal output convergence rate for an viscous problem is h2p for
dual-consistent discretizations.) With uniform refinement, the convergence rate would be limited by the
trailing edge singularity; in particular, the boundary layer, which is smooth, is not the feature that would
limit the higher-order convergence. Similar to the inviscid case, the observed convergence rates are slightly
higher than those predicted by the theory. The adaptive refinement allows the higher-order discretizations to
achieve the near asymptotic performance using a small number of elements, making the p > 1 discretizations
competitive for as high as 1 drag count of error. For a simulation requiring a tighter error tolerance, the
higher order discretizations are clearly superior. Figure 8(b) shows that the p > 1 discretizations are more
efficient than the p = 1 discretization also in terms of the work unit.
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Figure 8. Error convergence for the subsonic laminar case.

The lift convergence result in Figure 8(c) shows that the p > 1 discretizations are more efficient than the
p = 1 discretization except on the coarsest meshes. The less stable behavior of the lift output compared to
the drag output may be partially due to the use of drag-adapted meshes. Our experience suggests that a
stronger refinement along the stagnation streamline is necessary for an accurate lift calculation than drag
calculation. We note that the output-based adaptation framework can be extended to generate a more
flexible mesh that targets multiple outputs using, for example, the method of Hartmann.12

V.B. Comparison of Adapted Meshes

Drag adapted meshes for this subsonic laminar flow at select p-dof combinations are shown in Figure 9. The
boundary layer is efficiently resolved using anisotropic elements; however, due to the relatively low Reynolds
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number (Rec = 5000), the aspect ratio of the elements is relatively low (compared to, say, a high Reynolds
number RANS flow). We also note the presence of a singularity at the trailing edge for this case. Both
the wake and stagnation streamline are refined to capture the directional features in the primal and dual
solutions, respectively.

Comparison of the p = 1, dof = 20, 000 mesh (Figure 9(a)) and the p = 3, dof = 5, 000 mesh (Figure 9(b))
reveals the differences in the meshes required to achieve the drag error level of approximately 2× 10−5 using
the p = 1 and p = 3 discretizations. (Note that, though the p = 3 meshes uses four times fewer degrees of
freedom, the p = 3 discretization is approximately four times smaller than the p = 1 discretization.) The
p = 3 mesh is significantly sparser in the boundary layer region than the p = 1 mesh, as the boundary layer
is a smooth feature that can be efficiently resolved using the higher-order approximation.

Comparison of the p = 3, dof = 5, 000 mesh (Figure 9(b)) and the p = 3, dof = 20, 000 (Figure 9(c)) mesh
shows how the mesh evolves for a given p to achieve a lower error level. The refinement in the boundary
layer region is mostly uniform. There is a strong refinement towards trailing edge singularity, which is the
dominant singular feature of the flow.

VI. Conclusions

Using an output-based adaptive algorithm, subsonic inviscid, transonic inviscid, and subsonic laminar
flows over a NACA 0012 airfoil were solved efficiently in a fully-automated manner starting from the same
initial mesh. The benefit of the p > 1 discretizations were realized for the subsonic inviscid and laminar
cases by controlling the effect of the trailing edge singularity via adaptive refinement. In particular, the
higher-order discretizations achieved higher-efficiency even for the drag error level of as high as several drag
counts. However, for the shock-dominated transonic inviscid case, the benefit of higher-order discretization
could not be realized even with adaptation.
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(a) p = 1, dof = 20, 000, Ecd = 4.3× 10−5

(b) p = 3, dof = 5, 000, Ecd = 1.1× 10−5

(c) p = 3, dof = 20, 000, Ecd = 6.7× 10−8

Figure 9. Select adapted meshes for the subsonic laminar problem.
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