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Lecture 1

Polynomial interpolation

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

1.1 Motivation

Suppose we are given n + 1 data points (xi, yi), i = 1, . . . , n + 1, and wish to estimate the value
y at some arbitrary point x which does not belong to the data points. One way to approach the
problem is by polynomial interpolation. In this chapter, we focus on global polynomial interpolation
based on a single, high-order polynomial; in the next chapter, we will consider piecewise polynomial
interpolation based on multiple lower-order polynomials.

1.2 Polynomial interpolation

We can define the global polynomial interpolation problem as follows: given n + 1 distinct data
points (xi, yi), i = 1, . . . , n+ 1, over an interval [a, b], find a degree-n polynomial

pn(x) =
n∑
j=0

ajx
j

such that

pn(xi) = yi, i = 1, . . . , n+ 1.

The polynomial pn is called the interpolant. The points at which the interpolant matches the
underlying data are called the interpolation points. An example of a polynomial interpolant is
shown in Figure 1.1. A polynomial interpolant is uniquely characterized by two ingredients:

1. the polynomial degree n of the interpolant;

2. the location of the interpolation points.

We will see in this lecture how the choice of the ingredients influences the accuracy and computa-
tional cost of the interpolation process.
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Figure 1.1: Interpolation of a function over [−1, 1] by a degree-3 polynomial using equispaced
interpolation points.

1.3 Construction of interpolants: Vandermonde’s method

We now introduce Vandermonde’s method, a systematic approach to construct polynomial inter-
polants.

Case n = 1 (linear interpolation). We first consider the case were we are given two data
points, (x1, y1) and (x2, y2). We assume x1 6= x2. Since n = 2 − 1 = 1, we consider a linear
polynomial of the form p1(x) = a0 +a1x; our goal is to identify the two unknowns a0 and a1 to find
the interpolant. The two interpolation conditions can be expressed as a system of linear equations
in the unknowns a0 and a1:

y1 = p1(x1) = a0 + a1x1

y2 = p1(x2) = a0 + a1x2.

We could write equivalent conditions in the matrix form:(
1 x1

1 x2

)(
a0

a1

)
=

(
y1

y2

)
.

The matrix on the left hand side is called the Vandermonde matrix. We observe that for x1 6= x2,
the rows (or columns) of the matrix are linearly independent and the matrix is non-singular. We
can hence find a unique solution (a0, a1). We can then evaluate the interpolant at any arbitrary
point x by evaluating p1(x) = a0 + a1x.

Due to the small size of the system associated with linear interpolation, we can readily find
explicit expressions for the linear interpolant:

p1(x) =

(
y1 −

y2 − y1

x2 − x1
x1

)
+

(
y2 − y1

x2 − x1

)
x

= y1 +
y2 − y1

x2 − x1
(x− x1) (1.1)

=

(
1− x− x1

x2 − x1

)
y1 +

(
x− x1

x2 − x1

)
y2.

9



The first form allows us to readily identify the coefficients a0 and a1. The second form provides
the slope-intercept interpretation. The third form groups together the terms with y1 and y2.

General case. We now consider the general case with n+1 data points, (xi, yi), i = 1, . . . , n+1,
where the interpolation points x1, . . . , xn+1 are distinct. We consider an interpolant of the form
pn(x) = a0 + a1x+ · · ·+ anx

n =
∑n

j=0 ajx
j . We impose the interpolation conditions

yi = pn(xi) =
n∑
j=0

ajx
j ∀i = 1, . . . , n+ 1,

or, more explicitly,

a0 + a1x1 + · · ·+ anx
n
1 = y1

a0 + a1x2 + · · ·+ anx
n
2 = y2

...

a0 + a1xn+1 + · · ·+ anx
n
n+1 = yn+1.

An equivalent linear system in the matrix form is
1 x1 · · · xn1
1 x2 · · · xn2
...

...
. . .

...
1 xn+1 · · · xnn+1




a0

a1
...
an

 =


y1

y2
...

yn+1

 . (1.2)

For n+1 distinct interpolation points, the rows (or columns) of the matrix are linearly independent
and the Vandermonde matrix is non-singular. We can hence find a unique solution to the linear
system and the associated interpolant.

Cost. To construct the interpolant using the Vandermonde’s method, we need to first populate
the Vandermonde matrix and then solve the linear system. To populate the first row of the Vander-
monde matrix, we must evaluate 1, x1, x

2
1, . . . , x

n
1 ; the computation requires n multiplications. We

must repeat the operation for each of the n+ 1 interpolation points; the total cost to populate the
Vandermonde matrix is O(n2). Once we populate the matrix, we need to solve the linear system;
as we will see in a proceeding lecture, the solution of a (n + 1) × (n + 1) linear system requires
O(n3). Hence the total cost to construct the interpolant using the Vandermonde’s method is O(n3).
(Recall that we only worry about the most dominant cost.)

To evaluate the interpolant pn(x) =
∑n

j=0 ajx
j , we first need to evaluate 1, x, x2, . . . , xn, multi-

ply the terms with the respective coefficients a0, a1, . . . , an, and then sum the terms together. Each
of these three steps require O(n) operations. Hence the total cost to evaluate the interpolant for a
given x is O(n).

Conditioning of the Vandermonde system. The Vandermonde’s approach is a systematic
approach to construct a degree n polynomial interpolant associated with n+1 data points. For n+1
distinct interpolation points, the solution is unique — at least in exact arithmetic. Unfortunately,
in particular for a large n, the columns of the linear system (1.2) become nearly linearly dependent
and the system becomes ill-conditioned. We will study the effect of ill-conditioning in a later lecture;
for now, it suffices to know that we cannot accurately find the coefficients a0, . . . , an that defines
the interpolant for a large n using the Vandermonde’s approach.

10
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Figure 1.2: Lagrange basis for degree-n = 4 interpolation using equidistributed interpolation points
over [−1, 1], (−1.0,−0.5, 0, 0.5, 1.0).

1.4 Construction of interpolants: Lagrange basis polynomials

In order to overcome the issue of ill-conditioning and to reduce the computational cost, we can
consider a different construction of interpolant. Here we introduce the Lagrange basis polynomials
associated with the n+ 1 interpolation points xi, i = 1, . . . , n+ 1. Lagrange basis polynomials are
the set of n+ 1 degree-n polynomials `j , j = 1, . . . , n+ 1, with the property

`j(xi) =

{
1, i = j

0, i 6= j.
(1.3)

Note that, for each j, the n+ 1 constraints define a unique degree n polynomial. The explicit form
of the polynomial is given by

`j(x) =
∏

0≤k≤n+1
k 6=j

x− xk
xj − xk

, j = 1, . . . , n+ 1.

An example of Lagrange basis is shown in Figure 1.2. Note that each basis function `j takes the
value of 1 at the j-th interpolation points and vanishes at all other interpolation points.

Thanks to the interpolation property of the Lagrange basis (1.3), we can construct the inter-
polant for data points (xi, yi), i = 1, . . . , n+ 1, in a straightforward manner:

pn(x) =

n∑
k=0

yk`k(x). (1.4)

We readily verify that pn(xi) =
∑n

k=0 yk`k(xi) = yi, since `k(xi) = 0 for all k 6= i.
We note that, for a given degree n and data points (xi, yi), i = 1, . . . , n + 1, the polynomial

interpolant constructed using the Lagrange basis polynomials is identical to that constructed using
the Vandermonde method. This is because a polynomial interpolant depends only on the polynomial
degree n and the location of the interpolation points; it does not depend the particular basis
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functions — monomial basis (for Vandermonde’s method) or Lagrange basis — used to represent
the polynomial.

Cost. Thanks to the interpolation property (1.3), we can directly construct the interpolant
without forming and inverting the Vandermonde matrix. The computation of Lagrange basis at a
point requires 2n subtractions and n divisions for the total cost of O(n). Since we must repeat the
procedure for each of the n+ 1 basis functions to evaluate (1.4), the total cost is O(n2).

1.5 Error analysis

We have introduced a few different approaches to construct and evaluate polynomial interpolants.
We also know the associated computational cost. We now wish to assess the accuracy of our
polynomial interpolant. The following theorem provides an answer to the question:

Theorem 1.1. Suppose the polynomial interpolant pn interpolates a smooth function f at inter-
polation points a = x1 < x2 < · · · < xn+1 = b. Then the error in the polynomial interpolant is
bounded from above by

|f(x)− pn(x)| ≤ 1

(n+ 1)!
max
s∈[a,b]

|f (n+1)(s)|(b− a)n+1 ∀x ∈ [a, b]. (1.5)

Proof. We sketch the proof for n = 2 for notational simplicity; the proof for an arbitrary n follows
the same argument. We first introduce an auxiliary function

g2(s) = f(s)− p2(s)−
(

f(x)− p2(x)

(x− x1)(x− x2)(x− x3)

)
(s− x1)(s− x2)(s− x3).

We note that g2(x) = 0 by construction. We also note that g2(xi) = 0, i = 1, 2, 3, because the
polynomial p2 interpolates f at these points. Hence, the function g has at least four roots over

[a, b]. By Rolle’s theorem, the function g′2 = g
(1)
2 has at least three roots over [a, b]. Invoking Rolle’s

theorem two more times, we deduce that g
(3)
2 has at least one root over [a, b]. Let ξ be one of these

points: g
(3)
2 (ξ) = 0. We now compute the third derivative of g2:

g
(3)
2 (s) = f (3)(s)−

(
f(x)− p2(x)

(x− x1)(x− x2)(x− x3)

)
· 3!.

Note that d3

ds3
p2(s) = 0 since p2 is of degree 2. We now evaluate the expression at ξ to obtain

0 = f (3)(ξ)−
(

f(x)− p2(x)

(x− x1)(x− x2)(x− x3)

)
· 3!,

or, equivalently,

f(x)− p2(x) =
1

3!
f (3)(ξ)(x− x1)(x− x2)(x− x3). (1.6)

We finally note that |f (3)(ξ)| ≤ maxs∈[a,b] |f (3)(s)| and |x−xi| ≤ (b− a), i = 1, 2, 3, which yield the
desired result for n = 2. The proof for a general n follows exactly the same procedure.

We make a few key observations:

12
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Figure 1.3: Interpolation of f(x) = exp(x)+cos(πx) using equispaced points. (Note: the maximum
over [a, b] is approximated using 1001 equidsitbuted points.)

1. The interpolation error depends on the n+ 1-st derivative of the underlying function, f (n+1).
The smaller the n+ 1-st derivative, the more accurate the interpolant.

2. The interpolation error depends on the degree n of the interpolant. If |f (n+1)| grows slower
than (n+ 1)!, then the interpolation error decreases exponentially with n.

3. As a special case, if the underlying function is a polynomial of degree m ≤ n, then the
interpolation error is zero everywhere (since f (n+1)(x) = 0 for a degree m ≤ n polynomial).
In other words, the interpolant exactly reproduces the underlying function.

An example of interpolating the function f(x) = exp(x) + cos(πx) is shown in Figure 1.3(a).
Here, all the higher derivatives of the functions over [−1, 1] are bounded by |f (n)(x)| ≤ 1 + πn.
Hence, we observe that

|f(x)− pn(x)| ≤ 1

(n+ 1)!
max

s∈[−1,1]
|f (n+1)(x)|(2)n+1 ≤ (1 + πn+1)2n+1

(n+ 1)!
,

which decays exponentially with n. We indeed observe this exponential convergence in Fig-
ure 1.3(b). The exponential convergence is very powerful: we achieve a very small interpolation
error of O(10−10) using just 18 interpolation points.

1.6 Runge’s phenomena

Unfortunately, for some functions, increasing the polynomial degree p does not necessarily result
in a smaller error. One such function is the Runge function, f(x) = 1

1+25x2
. An example of

interpolating the Runge function using a degree 10 polynomial is shown in Figure 1.4(a). For an
interpolant based on equispaced points, we observe very large oscillation in the interpolant near
the endpoints. Figure 1.4(b) shows that the interpolants with equispaced points do not converge
to the to the Runge function as the degree increases; in fact the interpolation error increases
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Figure 1.4: Interpolation of f(x) = 1
1+25x2

using equispaced interpolation points.

exponentially with n. This increasingly oscillatory behavior of the interpolant with n is called the
Runge’s phenomenon.

This is a very undesirable result. However, this lack of convergence is in fact predicted
by our interpolation error bound, Theorem 1.1: the maximum value of the higher derivatives,
maxs∈[−1,1] |fn(s)|, increases very rapidly for the Runge function with n.

1.7 Selection of interpolation points: Chebyshev nodes

One approach to overcome the Runge’s phenomenon is to consider a use of different interpolation
points. For example, instead of equispaced points, we can use the Chebyshev nodes, given by

xi = − cos

(
i− 1

n
π

)
, i = 1, . . . , n+ 1,

as the interpolation points. Note that these interpolation points are more clustered toward the
endpoints. The points produce a more stable interpolant, as shown pictorially in Figure 1.5(a).
Figure 1.5(b) also confirms that the interpolation error decreases with the polynomial degree n
and in fact the error converges expoentially with n, albeit much less rapidly than for f(x) =
exp(x)+cos(πx) shown in Figure 1.3(b). (The above Chebyshev nodes are also called the Chebyshev
points of the second kind or Chebyshev-Lobatto points; see the Appendix for details.)

To understand why Chebyshev nodes produce a more accurate interpolant than the equispaced
nodes, we take a closer look at (a generalization of) the error expression (1.6) which arises in the
proof of Theorem 1.1. We can show that for any x ∈ [a, b] there exists ξ ∈ [a, b] such that

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(ξ)

n+1∏
j=1

(x− xj).

Given that we in general do not know f (n+1), the best we can do to minimize the error is to choose
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Figure 1.5: Interpolation of f(x) = 1
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using equispaced and Chebyshev interpolation points.

the node locations xj , j = 1, . . . , n+ 1, that minimize

max
x∈[a,b]

|
n+1∏
j=1

(x− xj)|.

The Chebyshev nodes nearly minimizes this function. Hence, the upper bound of the interpolation
error for Chebyshev nodes is smaller than that for equispaced nodes. (Note however that this is
an upper (i.e. worst-case) bound ; it is possible for equispaced-nodes to yield a smaller error than
Chebyshev nodes for a specific f .)

In cases where we can pick the location of the data points (xi, yi), choosing Chebyshev nodes
produces much more robust interpolant than using equispaced points. However, if the data is given
to us, then we do not have the option to pick the interpolation points. In the following lecture, we
consider a different strategies to interpolate the data points such that we can provide a convergent
approximation for a wide range of underlying functions.

1.8 Summary

We summarize the key points of the lecture:

1. Given a set of n+ 1 data points, one approach to approximate the value at an intermediate
point is by polynomial interpolation.

2. A polynomial interpolant is uniquely determined by the polynomial degree and the location
of interpolation points.

3. One approach to systematically construct an interpolant is to use the Vandermonde’s method.

4. The cost of finding the polynomial coefficients by the Vandermonde’s method is O(n3).

5. Another approach to systematically construct an interpolant is to use the Lagrange basis.
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6. The error associated with a polynomial interpolant depends on the degree n of the interpolant
and the n+ 1-st derivative of the underlying function.

7. The error decreases exponentially with n for functions with well-behaved higher derivatives.

8. If the higher derivatives of the underlying function increase very rapidly, then the the in-
terpolant may exhibit oscillatory behavior and may not converge with n. This is called the
Runge’s phenomenon.

9. One way to overcome the Runge’s phenomenon is to use interpolations points that are clus-
tered towards the endpoints, for instance Chebyshev nodes.

1.9 Appendix: Chebyshev polynomial interpolation

In Section 1.7, we introduced the Chebyshev points (of the second kind),

xj = − cos

(
i− 1

n
π

)
, i = 1, . . . , n+ 1,

which include the endpoints {−1, 1}. The closely related Chebyshev points of the first kind are
given by

xj = cos

(
2i− 1

2(n+ 1)
π

)
, i = 1, . . . , n+ 1,

which do not include the endpoints. These points are closely related to orthogonal polynomials
called Chebyshev polynomials; the Chebyshev nodes of the first and second kind are the extrema
and zeros, respectively, of a Chebyshev polynomial. It can be shown that, for most continuous
functions f (or more precisely f for which the total variation of the first derivative is bounded),
polynomial interpolant based on Chebyshev nodes converge: i.e., ‖f − pn‖∞ → 0 as n → ∞.
In addition, for the Chebyshev points of the first kind, it can be shown that the points minimizes

maxx∈[a,b] |
∏n+1
j=1 (x−xj)| and the quantity is bounded by |

∏n+1
j=1 (x−xj)| ≤ 1

2n

(
b−a

2

)n+1
, ∀x ∈ [a, b].

As a result, the error bound (1.5) sharpens for Chebyshev points of the first kind to

|f(x)− pn(x)| ≤ 1

2n(n+ 1)!
max
s∈[a,b]

|f (n+1)(s)|
(
b− a

2

)n+1

∀x ∈ [a, b].

The proof of convergence relies on the properties of the Chebyshev polynomials and are beyond the
scope of this course; we refer to Approximation Theory and Approximation Practice by Trefethen
and Numerical Analysis by Burden and Faires for details.
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Lecture 2

Piecewise polynomial interpolation

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

2.1 Motivation

We observed in the previous lecture that polynomial interpolation is an effective tool to approximate
a function from a finite set of data points. However, we also observed that increasing the polynomial
degree does not necessarily improve the accuracy for equispaced data points, and the interpolant
might exhibit undesirable oscillatory behaviors (i.e. the Runge’s phenomenon). We will introduce in
this lecture a technique to improve the accuracy and robustness of interpolation based on equispaced
points.

2.2 Piecewise linear interpolation

One approach to overcome the Runge’s phenomenon is to consider piecewise interpolation of data
points and construct a piecewise polynomial interpolant. We first consider piecewise linear interpo-
lation. Here, we consider n+ 1 equispaced data points (xi, yi), i = 1, . . . , n+ 1, over [a, b]. Without
loss of generality, we assume the points are ordered such that a = x1 < x2 < · · · < xn+1 = b. We
then introduce N = n segments Sk ≡ [xk, xk+1], k = 1, . . . , N , delineated by the n+ 1 points. We
will denote the length of each segment by h: h ≡ xi+1 − xi = (b − a)/n. We then construct a
degree 1 polynomial interpolant over each segment Sk:

p
(k)
h,1(x) = a

(k)
0 + a

(k)
1 x, x ∈ Sk ≡ [xk, xk+1],

such that

p
(k)
h,1(xk) = yk and p

(k)
1 (xk+1) = yk+1.

Here, the first subscript, h, indicates the length of the segment, and the second subscript indicates
the degree of the polynomial for each segment. An explicit expression for the interpolant in terms
of the data (xk, yk) and (xk+1, yk+1) is given by

p
(k)
h,1(x) = yk +

yk+1 − yk
xk+1 − xk

(x− xk), k = 1, . . . , N. (2.1)
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Figure 2.1: Piecewise linear interpolation of exp(x) + cos(πx).

We readily verify that the interpolation conditions are satisfied: p
(k)
h,1(xk) = yk and p

(k)
h,1(xk+1) =

yk+1. Combining the segment-wise interpolant, our global interpolant is given by

ph,1(x) =


p

(1)
h,1(x), x ∈ S1

p
(2)
h,1(x), x ∈ S2

...

p
(N)
h,1 (x), xn ∈ SN .

An example of piecewise linear interpolation is shown in Figure 2.1. The interpolant simply estimate
the value between any two data points by linear interpolation. Note in particular that the value of
the interpolant at a point x ∈ Sk depends only on the data at xk and xk+1.

Cost. In order to evaluate the interpolant for an arbitrary x ∈ [a, b], we must first identify the

segment k in which x lies in and then evaluate the expression p
(k)
1 (x). Since the segments are sorted,

we can find the appropriate segment in O(log2(N)) operations. The evaluation of the interpolant
by (2.1) requires O(1) operations; i.e. the number of operations is independent of the number of
interpolation points.

2.3 General degree-p piecewise interpolation

More generally, we can construct piecewise polynomial interpolant based on general degree p in-
terpolant over each segment. We recall that construction of a degree p interpolant requires p + 1
interpolation points. Hence, to construct N interpolants we require Np+ 1 data points, assuming
each endpoint is shared by the two abutting segments. Then, for each segment k, we introduce an
interpolant

p
(k)
h,p(x) =

p∑
j=0

a
(k)
j xj , x ∈ Sk

such that
p

(k)
h,p(x

(k)
i ) = y

(k)
i , i = 1, . . . , p+ 1;
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Figure 2.2: Piecewise quadratic interpolation of exp(x) + cos(πx).

here x
(k)
i is the i-th interpolation point in the k-th segment, the first subscript, h, indicates the

length of the segment, and the second subscript, p, indicates the polynomial degree. As in the
linear case, we combine the local interpolants to yield a global interpolant:

ph,p(x) =


p

(1)
h,p(x), x ∈ S1

p
(2)
h,p(x), x ∈ S2

...

p
(N)
h,p (x), xn ∈ SN .

Figure 2.2 shows an example of piecewise quadratic interpolant (p = 2); we note that the
quadratic interpolant appears more accurate than the piecewise linear interpolant for this particular
case for a same number of data points; we will soon confirm that this indeed is the case.

The interpolant over each segment may be constructed using, for instance, the Vandermonde’s
method or the Lagrange basis. The global, piecewise-polynomial interpolant is then given by
combining the polynomial interpolant over each segment.

Cost. As in the case of piecewise linear interpolants, to evaluate the piecewise interpolant at
an arbitrary x, we must first identify the segment k in which x lies and then construct and evaluate
the interpolant over the segment. For a piecewise interpolant with N segments, the identification
of the segment requires O(log2(N)) operations. As discussed in the previous lecture, if we use the
Vandermonde’s method, then the construction requires O(p3) operations and evaluation requires
O(p) operations. If we use the Lagrange basis, then the evaluation requires O(p2) operations.

2.4 Piecewise polynomial interpolation: error analysis and con-
vergence rate

We now wish to assess the accuracy of our piecewise polynomial interpolants. Towards this end,
we apply the interpolation error bound obtained in the previous lecture to individual segment.

Theorem 2.1. Suppose we interpolate a smooth function over [a, b] using a piecewise polynomial
interpolant with N segments. Suppose the segments are of the equal length h ≡ (b − a)/N and
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in each segment we employ a degree p polynomial. Then the error in the piecewise polynomial
interpolant is bounded from above by

|f(x)− ph,p(x)| ≤ 1

(p+ 1)!
max
s∈[a,b]

|f (p+1)(s)|hp+1, ∀x ∈ [a, b]. (2.2)

Proof. Proof is an application of the error bound for global interpolants to each segment of the
piecewise interpolants. We first note that the error over segment k is bounded from above by, for
any x ∈ Sk,

|f(x)− ph,p(x)| ≤ 1

(p+ 1)!
max
s∈Sk
|f (p+1)(s)|hp+1.

We then note that the maximum interpolation error over [a, b] is the largest of the individual-
segment interpolation errors. Hence, for any x ∈ [a, b],

|f(x)− ph,p(x)| ≤ max
1≤k≤N

1

(p+ 1)!
max
s∈Sk
|f (p+1)(s)|hn+1 =

1

(p+ 1)!
max
s∈[a,b]

|f (p+1)(s)|hp+1,

which is the desired result.

We make a few key observations:

1. The interpolation error depends on the n+ 1-st derivative of the underlying function, f (n+1).

2. The interpolation error depends on the degree p and the segment length h.

3. For a fixed segment length h, if |f (p+1)| grows slower than (p + 1)!, then the interpolation
error decreases exponentially with the degree p.

4. For a fixed polynomial degree p, the interpolation error decreases as hp+1 with the segment
length h.

As in the global polynomial interpolant considered in the previous lecture, the interpolation error
depends on the p + 1-st derivative of the underlying function. However, we now have two means
to control the error: increasing the degree or decreasing the segment length h ≡ 1/N . When
we decrease h, the error converges as hp+1; in words, a higher degree interpolant converges more
rapidly to the true solution as h decreases. The order at which the error decreases with h — in
this case p+ 1 — is called the convergence rate.

Figure 2.3 shows the convergence of the piecewise lienar, quadratic, and cubic interpolants
applied to f(x) = exp(x) + cos(πx). Note that the convergence rate of a given method can be
empirically deduced from the log-lot plot of error vs h. Specifically, taking the logarithm of the
error expression (2.2) yields

log(|f(x)− ph,p(x)|)︸ ︷︷ ︸
error

≤ log(C)︸ ︷︷ ︸
intercept

+ (p+ 1)︸ ︷︷ ︸
slope

log(h)

for C ≡ 1
(p+1)! maxs∈[a,b] |f (p+1)(s)|. Hence, the convergence rate is equal to the slope of the log-log

plot, which, for piecewise polynomial interpolants, is p + 1. We confirm in Figure 2.3 that the
log-log plots of the linear, quadratic, and cubic interpolant have the slope of approximately 2, 3,
and 4, respectively.
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Figure 2.3: Convergence with h of the piecewise linear, quadratic, and cubic interpolants applied
to exp(x) + cos(πx) over [−1, 1].

We also note that the piecewise polynomial interpolants are not as efficient as global polynomial
interpolants for this smooth function. In the previous lecture, the global interpolant achieved the
error of O(10−10) using just 18 data points. Achieving the same error level of O(10−10) using
piecewise polynomial interpolation, even for the piecewise cubic interpolation, requires ≈ 500 data
points. Hence, for (very) smooth functions, global interpolants are more efficient.

Runge’s phenomenon. We now apply piecewise polynomial interpolant to Runge’s function,
for which the global high-order interpolants perform poorly. Figure 2.4(a) shows an example of
piecewise quadratic (p = 2) interpolation applied to the Runge’s function. We observe that the
piecewise interpolants do not exhibit the oscillation associated with global high-order interpolant
based on equispaced points. Figure 2.4(b) confirms that the error decay as the number of datapoints
is increased for piecewise linear, quadratic, and cubic interpolants. Thus, piecewise polynomial
interpolant provides more robust approximation even for functions, such as the Runge function,
whose higher derivatives are ill-behaved.

2.5 Spline interpolation: cubic spline

Spline interpolation is a variant of piecewise polynomial interpolation with additional constraints
on the smoothness of the interpolant. We here introduce arguably the most well-known spline
interpolation: cubic spline interpolation.

As in the case of piecewise polynomial interpolation, we first subdivide the domain [a, b] into
N segments deliniated by N + 1 equispaced interpolation points, a = x1 < x2 < · · · < xN+1 = b.
A cubic spline is a piecewise cubic polynomial

si(x) = ai + bi(x− xi)1 + ci(x− xi)2 + di(x− xi)3, i = 1, . . . , N, (2.3)

such that the values at the endpoints match the underlying function,

si(xi) = yi, i = 1, . . . , N (left value), (2.4)

si(xi+1) = yi+1, i = 1, . . . , N (right value), (2.5)
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Figure 2.4: Piecewise polynomial interpolation applied to the Runge function f(x) = 1/(1 + 25x2)
over [−1, 1].

and the first and second derivatives are continuous across segments,

s′i(xi+1) = s′i+1(xi+1), i = 1, . . . , N − 1, (first derivative), (2.6)

s′′i (xi+1) = s′′i+1(xi+1), i = 1, . . . , N − 1, (second derivative). (2.7)

Note that we use a polynomial representation shifted by xi (instead of monomials) to simplify the
identification of the coefficients later. Combining the local splines, our global cubic spline is given
by

s(x) =


s1(x), x ∈ S1

s2(x), x ∈ S2

...

sN (x), x ∈ SN .

We now compare the number of degrees of freedom and the number of constraints. We have 4N
degrees of freedom because we have N segments and four degrees of freedom per segment. We have
N left value constraints, N right value constraints, N−1 first-derivative continuity constraints, and
N − 1 second-derivative continuity constraints; the total number of constraints is 4N − 2. (Note
that the number of first- and second-derivative are equal to the number of segment interfaces, which
is one less than the number of segments.) We hence need two additional constraints to specify a
unique cubic spline.

There are a number of different constraints we could introduce. A few common examples are
the following:

• Complete spline. We specify the first derivative at the endpoints of the spline:

s′1(x1) = gL and s′N (xN+1) = gR,

where gL and gR are the derivatives specified. We must know the first derivatives at the two
endpoints to use this approach.
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• Natural spline. We require the second derivative at the endpoints of the spline to vanish:

s′′1(x1) = 0 and s′′N (xN+1) = 0.

In words, it sets the curvature of the spline to zero at the endpoints to zero.

• Not-a-knot spline. We require the third derivative at the first and last interfaces to be
continuous:

s′′′1 (x2) = s′′′2 (x2) and s′′′N−1(xN ) = s′′′N (xN ).

Construction of a cubic spline. Due to the presence of the first- and second-derivative
continuity conditions at the segment interfaces, the value of a cubic spline, unlike the value of a
piecewise polynomial interpolant, depends not only on the two endpoints delineating the particular
segment but on all of the N+1 data points. We will hence solve a system of (globally coupled) N+1
equations to find the polynomial coefficients. A convenient variables to solve for are the derivative
of the spline at the interpolation points; we will denote the derivatives by gi, i = 1, . . . , N + 1.

We first impose the value conditions at the endpoints, (2.4) and (2.5), to obtain

si(xi) = ai = yi, i = 1, . . . , N, (2.8)

si(xi+1) = ai + bih+ cih
2 + dih

3 = yi+1, i = 1, . . . , N. (2.9)

We then set the first derivative at the endpoints to our independent variables, gi, i = 1, . . . , N + 1:

s′i(xi) = bi = gi, i = 1, . . . , N, (2.10)

s′i(xi+1) = bi + 2cih+ 3dih
2 = gi+1, i = 1, . . . , N ; (2.11)

note that the first derivative continuity condition (2.6) is implicitly enforced. We also note the
second derivative continuity condition (2.7):

s′′i (xi+1) = 2ci + 6dih = ci+1 = s′′i+1(xi+1), i = 1, . . . , N − 1. (2.12)

Solving (2.8)–(2.11) for ai, bi, ci, and di in terms of yi and gi, we obtain

ai = yi, i = 1, . . . , N, (2.13)

bi = gi, i = 1, . . . , N, (2.14)

ci =
3

h2
(yi+1 − yi)−

2

h
gi −

1

h
gi+1, i = 1, . . . , N, (2.15)

di = − 2

h3
(yi+1 − yi) +

1

h2
gi +

1

h2
gi+1., i = 1, . . . , N. (2.16)

We now substitute the expressions for ci and di into (2.7) to obtain

gi + 4gi+1 + gi+2 =
3

h
(yi+2 − yi), i = 1, . . . , N − 1,

these are the N − 1 equations associated with any cubic splines.

The two additional equations are associated with the specific end condition for the spline.
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• Complete spline. For a complete spline, the conditions are

s′1(x1) = g1 = gL and s′N (xN+1) = gN+1 = gR.

The resulting system of equations in the matrix form is

1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1





g1

g2

g3
...
gN
gN+1


=



gL
3(y3 − y1)/h
3(y4 − y2)/h

...
3(yN+1 − yN−1)/h

gR


. (2.17)

• Natural spline. For a natural spline, the conditions are

s′′1(x1) = 2c1 = 0 and s′′N (xN+1) = 2cN + 6dNh = 0.

The substitution of the expressions (2.15) and (2.16) yields

2g1 + g2 =
3

h
(y2 − y1) and gN + gN+1 =

3

h
(yN+1 − yN ).



2 1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 2





g1

g2

g3
...
gN
gN+1


=



3(y2 − y1)/h
3(y3 − y1)/h
3(y4 − y2)/h

...
3(yN+1 − yN−1)/h
3(yN+1 − yN )/h


. (2.18)

The linear system is well posed and has a unique solution.

• Not-a-knot spline. For a not-a-knot spline, the conditions are

s′′′1 (x2) = 6d1 = 6d2 = s′′′2 (x2) and s′′′N−1(xN ) = 6dN−1 = 6dN = s′′′N (xN ).

The substitution of (2.16) yields

g1 − g3 =
2

h
(−y3 + 2y2 − y1) and gN−1 − gN+1 =

2

h
(−yN+1 + 2yN − yN−1).

The resulting linear system is

1 −1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 −1





g1

g2

g3
...
gN
gN+1


=



2(−y3 + 2y2 − y1)/h
3(y3 − y1)/h
3(y4 − y2)/h

...
3(yN+1 − yN−1)/h

2(−yN+1 + 2yN − yN−1)/h


. (2.19)
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Figure 2.5: Natural cubic spline interpolation applied to f(x) = exp(x) + cos(πx).

Each of the three N + 1-by-N + 1 linear systems associated with the three endpoint conditions
are well-posed and has a unique solution. Thus, the construction (i.e. the identification of the
polynomial coefficients) of a cubic spline is a two step procedure: we first assemble and solve a
linear system (2.17), (2.18), or (2.19) associated with an appropriate additional constraints; we then
evaluate the coefficients for each segment using (2.13)–(2.16). Then, to evaluate the interpolant at
a given point x, we evaluate the cubic polynomial (2.3).

Examples. Figure 2.5(a) shows an example of a natural cubic spline applied to f(x) = exp(x)+
cos(πx). We observe estimates the underlying function well despite a small number of points used in
approximation. (Compare, for instance, to the piecewise linear interpolation shown in Figure 2.1.)
The error convergence plot shown in Figure 2.5(b) confirms that the error decays rapidly as we
decrease the segment length.

Figure 2.6(a) shows an example of natural cubic spline applied to the Runge function. Despite
using equispaced points, spline interpolants do not exhibit Runge’s phenomenon. This is unlike the
(global) polynomial interplant based on equispaced interpolation points.

2.6 Summary

We summarize the key points of the lecture:

1. Piecewise polynomial interpolation divides the domain [a, b] into N small segments and con-
structs polynomial interpolant in each segment.

2. Error of a piecewise polynomial interpolation depends on both the polynomial order and the
segment length.

3. Piecewise polynomial interpolants based on a higher-degree polynomials converge at a higher
rate as the segments are shortened.

4. The convergence rate of a given method can be deduced from the slope of the log-log plot of
the error vs h.
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Figure 2.6: Natural cubic spline interpolation applied to the Runge function f(x) = 1/(1 + 25x2).

5. Cubic spline interpolation uses a cubic polynomial in each segment, but requires the continuity
of the first- and second-derivative at the segment interface.

6. There are different types of cubic interpolants depending on the choice of the two additional
constraints; common choices are complete spline, natural spline, and knot-a-not spline.

7. For spline interpolation, the derivative continuity conditions introduce coupling; as a result,
the polynomial coefficients must be obtained by solving a global system.

8. Despite using equispaced data points, (low-order) piecewise polynomial interpolantion and
spline interpolation do not suffer from the Runge’s phenomenon.
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Lecture 3

Numerical integration: Newton-Cotes
rules

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

3.1 Motivation

In this lecture we consider numerical approximation of a definite integral

I =

∫ b

a
f(x)dx.

In particular, we consider the case where

1. we know f , but we cannot find an analytical expression for its antiderivative;

2. we can only evaluate f at a finite number of points.

A numerical approach to approximate the integral using a finite number evaluations of f is called
numerical integration or numerical quadrature.

3.2 Newton-Cotes rules

We consider an approximation of the integral of the form

I =

∫ b

a
f(x)dx ≈

m∑
i=1

wif(xi);

here the points xi, i = 1, . . . ,m, are called quadrature points, the weights wi, i = 1, . . . ,m, are
called quadrature weights, and the points and weights together define a quadrature rule.

Note: in some literature quadrature weights are normalized by the domain length, b − a; i.e.
the quadrature rule is defined as I ≈ (b − a)

∑m
i=1wif(xi). In this note we follow the convention

above without the normalization.
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We can define various quadrature rules by considering different sets of quadrature points and
weights. One approach to find a quadrature rule is to first approximate the integrand f by an
interpolant pn, then compute the integral of the interpolant, and finally identify the points and
weights. This approach works well because i) the construction of the interpolant requires function
values only at the interpolation points, and ii) polynomial can be integrated analytically.

The m-point Newton-Cotes rule is given by

QNC(m) ≡
∫ b

a
pm−1(x)dx,

where pm−1(x) is the degree m − 1 polynomial interpolant based on m equispaced interpolation
points over [a, b]. This family of quadrature rules is called Newton-Cotes rules. More precisely, if
both endpoints of [a, b] are included as quadrature points, the rule is called a closed Newton-Cotes
rule; if the endpoints are not included as quadrature points, the rule is called an open Newton-Cotes
rule. We consider a few concrete (and popular) examples.

Midpoint rule. The midpoint rule is induced by the constant interpolant (i.e., polynomial of
degree 0) with the midpoint c ≡ (a+ b)/2 as the interpolation point. An explicit expression for the
interpolant is given by

p0(x) = f(c) = f

(
a+ b

2

)
.

Given our (very simple) approximation p0 to f , we approximate the integral I =
∫ b
a f(x)dx by

integrating p0 over [a, b]:

I ≈ Qmidpoint ≡
∫ b

a
f(c)dx = (b− a)︸ ︷︷ ︸

w1

f( c︸︷︷︸
x1

).

The midpoint rule is illustrated visually in Figure 3.1. The midpoint rule is a one-point rule with
the quadrature point at c = (a+ b)/2. The quadrature weight associated with the point c is (b−a).
Because the endpoints are not quadrature points, the midpoint rule is an open Newton-Cotes rule.

Trapezoid rule. Trapezoid rule is derived from the linear interpolant based on m = 2 in-
terpolation points. We recall from the previous lecture that the linear interpolation for f over an
interval [a, b] can be expressed using Lagrange basis polynomials as

p1(x) = `1(x)f(a) + `2f(b) =
x− b
a− b

f(a) +
x− a
b− a

f(b).

Our approximation QNC(2) to I =
∫ b
a f(x)dx is given by the (exact) integration of p1(x) over [a, b]:

QNC(2) =

∫ b

a
p1(x)dx =

∫ b

a
[
x− b
a− b

f(a) +
x− a
b− a

f(b)]dx

=

(∫ b

a

x− b
a− b

dx

)
f(a) +

(∫ b

a

x− a
b− a

dx

)
f(b) = (b− a)

(
1

2
f(a) +

1

2
f(b)

)
.

Hence, the trapezoid rule (or the 2-point closed Newton-Cotes rule) is given by

QNC(2) = (b− a)

(
1

2
f(a) +

1

2
f(b)

)
.
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Figure 3.1: Midpoint rule applied to I =
∫ 1
−1 exp(x)dx. I ≈ 2.35, Qmidpoint = 2.00.

The trapezoid rule is illustrated visually in Figure 3.2(a). We recognize that, for the trapezoid rule,
the quadrature points are x1 = a and x2 = b, and the quadrature weights are w1 = (b− a)/2 and
w2 = (b− a)/2. In fact, we recognize that we can systematically find the quadrature weights from
the Lagrange basis polynomials:

wi =

∫ b

a
`i(x)dx =

1

2
(b− a), i = 1, 2.

This approach to identify the weights works for any Newton-Cotes rules. Because both endpoints
a and b are quadrature points, the trapezoid rule is a closed Newton-Cotes rule.

Simpson’s rule. Simpson’s rule is induced by the quadratic interpolant based on m = 3
equispaced interpolation points, including the endpoints a and b. We will denote the midpoint by
c: i.e., c ≡ (a+ b)/2. The quadratic interpolant through the points a, c, and b is given by

p2(x) = `1(x)f(a) + `2(x)f(c) + `3(x)f(b)

=
(x− b)(x− c)
(a− b)(a− c)

f(a) +
(x− a)(x− b)
(c− a)(c− b)

f(c) +
(x− a)(x− c)
(b− a)(b− c)

f(b).

Our approximation Q to I =
∫ b
a f(x)dx is given by the integration of p2(x) over [a, b]. As in the

case of the trapezoid rule, we can systematically identify the quadrature weights for the Simpson’s
rule by integrating the Lagrange basis polynomials:

w1 =

∫ b

a
`1(x)dx =

1

6
(b− a), w2 =

∫ b

a
`2(x)dx =

4

6
(b− a), w3 =

∫ b

a
`3(x)dx =

1

6
(b− a).

Hence the Simpson’s rule (or the 3-point closed Newton-Cotes rule) is given by

QNC(3) =

∫ b

a
p2(x)dx = (b− a)

(
1

6
f(a) +

4

6
f(c) +

1

6
f(b)

)
.

The Simpson’s rule is illustrated visually in Figure 3.2(b).
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Figure 3.2: The trapezoid rule and Simpson’s rule applied to I =
∫ 1
−1 exp(x)dx.

General m-point closed Newton-Cotes rule. Using the same recipe as those used to
construct the trapezoid rule and the Simpson’s rule, m-point Newton cotes rule is given by

QNC(m) =

∫ b

a
pm−1(x)dx =

m∑
i=1

wif(xi),

where the quadrature points xi, i = 1, . . . ,m, are the m equispaced points over [a, b],

xi = a+
b− a
m− 1

(i− 1), i = 1, . . . ,m,

and the quadrature weights wi, i = 1, . . . ,m, are given by the integration of the associated Lagrange
basis polynomials,

wi =

∫ b

a
`i(x)dx, i = 1, . . . ,m.

Using the procedure, we can construct Newton-Cotes rules of an arbitrary degree in a systematic
manner.

3.3 Newton-Cotes rules: error analysis

We now analyze the error associated with Newton-Cotes rules. We provide a full derivation for the
midpoint rule, and then state the main results for general cases.

Midpoint rule. The following theorem summarizes the error associated with the midpoint
rule:

Theorem 3.1. The integration error associated with the midpoint rule for the integral I ≡∫ b
a f(x)dx is bounded by

|I −Qmidpoint| ≤
1

24
max
s∈[a,b]

|f ′′(s)|(b− a)3.
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Proof. We first recall the integral form of the Taylor series expansion

f(x) = f(c) + (x− c)f ′(c)−
∫ x

c
(s− x)f ′′(s)ds.

We now evaluate directly the integration error:

|I −Qmidpoint| = |
∫ b

a
f(x)dx− (b− a)f(c)|

= |
∫ b

a
f(c)dx+

∫ b

a
(x− c)f ′(c)dx−

∫ b

a

∫ x

c
(s− x)f ′′(s)dsdx− (b− a)f(c)|

= |
���

���
���

���
�:0

(

∫ b

a
f(c)dx− (b− a)f(c)) + f ′(c)

�
��

�
��
�*0∫ b

a
(x− c)dx−

∫ b

a

∫ x

c
(s− x)f ′′(s)dsdx|

= |
∫ b

a

∫ x

c
(s− x)f ′′(s)dsdx| ≤ max

s∈[a,b]
|f ′′(s)||

∫ b

a

∫ x

c
(s− x)dsdx|

= max
s∈[a,b]

|f ′′(s)| 1

24
(b− a)3,

which is the desired result.

We make a few key observations:

1. The error depends on the second derivative of the underlying function. If the integrand is a
linear function, then the midpoint rule is exact.

2. The error depends on the third power of the length of the interval. The shorter the interval,
the more accurate the estimate.

General Newton-Cotes rules. We now analyze the error associated with general Newton-
Cotes rules. We in particular consider a simplified analysis that builds on the interpolation error
results we obtained in the previous chapters:

|f(x)− pm−1(x)| ≤ 1

m!
max
s∈[a,b]

|f (m)(s)|(b− a)m, ∀x ∈ [a, b].

Using the interpolation error bound, we can construct an error bound for closed Newton-Cotes
rules in a straightforward manner:

|I −QNC(m)| = |
∫ b

a
(f(x)− pm−1(x))dx| ≤

∫ b

a
|f(x)− pm−1(x)|dx

≤
∫ b

a
dx max

x∈[a,b]
|f(x)− pm−1(x)| ≤ (b− a)

1

m!
max
s∈[a,b]

|f (m)(s)|(b− a)m

=
1

m!
max
s∈[a,b]

|f (m)(s)|(b− a)m+1.

As always, this is an upper bound of the integration error; however, this bound unfortunately is
not sharp. In particular, this bound suggests that an m-point Newton-Cotes rule integrates exactly
degree m − 1 polynomials. In fact, when m is odd — as in the case of the midpoint rule or the
Simpson’s rule — m-point Newton-Cotes rule integrates exactly degree m polynomial. The result
is summarized in the following theorem:
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Theorem 3.2. Given a function f over domain [a, b] and an integral I ≡
∫ b
a f(x)dx, the error

associated with the m-point closed Newton-Cotes rule is bounded by

|I −QNC(m)| ≤


Cm max

s∈[a,b]
|f (m)(s)|(b− a)m+1, m is even

Cm max
s∈[a,b]

|f (m+1)(s)|(b− a)m+2, m is odd,

where Cm is a constant independent of b, a, and f .

Proof. A proof for an even m is provided above; a proof for an odd m is provided in Appendix 3.6.

We make a few observations:

1. When the number of points m is even, the error depends on the m-th derivative of the
integrand. The quadrature rule is exact for degree m− 1 polynomials.

2. When the number of points m is odd, the error depends on the m + 1-st derivative of the
integrand. The quadrature rule is exact for degree m polynomials.

We now elaborate the result for the two Newton-Cotes rules we have explicitly considered: trapezoid
rule and Simpson’s rule.

Trapezoid rule. The error associated with the trapezoid rule (m = 2) depends on the second
derivative of the integrand, and the rule is exact for linear functions. The result is (perhaps)
expected as the rule is based on a linear interpolant. The bound with an explicit expression for the
constant Cm is

|I −QNC(2)| ≤
1

12
max
s∈[a,b]

|f (2)(s)|(b− a)3.

We here omit the proof for brevity.

Simpson’s rule. The error associated with the Simpson’s rule (m = 3) depends on the fourth
derivative of the integrand, and the rule is exact for cubic functions. The result is (perhaps)
surprising because the rule is based on a quadratic interpolant. This rather surprising result is
due to the fact that the quadrature points are symmetric and the interpolant associated with the
quadrature rule is of even degree. (See Appendix 3.6 for a proof.) The bound with an explicit
expression for the constant Cm is

|I −QNC(3)| ≤
1

2880
max
s∈[a,b]

|f (4)(s)|(b− a)5.

We again omit the proof for brevity.

3.4 Composite rules

As in the case of interpolation, we can improve the accuracy of the integration rules by dividing
the segment [a, b] into smaller segments and by using a quadrature rule on each of the segments.
Specifically, we first introduce equispaced points a = s1 < s2 < · · · < sN+1 = b over [a, b]. We then
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Figure 3.3: Composite midpoint and trapezoid rules applied to
∫ 1
−1 exp(x)dx.

introduce N segments Si ≡ [si, si+1] delineated by the N + 1 points. The length of each segment
is h ≡ si+1 − si = (b− a)/N . We then consider composite rules of a form

Q
(N)
NC(m) =

N∑
i=1

QNC(m)(Si),

where QNC(m)(Si) is the closed Newton-Cotes rule over the segment Si.

Composite trapezoid rule. As a concrete example, we consider the composite trapezoid
rule. Dividing [a, b] into N segments and applying the trapezoid rule to each segment yield

Q
(N)
NC(2) =

N∑
i=1

(si+1 − si)
(

1

2
f(si) +

1

2
f(si+1)

)

= h

(
1

2
f(s1) +

1

2
f(sN+1) +

N∑
i=2

f(si)

)
.

The composite trapezoid rule for N = 4 is illustrated in Figure 3.3(b). Note that when a composite
rule is constructed from a closed Newton-Cotes rule (i.e., a quadrature rule that includes the two
endpoints as quadrature points), we can reduce the number of function evaluations by reusing the
endpoint values for two neighboring segments. Thus, the number of function evaluations required
for composite trapezoid rule with N segments is N + 1 (and not 2N).

We now analyze the error associated with composite rules. Applying the Newton-Cotes a priori
error bound in Theorem 3.2 to each segment, we obtain the following a priori error bound for
composite rules.

Theorem 3.3. Given a function f over domain [a, b] and an integral I =
∫ b
a f(x)dx, the error

associated with the N -segment composite rule based on the m-point closed Newton-Cotes rule for
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each segment is bounded by

|I −Q(N)
NC(m)| ≤


Cm max

s∈[a,b]
|f (m)(s)|hm(b− a), m is even

Cm max
s∈[a,b]

|f (m+1)(s)|hm+1(b− a), m is odd,

where h ≡ (b− a)/N , and Cm is a constant independent of b, a, and f .

Proof. For an even m,

|I −Q(N)
NC(m)| = |

N∑
i=1

∫
Si

f(x)dx−
N∑
i=1

QNC(m)(Si)| ≤
N∑
i=1

|
∫
Si

f(x)dx−QNC(m)(Si)|

≤
N∑
i=1

max
s∈[si,si+1]

|f (m)(s)|hm+1 ≤ max
s∈[a,b]

|f (m)(s)|hm
N∑
i=1

h

= max
s∈[a,b]

|f (m)(s)|hm(b− a).

The proof for an odd m follows the same procedure.

We make a few observations:

1. The integration error depends on the m-th (resp m+1-st) derivative of the underlying function
for an even m (resp an odd m).

2. The integration error depends on the quadrature degree m (or m+1) and the segment length
h.

3. For a fixed m, the integration error decreases as hm (or hm+1) with the segment length h.

An example of convergence plots for a few composite Newton-Cotes rules is shown in Figure 3.4.

34



3.5 Summary

We summarize key points of this lecture:

1. Quadrature rules allow us to estimate the value of a definite integral using function values at
a finite number of points.

2. A quadrature rule is uniquely determined by a set of quadrature points and a set of quadrature
weights.

3. Newton-Cotes rules are quadrature rules based on i) the construction of a polynomial inter-
polant using equispaced interpolation points and ii) the exact integration of the polynomial
interpolant.

4. We can systematically identify the quadrature weights associated with a Newton-Cotes quadra-
ture rule of arbitrary degree using Lagrange basis polynomials.

5. A m-point Newton-Cotes rule integrates exactly polynomials of degree m− 1 if m is even. A
m-point Newton-Cotes rule integrates exactly polynomials of degree m if m is odd.

6. Composite rules improve the accuracy of the integration rules by dividing the segment [a, b]
into smaller segments and by using quadrature rule on each of the segments.

7. Composite Newton-Cotes rules based on N intervals (and m quadrature points per segment)
converges at the rate of 1/Nm if m is even and at the rate of 1/Nm+1 if m is odd.

3.6 Appendix

We provide a proof of Theorem 3.2 for Newton-Cotes rules based on an odd number of points. (We
have already provided a proof for m even in the main text.)

We first recall that m-point closed Newton-Cotes rules are based on m equispaced points xi,
i = 1, . . . ,m. We now introduce a degree-m polynomial q of the form

qm(x) =
m∏
i=1

(x− xi).

The polynomial qm has two important properties: first, its m roots are the Newton-Cotes quadra-
ture points; second, for m odd, qm is an odd function about the midpoint of [a, b] and hence∫ b
a q

m(x)dx = 0. We next introduce the usual degree m − 1 polynomial interpolant pm−1 of f so
that pm−1(xi) = f(xi), i = 1, . . . ,m. We then introduce a degree-m polynomial

zm(x) ≡ pm−1(x) +
f(x0)− pm−1(x0)

qm(x0)
qm(x),

where x0 ∈ [a, b] is some point that is distinct from the Newton-Cotes quadrature points. We now
note that, for i = 1, . . . ,m, qm(xi) = 0 and hence

zm(xi) = pm−1(xi) = f(xi),
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and for i = 0,

zm(x0) = pm−1(x0) +
f(x0)− pm−1(x0)

qm(x0)
qm(x0) = f(x0).

Hence, the degree-m polynomial zm interpolates f ; itsm+1 interpolation points are xi, i = 0, . . . ,m.
Recalling

∫ b
a q

m(x)dx = 0 for an odd m, it follows that

|I −QNC(m)| = |
∫ b

a
(f(x)− pm−1(x))dx|

= |
∫ b

a
(f(x)− pm−1(x)− f(x0)− pm−1(x0)

qm(x0)
qm(x))dx|

= |
∫ b

a
(f(x)− zm(x))dx| ≤

∫ b

a
dx max

x∈[a,b]
|f(x)− zm(x)|.

Finally, invoking the interpolation error bound for the degree-m interpolant zm (and not degree
m− 1 interpolant pm−1) yields the desired result.
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Lecture 4

Numerical integration:
Clenshaw-Curtis, Gauss, and adaptive
quadratures

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

4.1 Preliminary

In the previous lecture we introduced the Newton-Cotes rules for numerical integration and analyzed
the error associated with the approximation. In this lecture we consider more advanced techniques
that will provide a more accurate estimate of the integral for a given number of function evaluations.

Before we introduce the quadrature rules, we make one preliminary remark. Following the
standard practice, we will develop quadrature rules for the interval [−1, 1]; the quadrature rule
over the interval will be given in terms of quadrature points {xi}mi=1, each of which is in [−1, 1],
and the quadrature weights {wi}mi=1. The quadrature rule then approximates the integral of f over
[−1, 1]: ∫ 1

−1
f(x)dx ≈

m∑
i=1

wif(xi).

If we wish to integrate a function f̃ over an arbitrary interval [a, b], we then need to transform the
quadrature points and weights. The appropriate transformation is given by∫ b

a
f̃(x̃)dx̃ ≈

m∑
i=1

w̃if̃(x̃i),

where

x̃i = a+
b− a

2
(xi + 1), i = 1, . . . ,m,

w̃i =
b− a

2
wi, i = 1, . . . ,m.
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To observe why this transformation works, we note that∫ b

a
f̃(x̃)dx̃ =

∫ 1

−1
f̃(a+

b− a
2

(x+ 1))
b− a

2
dx ≈

m∑
i=1

wif̃(a+
b− a

2
(xi + 1))

b− a
2

=
m∑
i=1

b− a
2

wi︸ ︷︷ ︸
w̃i

f̃(a+
b− a

2
(xi + 1)︸ ︷︷ ︸

x̃i

) =
m∑
i=1

w̃if̃(x̃i).

We observe that the transformation provides a quadrature rule for [a, b] based on a reference
quadrature rule for [−1, 1]. For the rest of the lecture, we will hence focus on the development of
quadrature rules for the reference domain [−1, 1].

4.2 Clenshaw-Curtis quadrature

We recall that the (single-segment) Newton-Cotes rules are of the form

QNC(m) =
m∑
i=1

wif(xi),

where {xi}mi=1 is a set of equispaced quadrature points, and {wi}mi=1 is a set the quadrature weights
that integrates exactly polynomials of degree at least m−1. Lower-order Newton-Cotes rules, and in
particular composite Newton-Cotes rules, are commonly used in practice. However, Newton-Cotes
rules have one major drawback: they do not converge for a general f as m → ∞. This is closely
related to the behavior we observed for polynomial interpolation: interpolants based on equispaced
set of points is not convergent for all f as polynomial degree increases and in particular suffers
from the Runge’s phenomenon. The poor behavior of higher-order Newton-Cotes rules applied to
the Runge’s function, 1

1+25x2
, x ∈ [−1, 1], is shown in Figure 4.1.

In the context of interpolation, we have however also observed that we can use a set of inter-
polation points that are clustered towards the edges — for instance the Chebyshev nodes — to
overcome the instability. We can use these more stable interpolants associated with the Chebyshev
nodes also in the contest of numerical integration.

The Clenshaw-Curtis rules are based on the Chebyshev nodes. The quadrature rule is of the
form

QCC(m) =
m∑
i=1

wif(xi),

where {xi}i are the Chebyshev nodes over [−1, 1],

xi = − cos

(
(i− 1)π

m− 1

)
, i = 1, . . . ,m,

and {wi}i are given by

wi =

∫ 1

−1
`Chebyshev,i(x)dx, i = 1, . . . ,m,

where `Chebyshev,i are the Lagrange basis polynomial associated with the Chebyshev nodes. As
in the case of the Newton-Cotes rules, this choice of the quadrature points and weights can be
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Figure 4.1: Integration of the Runge’s function f(x) = 1
1+25x2

over [−1, 1] using Newton-Cotes
rules of various degree.

interpreted as integrating exactly a polynomial interpolant of degree m− 1; specifically,

QCC(m) =

∫ 1

−1
pm−1(x)dx,

where pm−1(x) is the polynomial interpolant for f constructed using the Chebyshev nodes. The
quadrature points and weights associated with the m = 1, . . . , 6 Clenshaw-Curtis quadrature rules
are shown in Table 4.1.

Figure 4.2 shows the Clenshaw-Curtis rules applied to the Runge’s function. We observe that
the Clenshaw-Curtis rules converge to the exact value of the integral, unlike the Newton-Cotes
rules which diverge.

4.3 Clenshaw-Curtis quadrature: error analysis

Because the Newton-Cotes and Clenshaw-Curtis rules are both constructed from the approximation
of the integrand by a polynomial interpolant and the integration of the polynomial interpolant, their
error bounds have similar forms. The key difference between the Newton-Cotes and Clenshaw-
Curtis rules is of course the choice of the quadrature points, which results in different stability
behavior as m increases. This is reflected in the difference in the leading m-dependent constant in
the error bound: specifically, we replace the constant Cm in the Newton-Cotes rules with the CCC

m

for the Clenshaw-Curtis rules. (A careful analysis of this constant is however beyond the scope
of this lecture. We only note that CCC

m for the Clenshaw-Curtis rules is smaller than Cm for the
Newton-Cotes rules.) We summarize the result in the theorem below:

Theorem 4.1. Given a function f over domain [−1, 1] and an integral I ≡
∫ 1
−1 f(x)dx, the error
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m xi wi
1 0.0000000000000000 2.0000000000000000

2 ±1.0000000000000000 1.0000000000000000

3 0.0000000000000000 1.3333333333333333
±1.0000000000000000 0.3333333333333333

4 ±0.5000000000000000 0.8888888888888889
±1.0000000000000000 0.1111111111111111

5 0.0000000000000000 0.8000000000000000
±0.7071067811865476 0.5333333333333333
±1.0000000000000000 0.0666666666666666

6 ±0.3090169943749475 0.5992569587999889
±0.8090169943749475 0.3607430412000111
±1.0000000000000000 4.0000000000000000

Table 4.1: The Clenshaw-Curtis quadrature rules for m = 1 to 6 points.
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Figure 4.2: Integration of the Runge’s function f(x) = 1
1+25x2

over [−1, 1] using the Clenshaw-
Curtis rules of various degree.
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associated with the m-point Clenshaw-Curtis rule is bounded by

|I −QCC(m)| ≤


CCC
m max

s∈[−1,1]
|f (m)(s)|, m is even

CCC
m max

s∈[−1,1]
|f (m+1)(s)|, m is odd,

where CCC
m is a constant independent of f .

4.4 Gauss quadrature

The Newton-Cotes rules are based on equispaced points, and the Clenshaw-Curtis rules are based
on Chebyshev nodes that are designed to minimize the interpolation error in the worst case. In
this section we ask ourselves a question: if we could choose the integration weights and integration
points strictly for the purpose of integration, then could we formulate a more accurate quadrature
rule for a given number of function evaluations? It turns out the answer to the question is yes:
one approach is called the Gauss quadrature. The Gauss quadrature provides the highest order of
accuracy for a given number of function evaluations. In particular, a Gauss quadrature rule with
m quadrature points integrates exactly polynomials of degree up to 2m − 1 (unlike m − 1 (or m)
for Newton-Cotes and Clenshaw-Curtis).

m = 1 point rule. As a concrete example, let us first construct a m = 1 Gauss quadrature
rule. Our quadrature rule will be in the form

QGauss(1) = w1f(x1);

we wish to identify the weight w1 and the point x1 that together provide the highest order of
accuracy. Specifically, we aim to integrate exactly the polynomials of degree up to 2m − 1 = 1
using this quadrature rule. Choosing monomials {1, x} as the basis functions for convenience, this
exact integration condition translates to

f(x) = 1 : w1f(x1) = w1 =

∫ 1

−1
1dx = 2,

f(x) = x : w1f(x1) = w1x1 =

∫ 1

−1
xdx = 0.

We readily observe that w1 = 2 and x1 = 0 provide the desired result. Hence m = 1 Gauss
quadrature rule is

QGauss(1) = 2f(0),

which is in fact the midpoint rule. The quadrature rule integrates exactly polynomials of degree
two using just one point.

m = 2 point rule. We now consider a m = 2 Gauss quadrature rule. Our quadrature rule
will be in the form

QGauss(2) = w1f(x1) + w2f(x2).

We wish to identify parameters x1, x2, w1, and w2 such that the rule integrates exactly the polyno-
mials of degree 2m−1 = 3. Choosing monomials {1, x, x2, x3} as the basis functions for convenience,
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m xi wi
1 0.0000000000000000 2.0000000000000000

2 ±0.5773502691896257 1.0000000000000000

3 0.0000000000000000 0.8888888888888888
±0.7745966692414834 0.5555555555555556

4 ±0.3399810435848563 0.6521451548625461
±0.8611363115940526 0.3478548451374538

5 0.0000000000000000 0.5688888888888889
±0.5384693101056831 0.4786286704993665
±0.9061798459386640 0.2369268850561891

6 ±0.6612093864662645 0.3607615730481386
±0.2386191860831969 0.4679139345726910
±0.9324695142031521 0.1713244923791704

Table 4.2: Gauss quadrature rules for m = 1 to 6 points.

this exactly integration condition translates to

f(x) = 1 : w1f(x1) + w2f(x2) = w1 + w2 =

∫ 1

−1
1dx = 2,

f(x) = x : w1f(x1) + w2f(x2) = w1x1 + w2x2 =

∫ 1

−1
xdx = 0,

f(x) = x2 : w1f(x1) + w2f(x2) = w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2dx =

2

3
,

f(x) = x3 : w1f(x1) + w2f(x2) = w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3dx = 0.

After some algebraic manipulation, we find that the solution to the system of nonlinear algebraic
equations is given by x1 = −1/

√
3, x2 = 1/

√
3, w1 = 1, and w2 = 1. Hence the m = 2 Gauss

quadrature rule is

QGauss(2) = f

(
− 1√

3

)
+ f

(
1√
3

)
.

The quadrature rule integrates exactly polynomials of degree three using just two points.

General m point rule. In general, m-point Gauss quadrature rule has the form

QGauss(m) =
m∑
i=1

wif(xi)

and integrates exactly the polynomial of degree 2m− 1. We can generate these quadrature rules in
a systematic manner. However, the construction relies on Legendre polynomials, which is beyond
the scope of this lecture. We here simply provide the quadrature points and weights associated with
several Gauss quadrature rules in Table 4.2. More precisely, these rules are called Legendre-Gauss
quadrature rules, as the quadrature points are the roots of Legendre polynomials.
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Figure 4.3: Comparison of high-order Newton-Cotes, Clenshaw-Curtis, and Gauss quadrature rules.

4.5 Gauss quadrature: error analysis

The error in the m-point Gauss quadrature is bounded from above by

|
∫ 1

−1
f(x)dx−QGauss(m)| ≤

(m!)4

(2m+ 1)((2m)!)3
max

x∈[−1,1]
|f (2m)(x)|.

We make a few key observations:

1. The approximation error depends on the 2m-th derivative of the underlying function. In
particular, the integration is exact for polynomials of degree up to and including 2m− 1.

2. The error decreases exponentially with m.

We now integrate a few functions using Gauss quadrature. Figure 4.3(a) shows the error asso-
ciated with the integration of a smooth and well-behaved function exp(x) + cos(πx) over [−1, 1].
We observe that the Gauss quadrature converges more rapidly than the high-order Newton-Cotes
or Clenshaw-Curtis quadrature rules. Figure 4.3(b) shows the error associated with the integration
of the Runge’s function, 1

1+25x2
, over [−1, 1]. Similar to the Clenshaw-Curtis rules, and unlike the

Newton-Cotes rules, the Gauss quadrature rules converge to the correct value without exhibiting
instability. However, we note that the convergence is slower than that observed for exp(x)+cos(πx).

4.6 h vs p convergence: shorter segments or higher degrees?

We have so far seen two different means of reducing the quadrature error: the first is to increase the
degree of polynomial used in each segment (assuming we use Clenshaw-Curtis or Guass quadrature
such that we do not suffer from instability); the second is to use the composite rule and increase
the number of segments. Increasing the quadrature degree or reducing the segment length requires
additional function evaluations, and hence we might ask what might be a good strategy to increase
the accuracy of the approximation for a given number of function evaluations. To compare the
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different error convergence behaviors associated with increasing the degree and reducing the segment
lengths, we apply three different quadrature rules — (single-segment) Guass quadrature, composite
trapezoid, and composite Simpson’s — to integrands of various smoothness.

We first consider the integration of a smooth function, exp(x) + cos(πx). The convergence plot
is shown in Figure 4.4(a). Because the function is smooth, the Gauss quadrature rules converge
very rapidly as the quadrature degree increases; we in fact observe exponential convergence. The
composite trapezoid rule and the composite Simpson’s rule also converge as the number of segments
increases; however, the convergence is algebraic (and not exponential) and is much slower than that
observed for the Gauss quadrature. For instance, in order to achieve the accuracy of 10−10, the
Gauss quadrature only requires 9 function evaluations, whereas the Simpson’s rule requires O(100)
function evaluations; the trapezoid rule requires even more function evaluations to achieve the
same error level. The convergence rate for the composite trapezoid and Simpson’s rule are 2 and
4, respectively, as expected from our error analysis in the previous lecture.

We next consider an integrand that has a singularity at the end of the domain,
√
x+ 1. The

convergence plot is shown in Figure 4.4(b). Due to the presence of the singularity, the Gauss
quadrature does not converge as rapidly as it did for the smooth integrand. In fact, we no longer
observe exponential convergence and instead observe an algebraic convergence. We also note that
the convergence rate of the trapezoid and Simpson’s rule are reduced to 1.5 for this less smooth
function. While increasing the quadrature degree of the Gauss quadrature is still more efficient
than using composite trapezoid or Simpson’s rule, the difference is much smaller for

√
x+ 1 than

for exp(x) + cos(πx).
We finally consider an integrand that has a singularity in the domain, |x+1/7|. The convergence

plot is shown in Figure 4.4(c). The convergence of the Gauss quadrature with the quadrature degree
significantly deteriorates for this non-smooth function. The accuracy for a given number of function
evaluations (hence the cost) is comparable to that for the composite trapezoid and Simpson’s rules.
We also note that the convergence of all methods are rather slow: achieving O(10−4) accuracy
requires O(100) function evaluations for all of the methods.

To conclude, we observe that, for smooth functions, the Gauss quadrature rules (or the Clenshaw-
Curtis rules) provide very rapid convergence with the increase in the quadrature degree. For non-
smooth functions, however, the convergence of the Gauss quadrature rules can be no better than
the lower-order composite Newton-Cotes rules. In addition, the convergence can be rather slow for
all of the methods.

4.7 Adaptive quadrature: adaptive Simpson’s method

We have seen that Gauss quadrature provides much more accurate solution than composite Newton-
Cotes rules for smooth integrands, but its performance is limited for non-smooth functions. In
many cases, the functions we wish to integrate are not smooth. Integrands may be formally
not smooth and the higher derivatives might not exist; consider for instance the integration of√
x+ 1 over [−1, 1]. Or, integrands may be formally smooth but may vary significantly over a

small region. In these cases, global (i.e. single segment) quadrature rules or composite rules with
equispaced segments do not converge rapidly. In order to overcome the limitation, we consider
adaptive quadrature rules.

The two key ingredients of adaptive quadrature rules are

1. an error estimate which assesses the error associated with the current approximation;
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Figure 4.4: Comparison of Gauss quadrature (increasing degree) and composite low-order Newton-
Cotes formulas (increasing number of segments).

45



-1 -0.5 0 0.5 1
0

0.5

1

1.5

Figure 4.5: Approximation of
∫ 1
−1

√
x+ 1dx using the adaptive Simpson’s method.

2. an adaptive selection of segment lengths based on the error estimate.

As a concrete example, we introduce the adaptive Simpson’s method. Given (not necessarily
equispaced) points a ≡ x1 < · · · < xN+1 ≡ b that delineate N intervals, the approximation of the
integral based on the adaptive Simpson’s rule is given by

I ≡
∫ b

a
f(x)dx ≈

N∑
i=0

Q
(2)
NC(3)([xi, xi+1]) =

N∑
i=0

(
QNC(3)([xi, x

mid
i ]) +QNC(3)([x

mid
i , xi+1])

)
,

where xmid
i ≡ 1

2(xi+xi+1). We recall thatQ
(2)
NC(3)([xi, xi+1]) denotes the approximation of

∫ xi+1

xi
f(x)dx

using the two-segment composite Simpsons’s rule, and QNC(3)([xi, x
mid
i ]) denotes the approximation

of
∫ xmid

i
xi

f(x)dx using the (single-segment) Simpson’s rule. Of course, the strength of the adaptive

Simpson’s method lies in the way it automatically identifies points {xi}N+1
i=1 , to achieve a desired

accuracy. An example of adaptive selection of the interval lengths is shown in Figure 4.5.
Error estimate. A key ingredient of any adaptive scheme is the error estimate. We here focus

on the estimation of the error over a single interval; the error over all the intervals is simply the
sum of individual contributions. The error estimate for the adaptive Simpson’s rule is based on a
comparison of the integral approximated using two different quadrature rules. Specifically, given
the approximation of the integral over [a, b] using a single interval,

I ≡
∫ b

a
f(x)dx ≈ Q(2)

NC(3)([a, b]) ≡ QNC(3)([a, c]) +QNC(3)([c, b])

for c = (a+ b)/2, the adaptive Simpson’s rule considers an error estimate,

E([a, b]) ≡ 1

15
|Q(2)

NC(3)([a, b])−QNC(3)([a, b])|.

We make two observations about this particular error estimate.

1. The first is regarding the cost. The three quadrature points {a, 1
2(a+ b), b} for QNC(3)([a, b])

is a subset of the five quadrature points {a, 1
4(a + b), 1

2(a + b), 3
4(a + b), b} for Q

(2)
NC(3)([a, b]).

Hence, we can evaluate both quadrature rules using just five function evaluations.
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2. The second is regarding the accuracy. The error associated with the error estimate E([a, b])
is one order higher than the error in the integral itself. In other words,

|I −Q(2)
NC(3)([a, b])| ∼ O((b− a)5)

whereas

||I −Q(2)
NC(3)([a, b])| − E([a, b])| ∼ O((b− a)6).

A sketch of the proof is provided in the Appendix. In words, for a small interval length b− a
— which we will have in composite rules — the error in the error estimate will be smaller
than the error itself, and hence the estimate serves as a good indicator of the error.

The error estimate for the adaptive Simpson’s rule, E([a, b]), is an example of an a posteriori error
estimate. The error estimate differs from a priori error estimates considered in the context of
interpolation and integration, which take on the form e ∼ Ckh

k. Specifically, unlike a priori error
estimates, a posteriori error estimates are computable; it does not involve uncomputable terms
such as ‖f (m)‖L∞ . Hence, a posteriori error estimates can be directly incorporated in a numerical
method to inform the user the level of confidence they should have in the approximation.

Adaptive algorithm. Adaptive Simpson’s method is most easily implemented as a recursive
algorithm. An example implementation is shown in Algorithm 1. In each call to the adaptive
Simpson’s function, we compute the approximate integral as well as the error estimate. If the error
tolerance is met for the current interval, then we simply return the current approximate value of
the integral as well as the error estimate. If the error tolerance is not met, then we split the interval
into two subintervals and invoke adaptive quadrature on each subinterval; we however set the error
tolerance over each of the subinterval to be the half of the error tolerance over the whole interval,
such that the error over the whole interval — which is the sum of the contributions from the two
intervals — meets the desired error tolerance.

4.8 Adaptive Simpson’s method: examples

We now apply the adaptive Simpson’s method to compute the integral
∫ 1
−1 cos((x+ 1.05)−1)dx. As

shown in Figure 4.6(a), the integral exhibits rapid oscillation near x = −1; the integrand however
is formally smooth, i.e. in C∞([−1, 1]).

Figure 4.6(b) illustrates the adaptive Simpson’s method in action: we observe that shorter
segments are used to resolve the rapidly varying feature near x = −1 and longer segments are used
in the regions with relatively small function variation. Figure 4.6(c) shows the variation in the
interval length more quantitatively.

Figure 4.6(c) shows the convergence of the adaptive Simpson’s method. To generate the figure,
the adaptive scheme was invoked for several different values of the error tolerance δ. We see
that the adaptive Simpson’s method requires fewer function evaluations than the non-adaptive
Simpson’s rule with a uniform interval spacing. We also observe that the error estimate E([a, b])
is an accurate indicator of the true error |I −Q([a, b])|, in particular for a tight error tolerance for
which the intervals are small.

The adaptive Simpson’s method is even more effective when the integrand is singular. As an
example, we consider the approximation of

∫ 1
0

√
xdx. Figure 4.7(a) shows the interval spacing

selected by the adaptive Simpson’s method for the error tolerance of δ = 10−6. Note that the
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Algorithm 1: Adaptive Simpson’s method

Input: f : integrand
a, b: lower and upper bound of integration
δ: error tolerance

Output: Q: integral approximation
E: error estimate

1 function [Q,E] = adaptive simpsons(f, a, b, δ)
2 c = (a+ b)/2
3 Q0 = QNC(3)([a, b]) // single interval approximation

4 Q1 = QNC(3)([a, c]) +QNC(3)([c, b]) // two-interval approximation

5 E = |Q1 −Q0|/15 // error estimate

6 if E ≤ δ then
// tolerance is met; use current approximation

7 Q = Q1

8 else
// tolerance is not met; split the interval and invoke adaptive

quadrature

9 [QL, EL] = adaptive simpsons(f, a, c, δ/2)
10 [QR, ER] = adaptive simpsons(f, c, b, δ/2)
11 Q = QL +QR

12 E = EL + ER

13 end
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Figure 4.6: Adaptive Simpson’s method applied to
∫ 1
−1 cos((x+ 1.05)−1)dx.
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Figure 4.7: Adaptive Simpson’s method applied to
∫ 1

0

√
xdx.

intervals of a length less than 10−6 is employed in the vicinity of the singularity. Figure 4.7(b) shows
the convergence result. We observe that, for the integrand with a singularity, the convergence rate
of the non-adaptive Simpson’s rule is limited to -1.5. On the other hand, the error of the adaptive
method decays at the rate of -4 with respect to the number of function evaluations. This difference
in the convergence rates for the non-adaptive and adaptive schemes result in a large difference in a
number of function evaluations required to achieve a given error level, particularly for a small error
tolerance.

4.9 Adaptive quadrature: modern methods

The adaptive Simpson’s method we have presented is a “classical” adaptive quadrature method.
Many of the more modern implementations of adaptive quadrature rules is based on Gauss-Kronrod
quadrature — which builds on the Gauss quadrature we covered in the first half of the lecture —
or Clenshaw-Curtis quadrature. As we have seen in the first half of this lecture, Gauss quadrature
rules provide higher-order accuracy for a given number of points compared to Newton-Cotes rules;
the higher-order accuracy is advantageous, especially when the formulation is augmented with an
adaptive algorithm that selects the interval lengths in an intelligent manner. While many of the
modern adaptive quadrature methods use a different set of quadrature rules, all adaptive quadrature
rules are built on the same basic principles of error estimation and adaptive spacing selection, the
principles we have illustrated in the context of adaptive Simpson’s rule.

4.10 Summary

We provide a short summary of the lecture:

1. High-order Newton-Cotes rules, which are based on m equispaced quadrature points, may
not converge with the integration order m due to the Runge’s phenomenon.
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2. Clenshaw-Curtis rules, which use the Chebyshev nodes as the quadrature points, do not suffer
from the instability that the Newton-Cotes rules exhibit. For higher-order integration, we
should hence consider the Clenshaw-Curtis rules instead of the Newton-Cotes rules.

3. Gauss quadrature rules select the quadrature weights and points to maximize the degree of
polynomial integrated exactly for a given number of points.

4. The m-point Gauss quadrature rule exactly integrates polynomials of degree 2m − 1. This
is higher than the m-point Newton-Cotes or Clenshaw-Curtis rule which integrate exactly
polynomials of degree m− 1 or m (depending on if m is even or odd).

5. Gauss (or Clenshaw-Curtis) quadrature rules converge very rapidly for smooth functions
as the quadrature degree increases; however, the convergence can be slow for non-smooth
functions.

6. Adaptive quadrature rules automatically evaluate the definite integral to desired tolerance.

7. Key ingredients of adaptive quadrature rules are an error estimate and an adaptive interval-
selection scheme.

8. The integration error associated with the adaptive Simpson’s rule converge rapidly even when
the integrand exhibit a significant variation over a small region or the integrand is singular.

4.11 Appendix

In this appendix we prove that the error in the error estimate of the adaptive Simpson’s method
over a single interval [a, b] is of O((b− a)6): i.e.,

||I −Q(2)([a, b])| − E([a, b])| = O((b− a)6).

To see this, we first note that the actual error is given by

|I −Q(2)
NC(3)([a, b])| =

|f (4)(ξ)|
2880

1

16
(b− a)5,

for some ξ ∈ [a, b]. We then note that the difference between Q
(2)
NC(3)(a, b) and QNC(3)(a, b) is

|Q(2)
NC(3)([a, b])−QNC(3)([a, b])| =

|f (4)(ξ)|
2880

15

16
(b− a)5 +O((b− a)6).

for the same ξ. It thus follows that

E(a, b) ≡ 1

15
|Q(2)

NC(3)([a, b])−QNC(3)([a, b])| =
|f (4)(ξ)|

2880

1

16
(b− a)5 +O((b− a)6)

= |I −Q(2)
NC(3)([a, b])|+O((b− a)6),

which is the desired result.
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Lecture 5

Linear algebra: an interpretation

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

In this short note we provide various interpretations of techniques that are often introduced
in an introductory course on linear algebra. The note assumes familiarity with basic concepts in
linear algebra; the note is not complete in any sense.

5.1 Linear transformation

We consider the transformation of a vector x ∈ Rn by a matrix A ∈ Rn×n and interpret it in a
column-wise sense:

b = Ax =

 | |
a1 · · · an
| |


 x1

...
xn

 = x1

 |
a1

|

+ · · ·+ xn

 |
an
|

 ,

where ai is the i-th column of the matrix A and xi is the i-th entry of the vector x. Note that our
interpretation is

b = Ax: linear combination of columns of A with coefficients x.

Visually, we may think of this multiplication as shown in Figure 5.1 for a 2× 2 matrix,

A =

(
2 1
1 2

)
.

We simply multiply the columns of A by the coefficients specified in x and add the resulting vectors.
In a higher dimension, the operation can be thought of as a transformation of a hypercube.

Conversely, when we solve a linear system Ax = b for the vector x, we may interpret the
operation as follows:

Solve Ax = b for x: find a vector of coefficients of the expansion of b
in the basis of columns of A.

In other words, we are simply looking for coefficients for {a1, . . . , an} such that the linear combi-
nation is equal to the right hand side b.
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e1

e2 x

(a) x

a1

a2

Ax

(b) b = Ax

Figure 5.1: Illustration of linear transformation for A = [2, 1; 1, 2].

e1

e2
v1

(a) x

a1

a2

v1

Av1 = 61v1

(b) b = Ax

Figure 5.2: Illustration of linear transformation applied to an eigenvector of A = [2, 1; 1, 2]. The
eigenvector is v1 = [1; 1]; the eigenvalue (i.e. “the scaling factor”) is λ1 = 3.

5.2 Eigenvalues and eigenvectors

Geometric interpretation. We call a vector v 6= 0 an eigenvector if Av = λv for some scalar λ;
we then call this scalar λ the eigenvalue. In other words,

v 6= 0 is an eigenvector of A if Av is a scalar multiple of v.

Figure 5.2 visually identifies one of the eigenvectors for the 2× 2 matrix A introduced above. We
note that the vector v1 = (1, 1)T and Av1 visually align; hence v1 = (1, 1)T is an eigenvector.
In addition, we note that the “scaling factor” is 3, i.e. Av1 is 3 times longer than v1; hence the
associated eigenvalue is λ1 = 3.

Algebraic interpretation (for completeness). Algebraically, the eigenvalue problem is the
following: find λ ∈ C and non-zero v ∈ Cn such that

Av = λv.

53



Note that this is equivalent to finding v 6= 0 such that

(A− λI)v = 0.

We observe that in order for a non-zero v to satisfy the equation,

A− λI must have a non-zero nullspace (aka kernel).

This condition is equivalent to requiring that

det(A− λI) = 0.

The polynomial in λ in the left hand side, pA(λ) ≡ det(A − λI), is called the characteristic poly-
nomial. Clearly, the characteristic polynomial is of degree n (since A − λI is n × n). By the
fundamental theorem of algebra, we can find n roots; we see that

the n roots of the characteristic polynomial pA(λ) are the n eigenvalues of A.

In general, these roots need not be distinct. Let us label the eigenvalues by superscripts: λ1, λ2, . . . , λn.
Once we find the eigenvalues, we can associate the i-th eigenvector vi with the nullspace of A−λiI.

(Note: while the characterization of eigenvalues and eigenvectors by a characteristic polyno-
mial and nullspace is useful for theoretical purposes, a typical numerical algorithm for solving
eigenproblems is quite different from what is presented here.)

Example. We again look at

A =

(
2 1
1 2

)
.

To find the eigenvalues (algebraically), we first find the roots of the characteristic polynomial

pA(λ) = det

(
2− λ 1

1 2− λ

)
= (2− λ)2 − 1 = λ2 − 4λ+ 3 = (λ− 3)(λ− 1) = 0;

we recognize that roots are 3 and 1. Without loss of generality, let us label them λ1 = 3 and λ2 = 1.
To find eigenvectors (algebraically), we look for the nullspace of A− λiI:

A− λ1I =

(
2− 3 1

1 2− 3

)
=

(
−1 1
1 −1

)
⇒ v1 =

(
1
1

)
A− λ1I =

(
2− 1 1

1 2− 1

)
=

(
1 1
1 1

)
⇒ v2 =

(
1
−1

)
.

So, v1 = (1, 1)T and v2 = (1,−1)T are eigenvectors associated with λ1 and λ2, respectively. They
are unique up to scaling.

Eigenvalue decomposition. We can now form a decomposition of a matrix A based on the
eigenvectors and eigenvalues. To see this we observe that

A

 | |
v1 · · · vn
| |

 =

 | |
λ1v1 · · · λnvn
| |

 =

 | |
v1 · · · vn
| |


 λ1

. . .

λn

 .
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We now set

V =

 | |
v1 · · · vn
| |

 and Λ =

 λ1

. . .

λn

 ,

and observe that
AV = V Λ.

If V is invertible, we can multiply on the right by V −1 to obtain

A = V ΛV −1.

Note that for V to be invertible, the eigenvectors that constitute V must be linearly independent.
It follows that

the eigenvalue decomposition of A exists iff A has a linearly independent set of n eigenvectors.

We call such an A diagonalizable.
When does the eigendecomposition not work? Eigenvalue decomposition can fail for

even a simple matrix. For instance, consider

B =

(
1 1
0 1

)
.

We observe
pB(λ) = det(B − λI) = (1− λ)2 = 0 ⇒ λ1 = λ2 = 1.

But, when we look at the nullspace of B − λ1I, we realize that

B − λ1I =

(
0 1
0 0

)
.

We can only find one eigenvector, v1 = (1, 0)T . Hence, we cannot find n = 2 linearly independent
eigenvectors: B is not diagonalizable.

5.3 Eigenvalues and eigenvectors for symmetric matrices

Properties. Symmetric matrices have very nice properties. In particular

1. eigenvalues are real

2. eigenvectors are orthogonal and span the entire Rn.

As a consequence of the second property, symmetric matrices are always diagonalizable.
Sketch of proof of 1. Let v ∈ Cn and λ ∈ C be an eigenpair of A ∈ Rn×n. Then

v∗Av = v∗(Av) = v∗λv = λ‖v‖2,

where v∗ denotes the conjugate transpose of v. We can take the conjugate of the scalar quantity
(v∗Av) to obtain

(v∗Av)∗ = λ∗‖v‖2.
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On the other hand,

(v∗Av)∗ = v∗A∗v = v∗Av = v∗(Av) = λv∗v = λ‖v‖2,

where we have used A∗ = AT = A for a real symmetric matrix. From these two equations, we see
that

λ∗‖v‖2 = λ∗(v∗Av)∗ = λ‖v‖2.
Since ‖v‖ 6= 0, it must be that λ = λ∗, which implies that λ is real.

Sketch of proof of 2. We consider case with distinct eigenvalues. (A proof for repeated
eigenvalues is more involved.) Suppose (λi, vi) and (λj , vj) are eigenpairs of A and λi 6= λjs. Then

λiv
T
j vi = vTj (λivi) = vTj Avi = vTj A

T vi = (Avj)
T vi = λjv

T
j vi,

where the third equality follows from the symmetry of A. So

λiv
T
j vi = λjv

T
j vi;

since λi 6= λj , we must have vTi vj = 0. The two eigenvectors are orthogonal.
Eigendecomposition. We now consider an eigendecomposition of a symmetric matrix A.

Without loss of generality, we scale the eigenvectors such that ‖vi‖ = 1, ∀i. Then,

A = V ΛV −1 ( = V ΛV T ),

where V is an orthogonal matrix of orthonormal eigenvectors. Before we provide a geometric inter-
pretation of this decomposition, let us provide a geometric interpretation of orthogonal matrices.

5.4 Orthogonal matrices

Definition. We recall that a matrix

Q =

 | |
q1 · · · qn
| |


is said to be orthogonal if the vectors {q1, . . . , qn} form an orthonormal basis. We recall that a set
of vectors are orthonormal if

qTi qj =

{
1, i = j

0, i 6= j.

Inverse. The inverse of an orthogonal matrix is particularly simple to compute:

Q−1 = QT .

To see this, we observe that

QTQ =

 − qT1 −
...

− qTn −


 | |

q1 · · · qn
| |

 =

 qT1 q1 · · · qT1 qn
...

...
qTn q1 · · · qTn qn

 =

 1
. . .

1

 ,

which implies QT = Q−1.
Interpretation: change of basis. The interpretation of linear transformation we introduced

in the context of a general A also applies to an orthogonal matrix Q. In particular,
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Qx: linear combination of columns of Q with coefficients x

and

QT b ( = Q−1b): vector of coefficients of the expansion of b
in the basis of columns of Q.

In addition, due to the use of orthonormal basis, we can interpret the i-th component of QT b —
the i-th coefficient of the expansion of b in the basis of columns of Q — as

(QT b)i = qTi b: component of b that lies in the direction of qi.

This allows us to represent the vector b in various basis. For instance, in the n = 2 case, the regular
“b” should be interpreted as

b = b1︸︷︷︸
coeff.

e1︸︷︷︸
basis
vector

+b2e2 : vector b expressed in canonical basis {e1, e2}.

On the other hand we may also express b as

b = (qT1 b)︸ ︷︷ ︸
coeff.

q1︸︷︷︸
basis
vector

+(qT2 b)q2 : vector b expressed in basis {q1, q2}.

(Proving the equivalence is straightforward:

q1(qT1 b) + · · ·+ qn(qTn b) =

 | |
q1 · · · qn
| |


 qT1 b

...
qTn b


=

 | |
q1 · · · qn
| |


 − qT1 −

...
− qTn −

 b = QQT b = b. )

These two expression for the same vector b — one using canonical orthonormal basis {e1, e2} and
another using an arbitrary orthonormal basis {q1, q2} — is illustrated in Figure 5.3. Again, we
see b as a linear combination of columns of Q with appropriate coefficients. For an orthonormal
basis, each coefficient is simply given by (qT1 b); note that b1 for the canonical basis also arise in this
fashion: b1 = (eT1 b).

2-norm of Qx. The 2-norm of a vector Qx is the same as that of x. To see this, we observe

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2,

where we have used QTQ = I.
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b = b1e1 + b2e2
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(a) b = b1e1 + b2e2

q1
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b = (qT
1 b)q1 + (qT

2 b)q2

qT
1 b

qT
2 b

(b) b = (qT1 b)q1 + (qT2 b)q2

Figure 5.3: Illustration of representing the vector b using two different orthonormal basis.

5.5 Eigenvalue decomposition of symmetric matrices

We now provide a geometric interpretation of linear operators to eigenvalue decomposition of
symmetric matrices, which have orthogonal eigenvectors. Specifically, upon the decomposition
A = V ΛV T , the multiplication Ax can be thought of as Ax = V (Λ(V Tx)), where

V Tx :vector of coefficients of x in basis {v1, . . . , vn}
≡ vector of components of x that lie in directions {v1, . . . , vn}

ΛV Tx :the coefficients scaled by eigenvalues

V ΛV Tx :linear combination of {v1, . . . , vn} with the scaled coefficients.

In other words,

Ax = (λ1

coeff︷ ︸︸ ︷
(vT1 x))︸ ︷︷ ︸

scaled coeff

v1︸︷︷︸
basis
vector

+(λ2(vT2 x))v2 + · · ·+ (λn(vTnx))vn.

A visual representation of this geometric interpretation is shown in Figure 5.4. Given a vector
x, we first express the vector in the orthonormal basis of eigenvectors {v1, v2}; i.e. x = (vT1 x)v1 +
(vT2 x)v2. We then scale the coefficients vT1 x and vT2 x by respective eigenvalues to obtain λ1(vT1 x)
and λ2(vT2 x). We finally consider a linear combination of {v1, v2} with these scaled coefficients to
obtain

Ax = (λ1

coeff︷ ︸︸ ︷
(vT1 x))︸ ︷︷ ︸

scaled coeff

v1︸︷︷︸
basis
vector

+(λ2(vT2 x))v2.

We see that λ1 is the maximum “stretching” (or scaling) provided by the matrix A; λn ( = λ2) it
the minimum “stretching” provided by the matrix A.
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61v1
62v2
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Figure 5.4: Illustration of linear transformation interpreted in terms of eigenvalue decomposition.

Symmetric positive definite (SPD) matrices. A symmetric matrix A is said to be SPD if

xTAx > 0 ∀x 6= 0.

An equivalent condition is

A is SPD: all eigenvalues of a symmetric matrix A are positive.

To see the equivalence, we observe that

xTAx = xTV ΛV Tx = (V Tx)TΛ(V Tx) = x′Λx′

for the change of basis x′ = V Tx. We observe that xTAx is positive as long as all entries in
Λ = diag(λ1, λ2, . . . , λn) are positive. Intuitively, “stretching” provided by a SPD matrix is all
positive and finite.

Towards SVD. We can relate our geometric interpretation provided by eigendecomposition
to various concepts in linear algebra, such as image, kernel, invertibility, operator norms, and
conditioning. But, before we continue, let us introduce a more generalized decomposition which
allows us to provide the same interpretation for non-symmetric matrices.

5.6 Singular Value Decomposition (SVD)

Arguably two limitations of the eigenvalue decomposition are

1. the decomposition only exists for diagonalizable matrices

2. eigenvectors are orthogonal only if A is symmetric.

The singular value decomposition, which exists for any matrix (in fact even for non-square matrices
even though we will not consider them in this lecture), in some sense address these two issues. The
singular value decomposition of A ∈ Rn×n is

A = UΣV T ,
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where

U =

 | |
u1 · · · un
| |

 , Σ =

 σ1

. . .

σn

 , V =

 | |
v1 · · · vn
| |

 ,

and U and V are orthogonal matrices. The terms of the diagonal, {σ1, . . . , σn}, are the singular
values, the vectors {u1, . . . , un} are the left singular vectors, and the vectors {v1, . . . , vn} are the
right singular vectors. Without loss of generality, we order the singular values in non-increasing
order

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Singular values are non-negative by definition. The SVD has a structure very similar to the eigen-
decomposition of a symmetric matrix A, except that it uses two different sets of orthonormal basis,
{u1, . . . , un} and {v1, · · · , vn}. As noted, any matrix A admits a singular value decomposition. If
the matrix A is symmetric positive definite, then the SVD of A has U = V , and hence the SVD is
the same as the eigenvalue decomposition.

Given the SVD of A, A = UΣV T , the multiplication Ax can be thought of as Ax = U(Σ(V Tx)),
where

V Tx : vector of coefficients of x in basis {v1, . . . , vn}
≡ vector of components of x that lie in directions {v1, . . . , vn}

ΣV Tx : the coefficients scaled by singular values

UΣV Tx : linear combination of {u1, . . . , un} with the scaled coefficients.

In other words,

Ax = (σ1

coeff for
right basis︷ ︸︸ ︷
(vT1 x) )︸ ︷︷ ︸

scaled coeff

u1︸︷︷︸
left basis

vector

+(σ2(vT2 x))u2 + · · ·+ (σn(vTnx))un.

A visual representation of this geometric interpretation is shown in Figure 5.5. Given a vector
x, we first express the vector in the “right” orthonormal basis {v1, v2}; i.e. x = (vT1 x)v1 + (vT2 x)v2.
We then scale the coefficients vT1 x and vT2 x by respective singular values to obtain σ1(vT1 x) and
σ2(vT2 x). We finally consider a linear combination of the “left” orthonormal basis {u1, u2} with
these scaled coefficients to obtain

Ax = (σ1

coeff for
right basis︷ ︸︸ ︷
(vT1 x) )︸ ︷︷ ︸

scaled coeff

u1︸︷︷︸
left basis

vector

+(σ2(vT2 x))u2.

Again, the interpretation is the same as that associated with the eigendecomposition of a symmetric
matrix, except now we use two different set of orthonormal basis. We see that σ1 is the maximum
“stretching” (or scaling) provided by the matrix A; σn ( = λ2) it the minimum “stretching” provided
by the matrix A.
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Figure 5.5: Illustration of linear transformation interpreted in terms of singular value decomposi-
tion.

5.7 SVD and properties of matrices

The singular value decomposition allows us to readily identify various matrix properties. [Note that
due to the equivalence of SVD and eigendecomposition for symmetric positive definite matrices,
the discussion here also applies to the eigendecomposition of SPD matrices.]

Preliminary. Recalling that singular values are set in non-increasing order and that all singular
values are non-negative, we may denote the last non-zero singular value by σr. More explicitly,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

and
σr+1 = σr+2 = · · · = σn = 0.

(Note that if there is no zero singular value, then r = n.)
Image (or range) of A. We recall that the image of a matrix A is defined as the subspace

Rn spanned by the columns of A:

Img(A) = span{a1, . . . , an}.

Equivalently, we can interpret Img(A) as

Img(A) : a space of vectors that can be expressed as Ax for some coefficients x.

Now we recall that for A = UΣV T , we can express the product y = Ax as

y = Ax = (σ1(vT1 x))u1 + · · ·+ (σr(v
T
r x))ur + (σr+1(vTr+1x))ur+1 + · · ·+ (σn(vTnx))un

= (σ1(vT1 x))u1 + · · ·+ (σr(v
T
r x))ur.

Here, we have dropped the scaled coefficients associated with σr+1, . . . , σn because they are zero.
Because {u1, . . . , ur} is orthonormal and σ1, . . . , σr are non-zero, we readily observe that

Img(A) = span{u1, . . . , ur}.
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Again, if all singular values are non-zero, then Img(A) = span{u1, . . . , un} = Rn.
Rank of A. The rank of A is the dimension of the image of A. Because {u1, . . . , ur} is

orthonormal, we have
Rank(A) = dim(span{u1, . . . , ur}) = r.

Kernel (or nullspace) of A. The kernel of a matrix A is defined as

Ker(A) = {x ∈ Rn : Ax = 0}.

Let us represent a vector x in the right singular basis {v1, . . . , vn}: x = V c = v1c1 + · · · vncn, where
c is the vector of associated coefficients. Then we observe that

Ax = (σ1(vT1 V c))u1 + · · ·+ (σn(vTnV c))un = (σ1c1)u1 + · · ·+ (σncn)un.

Because the basis {u1, . . . , un} is orthonormal, all the scaled coefficients must be zero for Ax = 0.
This is only possible if c1 = · · · = cr = 0; on the other hand, {cr+1, . . . , cn} can be set to any values,
since σr+1 = · · · = σn = 0. Hence all vectors in Ker(A) can be expressed as vr+1cr+1 + · · ·+ vncn
for some coefficients c. Equivalently,

Ker(A) = span{vr+1, . . . , vn}.

Again, if all singular values are non-zero (and hence r = n), then Ker(A) = 0.
Invertiblity of A. A matrix A is invertible if it is full rank. From the argument above, we

readily see that we must have r = n, which is equivalent to the following:

A is invertible: all singular values are non-zero.

We can also provide a geometric interpretation. We recall that

Solve Ax = b for x: find a vector of coefficients of the expansion of b
in the basis of columns of A.

In the context of SVD, we are looking for scaled coefficients σ1(vT1 x), . . . , σn(vTnx) for the basis
{u1, . . . , un} such that

b = (σ1(vT1 x))u1 + · · ·+ (σn(vTnx))un.

In order to represent any b in Rn, we must be able to set the scaled coefficients freely. This is
possible as along as all the singular values are non-zero; if a singular value is zero, then we can only
set the associated scaled coefficient to zero.

More intuitively, we recall that singular values represent “stretching” (or scaling) in different
directions. If there is a direction in which the “stretching” is zero — that is, if the component in
a given direction vanishes after the application of A — then we have no means of deducing the
component of x in that direction simply by looking at Ax because that information is lost by the
zero scaling. Hence, all singular values must be non-zero — the “strething” must be finite — for a
matrix to be invertible.

Inverse of A. Given a SVD A = UΣV T with all non-zero singular values, the inverse of A is
simply given by

A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1 = V Σ−1UT ,

where we have used the fact that V −1 = V T for orthogonal matrices. Intuitively, the roles of the
left and right singular vectors are switched, and we get reciprocal “stretchings”.
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Induced norm of A. We recall that the 2-norm of A is defined as

‖A‖2 = max
x∈Rn

‖Ax‖2
‖x‖2

.

But we readily observe that

‖A‖2 = max
x∈Rn

‖Ax‖2
‖x‖2

= max
x∈Rn

‖UΣV Tx‖2
‖x‖2

= max
x′∈Rn

‖UΣx′‖2
‖V x′‖2

= max
x′∈Rn

‖Σx′‖2
‖x′‖2

= σ1.

Recalling that σ1 is the maximum “stretching” (or scaling) induced by a matrix A, ‖A‖2 measures
the maximum “stretching” induced by A.

Induced norm of A−1. We similarly observe that

‖A−1‖2 = max
x∈Rn

‖A−1x‖2
‖x‖2

= max
x∈Rn

‖V Σ−1UTx‖2
‖x‖2

= max
x′∈Rn

‖Σ−1x′‖2
‖x′‖2

=
1

σn
.

Recalling that σn is the minimum “stretching” (or scaling) induced by a matrix A, ‖A−1‖2 measures
the (reciprocal of the) minimum “stretching” induced by A.
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Lecture 6

Linear systems: LU factorization

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

6.1 Introduction

In this lecture, we consider numerical solution of linear systems. Specifically, we introduce system-
atic approaches to find a unique solution x to

Ax = b,

where A is an n × n non-singular matrix, b is an n-vector, and x is an n-vector. The approaches
we consider are categorized as direct methods (as opposed to iterative methods) as they provide the
solution in a finite number of steps.

6.2 Solution of lower triangular systems: forward substitution

We first consider cases where the matrix possesses a special structure which makes the solution of
the linear system particularly simple. A matrix L is said to be lower triangular if all the entries
above the diagonal are zero: i.e.,

lij = 0 ∀j > i.

For instance, 3× 3 lower triangular system is of the form l11 0 0
l21 l22 0
l31 l32 l33

 x1

x2

x3

 =

 b1
b2
b3

 .

Note that L is non-singular if and only if the diagonal entries are non-zero. In this case, we can
find the entries of the solution in a sequential manner:

x1 = b1/l11

x2 = (b2 − l21x1)/l22

x3 = (b3 − l31x1 − l32x2)/l33.
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This solution strategy is called forward substitution. Hence, (non-singular) lower-triangular system
can be solved systematically using forward substitution.

More generally, for an n× n lower triangular system, the forward substitution algorithm is the
following:

Algorithm 2: forward substitution

1 for i = 1, . . . , n do
2 xi = bi
3 for j = 1, . . . , i− 1 do
4 xi = xi − lijxj
5 end
6 xi = xi/lii
7 end

Operation count. We now analyze the cost of forward substitution. The inner loop of forward
substitution requires two FLOPs: one multiplication and one subtraction. The total FLOP count
for the forward substitution is hence

n∑
i=1

(1 +
i−1∑
j=1

2) ≈ n2.

The cost of forward substitution hence scales quadratically with the size of the linear system. For
instance, the solution of a 10 × 10 system requires ≈ 100 operations, whereas the solution of a
100× 100 system requires 10000 operations.

6.3 Solution of upper triangular systems: backward substitution

We can use a similar technique to solve an upper triangular system. A matrix U is said to be upper
triangular if all the entries below the diagonal are zero: i.e.,

uij = 0 ∀i > j.

For instance, 3× 3 upper triangular system is of the form u11 u12 u13

0 u22 u23

0 0 u33

 x1

x2

x3

 =

 b1
b2
b3

 .

The matrix U is non-singular if and only if the diagonal entries are non-zero. We can again find
the entries of the solution in a sequential manner:

x3 = b3/u33

x2 = (b2 − u23x3)/u22

x1 = (b1 − u12x2 − u13x3)/u33.
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This solution strategy is called backward substitution. Hence, (non-singular) upper-triangular sys-
tem can be solved systematically using backward substitution.

More generally, for an n × n upper triangular system, the backward substitution algorithm is
the following:

Algorithm 3: backward substitution

1 for i = n, . . . , 1 do
2 xi = bi
3 for j = i+ 1, . . . , n do
4 xi = xi − uijxj
5 end
6 xi = xi/uii
7 end

Operation count. We readily observe that the FLOP count for the backward substitution
is identical to that for the forward substitution: ≈ n2. The cost of backward substitution hence
scales quadratically with the size of the linear system.

While forward and backward substitution are efficient methods to solve lower- and upper-
triangular systems, respectively, they cannot be used for general matrices. In the next section,
we consider a systematic approach to decompose a general matrix A into a pair of lower- and
upper-triangular matrices.

6.4 Gaussian elimination: 3× 3 example

We first recall Gaussian elimination, a systematic procedure to reduce a general linear system to
an upper triangular system. To illustrate the procedure, we consider a concrete 3× 3 system: 2 1 1

4 3 3
8 7 10

 x1

x2

x3

 =

 1
1
4

 .

Step 1. Eliminate entries in the first column below the diagonal:

−2× (row1)
−4× (row1)

 2 1 1
4 3 3
8 7 10

 x1

x2

x3

 =

 1
1
4


⇓ 2 1 1

0 1 1
0 3 6

 x1

x2

x3

 =

 1
−1
0
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Step 2. Eliminate entries in the second column below the diagonal:

−3× (row2)

 2 1 1
0 1 1
0 3 6

 x1

x2

x3

 =

 1
−1
0


⇓ 2 1 1

0 1 1
0 0 3

 x1

x2

x3

 =

 1
−1
3


Step 3. Solve the upper triangular system using backward substitution:

x3 = 3/3 = 1

x2 = (−1− 1 · x3)/1 = (−1− 1 · 1)/1 = −2

x1 = (1− 1 · x2 − 1 · x3)/2 = (1− 1 · (−2)− 1 · 1)/2 = 1.

The Gaussian elimination reduces a matrix to an upper triangular form and also identifies the
associated right hand side such that the solution is not modified.

6.5 LU factorization: 3× 3 example

Gaussian elimination provides the solution of a linear system in a systematic manner. In fact, by
recording the row manipulation operations used to generate the upper triangular system, we can
provide a factorization of matrix A into a lower triangular matrix L and an upper triangular matrix
U : A = LU . Once we have the factorization, we can solve the problem for any right hand side b
using a two-step procedure: first solve using forward substitution

Lz = b

for z. Then solve using backward substitution

Ux = z

for x. The x is the solution to Ax = b, because the substitution of z = Ux to the first equation
yield LUx = b, which of course is equal to Ax = b.

We now present the LU factorization for the 3× 3 matrix we introduced above:
Step 1. Eliminate entries in the first column below the diagonal, and record the operation in a
lower triangular matrix M1: 1

−2 1
−4 1


︸ ︷︷ ︸

M1

 2 1 1
4 3 3
8 7 10


︸ ︷︷ ︸

A

=

 2 1 1
0 1 1
0 3 6


︸ ︷︷ ︸

M1A

Step 2. Eliminate entries in the second column below the diagonal, and record the operation in a
lower triangular matrix M2: 1

1
−3 1


︸ ︷︷ ︸

M2

 2 1 1
0 1 1
0 3 6


︸ ︷︷ ︸

M1A

=

 2 1 1
0 1 1
0 0 3


︸ ︷︷ ︸

M2M1A
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We now note that our upper triangular matrix is in fact given by M2M1A = U . In addition, we
make the following critical observations:
Observation 1. The inverse of the matrices M1 and M2 are obtained by simply negating their
off-diagonal entries:

M−1
1 =

 1
−2 1
−4 1

−1

=

 1
2 1
4 1


M−1

2 =

 1
1
−3 1

−1

=

 1
1
3 1

 .

Observation 2: The product M−1
1 M−1

2 is a lower triangular matrix, and the product is obtained
by simply “collecting” the off-diagonal entries:

M−1
1 M−1

2 =

 1
2 1
4 1

 1
1
3 1

 =

 1
2 1
4 3 1

 .

It follows that

A = (M−1
1 M−1

2 )(M2M1A) =

 1
2 1
4 3 1


︸ ︷︷ ︸

L

 2 1 1
1 1

3


︸ ︷︷ ︸

U

.

Hence, the off-diagonal entries of the matrix L simply records the factors by which the pivot row
was multiplied to eliminate the entries below the pivot. We have now obtained an LU factorization
of the matrix A such that A = LU .

6.6 LU factorization (without pivoting): n× n

The LU factorization for n× n matrix is summarized in the algorithm below.

Algorithm 4: LU factorization (without pivoting)

1 U = A, L = I
2 for i = 1, . . . , n− 1 do
3 for j = i+ 1, . . . , n do
4 lji = uji/uii
5 for k = i, . . . , n do
6 ujk = ujk − ljiuik
7 end

8 end

9 end
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Operation count. We now analyze the cost of LU factorization. The most inner loop of LU
factorization requires two FLOPs: one multiplication and one subtraction. The total FLOP count
for the LU factorization is hence

n−1∑
i=1

n∑
j=i+1

n∑
k=i

2 ≈ 2

3
n3.

The LU factorization scales as the third power of the size of the linear system. For instance, the
factorization of a 10 × 10 system requires ≈ 2

3 · 103 operations, whereas the factorization of a
100× 100 system requires ≈ 2

3 · 106 operations.
Solution of a linear system. Given an LU factorization of A such that A = LU , we can find

the solution to Ax = b as follow (as also noted in the beginning). We first solve

Lz = b

using forward substitution. We then solve

Ux = z

using backward substitution.

6.7 Summary

We summarize the key points of this lecture:

1. A lower triangular system can be solved using forward substitution. The operation count for
a n× n system is ≈ n2.

2. An upper triangular system can be solved using backward substitution. The operation count
for a n× n system is ≈ n2.

3. LU provides a factorization of an n × n matrix A into a lower triangular matrix L and an
upper triangular matrix U such that A = LU . The operation count for LU factorization is
≈ 2

3n
3.

Warning. We make one important note. The LU factorization presented in this lecture, while
appearing reasonable, is missing one key ingredient: pivoting. In the next lecture we will study
the conditioning of linear systems, the stability of LU factorization without pivoting, and the
LU factorization with pivoting. As we will see, the pivoting is crucial for the stability of LU
factorization.
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Lecture 7

Linear systems: conditioning and
stability

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

7.1 Introduction

In solving linear systems using MATLAB, you might have encountered the following message:

>> x = A\b;

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.000000e-16.

In this lecture, we will study the conditioning of linear systems which will shed light on the cause
of the above warning message. We will then study the stability of LU factorization, and make
modifications to the “vanilla” LU factorization introduced in the previous lecture to improve the
stability.

7.2 Scientific notation

In a typical (digital) computer, numbers are represented as floating-point numbers using a finite
number of bits. Before we provide a formal definition of floating-point arithmetic, we first relate
floating-point numbers to something we are familiar: scientific notation. Real numbers expressed
in scientific notation are of the form

x̃ = ±m× 10e,

where m is the mantissa, which is a real number in the range [1, 10), and e is the exponent, which
is an integer. (We treat “0” as a special case since it does not fit in the above form.) For instance,
+123.45 is expressed as +1.2345× 102. We make two observations:

1. The number of digits in the mantissa m controls the relative precision of the number.

2. The range of the exponent e controls the range of numbers that can be represented.
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We elaborate on the first observation: scientific notation controls the relative precision, not the
absolute precision. To this end, we consider a concrete case where we use four digits to represent
m. In this case, the sequence of distinct numbers expressed in scientific notation that begins with
0.1234 = 1.234× 10−1 are

1.234× 10−1, 1.235× 10−1, 1.236× 10−1, . . . ;

we have the absolute precision of 0.001×10−1 = 0.0001. On the other hand, the sequence of distinct
numbers expressed in scientific notation that begins with 123400 = 1.234× 105 are

1.234× 105, 1.235× 105, 1.236× 105, . . . ;

we have the absolute precision of 0.001× 105 = 100. Clearly, the absolute precision of the scientific
notation varies depending on the value of the exponent; however, the relative precision is preserved
regardless of the exponent. More precisely, for any real number x, which may have more than four
significant digits, there exists x̃ expressed using four-digit scientific notation such that

x̃ = x(1 + ε)

for some ε < 0.001.

7.3 Floating point arithmetic

We now formally introduce floating-point numbers. Floating-point numbers are of the form

x̃ = ±(m/βt)× βe,

where β ∈ Z>0 is the base, m ∈ Z is in the range [βt−1, βt − 1], t ∈ Z>0 is the precision, and e ∈ Z
is the exponent. The quantity ±(m/βt) is called the mantissa; note that m/βt ∈ [1/β, 1 − 1/βt].
We make a few observations:

1. The precision t determines the number of “significant figures” in the mantissa ±(m/βt), which
in turn controls the relative precision of floating-point numbers.

2. The range of the exponent e determines the range of numbers that can be represented.

We note that the scientific notation with four digits is a special case of floating-point number
representation with β = 10 and t = 4. (With the above convention the mantissa takes on a value in
[0.1, 1), which is shifted by a factor of 10 compared to the standard scientific notation considered
in Section 7.2.) The IEEE double-precision format uses β = 2, t = 53, and e = 11; for β = 2, there
are precisely βt−1 integers in the range of m (i.e., 2t − 2t−1 = 2t−1), and hence m can be stored in
t − 1 = 52 bits. Hence, the IEEE double-precision format uses 52 bits for m, 11 bits for e, and 1
bit for the sign to store a floating-point number in 64 bits.

Similar to a real number represented in scientific notation, floating-point arithmetic controls
the relative precision and not the absolute precision. More precisely, for any real number x, there
exists x̃ in the floating-point number system such that

x̃ = x(1 + ε)
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for some ε < εmachine, where εmachine is called the machine precision. The machine precision can be
equivalently defined as the smallest number such that

1 and 1 + εmachine

are distinct in the given floating-point arithmetic. For the IEEE double precision format, the
machine precision is εmachine ≈ 2−52 ≈ 10−16. Hence, while the two numbers

1 and 1.0001 = 1 + 10−4

are distinguishable, the numbers

1 and 1.00000000000000000001 = 1 + 10−20

are not distinguishable; these two numbers are identical in double-precision floating-point arith-
metic. This in turn means that any number expressed in a floating point representation in fact has
a relative error of an order εmachine.

The double-precision floating-point arithmetic provides sufficient (relative) precision for most
situations. However, poorly designed algorithm can be affected by rounding errors. In fact, being
stable and not affected by rounding errors is one of the fundamental criteria of a usable algorithm.

7.4 Condition number

We now introduce the concept of condition number which characterizes the stability of a linear
system. The condition number plays an important role in the characterization of algorithms that
“approximately” solve a linear system Ax = b. This “approximation” might arise because we
consider a solution method that is designed to solve the equation approximately (even in infinite-
precision arithmetic). The “approximation” may also arise because all computations performed
using floating point arithmetic is in the end an approximation to the exact arithmetic. In both
cases, we wish to analyze how a small perturbation to a linear system can affect the accuracy of
our solution.

Towards this end, given an original system Ax = b, we consider a perturbed system

A(x+ δx) = b+ δb.

Here, δb represents a small perturbation to the equation, and δx represents the associated pertur-
bation in the solution; we observe Aδx = δb since Ax = b. We wish to compare the relative size of
these two perturbations:

‖δx‖2
‖x‖2

vs
‖δb‖2
‖b‖2

.

We note that the ratio of these two quantities is bounded by

‖δx‖2/‖x‖2
‖δb‖2/‖b‖2

=
‖δx‖2
‖δb‖2

‖b‖2
‖x‖2

=
‖A−1δb‖2
‖δb‖2

‖Ax‖2
‖x‖2

≤ ‖A−1‖2‖A‖2. (7.1)

Hence, the ratio of the relative perturbation in the solution to the relative perturbation in the right
hand side is bounded by ‖A−1‖2‖A‖2. This number is called the condition number and is denoted
by κ(A):

κ(A) = ‖A−1‖2‖A‖2.
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Rearranging the expressions (7.1), we note that

‖δx‖2
‖x‖2

≤ κ(A)
‖δb‖2
‖b‖2

.

In words, the condition number bounds the relative perturbation in the solution by the relative
perturbation in the right hand side.

Before we investigate the importance of condition number in numerical methods, we now con-
sider a few other characterizations of the condition number. We recall ‖A−1‖2 = σmin(A−1)−1 and
‖A‖2 = σmax(A), where σmin and σmax denote the minimum and maximum singular value of the
matrix, respectively. Hence, the condition number can also be expressed as

κ(A) =
σmax(A)

σmin(A)
;

we observe that since σmax(A) ≥ σmin(A) by definition, κ(A) ≥ 1. For a SPD matrix, since the
eigenvalues and the singular values are the same, we may express the condition number as

κ(A) =
λmax(A)

λmin(A)
.

For an orthogonal matrix Q, the condition number is unity (κ(Q) = 1) because all of its singular
values are 1.

7.5 Ill-conditioned systems

The condition number plays an important role in the numerical solution of linear systems. To
illustrate its importance, let us consider a 2× 2 system(

1 + δ 1
1 1

)(
x1

x2

)
=

(
1
1

)
for some small nonzero number δ. (For a concrete illustration, consider for instance δ = 10−15.)
Because the matrix A is non-singular, the problem is formally well-posed and it has a unique
solution:

x =

(
0
1

)
.

Note that that both the solution and the right hand side are of O(1).
Now let us consider a very slightly perturbed problem:(

1 + δ 1
1 1

)(
x1

x2

)
=

(
1 + δ

1

)
≡ b̃;

the right hand side has been perturbed by O(δ). The solution to this problem is

x̃ =

(
1
0

)
.

We note that the even though the perturbation ‖b̃− b‖2 = ‖(δ, 0)T ‖2 is of order O(δ) — very small
— the solution perturbation ‖x̃−x‖2 = ‖(1,−1)‖2 is of order O(1). Hence, even a very small error
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in the data b (vs b̃), can result in a completely different solution x (vs x̃). Problems that exhibit
this sensitive behavior to data is said to be ill-conditioned.

The ill-conditioning of the system is reflected in the condition number. We can estimate the
condition number of the system by computing its eigenvalues:

κ(A) =
λmax(A)

λmin(A)
=

2 + δ +
√
δ2 + 4

2 + δ −
√
δ2 + 4

≈ 4

δ
for δ � 1.

A linear system with a large condition number is said to be ill-conditioned.
The condition number plays a particularly important role when the computation is carried out

using floating-point arithmetic. In the above example of the ill-conditioned 2× 2 system, the two
right hand sides

b =

(
1
1

)
and b̃ =

(
1 + δ

1

)
become indistinguishable in floating point arithmetic when δ < εmachine. However, we recall that a
small perturbation of δ is sufficient to yield two completely different solutions:

x =

(
0
1

)
and x̃ =

(
1
0

)
.

Hence, if the system is ill-conditioned, then even the very small error in floating point representation
can be amplified to yield completely different solutions. Hence, regardless of the algorithm used to
solve Ax = b, we cannot expect to obtain an accurate solution if the system x is ill-conditioned.

7.6 Stability of Gaussian elimination (without pivoting)

We have observed that, for ill-conditioned systems, we cannot expect to obtain an accurate solution
regardless of the algorithm used. However, it turns out that the pure form of Gaussian elimination
introduced in the previous lecture is unstable even if the system is well conditioned. In fact, the
algorithm may simply not work in some cases. Consider a matrix

A =

(
0 1
−1 1

)
.

This matrix is obviously non-singular and is well-conditioned; the condition number is approxi-
mately 2.6. However, we cannot apply our Gaussian elimination algorithm because the (1, 1) entry
is 0.

A more subtle problem arises for a matrix

B =

(
10−17 1
−1 1

)
.

This matrix is again non-singular and is well-conditioned; the condition number is again approxi-
mately 2.6. This time, we can apply our Gaussian elimination algorithm because the (1, 1) entry
is small but finite. The resulting LU decomposition is

B =

(
10−17 1
−1 1

)
=

(
1 0

−1017 1

)(
10−17 1

0 1 + 1017

)
.
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However, recall that the double-precision arithmetic provides εmachine ≈ 10−16. Hence, the number
1 + 1017 is represented in a computer by its closest floating point number, 1017. Thus, Gaussian
elimination performed on a computer yields a decomposition(

1 0
−1017 1

)(
10−17 1

0 1017

)
.

Unfortunately, the product of the L and U yields(
1 0

−1017 1

)(
10−17 1

0 1017

)
=

(
10−17 1
−1 0

)
6= B.

Even though the numbers are represented to O(10−16) relative accuracy, the pure form of LU
factorization has committed an O(1) error even if the system is well-conditioned. (Recall that the
condition number is ≈ 2.6 = O(1) for this matrix.) This is clearly undesirable.

7.7 Partial pivoting: motivational example

We can overcome the stability problem by introducing partial pivoting. The idea is very simple: in
the k-th step of Gaussian elimination, we swap rows such that the pivot — the (k, k) entry — is
the biggest entry (in magnitude).

For in stance, in the case of

B =

(
10−17 1
−1 1

)
,

we first compare the entries in the first column: 10−17 and −1. We note that the (2, 1) entry is
bigger than the (1, 1) entry in magnitude. We hence introduce a permutation matrix that swaps
the first and second rows,

P =

(
0 1
1 0

)
,

and apply the matrix to B to obtain

PB =

(
−1 1

10−17 1

)
.

We then eliminate the (2, 1) entry of the new matrix by subtracting −10−17 times the first row to
the second row: (

−1 1
10−17 1

)
=

(
1 0

−10−17 1

)(
−1 1
0 1 + 10−17

)
.

As before, 1 + 10−17 is represented in a computer as 1. But, this time, we note that(
1 0

−10−17 1

)(
−1 1
0 1

)
=

(
−1 1

10−17 1− 10−17

)
= PB +

(
0 0
0 10−17

)
.

We have just introduced not the LU decomposition of the original matrix B but rather a LU de-
composition the permuted matrix PB = LU . Unlike the LU decomposition (without pivoting)of B,
which produces an inaccurate decomposition (i.e. B 6= LU with O(1) error), the LU decomposition
of PB is very accurate (i.e. PB = LU up to machine precision). Hence, even though two matrices
B and PB are closely related, one produces an unstable LU decomposition (without pivoting) while
the other produces a stable decomposition.

75



7.8 LU factorization (with pivoting)

We now present the LU factorization (with pivoting) for the 3×3 matrix we have considered above,

A =

 2 1 1
4 3 3
8 7 10

 .

Step 1. Compare the magnitude of the entries in the first column. Since the third entry is the
largest, swap the first and third rows: 1

1
1


︸ ︷︷ ︸

P1

 2 1 1
4 3 3
8 7 10


︸ ︷︷ ︸

A

=

 8 7 10
4 3 3
2 1 1


︸ ︷︷ ︸

P1A

.

Step 1’. Eliminate the subdiagonal entries in the first column (as in the non-pivoting LU): 1
−1

2 1
−1

4 1


︸ ︷︷ ︸

M1

 8 7 10
4 3 3
2 1 1


︸ ︷︷ ︸

P1A

=

 8 7 10
0 −1

2 −2
0 −3

4 −3
2


︸ ︷︷ ︸

M1P1A

.

Step 2. Compare the magnitude of the entries in the second column. Since the third entry is the
largest, swap the second and third rows: 1

1
1


︸ ︷︷ ︸

P2

 8 7 10
0 −1

2 −2
0 −3

4 −3
2


︸ ︷︷ ︸

M1P1A

=

 8 7 10
0 −3

4 −3
2

0 −1
2 −2


︸ ︷︷ ︸

P2M1P1A

.

Step 2’. Eliminate the subdiagonal entries in the second column (as in the non-pivoting LU): 1
1
−2

3 1


︸ ︷︷ ︸

M2

 8 7 10
0 −3

4 −3
2

0 −1
2 −2


︸ ︷︷ ︸

P2M1P1A

=

 8 7 10
0 −3

4 −3
2

0 0 −1


︸ ︷︷ ︸

M2P2M1P1A

≡ U.

We observe that we have now created a decomposition M2P2M1P1A = U . We now re-write this
decomposition as

(M2)(P2M1P
−1
2 )(P2P1)A = U.

We then make the third crucial observation (in addition to the two we made in the context of LU
without pivoting):

P2M1P
−1
2 =

 1
1

1

 1
−1

2 1
−1

4 1

 1
1

1

 =

 1
−1

4 1
−1

2 0 1

 :
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the permuted matrix P2M1P
−1
2 retains the lower triangular structure, and in addition we obtain

P2M1P
−1
2 by simply swapping the subdiagonal entries of M1. In particular, because M2 and

P2M1P
−1
2 are both lower triangular, we can appeal to the two crucial observations we made earlier

in the context of LU without pivoting to obtain

(P2M1P
−1
2 )−1M−1

2 =

 1
−1

4 1
−1

2 0 1

−1 1
1
−2

3 1

−1

=

 1
1
4 1
1
2 0 1

 1
1
2
3 1


=

 1
1
4 1
1
2

2
3 1

 ≡ L,
which is a lower triangular matrix. We also note that

P2P1 =

 1
1

1

 1
1

1

 =

 1
1

1

 ≡ P,
which is a permutation matrix. It thus follows 1

1
1


︸ ︷︷ ︸

P

 2 1 1
4 3 3
8 7 10


︸ ︷︷ ︸

A

=

 1
1
4 1
1
2

2
3 1


︸ ︷︷ ︸

L

 8 7 10
−3

4 −3
2
−1


︸ ︷︷ ︸

U

.

This is the LU factorization of A with partial pivoting. Because the partial pivoting is used
universally in practice, this method is simply called LU facotrization. With partial pivoting, we
note that the L matrix has subdiagonal entries that are all less than or equal to zero.

The Gaussian elimination with partial pivoting for a general n× n matrix may be expressed as
follows:

Algorithm 5: LU factorization with partial pivoting

1 U = A, L = I, P = I
2 for i = 1, . . . , n− 1 do
3 Find q ≥ i that maximizes |uqk|
4 Exchange ui,i:n ↔ uq,i:n, li,1:i−1 ↔ lq,1:i−1, pi,: ↔ pq,:
5 for j = i+ 1, . . . , n do
6 lji = uji/uii
7 for k = i, . . . , n do
8 ujk = ujk − ljiuik
9 end

10 end

11 end
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This is the algorithm used to solve linear systems by essentially any numerical solution package.
One of the most popular numerical package that implements the algorithm is LAPACK, which in
fact is also used as the backbone to solve linear systems in MATLAB. (The actual implementation
often do not explicitly swap rows to perform partial pivoting, but achieve the same effect through
careful bookkeeping.)

Solution of linear system. Given an LU factorization such that PA = LU , we can find the
solution to Ax = b as follows. We first permute the entries of b to obtain Pb. We then solve

Lz = Pb

using forward substitution. We finally solve

Ux = z

using backward substitution.

7.9 SPD systems: Cholesky factorization

If the matrix A is symmetric positive definite (SPD), we may take advantage of the symmetry (and
also the positive definiteness) to construct a factorization of the form

A = RTR,

where R is upper triangular. The factorization is called the Cholesky factorization. Because the
algorithm takes advantage of the symmetry, the factorization can be computed in 1

3n
3 operations

(as opposed to 2
3n

3 for LU factorization). In addition, Cholesky factorization does not require
pivoting to achieve stability.

7.10 Summary

We summarize the key points of this lecture:

1. Real numbers are approximated using floating-point numbers in (digital) computers. The
IEEE double-precision format provides a relative precision of εmachine ≈ 10−16.

2. The condition number of a matrix A characterizes the sensitivity of the solution x of Ax = b
to the perturbations in the right hand side b.

3. If a matrix A is ill-conditioned, the solution x may be inaccurate independent of the algorithm
used to solve Ax = b.

4. Gaussian elimination without partial pivoting can be unstable. Even if the condition number
of the matrix is O(1), the algorithm can stall or produce a factorization with an error of O(1).

5. Pivoting eliminates stability issues associated with Gaussian elimination. The resulting fac-
torization is of the form PA = LU , where P is a permutation matrix.

6. If the matrix A is SPD, we can consider Cholesky factorization A = RTR, where R is an upper
triangular matrix. The operation count for Cholesky factorization is ≈ 1

3n
3, approximately

half of the LU factorization.
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7.11 Appendix. A review of vector and matrix norms

A norm ‖ · ‖ on a vector space Rn have the following properties: for all α ∈ R and w, v ∈ Rn,

1. ‖αw‖ = |α|‖w‖

2. ‖w + v‖ ≤ ‖w‖+ ‖v‖ (triangle inequality)

3. ‖w‖ ≥ 0, and ‖w‖ = 0 if and only if w = 0.

While any function that satisfies the above three properties is a norm on Rn, a family of norms
that is particularly useful for us is the p-norm. Given a vector v ∈ Rn, the p-norm of the vector is

‖v‖p ≡

(
n∑
i=1

|vi|p
)1/p

for p ≥ 1. Some of the common p-norms are

‖v‖1 ≡
n∑
i=1

|vi| (1-norm)

‖v‖2 ≡

(
n∑
i=1

|vi|2
)1/2

(2-norm)

‖v‖∞ ≡ max
i
|vi| (∞-norm).

We can readily verify p-norms satisfy the required properties of norms.
A matrix norm is a vector norm on Rm×n. One family of norms that is particularly relevant for

us is induced norm. Given A ∈ Rm×n and a vector norm ‖ · ‖, the induced norm associated with
‖ · ‖ is

‖A‖ ≡ max
x∈Rn
x 6=0

‖Ax‖
‖x‖

.

The induced norm associated with the p-norm is

‖A‖p ≡ max
x∈Rn
x 6=0

‖Ax‖p
‖x‖p

, p ≥ 1.
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Lecture 8

Least-squares problems

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

Disclaimer: significant fraction of the section on QR factorization was originally developed for 2.086
taught at MIT and is also found in Numerical methods for mechanical engineers by Masayuki Yano,
James Penn, and Anthony Patera.

8.1 Least-squares

We have so far considered non-singular n× n linear systems. These systems have unique solution
because the number of unknowns (i.e. the number of columns) is equal to the number of independent
equations (i.e. the number of rows). In this lecture we consider an overdetermined system, where
the number of (independent) equations is greater than the number of unknowns.

A concrete example of such a system is 1 0
0 1
1 1

( x1

x2

)
=

 2
4
0

 .

Here, in order to satisfy the first equation, 1 · x1 + 0 · x2 = 2, we need x1 = 2. Similarly, in order to
satisfy the second equation, 0 · x1 + 1 · x2 = 4, we need x2 = 4. However, with these choices of x1

and x2, the third equation is not satisfied: 1 · x1 + 1 · x2 6= 0. Hence the system is overdetermined,
and there is no x that satisfies the three equations.

More generally, a linear system is overdetermined if the number of independent equations is
greater than the number of unknowns. Specifically, a linear system Ax = b associated with the
m × n matrix A is overdetermined if the dimension of the image of A is greater than n; since
dim(img(A)) ≤ m, we must have m > n for dim(img(A)) > n. In words, we are considering
“tall-and-skinny” systems 

a11 · · · a1n

...
...

am1 · · · amn


 x1

...
xn

 =


b1

...

bm

 ,
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where m > n.
For an overdetermined system, we forgo finding x that satisfies Ax = b — since it does not

exist — and instead look for an x that “satisfies the equation as well as possible” in some sense.
Specifically, we first introduce the residual

r ≡ Ax− b,

which is an m vector. The residual measures the “misfit” between the left-hand side Ax and the
right-hand side b. We then seek x which minimizes the residual in some norm. We may consider
different norms — 1-norm, 2-norm,∞-norm, etc — but in this lecture we choose the 2-norm. Hence
our goal is to find n-vector x such that

‖r‖2 ≡ ‖Ax− b‖2

is minimized. We recall that the two norm of a vector is given by

‖r‖2 ≡

(
m∑
i=1

r2
i

)1/2

Assuming the columns of the matrix A are linearly independent, the solution to the least-squares
problem is unique.

8.2 Normal equation

The solution to the least-squares problem satisfies the normal equation,

ATAx = AT b.

This n× n linear system is non-singular and has a unique solution if the columns of A are linearly
independent.

In order to derive the normal equation, we first note that the square of the 2-norm of the residual
can be expressed as

r2(x) ≡ ‖Ax− b‖22 = (Ax− b)T (Ax− b) = xTATAx− bTAx− xTAT b− bT b
= xTATAx− 2xTAT b− bT b.

If the columns of A are linearly independent, then ATA is symmetric positive definite, and the
function r2(x) is convex. Hence, a unique minimum is obtained at x for which ∂r2

∂x = 0. An explicit
expression for the condition is

∂r2

∂x
= 2ATAx− 2AT b = 0,

or equivalently ATAx = AT b, which is the normal equation.
Let us count the number of operations associated with the formation and solution of the normal

equation. The computation of each entry of ATA requires a dot product of two m-vectors, which
requires 2m operations. Using the symmetry of ATA to compute the n(n + 1)/2 entries of ATA
hence requires ≈ mn2 operations. The formulation of AT b on the hand requires mn operations.
Hence the leading cost for forming the normal equation is mn2. In addition, the solution of the
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normal equation by Cholesky factorization (again taking advantage of the symmetry) requires
≈ n3/3 operations. Hence the total cost of solving the least-squares problem by normal equation
is mn2 + n3/3 operations.

Unforatunatley, solving the normal equation by the normal equation is not most stable. In
particular, the condition number of ATA is square of the condition number of A: κ(ATA) = κ(A)2.
We now introduce a more suitable method.

8.3 Reduced QR factorization

A standard approach to numerically solve least-squares problems is by (reduced) QR factorization.
QR factorization is a decomposition of a matrix A ∈ Rm×n into Q ∈ Rm×n and R ∈ Rn×n such
that

A = QR,

where the columns of the matrix Q ∈ Rm×n are orthonormal and the matrix R ∈ Rn×n is upper
triangular:  | |

a1 · · · an
| |


︸ ︷︷ ︸

A

=

 | |
q1 · · · qn
| |


︸ ︷︷ ︸

Q

 r11 . . . r1n

. . .
...
rnn


︸ ︷︷ ︸

R

.

Note that aj and qj denote the j-th column of A and Q, respectively. The fact columns of Q are
orthonormal implies that

QTQ = I (of size n× n).

However, because Q ∈ Rm×n for m > n, QQT 6= I unless m = n. We also note that the fact R is
an upper triangular matrix implies that the first j columns of Q must span the same space as the
first j columns of A.

Using the QR factorization, we can greatly simplify the normal equation ATAx = AT b. Sub-
stitution of QR factorization to the normal equation yields

ATAx = AT b ⇒ RTQTQRx = RTQT b ⇒ RTRx = RQT ⇒ Rx = QT b.

Here the second step follows from the fact that QTQ = I, and the last step follows from the fact
that the upper triangular matrix R is invertible as long as the its diagonal entries are all nonzero,
which will be the case for A with linearly independent columns.

8.4 Gram-Schmidt procedure

There are at least three classical methods to systematically find a QR factorization: the Gram-
Schmidt procedure, the Householder transformation, and Givens rotation. Here we briefly discuss
the Gram-Schmidt procedure. The idea behind the Gram-Schmidt procedure is to successively turn
the columns of A into orthonormal vectors. Recall that we want qTi q=δij (Kronecker-delta), and,
in order to get an upper triangular R, we also require that

span{a1, . . . , aj} = span{q1, . . . , qj}, ∀j = 1, . . . , n.
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The Gram-Schmidt procedure starts with a set which consists of a single vector, a1. We con-
struct an orthonormal set consisting of single vector q1 that spans the same space as {a1}. Trivially,
we can take

q1 =
1

‖a1‖
a1 .

Or, we can express a1 as
a1 = q1‖a1‖ ,

which is the product of a unit vector and an amplitude.
Now we consider a set which consists of the first two columns of A, {a1, a2}. Our objective is

to construct an orthonormal set {q1, q2} that spans the same space as {a1, a2}. In particular, we
will keep the q1 we have constructed in the first step unchanged, and choose q2 such that (i) it is
orthogonal to q1, and (ii) {q1, q2} spans the same space as {a1, a2}. To do this, we start with a2

and first remove the component in the direction of q1, i.e.

q̃2 = a2 − (qT
1 a2)q1 .

Here, we recall the fact that the inner product qT
1 a2 is the component of a2 in the direction of q1.

We readily confirm that q̃2 is orthogonal to q1, i.e.

qT
1 q̃2 = qT

1 (a2 − (qT
1 a2)q1) = qT

1 a2 − (qT
1 a2)qT

1 q1 = qT
1 a2 − (qT

1 a2) · 1 = 0 .

Finally, we normalize q̃2 to yield the unit length vector

q2 = q̃2/‖q̃2‖ .

With some rearrangement, we see that a2 can be expressed as

a2 = (qT
1 a2)q1 + q̃2 = (qT

1 a2)q1 + ‖q̃2‖q2 .

Using a matrix-vector product, we can express this as

a2 =
(
q1 q2

)( qT
1 a2

‖q̃2‖

)
.

Combining with the expression for a1, we have

(
a1 a2

)
=
(
q1 q2

)( ‖a1‖ qT
1 a2

‖q̃2‖

)
.

In two steps, we have factorized the first two columns of A into an m × 2 orthogonal matrix
(q1, q2) and a 2 × 2 upper triangular matrix. The Gram-Schmidt procedure consists of repeating
the procedure n times; let us show one more step for clarity.

In the third step, we consider a set which consists of the first three columns of A, {a1, a2, a3}.
Our objective it to construct an orthonormal set {q1, q2, q3}. Following the same recipe as the
second step, we keep q1 and q2 unchanged, and choose q3 such that (i) it is orthogonal to q1 and q2,
and (ii) {q1, q2, q3} spans the same space as {a1, a2, a3}. This time, we start from a3, and remove
the components of a3 in the direction of q1 and q2, i.e.

q̃3 = a3 − (qT
1 a3)q1 − (qT

2 a3)q2 .
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Again, we recall that qT
1 a3 and qT

2 a3 are the components of a3 in the direction of q1 and q2,
respectively. We can again confirm that q̃3 is orthogonal to q1

qT
1 q̃3 = qT

1 (a3 − (qT
1 a3)q1 − (qT

2 a3)q2) = qT
1 a3 − (qT

1 a3)��
�*1

qT
1 q1 − (qT

2 a3)��
�*0

qT
1 q2 = 0

and to q2

qT
2 q̃3 = qT

2 (a3 − (qT
1 a3)q1 − (qT

2 a3)q2) = qT
2 a3 − (qT

1 a3)��
�*0

qT
2 q1 − (qT

2 a3)��
�*1

qT
2 q2 = 0 .

We can express a3 as
a3 = (qT

1 a3)q1 + (qT
2 a3)q2 + ‖q̃3‖q3 .

Or, putting the first three columns together

(
a1 a2 a3

)
=
(
q1 q2 q3

) ‖a1‖ qT
1 a2 qT

1 a3

‖q̃2‖ qT
2 a3

‖q̃3‖

 .

We can see that repeating the procedure n times would result in the complete orthogonalization of
the columns of A.

8.5 “Pure” and modified Gram-Schmidt procedures

The “pure” form of the Gram-Schmidt procedure described above is given in an algorithmic form
as follows:

Algorithm 6: “pure” Gram-Schmidt procedure

1 for j = 1, . . . , n do
2 q̃j = aj
3 for k = 1, . . . , j − 1 do
4 rkj = qTk aj
5 q̃j = q̃j − rkjqk
6 end
7 rjj = ‖q̃j‖2
8 qj = (1/rjj)q̃j
9 end

It turns out that this pure form of the Gram-Schmidt procedure is numerically unstable; i.e., it
is susceptible to round off errors. Fortunately, the algorithm can be made stable with a minimal
change. Specifically, we replace the inner loop for the “pure” procedure

q̃j ← q̃j − (qTk aj)qk,

with the inner loop for the “modified” procedure

q̃j ← q̃j − (qTk q̃k)qk.
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A geometric interpretation for the “pure” procedure is that, in the k-th step, we compute the
component of the original vector aj that lies in the direction of qk and subtract it from q̃j ; this is
equivalent to simultaneously subtracting from aj the components of aj that lies in the directions
of q1, . . . , qj−1. A geometric interpretation for the modified procedure is that, in the k-th step, we
compute the component of the current vector q̃j that lies in the direction of qk and subtract it from
itself; in other words, we successively subtract, in j− 1 steps, from q̃j the component of q̃j that lies
in the direction of qk, k = 1, . . . , j − 1. When the computation is carried out in exact arithmetic,
the pure and modified Gram-Schmidt yield identical results; however, in floating-point arithmetic,
the modified procedure yields a smaller error than the pure procedure. The resulting algorithm,
the modified Gram-Schmidt procedure, is the following:

Algorithm 7: modified Gram-Schmidt procedure

1 for j = 1, . . . , n do
2 q̃j = aj
3 for k = 1, . . . , j − 1 do
4 rkj = qTk q̃j
5 q̃j = q̃j − rkjqk
6 end
7 rjj = ‖q̃j‖2
8 qj = (1/rjj)q̃j
9 end

As the modified algorithm results from a minimal change to the “pure” algorithm, we should always
use the modified Gram-Schmidt procedure for the better numerical stability.

8.6 Computational cost of the Gram-Schmidt procedure

Let us count the number of operations of the Gram-Schmidt procedure. At j-th step, there are
j− 1 components to be removed, each requiring of 4m operations. Thus, the total operation count
of the Gram-Schmidt procedure is

CGram-Schmidt ≈
n∑
j=1

(j − 1)4m ≈ 2mn2 .

To find the least-squares solution, we then solve Rx = QT b; the formation of the right hand
side QT b requires 2mn operations, and the solution of the upper triangular system requires n2

operations using backward substitution. Thus, the total cost for solving a least-squares problem by
QR factorization is 2mn2 + 2mn + n2 ≈ 2mn2. Note that the method based on Gram-Schmidt is
approximately twice as expensive as the method based on normal equation for m � n. However,
the superior numerical stability often warrants the additional cost.
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8.7 Full QR factorization

We introduced in Section 8.3 a reduced QR factorization, which yields A = QR where A ∈ Rm×n,
Q ∈ Rm×n consists of a set of orthonormal columns, and R ∈ Rn×n is upper triangular. Another
variant of QR factorization is a full QR factorization. A full QR factorization of A is given by

A = Q̃R̃,

where Q̃ ∈ Rm×m is an orthogonal matrix and R̃ ∈ Rm×n is still upper triangular:

A =



q11 . . . q1n q1,n+1 . . . q1,m
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
qm1 . . . qmn qm,n+1 . . . qm,m


︸ ︷︷ ︸

Q̃



r11 . . . r1n

0
. . .

...
...

. . . rnn
... 0
...

...
0 . . . 0


︸ ︷︷ ︸

R̃

.

We note that the Q̃ matrix associated with the full QR factorization is square (m × m) and
orthogonal; this is unlike the Q matrix associated with the reduced QR factorization which is
m× n. The R̃ matrix is rectangular (m× n) and its subdiagonal entries are all zero; this again is
unlike the R matrix associated with the reduced QR factorization which is n × n. Note that we
can easily identify a reduced QR factorization of A from a full QR factorization of A: we use the
first n columns of Q̃ forms Q, and the first n rows of R̃ forms R to form the reduced matrices.

The full QR factorization may be thought of as a “completion” of the reduced QR factorization
such that Img(Q̃) = Rm. In practice, the full QR factorization is computed using the Householder
reflections or Givens rotations. The coverage of these two algorithms is beyond the scope of this
lecture.

8.8 Summary

We summarize the key points of this lecture:

1. Given an overdetermined system, the least-squares solution is the solution that minimizes the
2-norm of the residual.

2. Given the columns of the matrix A is linearly independent, the least-squares solution exists
and is unique.

3. Given an m × n matrix, the normal equation is a n × n system whose solution is the least-
squares solution. The method allows simple by-hand calculation of least-squares solution;
however, the method provides limited numerical stability.

4. Given a matrix A ∈ Rm×n, a (reduced) QR factorization is a decomposition of the matrix
into an orthogonal matrix Q ∈ Rm×n and an upper triangular matrix R ∈ Rn×n.
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5. Given A = QR, the least squares solution is the solution to Rx = QT b.

6. Gram-Schmidt procedure is a systematic approach to find a QR factorization of a matrix
A ∈ Rm×n in approximately 2mn2 operations.

7. The “pure” Gram-Schmidt procedure can be numerically unstable; the modified Gram-
Schmidt procedure resolves the stability issue.

8. There exist two variants of QR factorization: reduced and full. The factors Q and R of a
reduced QR factorization are submatrices of the factors Q̃ and R̃ of a full QR factorization.
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Lecture 9

Regression: statistical inference

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

Disclaimer: significant fraction of this lecture was originally developed for 2.086 taught at MIT and
is also found in Numerical methods for mechanical engineers by Masayuki Yano, James Penn, and
Anthony Patera.

9.1 Motivation

Regression is often used in two different contexts.

1. Prediction. Suppose we are given a noisy dataset consisting of m data points (xi, Yi),
i = 1, . . . ,m. We then wish to predict the value of y for an arbitrary value of x.

2. Inference. Suppose we are given a parametrized model, but we do not know the value of
the parameter. Given a noisy dataset consisting of m data points (xi, Yi), i = 1, . . . ,m, we
wish to predict the value of the parameter that best describe the behavior.

Both the prediction and inference problems are ubiquitous in engineering and science. For instance,
climate modeling is a challenging inference and prediction problem that incorporates sophisticated
climate models and data (e.g. remote sensing). In this lecture we introduce fundamentals of regres-
sion.

9.2 Response model

We first propose a model for the relationship between the input x and output Y ; the particular
model we will consider is of form

Y = Ymodel(x;β) + ε(x),

where

1. x is the independent variable,

2. Y is the measured quantity, which in general is noisy.
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3. Ymodel is the predictive model with no noise. In linear regression, Ymodel is by definition a
linear function of the model parameter β.

4. ε is a noise, which is a random variable.

To simplify the presentation, we will first consider a simple two degrees-of-freedom model for Ymodel:

Ymodel(x;β) = β0 + β1x,

where β0 and β1 are the components of the model parameter β ∈ R2. We will later generalize this
assumption (still in the context of linear regression).

We now introduce the key assumption: our model is unbiased. That is, in the absence of noise
(ε = 0), our underlying input-output relationship can be perfectly described by

y(x) = Ymodel(x;βtrue)

for some true parameter βtrue. In other words, our model includes the true functional dependency
(but may include more generality than is actually needed).

We also introduce assumptions on the characteristics of the noise. These assumptions allow us
to make quantitative (statistical) claims about the quality of our regression.

1. Normality. We assume the noise is normally distributed with zero mean, i.e., ε(x) ∼
N (0, σ2(x)).

2. Homoscedasticity. We assume that the distribution of the noise ε, as characterized by σ2,
does not depend on x.

3. Independence. We assume that ε(x1) and ε(x2), x1 6= x2, are independent and hence
uncorrelated.

These assumptions imply that ε(x) = ε = N (0, σ2), where σ2 is the single parameter that charac-
terizes the noise for all instances of x. Figure 9.1 shows visually the regression process; note that
the Ymodel is an affine function of x and the noise is a normal distribution with a zero mean and a
fixed standard deviation.

We note that because

Y (x) = Ymodel(x;β) + ε = β0 + β1x+ ε

and ε ∼ N (0, σ2), the deterministic model Ymodel(x;β) simply shifts the mean of the normal
distribution. Thus, the measurement is a random variable with the distribution

Y (x) ∼ N (Ymodel(x;β), σ2) = N (β0 + β1x, σ
2).

9.3 Parameter estimation

Given a parametrized response model Ymodel(·;β) and m noisy datapoints

(xi, Yi) i = 1, . . . ,m,
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Figure 9.1: Illustration of the regression process for Ymodel(x;β) = β0 + β1x.

we wish to estimate the true parameter βtrue. As noted, we assume that our noisy measurements
satisfy

Yi = Ymodel(xi;β) + εi = β0 + β1xi + εi.

We will in fact estimate both the true parameter βtrue and the noise standard deviation σ from the
data.

One way to estimate βtrue is to consider the maximum likelihood estimator (MLE) — the most
likely value of the parameter given the measurements. We will denote the MLE by β̂. The MLE is
given by the least-squares fit:

β̂ = arg min
β∈R2

‖Xβ − Y ‖2,

where

X =


1 x1

1 x2
...

...
1 xm

 and Y =


Y1

Y2
...
Ym

 .

We recall that the least-squares solution may be found by solving the normal equation,

(XTX)β̂ = XTY,

or by QR factorization.

Once we estimate the unknown parameter βtrue by β̂, we may estimate the noise standard
deviation σ by σ̂ given by

σ̂ =

(
1

m− 2
‖Ŷ − Y ‖22

)1/2

=

(
1

m− 2
‖Xβ̂ − Y ‖22

)1/2

.

Note that ‖Xβ̂−Y ‖ is the root mean square of the residual, which is minimized in the least squares
formulation. The normalization factor 1/(m− 2) comes from the fact that there are m data points
and that our response model has n = 2 parameters.
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9.4 Confidence intervals: individual

We will consider two different sets of confidence intervals. The first is the confidence interval asso-
ciated with individual parameters: we will construct two confidence intervals I0 and I1 associated
with the parameters β0 and β1, respectively. The confidence interval Ij is an interval such that the
probability of the parameter βtrue

j taking on a value with in the interval is equal to the confidence
level γ: i.e.,

P (βtrue
0 ∈ I0) = γ

and separately
P (βtrue

1 ∈ I1) = γ.

To construct the confidence intervals, we first estimate the covariance of β̂ by

Σ̂ ≡ σ̂2(XTX)−1.

From our estimate of the covariance, we may construct the confidence interval for β0 as

I0 ≡
[
β̂0 − tγ,m−2

√
Σ̂11, β̂0 + tγ,m−2

√
Σ̂11

]
and the confidence interval for β1 as

I1 ≡
[
β̂1 − tγ,m−2

√
Σ̂22, β̂1 + tγ,m−2

√
Σ̂22

]
.

Here, the coefficient tγ,m−2 depends on the confidence level, γ, and the degrees of freedom, m− 2.
Specifically, these two-parameter coefficients satisfy∫ tγ,q

−tγ,q
fT,q(s)ds = γ,

where fT,q is the probability density function for the Student’s t-distribution with q degrees of
freedom.

In practice, it is convenient to relate tγ,q to the cumulative distribution function of the Student’s
t-distribution, FT,q. By the symmetry of the t-distribution, the relationship is given by

tγ,q = F−1
T,q

(
1

2
+
γ

2

)
.

Note that the inverse cumulative distribution function of the t distribution, F−1
T,q is readily available

in MATLAB as tinv. (The function is also available in many other statistical analysis libraries).
For convenience, we tabulate the coefficients for 95% confidence level for select values of degrees of
freedom in Table 9.1.

9.5 Confidence intervals: joint

The second type of confidence interval we consider is the joint confidence interval. We will consider
the interval I joint

0 and I joint
1 such that

P (βtrue
0 ∈ I joint

0 and βtrue
1 ∈ I joint

1 ) ≥ γ,
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(a) t-distribution

q tγ,q|γ=0.95

5 2.571
10 2.228
15 2.131
20 2.086
25 2.060
30 2.042
40 2.021
50 2.009
60 2.000
∞ 1.960

(b) F -distribution

sγ,p,q|γ=0.95

q p = 1 2 3 4 5 10 15 20

5 2.571 3.402 4.028 4.557 5.025 6.881 8.324 9.548
10 2.228 2.865 3.335 3.730 4.078 5.457 6.533 7.449
15 2.131 2.714 3.140 3.496 3.809 5.044 6.004 6.823
20 2.086 2.643 3.049 3.386 3.682 4.845 5.749 6.518
25 2.060 2.602 2.996 3.322 3.608 4.729 5.598 6.336
30 2.042 2.575 2.961 3.280 3.559 4.653 5.497 6.216
40 2.021 2.542 2.918 3.229 3.500 4.558 5.373 6.064
50 2.009 2.523 2.893 3.198 3.464 4.501 5.298 5.973
60 2.000 2.510 2.876 3.178 3.441 4.464 5.248 5.913
∞ 1.960 2.448 2.796 3.080 3.327 4.279 5.000 5.605

Table 9.1: The coefficient for computing the 95% confidence interval from Student’s t-distribution
and F -distribution.

where γ is the confidence level. The joint confidence intervals are given by

I joint
0 =

[
β̂0 − sγ,2,m−2

√
Σ̂11, β̂0 + sγ,2,m−2

√
Σ̂11

]
and

I joint
1 =

[
β̂1 − sγ,2,m−2

√
Σ̂11, β̂1 + sγ,2,m−2

√
Σ̂11

]
.

Note that the coefficient tγ,m−2 in the individual confidence interval is replaced by the coefficient
sγ,2,m−2 in the joint confidence interval.

Here, sγ,k,q is related to γ-quantile of the F -distribution, gγ,k,q by

sγ,k,q =
√
kgγ,k,q =

√
kF−1

F,k,q(γ),

where FF,k,q is the cumulative distribution function of the F -distribution. Again, the inverse
cumulative distribution function of the F -distribution is readily available in MATLAB.

9.6 Linear regression with a linear predictive model: example

We provide a concrete example of the regression process for

Y = β0 + β1x+ ε,

where x ∈ [0, 1], βtrue
0 = 0.4, βtrue

1 = 0.3, and σ = 0.1. The data used in this example is generated
synthetically using a pseudo-random number generator.

Given a data vector Y ∈ Rm, we first solve the 2×2 normal equation, XTXβ̂ = XTY , to obtain
our MLE for βtrue. Once we obtain β̂, we may evaluate our response model Ymodel(x; β̂) for any
value of x. An example of predictions provided by m = 10 and m = 100 are shown in Figure 9.2.
Note that the prediction using m = 100 points is noticeably more accurate than that for m = 10.
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Figure 9.2: Instances of linear regression using two different values of m. (Ymodel = 0.3 + 0.4x and
σ = 0.1.)

We can also build the 95% confidence interval for our estimates of βtrue. Figure 9.3 shows the
confidence intervals for β0 and β1 that results from 100 different realizations of data for two different
values of m. For m = 10, we observe that the confidence interval for β0 and β1 are both quite wide.
We observe that 96/100 and 95/100 of the confidence intervals for β0 and β1, respectively,include
the true value; we confirm that the 95% confidence intervals include the true value ∼ 95% of the
times as advertised.

For m = 100, we observe that the confidence intervals are tighter than the m = 10. The half-
width of the confidence interval in particular scales as ∼

√
m. We observe that 94/100 and 95/100

of the confidence intervals for β0 and β1, respectively, include the true value; we again confirm that
the 95% confidence intervals include the true value ∼ 95% of the times as advertised.

9.7 General linear regression

So far we have considered a simple response model of the form

Ymodel(x;β) = β0 + β1x.

We may instead consider a more general model of the form

Ymodel(x;β) = β0 +

n−1∑
j=1

βjhj(x),

where hj , j = 0, . . . , n − 1, are some basis functions and βj , j = 0, . . . , n − 1, are the regression
coefficients. As before, we assume that Ymodel is sufficiently rich such that there exists a parameter
βtrue ∈ Rn with which Ymodel(·;βtrue) perfectly describes the behavior of the noise-free model. We in
addition assume that the noise is normal, homoscedastic, and independent. Our goal is to estimate
the unknown parameter βtrue based on a noisy dataset

(xi, Yi), i = 1, . . . ,m,
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Figure 9.3: Confidence intervals for β0 and β1 for 100 realizations of data. (Ymodel = 0.3 + 0.4x and
σ = 0.1.)
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for m ≥ n. Note that even though we permit arbitrary basis functions hj , j = 1, . . . , n − 1, the
model Ymodel still depends linearly on the regression coefficients βj , j = 1, . . . , n. Hence this is still
a linear regression problem.

We as before estimate βtrue ∈ Rn by the maximum likelihood estimator β̂ ∈ Rn. The MLE is
given by the least-squares problem

β̂ = arg min
β∈Rn

‖Xβ − Y ‖2,

where

X =


1 h1(x1) · · · hn−1(x1)
1 h1(x2) · · · hn−1(x2)
...

...
...

1 h1(xm) · · · hn−1(xm)

 and Y =


Y1

Y2
...
Ym

 .

The problem maybe solved by the normal equation or by QR factorization.

We estimate the noise standard deviation σ by

σ̂ =

(
1

m− n
‖Xβ̂ − Y ‖22

)1/2

.

The normalization factor of 1/(m − n) comes from the fact that we have m observations and n
degrees of freedom. We then estimate the covariance of the parameter β by

Σ̂ = σ̂2(XTX)−1.

We may then construct the individual confidence intervals

Ij =

[
β̂j − tγ,m−n

√
Σ̂j+1,j+1, β̂j + tγ,m−n

√
Σ̂j+1,j+1

]
, j = 0, . . . , n− 1,

where tγ,m−n = F−1
T,m−n(1/2 + γ/2) is associated with the Student’s t-distribution. (Note that the

shifting of the covariance indices is due to the index of the parameter starting from 0.) Each of the
individual confidence intervals satisfies

P (βtrue
j ∈ Ij) = γ, j = 0, . . . , n− 1,

where γ is the confidence level.

We can also construct the joint confidence intervals

Ij =

[
β̂j − sγ,n,m−n

√
Σ̂j+1,j+1, β̂j + sγ,n,m−n

√
Σ̂j+1,j+1

]
, j = 0, . . . , n− 1,

where sγ,n,m−n =
√
nF−1

F,n,m−n(γ) is associate with the F -distribution. The joint confidence interval

satisfies

P (βtrue
0 ∈ I joint

0 and · · · βtrue
n−1 ∈ I

joint
n−1 ) ≥ γ.
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9.8 Summary

We summarize the key points of this lecture:

1. Given a parametrized predictive model and a set of noisy observations, we can estimate the
parameter of the model using linear regression.

2. The key assumptions required in the regression process are i) the model is unbiased and ii)
the noise is zero-mean normal, homoscedastic, and independent.

3. Under the above assumptions, the maximum-likelihood estimate of the parameter is found
by solving a least-squares problem.

4. Under the above assumptions, we can provide confidence intervals for the parameters of the
model.

5. The confidence interval scales as 1/
√
m, where m is the number of observations: the conver-

gence is rather slow.

6. Linear regression can be performed on predictive model whose output depends nonlinearly
on the independent variables as long as the model is linear in the parameters.
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Lecture 10

Nonlinear equations

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

10.1 Roots of scalar nonlinear equations

We first recall the definition of a root: given a function f : R→ R, x? is a root (or zero) of f if

f(x?) = 0.

Then, the goal of a root-finding problem is to find a root of the function.

10.2 Bisection method

Bisection method is a root-finding method based on the idea of bracketing — the idea of iteratively
refining an interval in which a root lies. The bisection method requires two initial guesses, a0 and
b0, such that the signs of f(a0) and f(b0) are different. If f is continuous, then the different signs of
f(a0) and f(b0) implies that there is a root in the interval [a0, b0]. The bisection method is based
on an iterative refinement of this interval that is guaranteed to contain a root: a single step of the
bisection method is the following:

1. set ci = (ai + bi)/2 and evaluate f(ci)

2. if sign(f(ci)) = sign(f(ai)), then set ai+1 = ci and bi+1 = bi;
otherwise, set ai+1 = ai and bi+1 = ci

In the second step, if sign(f(ci)) 6= sign(f(ai)), then sign(f(ci)) = sign(f(bi)) since f(ai) and f(bi)
have opposite signs. In addition, after the update (and hence in the next iteration), f(ai+1) and
f(bi+1) are again guaranteed to have opposite signs since the midpoint (ci) which replaces one the
endpoints (ai or bi) have the same sign as the endpoint. Figure 10.1(a) illustrates the bisection
method.

Termination criteria. Because the bisection method is an iterative algorithm, we must pro-
vide a termination criteria. There are two commonly used termination criteria. One is based on
the length of the interval:

|bi − ai| ≤ δxtol
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Figure 10.1: The illustration and error convergence of the bisection method.

for some prescribed tolerance δxtol. Note that this criterion guarantees that |x? − ai| ≤ δxtol and
|x? − bi| ≤ δxtol. The other is based on the function value at one of the approximations (say ai):

|f(ai)| ≤ δftol

for some prescribed tolerance δftol.

Convergence. In the bisection method, both of the errors |x?−ai| and |x?−bi| are guaranteed
to be smaller than the length of the interval |bi−ai|. In addition, by construction the interval [ai, bi]
is guaranteed to contain at least one root. Because of the length of the interval is halved in each
iteration, the length of the interval after the i-th iteration is

|bi − ai| = 1

2i
|b0 − a0|.

Hence, the error converges exponentially with the number of iterations, as shown in Figure 10.1(b).
As we will see shortly, the bisection method is one of few methods with a guaranteed convergence
property.

Advantages and disadvantages. Perhaps the biggest advantage of the bisection method is
that, for continuous functions, it is guaranteed to converge assuming the initial bracket [a0, b0] can
be found. Unfortunately, the convergence is not as some other methods, and the scheme does not
extend naturally to higher dimensions.

10.3 Newton’s method

Newton’s method, which is also known as the Newton-Raphson method, is another iterative pro-
cedure to find a root of a nonlinear function. Given a initial guess x0 for a root, Newton’s method
update the value according to

xi+1 = xi − f(xi)

f ′(xi)
,
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Figure 10.2: An illustration of Newton’s method applied to exp(1− x)− 1 starting from x0 = 0.

where f ′(xi) is the derivative of f evaluated at xi.

Derivation. The i-th step of Newton’s method is motivated by a linear approximation of the
nonlinear function about the current state xi. To see this, we first note by the Taylor expansion

f(x) ≈ f(xi) + f ′(xi)(x− xi) +O(|x− xi|2).

We then neglect the O(|x− xi|2) and set xi+1 to be the root of the linear approximation:

0 = f(xi) + f ′(xi)(xi+1 − xi).

Assuming f ′(xi) 6= 0, we can readily solve for xi+1 to obtain

xi+1 = xi − f(xi)

f ′(xi)
,

which is precisely a single step of Newton’s method. Figure 10.2 illustrates Newton’s method as a
method that sequentially solves linearized problems.

Termination criteria. There are a few different types of termination criteria commonly used
in Newton’s method. One approach is to compute the size of the update taken in a single step and
to terminate if the update is small:

|xi+1 − xi| ≤ δxtol

for some prescribed tolerance δxtol. Another approach is to ensure that the function value is suffi-
ciently close to zero:

|f(xi)| ≤ δftol,

for some prescribed tolerance δftol.

Computational requirement. A single step of Newton’s method requires the evaluation of
f(xi) and f ′(xi). Note that we must have means of evaluating both the function and the derivative
to use Newton’s method.

Convergence. The following theorem summarizes the convergence of Newton’s method:
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Theorem 10.1. Suppose the function f : Rn → Rn is twice differentiable on I ≡ [x? − r, x? + r]
and there exist constants α and β such that

1. |f ′(x)| ≥ α, ∀x ∈ I

2. |f ′′(x)| ≤ β, ∀x ∈ I

3. r ≤ α
β .

If xi ∈ I, then Newton update xi+1 satisfies

|x? − xi+1| ≤ β

2α
|x? − xi|2 ≤ 1

2
|x? − xi|.

Proof. We first note that

0 = f(x?) = f(xi) + f ′(xi)(x? − xi) +
1

2
f ′′(ξi)(x? − xi)2

for some ξi ∈ [xi, x?] (if xi < x?, or [x?, xi] if x? < xi). We now add “0” to the equation and
rearrange the expression

0 = f(xi) + f ′(xi)(x? − xi) +
1

2
f ′′(ξi)(x? − xi)2 − (f(xi) + f ′(xi)(xi+1 − xi)︸ ︷︷ ︸

=0 : Newton’s update step

)

= f ′(xi)(x? − xi+1) +
1

2
f ′′(ξi)(x? − xi)2.

Assuming f ′(xi) 6= 0, it follows

x? − xi+1 = −1

2

f ′′(ξi)

f ′(xi)
(x? − xi)2.

We now take the absolute value of the equation and invoke assumptions 1 and 2 to obtain

|x? − xi+1| ≤ β

2α
|x? − xi|2;

This proves the first inequality. In addition, for xi ∈ I ≡ [x?− r, x? + r] ≡ [x?−α/β, x? +α/β], we
note that

|x? − xi| ≤ r =
α

β
.

It thus follows that

|x? − xi+1| ≤ 1

2
|x? − xi|,

which is the second inequality.

We now provide an interpretation of the inequalities. First, the “outer” inequality,

|x? − xi+1| ≤ 1

2
|x? − xi|,

states that, if xi is in the interval I, then the error decreases by a factor of at least 2. Hence, once
xi is in the interval I, Newton’s method is guaranteed to converge.
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Figure 10.3: Convergence of Newton’s method for favorable and unfavorable cases.

Second, the “inner” inequality,

|x? − xi+1| ≤ β

2α
|x? − xi|2,

states that, under favorable conditions, Newton’s method converge quadratically. Quadratic con-
vergence is a very rapid convergence: for instance if the first two digits are correct in the i-th step
of Newton, then the first four digits will be correct in the next step, and the first eight digits will
be correct in the following step. In words, the number of correct digits doubles every iteration.
Figure 10.3(a) shows the convergence of Newton’s method for the function f(x) = exp(1 − x) − 1
starting from x0 = 0. We observe that Newton’s method converge very rapidly, reducing the error
from O(10−3) to O(10−6) to O(10−12) in the last three steps.

On the other hand, if any of the three assumptions in the theorem is violated, then Newton’s
method might converge slowly (i.e. not quadratically) or might not converge to a root at all.
Figure 10.3(b) shows the convergence behavior for the function f(x) = (x− 1)3, which violates the
first condition as f ′(x? = 1) = 0. We observe that Newton’s method converge rather slowly, and in
fact the convergence is slower than that observed for the bisection method.

In general, the convergence of Newton’s method is highly dependent on the initial guess x0.
Figure 10.4 shows the convergence (or diverge) of Newton’s method for f(x) = arctan(x). Newton’s
method converges for the initial guess of x0 = 0.5 and x0 = 1.3, but it diverges for the initial guess
of x0 = 5.0. (Note however that the conditions in the theorem are sufficient conditions and not
necessary conditions; Newton’s method may still converge rapidly even if the conditions are not
met.)

10.4 Secant method: a quasi-Newton method

One limitation of Newton’s method is that it requires the evaluation of the derivative f ′(xi) in each
step. The evaluation of the derivative may be expensive, or an expression for the derivative simply
may not be available. In these cases, we may consider a quasi-Newton method, which does not
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Figure 10.4: Convergence of Newton’s method to the root x? = 0 of f(x) = arctan(x) using three
different initial values.

require the evaluation of the derivative. An example of quasi-Newton method for scalar equations
is the secant method. Given initial guesses x−1 and x0, a single step of secant method is given by

xi+1 = xi − xi − xi−1

f(xi)− f(xi−1)
f(xi).

Note that, unlike Newton’s method, the initialization of the secant method requires two guesses.
Derivation. The secant method is obtained from Newton’s method by replacing f ′(xi) with

its approximation. Specifically, we approximate the derivative by a finite difference,

f ′(xi) ≈ f(xi)− f(xi−1)

xi − xi−1
.

The substitution of the derivative approximation to Newton’s method yields the secant method.
Computational requirement. Unlike Newton’s method, the secant method only requires the

evaluation of the function value f(xi) in the i-th step. (We assume the value of f(xi−1) is stored
from the previous step.) The fact that the method does not require the evaluation of the derivative
f ′(xi) is a significant computational advantage.

Convergence. Because the secant method uses an approximate derivative based on a finite
difference as opposed to the exact derivative, it does not provide quadratic convergence. The
instead converges as

|x? − xi+1| ≤ C|x? − xi|k for k = (1 +
√

5)/2 ≈ 1.618.

(We here omit the proof for brevity.) Note that the convergence is still superlinear. Figure 10.5(a)
shows the convergence behavior of the secant method applied to exp(1− x)− 1

10.5 System of nonlinear equations: Newton’s method

Given a vector-valued nonlinear function f : Rn → Rn, we wish consider a root finding problem:
find x ∈ Rn such that

f(x) = 0.
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Figure 10.5: Convergence of the secant method for favorable and unfavorable cases.

Note that here the right-hand side is a zero vector in Rn. More explicitly (and visually), the system
of nonlinear equations we wish to solve is

f1(x)
f2(x)

...
fn(x)

 = 0,

where fi(x) is the i-th component of the vector-valued function f(x) evaluated at x.

Before we introduce Newton’s method for multivariate functions, we introduce the Jacobian
matrix, ∇f(x) ∈ Rn×n, associated with the function f : Rn → Rn. We recall that the (k, l) entry
of the Jacobian ∇f(x) is

(∇f(x))kl =
∂fk
∂xl

(x),

which is the partial derivative of the k-th component of f : Rn → Rn with respect to the l-th
component of the input. More explicitly (and visually), the Jacobian matrix is given by

∇f ≡


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 ,

which is a n× n matrix.

We can now generalize Newton’s method that we considered for scalar equations to vector-
valued functions in a straightforward manner. Given a initial guess x0 ∈ Rn, Newton’s method
update the vector according to

xi+1 = xi − (∇f(xi))−1f(xi),
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where ∇f(xi) ∈ Rn×n is the Jacobian matrix of f evaluated at xi. More explicitly (and visually),
the update is given by

xi+1
1

xi+1
2
...

xi+1
n

 =


xi1
xi2
...
xin

−


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


−1

xi


f1(xi)
f2(xi)

...
fn(xi)

 ,

where the subscript xi on the Jacobian matrix indicates the matrix is evaluated at x = xi. Note
that we do not explicitly form the inverse of the Jacobian matrix, but rather solve the linear system
∇f(xi)δx = f(xi) to compute the action of ∇f(xi)−1 on f(xi).

Derivation. The i-th step of Newton’s method is again based on a linear approximation of the
nonlinear function about xi. To see this, we first note by the Taylor expansion

f(x) ≈ f(xi) +∇f(xi)(x− xi) +O(‖x− xi‖2).

We then neglect the O(‖x− xi‖2) term and set xi+1 to be the root of the linear approximation:

f(xi) +∇f(xi)(xi+1 − xi) = 0;

assuming ∇f(xi) is non-singular, the xi+1 is given by

xi+1 = xi − (∇f(xi))−1f(xi),

which is precisely a single step of Newton’s method.
Convergence criteria. As in the case of scalar equations, one simple test to check for the

convergence of the Newton’s method is to monitor the size of the update. Specifically, we may
consider the solution “converged” if the 2-norm of the update is smaller than some user specified
tolerance: ‖xi+1 − xi‖2 ≤ δxtol. Alternatively, we may also assess the convergence based on the

2-norm of function value, ‖f(xi+1)‖2 ≤ δftol.
Procedure. We now identify the steps required for Newton’s method for vector-valued func-

tions:

0. Make an initial guess x0 ∈ Rn. Set i = 0.

1. Evaluate the function and Jacobian:

f(xi) ∈ Rn and ∇f(xi) ∈ Rn×n.

2. Solve a linear system for δxi ≡ xi+1 − xi:

∇f(xi)δxi = −f(xi).

3. Update the solution
xi+1 = xi + δxi.

4. Check for convergence. If ‖δxi‖2 ≤ δxtol then terminate; otherwise set i ← i + 1 and go back
to Step 1.
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Computational cost. The multi-dimensional version of Newton’s method requires the evalu-
ation of function value f(xi) ∈ Rn and the Jacobian ∇f(xi) ∈ Rn×n in each step. This implies that
we must have a means of evaluating the Jacobian and compute all of its n2 entries. In addition, to
compute the state update, we must solve a n× n linear system

(∇f(xi))δxi = −f(xi);

we can solve the system using, for instance, Gaussian elimination, which requires ≈ 2
3n

3 operations
(for a dense linear system).

10.6 Quasi-Newton method for system of nonlinear equations

We have so far introduced the secant method as an example of quasi-Newton method for scalar
equations. There also exists a number of quasi-Newton methods for a system of nonlinear equations.
These multi-dimensional quasi-Newton methods approximate the Jacobian ∇f(xi) ∈ Rn×n using
a sequence of function vectors f(xi), f(xi−1), . . . . One popular method is the Broyden-Fletcher-
Goldfarb—Shanno (BFGS) algorithm. However, the coverage of these quasi-Newton methods is
beyond the scope of this lecture.

10.7 Summary

We summarize the key points of this lecture:

1. Bisection method is a root-finding method that is based on iteratively refining a bracket in
which a root lies.

2. Bisection method is guaranteed to converge for continuous functions, but does not extend
naturally to higher dimensions.

3. Newton’s method is a root-finding method that uses both the function value and gradient in
each step.

4. Depending on the function and the initial guess, Newton’s method may converge quadratically,
converge linearly, or diverge.

5. Secant method is an example of quasi-Newton method, in which the gradient used in a Newton
step is replaced by a finite-difference derivative.

6. Newton’s method readily extends to higher dimensions; the generalization relies on the Jaco-
bian of the vector-valued function.

7. Newton’s method in higher dimension can be computationally expensive, as it requires the
evaluation of a n× n Jacobian matrix and the solution of the associated n× n linear system.
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Lecture 11

Optimization: (very) brief overview

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

11.1 Introduction

Optimization problems are ubiquitous in engineering and science. One example in aerospace en-
gineering is aerodynamic shape optimization: here, we wish to optimize the shape of the aircraft
such that we can minimize the drag at a given lift subject to structural constraints.

Mathematically, a general optimization problem can be stated as the following:

min
x∈Rn

g(x)

subject to c1(x) ≤ 0

c2(x) = 0.

We identify different components of the statement:

x ∈ Rn: design variable

g : Rn → R: objective function which we wish to minimize

c1 : Rn → Rp: inequality constraints

c2 : Rn → Rq: equality constraints .

In words, we wish to find a n-vector of the design variable which minimizes the objective function
subject to p inequality constraints and q equality constraints.

We now make a few remarks. By convention, optimization problems are expressed as a mini-
mization problem; if we wish to maximize some objective, we can then minimize the negative of
the objective. In addition, the inequality constraints are expressed as upper bound constraints;
if we wish to impose a lower bound constraint, we can then impose an upper bound constraint
on the negative of the constraint function. Furthermore, we may remove the equality constraints
without loss of generality; we could express any equality constraint as two inequality constraints,
one bounding the function from the above and the other bounding the function from the below.
Finally, mathematical optimization is often also called mathematical programming. (Note this is
unrelated to “programming” in the sense of “coding.”)
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11.2 Newton’s method for unconstrained optimization

In this brief overview to mathematical optimization, we consider arguably the simplest class of
optimization problems: we look for

1. local minimum

2. of smooth functions

3. without a constraint.

We recall from single-variable calculus for smooth functions that any local minimum must satisfy
two conditions: the first derivative of the function must be zero; the second derivative of the
function must be positive. For a smooth function of multiple variables, sufficient (but not necessary)
conditions for x? ∈ Rn to be a local minimum are the following:

1. The gradient of the function vanishes:

∇g(x?) = 0,

or, more explicitly, 
∂g
∂x1
...
∂g
∂xn


∣∣∣∣∣∣∣
x?

= 0.

2. The Hessian of the function is symmetric positive definite (SPD):

∇2g(x?) is SPD,

where the Hessian may be expressed as

∇2g(x) =


∂2g
∂x21

∂2g
∂x1∂x2

. . . ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x22

. . . ∂2g
∂x2∂xn

...
...

. . .
...

∂2g
∂xn∂x1

∂2g
∂xn∂x2

. . . ∂2g
∂x2n

 .

We observe that the first condition is equivalent to seeking the root of a vector-valued function,
∇g : Rn → Rn. Hence, we can solve the problem using Newton’s method for system of nonlinear
equations. (Here, ∇g plays the role of f : Rn → Rn in the previous chapter.) We can then check if
the Hessian is SPD at the stationary point to assess if the point is a local minimum.

Proof. We now show that the above two conditions are sufficient condition for x? ∈ Rn to be a
local minimum. Towards this end, we consider the Taylor expansion of g : Rn → R about x? ∈ Rn
and make two observations:

g(x) = g(x?) + (x− x?)T∇g(x?)︸ ︷︷ ︸
= 0 by the first condition

+
1

2
(x− x?)T∇2g(x?)(x− x?)︸ ︷︷ ︸
> 0 by the second condition

+O(‖x− x?‖32).
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It follows that g(x) > g(x?) for ‖x− x?‖2 sufficiently small. Hence x? is a local minimum of g.
Derivation of Newton’s method. To derive Newton’s method to seek the stationary point

x? ∈ Rn such that ∇g(x?) = 0, we first note that

g(x) = g(xi) + (x− xi)T∇g(xi) +
1

2
(x− xi)T∇2g(xi)(x− xi) +O(‖x− xi‖3).

We now take the gradient of the expression to obtain

∇g(x) = ∇g(xi) +∇2g(xi)(x− xi) +O(‖x− xi‖2).

As before, we now neglect the second (and higher) order contributions and choose the point xi+1 ∈
Rn such that the xi+1 sets the linearized approximation of ∇g(x) equal to zero:

0 = ∇g(xi) +∇2g(xi)(xi+1 − xi).

More explicitly, we may express the iterate xi+1 as

xi+1 = xi − [∇2g(xi)]−1∇g(xi).

(Note: even though we write the update step here in terms of the inverse of the Hessian, ∇2g(xi), we
note that in practice the inverse is never explicitly computed; we instead solve the linear system for
the update δxi ≡ xi+1−xi as described below.) This update process is repeated until a convergence
criterion is met. Typical convergence criteria used are ‖xi+1−xi‖2 ≤ δxtol and/or ‖∇g(xi)‖2 ≤ δ∇gtol .

Classification of a stationary point. For smooth functions, we can classify a stationary
point (i.e. x? such that ∇g(x?) = 0) based on the eigenvalues of the Hessian ∇2g(x?) ∈ Rn×n as
follows:

• All eigenvalues are (strictly) positive; i.e. ∇2g(x?) is SPD. The stationary point is a local
minimum.

• At least one eigenvalue is (strictly) negative eigenvalue. The stationary point is not a local
minimum, as there is at least one decent direction.

• All eigenvalues are non-negative and at least one of them is zero. The test is inconclusive;
the point may or may not be a local minimum.

11.3 Computational procedure

We summarize the computational procedure:

0. Make an initial guess x0 ∈ Rn. Set i = 0.

1. Evaluate the gradient and Hessian:

∇g(xi) ∈ Rn and ∇2g(xi) ∈ Rn×n.

2. Compute the update δxi ≡ xi+1 − xi by solving a linear system

∇2g(xi)δxi = −∇g(xi).
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3. Update the solution
xi+1 = xi + δxi.

4. Check for convergence to a stationary point. If ‖δxi‖2 ≤ δtol then terminate; otherwise go
back to Step 1.

5. Classify the stationary point. Evaluate the eigenvalues of the Hessian and determine if the
stationary point is a local minimum. If the point is not a local minimum, go back to Step 0
and make a different initial guess.

Computational cost. As in the Newton’s method for vector-valued functions, the two com-
putationally expensive steps to find a stationary point are i) the evaluation of the gradient and the
Hessian in Step 1 and ii) the solution of the linear system in Step 2. In addition, in the context
of optimization, the solution of the eigenproblem required to classify the stationary point is also
computationally expensive.

11.4 Summary

We summarize the key points of this lecture:

1. There are many different classes of optimization problems. In this lecture we considered
Newton’s method to find a local minimum of smooth functions without any constraints.

2. A stationary point — a point x? ∈ Rn such that g(x?) = 0 — can be obtained by using
Newton’s method.

3. In some cases, the Hessian at the stationary point, ∇2g(x?), informs whether the point is a
local minimum; however, the test may be inclusive.
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Lecture 12

Numerical differentiation

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

12.1 Motivation

We have considered in earlier lectures numerical approximation of functions and integrals by in-
terpolation and quadrature, respectively. In this lecture we consider numerical approximation of
derivatives by finite difference formulas. Specifically, given function values (xi, f(xi)) evaluated at
a finite set of points, we wish to estimate the derivative at one of those points. The finite difference
techniques we introduce in this lecture play a key role in the development of numerical methods
for ODEs and PDEs.

12.2 First derivative: forward difference

We first consider an approximation of

f ′i ≡ f ′(xi) ≡
∂f

∂x

∣∣∣∣
x∈xi

by
(xi, fi) and (xi+1, fi+1).

(For notational convenience, we denote f(xi) by fi and f ′(xi) by f ′i .) The forward difference
approximation of the first derivative is given by

f ′(xi) ≈
fi+1 − fi

∆x
,

where ∆x ≡ xi+1 − xi. As the name implies, the derivative is approximated by function evaluated
at points greater than or equal to xi.

Error analysis. We may readily analyze the truncation error associated with the approxima-
tion by Taylor series. Towards this end, we note that a Taylor series expansion of fi+1 is given
by

fi+1 = fi + f ′i∆x+
1

2
f ′′(ξ)∆x2
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for some ξ ∈ [xi, xi+1]. The truncation error is hence bounded by

ε ≡ |f ′i −
fi+1 − fi

∆x
| = |f ′i −

1

∆x

(
fi + f ′i∆x+

1

2
f ′′(ξ)∆x2 − fi

)
| ≤ 1

2
max

s∈[xi,xi+1]
|f ′′(s)|∆x.

The inequality follows from |f ′′(ξ)| ≤ maxs∈[xi,xi+1] |f ′′(s)| for any ξ ∈ [xi, xi+1]. We note that the
truncation error is bounded by

ε ≤ C∆x,

and hence the approximation is first-order accurate; i.e., the error is bounded by a constant times
∆x1.

Cost analysis. The cost associated with a given finite difference formula is characterizes in
terms of its stencil — a set of points involved in the formula. Because the forward difference
formula uses the function values at xi and xi+1, the formula is said to have a two-point stencil.

12.3 First derivatives: backward difference and higher-order ap-
proximations

There are many other ways to approximate the first derivative. We here introduce several alterna-
tives.

Backward difference. The backward difference formula approximates f ′i based on the function
values at xi and xi−1 (as opposed to at xi+1 for the forward difference). The backward difference
formula is

f ′(xi) ≈
fi − fi−1

∆x
.

The backward difference formula also has a two-point stencil; however the evaluation points are
different.

We may readily analyze the truncation error following the same procedure as before. We first
note that by a Taylor series expansion

fi−1 = fi − f ′i∆x+
1

2
f ′′(ξ)∆x

for some ξ ∈ [xi−1, xi]. We then note that

ε = f ′i −
fi − fi−1

∆x
≤ 1

2
max

s∈[xi−1,xi]
|f ′′(s)|∆x.

The backward difference formula is first order accurate.
Central difference. The central difference formula approximates f ′i based on the function

values at xi−1 and xi+1. The formula is given by

f ′i ≈
fi+1 − fi−1

2∆x
.

Note that the formula uses a three-point stencil.
In order to analyze the truncation error, we consider Taylor series expansions for fi+1 and fi−1:

fi+1 = fi + f ′i∆x+
1

2
f ′′i ∆x2 +

1

6
f ′′′(ξ1)∆x3

fi−1 = fi − f ′i∆x+
1

2
f ′′i ∆x2 +

1

6
f ′′′(ξ2)∆x3
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for some ξ1 ∈ [xi, xi+1] and ξ2 ∈ [xi−1, xi]. We then note that

ε ≡ |f ′i −
fi+1 − fi−1

2∆x
| = 1

12
(f ′′′(ξ1)∆x2 + f ′′′(ξ2)∆x2) ≤ 1

6
max

s∈[xi−1,xi+1]
|f ′′′(s)|∆x2.

The truncation error is bounded by ε ≤ C∆x2; the central difference formula is second-order
accurate.

Second-order forward difference. The second-order forward difference formula approxi-
mates f ′i based on the function values at xi, xi+1, and xi+2. The formula is given by

f ′i ≈
−fi+2 + 4fi+1 − 3fi

2∆x
.

Using Taylor series, we may readily show that the truncation error is bounded by

|f ′i −
−fi+2 + 4fi+1 − 3fi

2∆x
| ≤ max

s∈[xi,xi+2]
f ′′′(s)∆x2.

The formula has a three-point stencil. As the name suggests, the formula is second-order accurate.
Second order backward difference. The second-order backward difference formula approx-

imates f ′i based on the function values at xi, xi−1, and xi−2. The formula is given by

f ′i ≈
3fi − 4fi−1 + fi−2

2∆x
.

The formula has a three-point stencil and is second-order accurate.
Fourth order central difference. The fourth-order central difference formula approximates

f ′i based on the function values at xi−2, xi−1, xi+1, and xi+2. The formula is given by

f ′i ≈
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12∆x
.

The formula has a five-point stencil and is fourth-order accurate.

12.4 Second derivatives

We have so far considered the approximation of the first derivative. We may also approximate the
second (or higher) derivative using finite difference formulas. For instance, the second order central
difference formula approximates f ′′i ≡ f ′′(xi) by

f ′′i ≈
fi+1 − 2fi + fi−1

∆x2
.

Note that the denominator scales with ∆x2 for the second derivative (as opposed to ∆x for the
first derivative); perhaps this is not too surprising if we consider the definition of the derivative
and the limit.

We may analyze the truncation error using the same approach as those used to analyze the first
derivative formulas. We express fi+1 and fi−1 using Taylor series expansions:

fi+1 = fi + f ′i∆x+
1

2
f ′′i ∆x2 +

1

6
f ′′′i ∆x3 +

1

24
f (4)(ξ1)∆x4

fi−1 = fi − f ′i∆x+
1

2
f ′′i ∆x2 − 1

6
f ′′′i ∆x3 +

1

24
f (4)(ξ2)∆x4
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for some ξ1 ∈ [xi, xi+1] and ξ2 ∈ [xi−1, xi]. We then note that

fi+1 − fi−1 = 2fi + f ′′i ∆x2 +
1

24
[f (4)(ξ1) + f (4)(ξ2)]∆x4;

note in particular that the odd-order terms cancel due to the symmetry. We finally note

|f ′′i −
fi+1 − 2fi + fi−1

∆x2
| = 1

24
[f (4)(ξ1) + f (4)(ξ2)]∆x2 ≤ 1

12
max

s∈[xi−1,xi+1]
|f (4)(s)|∆x2.

Note that the second-order central difference formula is second-order accurate.

12.5 Taylor tables

We can derive a finite difference formula of an arbitrary-order accuracy for an arbitrary-order
derivative in a systematic manner using Taylor tables. To illustrate the idea, we consider the
approximation of the second-order accurate approximation of the first derivative using the function
values at fi−1, fi, and fi+1. We hence consider an approximation of the form

f ′i ≈
1

∆x
(afi−1 + bfi + cfi+1);

our goal is to find appropriate coefficients a, b, and c. We approach the problem as follows: we first
rearrange our approximation problem as

f ′i∆x ≈ afi−1 + bfi + cfi+1;

we then consider the Taylor series expansions of fi−1, fi, and fi+1 about xi; we finally match as
many coefficients of fi, f

′
i , f
′′
i , . . . appearing in the left hand side and the right hand side. We may

compactly record coefficients in a tabular form.

fi f ′i∆x f ′′i ∆x2 f ′′′i ∆x3 · · · multiplier

fi−1 1 −1 1/2 −1/6 · · · a
fi 1 0 0 0 · · · b
fi+1 1 1 1/2 1/6 · · · c

f ′i∆x 0 1 0 0 · · ·

We then require that sum of each column yields the coefficient of the desired quantity (in our case
the first derivative). This can be expressed as a system of equations

1 · a+ 1 · b+ 1 · c = 0 (1st column of Taylor table)

−1 · a+ 0 · b+ 1 · c = 1 (2nd column of Taylor table)

1

2
· a+ 0 · b+

1

2
· c = 0 (3rd column of Taylor table)

or, equivalently, in a matrix form as 1 1 1
−1 0 1
1/2 0 1/2

 a
b
c

 =

 0
1
0

 .
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The solution is a = −1/2, b = 0, and c = 1/2. The resulting approximation of f ′i is

f ′i ≈
1

∆x
(−1

2
fi−1 +

1

2
fi+1) =

fi+1 − fi−1

2∆x
.

This of course is the central difference formula for the first derivative, which is second-order accurate.
We may also readily evaluate the truncation error using the Taylor table. Because we chose the

coefficients a, b, and c to match the first three columns of the Taylor table, the leading truncation
error associated with our finite difference formula is the fourth column. Specifically,

ε = |f ′i −
1

∆x
(afi−1 + bfi + cfi+1)| = 1

∆x
|f ′i∆x− [afi−1 + bfi + cfi+1]|

=
1

∆x
| −
(
−1

2

)(
−1

6

)
f ′′′(ξ1)∆x3 +

(
1

2

)(
1

6

)
f ′′′(ξ2)∆x3|

≤ 1

6
max

s∈[xi−1,xi+1]
|f ′′′(s)|∆x2;

note that this is consistent with our earlier analysis.
In general, we may construct the k-th order accurate approximation of m-th derivative using a

m+ k-point stencil. For instance, the second order approximation of the first derivative requires a
three-point stencil (i.e. central difference). Hence we may construct a Taylor table with m+k rows
and m+ k columns (or m+ k+ 1 columns if we wish to analyze the truncation error), and identify
the appropriate coefficients by solving a (m + k) × (m + k) linear system. However, the formula
might achieve a higher order accuracy due to systematic cancellation of a higher order term, as
we observed for the second-order central difference formula which yields the second order accurate
approximation of second derivative using a three-point stencil.

Remark on accuracy and cost. In general, higher-order accurate formulas are desired
because they provide faster convergence. However, higher-order accurate formulas also have wider
stencils than lower-order formulas. Wider stencils arise because we must match more coefficients
of Taylor series to achieve higher-order accuracy. Hence, we must balance the accuracy and cost in
choosing an appropriate formula. In addition, we must consider the smoothness of the function f ,
because a higher-order accuracy cannot be achieved if the underlying function is irregular. (Note
that our truncation error analysis based on Taylor series does not apply for irregular functions.)
This consideration for accuracy, cost, and smoothness is similar to what we have already observed
in the context of interpolation and integration.

12.6 Summary

We summarize the key points of this lecture:

1. A finite difference formula approximates the (first or higher) derivative of a function evaluated
at xi using a finite set of function evaluations near xi.

2. The accuracy of a given finite difference formula is characterized by its order of accuracy,
which can be analyzed using Taylor series. A finite difference formula is said to be p-th order
accurate if the truncation error is bounded by C∆xp.

3. The cost of a given finite difference formula is characterized by its stencil. A formula that
involves n distinct points is said to have a n-point stencil.
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4. If the function evaluation points are all greater than or equal to xi, it is a forward difference
formula. If the function evaluation points are all less than or equal to xi, then it is a backward
difference formula. If the stencil is symmetric, then it is a centered difference formula.

5. A finite difference formula of an arbitrary-order accuracy for an arbitrary-order derivative
can be systematically constructed using a Taylor table.
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Lecture 13

Initial value problems: Euler methods

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

13.1 Motivation

The objective of this lecture is twofold. The first objective is to introduce two methods to numer-
ically approximate the solution of initial value problems (IVPs): the backward Euler method and
the forward Euler method. The second objective is to introduce various concepts associated with
numerical approximations of IVPs, which are used throughout our discussion of IVPs.

13.2 Model problem

Throughout this lecture (and the next lecture), we consider a model IVP of the form

du

dt
= f(u, t) for 0 < t ≤ tf ,

u(t = 0) = u0,

where f : R × R → R is the function that characterized the ODE, and u0 ∈ R is some initial
condition. We assume that f is continuous in the second arguments. In addition, we assume f is
Lipschitz continuous in the first argument: there exists a constant L such that

|f(w, t)− f(v, t)| ≤ L|w − v|, ∀t ∈ (0, tf ],

where L is the Lipschitz constant. We recall that if f is continuously differentiable then

L = max
w,t

∣∣∣∣∂f(w, t)

∂w

∣∣∣∣ .
Under these assumptions, the IVP has a unique solution over some interval. (This follows from the
Picard-Lindelöf theorem; we here omit technical discussions.)
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13.3 Backward Euler method

In order to solve an IVP numerically, we first discretize the domain (0, tf ] into J segments. The
discrete time points are given by

tj = j∆t, j = 0, 1, . . . , J ≡ tf/∆t,

where ∆t = tf/J is the time step, which we assume to be constant.

The backward Euler method is obtained by approximating the time derivative by the (first-order)
backward difference formula:

dũ

dt
(tj) ≈ ũj − ũj−1

∆t
,

were ũj = ũ(tj) is the approximation to u(tj). The substitution of the backward difference formula
to our model IVP yields

ũj − ũj−1

∆t
= f(ũj , tj), j = 1, . . . , J,

ũ0 = u0.

or, equivalently,

ũj = ũj−1 + ∆tf(uj , tj), j = 1, . . . , J,

ũ0 = u0.

This is an example of a difference equation (i.e. a recurrence relation) which arises from discretiza-
tion of a differential equation.

We hope that our approximation ũj , j = 1, . . . , tf/J , converges to the true solution u(tj) as
∆t→ 0 (or equivalently as J →∞). In order to ensure convergence, the difference equation must be
consistent with respect to the IVP. We now analyze the consistency of the backward Euler method.
(We will soon see that consistency is necessary, but not sufficient, condition for convergence.)

13.4 Consistency

Consistency ensures that the difference equation approximates the same process as the underlying
differential equation in the limit of ∆t → 0. In order to formally define the notion of consistency,
we first introduce the local truncation error (LTE). In the context of numerical solution of IVPs,
the truncation errors τ j , j = 1, . . . , J , are obtained by the substitution of the true solution u into
the difference equation. For instance for the backward Euler method,

τ j ≡ u(tj)− u(tj−1)−∆tf(u(tj), tj), j = 1, . . . , J.

The truncation error is a measure of the extent to which the exact solution does not satisfy the
difference equation. We are particularly interested in the largest truncation error,

‖τ‖∞ = max
j=1,...,J

|τ j |.
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A scheme is consistent with the ODE if the truncation error decays faster than the time step ∆t:
i.e.,

‖τ‖∞
∆t

→ 0 as ∆t→ 0.

The difference equation for a consistent scheme approaches the differential equation as ∆t→ 0.
Warning. The local truncation error is sometimes defined as τ̂ j ≡ τ j/∆t. If this definition of

the local truncation error is used, then consistency requires that τ̂ j → 0 as ∆t → 0. In this note
we however use the convention for LTE τ j (and not τ̂ j) defined above.

As an example, we analyze the truncation error of the backward Euler method and demonstrate
the method is consistent. First, we recall by Taylor expansion

u(tj−1) = u(tj)− u′(tj)∆t+
1

2
u′′(ξj)∆t2,

for some ξj ∈ [tj−1, tj ], j = 1, . . . , J . We then note that

|τ j | ≡ |u(tj)− u(tj−1)−∆tf(u(tj), tj)| = |
(
u′(tj)∆t+

1

2
u′′(ξj)∆t2

)
−∆tf(u(tj), tj)|

= |∆t (u′(tj)−∆tf(u(tj), tj))︸ ︷︷ ︸
=0 by ODE

−1

2
u′′(ξj)∆t2| = | − 1

2
u′′(ξj)∆t2| ≤ 1

2
max

s∈[tj−1,tj ]
|u′′(s)|∆t2.

Hence the maximum truncation error is bounded by

‖τ‖∞ ≤
1

2
max
s∈[0,tf ]

|u′′(s)|∆t2;

the local truncation error is second order accurate. We in addition note that

lim
∆t→0

‖τ‖∞
∆t

≤ lim
∆t→0

1

2
max
s∈[0,tf ]

|u′′(s)|∆t = 0;

hence the backward Euler method is consistent.

13.5 Convergence

A scheme is convergent if the solution to the difference equation approaches the solution of the IVP
as ∆t→ 0 for all values of t. Formally, this means that

ũj ≡ ũ(tj)→ u(tj) for any fixed tj as ∆t→ 0.

Note that fixed time tj means that the time index j must go to infinity as ∆t→ 0 since tj = j∆t.
We now prove that the backward Euler scheme is convergent. Towards this end, we first subtract

the two equations

u(tj)− u(tj−1)−∆tf(uj , tj) = τ j ,

ũj − ũj−1 −∆tf(ũj , tj) = 0,

to obtain the equation for the error, ej ≡ u(tj)− ũj ,

ej − ej−1 −∆t[f(uj , tj)− f(ũj , tj)] = τ j .
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We now rearrange the equation as

ej −∆t[f(uj , tj)− f(ũj , tj)] = ej−1 + τ j .

We then take the absolute value of both sides and invoke triangle inequality:

|ej | −∆t|f(uj , tj)− f(ũj , tj)| ≤ |ej−1|+ |τ j |.

We then appeal to the Lipschitz continuity of the function f(·, tj) to obtain

|ej | −∆tL|ej | ≤ |ej−1|+ |τ j |.

Assuming ∆t < 1/L such that 1−∆tL > 0, we obtain

|ej | ≤ (1−∆tL)−1(|ej−1|+ |τ j |), j = 1, . . . , J,

e0 = 0.

We observe the recurrence relationship

|e0| ≤ 0,

|e1| ≤ (1−∆tL)−1|τ1|,
|e2| ≤ (1−∆tL)−1((1−∆tL)−1|τ1|+ |τ2|),

...

|ej | ≤
j∑

k=1

(1−∆tL)−(j−k+1)|τk|.

We now note ‖τ‖∞ ≡ maxJk=1 |τ j | to simply the bound to

|ej | ≤
j∑

k=1

(1−∆tL)−(j−k+1)‖τ‖∞ =

j∑
k=1

(1−∆tL)−k‖τ‖∞.

We now appeal to geometric series to evaluate the sum:

|ej | ≤ (1−∆tL)−j − 1

∆tL
‖τ‖∞.

We next appeal to (1−∆tL)−1 ≤ 1 + 2∆tL ≤ exp(2∆tL) for ∆tL ≤ 1/2 to obtain

|ej | ≤ exp(2j∆tL)− 1

∆tL
‖τ‖∞ =

exp(2tjL)− 1

L

‖τ‖∞
∆t

.

We finally recall that ‖τ‖∞/∆t ≤ 1
2 maxs∈[0,tf ] |u′′(s)|∆t to obtain

|ej | ≤ exp(2tjL)− 1

2L
max
s∈[0,tf ]

|u′′(s)|∆t.

We make two observations:

119



0 0.2 0.4 0.6 0.8 1
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

"t=0.5
"t=0.25
"t=0.125
"t=0.0625
exact

Figure 13.1: The backward Euler method applied to du
dt = −u with the initial condition of u0 = 1.

1. convergence: |ej | → 0 as ∆t→ 0 for any tj and hence the scheme is convergent;

2. order of accuracy: |ej | ≤ C∆t and hence the scheme is first order accurate.

We see that the proof of convergence for even an arguably simple backward Euler scheme is still
quite involved. Fortunately, there is a theorem — Dahlquist equivalence theorem — which shows
that consistency and zero stability (which we discuss in the following lecture) are sufficient condition
for any multistep scheme (which includes backward Euler) to be convergent. We will introduce this
theorem in the context of more general multistep schemes in the next chapter.

Example. We solve the IVP,

du

dt
= −u for t ∈ (0, 1],

u(t = 0) = 1,

using the backward Euler method and a few different time steps. The result of the computation
is shown in Figure 13.1. We observe that the backward Euler approximation improves as the time
step decreases. The error at the final time for the time steps of ∆t = 1/2, 1/4, 1/8, and 1/16
are |u(tf ) − ũ(tf )| = 0.077, 0.042, 0.022, and 0.011, respectively. The error decreases by a factor
of 2 when we decrease the time step by a factor of 21 = 2; this is the expected behavior for the
first-order accurate method.

13.6 Forward Euler method

We now introduce the forward Euler scheme. The forward Euler scheme is based on the (first-order)
forward difference formula for the time derivative:

du

dt
(tj) ≈ ũj+1 − ũj

∆t
.
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The application of the scheme to our model equation yields the following difference equation:

ũj+1 − ũj

∆t
= f(ũj , tj), j = 0, . . . , J − 1,

ũ0 = u0.

We may shift the indices and rearrange the equations to obtain an equivalent difference equation:

ũj = ũj−1 + ∆tf(ũj−1, tj−1), j = 1, . . . , J,

ũ0 = u0.

Note that, unlike the backward Euler scheme, the right hand side of the forward Euler scheme does
not contain a term with a time index j.

We may readily show that the forward Euler scheme is consistent. To see this we again substitute
the exact solution to the difference equation and analyze the truncation error:

|τ j | ≡ |u(tj)− u(tj−1)−∆tf(u(tj−1), tj−1)|

= |u(tj−1) + u′(tj−1)∆t+
1

2
u′′(ξj)∆t2 − u(tj−1)−∆tu′(tj−1)|

≤ 1

2
max

s∈[tj−1,tj ]
|u′′(s)|∆t2.

It thus follows

‖τ‖∞ ≤
1

2
max
s∈[0,tf ]

|u′′(s)|∆t2.

Since ‖τ‖∞/∆t→ 0 as ∆t→ 0, the scheme is consistent.
We can also show that the forward Euler method is convergent. More specifically, the error at

time tj is bounded by

|ej | ≤ exp(tjL)− 1

2L
max
s∈[0,tf ]

|u′′(s)|∆t.

As ∆t→ 0, |ej | → 0 for any tj ; the forward Euler method is convergent. The expression also shows
that the scheme is first order accurate.

Example. We solve an IVP, du
dt = −u and u0 = 1, using the forward Euler method and a

few different time steps. The result of the computation is shown in Figure 13.2. As expected, the
forward Euler approximation improves as the time step decreases. The error at the final time for
the time steps of ∆t = 1/2, 1/4, 1/8, and 1/16 are |u(tf )− ũ(tf )| = 0.118, 0.052, 0.024, and 0.012,
respectively. The error decreases by a factor of 2 when we decrease the time step by a factor of
21 = 2; this is the expected behavior for the first-order accurate method. For a given time step,
the error associated with the forward Euler method is comparable to that for the backward Euler
method.

13.7 Absolute stability

We have seen that both backward Euler and forward Euler methods are convergent. Hence, as
∆t → 0, both methods produce the exact solution to the IVP: ũ(tj) → u(tj). However, the
convergence does not inform us the behavior of the scheme for a finite ∆t.
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Figure 13.2: The forward Euler method applied to du
dt = −u with the initial condition of u0 = 1.

One of the important properties of a scheme that characterizes its finite-time-step behavior is
the absolute stability. In order to study absolute stability, we consider a homogeneous IVP,

du

dt
= λu,

u(t = 0) = 1,

where λ ∈ C. (We take λ ∈ C instead of in R; we will see the importance of this generalization in
the context of the solution of systems of equations.) Note that the solution to this IVP is

u(t) = exp(λt).

The solution grows with time for <(λ) > 0; the solution decays with time for <(λ) < 0; the solution
is purely oscillatory if λ is purely imaginary.

A scheme is said to be absolutely stable for a given value of λ∆t if the solution ũj , j = 1, . . . , J ,
to the associated difference equation satisfies

|ũj | ≤ |ũj−1|, j = 1, . . . , J.

Alternatively, we can introduce the amplification factor,

γ ≡ |ũj |
|ũj−1|

,

and define absolute stability as γ ≤ 1 for all j = 1, . . . , J .
We now analyze the absolute stability of the backward Euler method. Towards this end, we

first obtain the difference equation for the homogeneous equation,

ũj = ũj−1 + λ∆tũj , j = 1, . . . , J,

and uj=0 = 1. The difference equation may be rearranged as

(1− λ∆t)ũj = ũj−1.
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Figure 13.3: The backward Euler method applied to du
dt = −10u with the initial condition of u0 = 1.

The scheme is absolutely stable in unshaded region; the scheme is unstable in the shaeded region.
The marks on the absolute stability diagrams are associated with the values of λ∆t for the time
steps used in the approximation.

It follows that

|ũj | = 1

|1− λ∆t|
|ũj−1|.

Hence the scheme is absolutely stable for any λ∆t such that |1 − λ∆t| ≥ 1. In particular, given
<(λ) ≤ 0 for which the exact solution decays with time, the scheme is absolutely stable for all ∆t.
For a given λ, a scheme that is stable for all ∆t is said to be unconditionally stable (for that λ); the
backward Euler scheme is unconditionally stable for all <(λ) ≤ 0. A scheme that is unconditionally
stable for all λ such that <(λ) ≤ 0 is called A-stable; the backward Euler scheme is A-stable.

The absolute stability of a given scheme is often summarized in a absolute stability diagram. The
absolute stability diagram for the backward Euler scheme is shown in Figure 13.3(b); the scheme
is stable in the unshaded region and is unstable in the shaded region. We here also superimpose to
the diagram λ∆t(= −10∆t) associated with several different time steps by x; note that all x falls in
the stable region of the stability diagram. As a result, all approximations shown in Figure 13.3(a)
exhibit a stable behavior.

We can also analyze the absolute stability of the forward Euler method. We again first obtain
the difference equation for the homogeneous equation,

ũj = ũj−1 + λ∆tũj−1, j = 1, . . . , J,

and uj=0 = 1. Taking the absolute value of both sides, this time we obtain

|ũj | = |1 + λ∆t||ũj |.

We observe that the scheme is absolutely stable for any λ∆t such that |1 + λ∆t| ≤ 1. Note that,
for a real λ < 0, the scheme is absolutely stable for ∆t ≤ tcr = 2/|λ|. Because of this time-step
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Figure 13.4: The forward Euler method applied to du
dt = −10u with the initial condition of u0 = 1.

The scheme is absolutely stable in unshaded region; the scheme is unstable in the shaeded region.
The marks on the absolute stability diagrams are associated with the values of λ∆t for the time
steps used in the approximation.

restriction, the scheme is said to be conditionally stable (for λ < 0). Because the scheme is not
unconditionally stable for all λ such that <(λ) ≤ 0, the forward difference scheme is not A-stable.

Figure 13.4(b) shows the absolute stability diagram for the forward Euler method. We here
also superimpose the λ∆t(= −10∆t) associated with several different time steps. Note that the
forward Euler method is stable only for λ∆t such that |1 + λ∆t| < 1. Specifically, for the time
steps considered, the scheme is unstable for ∆t = 0.25 since |1 + λ∆t| = |1 − 10 · 0.25| = 1.5 > 1.
In the unstable case, we see in Figure 13.4(a) that the approximation grows exponentially in time,
even though the exact solution decays exponentially in time. Consequently, with a conditionally
stable scheme, we cannot take a time step greater than ∆tcr even when we do not need to find a
very well-resolved solution; the largest ∆t we can take is not governed by the accuracy requirement
but rather by the stability consideration.

13.8 Implementation of the forward and backward Euler methods

We recall that the difference equation (or the recurrence relation) for the forward Euler method is
given by

ũj = ũj−1 + ∆tf(ũj−1, tj−1), j = 1, . . . , J.

Given the state ũj−1, we simply evaluate the right hand side of the equation to compute ũj . This
simple update is possible because the right hand side of the difference equation does not contain the
unknown ũj ; a scheme which does not have ũj in the right hand side — or equivalently a scheme
which does not require the evaluation of f(·, ·) at ũj and tj — is called an explicit method. The
explicit methods are very easy to advance in time.

We also recall that the difference equation for the backward Euler method is given by

ũj = ũj−1 + ∆tf(ũj , tj), j = 1, . . . , J.
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Note that, unlike in the forward Euler method, the backward Euler method requires the evaluation
of the function f at ũj , which in fact is the unknown we with to evaluate. A scheme which requires
the evaluation of f(ũj , tj) is called an implicit method. When a scheme is implicit, we cannot
simply evaluate the right hand side of the equation to advance in time.

For an implicit scheme, in order to compute the state ũj given ũj−1, we must solve a nonlinear
equation

ũj = ũj−1 + ∆tf(ũj , tj),

where the unknown is ũj . More explicitly, we may express the residual of the nonlinear equation
as

r(ũj) ≡ ũj − uj−1 −∆tf(ũj , tj),

and find the root of the function r : R → R. We may for example use Newton’s method to solve
the nonlinear equation. Note that the Jacobian of the residual equation is

dr

du

∣∣∣∣
ũj

= 1−∆t
∂f

∂u

∣∣∣∣
(ũj ,tj)

.

Hence, an efficient implementation of an implicit method often requires not only f , which defines
the IVP, but also the derivative of f with respect to the state u.

In general, a single step of implicit method is computationally more expensive than a single step
of an explicit method; the former requires a solution to the nonlinear equation involving f , whereas
the latter only requires a simple evaluation of f . However, in general, implicit methods exhibit
larger regions of absolute stability than explicit methods. Hence, implicit methods often allow us
to take a larger time step without a stability limitation. The favorable stability characteristics of
implicit methods play a crucial for time integration of stiff equations as we will see in a later lecture.

13.9 Summary

We summarize the key points of this lecture:

1. Discretization of an initial value problem (IVP) governed by an ODE yields a difference
equation.

2. Local truncation error (LTE) of a given scheme at a given time step j, denoted by τ j , is the
remainder that results from the substitution of the exact solution to the difference equation.
The order of LTE can be analyzed using Taylor series.

3. A scheme is said to be consistent if ‖τ‖∞/∆t→ 0 as ∆t→ 0.

4. A scheme is said to be convergent if ũj → u(tj) for any fixed tj as ∆t → 0. Convergence
analysis is complicated because the error at time step j depends on not only the truncation
error τ j but also all previous errors.

5. A scheme is said to be absolutely stable for a given λ∆t ∈ C if the solution amplitude decays
with time for an IVP, du/dt = λu and u(t = 0) = 1. Absolute stability characterizes the
stability of the scheme for a finite ∆t.

6. A scheme is said to be A-stable if it is absolutely stable for all λ∆t in the left-hand plane.
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7. A scheme is said to be conditionally stable (for λ < 0) if it is absolutely stable for only a
finite range of ∆t. A scheme that is absolutely stable for any ∆t is said to be unconditionally
stable.

8. Implicit schemes require the evaluation of f(·, ·) at ũj ; explicit schemes require evaluation
of f(·, ·) at only previous time steps (for which the approximation is already known). For
a general nonlinear f , implicit schemes require the solution of a nonlinear equation at each
time step.

9. The backward Euler method is first-order accurate, implicit, and A-stable.

10. The forward Euler method is first-order accurate, explicit, and conditionally stable for any
<(λ) < 0.
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Lecture 14

Initial value problems: multistep
schemes

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

14.1 Multistep schemes

A K-step linear multistep method for the initial value problem, du
dt = f(u, t), is defined by the

difference equation
K∑
k=0

αkũ
j−k = ∆t

K∑
k=0

βkf(ũj−k, tj−k).

A particular set of coefficients αk, k = 0, . . . ,K, and βk, k = 0, . . . ,K, determines a unique
multistep scheme. It is customary to set α0 = 1 to fix the scaling of the coefficients. A mutlistep
scheme is said to be implicit when β0 6= 0, as the term involving ũj appears on the right hand side;
a scheme is said to be explicit when β0 = 0.

14.2 Local truncation error and consistency

We recall that the local truncation error (LTE) is the residual we obtain upon the substitution of
the exact solution to the difference equation. For multistep schemes, the local truncation error is
given by

τ j ≡
K∑
k=0

αku(tj−k)−∆t

K∑
k=0

βkf(u(tj−k), tj−k).

We recall that a scheme is consistent if

lim
∆t→0

‖τ‖∞
∆t

= 0,

where ‖τ‖∞ ≡ maxj |τ j |.
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14.3 Zero-stability

For the backward and forward Euler methods, we proved the convergence through a careful direct
analysis. The analysis was quite involved even for the Euler methods, which are arguably the
simplest multistep methods. In this lecture we introduce an alternative way to prove convergence
that relies on the Dahlquist equivalence theorem. The theorem requires two ingredients: the first
is the consistency, which we have already introduced; the second is the zero stability, which we
introduce now.

The zero stability associated with the case of λ∆t = 0. A multistep scheme is said to be zero
stable if the solution to the difference equation,

K∑
k=0

αkũ
j−k = 0, j = 1, . . . , J,

is bounded for all possible initial conditions. We may exploit the structure of the difference equation
to obtain an equivalent condition known as the root condition. Specifically, we consider the roots
of a degree-K polynomial,

p(x) ≡
K∑
k=0

αkx
K−k.

Let us denotes the K roots of the polynomial p by zk, k = 1, . . . ,K. We then consider two cases:

1. if all roots are distinct, then the multistep scheme is zero stable if the magnitude of each root
is less than or equal to unity (i.e. |zk| ≤ 1, ∀k);

2. if there is a repeated root, then the multistep scheme is zero stable if the magnitude of each
repeated root is (strictly) less than unity (i.e. |zk| < 1, ∀k).

We provide a sketch which shows the equivalence of the definition of zero stability and the root
condition for the case with distinct roots. First, suppose ũj = ζj for some number ζ, where the
superscript j on ζj indicates the power (unlike the superscript on ũj , which is the time index). We
plug the solution into the difference equation for ∆t = 0 to obtain

K∑
k=0

αkζ
j−k = 0.

We divide through by ζj−K to obtain

K∑
k=0

αkζ
K−k = 0.

It follows that ζ must be a root of the polynomial associated with the root condition, p(x) =∑K
k=0 αkx

K−k. Let us denote the roots by {zk}Kk=1. Then, ũj = zjk (again the superscript on zjk is

the power) satisfies the difference equation. Because any linear combination of zjk is also a solution
to the difference equation, it follows that

ũj = c1z
j
1 + c2z

j
2 + · · ·+ cKz

j
K
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for some constants {ck}Kk=1. (The constants {ck}Kk=1 are determined by the initial conditions.) In

order for the solution ũj to be bounded for any initial condition as j →∞, each of the functions zjk,
k = 1, . . . ,K, must be bounded as j →∞. This requires that the magnitude of the roots to be less
than or equal to one: |zk| ≤ 1, k = 1, . . . ,K. This is precisely the root condition for non-repeated
roots.

14.4 Convergence: Dahlquist equivalence theorem

The relationship between consistency, zero stability, and convergence for multistep schemes is sum-
marized in the Dahlquist equivalence theorem. The theorem states that consistency and stability
are the necessary and sufficient condition for convergence: i.e.,

consistency + zero stability ⇔ convergence .

Thus, we need to show, and only need to show, that a scheme is consistent and zero stable to show
that the scheme is convergent. (The proof of the theorem is quite involved; we here omit the proof.)

14.5 Order of accuracy

The Dahlquist equivalence theorem only shows whether a scheme converges as ∆t → 0; however,
the theorem does not show how quickly the scheme converges to the true solution as ∆t is reduced.
We recall that a scheme is said to be q-th order accurate if

|u(tj)− ũ(tj)| ≤ C∆tq for any fixed tj = j∆t as ∆t→ 0.

In general, for a zero stable multistep scheme, if the truncation error is q + 1-th order acccurate,
then the scheme is q-th order accurate: i.e.,

‖τ‖∞ ≤ C∆tq+1 ⇒ |u(tj)− ũ(tj)| ≤ C∆tq for a fixed tj = j∆t and ∆t sufficiently small.

In other words, once we show the stability of a scheme, we only need to analyze the truncation
error to understand its convergence rate.

14.6 Absolute stability

In order to analyze the absolute stability, we again consider a homogeneous ODE of the form
du
dt = λu. In particular, a multistep scheme is said to be absolutely stable for a given λ∆t if the
solution to the difference equation,

K∑
k=0

αkũ
j−k = ∆t

K∑
k=0

βkλũ
j−k,

is bounded for all possible initial conditions. We may again exploit the root condition to analyze
the stability of the scheme. Towards this end we consider a degree-K polynomial

K∑
k=0

(αk − λ∆tβk)x
K−k = 0.

Let zk, k = 1, . . . ,K be the roots of the polynomial. We then again consider two different cases:
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1. if all roots are distinct, then the multistep scheme is absolutely stable if the magnitude of
each root is less than or equal to unity (i.e. |zk| ≤ 1, ∀k);

2. if there is a repeated root, then the multistep scheme is absolutely stable if the magnitude of
each repeated root is (strictly) less than unity (i.e. |zk| < 1, ∀k).

14.7 Example: two-step Adams-Moulton

The two-step Adams-Moulton scheme (AM2) is given by

ũj = ũj−1 + ∆t

(
5

12
f(ũj , tj) +

2

3
f(ũj−1, tj−1)− 1

12
f(ũj−2, tj−2)

)
We note that AM2 is an implicit scheme, as the term f(ũj , tj) is on the right hand side.

Consistency. The local truncation error of the AM2 is

τ j ≡ u(tj)− u(tj−1)−∆t

(
5

12
f(u(tj), tj) +

2

3
f(u(tj−1), tj−1)− 1

12
f(u(tj−2), tj−2)

)
.

To simplify the expression, we consider the Taylor series expansion of each term:

u(tj−1) = u(tj)− u′(tj)∆t+
1

2
u′′(tj)∆t2 − 1

6
u′′′(tj)∆t3 +

1

24
u(4)(ξj)∆t4,

f(u(tj), tj) = u′(tj),

f(u(tj−1), tj−1) = u′(tj−1) = u′(tj)− u′′(tj)∆t+
1

2
u′′′(tj)∆t2 − 1

6
u(4)(ηj)∆t3,

f(u(tj−2), tj−2) = u′(tj−2) = u′(tj)− 2u′′(tj)∆t+ 2u′′′(tj)∆t2 − 4

3
u(4)(ζj)∆t3.

The substitution of the expansions to the expression for the truncation error yields

τ j = − 1

24
u(4)(ξj)∆t4.

We note that the scheme is consistent because

‖τ‖∞
∆t

=
1

24
max
s∈[0,tf ]

|u(4)(s)|∆t3 → 0 as ∆t→ 0.

Zero stability. To analyze the zero stability using the root condition, we consider the roots of

2∑
k=0

αkx
2−k = x2 − x = x(x− 1).

The two roots are given by x = 0 and x = 1. The two roots are distinct and each has a magnitude
less than or equal to unity. Hence, the two-step Adams-Moulton scheme is zero stable.

Convergence. By Dahlquist’s equivalence theorem, the AM2 scheme is convergent because
it is consistent and zero stable. In addition, because the local truncation error is fourth-order
accurate, the two-step Adams-Moulton scheme is third-order accurate.
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Numerical example. We approximate the solution of the IVP,

du

dt
= (cos(10t)− u)− sin(10t), t ∈ (0, 1], u(t = 0) = 1,

using the two-step Adams-Moulton method. We will also solve the problem using the backward
Euler method for the purpose of comparison. Figures 14.1(a) and 14.1(b) shows the results of
approximating the IVP using the backward Euler and two-step Adams-Moulton methods, respec-
tively. We observe that qualitatively the AM2 method produces more accurate approximation than
the backward Euler method for a given time step. More quantitatively, Figure 14.1(c) shows the
error at the final time as a function of the time step ∆t; we observe that the error associated
with the AM2 method converges rapidly — as O(∆t3). We do note however that, despite being an
implicit method, the AM2 scheme is not A-stable as shown in Figure 14.1(d); the region of absolute
stability is nevertheless quite large.

14.8 Example: a consistent but unstable scheme

Consider a scheme given by

ũj − 3ũj−1 + 2ũj−2 = −∆tf(ũj−2, tj−2).

We will see that this scheme is consistent but not convergent.
Consistency. An analysis of the truncation error reveals that

|τ j | = |ũj − 3ũj−1 + 2ũj−2 + ∆tf(ũj−2, tj−2)|

= |[u(tj−2) + 2u′(tj−2)∆t+ 2u′′(ξ1)∆t2]− 3[u(tj−2) + u′(tj−2)∆t+
1

2
u′′(ξ2)∆t2]

+ 2u(tj−2) + ∆tu′(tj−2)|

= |2u′′(ξ1)∆t2 − 3

2
u′′(ξ2)∆t2|

≤ 7

2
max

s∈[tj−2,tj ]
|u′′(s)|∆t2.

Since ‖τ‖∞/∆t→ 0 as ∆t→ 0, the scheme is consistent.
Zero stability. We now analyze the zero stability of the scheme. We check for the root

condition:
2∑

k=0

αkx
2−k = x2 − 3x+ 2 = (x− 2)(x− 1).

The roots are given by x = 2 and x = 1. Because the magnitude of one of the roots is greater than
1, this scheme is not zero stable.

Convergence. Because the scheme is not zero stable, the scheme is not convergent (even
thought it is consistent).

Numerical example. We (attempt to) approximate the solution of the IVP, du
dt = −u, t ∈

(0, 1], and u(t = 0) = 1 using the consistent-but-unstable scheme. Figure 14.2 shows the result
of the computation. As expected the approximation grows exponentially in time even though
the exact solution decays exponentially in time. In fact the error increases (exponentially) as
the time step decreases: the error at the final time for ∆t = 1/8, 1/16, 1/32, and 1/64 are
|u(tf )− ũ(tf )| = 4.3× 10−1, 1.5× 102, 2.9× 106, and 3.4× 1015, respectively.
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Figure 14.1: Solution of du
dt = (cos(10t) − u) − sin(10t), t ∈ (0, 1], and u0 = 1 using the backward

Euler and two-step Adams-Moulton methods.
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Figure 14.2: Approximation of du
dt = −u, t ∈ (0, 1], and u0 = 1 using the consistent but unstable

scheme.

14.9 Construction: order matching conditions

We can construct multistep schemes of arbitrary order accuracy in a systematic manner. For
instance, if we wish to construct a scheme of order M , we require that the scheme exactly solves
IVPs whose solutions are polynomials of degree up to and including M :

d

dt
1 = 0,

d

dt
tm = mtm−1, m = 1, . . . ,M.

Without loss of generality, we chose ∆t = 1 and write the system of equations associated with the
IVPs:

K∑
k=0

αk = 0,

K∑
k=0

αk(K − k + 1)m +
K∑
k=0

βkm(K − k + 1)m−1 = 0, m = 1, . . . ,M.

For instance, the system of equations associated with K = 2 and M = 4 is


1 1 1 0 0 0
3 2 1 −1 −1 −1
9 4 1 −6 −4 −2
27 8 1 −27 −12 −3
81 16 1 −108 −32 −4





α0

α1

α2

β0

β1

β2

 =


0
0
0
0
0
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We recall that the coefficients of a given multistep scheme is unique only up to scaling. We hence
fix α0 = 1 and obtain 

1 1 0 0 0
2 1 −1 −1 −1
4 1 −6 −4 −2
8 1 −27 −12 −3
16 1 −108 −32 −4




α1

α2

β0

β1

β2

 = −


1
3
9
27
81

 .

The solution to this linear system would yield a two-step scheme whose local truncation error is
of order O(∆tM+1) = O(∆t5). If the scheme is also zero stable, then it would be an fourth-order
scheme (M = 4).

The two-step Adam-Moultons scheme (which we have considered before) results from requiring
α2 = 0 and setting M = 3. The associated linear system is

1 0 0 0
2 −1 −1 −1
4 −6 −4 −2
8 −27 −12 −3




α1

β0

β1

β2

 = −


1
3
9
27

 .

The solution to this linear system — α1 = −1, β0 = 5/12, β1 = 2/3, and β2 = −1/12 — is the
two-step Adams-Moulton scheme, which is third-order accurate (i.e. M = 3). The scheme exactly
solves IVPs whose solutions are polynomials of degree up to and including M = 3.

Of course, the formulation only ensures that the method is consistent. In order to ensure
convergence, we need to also ensure that the scheme is zero stable. Zero stability can be assessed
by using the aforementioned root test.

14.10 Popular schemes

Forward and backward Euler. The backward and forward Euler schemes that we considered in
the previous lecture is an example of multi-step — in fact single-step — schemes. The backward
Euler scheme results from

α0 = 1, α1 = −1, β0 = 1, and β1 = 0.

The forward Euler scheme results from

α0 = 1, α1 = −1, β0 = 0, and β1 = 1.

We recall both the backward and forward Euler schemes are first order accurate. We also recall
that the schemes exhibit very different stability properties.

Crank-Nicolson. The Crank-Nicolson scheme is another popular implicit multistep method
given by

ũj = ũj−1 +
∆t

2
(f(ũj , tj) + f(ũj−1, tj−1)).

The stability diagram of the Crank-Nicolson scheme is shown in Figure 14.3(a); because the scheme
is stable for the entire left-hand plane, the scheme is A-stable. The Crank-Nicolson scheme is second
order accurate.
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(a) Crank-Nicolson (AM1)
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(c) AM3

Figure 14.3: Stability diagrams for Adams-Moulton schemes.

K α0 α1 β0 β1 β2 β3

1 1 -1 1/2 1/2 - -
2 1 -1 5/12 2/3 -1/12 -
3 1 -1 3/8 19/24 -5/24 1/24

Table 14.1: Coefficients for Adams-Moulton schemes.

Adams-Moulton. Adams-Moulton schems are implicit multistep schemes with the condition

α0 = 1, α1 = −1 and αk = 0 for k = 2, . . . ,K. (14.1)

The K-step Adams-Moulton scheme hence takes the form

ũj = ũj−1 + ∆t
K∑
k=0

βkf(ũj−k, tj−k).

The coefficients βk, k = 0, . . . ,K, are chosen to achieve the highest order of accuracy. The Crank-
Nicolson scheme is the K = 1 step Adams-Moulton scheme. Table 14.1 provides the multistep
coefficients for the 1-, 2-, and 3-step Adams-Moulton schemes. The stability diagrams for the 1-,
2-, and 3-step Adams-Moulton schemes are shown in Figure 14.3; due to the implicit formulation,
Adams-Moulton schemes provide relatively large stability regions. The K-step Adams-Moulton
scheme is K + 1-st order accurate.

Adams-Bashforth. Adams-Bashforth schemes are explicit (i.e. β0 = 0) multistep schemes
with the same condition on the coefficient αk as the Adams-Moulton schemes (i.e. equation (14.1)).
The Adams-Bashforth family of schemes hence takes the form

ũj = ũj−1 + ∆t

K∑
k=1

βkf(ũj−k, tj−k);

note that β0 = 0 (and we hence sum from k = 1) since the scheme is explicit. The coefficients βk,
k = 1, . . . ,K, are chosen to achieve the highest order of accuracy. Table 14.2 provides the multistep
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K α0 α1 β1 β2 β3

1 1 -1 1 - -
2 1 -1 3/2 -1/2 -
3 1 -1 23/12 -4/3 5/12

Table 14.2: Coefficients for Adams-Bashforth schemes.
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Figure 14.4: Stability diagrams for Adams-Bashforth schemes.

coefficients for the 1-, 2-, and 3-step Adams-Bashforth schemes. The stability diagrams for 1-, 2-,
and 3-step Adams-Bashforth schemes are shown in Figure 14.4; note that the stability regions of
Adams-Bashforth schemes are considerably smaller than those of Adams-Moulton schemes. The
forward Euler method is the K = 1 step Adams-Bashforth scheme. The K-step Adams-Bashforth
scheme is K-th order accurate.

Backward differentiation formulas. Backward differentiation formulas (BDFs) are implicit
schemes with the condition

βk = 0, k = 1, . . . ,K.

The backward differentiation formulas hence take the form

K∑
k=0

αkũ
j−k = ∆tβ0f(ũj , tj).

The coefficients αk, k = 1, . . . ,K, are chosen to achieve the highest order of accuracy. (Recall that
we fix α0 = 1.) The backward Euler scheme is the backward differentiation formula for K = 1,
which is often denoted BDF1. Table 14.3 provides the multistep coefficients for the 1-, 2-, and
3-step backward differentiation formulas. The backward differentiation formulas are well-known
for their stability properties. The stability diagrams for BDF2 and BDF3 are shown in Figure 14.5.
BDF1 (i.e. backward Euler) and BDF2 are A-stable — stable for all λ ∈ C such that <(λ) < 0.
BDF3 is not quite A-stable; however, it nevertheless is stable for a large portion of the negative
real half-plane. The K-step backward differentiation formula is K-th order accurate.
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K α0 α1 α2 α3 β0

1 1 -1 - - 1
2 1 -4/3 1/3 - 2/3
3 1 -18/11 9/11 -2/11 6/11

Table 14.3: Coefficients for backward differentiation formulas.
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(a) backward Euler (BDF1)
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(b) BDF2
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Figure 14.5: Stability diagrams for backward differentiation formulas.

14.11 Summary

We summarize the key points of this lecture:

1. A K-step multistep scheme approximates the state ũj based on the state and the state
derivative from K previous steps.

2. The local truncation error of a multistep scheme is the residual we obtain when the exact
solution is substituted to the difference equation. The order of the truncation can be analyzed
using Taylor series.

3. The zero-stability of a multistep scheme is determined by the solution behavior when applied
to the ODE, du/dt = 0. The zero-stability can be equivalently analyzed using a root test.

4. The Dahlquist equivalence theorem states that a multistep scheme is convergent if and only
if the scheme is consistent and zero-stable.

5. If the truncation error is bounded by ‖τ‖∞ ≤ C∆tq+1, then the multistep scheme is q-th
order accurate given the scheme is zero-stable.

6. Higher-order multistep schemes can be constructed by matching coefficients of the Taylor
expansion of the difference equation.

7. A given multistep scheme can be assessed based on the following characteristics: the number
of steps involved; whether it is implicit or explicit (which affects cost); the order of accuracy;
and the absolute stability diagram.
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8. Some of the popular multistep schemes include the following: forward and backward Euler;
Crank-Nicolson; Adams-Moulton; Adams-Bashforth; and backward differentiation formulas
(BDFs). Given a scenario, a suitable scheme can be selected based on the aforementioned
criteria.
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Lecture 15

Initial value problems: multistage
methods

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

15.1 Introduction

We have so far considered multistep methods — a class of methods that incorporates the state at
several previous time steps to advance the current state. We now introduce multistage methods
— a class of methods that only uses the state at the current time step to advance the solution but
performs this update in several stages. By far the most popular family of multistage methods is
Runge-Kutta methods. We will hence focus on Runge-Kutta methods in this section.

15.2 Two-stage (explicit) Runge-Kutta method

To introduce the Runge-Kutta family of schemes, we consider a concrete example: a two-stage
Runge-Kutta method (RK2). The RK2 method advances the solution from ũj−1 = ũ(tj−1) to
ũj = ũ(tj) by the following sequence of updates:

v1 = ũj−1, F1 = f(v1, t
j−1),

v2 = ũj−1 +
1

2
∆tF1, F2 = f(v2, t

j−1 +
1

2
∆t),

ũj = ũj−1 + ∆tF2.

A single step of RK2 has two stages and requires two evaluations of f to compute F1 and F2. Note
RK2 is an explicit scheme; the arguments to the function f is always known (and hence we need
not solve a nonlinear equation).

Local truncation error and consistency. In order to analyze the consistency of the RK2
method, we compute the local truncation error. As in the case of multistep methods, the local
truncation error is defined as the remainder associated with the substitution of the exact solution
of the IVP to the difference equation.
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For the RK2 method, we first note that

F̂1 = f(v1, t
j−1) = f(u(tj−1), tj−1) = u′(tj−1);

here ·̂ indicates that the variable is associated with the exact solution u rather than the approximate
solution ũ. We then note that

v̂2 = u(tj−1) +
1

2
u′(tj−1)∆t,

and hence

F̂2 = f(u(tj−1) +
1

2
u′(tj−1)∆t, tj−1 +

1

2
∆t)

= f(u(tj−1), tj−1)︸ ︷︷ ︸
u′(tj−1)

+
∂f

∂u

∣∣∣∣
(u(tj−1),tj−1)

1

2
u′(tj−1)∆t+

∂f

∂t

∣∣∣∣
(u(tj−1),tj−1)

1

2
∆t︸ ︷︷ ︸

1
2
d
dt

(f(u(t),t))∆t≡ 1
2
u′′(tj−1)∆t

+O(∆t2)

= u′(tj−1) +
1

2
u′′(tj−1)∆t+O(∆t2).

It follows that the truncation error is

τ j ≡ u(tj)− u(tj−1)−∆tF̂2

= u′(tj−1)∆t+
1

2
u′′(tj−1)∆t2 +O(∆t3)−∆t(u′(tj−1) +

1

2
u′′(tj−1)∆t+O(∆t2))

= O(∆t3).

The local truncation error is |τ j | < C∆t3 for some C independent of ∆t. We also note that
‖τ‖∞/∆t→ 0 as ∆t→ 0, and hence the method is consistent.

Convergence. Because all Runge-Kutta methods are single-step method, we can prove con-
vergence using an argument similar to that used for Euler methods. The final result is that if

‖τ‖∞ ≤ C∆tq+1,

then
|u(tj)− ũ(tj)| ≤ C̃∆tq for any fixed tj = j∆t as ∆t→ 0.

In words, if the truncation error of a Runge-Kutta scheme is bounded by C∆tq+1, then the scheme
is convergent and is q-th order accurate. For instance, the truncation error of the RK2 method is
O(∆t3), and hence the scheme is second-order accurate.

Proof of convergence (sketch). We now provide a sketch of the proof. We first note that
we can abstract the update ũj = ũj−1 + ∆tF2 as

ũj = ũj−1 + ∆tΦ(ũj−1, tj−1; ∆t);

the abstraction emphasizes the fact that the update F2 is a function of only ũj−1, tj−1, and ∆t.
We in addition note that Φ is Lipschitz continuous in the first argument:

|Φ(w, t; ∆t)− Φ(v, t; ∆t)| ≤ L|w − v|

for some Lipschitz constant L. We now subtract the difference equation

ũj − ũj−1 −∆tΦ(ũj−1, t−1j; ∆t) = 0
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from the definition of the truncation error

u(tj)− u(tj−1)−∆tΦ(u(tj−1), tj−1; ∆t) = τ j

to obtain
ej − ej−1 −∆t[Φ(u(tj−1), tj−1; ∆t)− Φ(ũj−1, tj−1; ∆t)] = τ j ,

where ej ≡ u(tj) − ũj . We now rearrange the equations, appeal to the Lipchitz continuity of Φ,
and invoke triangle inequality to obtain

|ej | ≤ |ej−1|+ ∆tL|ej−1|+ |τ j | = (1 + ∆tL)|ej−1|+ |τ j |.

Using a geometric series similar to that used for the analysis of Euler methods, we can readily show

|ej | ≤
j∑

k=1

(1 + ∆tL)j−k+1|τk| ≤ (1 + ∆tL)j − 1

∆tL
‖τ‖∞ ≤

exp(2tjL)− 1

L

‖τ‖∞
∆t

.

It follows that if ‖τ‖∞ ≤ C∆tq+1, then

|ej | ≤ exp(2tjL)− 1

L
C∆tq = C̃∆tq.

We observe that i) the scheme is convergent because maxj |ej | → 0 as ∆t→ 0, and ii) the scheme
is q-th order accurate if the truncation error is order q + 1. (Note that a slight modification of the
proof also allows us to treat implicit Runge-Kutta schemes, which are introduced shortly.)

Absolute stability. To analyze the absolute stability of the RK2 method, we again consider
an IVP of the form

du

dt
= −λu,

u(t = 0) = 1.

The analytical solution to this IVP is stable if <(λ) ≤ 0 and is unstable if <(λ) > 0. As before,
we say a scheme is absolutely stable for a given λ∆t if the difference equation associated with the
IVP yields |ũj | ≤ |ũj−1|. Figure 15.1 shows the absolute stability diagram of the RK2 scheme. We
see that the stability region is similar to the forward Euler method. In particular, the region of
absolute stability along the negative real axis is |λ|∆t ≤ 2, or t ≤ tcr ≡ 2/|λ|.

15.3 Four-stage (explicit) Runge-Kutta method

Another popular Runge-Kutta method — and perhaps the most popular of all Runge-Kutta meth-
ods — is a four-stage Runge-Kutta method (RK4). (We note that there are a few different variants
of RK4.) The update formula for a popular RK4 method is

v1 = ũj−1, F1 = f(v1, t
j−1),

v2 = ũj−1 +
1

2
∆tF1, F2 = f(v2, t

j−1 +
1

2
∆t),

v3 = ũj−1 +
1

2
∆tF2, F3 = f(v3, t

j−1 +
1

2
∆t),

v4 = ũj−1 + ∆tF3, F4 = f(v4, t
j−1 + ∆t),

ũj = ũj−1 + ∆t(
1

6
F1 +

1

3
F2 +

1

3
F3 +

1

6
F4).

141



-3 -2 -1 0 1 2 3
Re(6"t)

-3

-2

-1

0

1

2

3

Im
(6
"

t)
Figure 15.1: The absolute stability diagram of the RK2 scheme. The scheme is stable in the
unshaded region; the scheme is unstable in the shaded region.

-3 -2 -1 0 1 2 3
Re(6"t)

-3

-2

-1

0

1

2

3

Im
(6
"

t)

Figure 15.2: Absolute stability diagram for the RK4 method.

As the name suggest, a single step of RK4 has four stages and requires four evaluations of f to
compute F1, F2, F3, and F4. We also note that RK4 is an explicit scheme: all the stage updates
can be computed in an explicit manner without solving a nonlinear problem.

Local truncation error and consistency. Following the analysis similar to that used for
RK2, we can show that the local truncation error of the RK4 scheme is fifth-order: ‖τ‖∞ ≤ C∆t5.
We here omit the proof.

Convergence. Even though the number of stages involved in RK4 is greater than that for
RK2, the scheme still fit in the abstract form

ũj = ũj−1 + ∆tΦ(ũj−1, tj−1; ∆t).

Hence, the convergence proof from the RK2 section still applies. Because the truncation error is
O(∆t5), the RK4 method is fourth-order accurate: |u(tj)− ũ(tj)| ≤ C∆t4 for any tj .

Absolute stability. Figure 15.2 shows the absolute stability diagram for the RK4 scheme.
Note that the region of absolute stability is larger than that for the RK2 scheme. This is unlike
multistep schemes, whose stability region tends to shrink as the order increases.
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15.4 Two-stage implicit Runge-Kutta method

The RK2 and RK4 methods are both explicit Runge-Kutta methods. There are also implicit
Runge-Kutta methods. Implicit methods tend to enjoy better stability properties. As an example,
we introduce a two-stage implicit Runge-Kutta (IRK2) method. The update formula for the IRK2
method is

v1 = ũj−1 +A11∆tf(v1, t
j−1 + c1∆t) +A12∆tf(v2, t

j−1 + c2∆t),

v2 = ũj−1 +A21∆tf(v1, t
j−1 + c1∆t) +A22∆tf(v2, t

j−1 + c2∆t)

where

A11 =
1

4
, A12 =

1

4
−
√

3

6
, A21 =

1

4
+

√
3

6
, A22 =

1

4
,

c1 =
1

2
−
√

3

6
, and c2 =

1

2
+

√
3

6
.

We then set the solution at the current time step equal to

ũj = ũj−1 +
1

2
∆t[f(v1, t

j−1 + c1∆t) + f(v2, t
j−1 + c2∆t)].

We note that to compute v1 and v2, we need to solve a system of coupled nonlinear equations;
hence the method is implicit. This is unlike explicit methods, whose states at all stages can be
evaluated in an explicit manner.

The particular IRK2 scheme presented here is based on the Gauss-Legendre quadrature that
we studied earlier. The stage state evaluation points, c1 and c2, are in fact the quadrature points
associated with the Gauss quadrature rule. For this reason, the method is also called Gauss-
Legendre Implicit Runge-Kutta method.

Convergence. Using the same analysis technique as before, we can show that the IRK2
scheme is fourth-order accurate. (This also follows from the fact that two-point Gauss quadrature
rule integrates exactly polynomials of degree up to three; and hence the leading error is fourth
order.)

Absolute stability. Figure 15.3 shows the absolute stability diagram of the IRK2 scheme.
Thanks to the implicit construction, the IRK2 method is very stable; the scheme is in fact A-
stable. In addition, the stability diagram matches exactly the stability diagram for the exact
solution.

Computational cost. The IRK2 method requires the solution of fully coupled nonlinear sys-
tem by, for instance, Newton’s method. Hence the computational cost per step can be significantly
higher than that for explicit Runge-Kutta schemes.

15.5 General form of Runge-Kutta methods and Butcher tableau

In general, the intermediate stage states of a Runge-Kutta method is governed by system of equa-
tions

vk = ũj−1 + ∆t
K∑
l=1

AklFl, k = 1, . . . ,K,
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Figure 15.3: Absolute stability diagram for the IRK2 method.

where

Fk = f(vk, t
j−1 + ck∆t),

and the final step update is given by

ũj = ũj−1 + ∆t

K∑
k=1

bkFk.

Here the K × K matrix A, K-vector c, and K-vector b are the coefficients that characterize the
particular K-step Runge-Kutta scheme. These coefficients are often condensed in a Butcher tableau:

c1 A11 · · · A1K
...

...
. . .

...
cK AK1 · · · AKK

b1 · · · bK

.

For instance, the tableau for the (explicit) RK2 scheme is

0
1/2 1/2

0 1

and the tableau for the (explicit) RK4 scheme is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Note that, for explicit schemes, the diagonal and superdiagonal of the A matrix are always equal
to zero. This triangular structure enables an explicit evaluation of each successive stage state.
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The tableau for the (implicit) RK2 scheme is

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4

1/2 1/2

Note that, for implicit schemes, the diagonal and superdiagonal are in general non-zero. Hence, we
must solve a fully coupled system to compute the stage updates.

15.6 Adaptive Runge-Kutta methods

So far, we have considered methods for IVPs which use a fixed time step ∆t. We here provide
a very brief introduction to adaptive Runge-Kutta schemes, which automatically select the time
step depending on the user specified error tolerance. The idea of adaptive computing itself is
very similar to what we have already seen in the context of numerical integration with adaptive
quadrature rules. The key ingredients again are

1. error estimation (i.e. how big is the current error?)

2. adaptive selection of the step size given the error estimate.

We consider these two steps separately.
Error estimation. One convenient way to approximate the solution and estimate the error is

to employ an embedded Runge-Kutta method. An embedded Runge-Kutta method constructs two
approximations of different order of accuracy using a shared set of function evaluation points. The
Butcher tableau is of the form

c1 A11 · · · A1K
...

...
. . .

...
cK AK1 · · · AKK

b1 · · · bK
b̂1 · · · b̂K

.

Here, following the standard RK procedure, the K stage states are given by

vk = ũj−1 + ∆t

K∑
l=1

AklFl, k = 1, . . . ,K.

where
Fk = f(vk, t

j−1 + ck∆t).

Then, as before, we construct the first approximation at the next time step using

ũj = ũj−1 + ∆t

K∑
k=1

bkFk.

We next construct the second approximation at the next time step using

˜̃uj = ũj−1 + ∆t
K∑
k=1

b̂kFk.
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We then use the difference between the approximations ũj and ˜̃uj as our error estimate:

Ej(∆t) ≡ |ũj − ˜̃uj |;

here we include ∆t as the argument of Ej to emphasize the fact that the error is dependent on the
time step.

There are a number of embedded Runge-Kutta methods, but one popular one is the Dormand-
Prince method. The Butcher tableau for the Dormand-Prince method is

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

.

(Source: Dormand and Prince, Journal of Computational and Applied Mathematics 6(1): 19–26,
1980.) For Dormand-Prince, the approximation ũj is locally fifth order accurate, whereas the
approximation ˜̃uj is locally fourth order accurate. The MATLAB routine ode45 implements the
scheme.

Adaptive time stepping. Strategies typically used to adaptively select the time step is based
on heuristic and best practice. The basic idea is the following: if the error at a given step is
too large, we then reject the step and recompute the approximation using a smaller time step;
if the error at a given step is too small, we then propose to use a larger time step for the next
step. Specifically, if we wish to achieve the error tolerance of εtol(∆t) at the final time tf , we then
apportion to the current time step

εlocal
tol (∆t) ≡ εtol

∆t

tf
.

The goal is to adaptively select the time step such that the error committed in each step is less
than, but close to, εlcoal

tol .
Suppose Ej(∆t) > εlocal

tol (∆t) in the j-th time step. Then we reject the update, reduce the time
step, and recompute the approximation. One way to choose the new reduced time step ∆tnew is to
observe that, because the error estimate for Dormand-Prince is locally fifth-order accurate,

Ej(∆tnew) ≈ Ej(∆t)
(

∆tnew

∆t

)5

.

Hence, we set the new time step as the solution to

Ej(∆tnew) = γεlocal
tol (∆tnew),

where γ ∈ (0, 1] is some scaling factor to make a conservative estimation. (Take, for instance,
γ = 0.8.)
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Now consider the opposite scenario. Suppose Ej(∆t) < εlocal
tol (∆t) and in fact the error Ej is

considerably smaller than local error budget εlocal
tol . (Take, for instance, by a factor of 2.) The small

error relative to the error budget indicates that we could be taking larger time steps. Specifically,
when we compute the solution of the next step, we can use a new increased time step that satisfies

Ej(∆tnew) = γεlocal
tol (∆tnew),

where γ ∈ (0, 1] is again some scaling factor.

15.7 Summary

We summarize the key points of this lecture:

1. Multistage methods use the state at only the current time step to advance the solution but
performs the update in several stages. This is unlike multistep methods which incorporate
the state from a few previous time steps.

2. Runge-Kutta methods are examples of multistage methods. A K-stage RK method computes
K intermediate states every time step.

3. For RK methods, if the truncation error is O(∆tq+1), then the scheme is q-th order accurate.

4. Explicit RK2 and RK4 are popular multistage methods that are second and fourth order
accurate, respectively.

5. Implicit RK methods are more complicated to implement and are computationally expensive
per time step, but they typically provide better stability than explicit RK methods.

6. A given RK method can be compactly described using a Butcher tableau.

7. Adaptive RK methods consist of two ingredients: error estimation and time step selection. A
common approach to estimate the error is to use an embedded RK method, which provides
approximation of two different order, and to compare the two approximations. The time step
is then adjusted based on the error estimate and the expected rate of convergence.

147



Lecture 16

Initial value problems: systems of
equations

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

16.1 Introduction

In this lecture we consider approximation of initial value problems (IVPs) governed by a system of
ordinary differential equations (ODEs). Specifically, the IVPs that we consider are of the form

du

dt
= f(u, t), t ∈ (0, tf ],

u(t = 0) = u0,

where u(t) ∈ Rn is the state vector, f : Rn × R → Rn is the function that defines the ODE, and
u0 ∈ Rn is the initial condition. We could also write the ODE more explicitly component-by-
component to emphasize the system aspect:

d

dt

 u1
...
un

 =

 f1(u1, . . . , un; t)
...

fn(u1, . . . , un; t)

 .

Note that we will use a subscript to denote a component of the state u or function f .

(Note. In the previous lectures, we denoted the initial condition by u0, with the subscript
0; from hereon, we will denote the initial condition by u0, with the superscript 0, to reserve the
subscript for the component index.)

16.2 Multistep method

The extension of the linear multistep method for scalar IVPs to vector IVPs is very simple. Because
everything is essentially identical to the scalar case, we here concisely state the key points.
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Formulation. Our difference equation is given by

K∑
k=0

αkũ
j−k = ∆t

K∑
k=0

βkf(ũj−k, tj−k), j = 1, . . . , J,

where ũj ∈ Rn is our approximation of the state at time tj ; i.e. ũj ≡ ũ(tj) ≈ u(t). We may write
the difference equation more explicitly as

K∑
k=0

αk

 ũj−k1
...

ũj−kn

 = ∆t
K∑
k=0

βk

 f1(ũj−k1 , . . . , ũj−kn ; tj−k)
...

fn(ũj−k1 , . . . , ũj−kn ; tj−k)

 , j = 1, . . . , J,

where ũji denotes the i-th component of our approximation of the state at time tj . As in the scalar
case, a set of coefficients {αk} and {βk} defines a particular scheme. For instance, the forward
Euler scheme is given by α0 = 1, α1 = −1, β0 = 0, and β1 = 1. The scheme is said to be explicit if
β0 = 0; otherwise the scheme is implicit.

Local truncation error. The local truncation error is the residual associated with the sub-
stitution of the exact solution to the difference equation; i.e.,

τ j =
K∑
k=0

αku(tj−k)−∆t
K∑
k=0

βkf(u(tj−k), tj−k), j = 1, . . . , J.

Note that τ j ∈ Rn is a vector; we may denote the i-th component of the local truncation error at
time step j by τ ji .

Consistency. We first define the ∞-norm of τ as

‖τ‖∞ ≡ max
i=1,...,n
j=1,...,J

|τ ji |.

Then, a scheme is consistent if
‖τ‖∞

∆t
→ 0 as ∆t→ 0;

in other words, |τ ji |/∆t vanishes as ∆t→ 0 for all components i and all time index j.

Convergence. As in the scalar case, convergence follows from the Dahlquist equivalence
theorem. Namely, a scheme is convergent if and only if it is consistent and zero stable:

(consistency) + (zero stability) ⇔ (convergence) .

16.3 Multistage methods

The extension of multistage methods to a system of first order ODEs is also straight forward: we
simply replace a scalar state with a vector state. The consistency and convergence are extended in
exactly the same manner as the multistep methods.
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16.4 Higher-order ODEs

We can employ multistep and multistage methods for systems of ODEs to also solve higher-order
ODEs. Consider a general order-q (scalar) ODE of the form

dqu

dt
= g(u,

du

dt
, . . . ,

dq−1u

dt
; t), for t ∈ (0, tf ],

diu

dti
(t = 0) = u(i),0, i = 0, . . . , q − 1,

where u(i),0, i = 0, . . . , q−1, are the initial conditions. Note that for q = 1, we recover the first-order
ODE we have already considered.

We can transform this system of a general order-q scalar ODE to a system of first order ODEs.
Specifically, let us introduce auxiliary variables wi, i = 0, . . . , q, where

wi =
diu

dti
, i = 0, . . . , q − 1.

We can then rewrite the scalar high-order ODE as a system of q first-order equations:

dwi−1

dt
= wi, i = 1, . . . , q − 1,

dwq−1

dt
= g(w0, w1, . . . , wq−1; t).

The initial conditions for the system of equations is

wi(t = 0) = u(i),0, i = 0, . . . , q − 1,

where u(i),0, i = 0, . . . , q− 1, are the q− 1 initial conditions for the original higher-order IVP. With
this recasting of the higher-order ODE as a system of first-order ODEs, we can solve the first-order
ODE using the multistep/multistage methods we have developed.

16.5 Analysis of a system of ODEs: stability and stiffness

To motivate the absolute stability analysis of a system of ODEs, let us first consider a linear IVP
of the form

du

dt
= Au, t ∈ (0, tf ],

u(t = 0) = u0,

where A ∈ Rn×n is a time-invariant matrix. To analyze the behavior of the system of equations
using the techniques we have developed for a scalar equation, we decouple the system using eigen-
decomposition. Specifically, let us assume that A is diagonalizable and set

A = V ΛV −1,

150



where V is a non-singular matrix whose i-th column is the i-th eigenvector of A, and Λ is a diagonal
matrix whose i-th diagonal entry is the i-th eigenvalue of A. Using the eigendecomposition, we
may rewrite the system of ODEs as

d

dt
u = V ΛV −1u ⇒ d

dt
V −1u = ΛV −1u.

If we define a new variable z ≡ V −1u (and z0 ≡ V −1z0), then we obtain

dz

dt
= Λz, t ∈ (0, tf ],

z(t = 0) = z0.

The key observation here is that Λ is a diagonal matrix, and hence the ODEs are decoupled. More
explicitly, each of the n components of the transformed variable z must satisfy the ODE

dzi
dt

= λiz, t ∈ (0, tf ],

zi(t = 0) = z0
i .

The solution to each of these ODEs is given by zi = z0
i exp(λit); the i-th mode decays exponentially

in time if <(λi) < 0, grows exponentially in time if <(λi) > 0, and is purely oscillatory if λi is purely
imaginary. Using the transformation u = V z, we note that the solution to the original system of
IVPs is given by

u(t) =

n∑
i=1

vi(z
0
i exp(λit)),

where vi is the i-th column of V .
(If the matrix A is not diagonalizable, we can transform A to a Jordan normal form. We can

then write the solution associated with the Jordan block of size k as c1 exp(λit)+c2t exp(λit)+ · · ·+
ckt

k−1 exp(λit), where the coefficients c1, . . . , ck are deduced from the specific initial condition.)
Stability analysis. Suppose the IVP of interest is stable in the sense that all eigenvalues

have non-positive real part. In order for our numerical approximation of the IVP to be stable,
our approximation of every mode must be numerically stable; if even one of the modes grow in an
unbounded manner, then the solution u = V z would also grow in an unbounded manner. In order
to ensure that there is no unbounded growth, each of the n ∆t-weighted eigenvalues, λi∆t, must
lie in a stable region of the absolute stability diagram. It is important to note that this stability
requirement must be met for every mode, even if the mode has a small contribution to the overall
response of the system for the particular initial condition; even the mode with a very small z0

i at
the initial time will eventually dominate the system behavior if it grows exponentially in time.

Stiffness. A system of ODEs is often described as stiff or non-stiff. While there is no mathe-
matically rigorous definition, we will define stiffness based on the stiffness ratio,

r ≡ maxi=1,...,n |λi(A)|
mini=1,...,n |λi(A)|

.

Note that the this is the ratio of the time scale associated with the fastest and slowest modes of
the system. If the stiffness ratio is large, we say the system is stiff; if the stiffness ratio is O(1), we
say the the system is not stiff.
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A very stiff system is difficult to solve using explicit methods, because the relatively small
stability region of explicit methods means that we must employ very small time step if λmax(A) is
large. For explicit methods, the maximum time step we can take for stiff systems is almost always
governed by the absolute stability concerns rather than the accuracy of the approximation. On the
other hand, implicit schemes with a large stability region — and in particular A-stable schemes —
allow us to take much larger time steps; hence, implicit schemes are more suited for stiff equations.
(In fact some people define stiff equations as equations that cannot be solved at a reasonable cost
using explicit methods.)

16.6 Example: mass-spring-damper system

We consider a mass-spring-damper system consists of n masses arranged in a line. Each mass is
connected to its two neighbors (or a neighbor and a wall for the first and last masses) by a spring
and a damper. We denote the mass of each mass by m, the stiffness of each spring by k, and the
damping coefficient of each damper by c. The resulting system of second-order ODEs is

d2x1

dt2
=

k

m
(−2x1 + x2) +

c

m
(−2

dx1

dt
+
dx2

dt
),

d2xi
dt2

=
k

m
(xi−1 − 2xi + xi+1) +

c

m
(
dxi−1

dt
− 2

dxi
dt

+
dxi+1

dt
), i = 2, . . . , n− 1,

d2xn
dt2

=
k

m
(xn−1 − 2xn) +

c

m
(
dxn−1

dt
− 2

dxn
dt

),

with initial displacement and velocity conditions

xi(t = 0) = x0
i , i = 1, . . . , n,

x′i(t = 0) = v0
i , i = 1, . . . , n.

We can write the system more compactly using matrices and vectors as

d2x

dt2
= Kx+ C

dx

dt
,

where

K =
k

m



−2 1 0 · · · 0

1 −2 1
...

0
. . .

. . .
. . . 0

... 1 −2 1
0 · · · 0 1 −2


, and C =

c

m



−2 1 0 · · · 0

1 −2 1
...

0
. . .

. . .
. . . 0

... 1 −2 1
0 · · · 0 1 −2


,

with initial conditions x(t = 0) = x0 and x′(t = 0) = v0.

We now introduce an augmented state

u ≡
(

x
x′

)
∈ R2n,
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and express the system of second-order ODEs as a (larger) system of first-order ODEs:

du

dt
= Bu,

where

B =

(
0 In×n
K C

)
,

with the initial condition u(t = 0) = u0 = ((x0)T , (v0)T )T . We now consider the solution of this
IVP for two separate cases.

Undamped case: c = 0. We consider an undamped system (c = 0) of eight masses (n = 8),
each of unit mass (m = 1.0), connected by spring of unit stiffness (k = 1.0). We consider the initial
condition where the first mass is displaced by a unit length. The approximation of the IVP by RK4
for ∆t = 0.2 is shown in Figure 16.1(a). We observe that each of the eight masses oscillate in time,
and we observe qualitatively the amplitude of oscillation remains constant over time.

We also show in Figure 16.1(b) all 2n = 16 eigenvalues of the matrix B superimposed on the
stability diagram of RK4. We observe that all eigenvalues of B are purely imaginary, as the solution
exhibits a purely oscillatory behavior. We also observe that eigenvalues lie on the boundary of the
region of absolute stability for RK4; hence the discrete approximation preserves the oscillatory
behavior of the solution without growth or dissipation.

Figure 16.1(c) shows the approximation of the same undamped system by RK4 using a larger
time step of ∆t = 2 (as opposed to ∆t = 0.2 for the previous case). We observe that this time the
solution becomes unstable. Figure 16.1(d) shows the cause of the instability; some of the eigenvalues
lie in the region of instability for RK4, and hence these modes grow exponentially in time.

Highly damped case: c = 2. We consider a highly damped system (c = 2) of eight masses
(n = 8), each of unit mass (m = 1.0), connected by spring of unit stiffness (k = 1.0). We again
consider the initial condition where the first mass is displaced by a unit length. Figure 16.2(a) shows
the approximation by RK4 for ∆t = 0.2. We observe that the displacement of the first mass decays
(essentially) exponentially in time, and the system exhibits very limited oscillation. The eigenvalue
distribution shown in Figure 16.2(b) confirms that most of the modes decay exponentially in time,
as most of the eigenvalues lie along the negative real axis.

Figures 16.2(c) and 16.2(d) shows the RK4 approximation and the associated stability diagram
for a larger time step of ∆t = 0.5 (as opposed to ∆t = 0.2 for the previous case). The maximum
eigenvalue of B in magnitude is |λmax| ≈ 7.22. Hence, for RK4, the critical time step is tcr ≈
2.8/|λmax| ≈ 3.9. As a result, the approximation is unstable for ∆t = 0.5. The stiffness ratio for
this problem is maxi |λi|/mini |λi| ≈ 20.8, which is moderately high. As a result, while the solution
shows a simple behavior in time, we must use a small time step in order for the RK4 scheme to
remain stable. An A-stable (implicit) scheme is arguably a better choice even for this moderately
stiff problem.

16.7 Nonlinear equations: computation

If the scheme is explicit, we simply evaluate f (or a set of f ’s) and evaluate the state at the next
time step.
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Figure 16.1: RK4 approximation and eigenvalue distribution associated with the mass-spring-
damper system for n = 8, m = 1, k = 1, and c = 0.
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Figure 16.2: RK4 approximation and eigenvalue distribution associated with the mass-spring-
damper system for n = 8, m = 1, k = 1, and c = 2.
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If the scheme is implicit, we must solve a system of nonlinear equation in each time step. For
concreteness, let us consider the backward Euler method. In each time step, we must solve

r(w) = w − ũj−1 −∆tf(w, tj) = 0,

where r : Rn → Rn is the residual form whose root is ũj . We may find the root using, for instance,
Newton’s method. Note that the Jacobian of the residual is given by

∇r(w) = I −∆t[∇f(w, tj)],

where ∇f(w, tj) ∈ Rn×n is the Jacobian of the function f with respect to the state evaluated
about w. For a system of equations, the evaluation of the Jacobian, which has n × n entries,
and the solution of the n × n linear system, which in general requires O(n3) operations, can be
computationally expensive. Thus, per time step, implicit schemes are significantly more expensive
than explicit schemes, especially for a system of nonlinear equations; however, their favorable
absolute stability allows us to take much a larger time step than implicit schemes.

16.8 Nonlinear equations: stability analysis

One approach to analyze the stability of a system of nonlinear equations is to linearize the problem
about the solution trajectory and to analyze the eigenvalues of the Jacobian∇f along the trajectory.
While the approach is not entirely rigorous, it nevertheless works well in practice when the state does
not change very rapidly in time. To motivate the analysis, we first decouple the solution u(t) ∈ Rn
into a stationary state and a (presumably small) time-varying perturbation: u(t) = ū+ δu(t). We
then note that the perturbation δu(t) ∈ Rn satisfies the following relationship:

d(δu)

dt
=
du

dt
= f(u(t), t) = f(ū+ δu(t), t) ≈ f(ū) +∇f(ū)δu(t) +O(‖δu‖22).

In other words, for ‖δu‖22 small, the perturbation obeys a linearized equation

d(δu)

dt
≈ Aδu(t) + b,

where A ≡ ∇f(ū) ∈ Rn×n and b ≡ f(ū) ∈ Rn. Hence, if an eigenvalue of λi of ∇f(ū) ∈ Rn×n i)
has a negative real part (<(λi) < 0) but ii) λi∆t lies outside of the region of absolute stability of a
given scheme, then the numerical approximation will likely be unstable.

In practice, there is no way to know in advance the eigenvalues associated with the Jacobian
∇f(u(t)) since the solution is unknown. For a fixed ∆t schemes, sometimes an appropriate time
step must be found through trial and error. For an adaptive ∆t scheme, the instability can be
detected from the increase in the error and the scheme could reduce ∆t. Of course, a more robust
solution is to consider a use of an A-stable scheme, which is stable over the entire left hand plane;
for these reasons, implicit schemes are often used (especially for stiff systems) despite the higher
computational cost per step.

16.9 Summary

We summarize the key points of this lecture:
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1. Both multistep and multistage methods can be extended to a system of equations in a straight-
forward manner.

2. A (system of) higher-order IVPs can be recast as a (larger) system of first-order IVPs.

3. The stability of a system of linear IVPs, du/dt = Au, is governed by the eigenvalues of the
matrix A. In order for a numerical approximation to be stable, all eigenvalues of A must lie
in the region of absolute stability of the scheme.

4. A system is said to be stiff if the ratio of the largest and smallest eigenvalues — and hence
the range of time scales — is large.

5. Explicit methods are often ill-suited for stiff systems due to a (very) small critical time step
to remain stable.

6. The solution of a system of nonlinear IVPs by an implicit method requires the solution of a
system of nonlinear (algebraic) equations.

7. The stability of a system of nonlinear IVPs can be assessed in practice by analyzing the
eigenvalues of the Jacobian matrix ∇f along the solution trajectory.
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Lecture 17

Boundary value problems: 1d
Poisson’s equation

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

17.1 Introduction

We have so far considered initial value problems (IVPs), where the problem is defined by i) ordinary
differential equations (ODEs) and ii) an initial condition. IVPs are solved by successively computing
the state forward in time starting with the initial condition.

We now consider a different class of problems called boundary value problems (BVPs). BVPs
are typically posed over a physical (spatial) domain and are governed by an ODE or a partial
differential equation (PDE) and boundary conditions. In this lecture, we consider BVPs in one
dimension.

17.2 Poisson’s equation

As a canonical problem, consider Poisson’s equation in one dimension,

−d
2u

dx2
= f in Ω ≡ (0, 1),

u(x = 0) = 0,

u(x = 1) = 0.

Here, Ω is the physical domain of interest, u ∈ C2(Ω) is the state, f ∈ C0(Ω) is the forcing function,
and u(x = 0) = 0 and u(x = 1) = 0 are the boundary conditions on the left and right boundaries,
respectively. Note that unlike the IVPs we have considered in the previous lectures, BVPs have
conditions imposed on both ends of the domain. We will see this (seemingly subtle) difference
introduces a significant difference in the solution behavior as well as the associated numerical
solution strategy.

Before we consider numerical solution of BVPs, we comment on the characteristics of the exact
solution. First, for any f ∈ C0(Ω), the solution is exists and is unique. Second, the solution is
smoother than the forcing function; specifically, if f ∈ Cm(Ω), then u ∈ Cm+2(Ω).
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17.3 Finite difference method

We now consider the approximation of Poisson’s equation by a finite difference method. We first
introduce a computational grid over the domain Ω ≡ [0, 1]. The gird points are given by

xi = i∆x, i = 0, . . . , n+ 1,

where ∆x ≡ 1/(n+1) is the spacing between any two grid points. We then denote our approximation
of the solution by

ũi ≡ ũ(xi), i = 0, . . . , n+ 1.

We now apply the central difference formula to approximate the second derivative d2u
dx2

; i.e.

d2u

dx2

∣∣∣∣
i

≈ ũi+1 − 2ũi + ũi−1

∆x2
.

The substitution of the finite difference formula to Poisson’s equation yields

− ũi+1 − 2ũi + ũi−1

∆x2
= f̃i, i = 1, . . . , n,

with boundary conditions

ũi=0 = ũi=n+1 = 0,

where f̃i = f(xi). Note that we have n unknowns and n equations associated with the interior grid
points i = 1, . . . , n. These equations can be expressed in a matrix form:

Aũ = f̃ ,

where

A =
1

∆x2



2 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 2


, ũ =


ũ1

ũ2
...

ũn−1

ũn

 , f̃ =


f̃1

f̃2
...

f̃n−1

f̃n

 .

We easily verify that the matrix A is symmetric. The matrix is also positive definite for any ∆x:

vTAv =
1

∆x2
[
n∑
i=1

2v2
i −

n−1∑
i=1

2vivi+1] =
1

∆x2
[v2

1 +
n−1∑
i=1

(v2
i − 2vivi+1 + v2

i+1) + v2
n]

=
1

∆x2
[v2

1 +
n−1∑
i=1

(vi − vi+1)2 + v2
n] > 0 ∀v 6= 0.

It follows that the linear system is well-posed, and a unique solution ũ exists for any f .
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17.4 Truncation error

We define the truncation error at the i-th grid point as

τi ≡ −
u(xi+1)− 2u(xi) + u(xi−1)

∆x2
− f(xi).

We recall from the lecture on numerical differentiation that the central difference formula is second
order accurate, and more specifically,

u(xi+1)− 2u(xi) + u(xi−1)

∆x2
=
∂2u

∂x2

∣∣∣∣
xi

+
1

12
u(4)(ξi)∆x

2,

for some ξi ∈ [xi−1, xi+1]. It follows that the truncation error is given by

τi = − ∂2u

∂x2

∣∣∣∣
xi

− f(xi)︸ ︷︷ ︸
=0 by ODE

− 1

12
u(4)(ξi)∆x

2 = − 1

12
u(4)(ξi)∆x

2, i = 1, . . . , n.

It follows that

‖τ‖∞ ≤
1

12
max
s∈[0,1]

|u(4)(s)|∆x2,

where ‖τ‖∞ ≡ maxi=1,...,n |τi|. The truncation error for the central finite difference formula applied
to Poisson’s equation is second order.

17.5 Properties of A−1 and stability

We now note the two important properties of the matrix A−1. For notational convenience, let us
denote the i, j entry of A−1 by αij ; in other words,

A−1 =

 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

 .

We now provide two important properties of A−1:

1. All entries of A−1 are positive: αij > 0, i, j = 1, . . . , n;

2. The infinity norm of the matrix A−1 is bounded for all ∆x:

‖A−1‖∞ ≡ max
v∈Rn

‖A−1v‖∞
‖v‖∞

= max
i=1,...,n

n∑
j=1

|αij | ≤
1

8
.

We now sketch the proofs.
Proof of property 1. To prove the first property, we first introduce a notational shorthand

for convenience. Specifically, let us denote v ≥ 0 if vi ≥ 0 for all i = 1, . . . , n. Then, to prove the
positivity of the entries of A−1, it suffices to show that if v = A−1w and w ≥ 0 then v ≥ 0. (This
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is true because we can chose w which is (positive) nonzero on just one of the entries, say the k-th
entry; v ≥ 0 then implies that the entries in the k-th column of A−1 are all positive.)

Now, let imin be the index associated with the smallest component of v: imin = arg mini vi. We
observe that imin must be either the first grid point (imin = 1) or the last grid point (imin = n), as
otherwise

−vimin−1 + 2vimin − vimin+1 < 0,

which violates our assumption that w ≥ 0. Now, if imin = 1, then 2v1 − v2 ≥ 0, which implies that
v1 ≥ v2 − v1 ≥ 0, and thus v ≥ 0. Similarly, if imin = n, then −vn−1 + 2vn ≥ 0, which implies that
vn ≥ vn−1 − vn ≥ 0, and thus v ≥ 0. It follows that if v = A−1w and w ≥ 0, then v ≥ 0; in other
words, all the entries of A−1 are positive.

Proof of property 2. To prove the second property, we note that the function v(x) = 1
2x(1−x)

satisfies

−v(xi+1)− 2v(xi) + v(xi−1)

∆x2
= 1,

because v′′ = 1 and v(4) = 0, which implies that the truncation error is 0. This implies that a
vector ṽi = v(xi) and w̃i = 1 satisfy the equation Aṽ = w̃ or, equivalently, ṽ = A−1w̃. It follows
that

‖A−1‖∞ ≡ max
i=1,...,n

n∑
j=1

|αij | = max
i=1,...,n

n∑
j=1

αij = max
i=1,...,n

ṽi ≤ max
x∈[0,1]

v(x) =
1

8
.

Note that the second equality follows from the fact that all entries of A−1 are positive and hence
|αij | = αij .

Implications. The first property implies that if all entries of f̃ are positive, then all entries
of ũ are positive. The second property implies that our finite difference approximation is stable in
the sense that

‖ũ‖∞ ≤
1

8
‖f̃‖∞.

In words, for any finite data f̃ , the approximation solution ũ is bounded.

17.6 Convergence

We now define the error at grid point i as

ei ≡ u(xi)− ũi.

We then appeal to the definition of the truncation error to obtain

−u(xi+1)− 2u(xi) + u(xi−1)

∆x2
= f̃i + τi;

we also recall the finite difference equation

− ũi+1 − 2ũi + ũi−1

∆x2
= f̃i.

Taking the difference of the two equations, we obtain the error equation,

−ei+1 − 2ei + ei−1

∆x2
= τi, i = 1, . . . , n,
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with boundary conditions e0 = en+1 = 0. The error equation in matrix form is

Ae = τ.

It follows that e = A−1τ . We appeal to the stability of A−1 to obtain

‖e‖∞ = ‖A−1τ‖∞ ≤ ‖A−1‖∞‖τ‖∞ ≤
1

8
‖τ‖∞.

The substitution of the upper bound for the truncation error yields an error bound

‖e‖∞ ≤
1

96
max
s∈Ω
|u(4)(s)|∆x2.

We observe that

1. the scheme is convergent: ‖e‖∞ → 0 as ∆x→ 0;

2. the scheme is second-order accurate: ‖e‖∞ ≤ C∆x2.

Note that, once we obtain the error equation, the rest of the convergence proof relies on i) the
stability of A and ii) the decrease of the truncation error with ∆x. This is similar to the numerical
solution of IVPs, where convergence was provided by i) zero stability and ii) consistency.

17.7 Computational considerations: sparsity

Sparsity. One of the most computationally expensive part of solving the BVP by a finite difference
method is the solution of the linear system,

Aũ = f̃ .

Note that this is an n× n system, where n could be very large if ∆x is very small. In fact in two
and three dimensions, the size n is often in millions, if not billions.

While A could be very large, it is important to note that A has a very special structure to it.
While A has n2 entries, most of these n2 entries are in fact zero; the number of nonzeros in our
A for the central difference approximation in one dimension is 3n − 2 and not n2. If n = 1,000,
then it has 2,998 nonzeros, not 1,000,000 nonzeros. A matrix whose entries are mostly 0 is called a
sparse matrix. (There is no rigorous threshold on what “mostly” means.) Our matrix A is a sparse
matrix. A matrix that is not sparse is called a dense matrix.

Storage. It is important to take advantage of the sparsity of the matrix, both to store the
matrix and to solve the linear system. First, sparse matrix can be stored using O(n) storage
by recording, for instance, the indices and values of nonzero entries, i.e., (i, j, aij). It would be
inefficient to store a sparse matrix in the same manner as a regular matrix, i.e. by storing all of
O(n2) entries; if n is large, the dense format might not even fit in the memory.

Linear solve. We can also take advantage of the sparsity of the matrix to solve the linear
system, Aũ = f̃ . For instance, the LU factorization can be modified to only treat nonzero entries;
the resulting algorithm, for our particular A, would compute the factors L and U inO(n) operations,
instead of in O(n3) operations. The resulting factors L and U are again sparse. The specific
algorithm that we can apply to our tridiagonal matrix A — which has nonzero entries only along
the main diagonal and the two subdiagonals — is called the Thomas algorithm.
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Even if the matrix is not tridiagonal, we can still take advantage of the sparsity of the matrix to
compute sparse factors L and U . However, in general, L and U are not as sparse as A; the number
of nonzeros in L and U could be substantially larger than the number of nonzeros in A, though
in general the number of nonzeros is still much smaller than n2. These additional nonzero entries
are called fill-ins. One important factor that determines the number of fill-ins is the ordering of
equations; Matlab’s backslash command for instance reorders the equations such that the number
of fill-ins is small.

More generally, sparse linear systems are often solved using an iterative method, instead of by
a direct method (e.g., LU factorization). A class methods that is often used to solve large sparse
systems is called Krylov space methods. There are also other specialized methods, such as the
multigrid method suited for Poisson’s equation. Unfortunately, their coverage is beyond the scope
of this lecture.

Do not form A−1. Before we conclude this section, we make one important remark:

if the matrix A is sparse, then never explicitly compute the matrix A−1.

It is important to note that even if A is sparse, A−1 is in general dense. For instance, the A matrix
associated with our central difference approximation of Poisson’s equation is sparse and has 3n− 2
nonzero entries, but the matrix A−1 is dense and has n2 nonzero entries. Forming A−1 is inefficient,
and, for a large n, the matrix might not even fit in the computer memory. So, we should never
form A−1. Instead, if we are using a direct method, we should perform LU factorization such that
A = LU , where L and U are sparse, and solve two sparse systems Lz = b and Ux = z using forward
and backward substitutions, respectively. (“Never explicitly form A−1” applies for dense systems
as well, but this is even more true for sparse systems.)

17.8 Numerical example

We consider Poisson’s equation

−d
2u

dx2
(x) = x2 exp(x) ∀x ∈ Ω ≡ (0, 1),

u(x = 0) = u(x = 1) = 0,

and solve it using the finite difference method introduced in this lecture. Figure 17.1 shows the
result for ∆x = 1/16. We see that the solution varies smoothly in space, is positive everywhere
(since f is positive everywhere), and vanishes at the two boundary points. Table 17.1 shows the
variation in the maximum error as a function of the grid spacing. We observe that decreasing ∆x
by a factor of 2 decreases the error by approximately a factor of 4, which is consistent with our
expectation for the second-order accurate method.

17.9 Summary

We summarize the key points of this lecture:

1. Poisson’s equation can be discretized using the second-order central finite difference formula
to yield a difference equation. For any ∆x, the associated matrix A is SPD and hence the
linear system is well-posed.
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Figure 17.1: Approximation of Poisson’s equation using the central finite difference method (∆x =
1/16).

∆x ‖u− ũ‖∞
1/4 4.88× 10−3

1/8 1.26× 10−3

1/16 3.17× 10−4

1/32 7.94× 10−5

1/64 1.98× 10−5

Table 17.1: Maximum error for Poisson’s equation as a function of the grid spacing.

2. The truncation error associated with the second-order central difference discretization of
Poisson’s equation is second order: ‖τ‖∞ ≤ C∆x2. Moreover, because ‖τ‖∞ → 0 as ∆x→ 0,
the scheme is consistent.

3. The ∞-norm of A−1 is bounded; specifically, ‖A−1‖∞ ≤ 1/8 for any ∆x.

4. Convergence of the scheme follows from the consistency and stability. Moreover, scheme is
second-order accurate.

5. The matrix A arising from the second-order finite difference discretization of Poisson’s equa-
tion is sparse and, more specifically, tridiagonal. Sparse systems can be stored efficiency
by storing only non-zero entries. The tridiagonal system may be solved using the Thomas
algorithm in O(n) operations (instead of O(n3) for dense systems).

6. Even though A is sparse, A−1 is dense. Hence, A−1 should never be formed. The rule to
“never explicitly form A−1” also applies to dense systems, but this is even more true for
sparse systems.
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Lecture 18

Boundary value problems:
generalization

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

18.1 Introduction

In the previous lecture, we studied a finite difference approximation of one-dimensional Poisson’s
equation. In this lecture, we provide a general framework to solve wider classes of equations and
in higher dimensions.

18.2 Finite difference framework for general equations

We abstract a linear differential equation as

Lu = f in Ω,

where u ∈ Cm(Ω) is the solution, L : Cm(Ω) → Cm−k(Ω) is the differential operator, and f ∈
Cm−k(Ω) is the source term. We assume that boundary conditions are embedded in the definition
of u such that the equation is well-posed. For instance, for Poisson’s equation with homogeneous
Dirichlet boundary conditions, L ≡ d2

dx2
and u(x = 0) = u(x = 1) = 0.

To approximate the solution of the BVP, we first discretize the domain Ω into n + 1 intervals
delineated by grid points {xi}ni=0. Then, we approximate the differential operator L with a finite
difference formula to obtain a difference scheme

L̃ũ = f̃ in Rn,

where ũ ∈ Rn is our approximation of u at the grid points, L̃ : Rn → Rn is the difference operator,
and f̃ ∈ Rn is f evaluated at the grid points. We hope that u(xi) ≈ ũi, i = 1, . . . , n.

Truncation error and consistency. Similar to our analysis of Poisson’s equation, one of
the two required ingredients for convergence is consistency. (The other is stability.) As before, we
define the truncation error as the remainder that result from the substitution of the exact solution
to the difference equation:

τ ≡ L̃u({xi})− f̃ ∈ Rn,
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where u({xi}) ∈ Rn is the vector whose i-th entry is u(xi). We say a scheme is consistent if

‖τ‖∞ → 0 as ∆x→ 0.

Moreover, if

‖τ‖∞ ≤ Cτ∆xp as ∆x→ 0,

then the truncation error is p-th order.

Stability. For a scheme to be convergent, it must also be stable. As before, we define stability
in ∞-norm. Specifically, a scheme is uniformly stable if, there exists a constant Cs such that

‖L̃−1‖∞ ≡ max
v∈Rn

‖L−1v‖∞
‖v‖∞

≤ Cs for all ∆x.

This condition, for a general finite difference scheme, is often difficult to prove. A weaker condition
is that a scheme is asymptotically stable: there exists a constant Cs such that

‖L̃−1‖∞ ≤ Cs for ∆x < ∆x?,

where ∆x? is some critical grid spacing.

Convergence. To prove convergence, we first relate the solution error to the truncation error.
Towards this end, we subtract our difference scheme L̃ũ = f̃ from the definition of the truncation
error L̃u({xi}) = f̃ + τ to obtain the error equation

L̃e = τ,

where ei ≡ u(xi)− ũi, i = 1, . . . , n. It also follows that e = L̃−1τ . We then note that

‖e‖∞ = ‖L̃−1τ‖∞ ≤ ‖L̃−1‖∞‖τ‖∞ ≤ CsCτ∆xp → 0 as ∆x→ 0.

We conclude that the scheme is convergent and it is p-th order accurate. Hence, we again have the
relationship

(consistency) + (stability) ⇒ (convergence),

which we have seen several times in this course.

18.3 Example 1. Reaction-diffusion equation

Reaction-diffusion equation is a model equation for reactive processes, such as combustion and
more general chemical reactions. The model equation is given by

−εd
2u

dx2
+ u = f in Ω = (0, 1),

u(x = 0) = u(x = 1) = 0,

where ε ∈ R>0 is the diffusion coefficient and f is the source term. Without loss of generality,
we take the reaction coefficient to be unity; when the coefficient is not unity, the equation can be
scaled to provide an equivalent problem with a unity reaction coefficient and modified ε and f .
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Figure 18.1: Solution of the reaction-diffusion equation for ν = 0.001 and f = 1.

Finite-difference formulation. We discretize the operator d2/dx2 using the central difference
formula and obtain the following difference equation:

−ε ũi+1 − 2ũi + ũi−1

∆x2
+ ũi = f̃i, i = 1, . . . , n,

ũi=0 = ũi=1 = 0.

The associated matrix form of the equation is

(εA+ I)ũ({xi}) = f̃ ,

where A ∈ Rn×n is the finite difference matrix associated with the negative of the Laplacian operator
introduced in the previous lecture. Because A is SPD, we readily observe that (εA + I) is SPD.
Moreover, the system is tridiagonal.

Consistency. With the central difference formula, we can readily show that

‖τ‖∞ ≡ ‖(εA+ I)u− f̃‖∞ ≤ Cτ∆x2 as ∆x→ 0.

The scheme is consistent, and the truncation error is second order.

Stability. Proving the stability of the reaction-diffusion system is beyond the scope of this
lecture. We here just state that it is possible to show that, for any ε ∈ R>0,

(εA+ I)−1 ≤ 1 for ∆x sufficiently small.

Convergence. Because the scheme is consistent and stable, it is convergent. The order of
accuracy of the scheme is two because the scheme is stable and ‖τ‖∞ ≤ Cτ∆x2.

Example. An example solution of the reaction-diffusion equation for ν = 0.001 and f = 1 is
shown in Figure 18.1. For the small diffusion coefficient, we observe boundary layers of thickness
O(
√
ν). The scheme exhibit second-order convergence as expected.
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18.4 Example 2. Convection-diffusion equation

Convection-diffusion equation is a model equation for transport processes, including flows governed
by the Navier-Stokes equations. The model equation is given by

−εd
2u

dx2
+
du

dx
= f in Ω = (0, 1),

u(x = 0) = u(x = 1) = 0,

where ε ∈ R>0 is the diffusion coefficient and f is the source term. Without loss of generality, we
take the convection coefficient to be unity; when the coefficient is not unity, the equation can be
scaled to provide an equivalent problem with a unity convection coefficient and modified ε and f .

Finite-difference formulation. We discrete the operators d2/dx2 and d/dx using the central
difference formulas for second and first derivatives, respectively, to obtain

−ε ũi+1 − 2ũi + ũi−1

∆x2
+
ũi+1 − ũi−1

2∆x
= f̃i, i = 1, . . . , n,

ũi=0 = ũi=1 = 0.

The associated matrix form of the equation is

(εA+B)ũ = f̃ ,

where A ∈ Rn×n and B ∈ Rn×n are the finite difference matrices associated with the negative of
the second-derivative and the first-derivative, respectively. The system is not symmetric, but it is
tridiagonal.

Consistency. With the second-order central difference formulas for both the first and second
derivatives, we can readily show that ‖τ‖∞ ≤ Cτ∆x2 as ∆x→ 0.

Stability. Proving the stability of the convection-diffusion system is beyond the scope of this
lecture. We here just state that it is possible to show that, for any ε ∈ R>0, the stability constant
is bounded for ∆x sufficiently small.

Warning. The particular discretization considered — which is based on the centered difference
approximation of the first derivative — yields solutions that exhibit spurious oscillations when the
grid spacing is larger than the length scale of the boundary layer: ∆x & ε. The discussion of this
phenomena is beyond the scope of this lecture; we only note that the issue can be overcome by
adding grid-dependent “stabilization terms” or incorporating the idea of “upwinding”.

Convergence. Because the scheme is consistent and stable, it is convergent. The order of
accuracy of the scheme is two because ‖τ‖∞ ≤ Cτ∆x2.

Example. An example of solving a convection-diffusion equation is shown in Figure 18.1. For
the small diffusion coefficient of ν = 0.1, we observe boundary layers of thickness O(ν). The scheme
exhibit second-order convergence as expected.

We also consider the case where the solution is underresolved in the sense that ε = 0.01 < ∆x =
1/32. Figure 18.3(a) shows that the scheme discussed above — based on centered difference of the
convection term — is unstable and exhibits spurious oscillation in the vicinity of the boundary
layer. Figure 18.3(b) shows that, with stabilization, the solution no longer exhibit oscillation, even
though the boundary layer is underresolved because ∆x > ε. A simple stabilization used in this
example is based on the idea of artificial diffusion; we modify the effective viscosity of the problem
such that εeff = min{ε,∆x}. The added artificial diffusion stabilizes the scheme when the boundary

168



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(a) approximation (∆x = 1/32)

100 101 102 103
10-5

10-4

10-3

10-2

10-1

(b) convergence

Figure 18.2: Convection-diffusion equation for ν = 0.1 and f = 1.
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Figure 18.3: Convection-diffusion equation for ε = 0.01, f = 1, and ∆x = 1/32.

layer is underresolved. But, when the boundary layer is resolved, the artificial diffusion is removed
from the scheme; i.e., we revert back to the original scheme discussed above, which works well for
∆x < ε.

18.5 Example 3. Helmholtz equation

Helmholtz equation is a model equation for the frequency-domain analysis of wave phenomena,
including acoustics and elastodynamics. The model equation is given by

−d
2u

dx2
− k2u = f in Ω ≡ (0, 1),

u(x = 0) = u(x = 1) = 0,
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Figure 18.4: Helmholtz equation for k = 10 and f = 1.

where k ∈ R≥0 is the wave number and f is the source term. The Helmholtz equation is not well-
posed when k = iπ for some integer i; physically, these values of k corresponds to the resonance
frequencies. Hence, we require k 6= iπ for any integer i.

Finite-difference formulation. We discretize the operator d2/dx2 using the central difference
formulas to obtain the following difference equation:

− ũi+1 − 2ũi + ũi−1

∆x2
− k2ũi = f̃i, i = 1, . . . , n,

ũi=0 = ũi=1 = 0.

The associated matrix form of the equation is

(A− k2I)ũ = f̃ ,

where A ∈ Rn×n is the finite difference matrix associated with the (negative of the) Laplacian
operator. The matrix (A − k2I) ∈ Rn×n is symmetric and tridigonal; however, it is not positive
definite for a large k. Moreover, the equation is singular when k2 is an eigenvalue of A. (We will
study eigenproblems in the next lecture.)

Consistency. With the second-order central difference formulas for both the first and second
derivatives, we can readily show that ‖τ‖∞ ≤ Cτ∆x2 as ∆x→ 0.

Stability. Proving the stability of the Helmholtz system is beyond the scope of this lecture.
We here only state that the stability constant Cτ is dependent on the wave number k, and it is not
bounded when k = iπ for some integer i.

Convergence. Because the scheme is consistent and stable, it is convergent. The order of
accuracy of the scheme is two because ‖τ‖∞ ≤ Cτ∆x2.

Example. An example of solving the Helmholtz equation for k = 10 and f = 1 is shown in
Figure 18.4. The solution is oscillatory. The scheme exhibit second-order convergence as expected.

170



18.6 Higher dimensions: Poisson’s equation in two dimensions

We now consider Poisson’s equation in two dimensions,

−∂
2u

∂x2
− ∂2u

∂y2
= f in Ω ≡ (0, 1)× (0, 1),

u(x ∈ ∂Ω) = 0.

Here, Ω is the physical domain of interest, u is the state, f ∈ C0(Ω) is the forcing function, and
u(x ∈ ∂Ω) = 0 is the boundary condition. Note that for simplicity we consider the unit square
domain and homogeneous Dirichlet boundary condition.

Finite-difference formulation. We now consider the approximation of the two-dimensional
Poisson’s equation by a finite difference method. We first introduce a computational grid over the
domain Ω. The grid points are given by

(xi, yj) = (i∆x, j∆y), i, j = 0, . . . , n+ 1,

where ∆x = ∆y = h = 1/(n+ 1) is the spacing between any two grid points. We then denote our
approximation of the solution by

ũi,j ≡ ũ(xi,j), i, j = 0, . . . , n+ 1.

We now apply the central difference formula to approximate the second derivatives ∂2u
∂x2

and ∂2u
∂y2

,

∂2u

∂x2

∣∣∣∣
i,j

+
∂2u

∂y2

∣∣∣∣
i,j

≈ ũi+1,j − 2ũi,j + ũi−1,j

∆x2
+
ũi,j+1 − 2ũi,j + ũi,j−1

∆y2
;

because the approximation of the Laplacian at (i, j) involves the solution values at five points (i.e.
four neighbors and itself), the finite difference approximation is said to have a five-point stencil.
The substitution of the finite difference formula to Poisson’s equation yields

− ũi+1,j − 2ũi,j + ũi−1,j

∆x2
− ũi,j+1 − 2ũi,j + ũi,j−1

∆y2
= f̃i,j , i, j = 1, . . . , n, (18.1)

with boundary conditions

ũ0,j = ũn+1,j = 0, j = 0, . . . , n+ 1,

ũi,0 = ũi,n+1 = 0, i = 1, . . . , n,

where f̃i,j = f(xi,j). Note that we have n2 equations associated with the grid points. The difference
equation can again be expressed in a matrix form:

Aũ = f̃ ;
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for instance, if n = 3, the vectors ũ and f̃ are given by

ũ =



ũ11

ũ21

ũ31

ũ12

ũ22

ũ32

ũ13

ũ23

ũ33


, f̃ =



f̃11

f̃21

f̃31

f̃12

f̃22

f̃32

f̃13

f̃23

f̃33


and the matrix A is given by

A =
1

h2



4 −1 −1
−1 4 −1 −1

−1 4 −1

−1 4 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


.

Note that we have ordered the grid points such that x-index is the faster changing index and y-index
is the slower changing index.

Consistency. Using exactly the same procedure we have used for the one-dimensional problem,
we can readily prove the convergence of the finite difference method in two dimensions.

First, using Taylor series expansion, we can shows that the the truncation error at the grid
point (i, j) is

τi,j = −∂
2u

∂x2
(xi,j)−

∂2u

∂y2
(xi,j)− f(xi)︸ ︷︷ ︸

=0 by PDE

− 1

12

∂4u

∂x4
(ξi,j)∆x

2 − 1

12

∂4u

∂y4
(ηi,j)∆y

2 = O(∆x2,∆y2).

It follows that

‖τ‖∞ = O(∆x2,∆y2).

Hence, the method is consistent.

Stability. The matrix A associated with our two-dimensional finite difference approximation
also satisfies the two properties:

1. All entries of A−1 are positive;

2. The infinity norm of A−1 is bounded: ‖A−1‖∞ ≤ 1
8 .

It follows that the finite difference approximation is stable in the sense that ‖ũ‖∞ ≤ 1
8‖f̃‖∞.
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Figure 18.5: Approximation of the two-dimensional Poisson’s problem using the central finite dif-
ference method (∆x = ∆y = 1/16).

∆x = ∆y ‖u− ũ‖∞
1/4 2.69× 10−3

1/8 6.56× 10−4

1/16 1.63× 10−4

1/32 4.07× 10−5

1/64 1.02× 10−5

Table 18.1: Maximum error for the two-dimensional Poisson’s problem as a function of the grid
spacing.

Convergence. To prove convergence, we again subtract the finite difference equation from
the equation for the truncation error to obtain the error equation, Ae = τ . By appealing to the
stability of A and the bound of the truncation error, we obtain

‖e‖∞ ≤
1

8
‖τ‖∞ = O(∆x2,∆y2).

We observe that the scheme is convergent and is second-order accurate.

Example. We consider a two-dimensional Poisson’s problem for f = sin(πx) sin(πy). The
second-order central finite difference approximation for ∆x = ∆y = 16 is shown in Figure 18.5.
Note that the solution varies smoothly in space. Table 18.1 shows the maximum error over all grid
points as a function of the grid spacing; we observe that the maximum error scales as O(∆x2,∆y2),
which we is consistent with our expectation for the second-order method.

18.7 Treatment of various boundary conditions

We have so far considered homogeneous Dirichlet boundary conditions. We now consider the
treatment of more general boundary conditions. To provide a concrete example, we consider the
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two-dimensional Poisson’s problem in Section 18.6; however, the procedure readily generalizes to
other dimensions and equations.

1. Dirichlet boundary. Suppose we wish to impose a nonhomogeneous Dirichlet boundary con-
dition on the x = 0 boundary:

u(xi=0, yj) = h(yj).

This boundary condition is incorporated in the finite difference equation associated with
(xi=1, yj); i.e., one point inside the boundary. We substitute ui=0,j = h(yj) to (18.1) evaluated
at (xi=1, yj),

− ũ2,j − 2ũ1,j + ũ0,j

∆x2
− ũ1,j+1 − 2ũ1,j + ũ1,j−1

∆y2
= f̂1,j ,

to obtain

− ũ2,j − 2ũ1,j + h(yj)

∆x2
− ũ1,j+1 − 2ũ1,j + ũ1,j−1

∆y2
= f̂1,j .

We move all known terms to the right hand side to obtain

− ũ2,j − 2ũ1,j

∆x2
− ũ1,j+1 − 2ũ1,j + ũ1,j−1

∆y2
= f̂1,j +

h(yj)

∆x2
.

Note that we have moved the “known” value to the right hand side of the equation so that
the left hand side is linear in ũ.

2. Neumann boundary. Suppose we wish to impose a nonhomogeneous Neumann boundary
condition on the x = 0 boundary:

−∂u
∂x

(xi=0, yj) = h(yj).

This boundary condition is incorporated in the finite difference equation associated with
(xi=0, yj). Note that, unlike the case of a Dirichlet boundary condition, the solution on the
boundary u(xi=0, yj) is unknown for a Neumann boundary. The finite difference approxima-
tion of the boundary condition is

− ũ1,j − ũ−1,j

2∆x
= h(yj),

which implies ũ−1,j = ũ1,j + 2∆xh(yj). We substitute the (approximation of the) boundary
condition to (18.1) evaluated at (xi=1, yj),

− ũ1,j − 2ũ0,j + ũ−1,j

∆x2
− ũ0,j+1 − 2ũ0,j + ũ0,j−1

∆y2
= f̂0,j ,

to obtain

− ũ1,j − 2ũ0,j + ũ1,j + 2∆xh(yj)

∆x2
− ũ0,j+1 − 2ũ0,j + ũ0,j−1

∆y2
= f̂0,j .

We again move known quantities to the right hand side to obtain

−2ũ1,j − 2ũ0,j

∆x2
− ũ0,j+1 − 2ũ0,j + ũ0,j−1

∆y2
= f̂0,j +

2h(yj)

∆x
.

We have again moved the term associated with the boundary data h to the right hand side
of the equation so that the left hand side is linear in ũ.
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We make a few remarks.

1. On a Dirichlet boundary, the solution value ũ0,j is known and becomes the right hand side
h(yj). On a Neumann boundary, the solution value ũ0,j is unknown and stays on the left
hand side.

2. The above treatment of the boundary conditions ensures that the truncation error is second-
order accurate.

3. Assuming not all boundary is Neumann boundary, it can be shown that ‖A−1‖∞ is bounded,
and hence the method is stable. (The continuous problem associated with fully Neumann
boundary conditions is not a well posed because the solution can “float”; i.e., the solution
can only be determined up to a constant. Our finite difference approximation inherits this
property of the continuous problem in the fully Neumann case.)

4. Since the truncation error is second-order accurate and the method is stable, the finite dif-
ference approximation is convergent and is second-order accurate.

18.8 Summary

We summarize the key points of this lecture:

1. A general boundary value problem, Lu = f with appropriate boundary conditions, can be
approximated by applying a finite-difference formula to the differential operator L. The
resulting (discrete) equation is of the form L̃ũ = f̃ .

2. In order to prove a finite difference approximation is convergent, we need to show that the
scheme is consistent — ‖τ‖∞ ≡ ‖L̃u({xi})− f̃‖∞ → 0 as ∆x→ 0 — and that the inverse of
the difference operator is bounded — ‖L−1‖∞ ≤ Cs.

3. If the scheme is stable and ‖τ‖∞ = O(∆xp), then the scheme is p-th order accurate in the
sense that ‖u({xi})− ũ‖∞ ≤ C∆xp as ∆x→ 0.

4. Canonical BVPs — including the reaction-diffusion equation, convection-diffusion equation,
and Helmholtz equation — can be approximated using the finite difference method. However,
there are subtle issues — especially regarding the stability — for some equations.

5. Finite difference method can be extended to higher dimensions by applying the finite difference
formula to the differential operator in each coordinate direction.

6. Finite difference method can readily treat nonhomogeneous Dirichlet and Neumann boundary
conditions.
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Lecture 19

Boundary value problems:
eigenproblems

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

19.1 Introduction

Eigenproblems are ubiquitous in engineering. One example is the identification of resonance fre-
quencies in structural analysis, which requires eigenvalues of the linear elasticity equations. Another
example is the hydrodynamic stability analysis, which requires the eigenvalues of the (linearized)
Navier-Stokes equations. In essentially all but simplest cases, the analytical solution is not known
and the eigenproblems must be solved numerically. In this lecture, we consider numerical approxi-
mation of the eigenproblem associated with the Laplacian operator.

19.2 Model problem

A model eigenproblem we consider is the following: find (non-trivial) eigenpairs (uk, λk) ∈ Cm(Ω)×
R such that

−d
2uk

dx2
= λkuk in Ω ≡ (0, 1),

uk(x = 0) = 0,

uk(x = 1) = 0,

for k = 1, 2, . . . . Without loss of generality, we order the eigenpairs such that

λ1 ≤ λ2 ≤ . . . .

Exact solutions to this eigenproblem are given by

uk(x) = sin(
√
λkx),

λk = k2π2,
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for k = 1, 2, . . . ; we can readily verify the result through a direct substitution. We recall that uk is
unique only up to scaling. We make a few observations:

1. Eigenvalues are positive; λk > 0, ∀k.

2. Eigenvectors {uk} are ortohgonal in the sense that∫ 1

0
uk(x)ul(x)dx = δkl =

{
1, k = l

0, k 6= l

where δkl is the Kronecker delta. (We here assume an appropriate scaling of ũk.)

3. There are infinite number of eigenpairs. The minimum eigenvalue is bounded but the maxi-
mum eigenvalue is not.

4. Eigenvectors are more oscillatory for a higher k; we intuitively anticipate that the numerical
approximation of high modes are more difficult than low modes.

The positiveness and orthogonality are consequences of the Laplacian operator being self-adjoint
(i.e., “symmetric”) and coercive (i.e., “positive definite”).

19.3 Finite difference method

Following the recipe we introduced to solve BVPs, we first introduce a computational grid over the
domain Ω ≡ [0, 1]. The grid points are given by

xi = i∆x, i = 0, . . . , n+ 1,

where ∆x ≡ 1/(n + 1) is the grid spacing. We then approximate the second derivative with a
central difference formula to obtain the difference equation: find eigenpairs (ũk, λ̃k) ∈ Rn ×R such
that

−
ũki+1 − 2ũki + ũki−1

∆x2
= λ̃kũki , i = 1, . . . , n,

with boundary conditions
ũi=0 = ũi=n+1 = 0.

The matrix form of the equation is

Aũk = λ̃kũk, k = 1, 2, . . .

where

A =
1

∆x2



2 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 2


∈ Rn×n,

which is symmetric positive definite (SPD) as shown in the previous lecture. Our hope is that
λ̃k ≈ λk and ũk ≈ uk({xi}). (We recall that uk({xi}) is our shorthand for a n vector whose i-th
entry is uk(xi).) Before we proceed with the error analysis, we make a few observations about the
difference equation:
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1. The eigenvalues are real and positive (since A is SPD).

2. Eigenvectors are orthogonal in the sense that (vk)T (vl) = δkl (since A is symmetric).

3. We have n eigenvalues, though they may not be distinct.

The last observation implies that we can expect only a small subset of the eigenvalues of the
original differential operator to be approximated, as the differential operator has infinite number
of eigenvalues.

19.4 Error analysis

It turns out we can find the eigenpairs of the matrix A ∈ Rn×n in closed form. Specifically, the n
eigenpairs are given by

ũki = sin(kπxi), i = 1, . . . , n,

λ̃k =
2

∆x2
(1− cos(kπ∆x)),

for k = 1, . . . , n. We can readily verify that (ũk, λ̃k) is an eigenpair through a direct substitution
to the difference equation: the i-th row of Aũk = λ̃kũk is

(Aũk)i =
1

∆x2
(−ũki+1 + 2ũki − ũki−1) =

1

∆x2
(− sin(kπ(xi + ∆x)) + 2 sin(kπxi)− sin(kπ(xi −∆x)))

=
1

∆x2
(−2 sin(kπxi) cos(kπ∆x) + 2 sin(kπxi)) =

2

∆x2
(1− cos(kπ∆x))︸ ︷︷ ︸

λ̃k

sin(kπxi)︸ ︷︷ ︸
ũki

= λ̃kũki .

We also note that ũk satisfies the boundary conditions: ũki=0 = ũki=n+1 = 0.

We now analyze the error in our eigenvalue approximation. For kπ∆x� 1, the eigenvalues are

λ̃k =
2

∆x2
[1− (1− k2π2∆x2

2
+
k4π4∆x4

24
+O(k6π6∆x6))]

= k2π2 − k4π4∆x2

12
+O(k6π6∆x4).

It follows that, for kπ∆x� 1, the relative error in the eigenvalues is

|λk − λ̃k|
|λk|

=
k2π2∆x2

12
+O(k4π4∆x4).

We observe that our finite difference method approximates the true eigenvalues of low-modes (i.e.
for k small in the sense that kπ∆x� 1). More precisely, the approximate eigenvalues are second-
order accurate: there exists a constant C such that |λk − λ̃k|/|λk| ≤ Ck2∆x2.
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Figure 19.1: Approximation of eigenvalues for ∆x = 1/16 and ∆x = 1/32

19.5 Numerical results

We now solve the eigenproblem associated with the Laplacian operator over Ω ≡ (0, 1) using
the finite difference method. Figure 19.1 illustrates how the range of eigenvalues that are well
approximated changes with the grid spacing ∆x. For a small value of ∆x = 1/16, only the first
several modes are approximated well; note that this is consistent with the theory which predicts the
error to be reasonably small for kπ . 1/∆x. We also observe that reducing the grid spacing by a
factor of two to ∆x = 1/32 roughly doubles the number of eigenvalues that are well approximated.

We now assess how well eigenvectors are approximated. Figures 19.2(a)–(c) show that the
eigenmodes i) are exact at the evaluation points {xi}ni=1 and ii) are well-represented in the sense
that we can readily approximate the true eigenmodes, which are continuous functions, by (say)
interpolating the values at the evaluation points. The exactness of the eigenmodes evaluated at
{xi}ni=1 is expected from the theory.

On the other hand, we observe in Figure 19.2(d) that the high-modes i) are exact at the
evaluation points {xi}ni=1 but ii) are not well-represented in the sense that we would not be able
to approximate the eigenmodes by interpolating the values at the evaluation points. (Note that
even though we show the true eigenmode u15 in the figure for the purpose of assessment, this
solution would not be known in practice; otherwise, there is no reason to approximate the solution
numerically.) Specifically, we suffer from aliasing because our grid spacing is too large to resolve
the true eigenmode. In order to accurately resolve this mode, the grid spacing must be decreased.

19.6 Generalization: other equations and higher dimensions

As discussed in the introduction, eigenproblems are ubiquitous in engineering. The technique
discussed in this lecture in the context of the Laplacian operator can be generalized to other
equations; a general eigenproblem is of the form

Lu = λu,

where L is associated with the particular governing equation. For instance, in structural analysis,
a structure can be modeled by the linear elasticity equations (i.e., Cauchy-Navier equations); the
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Figure 19.2: Approximation of eigenmodes of the Laplacian for ∆x = 1/16.
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identification of resource modes requires the solution of an eigenproblem where L is the Cauchy-
Navier operator. As another example, in fluid dynamics, the analysis of hydrodynamics stability
requires the solution of an eigenproblem where L is the linearized Navier-Stokes operator. While
closed form solutions to these problems do not exist in general, we can numerically approximate
the problem by solving

L̃ũ = λ̃ũ,

where L̃ is an appropriate finite difference approximation of L.

19.7 Summary

We summarize the key points of this lecture:

1. The negative of the Laplacian operator has an infinite number of eigenpairs. The eigenvaleus
are positive, and eigenvectors are orthogonal.

2. We can approximate the eigenpairs of the negative of the Laplacian operator by approximating
the operator using the second-order central difference formula. The associated eigenvalues
are positive and orthogonal. However, there are only a finite number of eigenpairs.

3. The relative error in the k-th eigenvalue is O(k2∆x2). The (true) eigenvalues are well ap-
proximated assuming ∆x is sufficiently small in the sense k∆x� 1.

4. Eigenmodes of low modes (i.e., k∆x � 1) are well represented. High modes are not well
represented due to aliasing.

5. The finite difference method for eigenproblems may be extended to other equations and higher
dimensions.
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Lecture 20

Time-dependent PDEs

©2016–2022 Masayuki Yano. Prepared for AER336 Scientific Computing taught at the University
of Toronto.

20.1 Motivation

We have so far considered initial value problems (IVPs) governed by a system of ordinary differential
equations (ODEs) and steady boundary value problems. We will now consider problems governed
by time-dependent partial differential equations (PDEs).

20.2 Heat equation

The heat equation over a one-dimensional domain Ω ≡ (0, 1) and a time-interval I ≡ (0, tf ] is given
by

∂u

∂t
− κ∂

2u

∂x2
= f in Ω× I,

u = 0 on ∂Ω× I,
u = u0 on Ω× {t = 0};

here κ is the thermal diffusivity, f is volume heat source, and u0 is the initial condition.

We now obtain a semi-discrete equation of the PDE by discretizing the problem in space,
but not in time. Specifically, following the presentation in the previous lectures, we introduce a
one-dimensional grid with grid points

xi = i∆x, i = 0, . . . , n+ 1,

where ∆x = 1/(n + 1) is the grid spacing. We then denote the approximate solution at the grid
point for any t ∈ (0, tf ] by

ũi(t) ≡ ũ(xi, t), i = 0, . . . , n+ 1.
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We approximate the Laplacian using the second-order finite-difference formula to obtain the fol-
lowing semi-discrete equation:

dũi
dt
− κ[

1

∆x2
(ũi+1 − 2ũi + ũi−1)] = f̃i, i = 1, . . . , n, t ∈ (0, tf ],

ũ0 = ũn+1 = 0, t ∈ (0, tf ],

ũi(t = 0) = u0
i , i = 1, . . . , n.

Note that we now have an IVP governed by a system of n ODEs. The equation is said to be
semi-discrete because it is discrete in space but is continuous in time. We can write the equation
more compactly using the matrix notation:

dũ

dt
+ κAũ = f̃ , t ∈ (0, tf ];

here the matrix A is associated with the second-order central difference approximation of the
negative of the Laplacian, which was introduced in the lecture on Poisson’s equation.

20.3 Modal decomposition of A and the solution of the IVP

We can now solve the IVP governed by the system of ODEs using any time integration technique,
for instance multistep or multistage methods. We recall that, for an IVP given by du/dt = g(u, t), a
good choice of an IVP integration scheme relies on the eigenvalues — and in particular the stiffness
ratio — of the operator ∇ug, which for the heat equation is −κA.

We recall from the previous lecture that the eigenvalues of the matrix A ∈ Rn×n is given by

λ̃k =
2

∆x2
(1− cos(kπ∆x)), k = 1, . . . , n.

The minimum eigenvalue is

λ̃1 =
2

∆x2
(1− cos(π∆x)) =

2

∆x2
(
1

2
π2∆x2 +O(∆x4)) ≈ π2.

The maximum eigenvalue is

λ̃n =
2

∆x2
(1− cos(πn∆x)) ≈ 4

∆x2
,

where the approximation follows from n∆x = n/(n+ 1) ≈ 1 and hence cos(πn∆x) ≈ cos(π) ≈ −1
for n sufficiently large (i.e. ∆x sufficiently small). It follows that the stiffness ratio is

r ≡ λ̃n

λ̃1
≈ 4

π2∆x2
≈ 4n2

π2
.

The stiffness ratio of the problem increases as 1/∆x2. Hence, when we employ a fine discretization
in space (i.e. ∆x small), the problem will be very stiff.

There are two plausible strategies to solve the IVP:

1. Use an explicit method and scale the time step according to ∆t ∼ ∆x2 such that λn∆t
remains in the stable region of the absolute stability diagram;
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2. Use an A-stable method and choose time step without any stability considerations.

The first strategy does not scale well with ∆x, as we must take smaller and smaller time step to
remain stable. Hence, the recommended strategy is to employ an A-stable method. We may for
example consider backward Euler, Crank-Nicolson, backward differentiation formulas (BDFs), or
implicit Runge-Kutta schemes.

20.4 Error analysis

There are two difference sources of errors associated with the discretization of time-dependent
PDEs. The first is associated with the spatial discretization of the (spatial) differential operator
by finite difference; for instance, for the second-order central difference,

∂u

∂t
− ∂2u

∂x2
= f ⇒ ∂ũ

∂t
+Aũ = f̃ .

The second is associated with the temporal discretization of the (now finite-dimensional) ODEs;
for instance, for backward Euler,

∂ũ

∂t
= −Aũ+ f̃ ⇒

˜̃uj − ˜̃uj−1

∆t
= −A˜̃uj + f̃ j .

We note that our error can be decomposed as

‖u− ˜̃u‖∞ ≡ max
i=1,...,n
j=0,...,J

|u(xi, t
j)− ũji | ≤ ‖u− ũ‖∞︸ ︷︷ ︸

spatial error

+ ‖ũ− ˜̃u‖∞︸ ︷︷ ︸
temporal error

.

Moreover, it can be shown that, if we use a p-th order accurate discretization in space and q-th
order accurate integration in time, we have

‖u− ˜̃u‖∞ ≤ C∆xp + C ′∆xq,

assuming the solution is sufficiently regular. For instance, if we discretize the heat equation using
the second-order central difference in space and backward Euler (which is first order accurate) in
time, then the error is O(∆x2,∆t1). In order to obtain an accurate approximation, we must control
both the spatial discretization error and temporal discretization error. In particular, to achieve high
efficiency, we need to balance the error due to the two sources; for instance, using a very small time
stepping would be counterproductive if the error due to spatial discretization is large.

20.5 Example: heat equation

We now consider the heat equation with a source term f(x) = x(1−x3) exp(x), a boundary condition
u|x∈∂Ω = 0, and an initial condition u|t=0 = 0. We use the second-order central difference formula
for spatial discretization, and the backward Euler method for temporal integration. Figure 20.1
shows the approximate solution for ∆x = 1/16 and ∆t = 1/16. We observe that the solution starts
with the initial state of u(t = 0) = 0 and grows until it reaches the steady state solution.

Table 20.1 shows the maximum error ‖u − ũ‖∞ as a function of ∆x and ∆t. As discussed,
for time dependent equations, the solution accuracy can be limited by either the lack of spatial
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Figure 20.1: Approximation of the heat equation problem for ∆x = 1/16 and ∆t = 1/16.

∆t = 1/16 ∆t = 1/32 ∆t = 1/64 ∆t = 1/128 ∆t = 1/256

∆x = 1/4 3.89× 10−3 4.12× 10−3 4.22× 10−3 4.27× 10−3 4.30× 10−3

∆x = 1/8 3.91× 10−3 2.02× 10−3 1.06× 10−3 1.10× 10−3 1.12× 10−3

∆x = 1/16 4.10× 10−3 2.14× 10−3 1.08× 10−3 5.30× 10−4 2.69× 10−4

Table 20.1: Maximum error for the heat equation problem as a function of the grid spacing ∆x and
time stepping ∆t using the second-order central difference discretization in space and the backward
Euler method in time.

resolution or the lack of temporal resolution. Hence, we must decrease both ∆x and ∆t to decrease
the error. Specifically, we observe that if ∆t is sufficiently small such that the accuracy is limited by
∆x (i.e. ∆t = 1/256), then the error converges as O(∆x2), which is consistent with our expectation
for the second-order accurate spatial discretization. Conversely, if ∆x is sufficiently small such
that the accuracy is limited by ∆t (i.e. ∆x = 1/16), then the error converges as O(∆t1), which is
consistent with the backward Euler method.

20.6 Wave equation

The wave equation over a one-dimensional domain Ω = (0, 1) and a time interval I ≡ (0, tf ] is given
by

∂2ϕ

∂t2
=
∂2ϕ

∂x2
in Ω× I,

ϕ = 0 on ∂Ω× I,
ϕ = x0 on Ω× {t = 0},
ϕ′ = v0 on Ω× {t = 0},

where x0 specifies the initial position, and v0 specifies the initial velocity.

We now obtain a semi-discrete equation of the PDE by discretization the problem in space
(and not in time). Applying the second-order central difference discretization of the Laplacian, we
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obtain
d2ϕ̃i
dt2

= [
1

∆x2
(ϕ̃i+1 − 2ϕ̃i + ϕ̃i−1)] in (0, tf ],

with boundary conditions ϕ̃0 = ϕ̃n = 0. The matrix form of the equation is

d2ϕ̃

dt2
= −Aϕ̃, t ∈ (0, tf ],

where A is associated with the central difference discretization of the negative of the Laplacian.
The initial conditions are ϕ̃ = x̃0 and ϕ̃′ = ṽ0.

We now have the second-order IVP. This IVP can be recast into a first-order form by introducing
variables w̃0 = ϕ̃ and w̃1 = ϕ̃′. The resulting first-order IVP is

d

dt

(
w̃0

w̃1

)
=

(
0 I
−A 0

)(
w̃0

w̃1

)
, t ∈ (0, tf ],(

w̃0

w̃1

)
t=0

=

(
x̃0

ṽ0

)
.

We could write the equation even more compactly by introducing

ũ =

(
w̃0

w̃1

)
∈ R2n, ũ0 =

(
x̃0

ṽ0

)
∈ R2n, and B =

(
0 I
−A 0

)
∈ R2n×2n;

we then have

dũ

dt
= Bũ, t ∈ (0, tf ],

ũ(t = 0) = ũ0.

20.7 Modal decomposition of B and the solution of the IVP

The 2n eigenvalues of the matrix B are given by

λ̃k = (−1)k
i

∆x

√
2(1− cos(mkπ∆x)),

where mk = dk/2e, k = 1, . . . , 2n. The associated eigenvectors can be expressed in a block form,

ṽk =

(
p̃k

q̃k

)
,

where each of the block components are given by

p̃ki = sin(mkπxi),

q̃ki = (−1)k
i

∆x

√
2(1− cos(mkπ∆x)) sin(mkπxi).

We observe that all 2n eigenvalues of B are purely imaginary, and they are n complex pairs. The
maximum eigenvalue (in magnitude) is |λ̃2n| ≈ 2/∆x ≈ 2n.

In order to preserve the energy of the oscillatory modes associated with purely imaginary eigen-
values, a recommended time integrator for the wave equation are those that have a relatively large
stability boundary along the imaginary axis. For instance, the four-stage explicit Runge-Kutta
method (RK4) or the Crank-Nicolson method are good choices.

186



∆t = 1/16 ∆t = 1/32 ∆t = 1/64 ∆t = 1/128 ∆t = 1/256

∆x = 1/16 2.02× 10−1 1.25× 10−1 1.00× 10−1 9.38× 10−2 9.21× 10−2

∆x = 1/32 1.66× 10−1 6.84× 10−2 3.71× 10−2 2.84× 10−2 2.62× 10−2

∆x = 1/64 1.56× 10−1 5.20× 10−2 1.89× 10−2 9.68× 10−3 7.26× 10−3

∆x = 1/128 1.53× 10−1 4.80× 10−2 1.42× 10−2 4.86× 10−3 2.42× 10−3

∆x = 1/256 1.52× 10−1 4.70× 10−2 1.30× 10−2 3.62× 10−3 1.25× 10−3

Table 20.2: Maximum error for the wave equation problem as a function of the grid spacing ∆x
and time stepping ∆t using the second-order central difference discretization in space and the
Crank-Nicolson method in time.

20.8 Example: wave equation

We now consider the wave equation with a boundary condition ϕ|x∈∂Ω = 0, and initial conditions
ϕ|t=0 = exp(−32(x− 1/2)2) and ϕ′|t=0 = 0. We use the second-order central difference formula for
the spatial discretization (∆x = 1/32), and the Crank-Nicolson method for temporal integration
(∆t = 1/32). Figure 20.2 shows the evolution of the solution over time. As expected, the solution
consists of two waves — one left-traveling and the other right-traveling — which are reflected at
the boundaries.

Table 20.2 shows the maximum error ‖u − ũ‖∞ as a function of ∆x and ∆t. As before, the
solution accuracy can be limited by either the lack of spatial or temporal resolution; we must
decrease both ∆x and ∆t to control the error.

20.9 Generalization: other equations and higher dimensions

The semi-discrete formulation for time-dependent problems readily extend to other equations and
higher dimensions. Specifically, a time-dependent PDE that is first-order in time may be expressed
as

∂u

∂t
+ Lu = f in Ω× (0, tf ],

u = u0 on Ω× {t = 0},

with appropriate boundary conditions. The semi-discrete form of the PDE is

∂ũ

∂t
+ L̃ũ = f̃ in (0, tf ],

ũ(t = 0) = ũ0,

where L̃ results from an appropriate finite difference approximation of the differential operator L.
We emphasize that L may represent any linear operator — for instance associated with advection-
diffusion or reaction-diffusion — which may be defined over any spatial dimension. For instance,
the heat equation with homogeneous Dirichlet boundary conditions in two dimensions would yield
a semi-discrete equation

dũi,j
dt
− κ

[
ũi+1,j − 2ũi,j + ũi−1,j

∆x2
+
ũi,j+1 − 2ũi,j + ũi,j−1

∆y2

]
= f̃i,j , i, j = 1, . . . , n,
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Figure 20.2: Approximation to the wave equation obtained using the second-order central difference
discretization in space (∆x = 1/33) and the Crank-Nicolson method in time (∆t = 1/32).
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with boundary conditions ũ0,j = ũn+1,j = 0, j = 0, . . . , n + 1, and ũi,0 = ũi,n+1 = 0, i = 1, . . . , n,
and an initial condition ũi,j(t = 0) = u0(xi, yj). More compactly, we can write the equations in
matrix form as

dũ

dt
= −κAũ in (0, tf ],

ũ(t = 0) = ũ0,

where A is the central difference approximation of the negative of the Laplacian in two dimensions.
Similarly, a time-dependent PDE that is second-order in time may be expressed as

∂2u

∂t2
= Lu+ f in Ω× (0, tf ],

u = u0 on Ω× {t = 0},
u′ = u′0 on Ω× {t = 0}.

The semi-discrete form of the PDE is

∂2ũ

∂t2
= L̃ũ+ f̃ in (0, tf ],

ũ(t = 0) = ũ0,

ũ′(t = 0) = ũ′0.

The semi-discrete form can then be turned into a first-order form by introducing an auxiliary
variable for ũ′. Again, L may represent any linear operator in any spatial dimension. For instance,
the wave equation in two dimensions would yield a semi-discrete equation

d2ϕ̃i,j
dt2

=
ϕ̃i+1,j − 2ϕ̃i,j + ϕ̃i−1,j

∆x2
+
ϕ̃i,j+1 − 2ϕ̃i,j + ϕ̃i,j−1

∆y2
, i, j = 1, . . . , n,

with boundary conditions ϕ̃0,j = ϕ̃n,j = 0, j = 0, . . . , n + 1, and ϕ̃i,0 = ϕ̃i,n = 0, i = 1, . . . , n, and
initial conditions ϕ̃i,j(t = 0) = x0(xi, yj) and ϕ̃′i,j(t = 0) = v0(xi, yj).

20.10 Summary

We summarize the key points of this lecture:

1. As semi-discrete form of a time-dependent PDE is obtained by discretizing the problem in
space but not in time.

2. A fully discrete form of a time-dependent PDE is obtained by applying a time-integration
scheme to a semi-discrete form.

3. The choice of a time-integration scheme depends on the stiffness of the IVP, which can be
determined by analyzing the eigenvalues of the spatial matrix.

4. The accuracy of a numerical approximation of a time-dependent PDE depends on two fac-
tors: the spatial discretization error and the time discretization error. Both errors must be
controlled to control the accuracy of the approximation.
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5. PDEs that are higher than first-order in time (e.g., wave equation) can be recast into a
first-order form and solved using a standard time-marching scheme.

6. The two-step strategy, in which we first discreteize in space and then in time, applies to any
time-dependent PDE in arbitrary dimensions.
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