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I. Code Description

ProjectX is an adaptive discontinuous Galerkin finite element solver. The DG discretization uses Roe’s
approximate Riemann solver1 for the inviscid numerical flux. The solution to the discretized system is ob-
tained using a Newton-based nonlinear solver with pseudo-time continuation; however, due to the simplicity
of this case, we employ a very high CFL number (106) to achieve near-Newton convergence. The linear sys-
tem arising in each pseudo-time step is solved using GMRES,2 preconditioned with an in-place block-ILU(0)
factorization3 with minimum discarded fill reordering and p = 0 algebraic coarse correction.4

An output-based, anisotropic simplex mesh adaptation algorithm is used control the discretization er-
ror.5 The algorithm iterates toward a mesh that minimizes the output error for a given number of degrees
of freedom. The anisotropic adaptation decisions are entirely driven by the behavior of an output-based
a posteriori error estimate; thus, the method handles any discretization order, naturally incorporates both
the primal and adjoint solution behaviors, and robustly treats irregular features. The output error estimate
uses the dual-weighted residual (DWR) method of Becker and Rannacher.6 A new mesh that conforms
to the metric request is generated using using BAMG (Bidimensional Anisotropic Mesh Generator),7 and
higher-order, globally curved meshes are constructed through linear elasticity.8

II. Case Description

II.A. Flow Condition

This case considers inviscid flow through a channel with a Gaussian bump. The freestream Mach number
is M∞ = 0.5. The total temperature, total pressure, and the flow angle are specified at the inflow, and the
static pressure is specified at the outflow. The inviscid wall condition is specified along the upper and lower
walls.

II.B. Convergence Criterion

The `2 norm of the DG residual of non-dimensionalized Navier-Stokes equations is used to monitor conver-
gence to the steady state. Our solver operates on non-dimensionalized variables

ρ∗ =
ρ

ρ∞
, u∗ =

u

‖V∞‖
, v∗ =

u

‖V∞‖
, p∗ =

p

ρ∞‖V∞‖2
, e∗ =

e

‖V∞‖2
,

R∗ =
R

cv
, T ∗ =

T

‖V∞‖2/cv
, and µ∗ =

µ

ρ∞L∞V∞
.

The DG residual is computed against the Lagrange test functions with equidistributed nodes, and the `2

norm of the residual is converged to 1×10−9. (Note that the solver time would not be significantly influenced
for any reasonable choice of the tolerance (say < 1×10−7), as we achieve Newton convergence in this regime.
With the specified non-dimensionalization, the difference between the `2 residual and the mass residual is
well within this offset.)
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II.C. Hardware Specification

All computations are performed in serial on a Linux machine with an Intel i7-2600 processor and 16 Gbytes
of RAM. The machine produces a Taubench time of 6.60 seconds.

II.D. Residual Timing

The time for performing a single dof = 250, 000 residual evaluation, including the full Jacobian construction
for the implicit solver, is summarized in Table 1. The residual evaluation is performed on a 10800-element
mesh and the times are scaled to 250,000 degrees of freedom.

p time (work unit)

1 1.02

2 0.78

3 0.88

Table 1. dof = 250, 000 residual evaluation time (including the full Jacobian construction).

II.E. Initial Mesh

The initial mesh used for this case is shown in Figure 1. The bump geometry is represented using q = 5
simplex elements. After each mesh refinement, the geometry representation is refined by re-sampling from
the analytical Gaussian geometry.

Figure 1. The initial 36-element mesh.

II.F. Adaptation Procedure and Data Reported

For this case, the ranges of the solution orders, p, and the number of degrees of freedom, dof, considered are

p ∈ {1, 2, 3} and dof ∈ {250, 500, 1000, 2000}.

For each p-dof combination, a family of optimized meshes are generated using our anisotropic simplex mesh
adaptation algorithm.5 The output adapted, J , is the difference in the local and freestream entropy measured
in the L2 norm (squared), i.e.

J =

∫
Ω

(
p

ργ
− p∞
ργ∞

)2

dx,

where p is pressure, ρ is density, p∞ is the freestream pressure, ρ∞ is the freestream density, and γ = 1.4 is
the ratio of specific heats.

To illustrate the behavior of the adaptation algorithm for a given p and dof, an example of the entropy-
error history obtained for the p = 1, dof = 250 case is shown in Figure 2(a). Starting from the initial mesh
shown in Figure 1, the error decreases for the first three adaptation iterations. The error is stationary after
three adaptation iterations, indicating that the mesh has been optimized for this p-dof combination. All
meshes generated after the third adaptation iteration belong to a family of optimal meshes, achieving similar
error levels but having slightly different triangulations. The “expected” performance of a particular p-dof
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combination is quantified by taking the mean of the errors obtained on the five realizations of the meshes in
the family. (Note that the mean of the errors, not the error of the mean, is used.) The time reported for the
p-dof combination is the time required to reach the first realization of the optimized family. In particular, the
timing includes all four flow solves and adaptation overhead required to reach the optimized mesh starting
from the initial mesh.
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(a) p = 1, dof = 250 adaptation
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(b) p = 1, dof = 500 adaptation

Figure 2. Illustration of the procedure used to measure the error and the time.

The adaptation history for the next p-dof combination, p = 1 and dof = 500, is shown in Figure 2(b).
Note that the p = 1, dof = 250-optimized mesh is used as the initial mesh for this new p-dof combination.
As a result, the adaptation algorithm produces an optimal mesh in just two more adaptation iterations.
As in the p = 1, dof = 250 case, the next five realizations of the optimal mesh is used to measure the
error for this configuration. The time reported for this p-dof combination is the total time required to
reach the first optimal mesh starting from the initial mesh shown in Figure 1. Note that this includes the
time required to optimize the p = 1, dof = 250 configuration prior to optimizing the p = 1, dof = 500
configuration. Following the same procedure, a family of dof = 1000 optimized meshes is generated starting
from a dof = 500 optimized mesh, and a family of dof = 2000 optimized meshes is generated starting from
a dof = 1000 optimized mesh.

The optimal meshes for p = 2 and p = 3 cases are generated starting from the initial mesh shown in
Figure 1 using the same procedure as the p = 1 case. In particular, higher p meshes do not use the p = 1
meshes as the starting mesh.

III. Results

III.A. Error Convergence

Figure 3(a) shows the convergence of the L2 norm of the entropy error normalized by the domain area,

Eent =

√
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|Ω|
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γ
∞

)2

dx,

against the number of degrees of freedom, dof. For this smooth problem, the expected convergence rate of
the L2 norm of the entropy error is

Eent = Chp+1 = C̃(dof)−
p+1
2 . (1)

In particular, for p = 1, 2, and 3, the theoretical convergence rate against (dof) is 1, 1.5, and 2, respectively.
The figure shows that all discretization orders produce the optimal convergence rate. Note that, because
the flow is smooth, adaptive refinement is unnecessary to achieve the optimal convergence rate. However,
adaptation does reduce the values of error for a given number of degrees of freedom, i.e. adaptation decreases
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the value of the constant C (or C̃) in the error expression Eq. (1), as will be seen in Section III.C. In general,
p > 1 discretizations are more efficient than the p = 1 discretization both in terms of the degrees of freedom
(Figure 3(a)) and time (Figure 3(b)).
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Figure 3. Area-normalized L2 entropy error convergence.

III.B. Comparison of Adapted Meshes

Entropy-adapted meshes obtained for select p-dof combinations are shown in Figure 4. In general, the
adaptive refinement targets the bump region where the flow undergoes a rapid change; however, the element-
size grading is weak as the flow feature is smooth, i.e. non-singular. Furthermore, even though an anisotropic
adaptation algorithm is employed, the resulting meshes are mostly isotropic due to the absence of anisotropic
flow features.

Comparison of the p = 1, dof = 2000 mesh (Figure 4(a)) and p = 2, dof = 500 mesh (Figure 4(b)) reveals
the difference in the meshes required to achieve the error level of E ≈ 10−5 using the p = 1 and p = 2
discretizations. The p = 2 mesh is significantly sparser than the p = 1 mesh, requiring eight times fewer
elements.

Comparison of the p = 2, dof = 500 mesh (Figure 4(b)) and the p = 2, dof = 2000 mesh (Figure 4(c))
shows how the mesh evolves for a given p to achieve a lower error level (or as the number of degrees freedom
increases). Once an optimal element size distribution is obtained for a lower number of degrees of freedom,
the successive refinement is mostly uniform as the flow is smooth.

III.C. Uniform vs. Adaptive Refinement

This section compares the effect of adaptation on the accuracy and timing of the solution. Figure 5 shows the
convergence results obtained using 1) adaptive refinement, 2) uniform refinement starting from an adapted
mesh, and 3) uniform meshes. The adaptive refinement results are obtained using the anisotropic simplex
mesh adaptation algorithm. The uniform “refinement” results are obtained by uniformly refining the dof =
500 adapted meshes by subdividing each element into four elements. (Note that the uniform “refinement”
meshes are not uniform “meshes” because they result from a step of uniform refinement of an adapted
mesh.) The uniform “meshes” have uniform element spacings, resulting from uniformly refining the initial
mesh shown in Figure 1.

Because the problem is smooth, the optimal convergence rate of (dof)−
p+1
2 is obtained using either

adaptive or uniform refinement. However, even for this simple problem, adaptive refinement produces a
significantly more accurate solution than on uniform meshes due to a smaller value of C (or C̃) in Eq. (1).
In particular, adaptive refinement requires approximately 30 times fewer degrees of freedom than uniform
meshes to achieve a given error level. The reduction is explained by examining the adapted meshes shown in
Figure 4; the elements in the vicinity of the bump are significantly smaller than those away from the bump.
Thus, even for this smooth, simple problem, adaptation is effective in improving the error-to-dof efficiency.
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(a) p = 1, dof = 2000, E = 9.5× 10−6

(b) p = 2, dof = 500, E = 9.9× 10−6

(c) p = 2, dof = 2000, E = 7.7× 10−7

Figure 4. Select entropy-adapted meshes.
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Figure 5. Comparison of adaptive refinement, uniform refinement starting from an adapted mesh, and uniform mesh.

Figure 6 shows the timing breakdown of the adaptation overhead relative to the primal solve (i.e. the flow
solve). Due to the small problem size and the ease of converging the primal problem, adaptation overhead
is significant for this problem. However, the 30-fold increase in the dof-to-error efficiency warrants the use
of the adaptive algorithm even for this simple case.
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Figure 6. Timing breakdown.
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