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Lecture 1

Introduction: Poisson’s equation in
one dimension

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

1.1 Introduction

In this lecture, we provide a brief overview of the variational formulation and the associated finite
element approximation of partial differential equations using a concrete example: one-dimensional
Poisson’s equation. The goal is to provide an accessible overview that illustrates the main ideas
without complexities associated with higher dimensions and more general equations; we also defer
some of the technical discussions to later lectures.

1.2 Model problem: strong form

We consider a taut string with fixed ends subjected to a distributed transverse load as shown in
Figure 1.1. Given an appropriate normalization, the shape of the string can be modeled as the
solution to a one-dimensional Poisson’s equation on Ω ≡ (0, 1):

−d
2u

dx2
= f in Ω, (1.1)

u(x = 0) = 0,

u(x = 1) = 0,

where f is associated with the transverse load. For an integrable f , we may integrate the ODE
twice to confirm the existence and uniqueness of the solution. We refer to this particular form of
the problem as the strong form. The name derives from the fact the equation is enforced strongly
in the point-wise sense for each x in Ω, which can be contrasted with the weak form introduced in
the next section.

7



Figure 1.1: Taut-string problem modeled by Poisson’s equation.

1.3 Variational formulation (or weak formulation)

We now consider a different form of Poisson’s equation (1.1) that is (i) more general than the strong
form and (ii) amenable to finite element discretization. To obtain this new form of (1.1), we use
the weighted residual method. To begin, we choose a (sufficiently regular) test function such that
v(x = 0) = v(x = 1) = 0, multiply (1.1) by this function, and integrate the expression to obtain∫

Ω
v

(
−d

2u

dx2

)
dx =

∫
Ω
vfdx. (1.2)

We then apply integration by parts to the left hand side to obtain∫
Ω

dv

dx

du

dx
dx−

�
�
�
�
�[

v
du

dx

]1

x=0

=

∫
Ω
vfdx; (1.3)

note that the boundary term vanishes because we require v(x = 0) = v(x = 1) = 0. If u is the
solution to (1.1), then we expect the expression (1.2), and in turn (1.3), to hold for any test function
v. In fact, the variational problem seeks the solution u which satisfies (1.3) for all suitable test
functions v. We may speculate that, given a suitably large set of test functions, the solution u is
unique and coincides with the solution to the strong form of Poisson’s equation (1.1).

We now formalize the above procedure. To this end, we first introduce a linear space

V ≡ {v | v is continuous,

∫
Ω

(
dv

dx

)2

dx is bounded, and v(x = 0) = v(x = 1) = 0}; (1.4)

here, first two conditions are related to the regularity of the solution sought, and the last condition
imposes the boundary conditions. We note that v ∈ V need not be twice continuously differentiable.
In fact dv

dx does not have to be even bounded; it just needs to be square integrable.
We next introduce a linear form ` : V → R such that

`(v) ≡
∫

Ω
vfdx ∀v ∈ V. (1.5)

The form ` : V → R is called a linear form because it is linear in its argument in the sense that

(i) `(αw) = α`(w) ∀w ∈ V, ∀α ∈ R;

(ii) `(w + v) = `(w) + `(v) ∀w, v ∈ V.
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In other words,
`(αw + βv) = α`(w) + β`(v) ∀w, v ∈ V, ∀α, β ∈ R.

We also define a bilinear form a : V × V → R such that

a(w, v) ≡
∫

Ω

dv

dx

dw

dx
dx ∀w, v ∈ V. (1.6)

The form a : V × V → R is called a bilinear form because

(i) for any fixed ṽ, a(w, ṽ) is a linear form in w;

(ii) for any fixed w̃, a(w̃, v) is a linear form in v.

Given the linear and bilinear forms, we can concisely state our variational formulation of the
problem as follows: find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V. (1.7)

This variational formulation of the problem is also called the weak formulation. The space V to
which the solution u belongs is called the trial space; the space V to which the test function v
belongs is called the test space. (While we choose the same trial and test spaces in this example,
the two spaces need not be the same in general.) A variational form which uses the same function
space for the trial and test spaces is called the Galerkin formulation; our variational form (1.7) is a
Galerkin formulation because both the trial and test spaces are V defined by (1.4). The variational
problem has a unique solution; we will study the well-posedness of the problem in subsequent
lectures.

We can readily show that the solution to the strong from (1.1) solves the variational form (1.7).
To see this, we integrate by parts and observe that, for all v ∈ V,

a(u, v)− `(v) ≡
∫

Ω

dv

dx

du

dx
dx−

∫
Ω
vfdx =

∫
Ω
v

(
−d

2u

dx2
− f

)
︸ ︷︷ ︸

=0 as u solves (1.1)

dx+

[
v
du

dx

]1

x=0︸ ︷︷ ︸
=0 by BC for v

= 0.

Hence, the solution to the strong form (1.1) satisfies the weak form (1.7). However, the converse
is not necessarily true. In fact, the variational form admits more general loads f and associated
solutions than the strong form. For instance, a Dirac delta function, which corresponds to a point
load, is an admissible load for the variational formulation (1.7) and there exists a unique solution to
the problem; however, the strong from (1.1) is not well defined for a Dirac delta function f because
f does not have well-defined point-wise values.

1.4 Minimization formulation

We now introduce a minimization form, which is closely related to the variational form (1.7). We
note that not all boundary value problems possess a minimization form; only those problems with
an intrinsic energy, such as our model problem (1.1), possess a minimization form. To obtain a
minimization form, we introduce a functional J : V → R given by

J(w) ≡ 1

2

∫
Ω

(
dw

dx

)2

dx−
∫

Ω
fwdx ∀w ∈ V, (1.8)
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where V is defined by (1.4). Our minimization formulation is as follows: find u ∈ V such that

u = arg min
w∈V

J(w). (1.9)

For a physical system with intrinsic energy, such as the taut-string problem in Section 1.1, the
functional J represents the total energy in the system;

∫
Ω(∂w∂x )2dx is the internal energy and

∫
Ω fwdx

is the external work. Our minimization statement is hence a statement of energy minimization at
the equilibrium.

We can readily show that u ∈ V is the solution to the variational problem (1.7) if and only if it
is the solution to the minimization problem (1.9). We first show that if u ∈ V solves the variational
problem (1.7), then it satisfies the minimization problem (1.9). Suppose u ∈ V is the solution to
the variational problem (1.7). Then, for w = u+ v for any v ∈ V, we obtain

J(w) = J(u+ v) = J(u) +

∫
Ω

dv

dx

du

dx
dx−

∫
Ω
fvdx︸ ︷︷ ︸

(I)

+
1

2

∫
Ω

(
dv

dx

)2

dx︸ ︷︷ ︸
(II)

.

The term (I) vanishes because by (1.7)∫
Ω

dv

dx

du

dx
dx−

∫
Ω
fvdx = a(u, v)− `(v) = 0 ∀v ∈ V.

We now analyze (II). We first note that the term is greater than 0 for all non-constant function
(i.e. dv

dx 6= 0); (II) is zero only if v is a constant function. We next note that for a constant function
to satisfy the boundary conditions of V, v(x = 0) = v(x = 1) = 0, the function must be the zero
function: v = 0. Hence, we conclude that (II) is greater than 0 for any non-zero function. It thus
follows that

J(w) = J(u+ v) > J(u) ∀v 6= 0;

hence the solution u ∈ V of the variational problem (1.7) solves the minimization problem (1.9).
We now show the converse: if u ∈ V solves the minimization problem (1.9), then it satisfies the

variational problem (1.7). Suppose u ∈ V is the solution to the minimization problem (1.9). We
know that the minimizer u ∈ V must satisfy the stationarity condition

J ′(u; v) ≡ lim
ε→0

1

ε
(J(u+ εv)− J(u)) = 0 ∀v ∈ V;

i.e., the Fréchet derivative (i.e., directional derivative) about u in any direction v should be 0. The
stationarity condition can be restated as

J ′(u; v) ≡ lim
ε→0

1

ε
(J(u+ εv)− J(u))

= lim
ε→0

1

ε

(∫
Ω
ε
dv

dx

du

dx
dx−

∫
Ω
εfvdx+

1

2

∫
Ω
ε2
(
dv

dx

)2

dx

)

=

∫
Ω

dv

dx

du

dx
dx−

∫
Ω
fvdx = a(u, v)− `(v) = 0 ∀v ∈ V,

which is exactly our variational problem (1.7). Hence we conclude that u ∈ V is the solution to the
variational problem (1.7) if and only if it is the solution to the minimization problem (1.9); the two

10



Figure 1.2: Linear finite element space for N = 4.

problems are equivalent. It follows that, as noted in Section 1.3, if the solution u solves the strong
form (1.1), then it also the solution to the minimization form (1.9); however, the minimization form
admits more general loads f and the associated solutions than the strong form. We will soon see
that we can derive a finite element approximation from either (1.7) or (1.9).

1.5 Finite element approximation

In order to construct a finite element (FE) approximation, we must first choose a suitable subspace
of V that well approximates V and is amenable to computer implementation. To this end, we first
triangulate the domain Ω ≡ (0, 1) into N + 1 non-overlapping segments; we introduce points

0 ≡ x0 < x1 < · · · < xN < xN+1 ≡ 1

and segments
Ki ≡ (xi−1, xi) i = 1, . . . , N + 1.

We denote the triangulation of the domain Ω, which comprises collection of line segments, by

Th ≡ {Ki}N+1
i=1 . (1.10)

We denote the length of each segment by hi ≡ xi − xi−1, i = 1, . . . , N + 1; a triangulation Th is
characterized by the maximum segment length h ≡ maxi={1,...,N+1} hi.

We now introduce a space of piecewise linear functions defined over our triangulation Th such
that they also belong to V:

Vh ≡ {v ∈ V | v|Ki ∈ P1(Ki), i = 1, . . . , N + 1}. (1.11)

We make a few observations about this particular space. First, we require that v is in V defined
by (1.4): (i) v must be continuous, (ii) dv

dx must be piecewise continuous and bounded, and (iii)
v must vanish at the boundaries. Second, we require v restricted to segment Ki to be in P1(Ki);
here, P1(Ki) denotes the space of linear polynomials over Ki. Hence, any function in Vh ⊂ V is
continuous, piecewise linear, and vanishes at the boundaries. An example of a function in Vh is
shown in Figure 1.2.

We can now state our FE approximation problem in either the variational form or the min-
imization form. The FE variational formulation of our original problem (1.7) is as follows: find
uh ∈ Vh such that

a(uh, v) = `(v) ∀v ∈ Vh, (1.12)

11



Figure 1.3: Basis functions for a linear finite element space for N = 4.

where a : V×V → R and ` : V → R are the bilinear form (1.6) and linear form (1.5), respectively. In
words, we seek the solution in and test against the finite-dimensional (hence computable) subspace
Vh of V.

Similarly, the FE minimization form is as follows: find uh ∈ Vh such that

uh = arg min
v∈Vh

J(v), (1.13)

where J : V → R is the energy functional (1.8). In words, we seek the minimizer of J in the
subspace Vh of V. As before, uh ∈ Vh is the solution to the FE minimization problem (1.13) if and
only if it is the solution to the FE variational problem (1.12). We will henceforth refer to uh as the
finite element solution.

1.6 Finite element approximation: implementation

We now wish to develop a computationally tractable formulation such that we can implement (1.12)
(or equivalently (1.13)) and find an approximation to the original problem (1.7) (or equivalently (1.9)).
To this end, we introduce a basis for Vh defined in (1.11). A convenient basis for Vh is a Lagrange
basis {φi}Ni=1 comprised piecewise linear polynomials such that

φi(xj) = δij ≡

{
1 j = i

0 j 6= i
, j = 0, . . . , N + 1;

in words, φi is a continuous piecewise linear function that is takes the value of 1 at the interpolation
point xi and the value of 0 at all other interpolation points. These basis functions are shown in
Figure 1.3.

We can show that {φi}Ni=1 is indeed a basis for Vh: the set (i) is linearly independent and
(ii) spans Vh. To show the set is linearly independent, we must show that

∑n
i=1 ciφi(x) = 0

implies ci = 0, i = 1, . . . , N ; the statement holds because, for
∑n

i=1 ciφi(x) = 0, we must have∑n
i=1 ciφi(xj) =

∑n
i=1 ciδij = cj = 0, j = 1, . . . , N . To show the set spans Vh, we observe that any

v ∈ Vh can be expressed as

v =
N∑
i=1

v̂iφi

for v̂i ≡ v(xi). (The coefficients are also unique because the set is linearly independent.) We hence
conclude that {φi}Ni=1 is a basis for Vh.
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We now restate the FE variational problem (1.12) using the basis and associated coefficients.
Specifically, we represent uh ∈ Vh and v ∈ Vh as

uh ≡
N∑
j=1

ûh,jφj (1.14)

v ≡
N∑
i=1

v̂iφi

for some ûh ∈ RN and v̂ ∈ RN , and consider the following equivalent problem: find ûh ∈ RN such
that

a(

N∑
j=1

ûh,jφj ,

N∑
i=1

v̂iφi)− `(
N∑
i=1

v̂iφi) =

N∑
i=1

N∑
j=1

v̂ia(φj , φi)ûh,j −
N∑
i=1

v̂i`(φi) = 0 ∀v̂ ∈ RN . (1.15)

Here, we have appealed to the bilinearity and linearity of a(·, ·) and `(·), respectively. We then
note that in (1.15) we can replace the condition ∀v̂ ∈ RN with an equivalent condition that the
statement holds for all v̂ ∈ {ei}Ni=1, where {ei}Ni=1 is the canonical basis of RN (i.e., ei ∈ RN has 1
in the i-th entry and 0 elesewhere). Then, we can restate (1.15) as follows: find ûh ∈ RN such that

N∑
j=1

a(φj , φi)ûh,j = `(φi) ∀i = 1, . . . , N. (1.16)

We can also rewrite the linear system in the matrix form: a(φ1, φ1) · · · a(φN , φ1)
...

. . .
...

a(φ1, φN ) · · · a(φN , φN )


︸ ︷︷ ︸

Âh∈RN×N

 ûh,1
...

ûh,N


︸ ︷︷ ︸

ûh∈RN

=

 `(φ1)
...

`(φN )


︸ ︷︷ ︸

f̂h∈RN

,

or, more concisely,
Âhûh = fh.

The matrix Âh is called the stiffness matrix and the vector fh is called the load vector.
We now take a closer look at the matrix Âh ∈ RN×N associated with our particular choice of

the basis {φi}Ni=1. We consider four distinct parts of the matrix: the main diagonal, superdiagonal,
subdiagonal, and all other entries. The diagonal entries are given by

a(φi, φi) =

∫ xi+1

xi−1

dφi
dx

dφi
dx

dx =

∫ xi

xi−1

(
1

hi

)2

dx+

∫ xi+1

xi

(
− 1

hi+1

)2

dx =
1

hi
+

1

hi+1
, i = 1, . . . , N.

The superdiagonal entries are given by

a(φi+1, φi) =

∫ xi+1

xi

dφi+1

dx

dφi
dx

dx =

∫ xi+1

xi

(
1

hi+1

)(
− 1

hi+1

)
dx = − 1

hi+1
, i = 1, . . . , N − 1.

The subdiagonal entries are given by

a(φi, φi+1) =

∫ xi+1

xi

dφi
dx

dφi+1

dx
dx =

∫ xi+1

xi

(
− 1

hi+1

)(
1

hi+1

)
dx = − 1

hi+1
, i = 1, . . . , N − 1.
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All other entries are zero because φi and φj do not overlap for |i− j| > 1. The stiffness matrix is
hence given by

Âh =


h−1

1 + h−1
2 −h−1

2

−h−1
2 h−1

2 + h−1
3 −h−1

3
. . .

. . .
. . .

−h−1
N−1 h−1

N−1 + h−1
N −h−1

N

−h−1
N h−1

N + h−1
N+1

 .

We observe that the matrix is sparse and in particular tridiagonal. Moreover, this matrix is
symmetric positive definite. The symmetry is obvious from inspection; the positive definiteness
follows from

v̂T Âhv̂ = h−1
1 v̂2

1 +
N−1∑
i=1

h−1
i+1(v̂2

i − 2v̂iv̂i+1 + v̂2
i+1) + h−1

N+1v̂
2
N

= h−1
1 v̂2

1 +
N−1∑
i=1

h−1
i+1(v̂2

i − v̂i+1)2 + h−1
N+1v̂

2
N > 0 ∀v̂ 6= 0.

Hence the solution exists and is unique. The storage requirement for the tridiagonal system is
O(N), and the solution to Âhûh = fh can be obtained using the Thomas algorithm, which is a
form of Gaussian elimination, in O(N) floating point operations. Given the solution ûh ∈ RN to
the linear system, our finite element solution uh ∈ Vh to the FE variational formulation (1.12) (or
equivalently (1.13)) is given by the representation (1.14).

If the nodes are equispaced so that hi = h, ∀i = 1, . . . , N , the stiffness matrix simplifies to

Âh =
1

h


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 ,

which is the famous
(
−1 2 −1

)
matrix associated with the Laplacian operator.

1.7 An error estimate: optimality

We now assess how accurately our finite element solution uh ∈ Vh to (1.12) (or equivalently (1.13))
approximates the solution u ∈ V to (1.7) (or equivalently (1.9)). To this end, we need to first
define a norm with which we can measure the “closeness” of the approximation. In particular, we
introduce the energy norm associated with the model problem,

|||v||| ≡
√
a(v, v) =

(∫
Ω

(
dv

dx

)2

dx

)1/2

∀v ∈ V.

We here omit the proof, but we can readily show that a(·, ·) is an inner product in V, and ||| · ||| is
the associated induced norm. As a consequence, the energy norm of the error |||u− uh||| is 0 if and
only if u− uh = 0.
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We next state a key ingredient of the FE error estimate: Galerkin orthogonality : since `(v) =
a(u, v), ∀v ∈ V, the FE variational statement (1.12) implies

0 = `(v)− a(uh, v) = a(u, v)− a(uh, v) = a(u− uh, v) = 0 ∀v ∈ Vh;

the relationship is called Galerkin orthogonality because it states that the error u−uh is orthogonal
to the space Vh in the inner product a(·, ·). We now observe that, for any wh ∈ Vh,

|||u− uh|||2 = a(u− uh, u− uh) (definition of ||| · |||)
= a(u− uh, u− wh) +((((

((((
((

a(u− uh, wh − uh) (Galerkin orthogonality)

= a(u− uh, u− wh)

≤ |||u− uh||||||u− wh|||. (Cauchy-Schwarz inequality).

We divide both sides by |||u− uh||| to obtain

|||u− uh||| ≤ |||u− wh||| ∀wh ∈ Vh, (1.17)

or, equivalently,

|||u− uh||| = inf
wh∈Vh

|||u− wh|||.

We observe that the FE approximation uh ∈ Vh is optimal in the energy norm in the sense that it
is the closest approximation to the solution u ∈ V out of all elements in Vh. In other words, even
if we knew the solution u, we could not have found a better solution in Vh than uh.

As the optimality statement (1.17) holds for any wh ∈ Vh, we can set wh = Ihu =
∑N

i=1 u(xi)φi,
the polynomial interpolant associated with our Lagrange basis functions. It can be shown that for
any v ∈ V the following interpolation error bounds hold:

|||v − Ihv||| ≤ hmax
x∈Ω
|v′′(x)|.

(We will later derive the bounds in a more formal setting.) We hence arrive at the following FE
error bound in terms of the discretization parameter h:

|||u− uh||| ≤ |||u− Ihu||| ≤ hmax
x∈Ω
|u′′(x)|.

In words, the energy-norm error of our finite element solution uh ∈ Vh depends on (i)the maximum
second derivative over the domain and (ii) the triangulation parameter h.

To demonstrate the convergence of the finite element approximation, we consider Poisson’s
problem (1.1) for f = 1. The exact solution is u(x) = x(1 − x)/2. Figure (1.4) shows that the
energy norm of the error |||u− uh||| converges at the rate of h1 as predicted by theory.

1.8 Summary

In this lecture, we considered the variational formulation and the associated finite element approxi-
mation of one-dimensional Poisson’s equation to introduce the main ideas without the complexities
associated with higher dimensions and more general equations. We summarize key points of the
lecture:
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Figure 1.4: Convergence of the finite element approximation for −∆u = 1.

1. A one-dimensional Poisson’s problem can be written in the strong form, minimization form,
or variational (or weak) form.

2. The solution to the strong form is also the solution to the minimization and variational form,
but the converse is not true in general. The minimization and variational forms admit more
general loads f and the associated solutions.

3. A finite element approximation space Vh is a subspace of V. In one dimension, we may choose
Vh as the space of piecewise linear polynomials associated with a triangulation of Ω ⊂ R1 into
segments.

4. The finite element solution is the solution of the minimization or variational problem in the
finite element subspace Vh ⊂ V.

5. Given a basis for Vh, the finite element solution can be computed in a systematic manner
by assembling the associated stiffness matrix and load vector and then solving the resulting
linear system.

6. For Poisson’s equation, the finite element approximation uh is optimal in energy norm; even
if we knew the exact solution u ∈ V, we could not have found a better solution in Vh than
uh.

7. The error in the linear finite element approximation of Poisson’s equation converges as h1 in
energy norm, where h is the mesh spacing.

16



Lecture 2

Variational formulation

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

2.1 Introduction

In the previous lecture, we developed a variational formulation and the associated finite element
approximation for one-dimensional Poisson’s equation with homogeneous Dirichlet boundary con-
ditions. In this lecture, we focus on the derivation of the variational formulation for problems (i) in
higher spatial dimensions, (ii) with more general boundary conditions, and (iii) governed by more
general equations. In addition, we discuss the well-posedness of the variational formulation.

2.2 Hilbert and Banach spaces

We start the section with an apology: it may be difficult to appreciate the formalism provided in
this section and the next two at this point. But we introduce these spaces upfront such that we can
state our weak formulations in a proper functional setting. We will later see that this formalism
allows us to provide various theoretical results about the weak formulation and the associated finite
element approximation; this theoretical foundation is a strength of the finite element method.

The solutions to the PDEs are most naturally sought in Hilbert spaces. By way of preliminaries,
we recall the definition of a linear space, norm, and inner product. We limit ourselves to spaces of
real-valued functions; however the following statements readily extend to spaces of complex-valued
functions.

Definition 2.1 (linear space). V is a linear space if the following conditions hold.

Closure axioms

1. Closure under addition: if w, v ∈ V, then w + v ∈ V.

2. Closure under scalar multiplication: if w ∈ V and α ∈ R, then αw ∈ V.

Axioms of addition

3. Commutativity: for all w, v ∈ V, w + v = v + w.
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4. Associativity: for all w, v, z ∈ V, (w + v) + z = w + (v + z).

5. Existence of zero element: there exists 0 ∈ V such that v + 0 = v ∀v ∈ V.

6. Existence of negatives: for all v ∈ V, there exists (−1)v ∈ V such that v + (−1)v = 0.

Axioms of scalar multiplication

7. Associativity: for all v ∈ V and α, β ∈ R, α(βv) = (αβ)v.

8. Distributivity w.r.t. vector addition: for all v, w ∈ V and α ∈ R, α(v + w) = αv + αw.

9. Distributivity w.r.t. scalar addition: for all v ∈ V and α, β ∈ R, (α+ β)v = αv + βv.

10. Existence of identity: for all v ∈ V, 1v = v.

Remark 2.2. If V is a linear space and v1, . . . , vn ∈ V, then
∑n

i=1 αivi ∈ V for any α1, . . . , αn ∈ R.

Definition 2.3 (norm). Given a linear space V, a norm is a function ‖ · ‖ : V → R that satisfies
the following three conditions: ∀w, v ∈ V and ∀α ∈ R,

1. Absolute scalability: ‖αv‖ = |α|‖v‖;

2. Positive definiteness: ‖v‖ ≥ 0, and ‖v‖ = 0⇔ v = 0;

3. Triangle inequality: ‖w + v‖ ≤ ‖w‖+ ‖v‖.

Definition 2.4 (inner product). Given a linear space V, an inner product is a function (·, ·) :
V × V → R that satisfies the following three conditions: ∀w, v, z ∈ V and ∀α, β ∈ R,

1. Symmetry: (w, v) = (v, w);

2. Linearity in first argument: (αw + βv, z) = α(w, z) + β(v, z);

3. Positive definiteness: (v, v) ≥ 0, and (v, v) = 0⇔ v = 0.

Note: the combination of the first and second conditions implies that the inner product is also
linear in the second argument.

Definition 2.5 (induced norm). Given a linear space V and an inner product (·, ·) : V × V → R,
the induced norm ‖ · ‖ is given by

‖v‖ ≡
√

(v, v) ∀v ∈ V.

Remark 2.6 (induced norm). The induced norm is a norm; i.e., it satisfies all three properties of
a norm. The absolute scalability follows from linearity:

‖αv‖2 = (αv, αv) = α2(v, v) = |α|2‖v‖2.

The positive definiteness of the induced norm is a direct consequence of the positive definiteness of
the associated inner product. The triangle inequality is proved using the Cauchy-Schwarz inequality
in Proposition 2.7: ∀w, v ∈ V,

‖w + v‖2 = (w + v, w + v) = ‖w‖2 + 2(w, v) + ‖v‖2 ≤ ‖w‖2 + 2‖w‖‖v‖+ ‖v‖2 = (‖w‖+ ‖v‖)2

and hence ‖w + v‖ ≤ ‖w‖+ ‖v‖.
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Proposition 2.7 (Cauchy-Schwarz inequality). Given a linear space V and an inner product (·, ·) :
V × V → R, the associated induced norm ‖ · ‖ : V → R satisfies

(w, v) ≤ ‖w‖‖v‖ ∀w, v ∈ V.

Proof. For ‖v‖ = 0, the proof is trivial. For ‖v‖ 6= 0, we observe

0 ≤
∥∥∥∥w − (w, v)

‖v‖2
v

∥∥∥∥2

= ‖w‖2 − 2
(w, v)2

‖v‖2
+

(w, v)2

‖v‖2
= ‖w‖2 − (w, v)2

‖v‖2
;

the multiplication by ‖v‖2 yields (w, v)2 ≤ ‖w‖2‖v‖2 or, equivalently, (w, v) ≤ ‖w‖‖v‖.

We now define a Hilbert space and a Banach space.

Definition 2.8 (Hilbert space). A Hilbert space V is a complete linear space endowed with an
inner product (·, ·) : V × V → R and the associated induced norm ‖ · ‖ : V → R

Definition 2.9 (Banach space). A Banach space V is a complete linear space endowed with a norm
‖ · ‖ : V → R.

A space V is said to be complete if any Cauchy sequence with respect to the norm ‖ · ‖ : V → R
converges to an element of V. A sequence v1, v2, v3, . . . is said to be a Cauchy sequence if for
any δ > 0 there exists a number N such that ‖vi − vj‖ ≤ δ, ∀i, j > N . Moreover, the sequence
vi is said to converge to v if ‖v − vi‖ → 0 as i → ∞. The readers unfamiliar with the concept of
completeness may think of a Hilbert space and a Banach space simply as an inner product space
and a normed space. However, completeness is an important property of the Hilbert and Banach
spaces, which makes the spaces suitable for the weak formulation of PDEs.

2.3 Sobolev spaces: L2(Ω), H1(Ω), and H1
0(Ω)

We now introduce some Hilbert spaces that are most commonly used in the weak formulation of
PDEs. By way of preliminaries, we recall the definition of Lipschitz continuous functions.

Definition 2.10 (Lipschitz continuous functions). A function f : R → R is Lipschitz continuous
if there exists a Lipschitz constant L <∞ such that

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ R.

We now characterize the domain Ω with which the function spaces are associated.

Definition 2.11 (Lipschitz domain). A domain Ω ⊂ Rd is called a Lipschitz domain if its boundary
∂Ω is a graph of a Lipschitz continuous function: corners are permitted, but cusps are not.

In words, Lipschitz domains are domains with a sufficient regular boundary. We will work
exclusively with Lipschitz domains in this lecture.

We now introduce a space of square integrable functions on Ω ⊂ Rd (in the Lebesgue sense).
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Definition 2.12 (L2(Ω) space). The Lebesgue space L2(Ω) is endowed with an inner product

(w, v)L2(Ω) ≡
∫

Ω
wvdx

and the associated induced norm ‖w‖L2(Ω) ≡
√

(w,w)L2(Ω); the space consists of functions

L2(Ω) ≡ {w | ‖w‖L2(Ω) <∞}.

The L2(Ω) space contains functions that are square integrable over Ω, including functions that
are discontinuous and also unbounded. For example, consider x−1/4 over Ω ≡ (0, 1); the function
is unbounded at x = 0 but is square integrable and hence is in L2(Ω). Two functions in L2(Ω)
which differ over a set of measure zero — any points in R1, curves in R2, and surfaces in R3 — are
deemed equivalent. For instance, consider two functions on Ω ≡ (−1, 1),

f(x) ≡

{
−1, x ≤ 0

1, x > 0
and g(x) ≡

{
−1, x < 0

1, x ≥ 0
.

These two functions are equivalent in L2(Ω). (We also readily confirm that each function is square
integrable.) More formally, the L2(Ω) norm of the difference in the two functions is zero; we appeal
to the properties of the Lebesgue integration — we can omit any point (or more generally a set of
measure zero) — to obtain

‖f − g‖2L2(Ω) ≡
∫ 1

−1
(f − g)2dx = lim

ε→0
(

∫ −ε
−1

(f − g︸ ︷︷ ︸
=0

)2dx+

∫ 1

ε
(f − g︸ ︷︷ ︸

=0

)2dx) = 0.

Since ‖f − g‖L2(Ω) = 0, f and g are equivalent in L2(Ω).

Definition 2.13 (weak derivative in R1). Let Ω ⊂ R1 be a bounded domain and C∞0 (Ω) be the
space of infinitely differentiable functions over Ω whose value and all derivatives are zero at the
endpoints. A function D1g : Ω→ R is a weak first derivative of g : Ω→ R if∫

Ω
vD1gdx = −

∫
Ω

dv

dx
gdx ∀v ∈ C∞0 (Ω).

More generally, Dkg : Ω→ R is a weak k-th derivative of g if∫
Ω
vDkgdx = (−1)k

∫
Ω

dkv

dxk
gdx ∀v ∈ C∞0 (Ω).

To make the idea of weak derivative concrete, consider the absolute-value function g(x) = |x|
over Ω ≡ (−1, 1). The function is not differentiable in the classical sense due to the presence of the
“kink” at x = 0. However, we can readily obtain a weak first derivative D1g. We wish to find D1g
such that, ∀v ∈ C∞0 (Ω),∫ 1

−1
vD1gdx = −

∫ 1

−1

dv

dx
gdx = − lim

ε→0
(

∫ −ε
−1

dv

dx
gdx+

∫ 1

ε

dv

dx
gdx)

= − lim
ε→0

(−
∫ −ε
−1

v
dg

dx︸︷︷︸
−1

dx+ [vg]−εx=−1︸ ︷︷ ︸
v(−ε)g(−ε)

−
∫ 1

ε
v
dg

dx︸︷︷︸
1

dx+ [vg]1x=ε︸ ︷︷ ︸
−v(ε)g(ε)

)

=

∫ 0

−1
−1vdx+

∫ 1

0
1vdx.

20



We observe that a Heaviside-like function

(D1g)(x) =

{
−1, x ≤ 0

1, x > 0

satisfies the relationship. (The particular value at x = 0 is irrelevant because it is a set of measure
zero.) Since D1g is square integrable, the weak first derivative D1g is in L2(Ω).

We can repeat the procedure to find a weak second derivative D2g. We observe that, ∀v ∈
C∞0 (Ω),∫ 1

−1
vD2gdx =

∫ 1

−1

d2v

dx2
gdx =

∫ 0

−1
1
dv

dx
dx+

∫ 1

0
−1

dv

dx
dx = [v]0x=−1 − [v]1x=0 = 2v(0).

Since 2v(0) =
∫ 1
−1 2δ(x)dx where δ is the Dirac delta, we find D2g = 2δ. However, since the Dirac

delta is not square integrable, D2g is not in L2(Ω).

We now generalize the weak derivative to functions in Rd, d > 1.

Definition 2.14 (weak derivative in Rd). Let Ω ⊂ Rd and C∞0 (Ω) be the space of infinitely
differentiable functions over Ω whose value and all derivatives are zero on the boundary ∂Ω. A
function ∂g

∂xi
: Ω→ R, i = 1, . . . , d, is a weak first partial derivative of g : Ω→ R if∫

Ω
v
∂g

∂xi
dx = −

∫
Ω

∂v

∂xi
gdx ∀v ∈ C∞0 (Ω).

The associated gradient is the vector-valued function ∇v ≡ ( ∂v
∂x1

, . . . , ∂v∂xd ).

Having defined the weak derivative, we now define the H1(Ω) space:

Definition 2.15 (H1(Ω) space). The Sobolev space H1(Ω) is endowed with an inner product

(w, v)H1(Ω) ≡
∫

Ω
(∇v · ∇w + vw)dx = (∇v,∇w)L2(Ω) + (v, w)L2(Ω),

and the associated induced norm ‖w‖H1(Ω) ≡
√

(w,w)H1(Ω); the space consists of functions

H1(Ω) ≡ {w | ‖w‖H1(Ω) <∞}.

In words, the H1(Ω) space consists of functions that are square integrable and whose weak
first derivatives are square integrable. For instance, the absolute-value function g(x) = |x| on
Ω ≡ (−1, 1) is in H1(Ω) because the function is square integrable and its weak derivative —
which is a Heaviside-like function as shown earlier — is square integrable. On the other hand,
the Heaviside-like function is not in H1(Ω) because its weak first derivative — which is a Dirac
delta — is not square integrable. In general, H1(Ω) ⊂ L2(Ω) because H1(Ω) functions must have
a square-integrable weak first derivative whereas L2(Ω) functions do not.

Another related space that is frequently encountered in the weak formulation of PDEs is the
H1

0 (Ω) space.
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Definition 2.16 (H1
0 (Ω) space). TheH1

0 (Ω) is endowed with theH1(Ω) inner product (w, v)H1(Ω) ≡∫
Ω(∇v · ∇w + vw)dx and consists of functions

H1
0 (Ω) ≡ {w ∈ H1(Ω) | w|∂Ω = 0},

where ∂Ω denotes the boundary of Ω.

The H1
0 (Ω) space consists of a subset of H1(Ω) functions that vanish on the boundary. Note

that H1
0 (Ω) for Ω ≡ (0, 1) ⊂ R1 is precisely the space V we used in Sections 1.3 and 1.4 for the

variational and minimization formulations of one-dimensional Poisson’s equation with the homo-
geneous Dirichlet boundary conditions. By construction H1

0 (Ω) ⊂ H1(Ω) since the H1(Ω) space
contains functions that do not vanish on the boundary.

We also introduce the H1(Ω) semi-norm:

Definition 2.17 (H1(Ω) semi-norm). The H1(Ω) semi-norm is denoted by | · |H1(Ω) and is given
by

|v|H1(Ω) ≡
(∫

Ω
∇v · ∇vdx

)1/2

= ‖∇v‖L2(Ω) ∀v ∈ H1(Ω).

The H1(Ω) semi-norm is not a norm on H1(Ω). Specifically, a semi-norm in general does not
satisfy the positive definiteness condition. For example, consider a function v = 1 on Ω ≡ (−1, 1);
the function is clearly not zero, but |v|H1(Ω) =

∫
Ω( dvdx)2dx =

∫
Ω 0dx = 0.

2.4 Sobolev spaces: more general spaces

While we most frequently use Sobolev spaces L2(Ω), H1(Ω), and H1
0 (Ω) in weak formulations of

second-order PDEs, more general Sobolev spaces are required for higher-order PDEs. We here
introduce these more general spaces for completeness. As the results below can be considered a
generalization of the particular results in Section 2.3, we will simply state them.

Definition 2.18 (multi-dimensional derivative). Let α ≡ (α1, . . . , αd) be a d-dimensional multi-
index of non-negative integers, and define its absolute value by |α| ≡ α1 + · · · + αd. The partial
derivative operator Dα is given by

Dα(·) ≡ ∂|α|(·)
∂xα1

1 · · · ∂x
αd
d

.

Definition 2.19 (Hk(Ω) space). For a non-negative integer k, the Sobolev space Hk(Ω) is endowed
with an inner product

(w, v)Hk(Ω) ≡
∑
|α|≤k

(Dαw,Dαv)L2(Ω)

and the associated induced norm ‖w‖Hk(Ω) ≡
√

(w,w)Hk(Ω); the space consists of functions

Hk(Ω) ≡ {w | ‖w‖Hk(Ω) <∞}.

Definition 2.20 (Hk(Ω) semi-norm). The Hk(Ω) semi-norm is denoted by | · |Hk(Ω) and is given
by

|v|Hk(Ω) ≡ ‖Dαv‖L2(Ω) ∀v ∈ Hk(Ω).
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Definition 2.21 (Lp(Ω) space). The Banach space Lp(Ω) is endowed with a norm

‖w‖Lp(Ω) ≡
(∫

Ω
|w|pdx

)1/p

in the case 1 ≤ p <∞ and
‖w‖L∞(Ω) ≡ ess sup

x∈Ω
|w(x)|

in the case p =∞. In either case, the Lp(Ω) space consists of functions

Lp(Ω) ≡ {w | ‖w‖Lp(Ω) <∞}.

Definition 2.22 (W k
p space). The Sobolev space W k

p is endowed with a norm

‖w‖Wk
p (Ω) ≡

∑
|α|≤k

‖Dαw‖pLp(Ω)

1/p

in the case 1 ≤ p <∞ and
‖w‖Wk

∞(Ω) ≡ max
|α|≤k

‖Dαw‖L∞(Ω)

in the case p =∞. In either case, the W k
p (Ω) space consists of functions

W k
p (Ω) = {w | ‖w‖Wk

p (Ω) <∞}.

Remark 2.23. The Hk(Ω) space is a special case of W k
p (Ω) space for p = 2.

2.5 d-dimensional Poisson’s problem: homogeneous Dirichlet BC

We consider Poisson’s equation in Rd for d ≥ 1. To this end, we first introduce a d-dimensional
Lipschitz domain Ω ⊂ Rd. The strong form of Poisson’s equation with homogeneous Dirichlet
boundary conditions is as follows: find u such that

−∆u = f in Ω, (2.1)

u = 0 on ∂Ω.

Here, the Laplacian of u is given by ∆u ≡ ∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
d
. Poisson’s equation models, for instance,

steady heat transfer, where u is the temperature field (relative to the ambient temperature), f
is the volume heat source, and the homogeneous Dirichlet boundary condition corresponds to the
fixed-temperature condition.

The variational formulation of (2.1) requires an appropriate choice of a function space. For
homogeneous Dirichlet boundary condition, the appropriate Sobolev space is

V ≡ H1
0 (Ω).

We recall that H1
0 (Ω) ≡ {w ∈ H1(Ω) | w|∂Ω = 0}; i.e., the space consists of functions (i) whose

value and first derivative are square integrable and (ii) that vanish on the boundary. Note that any
function w ∈ H1

0 (Ω) satisfies the boundary condition u|∂Ω = 0 by construction.
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To obtain a variational (or weak) form, we employ the weighted residual method: we multi-
ply (2.1) by a test function v ∈ V, integrate the expression, and then integrate by parts the left
hand side: ∫

Ω
v(−∆u)dx =

∫
Ω
vfdx ⇒

∫
Ω
∇v · ∇udx−

∫
∂Ω
v
∂u

∂n
ds︸ ︷︷ ︸

=0

=

∫
Ω
vfdx;

the boundary term vanishes because v|∂Ω = 0 for v ∈ V ≡ H1
0 (Ω). We now recognize the bilinear

form a : V × V → R,

a(w, v) ≡
∫

Ω
∇v · ∇wdx ∀w, v ∈ V,

and the linear form ` : V → R,

`(v) ≡
∫

Ω
vfdx ∀v ∈ V.

Our variational problem is as follows: find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V. (2.2)

Using exactly the same procedure as the one-dimensional case shown in Section 1.3, we can show
that the solution to the strong form (2.1) satisfies the variational form (2.2). However the converse
is not true in general; the variational form admits more general loads f and hence solutions than
the strong form.

2.6 Mixed problems: essential and natural boundary conditions

We have so far considered Poisson’s equation with a homogeneous Dirichlet boundary condition.
We now consider a problem with a mixed boundary condition. To this end, given Ω ⊂ Rd, we first
partition the domain boundary ∂Ω into a Dirichlet part ΓD and a Neumann part ΓN such that
ΓD ∩ ΓN = ∅, ∂Ω = ΓD ∪ ΓN , and ΓD 6= ∅. The first two conditions ensure that there is one and
only one boundary condition (Dirichlet or Neumann) imposed at any part of the boundary ∂Ω; the
last condition is required to ensure the problem is well-posed, as we will see later. We then consider
the following boundary value problem: find u such that

−∆u = f in Ω,

u = 0 on ΓD, (2.3)

∂u

∂n
= g on ΓN ,

where f is the volume source term and g is the boundary source term. In the case of a steady heat
transfer, f and g represent volume and boundary heat sources, respectively.

To obtain a variational form of (2.3), we modify the function space from the homogeneous
Dirichlet boundary condition case. The function space suitable for the mixed boundary condition
case is

V ≡ {v ∈ H1(Ω) | v|ΓD = 0}. (2.4)

Note that H1
0 (Ω) ⊂ V ⊂ H1(Ω); functions in H1

0 (Ω) must vanish everywhere on ∂Ω, functions in
V must vanish only on ΓD ⊂ ∂Ω, and functions in H1(Ω) have no conditions on their boundary
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values. We now apply the weighted residual method to obtain the variational form: we multiply
(2.3) by a test function v ∈ V, integrate the expression, and then integrate by parts the left hand
side: ∫

Ω
v(−∆u)dx =

∫
Ω
vfdx ⇒

∫
Ω
∇v · ∇udx−

∫
ΓD

v
∂u

∂n
ds︸ ︷︷ ︸

=0

−
∫

ΓN

v
∂u

∂n
ds =

∫
Ω
vfdx;

the boundary term on ΓD vanishes because v|ΓD = 0 for v ∈ V. On the other hand, the boundary
term on ΓN remains. We now replace ∂u

∂n with g to incorporate the boundary condition we wish to

impose: ∂u
∂n = g on ΓN . The resulting weighted residual form is∫

Ω
∇v · ∇udx =

∫
Ω
vfdx+

∫
ΓN

vgds.

We now recognize the bilinear form a : V × V → R given by

a(w, v) ≡
∫

Ω
∇v · ∇wdx ∀w, v ∈ V,

and the linear form ` : V → R given by

`(v) ≡
∫

Ω
vfdx+

∫
ΓN

vgds ∀v ∈ V.

Our variational problem is as follows: find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V. (2.5)

We readily observe that the solution to the strong form (2.3) satisfies the variational form (2.5);
for all v ∈ V,

a(u, v)− `(v) ≡
∫

Ω
∇v · ∇udx−

∫
Ω
vfdx−

∫
ΓN

vgds

=

∫
Ω
v(−∆u)dx+

∫
ΓD

v
∂u

∂n
ds+

∫
ΓN

v
∂u

∂n
ds−

∫
Ω
vfdx−

∫
ΓN

vgds

=

∫
Ω
v (−∆u− f)︸ ︷︷ ︸

=0 as −∆u = f in Ω

dx+

∫
ΓD

v
∂u

∂n
ds︸ ︷︷ ︸

=0 as v|ΓD
= 0

+

∫
ΓN

v

(
∂u

∂n
− g
)

︸ ︷︷ ︸
=0 as ∂u

∂n
= g on ΓN

ds = 0.

Hence a solution to the strong form (2.3) is a solution to the variational form (2.5); however, again
the converse is not true as the variational form admits more general forms of f and g than the
strong form.

In the variational formulation of the mixed boundary condition, the Dirichlet and Neumann
conditions are treated differently. On one hand, we explicitly impose the Dirichlet boundary con-
dition u = 0 on ΓD through the choice of the space V in (2.4). On the other hand, the Neumann
boundary condition ∂u

∂n = g on ΓN is implicitly contained in the variational statement (2.5). A
boundary condition that is explicitly imposed by the choice of the function space is called an
essential boundary condition; a boundary condition that is implicitly imposed by the variational
statement is called a natural boundary condition. In the above treatment of Poisson’s equation
with mixed boundary conditions, the Dirichlet condition is an essential boundary condition, and
the Neumann condition is a natural boundary condition.
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2.7 Nonhomogeneous Dirichlet boundary condition

We now consider a problem with a nonhomogeneous Dirichlet boundary condition. The strong
form is as follows: find u such that

−∆u = f in Ω, (2.6)

u = uB on ΓD ≡ ∂Ω

for some boundary function uB and source term f . While we here focus on the pure Dirichlet
problem for simplicity, the approach in this section can be combined with the approach for mixed
problems in Section 2.6 to treat mixed problems with nonhomogeneous Dirichlet and Neumann
boundary conditions.

To obtain a variational form of (2.6), we introduce spaces

VE ≡ {w ∈ H1(Ω) | w|ΓD = uB},
V ≡ H1

0 (Ω).

The superscript “E” stands for “essential”, as the space VE satisfies the essential (i.e., Dirichlet)
boundary condition. Note that, for uB 6= 0, VE is not a linear space; for w, v ∈ VE , z = w+v /∈ VE
because z|ΓD = 2uB 6= uB. Rather, VE is an affine space: given an arbitrary fixed element uE ∈ VE
so that uE |ΓD = uB, we have VE = uE + V = {uE + v | v ∈ V}. We now employ the weighted
residual method: we multiply (2.6) by a test function v in the linear space V — and not affine
space VE —, integrate the expression, and integrate by parts the right hand side to obtain∫

Ω
v(−∆u)dx =

∫
Ω
vfdx ⇒

∫
Ω
∇v · ∇udx−

∫
∂Ω
v
∂u

∂n
ds︸ ︷︷ ︸

=0

=

∫
Ω
vfdx;

again the boundary term vanishes because v is in V (and not VE). We recognize a bilinear form
and a linear form

a(w, v) ≡
∫

Ω
∇v · ∇wdx ∀w, v ∈ V,

`(v) ≡
∫

Ω
vfdx ∀v ∈ V.

The variational problem is as follows: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V. (2.7)

We note that the bilinear form and linear form are identical to the homogeneous Dirichlet boundary
condition case considered in Section 2.5. However, our trial space is different; the space VE is
an affine space of functions that satisfy the nonhomogeneous Dirichlet boundary condition. As
discussed in Section 2.6, a Dirichlet boundary condition is an essential boundary condition, which
is explicitly imposed through the choice of the space.
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We readily observe that the solution to the strong form (2.6) satisfies the variational form (2.7);
for all v ∈ V,

a(u, v)− `(v) ≡
∫

Ω
∇v · ∇udx−

∫
Ω
vfdx−

∫
ΓN

vgds

=

∫
Ω
v(−∆u)dx+

∫
∂Ω
v
∂u

∂n
ds−

∫
Ω
vfdx

=

∫
Ω
v (−∆u− f)︸ ︷︷ ︸

=0 as −∆u = 0 in Ω

dx+

∫
∂Ω
v
∂u

∂n
ds︸ ︷︷ ︸

=0 as v|ΓD≡∂Ω = 0

.

Moreover, the boundary condition u = uB on ΓD ≡ ∂Ω is satisfied because u ∈ VE . Hence a
solution to the strong form (2.6) is a solution to the variational form (2.7); however, again the
converse is not true as the variational form admits more general solutions.

In practice, it is more convenient to reformulate the problem such that both the trial and
test spaces are linear. We first choose an arbitrary fixed function uE in VE that satisfies the
nonhomogeneous Dirichlet boundary condition so that uE |ΓD = uB. We then express the solution
u as u = uE + ũ for ũ in the linear space V, and rearrange the variational form (2.7) as

a(uE + ũ, v) = `(v) ⇒ a(ũ, v) = `(v)− a(uE , v).

We now recognize the right hand side `(·) − a(uE , ·) as another linear form on V and formally
introduce ˜̀ : V → R such that

˜̀(v) ≡ `(v)− a(uE , v) ∀v ∈ V.

We then consider a variational problem for ũ: find ũ ∈ V such that

a(ũ, v) = ˜̀(v) ∀v ∈ V. (2.8)

Once we find ũ, we then set u = uE + ũ, which is in VE . Note that ũ ∈ V depends on our choice
of uE ∈ VE because ˜̀(·) depends on uE ; however, the actual solution u = uE + ũ is independent of
the particular choice of uE ∈ VE .

2.8 General second-order elliptic equation

We have so far considered the variational formulation of Poisson’s equation with various boundary
conditions. We can readily extend our approach to treat general second-order elliptic equations. To
demonstrate the idea, we consider a convection-reaction-diffusion equation with (nonhomogeneous)
Dirichlet, Neumann, and Robin boundary conditions. To this end, we partition the Lipschitz
domain Ω ⊂ Rd into the Dirichlet boundary ΓD, the Neuamnn boundary ΓN , and the Robin
boundary ΓR such that ∂Ω = ΓD ∪ΓN ∪ΓR; we assume ΓD ∪ΓR 6= ∅. We then consider a problem
of the following form: find u such that

−∇ · (κ∇u) + b · ∇u+ cu = f in Ω

u = uB on ΓD (2.9)

n · κ∇u = g on ΓN

n · κ∇u+ du = q on ΓR,
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where κ : Ω → Rd×d is the diffusivity tensor, b : Ω → Rd is the advection vector, c : Ω → R is
the reaction constant, f : Ω→ R is the source term, n : ∂Ω→ Rd is the outward-point normal on
∂Ω, uB : ΓD → R is the Dirichlet boundary function, g : ΓN → R is the Neumann source term,
d : ΓR → R is the Robin coefficient, and q : ΓR → R is the Robin source term. In general each
coefficient is spatially varying and hence is a function of space; e.g., the diffusivity tensor evaluated
at x ∈ Ω ⊂ Rd is in Rd×d and hence is denoted κ : Ω → Rd×d. For the second-order PDE to be
elliptic, we require that the diffusitivity tensor is symmetric positive definite almost everywhere:
κ(x) ∈ Rd×d satisfies

ξTκ(x)ξ > 0 ∀ξ 6= 0 a.e. in Ω.

Also note that in order for the differentiation ∇ · (κ∇u) for the strong formulation (2.9) to be well
defined, the diffusivity tensor field must satisfy certain smoothness conditions; we will soon see that
this is not a requirement for the weak formulation.

To obtain a variational form of (2.9), we introduce spaces

VE ≡ {w ∈ H1(Ω) | w|ΓD = uB},
V ≡ {w ∈ H1(Ω) | wΓD = 0}.

As discussed in Section 2.7, the Dirichlet boundary condition is imposed strongly; the Neumann
and Robin boundary conditions are imposed weakly. We now multiply (2.9) by a test function v
in the linear space V, integrate the expression, and integrate by parts the diffusion term to obtain∫

Ω
v(−∇ · κ∇u+ b · ∇u+ cu− f)dx = 0

⇒
∫

Ω
(∇v · κ∇u+ vb · ∇u+ cvu− vf)dx−

∫
ΓD

vn · κ∇uds︸ ︷︷ ︸
(D)

−
∫

ΓN

vn · κ∇uds︸ ︷︷ ︸
(N)

−
∫

ΓR

vn · κ∇uds︸ ︷︷ ︸
(R)

We now impose the boundary conditions. The Dirichlet boundary condition is imposed strongly
by the choice of the trial space VE and the test space V; the term (D) vanishes because v|ΓD = 0
for all v ∈ V. The Neumann boundary condition n · κ∇u = g is weakly imposed; we replace the
boundary term (N) by

∫
ΓN

vgds. The Robin boundary condition n · κ∇u + du = q is also weakly

imposed; we replace the boundary term (R) by
∫

ΓR
v(−du + q)ds. Upon the substitution of the

appropriate boundary conditions, our weighted-residual formulation reads as follows: find u ∈ VE
such that∫

Ω
(∇v · κ∇u+ vb · ∇u+ cvu− vf)dx−

∫
ΓN

vgds−
∫

ΓR

v(−du+ q)ds = 0 ∀v ∈ V.

Some reorganization of the terms yield the following variational formulation: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V, (2.10)

where

a(w, v) ≡
∫

Ω
(∇v · κ∇w + vb · ∇u+ cvu)dx+

∫
ΓR

dvwds ∀w, v ∈ V,

`(v) ≡
∫

Ω
fvdx+

∫
ΓN

gvds+

∫
ΓR

qvds. ∀v ∈ V.
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With the variational formulation (2.10), unlike with the strong formulation (2.9), we need not
assume any smoothness of the coefficients κ, b, or c. We only require that the coefficients are
bounded: κ ∈ (L∞(Ω))d×d, b ∈ (L∞(Ω))d, and c ∈ L∞(Ω).

As discussed in Section 2.7, in practice, the nonhomogeneous Dirichlet boundary conditions
are more conveniently treated through the decomposition of the solution as u = uE + ũ for some
arbitrary but fixed uE ∈ VE so that uE |ΓD = uB and ũ ∈ V. We then consider the following
variational problem: find ũ ∈ V such that

a(ũ, v) = ˜̀(v) ∀v ∈ V,

where ˜̀ : V → R is the modified linear form such that ˜̀(v) ≡ `(v)− a(uE , v), ∀v ∈ V; we then set
u = uE + ũ.

2.9 Well-posedness of the weak formulation

We now address a fundamental question: what conditions should a weak formulation satisfy to
guarantee the existence and uniqueness of the solution? We recall that, in general, a weak formula-
tion is defined by a test space V, trial space VE ≡ uE +V, bilinear form a(·, ·), and linear form `(·);
as such, we wish to identify conditions that these ingredients must satisfy to ensure the existence
and uniqueness of the solution.

We first provide a few definitions that characterize a linear form and bilinear form.

Definition 2.24 (dual space). The space of linear functionals ` : V → R is denoted by V ′.

Definition 2.25 (dual norm and continuity). The dual norm of a linear functional ` ∈ V ′ is given
by

‖`‖V ′ ≡ sup
v∈V

|`(v)|
‖v‖V

.

A linear functional is continuous on V if ‖`‖V ′ <∞.

Corollary 2.26. If a linear form ` ∈ V ′ is continuous so that ‖`‖V ′ <∞, then

|`(v)| ≤ ‖`‖V ′‖v‖V ∀v ∈ V.

In other words, a linear form is continuous if ∃c <∞ such that |`(v)| ≤ c‖v‖V , ∀v ∈ V.

Example 2.27. Let f ∈ L2(Ω), `(v) ≡
∫

Ω vfdx ∀v ∈ V, and ‖ · ‖V ≡ ‖ · ‖H1(Ω). Then

‖`‖V ′ ≡ sup
v∈V

|`(v)|
‖v‖V

= sup
v∈V

|
∫

Ω vfdx|
‖v‖V

≤ sup
v∈V

‖f‖L2(Ω)‖v‖L2(Ω)

‖v‖V
≤ sup

v∈V

‖f‖L2(Ω)‖v‖V
‖v‖V

= ‖f‖L2(Ω),

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows
from ‖v‖L2(Ω) ≤ ‖v‖H1(Ω) = ‖v‖V . Hence ‖`‖V ′ ≤ ‖f‖L2(Ω) <∞, and ` is continuous.

Definition 2.28 (continuity). The continuity constant of a bilinear form a : V × V → R is given
by

γ ≡ sup
w∈V

sup
v∈V

|a(w, v)|
‖w‖V‖v‖V

.

A bilinear form is continuous on V if γ <∞.

29



Corollary 2.29. A bilinear form is continuous if there exists γ̃ <∞ such that

|a(w, v)| ≤ γ̃‖w‖V‖v‖V ∀w, v ∈ V,

as the condition implies that γ ≤ γ̃ <∞.

Definition 2.30 (coercivity). The coercivity constant of a bilinear form a : V ×V → R is given by

α ≡ inf
v∈V

a(v, v)

‖v‖2V
.

A bilinear form is coercive on V if α > 0.

Corollary 2.31. A bilinear form is coercive if there exists α̃ > 0 such that

a(v, v) ≥ α̃‖v‖2V ∀v ∈ V,

as the condition implies that α ≥ α̃ > 0.

The following theorem provides an answer to the question regarding the existence and unique-
ness of a weak solution.

Theorem 2.32 (Lax-Milgram). Given a Hilbert space V, a continuous, coercive bilinear form
a : V × V → R, and a continuous linear functional ` ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = `(v) ∀v ∈ V. (2.11)

Proof. The proof of existence is beyond the scope of this course. We refer to Brenner and Scott
(2008).

The proof of uniqueness is as follows. Suppose we have two solutions u1 ∈ V and u2 ∈ V that are
distinct (u1 6= u2) and satisfy (2.11): i.e., a(u1, v) = `(v), ∀v ∈ V, and a(u2, v) = `(v), ∀v ∈ V. The
subtraction of the two equations yields a(u1, v)−a(u2, v) = 0, ∀v ∈ V. We then invoke bilinearity to
obtain a(u1−u2, v) = 0, ∀v ∈ V. We then choose v = u1−u2, which yields a(u1−u2, u1−u2) = 0.
The coercivity of the bilinear form implies that a(u1 − u2, u1 − u2) ≥ α‖u1 − u2‖2V ; since the left
hand side is 0, we obtain ‖u1 − u2‖2V = 0. Hence, we arrive at the contradiction: u1 = u2. If two
solutions satisfy (2.11), then they must be the same; the solution to (2.11) is unique.

The Lax-Milgram theorem provides sufficient conditions under which a weak formulation possess
a unique solution. We however note that these are only sufficient, and not necessary, conditions. The
above proof for uniqueness also shows how certain properties of the ingredients, such as bilinearity
and coercivity, are used to prove the desired result.

The Lax-Milgram theorem concerns with the existence and uniqueness of a weak solution.
We now introduce a stability or well-posedness result which shows that the solution u depends
continuously on the data `(·).

Proposition 2.33 (stability). Suppose the conditions of the Lax-Milgram theorem, Theorem 2.32,
are satisfied. Then, the solution u satisfies

‖u‖V ≤
1

α
‖`‖V ′ ,

where α is the coercivity constant.
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Proof. The proof is trivial for ‖u‖V = 0. For ‖u‖V 6= 0, we appeal to the coercivity of the bilinear
form and the continuity of the linear form:

α‖u‖2V ≤ a(u, u) = `(u) ≤ ‖`‖V ′‖u‖V .

The division by ‖u‖V 6= 0 yields the desired result.

Corollary 2.34. Suppose the conditions of the Lax-Milgram theorem, Theorem 2.32, are satisfied.
In addition, consider two linear forms `1(·) and `2(·), and the associated solutions u1 and u2. Then,
the difference in the solutions, u1 − u2, is bounded by the difference in the data, `1 − `2:

‖u1 − u2‖V ≤
1

α
‖`1 − `2‖V ′ .

The stability result shows that the energy norm of the solution u is bounded by the dual norm
of the data `. The closely related result in the corollary can be interpreted to mean that a small
disturbance in the data ` results in a small perturbation in the solution u.

Before we conclude this section, we remark on the well-posedness of problems with nonhomoge-
neous Dirichlet data. The Lax-Milgram theorem 2.32 requires both the test and trial spaces to be
a Hilbert space and in particular linear. We however recall that the trial space for a problem with
nonhomogeneous Dirichlet data is an affine space VE ≡ uE + V for some fixed uE ∈ H1(Ω) and a
linear space V. To prove the existence and uniqueness of the solution, we rely on the reformulated
variational formulation (2.8), which decomposes the solution u ∈ VE as u = uE + ũ for an arbitrary
(but fixed uE) and ũ ∈ V. We specifically apply the Lax-Milgram theorem to the problem for ũ:
find ũ ∈ V such that

a(ũ, v) = ˜̀(v) ∀v ∈ V,

where ˜̀ : V → R is the reformulated linear form ˜̀(v) ≡ `(v)−a(uE , v), ∀v ∈ V. By the Lax-Milgram
theorem, a unique solution to the problem exists if a : V × V → R is coercive and continuous, and
˜̀∈ V ′ is continuous. The latter requires that ∃C <∞ such that |˜̀(v)| ≤ C‖v‖V , ∀v ∈ V. We now
observe that, assuming `(·) and a(·, ·) are continuous,

|˜̀(v)| ≡ |`(v)− a(uE , v)| ≤ |`(v)|+ |a(uE , v)| ≤ c‖v‖V + γ‖uE‖V‖v‖V = (c+ γ‖uE‖V)‖v‖V ,

where c and γ are the continuity constant for `(·) and a(·, ·), respectively. Hence ˜̀(·) is continuous
under these assumptions, and we can apply the Lax-Milgram theorem to show the existence and
uniqueness of ũ ∈ V and in turn u = uE + ũ ∈ VE .

2.10 Poincaré-Friedrichs and trace inequalities

The proof of existence and uniqueness of a weak solution using the Lax-Milgram theorem relies on
the continuity and coercivity of the bilinear form and the continuity of the linear form. For many
bilinear forms associated with boundary value problems, the verification of coercivity relies on the
Poincaré-Friedrichs inequality.

Proposition 2.35 (Poincaré-Friedrichs inequality). Let Ω ⊂ Rd be a Lipschitz domain, and sup-
pose Γ ⊂ ∂Ω and Γ 6= ∅. Then, there exists a constant CPF < ∞ that only depends on Ω and Γ
such that

‖v‖2L2(Ω) ≤ CPF(|v|2H1(Ω) + ‖v‖2L2(Γ)) ∀v ∈ H1(Ω).
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Proof. Proof of the proposition is beyond the scope of this course. We refer to Brenner and Scott
(2008).

Corollary 2.36. Let Ω ⊂ Rd be a Lipschitz domain, and suppose ΓD ⊂ ∂Ω and ΓD 6= ∅. Let
V ≡ {v ∈ H1(Ω) | v|ΓD = 0}. Then, there exists a constant CPF <∞ that depends only on Ω and
ΓD such that

‖v‖2L2(Ω) ≤ CPF|v|2H1(Ω) ∀v ∈ V.

Proposition 2.35 allows us to bound the L2(Ω) norm of a function by the H1(Ω) semi -norm of
the function and the L2(Γ) norm of the trace of the function on a portion of the boundary, Γ ⊂ ∂Ω.
Corollary 2.36 is a specialization of the results for functions that vanish on (at least) a portion of
the boundary such that ‖u‖L2(ΓD) = 0. Intuitively, the corollary bounds the (integrated) value of
the function by the (integrated) gradient of the function, assuming that the function is “pinned”
to vanish over a portion of the boundary.

Remark 2.37 (Naming of the Poincaré-Friedrichs inequality). Proposition 2.36 and the related
results, such as Corollary 2.36, are sometimes called just Poincaré inequality or Friedrichs inequal-
ity. In this note, we will refer to inequalities of these types collectively as Poincaré-Friedrichs
inequalities.

Remark 2.38. The smallest CPF that satisfies the Poincaré-Friedrichs inequality is given by

CPF = sup
v∈H1(Ω)

‖v‖2L2(Ω)

|v|2
H1(Ω)

+ ‖v‖2
L2(Γ)

.

By Rayleigh quotient, the constant is the largest eigenvalue of the following eigenproblem: find
(w, λ) ∈ H1(Ω)× R such that∫

Ω
vwdx = λ(

∫
Ω
∇v · ∇wdx+

∫
Γ
vwdx) ∀v ∈ H1(Ω);

i.e., CPF = sup{λ}.

For many bilinear forms associated with boundary value problems, the verification of continuity
relies on the trace inequality.

Proposition 2.39 (trace inequality). Let Ω ⊂ Rd be a Lipschitz domain. Then, there exists a
constant Ctr <∞ that depends only on Ω such that

‖v‖L2(∂Ω) ≤ Ctr‖v‖H1(Ω) ∀v ∈ H1(Ω).

Proof. Proof of the proposition is beyond the scope of this course. We refer to Brenner and Scott
(2008).

The trace inequality is particularly useful when we wish to show continuity of a linear or bilinear
form which involves integration over (a part of) the boundary.
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Remark 2.40. The smallest Ctr that satisfies the trace inequality is given by

Ctr = sup
v∈H1(Ω)

‖v‖L2(∂Ω)

‖v‖H1(Ω)
.

By Rayleigh quotient, the constant is the square root of the largest eigenvalue of the following
eigenproblem: find (w, λ) ∈ H1(Ω)× R such that∫

∂Ω
vwdx = λ(

∫
Ω
∇v · ∇wdx+

∫
Ω
vwdx) ∀v ∈ H1(Ω);

i.e., Ctr =
√

sup{λ}.

2.11 Example: well-posedness of Poisson’s problem

We now demonstrate the application of the Lax-Milgram theorem to prove that the mixed Poisson’s
problem considered in Section 2.6 is well-posed. The problem is reproduced here for convenience.
Let Ω ⊂ Rd be a Lipschitz domain, ΓD and ΓN be Dirichlet and Neumann boundaries such that
∂Ω = ΓD ∪ ΓN and ΓD 6= ∅, and V ≡ {v ∈ H1(Ω) | v|ΓD = 0}. Find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V,

where

a(w, v) =

∫
Ω
∇v · ∇wdx ∀w, v ∈ V,

`(v) =

∫
Ω
vfdx+

∫
ΓN

vgds ∀v ∈ V

for f ∈ L2(Ω) and g ∈ L2(ΓN ). The space V is endowed with the standard H1(Ω) inner product
and norm; i.e., (·, ·)V ≡ (·, ·)H1(Ω) and ‖ · ‖V ≡ ‖ · ‖H1(Ω).

We first show that the bilinear form is continuous. For all w, v ∈ V,

|a(w, v)| = |
∫

Ω
∇v · ∇wdx| ≤ ‖∇v‖L2(Ω)‖∇w‖L2(Ω) = |v|H1(Ω)|w|H1(Ω) ≤ ‖v‖H1(Ω)‖w‖H1(Ω);

here, the first inequality follows from Cauchy-Schwarz, and the last inequality follows from |v|2H1(Ω) ≤
|v|2H1(Ω) + ‖v‖2L2(Ω) ≡ ‖v‖

2
H1(Ω). Hence,

γ = sup
w∈V

sup
v∈V

|a(w, v)|
‖w‖H1(Ω)‖v‖H1(Ω)

≤ 1 <∞,

and the bilinear form is continuous.
We next show that the bilinear form is coercive. For all v ∈ V,

‖v‖2H1(Ω) = |v|2H1(Ω) + ‖v‖2L2(Ω) ≤ |v|
2
H1(Ω) + CPF|v|2H1(Ω) = (1 + CPF)a(v, v),

where CPF <∞ is the constant associated with the (corollary of the) Poincaré-Friedrichs inequality,
Corollary 2.36. It follows that

a(v, v)

‖v‖2
H1(Ω)

≥ 1

1 + CPF
∀v ∈ V.
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Hence,

α = inf
v∈V

a(v, v)

‖v‖2
H1(Ω)

≥ 1

1 + CPF
> 0,

and the bilinear form is coercive.

We now show that the volume source term of the linear form is continuous. For all v ∈ V,

|
∫

Ω
vfdx| ≤ ‖v‖L2(Ω)‖f‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω); (2.12)

here, the first inequality follows from Cauchy-Schwarz, and the second inequality follows from
‖v‖L2(Ω) ≤ (‖v‖2L2(Ω)+|v|2H1(Ω))

1/2 = ‖v‖2H1(Ω), ∀v ∈ V. We then show that the Neumann boundary
term of the linear form is continuous: ∀v ∈ V,

|
∫

ΓN

vgds| ≤ ‖v‖L2(ΓN )‖g‖L2(ΓN ) ≤ Ctr‖g‖L2(ΓN )‖v‖H1(Ω); (2.13)

here, the first inequality follows from Cauchy-Schwarz, and the second inequality follows from the
trace inequality, Proposition 2.39. The combination of (2.12) and (2.13) yields, ∀v ∈ V,

|`(v)| ≤ |
∫

Ω
vfdx|+ |

∫
ΓN

vgds| ≤ (‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ))‖v‖H1(Ω).

Hence,

‖`‖(H1(Ω))′ = sup
v∈V

|`(v)|
‖v‖H1(Ω)

≤ ‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ) <∞,

and ` is continuous.

We confirm that all conditions of the Lax-Milgram theorem are satisfied; hence the Poisson’s
problem has a unique solution, and the problem is well-posed.

2.12 Minimization formulation

We now obtain the minimization formulation for boundary value problems under two assumptions
on the bilinear form a(·, ·):

1. coercivity: ∃α > 0 such that a(v, v) ≥ α‖v‖2V , ∀v ∈ V.

2. symmetry: a(w, v) = a(v, w), ∀w, v,∈ V.

Our variational formulation is as follows: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V, (2.14)

where VE ≡ {v ∈ H1(Ω) | v|ΓD = uB} for some boundary function uB, V ≡ {v ∈ H1(Ω) | v|ΓD = 0},
and a continuous linear form ` : V → R. We then introduce an energy functional, J : H1(Ω)→ R,
given by

J(w) ≡ 1

2
a(w,w)− `(w) ∀w ∈ H1(Ω). (2.15)
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We then have the following minimization formulation: find u ∈ VE such that

u = arg min
w∈VE

J(w). (2.16)

This is a minimization formulation for a general symmetric, coercive problem.
We can readily show that u ∈ V is the solution to the minimization problem (2.16) if and only if

it is the solution to the variational problem (2.14). Suppose u ∈ VE is the solution to the variational
problem (2.14). Let w = u+ v for some v ∈ V. (Note that w ∈ VE .) We then observe, ∀v ∈ V,

J(w) = J(u+ v) =
1

2
a(u+ v, u+ v)− `(u+ v)

=
1

2
a(u, u)− `(u)︸ ︷︷ ︸

J(u)

+
1

2
a(u, v) +

1

2
a(v, u)︸ ︷︷ ︸

=a(u,v) by symmetry

−`(v) +
1

2
a(v, v)

= J(u) + a(u, v)− `(v)︸ ︷︷ ︸
=0 since u solves (2.14)

+
1

2
a(v, v)︸ ︷︷ ︸

>0 for v 6= 0
by coercivity

> J(u) ∀v 6= 0.

Hence, J(w) > J(u) for all w 6= u, and u is the minimizer of J (2.15). Note that this proof relies
on the fact that the bilinear form is symmetric and coercive.

Conversely, suppose u ∈ VE is the solution to the minimization problem (2.16). Because
the energy functional is quadratic in the argument, the minimizer u must satisfy the stationarity
condition

J ′(u; v) ≡ lim
ε→0

1

ε
(J(u+ εv)− J(u)) = 0 ∀v ∈ V;

the Fréchet derivative (i.e., directional derivative) about u in any direction v should be 0. The
Fréchet derivative J ′(u; v) is given by

J ′(u; v) ≡ lim
ε→0

1

ε
(J(u+ εv)− J(u)) = lim

ε→0

1

ε
(J(u) + a(u, εv)− `(εv) +

1

2
a(εv, εv)− J(u))

= lim
ε→0

1

ε
(εa(u, v)− ε`(v) +

1

2
ε2a(v, v)) = lim

ε→0
(a(u, v)− `(v) +

1

2
εa(v, v)) = a(u, v)− `(v)

Hence, for u ∈ VE to be the minimizer, it must satisfy

J ′(u; v) = a(u, v)− `(v) = 0,∀v ∈ V,

which is precisely the variational statement (2.14).

2.13 Summary

We summarize key points of this lecture:

1. A Hilbert space is a complete inner-product space; a Banach space is a complete normed
space.

2. The Lebesgue space L2(Ω) consists of functions that are square integrable (in the Lebesgue
sense).
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3. The Sobolev space Hk(Ω) consists of functions whose weak derivatives of up to and including
order k are square integrable (in the Lebesgue sense).

4. Poisson’s equation can be cast in the strong, minimization, or variational (or weak) form.

5. A Dirichlet boundary condition is an essential boundary condition that is imposed strongly
by the choice of the space. Neumann and Robin boundary conditions are natural boundary
conditions that are imposed weakly by the variational form.

6. Nonhomogeneous Dirichlet boundary conditions are imposed strongly by an affine (and not
linear) trial space.

7. The Lax-Milgram theorem shows the existence and uniqueness of a solution for a weak for-
mulation with a coercive and continuous bilinear from and a continuous linear form.

8. The verification of coercivity and continuity of a bilinear form often relies on a Poincaré-
Friedrichs-type inequality and trace inequality, respectively.

9. If a variational formulation is given by a symmetric, coercive bilinear form, then it has a
minimization formulation.
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2.14 Appendix. Lax-Milgram: violation of the assumptions

Positive-definite but non-coercive a(·, ·). One of the required conditions of the Lax-Milgram theorem
is coercivity: ∃α > 0 such that a(v, v) ≥ α‖v‖2V ∀v ∈ V. Note that this condition is stronger than
the positive definiteness condition: a(v, v) > 0 ∀v 6= 0; in other words, coercivity implies positive
definiteness but not the converse. We illustrate that the positive definiteness is insufficient to
guarantee the existence of a solution using a concrete example.

We introduce a domain Ω ≡ (−1, 1) ⊂ R1, an associated Hilbert space V ≡ H1(Ω), and a
bilinear form

a(w, v) ≡
∫

Ω
vwdx ∀w, v ∈ V.

We readily verify that the bilinear form is continuous with a continuity constant γ = 1. We also
observe that the bilinear form is positive definite: a(v, v) = ‖v‖2L2(Ω) > 0 ∀v 6= 0. However, the

form is not V-coercive. To see this, consider a sequence of functions vn(x) = sin(nπx). We observe

that ‖vn‖2L2(Ω) =
∫

Ω v
2
ndx = 1 and |vn|2H1(Ω) =

∫
Ω

(
dvn
dx

)2
dx = n2π2. It hence follows that

α = inf
w∈V

a(w,w)

‖w‖H1(Ω)
≤ inf

w∈V

‖w‖L2(Ω)

|w|H1(Ω)
≤ inf

n∈Z>0

‖vn‖L2(Ω)

|vn|H1(Ω)
= inf

n∈Z>0

1

n2π2
= 0.

Hence, the bilinear form is not V-coercive (even though it is positive definite).
We now show that if the bilinear form is not V-coercive, then the solution may not exist in V.

To this end, we introduce a linear form

`(v) ≡
∫

Ω
vfdx ∀v ∈ V,

where

f(x) =

{
−1, x ≤ 0,

1, x > 0.

Note that ‖`‖V ′ ≤ ‖f‖L2(Ω) =
√

2, and hence ` is continuous. We then consider the following weak
problem: find u ∈ L2(Ω) such that

a(u, v) = `(v) ∀v ∈ H1(Ω). (2.17)

More explicitly, we seek u ∈ L2(Ω) such that∫
Ω
vudx =

∫
Ω
vfdx ∀v ∈ H1(Ω).

We readily observe that a solution to this problem is u = f , which is in L2(Ω) but not in V ≡ H1(Ω).
We now wish to show that u = f is the unique solution to the problem, and in particular there

is no solution z ∈ H1(Ω) that satisfies a(z, v) = `(v) ∀v ∈ H1(Ω). If both u = f and z satisfies the
weak statement (2.17), we observe that a(u − z, v) = 0 ∀v ∈ H1(Ω). We now consider a sequence
vn ∈ H1(Ω) such that ‖(u− z)− vn‖L2(Ω) ≤ 1/n; because u− z is in L2(Ω) and H1(Ω) is dense in
L2(Ω), such a sequence exists. Since vn ∈ H1(Ω), it follows that

0 = a(u− z, vn) = a(u− z, u− z)− a(u− z, (u− z)− vn) = ‖u− z‖2L2(Ω)− (u− z, (u− z)− vn)L2(Ω).
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We rearrange the expression and invoke the Cauchy-Schwarz inequality to obtain

‖u− z‖2L2(Ω) = (u− z, (u− z)− vn)L2(Ω) ≤ ‖u− z‖L2(Ω)‖(u− z)− vn‖L2(Ω),

which implies
‖u− z‖L2(Ω) ≤ ‖(u− z)− vn‖L2(Ω) ≤ 1/n→ 0 as n→∞.

Hence, we find that u = f ∈ L2(Ω) (but not in H1(Ω)) is the unique solution to (2.17). Hence
there does not exist a solution u ∈ V ≡ H1(Ω) such that a(u, v) = `(v) ∀v ∈ V.

Non-continuous `. We now consider a different case: we suppose that the bilinear form a :
V × V → R is V-coercive and V-continuous, but ` ∈ V ′ is not continuous. In other words, there
exists a sequence of vn ∈ V such that

|`(vn)|
‖vn‖V

→∞ as n→∞.

We now assume the solution such that a(u, v) = `(v) ∀v ∈ V exists. It then follows that

|`(vn)|
‖vn‖V

=
|a(u, vn)|
‖vn‖V

≤ γ‖u‖V .

Since |`(vn)|/‖vn‖V →∞ and γ <∞, we conclude that ‖u‖V is not bounded and does not belong
to V.
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Lecture 3

Finite element method: formulation

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

3.1 Introduction

In this lecture, we develop finite element approximations of variational problems. Specifically, we
introduce a triangulation of the domain Ω, construct an approximation space Vh ⊂ V, formulate a
discrete problem, and then discuss the well-posedness of the finite element problem.

3.2 Triangulation

We first introduce a triangulation of Ω ⊂ Rd. A triangulation

Th ≡ {Ki}nei=1

is a set of non-overlapping elements K1, . . . ,Kne such that the union of the closure of the elements
covers the domain:

Ki ∩Kj = ∅, i 6= j

∪nei=1Ki = Ω.

(We consider the closure of the elements because we consider each element to be open.) An example
of a triangulation is shown in Figure 3.1. The triangulation comprises ne = 9 triangular elements
{Ki}nei=1, which are delineated by nv = 9 vertices {zi}nvi=1. For each element Ki, we define the
diameter

hKi ≡ diam(Ki).

The diameter of Ki is the supremum of the distances between pairs of points in Ki,

diam(Ki) = sup
x,y∈Ki

‖x− y‖2;

the diameter for a triangle Ki is the length of the longest edge. (We take the supremum because
each element is open.) The subscript h of the triangulation Th signifies the maximum diameter of
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(a) mesh

Figure 3.1: Triangulation.

the elements in the triangulation,
h ≡ max

i=1,...,ne
hKi .

Intuitively (and as we will see more formally), the finite element spaces associated with a sequence
of triangulations get richer as h decreases. In general, a triangulation comprises line segments in
one dimension, triangles or quadrilaterals in two dimension, and tetrahedrons or hexahedrons in
three dimensions.

While mathematically a triangulation is simply a collection of non-overlapping elements that
cover the domain, we need a convenient means to represent the triangulation on a computer. One
approach is to store tables of node coordinates and element-node connectivities. Tables 3.1(a)
and 3.1(b) are respectively the coordinate and connectivity tables associated with the triangulation
shown in Figure 3.1. The connectivity table indicates that, for instance, the elementK5 is delineated
by the nodes z6, z5, and z3; the coordinate table then indicates that the coordinates of these three
nodes are z6 = (0.28,−0.07), z5 = (−0.21, 0.98), and z3 = (−0.29, 0.04). By convention, we order
the nodes of the triangles in the counterclockwise manner. The coordinate and connectivity tables
together provide a complete geometric description of all elements. Note that, in Figure 3.1, for each
triangle, we indicate the first of the three nodes that delineate the triangle by a dot (•); with this
convention we have identical information presented in Figure 3.1 in a visual form and Tables 3.1(a)
and 3.1(b) in an array form.

The task of generating a triangulation for a given domain is called mesh generation and a
software that carries out the task is called a mesh generator or mesher. Mesh generation is a non-
trivial task. In fact, the development of algorithms that can robustly and automatically generate
high-quality triangulation for complex geometries in three dimensions is an area of ongoing research.
Nevertheless, because mesh generation is essential for any finite element discretization, there are
many commercial and open-source meshers. Here we name a few user-friendly, open-source meshers:

• triangle. A robust two-dimensional mesher written in C that generates meshes with a
guaranteed quality certificate in terms of the minimal angle.
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Table 3.1: Node coordinate and connectivity table for mesh shown in Figure 3.1.

(a) coordinates

node x1 x2

1 −0.89 0.45
2 −0.89 −0.46
3 −0.29 0.04
4 −0.21 −0.98
5 −0.21 0.98
6 0.28 −0.07
7 0.60 0.80
8 0.61 −0.79
9 1.00 0.02

(b) connectivity

element node 1 node 2 node 3

1 9 6 8
2 8 6 4
3 4 6 3
4 3 5 1
5 6 5 3
6 7 6 9
7 7 5 6
8 2 3 1
9 4 3 2

• tetgen. A popular three-dimensional mesher written in C.

• distmesh. A user-friendly mesher written in Matlab for implicit domain geometries repre-
sented by level sets.

The mesh shown in Figure 3.1 was in fact generated by distmesh. We will extensively use distmesh
to generate meshes in this course as it is implemented in Matlab and is easy to use.

3.3 Approximation spaces

We now introduce approximation spaces (or finite element spaces) for V. An approximation space
is a finite-dimensional subspace space of V with which we can approximate functions in V. For
concreteness, we consider a piecewise linear approximation space for V ≡ H1(Ω) associated with
the triangulation Th,

Vh ≡ {v ∈ V ≡ H1(Ω) | v|K ∈ P1(K), ∀K ∈ Th}; (3.1)

here P1(K) is the space of linear polynomials over K. We note the two requirements: v ∈ Vh
must belong to V ≡ H1(Ω); v restricted to any element K ∈ Th, v|K , must be a linear polynomial.
Figure 3.2 shows an example of a function in a linear (P1) finite element space, associated with the
mesh shown in Figure 3.1.

We note that the condition Vh ⊂ H1(Ω) means that the weak derivative of functions must
be square integrable (in the Lebesgue sense); for piecewise polynomials, the condition is satisfied
if and only if the function is continuous. To see this, we observe the following. If a function
is continuous and piecewise polynomial, the weak first derivative is a (potentially discontinuous)
piecewise polynomial and hence is square integrable; the function hence is in H1(Ω). If a function is
not continuous across element interfaces, then the weak first derivative generates delta distributions
at the interfaces and hence is not in L2(Ω); recall for instance a concrete example for a Heaviside-like
function in Section 2.3. Hence, for a piecewise polynomial function, the continuity is a necessary
and sufficient condition for the function to be in H1(Ω).

We now need a convenient means to describe functions in Vh given by (3.1), such as the one
shown in Figure 3.2. Specifically, we need to pick global degrees of freedom with which we can
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Figure 3.2: A function in a linear finite element space.

uniquely associate any function in Vh to a set of real numbers. To this end, we introduce a basis
for the linear space Vh. We recall that a set of functions {φi}ni=1 is a basis for Vh if the set (i) spans
Vh and (ii) is linearly independent. The first requirement implies that any w ∈ Vh can be expressed
as a linear combination of {φi}ni=1. The second requirement implies that the coefficients associated
with the representation of w ∈ Vh in terms of {φi}ni=1 is unique. In other words, if {φi}ni=1 is a
basis for Vh, then for any w ∈ Vh there exists a unique ŵ ∈ Rn such that

w =
n∑
j=1

ŵjφj (3.2)

for n = dim(Vh). Given a basis {φi}ni=1 for Vh, the relationship (3.2) is an isomorphism (i.e., a
bijective map) from Rn to Vh. A function that belongs to a basis {φi}ni=1 is called a basis function
or a shape function.

While the choice of a basis is not unique, one convenient choice is a Lagrange basis or nodal
basis. A nodal basis {φj}nj=1 comprises functions that take on the value of 1 at the associated node
and 0 at all other nodes:

φj(zi) = δij , (3.3)

where zi is the i-th node of the triangulation, and δij is the Kronecker delta so that δij = 1 if
i = j and δij = 0 if i 6= j. Figure 3.3 shows an example of a basis function, φ3, for the linear
finite element space (3.1) associated with the mesh shown in Figure 3.1. For Vh defined by (3.1),
there are nine nodal basis functions, one associated with each node. We also observe that the set
of the nine functions indeed forms a basis: the set is linearly independent and spans the space.
The set is linearly independent because

∑n
j=1 ŵjφj = 0 implies

∑n
j=1 ŵjφj(zi) = 0, ∀i = 1, . . . , n,

which in turn implies
∑n

j=1 ŵjδij = ŵi = 0, i = 1, . . . , n. The set spans the space because the
piecewise linear polynomial space is nine dimensional and the linearly independent set contains
nine functions.

The nodal basis, unlike many other bases, provides a convenient interpretation in the physical
space. Specifically, for w ∈ Vh, we have a (unique) representation

w =

n∑
j=1

ŵjφj =

n∑
j=1

w(zj)φj . (3.4)

We note that the coefficient ŵj must be equal to w(zj), because w(zi) =
∑n

j=1 ŵjφj(zi) =∑n
j=1 ŵjδij = ŵi, i = 1, . . . , n; here, the second equality follows from the Lagrange interpola-

tion property (3.3). In words, ŵj = w(zj), the value of the function w ∈ Vh evaluated at the
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Figure 3.3: Nodal basis φ3 for the linear finite element space Vh defined by (3.1).

associated node xj . This interpretation of nodal basis functions also allows us to readily confirm
that the nodal basis is indeed a basis: for any w ∈ Vh, there exists a unique ŵ ∈ Rn such that
w =

∑n
j=1 ŵjφj .

We note that approximation spaces of the form (3.1) can be refined to yield a sequence of
approximation spaces. A space Vh′ is said to be a refinement of a space Vh if

Vh ⊂ Vh′ ;

i.e., every member of Vh is also a member of Vh′ . For a piecewise linear space, a refinement results
from splitting some or all of elements in the triangulation. Through a successive refinement of
elements, we can construct a sequence of approximation spaces

Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn
for h1 > h2 > · · · > hn. (We recall that the subscript h of Vh indicates the diameter of the largest
element, h ≡ maxK∈Th diam(K).) The ability to refine, and hence construct a sequence of enriched
spaces, is important. Intuitively, we might relate this ability to arbitrary refine the approximation
spaces with the ability to find an approximation that is arbitrary close to the exact solution. We
will make this notion of convergence more formal in a later lecture.

3.4 Approximation spaces: essential boundary conditions

We recall from Lecture 2 that Dirichlet boundary conditions are treated as essential boundary
conditions in the weak formulation of second-order elliptic PDEs. The essential boundary conditions
are explicitly imposed through the choice of the space. For instance, given a mixed Poisson problem
on Ω ⊂ Rd with a homogeneous Dirichlet boundary ΓD ⊂ ∂Ω, the appropriate function space is

V ≡ {v ∈ H1(Ω) | v|ΓD = 0}.

We wish to construct an approximation space Vh ⊂ V.
To facilitate our discussion, we first introduce a piecewise linear approximation space for H1(Ω)

(without the essential boundary condition),

H1
h(Ω) ≡ {v ∈ H1(Ω) | v|K ∈ P1(K), ∀K ∈ Th};

we note that the notation H1
h(Ω) is not standard in literature, but we adhere to it as it is convenient.

We then introduce a piecewise linear approximation for V ⊂ H1(Ω) with the essential boundary
condition,

Vh ≡ {v ∈ V | v|K ∈ P1(K), ∀K ∈ Th};
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Figure 3.4: A triangulated domain with a Dirichlet boundary.

functions in the approximation space Vh must vanish on ΓD so that Vh ⊂ V. The space Vh is a
subspace of V because the functions restricted to element K is in P1(K). The space Vh is also a
subspace of H1

h(Ω) because, while both spaces comprise piecewise linear functions, the functions in
Vh must vanish on the boundary ΓD.

For a piecewise linear function v ∈ H1
h(Ω), a condition equivalent to v|ΓD = 0 is

vh(zj) = 0 for all nodes zj on Γ̄D,

where Γ̄D is the closure of the Dirichlet boundary. We consider the closure so that the nodes at
the boundary (i.e., endpoints in R2) are included in the set. In other words,

Vh = {v ∈ H1
h(Ω) | v(zj) = 0, ∀zj on Γ̄D}.

For instance, in Figure 3.4, the piecewise linear function must vanish on the nodes z4, z7, z8, and
z9.

For a nodal basis, the boundary condition can be explicitly imposed by eliminating the shape
functions associated with the nodes on ΓD from the approximation space. The dimension of the
resulting approximation space for V ⊂ H1(Ω) is

n ≡ dim(Vh) = dim(H1
h(Ω))− (number of nodes on Γ̄D).

For instance, the dimension of the piecewise linear approximation space shown in Figure 3.4 is
n = 9 − 4 = 5, where the active shape functions are associated with the nodes z1, z2, z3, z5, and
z6. Once the set of active shape functions of H1

h(Ω) are identified, we can readily reassign them
as a basis {φj}nj=1 of Vh. Without loss of generality, we also reassign the associated node numbers
{zj}nj=1. Then, as before, we can express any function in w ∈ Vh in terms of ŵ ∈ Rn as

w =
n∑
j=1

ŵjφj =
n∑
j=1

w(zj)φj .

We now consider an nonhomogeneous Dirichlet boundary condition, say u|ΓD = uB. We recall
that the appropriate test space for the problem is V ≡ {v ∈ H1(Ω) | v|ΓD = 0} and the trial
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space is VE ≡ uE + V, where uE is an arbitrary member of H1(Ω) that satisfies the boundary
condition uE |ΓD = uB. If the boundary function uB is a piecewise polynomial that conforms to the
triangulation, then it is possible to find uEh ∈ H1

h(Ω) that satisfies the boundary condition exactly:
uEh |ΓD = uB. Otherwise, we have to choose uEh ∈ H1

h(Ω) in the piecewise polynomial space that
approximately satisfies the boundary condition: uEh |ΓD ≈ uB. In either case, a convenient choice
(though not the only choice) is to simply choose any uEh ∈ H1

h(Ω) such that

uEh (zj) = uB(zj) for all nodes zj on Γ̄D.

We can then express any function in w ∈ VEh ≡ uEh + Vh in terms of ŵ ∈ Rn as

w = uEh +

n∑
j=1

ŵjφj ,

where {φj}nj=1 is a nodal basis associated with nodes not on Γ̄D.

3.5 Galerkin method

We now consider a Galerkin finite element approximation of a boundary value problem. We first
recall the weak formulation for the exact problem: find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V, (3.5)

where a : V × V → R is a coercive, continuous bilinear form and ` : V → R is a continuous linear
form. (In general, the bilinear form needs not be coercive; however, here we assume coercivity to
prove some theoretical results using the tools introduced in the previous lecture.) We now seek an
approximation to (3.5) in a finite-dimensional subspace Vh ⊂ V: find uh ∈ Vh such that

a(uh, v) = `(v) ∀v ∈ Vh. (3.6)

This is the Galerkin finite element approximation of (3.5). In words, we obtain the finite element
problem by simply restricting the test and trials spaces from V to Vh ⊂ V. Because the trial and
test approximation spaces are the same, the method is referred to as a Galerkin method, or, more
explicitly, Bubnov-Galerkin method. (If the test and trial approximation spaces are different, the
method is referred to as a Petrov-Galerkin method.) The finite element problem (3.6) depends on
the space Vh but is independent of the particular basis {φi}ni=1 for Vh. We will prove in Section 3.6
that the solution to (3.6) exists and is unique.

We now wish to recast the finite element problem (3.6) in linear algebraic from that is amenable
to computer implementation. To this end, we represent the solution and test functions in terms
of their basis coefficients, uh =

∑n
j=1 ûh,jφj and v =

∑n
i=1 v̂φi to yield the following equivalent

problem for the coefficients: find ûh ∈ Rn such that

a(

n∑
j=1

ûh,jφj ,

n∑
i=1

v̂iφi) = `(

n∑
i=1

v̂iφi) ∀v̂ ∈ Rn.

We then invoke the bilinearity of a(·, ·) and the linearity of `(·) to obtain

n∑
i,j=1

v̂ia(φj , φi)ûh,j =
n∑
i=1

v̂i`(φi).
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The problem can be more compactly expressed using the matrix-vector notation: find ûh ∈ Rn
such that

v̂T Âhûh = v̂T f̂h ∀v̂ ∈ Rn, (3.7)

where the stiffness matrix Âh ∈ Rn×n is given by

Âh,ij ≡ a(φj , φi), i, j = 1, . . . , n,

and the load vector f̂h ∈ Rn is given by

f̂h,i ≡ `(φi), i = 1, . . . , n.

In order for (3.7) to hold, each row of Ahûh − fh must be equal to zero; otherwise, we can find
v̂ ∈ Rn that is finite only on that non-zero and hence (3.7) would not hold. We hence conclude
that the statement (3.7) is equivalent to finding ûh ∈ Rn that satisfies

Âhûh = f̂h (in Rn). (3.8)

We will prove in Section 3.6 that (3.8) has a unique solution.

3.6 Well-posedness of the Galerkin finite element formulation

The following proposition shows that the solution to (3.6) exists and is unique.

Proposition 3.1. Given an approximation space Vh ⊂ V, a continuous, coercive (but not neces-
sarily symmetric) bilinear form a : V × V → R, and a continuous linear functional ` ∈ V ′, there
exists a unique uh ∈ Vh such that

a(uh, v) = `(v) ∀v ∈ Vh.

Proof. We will appeal to the Lax-Milgram theorem, Theorem 2.32. To this end, we need to demon-
strate that (i) the bilinear form a(·, ·) is coercive in Vh, (ii) the bilinear form is continuous a(·, ·) is
continuous in Vh, and (iii) the linear form `(·) is continuous in Vh. All of these properties follow
from the fact that Vh is a subspace of V. The coercivity of a(·, ·) in Vh follows from

αh ≡ inf
v∈Vh

a(v, v)

‖v‖2V
≥ inf

v∈V

a(v, v)

‖v‖2V
≡ α > 0,

where the inequality follows from Vh ⊂ V. The coercivity constant associated with Vh, αh, is
bounded from the below by the coercivity constant associated with V, α, which itself is bounded
from the below by 0. The continuity of a(·, ·) in Vh follows from

γh ≡ sup
w,v∈Vh

|a(w, v)|
‖w‖V‖v‖V

≤ sup
w,v∈V

|a(w, v)|
‖w‖V‖v‖V

≡ γ <∞,

where the inequality again follows from Vh ⊂ V. The continuity constant associated with Vh, γh,
is bounded from the above by the continuity constant associated with V, γ, which itself is finite.
Similarly, the continuity of `(·) in Vh follows from

‖`‖(Vh)′ ≡ sup
v∈Vh

|`(v)|
‖v‖V

≤ sup
v∈V

|`(v)|
‖v‖V

≡ ‖`‖V ′ <∞,
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where the inequality again follows from Vh ⊂ V. Because the bilinear from is coercive and continuous
in Vh and the linear from is continuous in Vh, we conclude by the Lax-Milgram theorem that the
solution exists and is unique.

Proposition 3.1 shows the existence of a unique solution to the finite element problem (3.6)
without appealing to any specific basis for Vh. That is, the finite element solution uh ∈ Vh depends
only on the space Vh and is independent of the specific basis {φi}ni=1 used to represent functions in
Vh.

For a problem that involves nonhomogeneous Dirichlet data, the well-posedness of the finite
element problem can be proved using the same technique used for the exact (infinite-dimensional)
problem in Section 2.9; we first reformulate it as a homogeneous Dirichlet problem with a modified
linear form and then apply the Lax-Milgram theorem.

We now consider the well-posedness of the linear algebraic problem (3.8).

Proposition 3.2. Under the condition of Proposition 3.1, introduce a basis {φi}ni=1 for Vh. There
exists a unique solution ûh ∈ Rn to

Âhûh = f̂h,

where Âh,ij ≡ a(φj , φi) and f̂h,i ≡ `(φi).

Proof. Proposition 3.1 shows the existence and uniqueness of the solution ûh ∈ Vh. Because {φi}ni=1

is a basis for Vh, there exists a unique coefficients ûh ∈ Rn such that

uh =
n∑
j=1

ûh,jφj .

The coefficients ûh ∈ Rn is the unique solution of the linear system Âhûh = f̂h.

Alternatively, we can show that, if a : V × V → R is coercive, then the matrix Âh ∈ Rn×n is
positive definite and hence is non-singular, and a unique solution to Âhûh = f̂h exists.

Definition 3.3 (positive definite matrix). A matrix A ∈ Rn×n, not necessarily symmetric, is
positive definite if

xTAx ≥ 0 ∀x ∈ Rn,
and xTAx = 0 if and only if x = 0.

Proposition 3.4. If the bilinear form a : V × V → R is coercive (but not necessarily symmetric),
then the stiffness matrix Âh ∈ Rn×n associated with a basis {φi}ni=1 of Vh is positive definite (PD).

Proof. We observe that ∀v̂ ∈ Rn,

v̂T Âhv̂ =

n∑
i,j=1

v̂ia(φj , φi)v̂j = a(

n∑
j=1

v̂jφj ,

n∑
i=1

v̂iφi) ≥ α‖
n∑
i=1

v̂iφi‖2V ≥ 0,

where the first inequality follows from the coercivity of a(·, ·) and the last equality follows from
the positive definiteness of the norm ‖ · ‖V . Moreover, because ‖ · ‖V is a norm, ‖

∑n
i=1 v̂iφi‖V = 0

if and only if
∑n

i=1 v̂iφi = 0. In addition, because {φi}ni=1 is a basis and in particular linearly
independent,

∑n
i=1 v̂iφi = 0 if and only if v̂i = 0, ∀i = 1, . . . , n. It follows that

v̂T Âhv̂ = 0 if and only if v̂ = 0.

Hence, the matrix Âh ∈ Rn×n is PD.
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Proposition 3.5. A positive definite (not necessarily symmetric) matrix A ∈ Rn×n is non-singular.

Proof. The proof is by contraction. Suppose the matrix A is singular. Then, ker(A) 6= 0, and there
exists x 6= 0 such that Ax = 0. This in turn implies that xTAx = 0 for the vector x 6= 0. But if A
is PD, then xTAx = 0 if and only if x = 0. We hence have a contraction; a PD matrix must have
ker(A) = 0 and hence is non-singular.

Remark 3.6. Because the matrix Âh ∈ Rn×n is PD, the matrix is non-singular, and the linear
system Âhûh = f̂h has a unique solution.

If the bilinear form is not only coercive but also symmetric, then we can also show that the
matrix Âh ∈ Rn×n is symmetric positive definite (SPD).

Definition 3.7 (symmetric positive definite matrix). A matrix A ∈ Rn×n is symmetric positive
definite (SPD) if A is

(i) symmetric: AT = A

(ii) positive definite: xTAx ≥ 0 ∀x ∈ Rn, and xTAx = 0 if and only if x = 0.

Proposition 3.8. If the bilinear form a : V × V → R is symmetric and coercive, then the stiffness
matrix Âh ∈ Rn×n is symmetric positive definite (SPD).

Proof. The symmetry of Âh follows directly from the symmetry of the bilinear form:

Âh,ij = a(φj , φi) = a(φi, φj) = Âh,ji ∀i, j = 1, . . . , n.

We have already shown in Proposition 3.4 that the coercivity of a : V ×V → R implies the positive
definiteness of Âh.

Before we conclude a section, we make an important remark. A finite element solution uh ∈ Vh
is a field that approximates the solution u ∈ V. Because uh is a field, we can evaluate uh(x) at any
point x ∈ Ω. This is fundamentally different from a finite difference method, which approximates
the solution at a discrete set of points, and the solution elsewhere is in general not approximated.
(Of course, we could in practice interpolate the finite difference solution, but that involves an
additional approximation.) While the coefficients ûh ∈ Rn is associated with the nodal value of the
solution for nodal bases, this is a rather special interpretation for a nodal bases. The finite element
solution field uh ∈ Vh only depends on the space Vh and not the particular basis used to represent
the functions in Vh.

3.7 Minimization formulation

For a variational problem with a symmetric, coercive bilinear form, we can also formulate the finite
element problem using a minimization formulation. We recall that the energy functional associated
with the minimization problem is J : V → R such that

J(w) ≡ 1

2
a(w,w)− `(w),
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where a : V × V → R is a symmetric, coercive bilinear form, and ` : V → R is a linear form. The
solution is given by u ∈ V such that

u = arg min
w∈V

J(w).

We recall that the minimization formulation and the variational formulation are equivalent.
The finite element approximation is given by the minimization problem over a subspace Vh ⊂ V.

To this end, we introduce a basis {φi}ni=1 for Vh and evaluate the energy functional for an arbitrary
w ≡

∑n
j=1 ŵjφj in the space:

J(w) = J(
n∑
j=1

ŵjφj) =
1

2
a(

n∑
j=1

ŵjφj ,
n∑
i=1

ŵiφi)− `(
n∑
i=1

ŵiφi) =
1

2

n∑
i,j=1

ŵi a(φj , φi)︸ ︷︷ ︸
Âh,ij

ŵj −
n∑
i=1

ŵi `(φi)︸ ︷︷ ︸
f̂h,i

;

here identify the stiffness matrix Âh and load vector f̂h in the expression. We can then redefine an
energy functional in terms of the coefficients ŵ ∈ Rn such that

Ĵ(ŵ) ≡ J(

n∑
j=1

ŵjφj) =
1

2
ŵT Âhŵ − ŵT f̂h.

We then seek the coefficients ûh ∈ Rn such that

ûh = arg min
ŵ∈Rn

Ĵ(ŵ).

The sufficient condition for ûh to be the minimizer is that (i) the gradient is zero, ∇Ĵ(ûh) = 0, and
(ii) the Hessian of J(ûh) is SPD. The condition (i) is equivalent to

∇Ĵ(ûh) = Âhûh − f̂h = 0 (in Rn),

which is the same as the Galerkin finite element statement for the coefficients, (3.8). The condition
(ii) is also satisfied because the Hessian of J(ûh) is Âh, which we have proven is SPD for a symmetric,
coercive bilinear form in Proposition (3.8). Hence, the finite element solution uh ∈ Vh, and the
associated coefficients ûh ∈ Rn, can also be obtained using the minimization formulation.

3.8 Generalization: higher-order and spectral methods

In this lecture, we constructed the Galerkin approximation based on an approximation space Vh
of piecewise linear (P1) polynomials; however, the Galerkin method — which approximates the
solution u ∈ V in a subspace Vh — is in fact a general procedure that works with any approximation
space Vh ⊂ V.

For instance, we could consider a domain with a curved boundary and an associated triangula-
tion as shown in Figure 3.5(a), and then considered a space of piecewise quadratic (P2) polynomials,

Vh ≡ {v ∈ V | v|K ∈ P2, ∀K ∈ Th}. (3.9)

An example of a function that belongs to the space is shown in Figure 3.5(b). We may compare
the piecewise linear and quadratic functions shown in Figures 3.2 and 3.5(b), respectively, and
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Figure 3.5: P2 finite element space.

intuitively draw a conclusion that the P2 space provides a better approximation of smooth functions.
This intuition is in fact true; we will make a more precise mathematical argument in a later lecture.
Like the P1 space, the P2 space can be refined by splitting some or all of elements such that
Vh ⊂ Vh′ . A successive refinements yield a sequence of approximation spaces Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn
for h1 > h2 > · · · > hn. In fact, a finite element approximations based on piecewise polynomial
spaces of degree greater than 1, which include the P2 space, are often referred to as a higher-order
approximation, because the solution converges more rapidly with h than for the P1 space.

Figures 3.5(c) and 3.5(d) show two of the nodal shape functions for the P2 space associated with
the triangulation 3.5(a). Unlike the nodal shape functions for the P1 space which are associated
with only vertices of the triangles, the nodal shape functions for the P2 space are associated with
either vertices or edges.

As another example, suppose the domain of interest Ω is a line in R1, a square in R2, a cube in
R3, or any shape that can be mapped to these shapes. Then we can also consider an approximation
space consists of global polynomials

Vp ≡ {v ∈ V | v ∈ (Pp(Ω))d}.

In this case, the approximation space can be refined by increasing the polynomial degree; we readily
observe that Vp ⊂ Vp′ for p ≤ p′. The Galerkin finite element method based on a sequence of global
polynomial spaces, Vp1 ⊂ Vp2 ⊂ · · · ⊂ Vpn for p1 ≤ p2 ≤ · · · ≤ pn, is called the spectral method. The
polynomials used in the spectral methods are of very high degree; polynomial spaces of degrees of
100 and higher are routinely used.
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3.9 Summary

We summarize key points of this lecture:

1. A triangulation Th is a collection of non-overlapping elements {Ki}nei=1 that covers the domain
Ω.

2. The act of constructing a triangulation for a given domain is called mesh generation. Mesh
generation is a non-trivial task, but there are many open-source and commercial meshers.

3. An approximation space Vh is a finite-dimensional subspace of V ⊂ H1(Ω); the space com-
prises, for example, piecewise polynomials associated with the triangulation.

4. Given a basis {φi}ni=1 for Vh, any function v ∈ Vh can be identified with a unique coefficients
v̂ ∈ Rn, which are the global degrees of freedom of Vh.

5. An approximation space can be successively refined to yield a sequence of approximation
spaces.

6. If a nodal basis is used for H1
h(Ω), then a subspace Vh ⊂ H1

h(Ω) that satisfies the essential
boundary conditions can be formed by removing nodal shape functions on the closure of the
Dirichlet boundary.

7. The Galerkin finite element method solves the variational problem in a finite-dimensional
approximation space Vh ⊂ V.

8. Given a basis {φi}ni=1 of Vh, the coefficients ûh ∈ Rn associated with the solution uh ∈ Vh
solves a n× n linear system Âhûh = f̂h, where Ah,ij = a(φj , φi) and fh,i = `(φi).

9. If the bilinear form is coercive and continuous and the linear form is continuous, the solution
to the Galerkin finite element problem exists and is unique.

10. If the bilinear form is symmetric, coercive, and continuous, then the finite element solution
uh ∈ Vh can also be obtained from the minimization principle.

11. The Galerkin finite element procedure can accommodate as its approximation space, for
instance, piecewise higher-order polynomials (i.e., higher-order method) or high-order global
polynomials (i.e., spectral method).
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Lecture 4

Finite element method:
implementation

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

4.1 Introduction

In this lecture, we introduce technical ingredients required to implement the finite element method.
This lecture is organized as follows:

• Section 4.2 introduces a few common finite elements defined on reference domains. Techniques
to generate finite elements will be discussed in the section.

• Section 4.3 introduces physical elements defined on a triangulation Th and the associated
approximation space Vh ⊂ V. Techniques to map reference elements to physical elements will
be discussed in the section.

• Section 4.4 introduces the concept of numerical quadrature, which we use to evaluate integrals
that appear in bilinear and linear forms.

• Section 4.5 discusses the assembly of stiffness matrix and load vector using the ingredients
discussed in the preceding sections.

• Section 4.6 discusses the treatment of surface integral terms associated with natural boundary
conditions.

• Section 4.7 describes convenient implementation of essential boundary conditions, which are
explicitly enforced by the choice of the space.

• Section 4.8 provides a brief discussion of efficient implementation using the BLAS (basic linear
algebra subprograms).

This is a rather large lecture that covers significant amount of materials. But, by the end of the
lecture, we will have all technical ingredients required to implement a finite element solver.
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Figure 4.1: Reference line segment and triangle.

4.2 Reference elements

4.2.1 Reference domains

We first introduce reference domains on which reference finite elements are defined. The first
reference domain we introduce is a reference line segment Ĩ ⊂ R1. (Note that all quantities
associated with the reference space bear a tilde (̃·).) While the definition of a reference line segment
is not universal, our reference line segment, as shown in Figure 4.1(a), is a unit line segment
delineated by two vertices

ṽ1 ≡ 0 and ṽ2 ≡ 1.

(In literature, it is just as common to see a reference line segment defined as (−1, 1).) We consider
the line segment oriented in the sense that it points from ṽ1 to ṽ2.

We next introduce a reference triangle T̃ ⊂ R2. While the definition of a reference triangle is
again not universal, our reference triangle, as shown in Figure 4.1(b), is a right triangle delineated
by three vertices

ṽ1 ≡ (0, 0), ṽ2 ≡ (1, 0), and ṽ3 ≡ (0, 1).

The vertices are ordered counterclockwise, starting with the first vertex at the origin. We also
denote the three facets of the triangle by

F̃1 ≡ (ṽ2, ṽ3), F̃2 ≡ (ṽ3, ṽ1), and F̃3 ≡ (ṽ1, ṽ2).

(A facet is a d− 1 entity associated with a canonical shape; for a triangle, a facet is an edge.) We
choose the convention that the facet number is the same as the vertex number of the vertex on the
other side of the triangle. Each facet is oriented such that the collection of the three edges defines
the triangle in the counterclockwise orientation.

We could introduce other reference domains including, for instance, a square in R2, a tetrahedron
in R3, or a cube in R3; however, in this lecture, we will consider only the reference line segment Ĩ
and the reference triangle T̃ .
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0 1

Figure 4.2: Linear Lagrange finite element on the reference line segment.

4.2.2 Linear Lagrange finite element on a line segment

We introduce arguably the simplest finite element: linear Lagrange elements on the reference line
segment Ĩ ≡ (0, 1) ⊂ R1. To this end, we introduce Lagrange shape functions (or Lagrange basis
functions or nodal shape functions) for the space of linear functions on Ĩ, P1(Ĩ). We choose for our
interpolation nodes {z̃1, z̃2} the endpoints of the line segment:

z̃1 ≡ 0 and z̃2 ≡ 1,

as shown in Figure 4.2. Our shape functions are linear functions {φ̃1, φ̃2} that satisfy the interpo-
lation condition

φ̃i(zj) = δij , i, j = 1, 2; (4.1)

here δij is the Kronecker delta such that δij = 1 for i = j and δij = 0 for i 6= j. We readily confirm
that the set of two linear function {φ̃1, φ̃2} that satisfies the interpolation condition (4.1) is a basis
for P1(Ĩ).

While the linear Lagrange shape functions can be found by inspection, we here follow a more
systematic procedure to construct shape functions that generalizes to higher dimensions and higher-
order polynomials. To find the basis, we first express the shape functions in terms of the monomial
basis {1, x̃}:

φ̃j(x̃) = c
(j)
1 + c

(j)
2 x̃, j = 1, 2. (4.2)

We now apply the interpolation condition (4.1) to find the coefficients. For instance, φ̃1 must satisfy(
1 z̃1

1 z̃2

)(
c

(1)
1

c
(1)
2

)
=

(
1
0

)
We can also pose a single matrix equation for the monomial coefficients of both shape functions:(

1 z̃1

1 z̃2

)
︸ ︷︷ ︸

V

(
c

(1)
1 c

(2)
1

c
(1)
2 c

(2)
2

)
︸ ︷︷ ︸

C

=

(
1 0
0 1

)
.

We note that the matrix V is the Vandermonde matrix associated with our monomial basis {1, x̃}
evaluated at the Lagrange interpolation points {z̃1, z̃2}. The matrix V is non-singular as long as
the interpolation points are distinct, which is the case for our line segment. The unique coefficients
are given by

C = V −1 =

(
1 0
1 1

)−1

=

(
1 0
−1 1

)
and the associated shape functions are

φ̃1(x̃) = 1− x̃1,

φ̃2(x̃) = x̃2.
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Figure 4.3: Linear Lagrange shape functions on the line segment Ĩ.

The shape functions are shown in Figure 4.3.

Once we find the coefficients of the shape functions, we can evaluate the value of the functions
at any point over Ĩ ⊂ R1 by evaluating (4.2). We can also differentiate (4.2) to obtain the derivative
of the shape functions:

∂φ̃i
∂x̃

∣∣∣∣
x̃

= c
(i)
2 , i = 1, 2.

More explicitly,

dφ̃1

dx̃

∣∣∣∣
x̃

= −1 and
dφ̃2

dx̃

∣∣∣∣
x̃

= 1.

The derivatives are constant over the element because the shape functions are linear.

Given the basis {φ̃j}2j=1 for P1(Ĩ), we can uniquely associate any ṽ ∈ P1(Ĩ) with a vector ˆ̃v ∈ R2:

ṽ =
2∑
j=1

ˆ̃vjφ̃j =
2∑
j=1

ṽ(z̃j)φ̃j

We recognize ˆ̃v ∈ R2 as the degrees of freedom with which we can describe functions in P1(Ĩ).
For nodal shape functions, ˆ̃vj = ṽ(z̃j), j = 1, 2, due to the Lagrange interpolation condition; the
degrees of freedom are the values of the function at the nodes.

Before we introduce other finite elements, we use the linear Lagrange element as an example to
describe three properties that formally defines a finite element :

1. the domain over which the element is defined; e.g., the reference line segment Ĩ.

2. the finite-dimensional linear space of functions; e.g., the linear polynomial space P1(Ĩ).

3. the degrees of freedom used to describe functions; e.g., for ṽ ∈ P1(Ĩ), the degrees of freedom
are the values at the nodes {ṽ(z̃1), ṽ(z̃2)}.
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Figure 4.4: Linear Lagrange finite element on the reference triangle.

4.2.3 Linear Lagrange finite element on a triangle

We next introduce a linear Lagrange element on the reference triangle T̃ ⊂ R2. Linear functions in
R2 takes the form a1 + a2x̃1 + a3x̃2 and has three degrees of freedom; we hence need to identify a
linear independent set of three linear functions. In our case, we wish to identify a set of three linear
Lagrange basis functions for the space. We choose for our interpolation nodes the three vertices of
the triangle

z̃1 ≡ (0, 0), z̃2 ≡ (1, 0), and z̃3 ≡ (0, 1),

as shown in Figure 4.4. Our shape functions are linear functions {φ̃1, φ̃2, φ̃3} that satisfy the
interpolation condition

φ̃i(z̃j) = δij i, j = 1, . . . , 3, (4.3)

where δij is the Kronecker delta.
We identify the shape functions using the same procedure used to identify the linear Lagrange

shape functions on the unit line segment in Section 4.2.2. We first express the shape functions in
terms of the monomial basis {1, x̃1, x̃2}:

φ̃j(x̃) = c
(j)
1 + c

(j)
2 x̃1 + c

(j)
3 x̃2 j = 1, 2, 3. (4.4)

We then apply the interpolation condition (4.3) to find the coefficients: 1 z̃1,1 z̃1,2

1 z̃2,1 z̃2,2

1 z̃3,1 z̃3,2


︸ ︷︷ ︸

≡V

 c
(1)
1 c

(2)
1 c

(3)
1

c
(1)
2 c

(2)
2 c

(3)
2

c
(1)
3 c

(2)
3 c

(3)
3


︸ ︷︷ ︸

≡C

=

 1 0 0
0 1 0
0 0 1

 ,

where z̃i,j is the j-th coordinate of the i-th interpolation node. The Vandermonde matrix V is non-
singular as long as the interpolation points are not collinear, which is equivalent to the condition
that the triangle have a finite area; the condition is obviously satisfied for our reference triangle T̃ .
The coefficients are given by

C = V −1 =

 1 0 0
1 1 0
1 0 1

−1

=

 1 0 0
−1 1 0
−1 0 1

 ;
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(a) φ̃1 (b) φ̃2 (c) φ̃3

Figure 4.5: Linear Lagrange shape functions on the reference triangle T̃ .

the associated shape functions are

φ̃1(x̃) = 1− x̃1 − x̃2

φ̃2(x̃) = x̃1 (4.5)

φ̃3(x̃) = x̃2.

Figure 4.5 visualizes the three basis functions.
We can also differentiate (4.4) to obtain the gradient of the shape functions:

∂φ̃j
∂x̃1

∣∣∣∣∣
x̃

= c
(j)
2 and

∂φ̃j
∂x̃2

∣∣∣∣∣
x̃

= c
(j)
3 , j = 1, 2, 3.

More explicitly,

∂φ̃1

∂x̃1

∣∣∣∣∣
x̃

= −1 and
∂φ̃1

∂x̃2

∣∣∣∣∣
x̃

= −1

∂φ̃2

∂x̃1

∣∣∣∣∣
x̃

= 1 and
∂φ̃2

∂x̃2

∣∣∣∣∣
x̃

= 0

∂φ̃3

∂x̃1

∣∣∣∣∣
x̃

= 0 and
∂φ̃3

∂x̃2

∣∣∣∣∣
x̃

= 1.

For the linear Lagrange element, the derivatives are constant (and trivially spans P0(T̃ )).
Given the basis {φ̃j}3j=1, we can uniquely associate any function ṽ ∈ P1(T̃ ) with a vector ˆ̃v ∈ R3:

ṽ =

3∑
j=1

ˆ̃vjφ̃j =

3∑
j=1

ṽ(z̃j)φ̃j .

Again, for the nodal shape functions, the degrees of freedom are the values of he functions at
the nodes, {ṽ(z̃j)}3j=1. To summarize, our linear Lagrange finite element on a triangle is formally

defined by (i) the domain — the reference triangle T̃ —, (ii) the linear function space — the
polynomial space P1(T̃ ) —, and (iii) the degrees of freedom — the values at the nodes {z̃1, z̃2, z̃3}.
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Figure 4.6: Quadratic Lagrange shape functions on line segment Ĩ.

4.2.4 Quadratic Lagrange finite element on a line segment

We now introduce a quadratic Lagrange element on the reference line segment Ĩ ⊂ R1. A quadratic
function in P2(Ĩ) takes the form a1 + a2x̃+ a3x̃

2 and has three degrees of freedom; we hence wish
to identify a linearly independent set of three quadratic Lagrange shape functions. To this end, we
choose for our Lagrange interpolation nodes the two endpoints and the midpoint,

z̃1 = 0, z̃2 = 1, and z̃3 = 1/2.

The ordering of the nodes for a quadratic element is not universal in the finite element literature;
we here adhere to the convention that preserves the location of z̃1 and z̃2 from the linear element.
To find the Lagrange shape functions, we first express the functions in terms of the monomial basis
{1, x̃, x̃2}:

φ̃j(x̃) = c
(j)
1 + c

(j)
2 x̃+ c

(j)
3 x̃2, j = 1, 2, 3. (4.6)

We then express the interpolation condition φ̃j(z̃i) = δij as a 3×3 system V C = I, where C ∈ R3×3

is the coefficient matrix so that Cij = c
(j)
i and the i-th row of the Vandermonde matrix V ∈ R3×3

is
Vi: =

(
1 z̃i z̃2

i

)
.

The matrix V is non-singular because the monomial basis functions are linearly independent and
the three interpolation points are distinct. The shape fucntions are shown in Figure 4.6. The
differentiation of 4.6 yields the derivatives of the shape functions:

dφ̃j
dx̃

∣∣∣∣∣
x̃

= c
(j)
2 + 2c

(j)
3 x̃, j = 1, 2, 3.

Because the shape functions are quadratic, the derivatives vary linearly over the domain Ĩ, and
they span P1(Ĩ). The degrees of freedom for our nodal P2 finite element on Ĩ are the values of
functions at the three nodes {z̃}3j=1.

4.2.5 Quadratic Lagrange finite element on a triangle

We now introduce a quadratic Lagrange finite element on the reference triangle T̃ ⊂ R2. A quadratic
function in P2(T̃ ) takes the form a1 + a2x̃1 + a3x̃2 + a4x̃

2
1 + a5x̃1x̃2 + a6x̃

2
2 and has six degrees of
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Figure 4.7: Quadratic Lagrange finite element on the reference triangle.

freedom; we hence wish to identify a linearly independently set of six quadratic Lagrange shape
functions. To this end, we choose for our Lagrange interpolation nodes the three vertices of the
triangle and three points at the middle of the edges,

z̃1 = (0, 0), z̃2 = (1, 0), z̃3 = (0, 1), z̃4 = (1/2, 1/2), z̃5 = (0, 1/2), z̃6 = (1/2, 0),

as shown in Figure 4.7. The ordering of the nodes is not universal in the finite element literature;
we here adhere to the convention that preserves the location of the z̃1, z̃2, and z̃3 from the linear
element and, for i ∈ {4, 5, 6}, the z̃i is on the midpoint of the (i − 3)-th edge of the reference
triangle. To find the Lagrange shape functions, we first express the basis functions in terms of the
monomial basis {1, x̃1, x̃2, x̃

2
1, x̃1x̃2, x̃

2
2}:

φ̃j(x̃) = c
(j)
1 + c

(j)
2 x̃1 + c

(j)
3 x̃2 + c

(j)
4 x̃2

1 + c
(j)
5 x̃1x̃2 + c

(j)
6 x̃2

2, j = 1, . . . , 6. (4.7)

We then express the interpolation condition φ̃j(z̃i) = δij as a 6× 6 matrix system V C = I, where

C ∈ R6×6 is the coefficient matrix so that Cij = c
(j)
i and the i-th row of the Vandermonde matrix

V ∈ R6×6 is
Vi: =

(
1 z̃i,1 z̃i,2 (zi,1)2 z̃i,1z̃i,2 (z̃i,2)2

)
.

The matrix V is non-singular, and the linear system has a unique solution: C = V −1. Figure 4.8
shows the six basis functions. The differentiation of (4.7) yields the gradient of the shape functions,

∂φ̃j
∂x̃1

∣∣∣∣∣
x̃

= c
(j)
2 + 2c

(j)
4 x̃1 + c

(j)
5 x̃2

∂φ̃j
∂x̃2

∣∣∣∣∣
x̃

= c
(j)
3 + c

(j)
5 x̃1 + 2c

(j)
6 x̃2.

For the quadratic Lagrange element, the derivatives are linear functions, and they span P1(T̃ ).

4.2.6 Generalization: an advanced method using Legendre polynomials

We can generalize the procedure discussed so far in this section to generate Lagrange shape functions
of an arbitrary degree on an arbitrary domain K̃. Say we wish to generate Lagrange shape functions
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Figure 4.8: Quadratic Lagrange shape functions on the reference triangle.

for a polynomial space of degree p with a dimension ns and the interpolation nodes {z̃i}nsi=1. We
first identify any basis {ψ̃k}nsk=1. We then express the Lagrange shape functions as

φ̃j(x̃) =

ns∑
k=1

c
(j)
k ψk(x̃), x̃ ∈ K̃, j = 1, . . . , ns. (4.8)

The coefficients that satisfy the interpolation condition φ̃j(z̃i) = δij must satisfy the ns×ns system ψ1(z̃1) · · · ψns(z̃1)
...

. . .
...

ψ1(z̃ns) · · · ψns(z̃ns)


 c

(1)
1 · · · c

(ns)
1

...
. . .

...

c
(1)
ns · · · c

(ns)
ns

 = Ins , (4.9)

where Ins is the ns × ns identity matrix. The derivative of the shape functions are then given by

∂φ̃j
∂x̃i

∣∣∣∣∣
x̃

=

ns∑
k=1

c
(j)
k

∂ψ̃k
∂x̃i

∣∣∣∣∣
x̃

, x̃ ∈ K̃. (4.10)

Note that this is a generalization, or simply an abstraction, of the method we have discussed
for linear and quadratic shape functions on a line segment and triangle discussed in the previous
sections.

The efficient implementation of this procedure relies on the efficient evaluation of the values
and gradients of the basis functions {ψ̃k}nsk=1. One convenient choice for {ψ̃k}nsk=1 are the Legendre

polynomials, which is a set of orthogonal polynomials in L2(Ĩ). We provide a formal definition.
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Definition 4.1 (Legendre polynomial). The Legendre polynomials {ψi}ni=0 are hierarchical poly-
nomials defined on a unit line segment Ĩ ≡ (0, 1) such that

(i) span{ψi}ni=0 = Pn(Ĩ)

(ii) (ψi, ψj)L2(Ω) ≡
∫
Ĩ ψiψjdx = δij , ∀i, j = 1, . . . , n.

The orthogonality condition (ii) implies that the set {ψi}ni=0 is linearly independent and hence
is a basis for Pn(Ĩ). In addition the Legendre polynomials of arbitrary degree and their respective
derivatives can be evaluated using recurrence relations. We can hence use (4.8) and (4.10) with
the Legendre polynomials as the underlying basis. In higher dimensions, we may use the tensor
product of Legendre polynomials as the underlying basis. The use of the Legendre polynomial
as the underlying polynomials also ensures the linear system (4.9) remains well-posed even if the
polynomial degree is very high; the Vandermonde matrix associated with the monomials become
ill-conditioned for a high-degree polynomials as the monomials becomes nearly linearly dependent.

4.3 Physical elements

4.3.1 Geometry mapping

We have so far introduced shape functions {φ̃i}nsi=1 defined on a reference element K̃, where the
reference element may be the reference line segment Ĩ or the reference triangle T̃ . We now wish
to construct a set of shape functions {φi}ni=1 which spans the approximation space Vh ⊂ V. To
clearly distinguish between quantities defined on the reference domain and those defined on the
actual physical domain, we will qualify the latter quantities with the adjective physical. (Note that
the quantities associated with the physical space, unlike those associated with the reference space,
do not bear a tilde (̃·).)

To begin, we create a mapping from a point x̃ in the reference element K̃ to a point x in the
physical element K. The physical element is delineated by ns nodes, {zKα }

ns
α=1. To map a point

x̃ ∈ K̃ in the reference domain to a point x ∈ K in the physical domain, we employ a geometry
mapping, GK : K̃ → K given by

x = GK(x̃) ≡
ns∑
α=1

zKα φ̃α(x̃), (4.11)

where zKα ∈ Rd is the coordinates of the α-th node of the physical element K, φ̃α ∈ Pp(K̃) is
the Lagrange shape function associated with the α-th node of the reference element, and ns is the
number of the shape functions. Our geometry mapping GK : K̃ → K is a unique map that (i) is a
polynomial map of degree p and (ii) maps the Lagrange interpolation points {z̃α}nsα of the reference
element K̃ to the respective Lagrange interpolation points {zα}nsα of the physical element K. The
geometry mapping GK : K̃ → K is invertible under a reasonable condition; we will discuss the
condition shortly.

An example of a P1 geometry mapping of a triangle is shown in Figure 4.9. The physical domain
K8 is defined by the physical nodes {zK8

1 , zK8
2 , zK8

3 } which are in turn identified by the three nodes
{z2, z3, z1} of the mesh. Because the reference element is linear, the mapping GK8 : K̃ → K8 is
affine.
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Figure 4.9: P1 geometry mapping.
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Figure 4.10: P2 geometry mapping.

As an another example, we provide a P2 geometry mapping of a triangle in Figure 4.10. The
physical domain K8 is defined by the physical nodes {zK8

1 , zK8
2 , zK8

3 , zK8
4 , zK8

5 , zK8
6 } which are in turn

identified by the six nodes {z2, z3, z1, z11, z10, z13} of the mesh. Because the reference element is
quadratic, the mapping GK8 : K̃ → K8 is also quadratic. We can represent curved geometries using
Pp>1 geometry mapping; as we will see later, the accurate representation of the curved geometry
is important to realize higher-order approximations of boundary value problems.

We now introduce a few quantities derived from the mapping. We can differentiate the map-
ping (4.11) to evaluate the Jacobian JK : K̃ → Rd×d given by

JKij (x̃) ≡ ∂xi
∂x̃j

∣∣∣∣
x̃

=
∂GKi
∂x̃j

∣∣∣∣
x̃

=

ns∑
α=1

zKα,i
∂φ̃α
∂x̃j

∣∣∣∣∣
x̃

,

where zKα,i is the i-th coordinate of the α-th node of element K. The Jacobian characterizes how

an infinitesimal line segment dl̃ at x̃ ∈ K̃ is mapped to an infinitesimal line segment dl at x ∈ K;
specifically, dl = JK(x̃)dl̃. If the mapping GK : K̃ → K is a polynomial of degree p, the Jacobian
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JK : K̃ → Rd×d is a polynomial of degree p− 1. For a P1 mapping, the Jacobian is constant over
K̃.

The determinant of the Jacobian det(JK(x̃)), or more compactly |JK(x̃)|, relates the reference
area dx̃ to the physical area dx by

dx = |JK(x̃)|dx̃.

If the mapping GK : K̃ → K is a polynomial of degree p, the Jacobian JK : K̃ → Rd×d is a
polynomial of degree p− 1, and the determinant of the Jacobian |JK | : K̃ → R is a polynomial of
degree d(p− 1). For a P1 mapping, the determinant of the Jacobian is constant over K̃.

Now we consider the inverse mapping (GK)−1 : K → K̃, which maps a physical point x ∈ K to
a reference point x̃ ∈ K̃. The inverse mapping exists for all points if and only if

|JK(x̃)| > 0 ∀x̃ ∈ K̃. (4.12)

For a general polynomial mapping GK : K̃ → K of degree p, this condition must be checked for all
x̃ ∈ K̃. Moreover, the function (GK)−1 : K → K̃ is in general not a polynomial because the inverse
of a polynomial is not a polynomial. Consequently, the evaluation of the inverse mapping requires
the solution of a nonlinear problem: given x ∈ K, find x̃ ∈ K̃ such that GK(x̃) = x.

The inverse mapping is greatly simplified for a P1 mapping GK : K̃ → K because the Jacobian
JK : K̃ → K is constant. First, for a P1 mapping, the condition (4.12) is equivalent to the
condition that (i) the area of the physical triangle is finite and (ii) the vertices are ordered in
the counterclockwise manner. (Note that if the vertices are not ordered in the counterclockwise
manner, then the mapping is inverted and we would obtain a negative area.) For a P1 mapping,
|JK | is constant and |JK |/2 is the area of the physical triangle; the factor of 1/2 is needed because
the area of our reference triangle T̃ is 1/2. Second, because GK : K̃ → K is linear, (GK)−1 : K → K̃
is also linear; given x ∈ K, we can solve a linear system to find x̃ ∈ K̃.

We can also compute the Jacobian associated with the inverse mapping, or the inverse Jacobian,
(JK)−1 : K̃ → Rd×d:

∂x̃i
∂xj

∣∣∣∣
x̃

=
∂((GK)−1)i

∂xj

∣∣∣∣
x̃

= ((JK(x̃))−1)ij .

The algebraic inverse of the Jacobian JK = ∂x
∂x̃ is the inverse Jacobian (JK)−1 = ∂x̃

∂x . The inverse

Jacobian ∂xi
∂x̃j

is well defined at x̃ ∈ K̃ if and only if |JK(x̃)| > 0. For a general polynomial

mapping GK : K̃ → K of degree p, the inverse Jacobian is not a polynomial because the inverse
of a polynomial is in general not a polynomial. For a P1 mapping, the inverse Jacobian (JK)−1 :
K → Rd×d is constant because the Jacobian JK : K̃ → Rd×d is constant.

4.3.2 Physical shape functions

Given a geometry mapping GK : K̃ → K, we now introduce physical shape functions {φKα }
ns
α=1

associated with the physical element K ∈ Th. We choose the basis functions that satisfy

φKα (x = GK(x̃)) = φ̃α(x̃) ∀x̃ ∈ K̃, α = 1, . . . , ns, (4.13)

where x̃ 7→ x = GK(x̃) is provided by the geometry mapping (4.11). In words, the physical basis
function φKα evaluated at the physical point x(x̃) ∈ K takes the same value as the associated
reference basis function φα evaluated at the associated reference point x̃ ∈ K̃.
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(a) reference shape function φ̃2 (b) physical shape function φK9
2

Figure 4.11: Mapping of shape functions for a P1 element.

We can also differentiate (4.13) to obtain the derivative of the physical basis functions in the
physical space: given any x̃ ∈ K̃,

∂φKα
∂xi

∣∣∣∣
x=GK(x̃)

=
d∑
j=1

∂x̃j
∂xi

∣∣∣∣
x̃

∂φ̃α
∂x̃j

∣∣∣∣
x̃

, i = 1, . . . , d, α = 1, . . . , ns. (4.14)

The relationship may be expressed more explicitly using matrices and vectors; for d = 2,(
∂φKα
∂x1
∂φKα
∂x2

)
x=GK(x̃)

=

(
∂x̃1
∂x1

∂x̃2
∂x1

∂x̃1
∂x2

∂x̃2
∂x2

)
x̃

(
∂φ̃α
∂x̃1
∂φ̃α
∂x̃2

)
x̃

.

Or, noting that
∂x̃j
∂xi

= ((JK)−1)ji = ((JK)−T )ij , a more compact expression (for any d) is

∇φKα (x = GK(x̃)) = (JK)−T (x̃)∇̃φ̃α(x̃). (4.15)

The expressions (4.13) and (4.14) (or equivalently (4.15)) allow us to evaluate the value and gradi-
ent, respectively, of the physical shape function φKα at a physical point x = GK(x̃) ∈ K associated
with a select reference point x̃ ∈ K̃; we will soon see this is exactly the capability we need to
evaluate stiffness matrices and load vectors.

As an example, consider the physical element K9 in the triangulation that comprises linear
elements shown in Figure 4.9(a). The element K9 is delineated by the nodes {zK9

1 = z4, z
K9
2 =

z3, z
K9
3 = z2}. The reference shape function φ̃2 ∈ P1(T̃ ) maps to the physical shape function φK9

2

as shown in Figure 4.11. We in fact recognize that φK9
2 is the restriction of the physical (global)

shape function φ3 associated with z3; formally, φK9
2 ≡ φ3|K9 .

As another example, consider the physical element K9 in the triangulation that comprises
quadratic elements shown in Figure 4.10(a). The element K9 is delineated by the nodes {zK9

1 =
z4, z

K9
2 = z3, z

K9
3 = z2, z

K9
4 = z13, z

K9
5 = z14, z

K9
6 = z15}. The reference shape function φ̃2 ∈ P2(T̃ )

maps to the physical shape function φK9
2 as shown in Figure 4.12. We again recognize that φK9

2 is
the restriction of the physical (global) shape function φ3 associated with z3; formally, φK9

2 ≡ φ3|K9 .
We make one remark about our physical basis functions defined by (4.13). Even though the

reference basis function φ̃ : K̃ → R is a polynomial in K̃, the physical basis function φKα : K → R
is in general not a polynomial in K. To see this, we observe that φKα (x) = φ̃α((GK)−1(x)), ∀x ∈ K;
because the inverse map (GK)−1 : K → K̃ is not a polynomial in K for a Pp>1 geometry mapping,
the function φKα (·) = φ̃α((GK)−1(·)) = φ̃α ◦ (GK)−1 is not a polynomial in K. Conversely, we note
that φKα (GK(·)) = φKα ◦GK = φ̃(·) is a polynomial in K̃. In short, φKα ∈ Pp ◦ (GK)−1 or equivalently
φKα ◦ GK ∈ Pp(K̃).
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(a) reference shape function φ̃2 (b) physical shape function φK9
2

Figure 4.12: Mapping of shape functions for a P2 element.

We note each physical element is indeed a finite element characterized by the three properties:
the domain is K ∈ Th; the finite-dimensional approximation space is Pp ◦ (GK)−1; the degrees of
freedom are the function values at the physical nodes {v(zKα )}nsα=1. The collection of the finite
elements define our approximation space, which can be compactly stated as

Vh ≡ {v ∈ H1(Ω) | v|K ◦ GK ∈ Pp(K̃), ∀K ∈ Th}.

For a P1 geometry mapping, the notation is simplified; because the inverse mapping (GK)−1 : K →
K̃ is affine, the physical shape function φKα (·) = φ̃α((GK)−1(·)) is a polynomial in K. Thus, for P1

geometry mapping,
Vh ≡ {v ∈ H1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th},

as introduced in the previous lecture.
Before we conclude this section, we clarify the nomenclature. In this section, we considered

physical elements that result from using the same polynomial space for the geometry mapping
G : K̃ → K and the function representation; these elements are called isoparametric elements. In
general, the polynomials used for the geometry mapping and function representation need not be
the same. An element that uses a higher degree representation of the geometry than functions is
called a superparametric element. Conversely, an element that use a lower degree representation of
the geometry than functions is called a subparametric element.

4.4 Numerical quadrature

4.4.1 Motivation

The evaluation of bilinear and linear forms that appear in the weak form of boundary value problems
requires integration of functions. This integration is performed by numerical quadrature (or just
quadrature). Specifically, our quadrature problem is as follows: given a reference element K̃ and a
function f : K̃ → R, estimate the integral

I ≡
∫
K̃
f(x̃)dx̃

by

Q ≡
nq∑
q=1

ρ̃qf(ξ̃q),

where {ξ̃q ∈ K̃}
nq
q=1 is a set of quadrature points and {ρ̃q ∈ R}nqq=1 is the associated set of quadrature

weights.
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4.4.2 Gauss quadrature in R1

We first consider a one-dimensional quadrature for a unit line segment Ĩ ≡ (0, 1) ⊂ R1. (Note:
one-dimensional quadrature rules are more often defined for the line segment (−1, 1); in this lecture
we define them for (0, 1) to be consistent with our definition of a unit line segment.) While there
are many different families of one-dimensional quadrature rules, we focus on arguably the most
efficient quadrature rule: the Gauss quadrature.

The nq-point Gauss quadrature rule is defined by quadrature points {ξ̃q ∈ Ĩ}
nq
q=1 and quadrature

weights {ρ̃q ∈ Ĩ}
nq
q=1 such that the rule integrates exactly polynomials of degrees up to and including

2nq − 1: i.e., ∫
Ĩ
f(x̃)dx̃ =

nq∑
q=1

ρ̃qf(ξ̃q) ∀f ∈ P2nq−1(Ĩ). (4.16)

Our intuition might suggest the existence of such a quadrature rule, as the polynomials of degree
2nq − 1 have 2nq degrees of freedom and the nq-point quadrature rule also has 2nq degrees of
freedom — nq point locations and nq weigh values.

We can show the existence of a nq-point quadrature rule that exactly integrates polynomials of
degree 2nq−1 in a constructive manner. To this end, we use the scaled Legendre polynomials {ψ̃i}
over Ĩ defined in Definition 4.1. We first choose the quadrature points {ξ̃q}

nq
q=1 as the roots of the

degree nq Legendre polynomial:

ψ̃nq(ξ̃q) = 0, q = 1, . . . , nq. (4.17)

We then choose the quadrature weights {ρ̃q}
nq
q=1 to satisfy the following linear equation:

 ψ̃0(ξ̃1) . . . ψ̃0(ξ̃nq)
...

. . .
...

ψ̃nq−1(ξ̃1) . . . ψ̃nq−1(ξ̃nq)


 ρ̃1

...
ρ̃nq

 =


∫
Ĩ ψ̃0(x̃)dx̃

...∫
Ĩ ψ̃nq−1(x̃)dx̃

 =


1
0
...
0

 . (4.18)

We wish to show the conditions (4.17) and (4.18) yield a quadrature rule that integrates exactly

polynomials of degree 2nq − 1. To begin, we introduces a basis {pi}
2nq−1
i=0 for P2nq−1(Ĩ) such that

∀x̃ ∈ Ĩ

p0(x̃) = ψ̃0(x̃) = 1, p1(x̃) = ψ̃1(x̃), . . . , pnq−1(x̃) = ψ̃nq−1(x̃)

pnq(x̃) = ψ̃nq(x̃)ψ̃0(x̃), pnq+1(x̃) = ψ̃nq(x̃)ψ̃1(x̃), . . . , p2nq−1(x̃) = ψ̃nq(x̃)ψ̃nq−1(x̃).

The polynomials {pi}
2nq−1
i=0 is a basis for P2nq−1(Ĩ); the set spans P2nq−1(Ĩ) and is linearly inde-

pendent because pi is a polynomial of degree (exactly) i for i = 0, . . . , 2nq − 1. We now wish to
confirm that ∫

Ĩ
pi(x̃)dx̃ =

nq∑
q=1

ρ̃qpi(ξ̃q), ∀i = 0, . . . , 2nq − 1, (4.19)

which is equivalent to the original condition (4.16). We first readily confirm that the first nq basis
functions, {pi}

nq
i=0 ≡ {ψ̃i}

nq
i=0, are integrated exactly because our weights {ρ̃q}

nq
q=1 are chosen to
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(a) p = 1 (b) p = 3

(c) p = 5 (d) p = 7

Figure 4.13: Gauss quadrature points for (0, 1).

p nq ξ̃ ρ̃

1 1 0.500000000000000 1.000000000000000

3 2 0.211324865405187 0.500000000000000
0.788675134594813 0.500000000000000

5 3 0.112701665379258 0.277777777777778
0.500000000000000 0.444444444444444
0.887298334620742 0.277777777777778

7 4 0.069431844202974 0.173927422568727
0.330009478207572 0.326072577431273
0.669990521792428 0.326072577431273
0.930568155797026 0.173927422568727

Table 4.1: Gauss quadrature rules on Ĩ for p = 1 to 7 polynomials.

integrate the functions in condition (4.18). To prove that the next nq basis functions, {pi}
2nq−1
i=nq

are
integrated exactly, we observe that the left-hand side of 4.19 for i = nq, . . . , 2nq − 1 yields

(LHS) =

∫
Ĩ
pnq+j(x̃)dx̃ =

∫
Ĩ
ψ̃nq(x̃)ψ̃j(x̃)dx̃ = 0, j = 0, . . . , nq − 1,

since the Legendre polynomials are orthogonal in L2(Ĩ). On the other hand, the right-hand side
of 4.19 for i = nq, . . . , 2nq − 1 yields

(RHS) =

nq∑
q=1

ρ̃qpnq+j(ξ̃q) =

nq∑
q=1

ρ̃qψ̃nq(ξ̃q)ψ̃j(ξ̃q) = 0, j = 0, . . . , nq − 1,

since {ξ̃q}
nq
q=1 are the roots of ψ̃nq by (4.17). In summary, the exact integration condition (4.19) is

satisfied (i) for i = 0, . . . , nq − 1 because of the choice of the weights {ρ̃q}
nq
q=1 by (4.18) and (ii) for

i = nq, . . . , 2nq − 1 because of the choice of the points {ξ̃q}
nq
q=1 by (4.17).

Table 4.1 shows the Gauss quadrature rules for nq = 1, . . . , 4. As visualized in Figure 4.13, the
quadrature points are clustered towards the endpoints.

4.4.3 Numerical quadrature in Rd

Similarly to the Gauss quadrature in R1, there also exist efficient quadrature rules for integration of
domains in Rd>1. If the domain is a unit square (0, 1)2 ≡ Ĩ2 ⊂ R2 or a unit cube (0, 1)3 ≡ Ĩ3 ⊂ R3,
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p nq ξ̃1 ξ̃2 ρ̃

1 1 0.333333333333333 0.333333333333333 0.500000000000000

2 3 0.166666666666667 0.166666666666667 0.166666666666667
0.666666666666667 0.166666666666667 0.166666666666667
0.166666666666667 0.666666666666667 0.166666666666667

4 6 0.091576213509771 0.091576213509771 0.054975871827661
0.816847572980459 0.091576213509771 0.054975871827661
0.091576213509771 0.816847572980459 0.054975871827661
0.445948490915965 0.445948490915965 0.111690794839006
0.108103018168070 0.445948490915965 0.111690794839006
0.445948490915965 0.108103018168070 0.111690794839006

Table 4.2: Efficient quadrature rules on T̃ for p = 1 to 4 polynomials.

then we can obtain the associated quadrature rule by the tensor-product of one-dimensional Gauss
rules; for example, for (0, 1)2,

∫ 1

x̃2=0

∫ 1

x̃1=0
f(x̃1, x̃2)dx̃1dx̃2 ≈

n1d
q∑

i2=1

n1d
q∑

i1=1

ρ̃1d
i2 ρ̃

1d
i1 f(ξ̃1d

1 , ξ̃1d
2 ).

These rules maximize the degree of tensor-product polynomials exactly integrated for a given
number of quadrature points.

For a domain in Rd<1 that does not result from a tensor-product of a one-dimensional domain,
the “optimal” quadrature rules are much more difficult to identify. In fact, the optimal rules for
(say) a triangle is not as universally standardized as that for a square. Table 4.2 shows examples of
efficient quadrature rule for our unit right triangle, which exactly integrates polynomials of degree
p. Figure 4.14 visualizes the quadrature points. Similarly to the one-dimensional Gauss rule, the
quadrature points are clustered towards the edge of the triangular domain.

4.5 Assembly

4.5.1 Local stiffness matrices and vectors

We now put together the techniques we have learned in this lecture to evaluate local stiffness
matrices and load vectors. To provide a concrete example, in this section we consider V ≡ H1(Ω),
a bilinear form a : V × V → R such that

a(w, v) ≡
∫

Ω
∇v · a∇wdx, ∀w, v ∈ V, (4.20)

for a : Ω→ Rd×d the diffusion tensor field, and a linear form ` : V → R such that

`(v) ≡
∫

Ω
vfdx ∀v ∈ V, (4.21)

for f : Ω→ R the source function. Our approximation space is given by

Vh ≡ {v ∈ V | v|K ◦ GK ∈ Pp(K̃), ∀K ∈ Th}, (4.22)
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(a) p = 1 (b) p = 2 (c) p = 4

(d) p = 5 (e) p = 6 (f) p = 7

Figure 4.14: Numerical quadrature points for the reference triangle.

where GK : K̃ → K is a Pp geometry mapping. The number of shape functions per element is
denoted by ns.

We first consider the evaluation of the local load vector f̂K ∈ Rns such that

f̂Kα ≡ `(φKα ), α = 1, . . . , ns.

For our model linear form (4.21), the local load vector is given by

f̂Kα ≡ `(φKα ) ≡
∫
K
φKα (x)f(x)dx, α = 1, . . . , ns.

We now change the integration domain from the physical element K to the reference element K̃;
this is in preparation for the application of the numerical quadrature on the reference element.
We employ (i) the geometry mapping for the argument of f , x = GK(x̃), (ii) the relationship
between the reference and physical shape functions, φKα (x ≡ GK(x̃)) = φ̃α(x̃), and (iii) the area
transformation dx = |JK(x̃)|dx̃, where |JK | is the determinant of the Jacobian of the geometry
mapping, to obtain

f̂Kα =

∫
K̃
φα(x̃)f(GK(x̃))|J(x̃)|dx̃. (4.23)

We finally apply a nq-point numerical quadrature to “evaluate” the integral:

f̂Kα “=”

nq∑
q=1

ρ̃qφ̃α(ξ̃q)f(GK(ξ̃q))|J(ξ̃q)|.
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Here, we put the equality in quotes because the evaluation is exact only if the integrand is a
polynomial that can be integrated exactly using the quadrature rule. Otherwise, the use of the
numerical quadrature results in an approximation rather than an evaluation. In any event, we
can readily evaluate the quantities in the summand using the techniques discussed in the previous
sections. We here make a listing for a reference: (i) quadrature rule {ξ̃q, ρ̃q}

nq
q=1 was discussed in

Sections 4.4; (ii) the evaluation of quantities associated with geometry mapping, GK and JK , was
discussed in Sections 4.3.1; (iii) the evaluation of reference shape functions {φ̃α}nsα=1 was discussed
in Section 4.2.

We now consider the evaluation of the local stiffness matrix ÂK ∈ Rns×ns such that

ÂKα,β ≡ a(φKβ , φ
K
α ) ∀α, β = 1, . . . , ns.

For our model bilinear form (4.20), the local stiffness matrix is given by

ÂKα,β ≡ a(φKβ , φ
K
α ) =

∫
K
∇φKα (x) · a(x)∇φKβ (x)dx, α, β = 1, . . . , ns.

Following the same procedure we used for the evaluation (or approximation) of the local load
vector f̂Kh ∈ Rns , we now change the integration domain from the physical element K to the
reference element K̃. We employ (i) the geometry mapping for the argument of a, x = GK(x̃), (ii)
the relationship between the derivatives of the reference and physical shape functions, ∇φK(x =
G(x̃)) = JK(x̃)−T ∇̃φ̃(x̃), and (iii) the area transformation dx = |JK(x̃)|dx̃, where |JK | is the
determinant of the Jacobian of the geometry mapping, to obtain

ÂKα,β =

∫
K̃

(JK(x̃)−T ∇̃φ̃α(x̃)) · a(GK(x̃))JK(x̃)−T ∇̃φ̃β(x̃)|J(x̃)|dx̃ (4.24)

We finally apply a nq-point numerical quadrature to “evaluate” the integral:

ÂKα,β“=”

nq∑
q=1

ρ̃q(J
K(ξ̃q)

−T ∇̃φ̃α(ξ̃q)) · a(GK(ξ̃q))J
K(ξ̃q)

−T ∇̃φ̃β(ξ̃q)|JK(ξ̃q)|.

Again, we put the equality in quotes because the evaluation is exact only if the integrand is a
polynomial that can be integrated exactly using the quadrature rule. In particular, in the presence
of a curved element, the integrand is almost always non-polynomial because the inverse Jacobian is
non-polynomial. The techniques used to evaluate the element stiffness matrix are almost identical
to those used to evaluate the element load vector, except this time we also employ the technique
to evaluate the derivative of the physical shape functions discussed in Section 4.3.2. If the bilinear
form contains other terms, such as a convection term of the form

∫
Ω vb · ∇wdx or a reaction term

of the form
∫

Ω cvwdx, they can also be evaluated in a similar manner.
We make one note about the expressions for the local load vector and stiffness matrix. In

literature, the expressions (4.23) and (4.24) are sometimes restated as

f̂Kα =

∫
K̃
φ̃α(x̃) f(GK(x̃))|JK(x̃)|︸ ︷︷ ︸

≡f trans(x̃)

dx̃,

ÂKα,β =

∫
K̃
∇̃φ̃α(x̃) · JK(x̃)−1a(GK(x̃))JK(x̃)−T |JK(x̃)|︸ ︷︷ ︸

≡atrans(x̃)

∇̃φ̃β(x̃)dx̃,
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where f trans : K̃ → R and atrans : K̃ → Rd×d are the transformed coefficients for the reference
element K̃. Note that the difference lies only in the interpretation; the local load vectors and
stiffness matrices for both formulations are mathematically identical.

4.5.2 Global matrix and vector assembly

We have so far introduced technical ingredients required to assemble, for any K ∈ Th, the local
load vector f̂K ∈ Rns such that

f̂Kα = `(φKα ), α = 1, . . . , ns,

and a local stiffness matrix ÂK ∈ Rns×ns such that

ÂKα,β = a(φKβ , φ
K
α ), α, β = 1, . . . , ns.

We now wish to assemble the local stiffness matrices and vectors construct the (global) stiffness
matrix and vector.

To this end, we employ the element-to-node connectivity map

θK-n : {1, . . . , ne} × {1, . . . , ns} → {1, . . . , n}

such that i = θK-n(k, α) is the global node number of the α-th node of the k-th element. We
recall that the map is typically stored as a table of the size ne × ns. Then, to form the (global)
stiffness matrix Âh ∈ Rn×n, we successively insert the local stiffness matrices ÂKk ∈ Rns×ns for
k = 1, . . . , ne according to

Âh,ij ← Âh,ij + ÂKkαβ , α, β = 1, . . . , ns,

for i = θK-n(k, α) and j = θK-n(k, β). Similarly, to form the (global) load vector f̂h ∈ Rn, we
successively insert the local load vectors f̂Kk ∈ Rns for k = 1, . . . , ne according to

f̂h,i ← f̂h,i + f̂Kkα , α = 1, . . . , ns,

for i = θK-n(k, α).

4.6 Natural boundary conditions

4.6.1 Reference facet-to-node maps

In this section, we introduce technical tools required to evaluate surface integral terms in natural
boundary conditions; i.e., Neumann and Robin boundary conditions. To this end, we first consider
a linear triangular reference element and introduce a mapping that relates nodes on a facet to nodes
on the element. Figure 4.15(a) shows the relationship between the nodes. Our facet-to-node map
is

θF̃ -n : {1, 2, 3} × {1, 2} → {1, 2, 3}
such that

θF̃ -n(1, 1) = 2, θF̃ -n(1, 2) = 3,

θF̃ -n(2, 1) = 3, θF̃ -n(2, 2) = 1,

θF̃ -n(3, 1) = 1, θF̃ -n(3, 2) = 2.
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(a) linear element (b) quadratic element

Figure 4.15: Element-facet relationship for linear and quadratic Lagrange triangular elements.

Note that j = θF̃ -n(i, k) is the Lagrange node on T̃ identified with the k-th Lagrange node of the
facet i; i.e.,

z̃j≡θF̃ -n(i,k) = z̃F̃ik , i = 1, 2, 3, k = 1, 2.

Similarly, we consider a quadratic triangular reference element and introduce a mapping that
relates nodes on a facet to nodes on the element. Figure 4.15(b) shows the relationship between
the nodes. Our facet-to-node map is

θF̃ -n : {1, 2, 3} × {1, 2, 3} → {1, . . . , 6}

such that

θF̃ -n(1, 1) = 2, θF̃ -n(1, 2) = 3, θF̃ -n(1, 3) = 4

θF̃ -n(2, 1) = 3, θF̃ -n(2, 2) = 1, θF̃ -n(2, 3) = 5

θF̃ -n(3, 1) = 1, θF̃ -n(3, 2) = 2, θF̃ -n(3, 3) = 6.

As before, j = θF̃ -n(i, k) is the Lagrange node on T̃ identified with the k-th Lagrange node of the
facet i; i.e.,

z̃j≡θF̃ -n(i,k) = z̃F̃ik , i = 1, 2, 3, k = 1, 2, 3.

4.6.2 Geometry mapping for facets

In Section 4.3.1, we introduced a geometry mapping GK : K̃ → K from a reference element K̃ ⊂ Rd
to a physical element K ⊂ Rd. While this is the only mapping we need to evaluate bilinear and
linear forms that only require integration over Ω, forms that require integration over boundaries
— for example a Neumann boundary ΓN ⊂ ∂Ω — requires another mapping. Specifically, we
require a mapping from a (d − 1)-dimensional reference element to the associated physical facet
that lies in a d-dimensional space; the physical facet is a d− 1-dimensional manifold embedded in
a d-dimensional space. For concreteness, in this section we restrict ourselves to the case d = 2, and
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Figure 4.16: P2 geometry mapping for a facet.

consider the geometry mapping GF : Ĩ → F from the reference line segment Ĩ ⊂ R1 to a physical
facet F ⊂ R2 of a triangle.

Figure 4.16 shows a concrete example of an geometry mapping from a reference line segment
Ĩ to a physical facet F , the second facet of the physical element K8. We recall from Section 4.6.1
that the Lagrange nodes on the reference facet F̃i≡2 are related to those on the reference element
T̃ by z̃α = z̃F̃i≡2

γ for α = θF̃ -n(i ≡ 2, γ), γ = 1, 2, 3; for the case in Figure 4.16, we obtain

{z̃F̃2
1 ≡ z̃3, z̃

F̃2
2 ≡ z̃1, z̃

F̃2
3 ≡ z̃5}. Accordingly, the Lagrange nodes on the physical facet F are

related to those on the physical element {zK8
j }6j=1, and the (global) nodes {zi}ni=1, by {zF )

1 ≡ z
K8
3 ≡

z1, z
F
2 ≡ z

K8
1 ≡ z2, z

F
3 ≡ z

K8
5 ≡ z10}. Our geometry mapping for the facet, GF : Ĩ → F , is given by

x = GF (s̃) ≡
nFs∑
α=1

zFα χ̃α(s̃), (4.25)

where zFα ∈ Rd≡2 is the coordinates of the α-th node of the physical facet F ⊂ Rd≡2, χα ∈ Pp≡2(Ĩ)
is the Lagrange shape function associated with the α-th node of the reference line segment Ĩ ⊂ R1,
and nFs = 3 for the P2(Ĩ) space. Note that the input is s̃ ∈ Ĩ ⊂ Rd−1≡1 while the output is x ∈ F ⊂
Rd≡2. Similar to the geometry mapping (4.11) for the element, the geometry mapping (4.25) is a
polynomial map of degree p that maps the interpolation nodes {z̃i} of the reference line segment Ĩ
to the associated nodes {zFi } of the physical facet F .

We can differentiate (4.25) to obtain the Jacobian, JF : Ĩ → Rd×(d−1), given by

JFij (s̃) ≡ ∂xi
∂s̃j

∣∣∣∣
s̃

=
∂GFi
∂s̃j

∣∣∣∣
s̃

=

nFs∑
α=1

zFα,i
∂φ̃α
∂s̃j

∣∣∣∣
s̃

, i = 1, . . . , d, j = 1, . . . , d− 1.

The Jacobian is rectangular because the mapping is from Rd−1 to Rd. The Jacobian JF (s̃) char-
acterizes how an infinitesimal line segment dl̃ at s̃ ∈ Ĩ maps to an infinitesimal line segment dl at
s ∈ F : dl = JF (s̃)dl̃.

The physical length ds is related to the reference length ds̃ by the relationship

ds = |JF (s̃)|ds̃,
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where, in two dimensions,

|JF (s̃)| ≡
√
JF11(s̃)2 + JF21(s̃)2.

Analogously to the determinant condition |J(x̃)| > 0 ∀x̃ ∈ K̃ for the element mapping, a facet
mapping is valid if and only if

|JF (s̃)| > 0 ∀s̃ ∈ Ĩ .

This condition is automatically satisfied if |JK(x̃)| > 0 ∀x̃ ∈ ¯̃K for the element K associated with
the facet F .

The evaluation of forms associated with a boundary value problem sometimes also require the
evaluation of the unit outward-pointing normal vector. In two dimension, the normal vector is given
by

nF (s̃) =
1

|JF (s̃)|

(
JF21(s̃)
−JF11(s̃)

)
.

This definition of the normal vector is for our counterclockwise convention for the facet orientation;
the sign needs to be reversed if the clockwise convection is used for the facet orientation.

4.6.3 Local stiffness matrix and vectors of facet terms

We now consider evaluation of a load vector that requires integration on a boundary and, in turn,
on a facet. Again to provide a concrete example, in this section we consider V ≡ H1(Ω), a linear
form ` : V → R such that

`(v) ≡
∫

ΓN

vgdx ∀v ∈ V, (4.26)

for g : ΓN → R the Neumann source function. Our approximation space Vh is as defined in (4.22).
The number of shape fucntions per element is denoted by ns, and the number of shape functions
on a facet of the element is denoted by nFs . (We only consider the load vector, and not the stiffness
matrix, as the evaluation procedures are essentially the same.)

By way of preliminaries, we first provide a triangular for the boundary ΓN . The boundary
triangulation

T ΓN
h ≡ {Fi}

nf
i=1

is a set of nf non-overlapping facets that cover the boundary ΓN : (i) Fi ∩ Fj = ∅, i 6= j, and

(ii) ∪nfi=1F̄i = Γ̄N . We assume that the facet triangulation T ΓN
h is compatible with the domain

triangulation Th ≡ {Ki}nei=1 in the sense that each Fi ∈ T ΓN
h is a facet of a unique element. Given

this compatibility condition, we introduce two mappings:

1. θF -K : {1, . . . , nf} → {1, . . . , ne}. Mapping from a physical facet number to the element to
which the facet belongs.

2. θF -F̃ : {1, . . . , nf} → {1, 2, 3}. Mapping from a physical facet number to the local facet index.

These two mappings combined implies that a physical facet F is the i = θF -F̃ (F )-th facet of the
element Kj≡θF -K(F ).

To evaluate the local load vector f̃K ∈ Rns , we appeal to the fact that the restriction of an
element shape function φK in Rd to a facet F is a shape function in Rd−1:

φKα |F = χFγ , γ = 1, . . . , nFs ,
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for K = θF -K(F ), α = θF̃ -n(i, γ), and i = θF -F̃ (F ). We recall that the mapping θF̃ -n is the mapping
from facet nodes to element nodes introduced in Sections 4.2.3 and 4.2.5; α = θF̃ -(n)(i, γ) is the
element node that corresponds to the γ-th facet node of the i-th facet. Our approach is hence

to evaluate the boundary integral using the facet shape functions {χFγ }
nFs
γ=1 and then to map the

appropriate integrals to the element integral. Specifically, we note that if the linear form `(·) only
involves integration on a boundary,

`(φKα |F ) = `(χFγ ), γ = 1, . . . , nFs , (4.27)

for K = θF -K(F ), α = θF̃ -n(i, γ), and i = θF -F̃ (F ). For our model linear form (4.26) the evaluation

of the integral for {χFγ }
nFs
γ=1 yields

ĝFγ ≡ `(χFγ ) =

∫
F
χFγ (s)g(s)ds, γ = 1, . . . , nFs .

To evaluate (or approximate) the integral, we change the integration domain from the physical
facet F to the reference line segment Ĩ. We employ (i) the facet geometric mapping for the
argument of g, s ≡ GF (s̃), (ii) the relationship between the reference and physical shape functions,
χ̃Fγ (s ≡ GF (s̃)) = χ̃(s̃), and (iii) the length transformation ds = |JF (s̃)|ds̃, to obtain

ĝFγ =

∫
Ĩ
χ̃γ(s̃)g(GF (s̃))|JF (s̃)|ds̃.

We then apply a nq-point numerical quadrature defined by {ξ̃q, ρ̃q}
nq
q=1 to “evaluate” the integral:

ĝFγ “=”

nq∑
q=1

ρ̃qχ̃γ(ξ̃q)g(GF (ξ̃q))|JF (ξ̃q)|.

We finally map the vector ĝF ∈ RnFs to f̂K ∈ Rns according to

f̂Kα = ĝFγ , γ = 1, . . . , nFs ,

for K = θF -K(F ), α = θF̃ -n(i, γ), and i = θF -F̃ (F ). This mapping appeals to the relationship (4.27).

4.7 Essential boundary conditions

4.7.1 Homogeneous Dirichlet boundary condition

We recall that Dirichlet boundary conditions are essential boundary conditions, which are explic-
itly enforced through the choice of the space. As discussed in Section 3.4, we can construct an
approximation space Vh that incorporates the essential boundary condition by first constructing
the space H1

h(Ω) that does not incorporate the essential boundary condition and then removing
those nodal shape functions that lie on the Dirichlet boundary Γ̄D. We now discuss a convenient
implementation of this procedure.

To begin, we first introduce m nodal shape functions for the space H1
h(Ω), {φ̄i}mi=1; the shape

functions are associated with the m nodes of the mesh. We then divide the nodes of the mesh into
two groups:

SΓD = {i ∈ {1, . . . ,m} | zi ∈ Γ̄D},
SVh = {1, . . . ,m} \ SΓD .
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In words, SΓD is a set of nodes that lie on Γ̄D, and SVH is all other nodes. We denote the cardinality
of the two sets by |ΓD| = nΓD and |SVD | = n. We next note that the space Vh that incorporates
the homogeneous Dirichlet boundary condition is given by

Vh = {v ∈ H1
h(Ω) | v(zi) = 0, ∀zi ∈ Γ̄D} = span{φ̄i | i ∈ SVh}.

In words, we obtain the space Vh by removing basis functions of H1
h(Ω) associated with nodes on Γ̄D.

Note that the dimension of H1
h(Ω) is m, the number of Dirichlet boundary nodes is |SΓD | = nΓD ,

and the dimension of Vh is n = m− nΓD = |SVD |.
We can construct the stiffness matrix and load vector for Vh using the above relationship

between H1
h(Ω) and Vh. We first construct the stiffness matrix and the load vector associated with

the H1
h(Ω) space ˆ̄Ah ∈ Rm×m and ˆ̄fh ∈ Rm

ˆ̄Ah,ij ≡ a(φ̄j , φ̄i), i, j = 1, . . . ,m,

ˆ̄fh,i ≡ `(φ̄i), i = 1, . . . ,m;

in practice the construction is carried out using the assembly procedure outlined in Section 4.5.

We then remove rows and columns of ˆ̄Ah ∈ Rm×m associated with the Dirichlet-boundary index
set SΓD to create the stiffness matrix Âh ∈ Rn×n. Or, equivalently, we keep the rows and columns

of ˆ̄Ah ∈ Rm×m that are in SVh ; i.e.,

Âh = {a(φ̄j , φ̄i) | i, j ∈ SVh} ∈ Rn×n. (4.28)

We similarly remove the rows of ˆ̄fh ∈ Rm associated with the Dirichlet-boundary index set SΓD to

create the load vector f̂h ∈ Rn. Or, equivalently, we keep the rows of ˆ̄fh ∈ Rm that are in SVh ; i.e.,

f̂h = {`(φ̄i) | i ∈ SVh} ∈ Rn. (4.29)

We finally solve the linear system

Âhûh = f̂h

for ûh ∈ Rn, which are the coefficients of the basis for Vh.

For a concrete example, consider the P1 approximation space associated with the mesh shown
in Figure 4.17. We recognize that

SΓD = {4, 7, 8, 9}
SVh = {1, 2, 3, 5, 6}.

The dimension of H1
h(Ω) is m = 9, and the associated stiffness matrix is ˆ̄Ah ∈ R9×9. The dimension

of Vh, which respects the homogeneous Dirichlet boundary condition, is n = 5, and the associated
stiffness matrix Âh ∈ R5×5 is obtained by eliminating rows and columns in SΓD = {4, 7, 8, 9} from
ˆ̄Ah ∈ R9×9. Similarly, the load vector f̂h ∈ R5 associated with Vh is obtained by eliminating rows

in SΓD = {4, 7, 8, 9} from the load vector ˆ̄fh ∈ R9 associated with H1
h(Ω).
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Figure 4.17: A triangulated domain with a Dirichlet boundary.

4.7.2 Nonhomogeneous Dirichlet boundary condition

We now consider an nonhomogeneous Dirichlet boundary condition. We recall that we can think
of the trial space with an nonhomogeneous Dirichlet boundary condition as VEh ≡ uEh + Vh where
uEh is any function in H1

h(Ω) such that uEh (zi) = uB(zi), zi ∈ Γ̄D. Our finite element problem is as
follows: find ũh ∈ Vh such that

a(ũh, v) = `(v)− a(uEh , v) ∀v ∈ Vh,

then set uh = uEh + ũh. For a finite element implementation, it is convenient to choose uEh ∈ H1
h(Ω)

such that

uEh (zi) =

{
uB(zi), zi ∈ Γ̄D,

0, otherwise.

To obtain an equivalent statement for the coefficient ˆ̃uh ∈ Rn, we introduce the following matrices
and vectors:

• Âh ∈ Rn×n. The stiffness matrix associated with the space Vh (with the homogeneous Dirich-
let boundary condition) as defined in (4.28).

• f̂h ∈ Rn. The load vector associated with the space Vh as defined in (4.29).

• ûEh ∈ RnΓD . The coefficients associated with uEh ∈ H1
h(Ω) evaluated on ΓD. We simply set

ûEh = {uB(zi) | zi ∈ Γ̄D}, the boundary function uB evaluated at the Dirichlet nodes.

• B̂h ∈ Rn×nΓD . The submatrix of the stiffness matrix ˆ̄Ah ∈ Rm×m associated with the rows in
SVh and the columns in SΓD ; i.e., B̂h{a(φ̄j , φ̄i) | i ∈ SVh , j ∈ SΓD}.

Then, the linear-algebraic form of the equation for ˆ̃uh ∈ Rn is

Âh ˆ̃uh = f̂h − B̂hûEh .

The solution vector ûh ∈ Rm associated with uh ∈ uEh +Vh is then given by setting for the Dirichlet
boundary nodes {ûh,i}i∈SΓD

= {uB(zi)}i∈SΓD
and for all other nodes {ûh,i}i∈SVh = ˆ̃uh.
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4.8 Efficient implementation by BLAS

Before we conclude this lecture, we make a few remarks about an efficient implementation of
finite element method on modern computers. While modern computers can carry out billions
of floating point operations per second, modern computers also have a deep memory hierarchy
and hence not all operations can be carried out as efficiently as others. One way to achieve
a high level of computational utilization on a modern computer is to implement many of the
operations as linear algebra operations and to use the BLAS (basic linear algebra subroutines) to
carry out these operations. BLAS routines are optimized for the particular architecture. There
are three different levels of BLAS: BLAS1 deals with vector-vector operations; BLAS2 deals with
matrix-vector operations; and BLAS3 deals with matrix-matrix operations. The use of BLAS3
routines, with the most favorable compute-to-memory ratio, is a key to achieve good computational
utilization on modern computers. Many of the operations described in this lecture can be written
as BLAS operations.

For instance, suppose we want to evaluate the nodal shape functions at quadrature points of a
reference element. We first write a routine that evaluates monomials: given npt points described by
a matrix X ∈ Rnpt×d, evaluate the matrix Ψ(X) ∈ Rnpt×ns , where (Ψ(X))ij is the j-th monomial
basis function evaluated at the i-th point. Using this routine, we can express the Vandermonde
matrix as

V = Ψ(Xint) ∈ Rns×ns ,

where Xint ∈ Rns×d is the set of Lagrange interpolation nodes. To compute the nodal shape
functions at quadrature points Xquad ∈ Rnquad×d, we appeal to the fact that the Vandermonde
matrix is the inverse of the nodal basis coefficient matrix and invoke

Φ(Xquad) = Ψ(Xquad)V −1 ∈ Rnquad×ns .

(In the actual implementation, the inverse should never be explicitly computed but its action should
be computed through a linear solve; in Matlab, the above can be computed using the “forward
slash” operator as Φ(Xquad) = Ψ(Xquad)/V .) This is an efficient and concise way to compute nodal
shape functions using matrix operations.

As another example, suppose we now wish to evaluate the mass matrix on the reference element,
M̃ ≡ Rns×ns such that

M̃ij =

∫
K̃
φ̃i(x̃)φ̃j(x̃)dx̃, i, j = 1, . . . , ns.

If the shape functions are polynomials of degree p, then we can exactly evaluate the mass matrix
by using a quadrature rule of degree 2p:

M̃ij =

nq∑
q=1

ρ̃qφ̃i(ξ̃q)φ̃j(ξ̃q), i, j = 1, . . . , ns.

Now, we can combine (i) a vector of quadrature weights ρ̃ ∈ Rnquad and (ii) shape functions evaluated
at quadrature points Φ(Xquad) ∈ Rnquad×ns to evaluate the mass matrix as

M̃ = Φ(Xquad)Tdiag(ρ̃)Φ(Xquad).

(In Matlab, it is more efficient to replace diag(ρ̃)Φ with a binary singleton expansion operator
bsxfun(@times, ρ̃,Φ).) The mass matrix can then be efficiently computed using a BLAS3 routine.
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With some planning, a significant fraction — or more precisely most computationally intense
parts — of finite element code can be expressed in terms of BLAS routines. The use of BLAS
is important for both compiled languages (e.g., C, C++) and interpreted languages (e.g., Mat-
lab, Python). However, it is arguably more important for the interpreted languages because the
efficiency of interpreted languages can be quite limited for simple but computationally intense
operations.

4.9 Summary

We summarize key points of this lecture:

1. Given a polynomial space and a set of nodes, the associated nodal shape functions {φ̃α} can
be identified using the Vandermonde method.

2. A finite element is formally defined by (i) a domain, (ii) a finite-dimensional approximation
space, and (iii) degrees of freedom used to describe functions in the space.

3. A reference element K̃ is mapped to a physical element K by using a polynomial geometry
mapping GK . The differentiation of the mapping yields the Jacobian JK , from which we
compute the determinant of the Jacobian |JK | and the inverse Jacobian (JK)−1.

4. In R2, a reference line segment Ĩ is mapped to a physical facet F by using a polynomial
geometry mapping GF . The differentiation of the mapping yields the Jacobian JF , from
which we compute the determinant of the Jacobian JF and the outward-pointing normal
vector nF .

5. Physical shape functions on a given element, {φKα }, are obtained by mapping the reference
shape functions {φ̃α} through the geometry mapping GK .

6. On a reference line segment, a nq-point Gauss quadrature rule exactly integrates polynomials
of degree up to 2nq − 1. The rule is most efficient in the sense that it requires the fewest
number of points to integrate a polynomial of a given degree.

7. Efficient quadrature rules for canonical domains in higher dimensions also exist; however,
they are not as well standardized as Gauss quadrature in one dimension.

8. To evaluate the domain-integration terms in local stiffness matrices and load vectors, we (i)
map the integration domain from K to K̃ using the geometry mapping GK , (ii) evaluate
the integrand, and in particular the physical basis functions {φKα } and their gradients, and
(iii) invoke an appropriate quadrature rule. A similar procedure exists for terms that require
boundary integration.

9. Essential boundary conditions are imposed by eliminating shape functions on Γ̄D from the ap-
proximation space. The task translates to the elimination of the rows and columns associated
with Γ̄D from the (global) stiffness matrix and load vector.

10. An efficient finite element solver can be implemented on a modern computer using BLAS
routines.
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Lecture 5

Polynomial interpolation in Sobolev
spaces

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

5.1 Motivation

As we have seen in the previous lectures, the finite element method approximates the solution to the
variational problem in a finite-dimensional approximation space. In the finite element method based
on h-refinement, we consider a sequence of piecewise polynomial spaces of various characteristic
element diameter h. The accuracy of a given finite element approximation depends on the ability
of the underlying piecewise polynomial space to approximate the solution. In this lecture, we
characterize the error associated with piecewise polynomial interpolations of functions in Sobolev
spaces.

For the majority of the lecture, we consider linear polynomial interpolation in R1; the simplified
setting allows us to analyze interpolation errors without introducing technical tools that are beyond
the scope of this course while still capturing the essence of interpolation error theory. In Section 5.7,
we introduce, without proofs, more general results for higher-degree polynomial interpolation in
Rd≥1.

5.2 Linear interpolation error for C2 functions in R1

In this section, we analyze the error associated with the piecewise linear interpolation of C2 func-
tions in one dimension. To this end, we introduce a domain Ω ≡ [a, b] ⊂ R1 and interpolation nodes
a ≡ z1 < · · · < zn ≡ b. Given a function w, its piecewise linear polynomial interpolant Ihw is a
piecewise linear polynomial,

(Ihw)|[zi,zi+1] ∈ P1([zi, zi+1]), i = 1, . . . , n− 1,

that satisfies the interpolation conditions,

(Ihw)(zi) = w(zi), i = 1, . . . , n.
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Assuming w ∈ C0([a, b]), the piecewise polynomial interpolant exists and is unique. The subscript
h on Ihw emphasizes that the interpolant depends on the node spacing h.

In the context of finite element analysis, our goal is to establish interpolation error bounds for
functions in Sobolev spaces Hk(Ω), the space of functions whose weak derivatives of order up to k
are square integrable (in the Lebesgue sense). But, we first digress and provide a more “classical”
interpolation error bounds for functions in Ck(Ω), the space of functions whose (strong) derivatives
of order up to k are continuous (in the pointwise sense).

We first analyze the error for a single-segment interpolant Ihw over [a, b].

Proposition 5.1. Let w ∈ C2([a, b]) and Ihw ∈ P1([a, b]) be the (single-segment) linear interpolant.
Then, the interpolation error is bounded by

|w(x)− (Ihw)(x)| ≤ 1

8
max
s∈[a,b]

|w′′(s)|(b− a)2 ∀x ∈ [a, b].

Proof. We first introduce an auxiliary function

g(s) = w(s)− (Ihw)(s)−
(
w(x)− (Ihw)(x)

(x− a)(x− b)

)
(s− a)(s− b).

We note that g(x) = 0 by construction, and g(a) = g(b) = 0 because Ihw interpolants w at the
endpoints. Hence, g has at least three roots in [a, b]. By Rolle’s theorem, g′ has at least two root
in [a, b]. Invoking the Rolle’s theorem again, g′′ has at least one root in [a, b]. Let ξ be one of these
roots: g′′(ξ) = 0. We now compute g′′:

g′′(s) = w′′(s)−
(
w(x)− (Ihw)(x)

(x− a)(x− b)

)
· 2.

Note that (Ihw)′′ = 0 since Ihw is a linear function. We now evaluate the expression at ξ to obtain

0 = w′′(ξ)−
(
w(x)− (Ihw)(x)

(x− a)(x− b)

)
· 2,

or, equivalently,

w(x)− (Ihw)(x) =
1

2
w′′(ξ)(x− a)(x− b).

We finally note that |w′′(ξ)| ≤ maxs∈[a,b] |w′′(s)| and |(x− a)(x− b)| ≤ (b− a)2/4.

Proposition 5.2. Let Ω̄ ⊂ R1 and Ihw be the piecewise linear interpolant associated with a
triangulation Th ≡ {K} with h ≡ maxK∈Th |K|. If w ∈ C0(Ω̄) ∩ C2(Th), then the interpolation
error is bounded by

|w(x)− (Ihw)(x)| ≤ 1

8
max
K∈Th

max
s∈K
|w′′(s)|h2 ∀x ∈ Ω̄,

where C2(Th) ≡ ⊕K∈ThC2(K̄), the space of piecewise C2 functions.

Proof. Apply Proposition 5.1 to each segment of the piecewise linear interpolant.
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Proposition 5.2 shows that the maximum error in the piecewise linear interpolation is a function
of (i) the maximum second derivative maxK∈Th maxs∈K |w′′(s)| in the “broken” space and (ii) the
node spacing h. Note that we require the underlying function to be only piecewise C2(Th) con-
tinuous, instead of global C2(Ω) continuous, because the interpolant is constructed independently
for each segment. While this “classical” interpolation error bound is useful in many scenarios that
involve functions in Ck spaces — with continuous (strong) derivatives in the pointwise sense —, it
is not the natural choice for finite element analysis that involves functions in Hk Sobolev spaces
— with square integrable weak derivatives in the Lebesgue sense. In the following sections, we
introduce interpolation error bounds for functions in Hk Sobolev spaces.

5.3 Preliminary: Rayleigh quotient

By way of preliminary, we first introduce a technical tool required to analyze interpolation error
in Sobolev spaces: the Rayleigh quotient and the associated bounds. We first introduce Rayleigh
quotients for linear operators in Rn; i.e., the matrices Rn×n.

Definition 5.3 (Rayleigh quotient (matrices)). Let A ∈ Rn×n be a symmetric matrix. The asso-
ciated Rayleigh quotient is RA : Rn → R such that

RA(x) ≡ xTAx

xTx
.

Proposition 5.4 (Bound of Rayleigh quotient (matrices)). Let (wk, λk) ∈ Rn × R, k = 1, . . . , n,
be the eigenpairs of a symmetric matrix A ∈ Rn×n. Then, the Rayleigh quotient of A is bounded
by

min
k
λk ≤ RA(x) ≤ max

k
λk ∀x ∈ Rn.

Proof. Because A is symmetric, there exists a set of eigenvectors {wk}nk=1 that forms an orthonormal
basis of Rn. Hence, ∀x ∈ Rn, ∃x̂ ∈ Rn such that x =

∑n
k=1 x̂kwk. The Rayleigh quotient can then

be expressed as an weighted sum of eigenvalues

RA(x =
n∑
k=1

x̂kwk) ≡
∑n

k=1 λkx̂
2
k∑n

k=1 x̂
2
k

.

The minimum value of the weighted sum is obtained for x̂k = e1 ∈ Rn, a vector with 1 in the first
entry and zero elsewhere, and the associated minimum is λ1. Similarly, the maximum value of the
weighted sum is obtained for x̂k = en ∈ Rn, a vector with 1 in the last entry and zero elsewhere,
and the associated maximum is λn.

We now generalize Rayleigh quotient to bilinear forms in Hilbert spaces.

Definition 5.5 (Rayleigh quotient (Hilbert spaces)). Let V be a Hilbert space endowed with an
inner product (·, ·)V : V × V → R, and a : V × V → R be a symmetric, positive bilinear form. The
associated Rayleigh quotient is Ra : V → R such that

Ra(v) ≡ a(v, v)

(v, v)V
.
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Proposition 5.6 (Bounds of Rayleigh quotient (Hilbert spaces)). Let V be a Hilbert space endowed
with an inner product (·, ·)V : V × V → R, and a : V × V → R be a symmetric, positive bilinear
form. Consider also the following eigenproblem: find (wk, λk) ∈ V ×R, k ∈ N, such that ‖wk‖V = 1
and

a(wk, v) = λk(wk, v)V ∀v ∈ V.

Then, the Rayleigh quotient of a(·, ·) is bounded by

inf{λk} ≤ Ra(v) ≤ sup{λk}.

Moreover, if inf{λk} > 0, then

inf{λk} = α,

where α > 0 is the V-coercivity constant; if sup{λk} <∞, then

sup{λk} = γ,

where γ <∞ is the V-continuity constant.

5.4 The L2(Ω) error of linear interpolant of H2(Th) functions in R1

We now consider piecewise linear interpolation for H2(Ω) functions in R1. (More precisely, we
consider functions in a broken space H2(Th) ⊃ H2(Ω), which will be introduced shortly.) We first
provide a definition of the interpolant.

Definition 5.7 (piecewise linear interpolant in R1). Let Ω ⊂ R1. Consider a triangulation Th ≡
{Ki}nei=1 delineated by n = ne + 1 nodes {zi}ni=1 such that Ki ≡ (zi, zi+1) and h ≡ maxK∈Th |K|.
Consider the associated approximation space

Vh ≡ {v ∈ H1(Ω) | v|K ∈ P1(K), ∀K ∈ Th}.

For w ∈ H1(Ω), the interpolant Ihw is a unique member of Vh that satisfies the interpolation
condition

(Ihw)(zi) = w(zi), i = 1, . . . , n.

Note that the construction of the interpolant is straightforward given a Lagrange basis {φi}ni=1

of Vh: Ihw =
∑n

i=1w(zi)φi.

We now wish to bound the L2 norm of the interpolation error. We take a three-step strategy:
(i) we first introduce an embedding constant between two relevant spaces; (ii) we next derive an
interpolation error bound for a unit line segment Ĩ ≡ (a, b); (iii) we finally make a homogeneity
argument to establish an interpolation error bound for piecewise linear interpolant.

Lemma 5.8 (L2(Ĩ)-H2
0 (Ĩ) embedding constant). Let Ĩ ≡ (0, 1) and H2

0 (Ĩ) ≡ {v ∈ H2(Ĩ) | v(x =
0) = v(x = 1) = 0}. Then

ρL2(Ĩ)-H2
0 (Ĩ) ≡ sup

v∈H2
0 (Ĩ)

‖v‖L2(Ĩ)

|v|H2(Ĩ)

=
1

π2
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Proof. We first introduce a Rayleigh quotient

R(v) =
‖v‖2

L2(Ĩ)

|v|2
H2(Ĩ)

=

∫
Ĩ v

2dx∫
Ĩ(v
′′)2dx

.

The associated eigenproblem is as follows: find eigenpairs (uk, λk) ∈ H2
0 (Ĩ)×R, k ∈ Z>0, such that∫

Ĩ
vukdx = λk

∫
Ĩ
v′′u′′kdx ∀v ∈ H2

0 (Ĩ).

To identify the strong form of the eigenproblem, we integrate by parts twice the right hand side to
obtain ∫

Ĩ
vukdx = λk

(
−
∫
Ĩ
vu′′′k dx+ [v′u′′k]

1
x=0

)
= λk

(∫
Ĩ
vu′′′′k dx+ [v′u′′k]

1
x=0 − [vu′′′k ]1x=0

)
∀v ∈ H2

0 (Ĩ).

We recognize v(x = 0) = v(x = 1) = 0 and rearrange the expression to obtain∫
I
v(uk − λku′′′′k )dx− λk[v′u′′k]1x=0 = 0 ∀v ∈ H2

0 (Ĩ).

We recognize that the strong form of the eigenproblem is

uk = λku
′′′′
k in Ĩ

with boundary conditions

uk(x = 0) = uk(x = 1) = u′′k(x = 0) = u′′k(x = 1) = 0.

The eigenpairs are

uk = sin(kπx),

λk =
1

k4π4
, k ∈ N.

The upper bound of the Rayleigh quotient, which is equal to ρ2
L2(Ĩ)-H2

0 (Ĩ)
, is given for k = 1 and is

1/π4. Hence the embedding constant is ρL2(Ĩ)-H2
0 (Ĩ) = 1/π2.

Proposition 5.9 (linear interpolation error on Ĩ ≡ (0, 1)). Let Ĩ ≡ (0, 1). If w̃ ∈ H2(Ĩ), then the
linear interpolation error is bounded by

‖w̃ − Iw̃‖L2(Ĩ) ≤
1

π2
|w̃|H2(Ĩ),

and this bound is sharp.
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Proof. For any w̃ ∈ H2(Ĩ), w̃ − Iw̃ ∈ H2
0 (Ĩ) because the interpolant Iw̃ ∈ H2(Ĩ) matches the

function w at the endpoints. It hence follows that

‖w̃ − Iw̃‖L2(Ĩ) =
‖w̃ − Iw̃‖L2(Ĩ)

|w̃ − Iw̃|H2(Ĩ)

|w̃ − Iw̃|H2(Ĩ)

≤ sup
v∈H2

0 (Ω)

‖v‖L2(Ĩ)

|v|H2(Ĩ)

|w̃ − Iw̃|H2(Ĩ) (maximization of the ratio)

= sup
v∈H2

0 (Ω)

‖v‖L2(Ĩ)

|v|H2(Ĩ)

|w̃|H2(Ĩ) ((Iw̃)′′ = 0 since Iw̃ ∈ P1(Ĩ))

=
1

π2
|w̃|H2(Ĩ), (Lemma 5.8)

which is the desired bound.

We now define broken Sobolev spaces suitable for the analysis of piecewise polynomial inter-
polants.

Definition 5.10 (broken Sobolev space Hk(Th)). Consider Ω ⊂ Rd and an associated triangulation
Th ≡ {Ki}nei=1 comprises ne (open) elements such that (i) Ki∩Kj = ∅, i 6= j, and (ii) ∪K∈ThK̄ = Ω̄.
The space Hk(Th) is endowed with an inner product

(w, v)Hk(Th) ≡
∑
K∈Th

(w, v)Hk(K),

the associated induced norm ‖w‖Hk(Th) ≡
√

(w,w)Hk(Th), and comprises functions

Hk(Th) ≡ {v | ‖v‖Hk(Th) <∞}.

We also introduce the associated semi-norm

|w|2Hk(Th) ≡
∑
K∈Th

|w|2Hk(K).

We finally make a homogeneity (or scaling) argument to obtain an interpolation error bound
for piecewise linear interpolants.

Proposition 5.11 (piecewise linear interpolation error in R1 (L2)). Let Ihw be the piecewise linear
interpolant in Definition 5.7. If w ∈ H1(Ω) ∩H2(Th), then

‖w − Ihw‖L2(Ω) ≤
h2

π2
|w|H2(Th).

Proof. We first consider the interpolation error for a single element K ∈ Th of length h. To this
end, we map the function w|K on K ≡ (zi, zi + h) to the function w̃ on Ĩ ≡ (0, 1). We associate a
point x ∈ K with x̃ ∈ K̃ according to x = zi + hx̃; the functions are related by

w̃(x̃) = w(x ≡ zi + hx̃) ∀x̃ ∈ Ĩ .
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By the chain rule, the second derivatives are related by

w̃′′(x̃) = w′′(x)h2

It hence follows that

‖w − Ihw‖2L2(K) ≡
∫
K

(w(x)− (Ihw)(x))2dx =

∫
Ĩ
(w̃(x̃)− (Iw̃)(x̃))2hdx̃

≤ 1

π4

∫
Ĩ
w̃′′(x̃)2hdx̃ =

1

π4

∫
K

(w′′(x)h2)2hh−1dx =
h4

π4
|w|2H2(K).

We now sum over of the elements in Th to obtain

‖w − Ihw‖2L2(Ω) =
∑
K∈Th

‖w − Ihw‖2L2(K) ≤
∑
K∈Th

h4

π4
|w|2H2(K) =

h4

π4
|w|2H2(Th).

Taking the square root of the equation yields the desired bound.

Proposition 5.11 shows that the L2(Ω) error associated with the piecewise linear interpolation of
H2(Ω) functions (i) depends on the H2(Th) semi-norm of the underlying function and (ii) converges
as h2. While the result is similar to Proposition 5.2 for C2 functions, the regularity requirement
for the underlying function is weaker for Proposition 5.11 for H2 functions. Indeed, the underlying
function need not be twice differentiable in the strong sense; its weak second derivative needs only be
square integrable (in the broken space). The fact that the function needs only be inH2(Th) ⊃ H2(Ω)
is a direct consequence of the piecewise construction of the interpolant; this relaxation will play
an important role for solutions that are only piecewise smooth, which arise in the presence of, for
example, discontinuous interior/boundary heat source or discontinuous conductivity for the heat
equation.

5.5 The H1(Ω) error of linear interpolant of H2(Th) functions in R1

We now analyze the error in the piecewise linear interpolation ofH2(Th) functions in a norm stronger
than the L2(Ω) norm: the H1(Ω) norm. The analysis follows essentially the same argument as that
used for the L2(Ω) norm of the error in the previous section.

Lemma 5.12 (H1(Ĩ)-H2
0 (Ĩ) embedding constant). Let Ĩ ≡ (0, 1) and H2

0 (Ĩ) ≡ {v ∈ H2(Ĩ) | v(x =
0) = v(x = 1) = 0}. Then

ρH1(Ĩ)-H2
0 (Ĩ) ≡ sup

v∈H2
0 (Ω)

|v|H1(Ĩ)

|v|H2(Ĩ)

=
1

π
.

Proof. Proof is similar to Proposition 5.8 for the L2(Ĩ)-H2
0 (Ĩ) embedding constant. Here we provide

a sketch. The eigenproblem associated with the Rayleigh quotient is as follows: find eigenpairs
(uk, λk) ∈ H2

0 (Ĩ)× R, k ∈ Z>0, such that∫
Ĩ
v′u′kdx = λk

∫
Ĩ
v′′u′′kdx ∀v ∈ H2

0 (Ĩ).

We can readily show that the eigenpairs are uk = sin(kπx) and λk = 1/(k2π2). The maximum
eigenvalue is 1/π2, and the embedding constant, which is the square root of the Rayleigh quotient,
is bounded by 1/π.
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Proposition 5.13 (piecewise linear interpolation error in R1 (H1)). Let Ihw be the piecewise
linear interpolant in Definition 5.7. If w ∈ H1(Ω) ∩H2(Th), then

|w − Ihw|H1(Ω) ≤
h

π
|w|H2(Th).

Proof. Proof is similar to the analysis for the L2 error in Proposition 5.11 and uses the homogeneity
argument, except now we appeal to Lemma 5.12. We here omit the proof for brevity.

Corollary 5.14. In the same setting as Proposition 5.13, the H1(Ω) norm of the interpolation
error is bounded by

‖w − Ihw‖H1(Ω) ≤
(
h2

π2
+
h4

π4

)1/2

|w|H2(Th).

For h sufficiently small, ∃C <∞ such that

‖w − Ihw‖H1(Ω) ≤ Ch|w|H2(Th).

Proposition 5.13 shows that the H1(Ω) error associated with the pieceiwse linear interpolation of
H2(Th) functions (i) depends on the H2(Th) semi-norm of the underlying function and (ii) converges
as h1. Note that the H1(Ω) norm is a stronger norm than the L2(Ω) norm, and hence the H1(Ω)
error converges at a lower rate than the L2(Ω) error.

5.6 The L2(Ω) error of linear interpolant of H1(Ω) functions in R1

We now consider the case where the underlying function is only in H1(Ω) for Ω ⊂ R1. We recall
that H1(Ω) space includes rather irregular functions; for example, a continuous function with a
kink, which would not be in C1(Ω̄), is in H1(Ω).

Proposition 5.15. Let Ĩ ≡ (0, 1), and Iv ∈ P1(Ĩ) be a linear interpolant of v ∈ H1(Ĩ) so that
(Iv)(x = 0) = v(x = 0) and (Iv)(x = 1) = v(x = 1). Then,

ρ ≡ sup
v∈H1(Ĩ)

‖v − Iv‖L2(Ĩ)

|v|H1(Ĩ)

=
1

π
.

Proof. We first expand the denominator to obtain

|v|2
H1(Ĩ)

= |Iv + (v − Iv)|2
H1(Ĩ)

= |Iv|2
H1(Ĩ)

+ |v − Iv|2
H1(Ĩ)

+ 2

∫
Ĩ
(Iv)′(v − Iv)′dx.

The last term of the expansion vanishes according to∫
Ĩ
(Iv)′(v − Iv)′dx = −

∫
Ĩ

(Iv)′′︸ ︷︷ ︸
=0 : Iv is linear

(v − Iv)dx+
[
(Iv)′(v − Iv)

]1
x=0︸ ︷︷ ︸

=0 : interpolation condition

= 0,

and hence |v|2
H1(Ĩ)

= |Iv|2
H1(Ĩ)

+ |v − Iv|2
H1(Ĩ)

. It follows that

ρ2 ≡ sup
v∈H1(Ĩ)

‖v − Iv‖2
L2(Ĩ)

|Iv|2
H1(Ĩ)

+ |v − Iv|2
H1(Ĩ)

≤ sup
v∈H1(Ĩ)

‖v − Iv‖2
L2(Ĩ)

|v − Iv|2
H1(Ĩ)

= sup
v∈H1

0 (Ĩ)

‖v‖2
L2(Ĩ)

|v|2
H1(Ĩ)

.

87



The inequality is sharp for any v ∈ H1
0 (Ĩ) so that Iv = 0; hence

ρ2 = sup
v∈H1

0 (Ĩ)

‖v‖2
L2(Ĩ)

|v|2
H1(Ĩ)

.

The constant ρ2
K is an Rayleigh quotient whose bound is given by the following eigenproblem: find

eigenpairs (uk, λk) ∈ H1
0 (Ĩ)× R, k = 1, 2, . . . , such that∫

Ĩ
vukdx = λk

∫
Ĩ
v′u′kdx ∀v ∈ H1

0 (Ĩ).

The eigenpairs are

uk(x) = sin(kπx) and λk =
1

k2π2
, k = 1, 2, . . . .

The maximum eigenvalue is 1/π2, and hence ρ2 = 1/π2.

Proposition 5.16 (piecewise linear interpolation error in R1 (L2)). Let Ihw be the piecewise linear
interpolant in Definition 5.7. If w ∈ H1(Ω), then

‖w − Ihw‖L2(Ω) ≤
h

π
|w|H1(Ω),

Proof. Proof is similar to the analysis for the L2 interpolation error of H2(Ω) functions in Propo-
sition 5.11 and uses the homogeneity argument, except now we appeal to Lemma 5.15. We here
omit the proof for brevity.

The proposition shows that, if the underlying function is in H1(Ω) instead of H1(Ω) ∩H2(Th),
then the L2 error of the piecewise linear interpolant converges as h1 instead of h2. The convergence
rate is reduced due to the limited regularity of the underlying function.

5.7 Generalization: piecewise Pp interpolation in Rd

The interpolation error bound obtained in Sections 5.4, 5.5, and 5.6 can be generalized to (i) higher
dimensions, (ii) higher-degree polynomials, and (iii) non-uniform meshes. To this end, we consider
piecewise degree-p polynomial spaces of the form

Vh ≡ {v ∈ H1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th}

associated with a triangulation Th ≡ {Ki}nei=1 delineated by n nodes {zi}ni=1. Given w ∈ C0(Ω̄), the
piecewise Pp interpolant is the function in Vh that satisfies the interpolation condition

(Ihw)(zi) = w(zi), i = 1, . . . , n.

Given a Lagrange basis {φi}ni=1 of Vh, we can readily construct the interpolant: Ihw =
∑n

i=1w(zi)φi.

In order to discuss the convergence of polynomial interpolants in higher dimensions, we first
introduce the notation of a shape-regular or non-degenerate family of triangulations.

88



Definition 5.17 (shape-regular meshes). A family of meshes {Th}h>0 is said to be shape-regular
if there exists r0 <∞ such that

rK ≡
hK
ρK
≤ r0, ∀K ∈ Th, ∀h,

where hK is the diameter of the element K, and ρK is the maximum diameter of the largest ball
that can be inscribed in K.

We make a few remarks. First, we note that shape regularity is a property associated with a
family (or sequence) of triangulations of various h, and not a single triangulation. Second, in one
dimension ρK = hK , and any triangulation is shape-regular. Third, for triangles, hK

ρK
≤ 2

sin(θK) ,
where θK is the smallest angle; the triangle cannot become too flat as h → 0 for a shape-regular
family of triangulations.

We now state the main result.

Proposition 5.18 (polynomial interpolation error bound). Let {Th}h>0 be a family of shape-
regular triangulations, and Ihw be the piecewise polynomial interpolant of degree p associated
with Th. If w ∈ C0(Ω̄) ∩Hs+1(Th), then

‖w − Ihw‖L2(Ω) ≤ CIhr+1|w|Hr+1(Th)

|w − Ihw|H1(Ω) ≤ C ′Ihr|w|Hr+1(Th)

for r = min{s, p} and some CI and C ′I independent of w and h.

Proof. Proof is beyond the scope of this course. We refer to Brenner and Scott (2008).

The proposition summarizes the particular results we obtained in one dimension in Sections 5.4,
5.5, and 5.6. For functions in C0(Ω̄)∩Hp+1(Th), the L2(Ω) and H1(Ω) norm of the errors associated
with the piecewise degree-p interpolant converge as hp+1 and hp, respectively. If the underlying
function is not smooth but is only in C0(Ω̄) ∩Hs+1(Th) for s < p, then the convergence is limited
to hs+1 in L2(Ω) and hs in H1(Ω).

(The condition C0(Ω̄)∩Hs+1(Th), instead of H1(Ω)∩Hs+1(Th), is necessary because C0(Ω̄) ⊂
H1(Ω) does not hold in Rd>1; hence, the point-wise evaluation of a function, which is required
to construct the interpolant, is in general ill-defined for H1(Ω) functions in Rd>1 (unlike in R1).
This condition can be relaxed by considering so-called quasi-interpolants; however, the discussion
is beyond the scope of this course.)

5.8 Isoparametric polynomial interpolation

To approximate domains with curved boundaries, we introduced in the previous lecture polynomial-
based geometry mappings {GK}K∈Th , where each GK maps from a reference element K̃ to the
physical (curved) element K. We then identified the associated approximation space by

Vh ≡ {v ∈ H1(Ωh) | v|K ◦ GK ∈ Pp(K̃), ∀K ∈ Th}.

The curved elements yielding a better approximation for curved domains is perhaps rather intuitive.
In fact, if a curved domain is approximated using non-curved elements, then we can readily show
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that using higher-order (Pp>1) finite elements is not asymptotically more accurate than using linear
finite elements (Pp=1). We now wish to understand the approximation properties of the interpolants
associated with Vh. To this end, we first extend the notion of shape-regular families of triangulations
to curved meshes.

Definition 5.19 (shape-regular meshes (curved)). The family of curved meshes {Th}h>0 is said to
be shape-regular if it is shape-regular in the sense of Definition 5.17 and in addition the triangulation
Th ≡ {K ≡ GK(K̃)}K∈Th and the associated approximation of the domain Ωh ≡ ∪K∈ThK satisfy
the following properties:

(i) The geometry mapping is affine for all elements not on the boundary; i.e., GK ∈ P1(K̃) for
all K such that ∂K ∩ ∂Ωh = ∅.

(ii) The distance from any point on ∂Ω to the closest point on ∂Ωh is at most Chp+1.

(iii) |JK(x̃)| ≤ C and |JK(x̃)−1| ≤ C for almost everywhere in K̃ for all K ∈ Th.

The second condition sets the minimum convergence rate at which the family of domains
{Ωh}h>0 must approximate the exact domain Ω as h → 0. If the domain boundary is piecewise
Cp+1, then the required rate can be achieved using Pp geometry mapping (assuming the trian-
gulations match the kinks of the domain boundary). Third condition ensures that the geometry
mapping does not become singular anywhere in the domain.

For a shape-regular triangulation of the curved domain, we obtain the following interpolation
error bound.

Proposition 5.20 (isoparametric polynomial interpolation error bound). Let Ω ⊂ Rd be a curved
domain, {Th}h>0 be a family of shape-regular triangulations in the sense of Definition 5.19, and
Ihw ∈ Vh be an interpolant that belongs to

Vh ≡ {v ∈ H1(Ωh) | v|K ◦ GK ∈ Pp(K̃), ∀K ∈ Th}.

If w ∈ C0(Ω̄) ∩Hs+1(Th), then

‖w − Ihw‖L2(Ω) ≤ CIhr+1|w|Hr+1(Th)

|w − Ihw|H1(Ω) ≤ C ′Ihr|w|Hr+1(Th)

for r = min{s, p} and some CI and C ′I independent of w and h.

Proof. Proof is beyond the scope of this course. We refer to Brenner and Scott (2008).

The proposition shows that we recover the optimal convergence rate on curved domains for
shape-regular triangulations (based on isoparametric mapping) that rapidly approximate the do-
main shape. As noted above, if affine (P1) meshes are used to approximate curved boundaries, then
the convergence rate for higher-degree interpolants is asymptotically the same as that for linear
interpolants.
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5.9 Summary

We summarize key points of this lecture:

1. The “classical” interpolation error bounds for Ck functions can be useful in many contexts
but are not particularly well-suited for the analysis of finite element errors as it imposes a
strong regularity requirement on the underlying function.

2. The Rayleigh quotient of a symmetric, positive bilinear form is bounded by the lower and
upper bound of the associated eigenproblem.

3. For w ∈ H1(Ω)∩H2(Th) and the associated piecewise linear interpolant Ihw, ‖w−Ihw‖L2(Ω) ≤
CIh

2|w|H2(Ω).

4. For w ∈ H1(Ω)∩H2(Th) and the associated piecewise linear interpolant Ihw, |w−Ihw|H1(Ω) ≤
CIh|w|H2(Ω); the convergence rate is one lower than that for the L2(Ω) error.

5. For w ∈ H1(Ω) (but not H1(Ω)∩H2(Th)) and the associated piecewise linear interpolant Ihw,
‖w − Ihw‖L2(Ω) ≤ CIh|w|H1(Ω); the convergence rate is one lower than that for a smoother
function in H1(Ω) ∩H2(Th).

6. For w ∈ C0(Ω̄) ∩ Hs+1(Ω) and the associated piecewise degree-p polynomial interpolants
on a family of shape-regular triangulations in Rd, ‖w − Ihw‖L2(Ω) ≤ CIh

r+1|w|Hr+1 and
|w − Ihw|H1(Ω) ≤ C ′Ihr|w|Hr+1 for r = min{s, p}.

7. For a domain with a curved boundary, the above error bound holds assuming the family of
shape-regular triangulations rapidly approximate the curved boundary using isoparametric
mapping.
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5.10 Appendix: Rayleigh quotient, Poincaré-Friedrichs inequal-
ity, and trace inequality

We recall the Poincaré-Friedrichs inequality, Proposition 2.35: for a Lipschitz domain Ω ⊂ Rd with
a boundary segment Γ ⊂ ∂Ω with Γ 6= ∅, there exists CPF <∞ that only depends on Ω and Γ such
that

‖v‖2L2(Ω) ≤ CPF(|v|2H1(Ω) + ‖v‖2L2(Γ)) ∀v ∈ H1(Ω).

Note that the constant CPF can be expressed as

CPF = sup
v∈H1(Ω)

‖v‖2L2(Ω)

|v|2
H1(Ω)

+ ‖v‖2
L2(Γ)

.

This is a Rayleigh quotient. The associated eigenproblem is as follows: find (uk, λk) ∈ H1(Ω)× R
such that

(uk, v)L2(Ω) = λk(

∫
Ω
∇v · ∇ukdx+ (uk, v)L2(Γ)) ∀v ∈ H1(Ω);

the Poincaré-Friedrichs constant is given by CPF = sup{λk}.
We similarly recall the trace inequality, Proposition 2.39: for a Lipschitz domain Ω ⊂ Rd, there

exists a constant Ctr <∞ that depends only on Ω such that

‖v‖L2(∂Ω) ≤ Ctr‖v‖H1(Ω) ∀v ∈ H1(Ω).

The square of the constant Ctr can be expressed as

C2
tr = sup

v∈H1(Ω)

‖v‖2L2(∂Ω)

‖v‖2
H1(Ω)

.

This is again a Rayleigh quotient. The associated eigenproblem is as follows: find (uk, λk) ∈
H1(Ω)× R such that

(uk, v)L2(∂Ω) = λk(uk, v)H1(Ω) ∀v ∈ H1(Ω);

the constant Ctr is given by Ctr = sup{λ1/2
k }.

92



Lecture 6

Finite element method: error analysis

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

6.1 Motivation

In this lecture, we analyze the error in finite element approximations. As we have seen in the
previous lectures, the finite element method seeks a solution to the variational problem in (a
family of) finite-dimensional approximation spaces, which often comprise piecewise polynomial
functions. As such, the finite element error analysis builds on two distinct ingredients. The first is
(quasi-)optimality results which show the ability of the Galerkin method to find a (quasi-)optimal
approximation in a given finite-dimensional approximation space. The second is the approximation
theory for the given approximation space; in the case of approximation spaces based on piecewise
polynomials, we rely on the polynomial interpolation theory discussed in the previous lecture. The
ability to carry out rigorous error analysis is one of the strengths of the finite element method, and
we will demonstrate the strength in this lecture.

6.2 Preliminary

By way of preliminaries, we define equivalent norms.

Definition 6.1 (equivalence of norms). Given a Hilbert space V, a norm ‖ · ‖A is said to be
equivalent to a norm ‖ · ‖B if there exist c > 0 and C <∞ such that

c‖v‖B ≤ ‖v‖A ≤ C‖v‖B ∀v ∈ V.

We now introduce a set of assumptions used throughout this lecture. The first is a set of
assumptions on the (abstract) variational problem.

Assumption 6.2. We consider the following.

1. The domain Ω ⊂ Rd has a Lipschitz boundary.
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2. The Hilbert space V satisfies H1
0 (Ω) ⊂ V ⊂ H1(Ω). The space V is endowed with an inner

product (·, ·)V and the associated induced norm ‖ · ‖V , which is equivalent to ‖ · ‖H1(Ω); i.e.,
∃CH1-V <∞ and CV-H1 <∞ such that

C−1
H1-V‖v‖H1(Ω) ≤ ‖v‖V ≤ CV-H1‖v‖H1(Ω) ∀v ∈ V.

3. The bilinear form a : V × V → R is coercive and continuous in V with the coercivity and
continuity constants α > 0 and γ < ∞, respectively; i.e., a(v, v) ≥ α‖v‖2V ∀v ∈ V, and
|a(w, v)| ≤ γ‖w‖V‖v‖V ∀w, v ∈ V.

4. The linear form ` : V → R is continuous in V; i.e., ∃c <∞ such that |`(v)| ≤ c‖v‖V ∀v ∈ V.

Assumption 6.2 does not assume the bilinear form is symmetric; we will clearly state the sym-
metry assumption whenever it is required as an additional assumption. We also note that Assump-
tion 6.2 is a set of assumptions of the Lax-Milgram theorem, Theorem 2.32.

We next introduce the assumptions that define the variational solution and the associated finite
element approximation.

Assumption 6.3. We consider the following.

1. The solution u ∈ V satisfies
a(u, v) = `(v) ∀v ∈ V. (6.1)

2. The finite element approximation uh ∈ Vh satisfies

a(uh, v) = `(v) ∀v ∈ Vh (6.2)

for some finite-dimensional subspace Vh ⊂ V.

Assumption 6.3 does not specify the finite element approximation space Vh other than that it is
a subspace of V; in particular, we do not assume the space Vh is a space of piecewise polynomials.
Given Assumption 6.2, both the variational problem (6.1) and finite element problem (6.2) are well
posed thanks to the Lax-Milgram theorem.

We finally introduce a particular family of piecewise polynomial approximation spaces.

Assumption 6.4. We consider the following:

1. The family of triangulations {Th} is shape-regular in the in the sense of Definitions 5.17 and
5.19 for polygonal and curved domains, respectively.

2. The approximation spaces are given by

Vh ≡ {v ∈ V | v ◦ GK ∈ Pp(K̃), K ∈ Th}, (6.3)

where {GK : K̃ → K}K∈Th is the geometry mapping associated with the shape-regular
triangulations.

Note that (6.3) is one particular example of an approximation space for the finite element
approximation (6.2). We will henceforth refer to the space Vh in (6.3) as the Pp finite element
approximation space (even though the space may contain non-polynomial functions for isopara-
metric approximation of curved-domains). In addition, we will refer to the solution uh ∈ Vh to
(6.2) associated with Vh in (6.3) as the Pp finite element approximation.

94



6.3 Galerkin orthogonality

We now introduce Galerkin orthogonality, a relationship that will be used throughout our analysis
of error in finite element approximations.

Lemma 6.5 (Galerkin orthogonality). Suppose Assumptions 6.2 and 6.3 hold. The error u−uh ∈ V
satisfies

a(u− uh, v) = 0 ∀v ∈ Vh.

Proof. The condition (6.1) implies a(u, v) = `(v), ∀v ∈ Vh ⊂ V. The subtraction of (6.2) from the
relationship yields

a(u− uh, vh) = a(u, vh)− a(uh, vh) = `(vh)− `(vh) = 0 ∀vh ∈ Vh,

which is the desired relationship.

6.4 Error bounds in energy norm

In this section we consider a symmetric, coercive bilinear form and assess our error in energy norm.

Definition 6.6 (energy norm). Given a symmetric, coercive, and continuous bilinear form a :
V × V → R, the energy norm ‖ · ‖a : V → R≥0 is defined by

‖v‖a ≡
√
a(v, v) ∀v ∈ V.

Because the bilinear form is symmetric and coercive, the bilinear form a(·, ·) is in fact an inner
product that satisfies the requirements on (i) the linearity, (ii) symmetry, and (iii) the Cauchy-
Shwarz inequality. The energy norm is the induced norm associated with this inner product; the
norm hence satisfies the requirements on (i) linearity, (ii) positivity, and (iii) the triangle inequality.
The energy norm is equivalent to ‖ · ‖H1(Ω):

Lemma 6.7 (equivalence of energy and H1 norm). Suppose Assumption 6.2 holds for a symmetric
bilinear form. The energy norm ‖ · ‖a is equivalent to the V norm ‖ · ‖V , which in turn is equivalent
to the H1 norm ‖ · ‖H1(Ω).

Proof. From coercivity and continuity of a(·, ·) in V, we immediately obtain

α‖v‖2V ≤ a(v, v) ≡ ‖v‖2a ≤ γ‖v‖2V ∀v ∈ V,

where α > 0 and γ <∞ are the coercivity and continuity constants, respectively.

We now show that the finite element approximation is optimal in the energy norm.

Proposition 6.8 (energy-norm error bound). Suppose Assumptions 6.2 and 6.3 hold for a sym-
metric bilinear form. The finite element approximation is optimal in the energy norm in the sense
that

‖u− uh‖a = inf
wh∈Vh

‖u− wh‖a. (6.4)

95



Proof. Let wh be an arbitrary element in Vh and express it as wh = uh + vh for vh ∈ Vh. Then,

‖u− wh‖2a = ‖u− uh − vh‖2a = a(u− uh − vh, u− uh − vh)

= a(u− uh, u− uh)− 2 a(u− uh, vh)︸ ︷︷ ︸
=0 by Galerkin orthogonality

+ a(vh, vh)︸ ︷︷ ︸
>0 for vh 6= 0 by coercivity

> ‖u− uh‖2a ∀vh 6= 0,

or, equivalently, ‖u− wh‖a > ‖u− uh‖a ∀wh 6= uh.

The optimality of the finite element error in the energy norm implies the following: even if we
knew the exact solution u ∈ V to (6.1), we could not find a wh ∈ Vh that is more accurate in the
energy norm than uh ∈ Vh. This optimality result is a direct consequence of Galerkin orthogonality,
which states that the error u−uh ∈ V is orthogonal to the space Vh in the inner product associated
with the bilinear form a : V × V → R. In other words, uh ∈ Vh is the a-orthogonal projection of
u ∈ V onto Vh ⊂ V.

We may obtain a particular h-convergence result for Pp finite element approximations.

Proposition 6.9 (energy-norm error bound: h convergence). Suppose Assumptions 6.2, 6.3, and
6.4 hold for a symmetric bilinear form. If u ∈ H1(Ω) ∩Hs+1(Th), then

‖u− uh‖a ≤ Chr|u|Hr+1(Th)

for r ≡ min{s, p} and some constant C <∞ independent of u and h. (Here, Hk(Th) and | · |Hk(Th)

are the broken space and semi-norm, respectively, in Definition 5.10.)

Proof. The bound follows from the energy-norm error bound in Proposition 6.8 and the polynomial
interpolation error bound in Proposition 5.18:

‖u− uh‖a = inf
wh∈Vh

‖u− wh‖a (energy-norm error bound)

≤ ‖u− Ihu‖a (wh = Ihu)

≤ γ‖u− Ihu‖V (continuity of a(·, ·))
≤ γCV-H1(Ω)‖u− Ihu‖H1(Ω) (equivalence of ‖ · ‖V and ‖ · ‖H1(Ω))

≤ γCV-H1(Ω)CIh
r|u|Hr+1(Th). (interpolation error bound)

We set C ≡ γCV-H1(Ω)CI to obtain the desired relationship.

We observe that, if the solution u is smooth in the sense u ∈ H1(Ω)∩Hp+1(Th), then the error in
the Pp finite element approximation converges as hp in the energy norm. If the solution is not smooth
in the sense u /∈ H1(Ω) ∩Hp+1(Th), then the convergence rate of the finite element approximation
is limited by the regularity of the solution. We however note that the regularity of the solution
is assessed in the broken norm |u|Hs+1(Th); if the irregular features in the solution, such as kinks,
align with the triangulation, then the features may not deteriorate the convergence rate. Hence,
for problems with known irregular features resulting from, say, discontinuous source functions or
discontinuous diffusivity field, it is important to align the triangulation with the features.
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6.5 Error bounds in V and H1(Ω) norms

In this section, we obtain error bounds in the V and H1(Ω) norms. As in Assumption 6.2, we
assume H1

0 (Ω) ⊂ V ⊂ H1(Ω) so that ‖ · ‖V is equivalent to ‖ · ‖H1(Ω). The first bound is for a
variational problem with a symmetric, coercive bilinear form.

Lemma 6.10 (Céa’s lemma (symmetric)). Suppose Assumptions 6.2 and 6.3 hold for a symmetric
bilinear form. Then,

‖u− uh‖V ≤
√
γ

α
inf

wh∈Vh
‖u− wh‖V . (6.5)

Proof. The bound follows from the coercivity and continuity of the bilinear form and the energy-
norm error bound in Proposition (6.8):

α‖u− uh‖2V ≤ a(u− uh, u− uh) (coercivity)

≤ ‖u− uh‖2a (energy norm)

= inf
wh∈Vh

‖u− uh‖2a (energy-norm error bound)

= γ‖u− uh‖2V (continuity).

The division by α > 0 yields the desired inequality.

The second bound is for a variational problem with a bilinear form that is coercive but not
necessarily symmetric.

Lemma 6.11 (Céa’s lemma (nonsymmetric)). Suppose Assumptions 6.2 and 6.3 hold. Then,

‖u− uh‖V ≤
γ

α
inf

wh∈Vh
‖u− wh‖V . (6.6)

Proof. The result is trivial for ‖u− uh‖V = 0. For ‖u− uh‖V 6= 0, we observe

α‖u− uh‖2V ≤ a(u− uh, u− uh) (coercivity)

= a(u− uh, u− wh) + a(u− uh, wh − uh) (bilinearity)

= a(u− uh, u− wh) (Galerkin orthogonality)

≤ γ‖u− uh‖V‖u− wh‖V (continuity).

The division by α‖u− uh‖V > 0 yields the desired result.

Because γ/α ≥ 1 by the definition of the continuity and coercivity constants, the bound (6.6) for
nonsymmetric bilinear forms, which applies to more general problems, is looser than the bound (6.5)
for symmetric bilinear forms. In both cases, we observe that the finite element approximation is
quasi-optimal in the sense that ‖u − uh‖V is at most a constant multiple of the best-fit error
infwh∈Vh ‖u− wh‖V , where the constant is independent of the approximation space Vh.

Given the quasi-optimality results of Céa’s lemma, we can readily obtain particular h-convergence
results for Pp finite element approximations.
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Proposition 6.12 (V-norm error bound: h convergence). Suppose Assumptions 6.2, 6.3, and 6.4
hold. If u ∈ H1(Ω) ∩Hs+1(Th), then

‖u− uh‖V ≤ Chr|u|Hr+1(Th) (6.7)

for r ≡ min{s, p} and some C <∞ independent of u and h.

Proof. We invoke Céa’s lemma 6.10, the equivalence of ‖ · ‖V and ‖ · ‖H1(Ω), and the polynomial
interpolation error bound in Proposition 5.18.

Proposition 6.13 (H1(Ω)-norm h convergence). Suppose Assumptions 6.2, 6.3, and 6.4 hold. If
u ∈ H1(Ω) ∩Hs+1(Th), then

‖u− uh‖H1(Ω) ≤ Chr|u|Hr+1(Th) (6.8)

for r ≡ min{s, p} and some C <∞ independent of u and h.

Proof. The result follows from Proposition 6.12 and the equivalence of ‖ · ‖V and ‖ · ‖H1(Ω).

Similar to the energy norm of the error, we observe that, if the solution u is smooth in the sense
u ∈ H1(Ω) ∩Hp+1(Th), then the error in Pp finite element approximations converges as hp in the
V or H1(Ω) norm. If the solution is not smooth, then the convergence rate of the finite element
approximations is limited by the regularity of the solution.

6.6 Error bounds in L2(Ω) norm

We now analyze the convergence of finite element approximations in L2(Ω) norm. Unfortunately,
the L2(Ω) error analysis relies on an equation-specific result called the elliptic regularity estimate.
Hence, in this section, unlike in the previous sections, we restrict ourselves to (variable coefficients)
advection-reaction-diffusion equation. (The regularity estimate holds also for other equations, but
we here state a concrete result for the specific equation.)

Lemma 6.14 (elliptic regularity estimate). Let Ω ⊂ Rd be a Lipschitz domain, V be a Hilbert
space such that H1

0 (Ω) ⊂ V ⊂ H1(Ω), and let a : V × V → R be

a(w, v) =

∫
Ω

(∇v · a∇w + vb · ∇w + cvw)dx, ∀w, v ∈ V,

for a ∈ C1(Ω̄)d×d and elliptic, b ∈ C0(Ω̄)d, c ∈ C0(Ω̄). Consider the following weak problem: find
u ∈ V such that

a(u, v) = (f, v)L2(Ω) ∀v ∈ V,

where f ∈ L2(Ω). Then the solution u satisfies

‖u‖H2(Ω) ≤ Creg‖f‖L2(Ω)

for some Creg <∞.

Proof. Proof is beyond the scope of this course. See, e.g., Ern and Guermond (2004).
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Proposition 6.15 (L2-norm error bound (Aubin-Nitsche)). Suppose Assumptions 6.2, 6.3, and
6.4 as well as the conditions of the elliptic regularity estimate, Lemma 6.14, hold. Then,

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖V ,

for some C <∞ independent of u and h.

Proof. The proof is by so-called Aubin-Nitsche trick. We first pose a dual problem: find ψ ∈ V
such that

a(w,ψ) = (w, e)L2(Ω) ∀w ∈ V

for e ≡ u− uh. We then observe that

‖e‖2L2(Ω) = a(e, ψ) = a(e, ψ − Ihψ) ≤ γ‖e‖V‖ψ − Ihψ‖V .

We note that, since u ∈ H1(Ω) and uh ∈ H1(Ω), e ≡ u− uh ∈ V ⊂ H1(Ω) ⊂ L2(Ω); by the elliptic
regularity estimate, |ψ|H2(Ω) ≤ Creg‖e‖L2(Ω). We hence obtain

‖ψ − Ihψ‖V ≤ CV-H1(Ω)‖ψ − Ihψ‖H1(Ω) (equivalence of ‖ · ‖V and ‖ · ‖H1(Ω))

≤ CV-H1(Ω)CIh|ψ|H2(Th) (interpolation error bound)

≤ CV-H1(Ω)CICregh‖e‖L2(Ω). (elliptic regularity estimate)

It follows

‖e‖2L2(Ω) ≤ γCV-H1(Ω)CICregh‖e‖L2(Ω)‖e‖V .

The division by ‖e‖L2(Ω) yields the desired bound.

Proposition 6.16 (L2(Ω)-norm error bound: h convergence). Suppose Assumptions 6.2, 6.3,
and 6.4 as well as the conditions of the elliptic regularity estimate, Lemma 6.14, hold. If u ∈
H1(Ω) ∩Hs+1(Th), then

‖u− uh‖L2(Ω) ≤ Chr+1|u|Hr+1(Th)

for r ≡ min{s, p} and some C <∞ independent of u and h.

Proof. The result is a direct consequence of Propositions 6.15 and 6.12:

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖V (Aubin-Nitsche)

≤ C ′hr+1|u|Hr+1(Th). (h convergence in ‖ · ‖V)

The proposition shows that, if the solution is smooth in the sense u ∈ H1(Ω) ∩Hp+1(Th), then
the L2(Ω) norm of the error converges as hp+1 — the rate one higher than the H1(Ω) or V norm of
the error. In particular, we note that the L2(Ω) norm of the error in the linear (P1) finite element
approximations converge as h2; because the L2(Ω) norm is arguably the most popular metric for
the assessment of the error in engineering, the linear finite element method is often quoted as a
second-order method in the field.
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6.7 Error bounds for functional outputs

In this section we consider the error in an output or quantity of interest. To begin, we introduce a
linear functional associated with the output,

`o : V → R;

we assume that the functional is continuous in V: ∃c <∞ such that |`o(w)| ≤ c‖w‖V ∀w ∈ V.
In order to characterize output error, we first introduce the dual problem: find ψ ∈ V such that

a(w,ψ) = `o(w) ∀w ∈ V. (6.9)

The well-posedness of the dual problem follows from the Lax-Milgram theorem, Theorem 2.32, for
a V-coercive, V-continuous (but not necessarily symmetric) bilinear form a(·, ·), and V-continuous
linear form `o(·). The solution ψ ∈ V is called the dual solution or adjoint. (To contrast, the
variational problem (6.1) is sometimes called the primal problem and the solution u is called the
primal solution.)

Proposition 6.17 (output error bound (symmetric)). Suppose Assumptions (6.2) and (6.3) hold
for a symmetric bilinear form. Let `o : V → R be a continuous linear functional. Then,

|`o(u)− `o(uh)| ≤ inf
wh∈Vh

‖u− wh‖a inf
vh∈Vh

‖ψ − vh‖a,

where ψ is the solution to the dual problem 6.9.

Proof. We observe that, ∀vh ∈ Vh,

|`o(u)− `o(uh)| = |`o(u− uh)| (linearity of `o)

= |a(u− uh, ψ)| (definition of adjoint ψ)

= |a(u− uh, ψ − vh)| (Galerkin orthogonality)

≤ ‖u− uh‖a‖ψ − vh‖a (Cauchy-Schwarz)

≤ inf
wh∈Vh

‖u− wh‖a‖ψ − vh‖a. (energy-error optimality of uh)

We then take vh ∈ Vh to be the minimizer of ‖ψ − vh‖a to obtain the desired result.

Proposition 6.18 (output error bound (nonsymmetric)). Suppose Assumptions (6.2) and (6.3)
hold. Let `o : V → R be a continuous linear functional. Then,

|`o(u)− `o(uh)| ≤ γ2

α
inf

wh∈Vh
‖u− wh‖V inf

vh∈Vh
‖ψ − vh‖V ,

where ψ is the solution to the dual problem 6.9.

Proof. We observe that, ∀vh ∈ Vh,

|`o(u)− `o(uh)| = |`o(u− uh)| (linearity of `o)

= |a(u− uh, ψ)| (definition of adjoint ψ)

= |a(u− uh, ψ − vh)| (Galerkin orthogonality)

≤ γ‖u− uh‖V‖ψ − vh‖V (continuity of a(·, ·))

≤ γ2

α
inf

wh∈Vh
‖u− wh‖V‖ψ − vh‖V . (‖ · ‖V error bound of uh)

We then take vh ∈ Vh to be the minimizer of ‖ψ − vh‖V to obtain the desired result.
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Proposition 6.19 (output error bound: h convergence). Suppose Assumptions 6.2, 6.3, and 6.4
hold. Let `o : V → R be a continuous linear functional. If u ∈ H1(Ω) ∩ Hs+1(Th) and ψ ∈
H1(Ω) ∩Hs′+1(Th) for ψ the solution to the dual problem 6.9, then

|`o(u)− `o(uh)| ≤ Chr+r′ |u|Hr+1(Th)|ψ|Hr′+1(Th)

for r ≡ min{s, p}, r′ ≡ min{s′, p}, and some constant C <∞ independent of u, ψ, and h.

Proof. The result follows from (i) Proposition 6.18, (ii) the equivalence of ‖ · ‖V and ‖ · ‖H1(Ω), and
(iii) the polynomial interpolation error bound in Proposition 5.18.

The proposition shows that for a smooth solution u ∈ H1(Ω) ∩ Hp+1(Th) and adjoint ψ ∈
H1(Ω)∩Hp+1(Th), the output converges as h2p. The convergence rate for the output error is twice
that for the V or H1(Ω) norm of the error. This result is often referred to as output superconver-
gence. (The output superconverges because the finite element approximation is by construction dual
consistent : the dual of the discrete problem is the discretization of the continuous dual problem.
Not all discretizations for boundary value problems have this property.)

6.8 Generalization: other approximation spaces

Throughout this lecture, we presented two types of error bounds. First, under Assumptions 6.2
and 6.3, we obtained the (quasi-)optimality results that show the Galerkin finite element method
achieves errors that are only some fixed constant away from the best-fit solution in a given ap-
proximation space (e.g., Céa’s lemma, Lemma 6.11). Second, under Assumptions 6.2, 6.3, and 6.4,
we obtained the particular h-convergence results for Pp finite element approximation spaces. The
results of the first type, such as Céa’s lemma

‖u− un‖V ≤
γ

α
inf

wn∈Vn
‖u− wn‖V ,

applies to any (family of) finite-dimensional approximation spaces {Vn}n>1. The Galerkin finite
element method will find a quasi-optimal approximations {un}n>1 in any family of approximation
spaces {Vn}n>1.

We can derive various methods based on the Galerkin projection by choosing different approx-
imation spaces. The “standard” finite element method based on h refinement considers {Vh}h>0

defined by Assumption 6.4; if the exact solution is in H1(Ω) ∩Hp+1(Th), the V-norm of the error
converges as hp. The spectral method considers approximation spaces consist of high-order global
polynomials, Vp ≡ {v ∈ V | v ∈ Pp(Ω)}; if the exact solution is analytic, then the V-norm of
the error converges as exp(−Cp) for some C independent of p, achieving the so-called exponential
convergence. The hp adaptive finite element method constructs a sequence of piecewise polyno-
mial spaces of varying h and p tailored for the specific solution we wish to approximate. The
extended finite element method (XEFM) or generalized finite element method (GFEM) considers
a family of approximation spaces comprise specialized (non-polynomial) functions tailored for the
specific features (e.g., corner singularity). The reduced-basis method, a model reduction method for
parametrized PDEs, considers approximation spaces comprise specialized (non-polynomial) func-
tions tailored for the parametric manifold. All of these techniques rely on the Galerkin projection,
which identifies a quasi-optimal approximation in a given approximation space.
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6.9 Summary

We summarize key points of this lecture:

1. For a symmetric, coercive problem, the energy norm is given by ‖ · ‖a ≡
√
a(·, ·). The

finite element approximation is optimal in the energy norm in the sense that ‖u − uh‖a ≤
infwh∈Vh ‖u − wh‖a. If the solution is smooth, the energy norm of the error for the Pp finite
element approximation converges as hp.

2. Céa’s lemma shows that the finite element approximation is quasi-optimal in the V norm in
the sense that ‖u − uh‖V ≤ γ

α infwh∈Vh ‖u − wh‖V . If the solution is smooth, the V norm of
the error for the Pp finite element approximation converges as hp.

3. The error bounds for the H1(Ω) norm of the error is the same as that for the V norm of the
error up to a constant.

4. If the solution is smooth, then the L2(Ω) norm of the error for the Pp finite element approxi-
mation converges as hp+1. The result follows from the Aubin-Nitsche trick.

5. The error in a linear functional output is a (scaled) product of the error in the primal and
dual approximations. If both the primal and dual solutions are smooth, then the error in a
linear functional output superconverges as h2p.

6. For all of the above cases, if the solution is not smooth, then the converge rate may be limited
by the regularity of the solution.
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Lecture 7

Linear elasticity

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

7.1 Motivation

In this lecture we consider a weak formulation and the associated finite element approximation
of linear-elasticity problems. Linear elasticity equations are of both historical significance and
practical importance for finite element methods, as the methods were originally developed and are
still used to address problems in structural mechanics. The linear elasticity equations also allow
us to demonstrate the formulation and implementation of finite element methods for vector-valued
equations.

7.2 Vector- and matrix-valued Sobolev spaces

In (steady-state) linear elasticity, we seek a vector-valued displacement field in Ω ⊂ Rd that satisfies
the Navier-Cauchy equations. By way of preliminaries, we introduce vector- and matrix-valued
Sobolev spaces, which are required to describe the system of equations.

Definition 7.1 (Hk(Ω)d space). Given Ω ⊂ Rd and an integer k ≥ 0, a Hilbert space of vector-
valued functions Hk(Ω)d is endowed with an inner product

(w, v)Hk(Ω) ≡
d∑
i=1

(wi, vi)Hk(Ω),

and the associated induced norm ‖w‖Hk(Ω) ≡
√

(w,w)Hk(Ω); the space comprises functions

Hk(Ω)d ≡ {v | ‖v‖Hk(Ω) <∞}.

Here, vi denotes the i-th component of the vector-valued field for i = 1, . . . , d. In other words, for
v ∈ Hk(Ω)d, we have v : Ω → Rd and vi ∈ Hk(Ω), i = 1, . . . , d. For k = 0, the space is denoted
L2(Ω)d. (Note that for notational brevity, we abbreviate ‖ · ‖Hk(Ω)d as ‖ · ‖Hk(Ω).)
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Definition 7.2 (Hk(Ω)d×d space). Given Ω ⊂ Rd and an integer k ≥ 0, a Hilbert space of matrix-
valued functions Hk(Ω)d×d is endowed with an inner product

(w, v)Hk(Ω) ≡
d∑

i,j=1

(wij , vij)Hk(Ω)

and the associated induced norm ‖w‖Hk(Ω) ≡
√

(w,w)Hk(Ω); the space comprises functions

Hk(Ω)d×d ≡ {v | ‖v‖Hk(Ω) <∞}.
Here, vij denotes the (i, j)-th component of the matrix-valued field for i, j = 1, . . . , d. For k = 0,
the space is denoted L2(Ω)d×d.

Definition 7.3 (dot product (vector field)). Given w, v ∈ L2(Ω)d, the dot product v · w ∈ L1(Ω)
such that

v · w =
d∑
i=1

viwi.

Definition 7.4 (dot product (matrix field)). Given w, v ∈ L2(Ω)d, the dot product v : w ∈ L1(Ω)
such that

v : w =
d∑

i,j=1

vijwij .

Definition 7.5 (gradient of H1(Ω)d functions). For v ∈ H1(Ω)d, the gradient ∇v ∈ L2(Ω)d×d is a
matrix-valued field such that

(∇v)ij =
∂vi
∂xj

, i, j = 1, . . . , d.

Corollary 7.6. For v ∈ H1(Ω)2, the gradient ∇v ∈ L2(Ω)2×2 is given by

∇v =

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)
.

Definition 7.7 (divergence of H1(Ω)d functions). For v ∈ H1(Ω)d, the divergence ∇ · v ∈ L2(Ω)
is a scalar-valued field such that

∇ · v =

d∑
i=1

∂vi
∂xi

.

Corollary 7.8. For v ∈ H1(Ω)2, the divergence ∇ · v ∈ L2(Ω) is given by

∇ · v =
∂v1

∂x1
+
∂v2

∂x2
.

Definition 7.9 (divergence of H1(Ω)d×d functions). For σ ∈ H1(Ω)d×d, the divergence ∇ · σ ∈
L2(Ω)d is a vector-valued field such that

(∇ · σ)i =

d∑
i=1

∂σij
∂xj

, i = 1, . . . , d.

Corollary 7.10. For σ ∈ H1(Ω)2×2, the divergence ∇ · σ ∈ L2(Ω)2 is given by

∇ · σ =

(
∂σ11
∂x1

+ ∂σ12
∂x2

∂σ21
∂x1

+ ∂σ22
∂x2

)
.
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7.3 Variational formulation

We now formulate the linear elasticity problem. Let Ω ⊂ Rd be a Lipschitz domain. We partition the
boundary ∂Ω into a Dirichlet boundary ΓD and a Neumann boundary ΓN such that ΓD ∩ ΓN = ∅
and ∂Ω = Γ̄D ∪ Γ̄N . We assume that the Dirichlet boundary is non-empty: ΓD 6= ∅. Given a
displacement field v ∈ H1(Ω)d, we introduce the strain tensor (field) ε(v) ∈ L2(Ω)d×d such that

ε(v) =
1

2
(∇v +∇vT ).

We next introduce the associated stress tensor (field). For an isotropic material, the stress field
σ(v) ∈ L2(Ω)d×d is given by

σ(v) = 2µε(v) + λtr(ε(v))I,

where λ ∈ L∞(Ω) and µ ∈ L∞(Ω) are the first and second Lamé parameters (fields), respectively,
such that

0 ≤ λ(x) < λmax <∞ a.e. in Ω,

0 < µmin ≤ µ(x) ≤ µmax <∞ a.e. in Ω,

and tr(A) ≡
∑d

i=1Aii is the trace operator for any A ∈ L2(Ω)d×d. We now introduce the strong
form of the linear elasticity problem: find u such that

−∇ · σ(u) = f in Ω

u = uB on ΓD,

n · σ(u) = g on ΓN ,

where f : Ω → Rd is the body force field and g : ΓN → Rd is the traction force field. The first
equation represents the force-equilibrium condition in the material. The second equation represents
the prescribed displacement boundary condition. The third equation represents the traction (i.e.,
prescribed force) boundary condition.

We now derive a weak formulation of the linear elasticity problem. To this end, we first introduce
a Hilbert space

V ≡ {v ∈ H1(Ω)d | v|ΓD = 0} (7.1)

and an affine space

VE ≡ uE + V,

where uE is any function in H1(Ω)d such that uE |ΓD = uB. We recall that Dirichlet boundary
conditions are essential boundary conditions that must be enforced explicitly through the choice
of the space. While we here assume that the Dirichlet boundary condition is imposed on all d
components on ΓD for notational brevity, we can readily handle cases where a Dirichlet condition
is imposed on some of the d components; this case arises, for instance, if a boundary is constrained
from moving in the normal direction but can slide along the tangential directions.
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We next take an arbitrary test function v ∈ V, multiply the governing equation by v, integrate
by parts, and make appropriate substitutions for the natural boundary conditions to obtain

0 =

∫
Ω
v · (−∇ · σ(u))dx−

∫
Ω
v · fdx

=

∫
Ω
∇v : σ(u)dx−

∫
ΓD

v · (n · σ(u))ds︸ ︷︷ ︸
=0 : Dirichlet BC

−
∫

ΓN

v · (n · σ(u))︸ ︷︷ ︸
g : Neumann BC

ds−
∫

Ω
v · fdx

=

∫
Ω
∇v : σ(u)dx−

∫
ΓN

v · gds−
∫

Ω
v · fdx.

We can further simplify the term involving the integration over Ω. We first recall that σ(u) =
2µε(u) + λtr(ε(u))I. We next note that, because ε(u) is symmetric, ∇v : ε(u) = ε(v) : ε(u). We
then note that, because ε(·) preserves the diagonal terms, ∇v : I = tr(∇v) = tr(ε(v)). It hence
follows that

∇v : σ(u) = ∇v : (2µε(u) + λtr(ε(u))I) = 2µε(v) : ε(u) + λtr(ε(v))tr(ε(u)).

Our weak formulation is as follows: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V, (7.2)

where

a(w, v) ≡
∫

Ω
(2µε(v) : ε(w) + λtr(ε(v))tr(ε(w)))dx ∀w, v ∈ V, (7.3)

`(v) ≡
∫

Ω
v · fdx+

∫
ΓN

v · gds ∀v ∈ V; (7.4)

we assume f ∈ L2(Ω)d and g ∈ L2(ΓN )d. (These requirements can be relaxed to f ∈ H−1(Ω)d

and g ∈ H−1/2(ΓN )d.) We also note that the bilinear form is symmetric. In addition, noting that
tr(ε(v)) = ∇ · v, we could obtain an alternative bilinear form:

a(w, v) =

∫
Ω

(2µε(v) : ε(w) + λ(∇ · v)(∇ · w))dx ∀w, v ∈ V; (7.5)

this form emphasizes that the divergence of the displacement field is penalized by the first Lamé
parameter λ.

As we will see shortly, the bilinear form (7.3) (or (7.5)) is coercive and symmetric. Hence, we
may also consider the minimization formulation. Let J : V → R such that

J(v) ≡ 1

2
a(v, v)− `(v) ∀v ∈ V. (7.6)

Our minimization formulation is as follows: find u ∈ V such that

u = arg min
w∈V

J(w).
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7.4 Well-posedness

We now wish to understand if a solution to the variational problem (7.2) exists and, if so, is
unique. To this end, we verify the conditions of the Lax-Milgram theorem, and in particular the
V-coercivity of the bilinear form (7.3). (The continuity of the bilinear and linear forms are relatively
straightforward to prove.)

The challenge in proving the coercivity of the bilinear form (7.3) lies in the fact that our strain
operator ε : H1(Ω)d → L2(Ω)d×d has a non-trivial kernel. For instance, in R2, we can readily show
that

ε(v) = 0 ∀v ∈ VRM,

where

VRM ≡
{
v | v =

(
a1

a2

)
+ b

(
−x2

x1

)
, a1, a2, b ∈ R

}
is the space of infinitesimal rigid-body motion. In other words, we obtain zero strain for any
displacement that is (i) rigid-body translation (described by a1 and a2) or (ii) (infinitesimal) rigid-
body rotation (described by b). This is consistent with our physical interpretation of strain; rigid-
body motion does not cause strain (or stress) in the material. This result for the linear elasticity
equations can be contrasted to the result for Poisson’s equation, where the kernel comprises only
constant functions and the Poincaré-Friedrich’s inequality was used to prove coercivity. The analysis
of coercivity of the linear elasticity problem, which include also (infinitesimal) rigid-body rotation,
requires the Korn’s inequality.

Theorem 7.11 (Korn’s inequality). Let V ≡ {v ∈ H1(Ω)d | v|ΓD = 0} with ΓD 6= ∅. There exists
CKorn > 0 such that

‖ε(v)‖L2(Ω) ≥ CKorn‖v‖H1(Ω) ∀v ∈ V.

Proof. Proof is beyond the scope of this course. We refer to Brenner and Scott (2008).

We now show that the bilinear from (7.3) is coercive and continuous in V, the linear form (7.4)
is continuous in V, and hence the solution to the weak problem (7.2) exists and is unique.

Proposition 7.12. The bilinear form (7.3) associated with the linear elasticity problem is sym-
metric, coercive, and continuous in V given by (7.1).

Proof. The symmetry of a(·, ·) is obvious from inspection. The coercivity of a(·, ·) is a consequence
of the Korn’s inequality: for any v ∈ V

a(v, v) = 2

∫
Ω
µε(v) : ε(v)dx+

∫
Ω
λtr(ε(v))2dx ≥ 2µmin‖ε(v)‖L2(Ω) ≥ 2µminCKorn‖v‖H1(Ω).

Hence a(·, ·) is coercive with the coercivity constant α ≥ 2µminCKorn > 0. To show continuity we
observe, ∀w, v ∈ H1(Ω)d,

|a(w, v)| = 2

∫
Ω
µε(v) : ε(w)dx+

∫
Ω
λtr(ε(v))tr(ε(w))dx

≤ 2µmax‖ε(v)‖L2(Ω)‖ε(w)‖L2(Ω) + λmax‖tr(ε(v))‖L2(Ω)‖tr(ε(w)‖
≤ (2µmax + λmax)‖ε(v)‖L2(Ω)‖ε(w)‖L2(Ω)

≤ (2µmax + λmax)‖v‖H1(Ω)‖w‖H1(Ω);
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here the last inequality follows from ‖ε(v)‖L2(Ω) ≤ ‖v‖H1(Ω) because for any i and j,(
1

2

(
∂vi
∂xj

+
∂vj
∂xi

))2

=
1

4

((
∂vi
∂xj

)2

+

(
∂vj
∂xi

)2

+ 2
∂vi
∂xj

∂vj
∂xi

)
≤ 1

2

((
∂vi
∂xj

)2

+

(
∂vj
∂xi

)2
)
,

where no sum is implied on the repeated indices. Hence a(·, ·) is continuous with the continuity
constant γ ≤ 2µmax + λmax <∞.

Proposition 7.13. If f ∈ L2(Ω)d and g ∈ L2(ΓN )d, then the linear form (7.4) associated with the
linear elasticity problem is continuous in V given by (7.1).

Proof. We observe

|`(v)| =
∣∣∣∣∫

Ω
v · fdx+

∫
ΓN

v · gds
∣∣∣∣

≤ ‖v‖L2(Ω)‖f‖L2(Ω) + ‖v‖L2(ΓN )‖g‖L2(ΓN )

≤ ‖v‖H1(Ω)‖f‖L2(Ω) + Ctr‖v‖H1(Ω)‖g‖L2(ΓN )

≤ (‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ))‖v‖H1(Ω).

Hence `(·) is continuous with a continuity constant c ≤ ‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ) <∞.

Proposition 7.14. The solution to the elasticity problem (7.2) exists and is unique.

Proof. By Propositions 7.12 and 7.13, the bilinear form (7.3) is coercive and continuous in V, and
the linear form (7.4) is continuous in V. The existence and uniqueness of the solution follows from
the Lax-Milgram theorem.

7.5 Finite element method: formulation

To seek a finite element approximation, we introduced a vector-valued finite element space

Vh ≡ {v ∈ V | v|K ⊕ GK ∈ Pp(K̃)d, ∀K ∈ Th},

where GK : K̃ → K is the geometry mapping (for potentially curved domains) and Pp(K)d is
the space of vector-valued polynomials of degree p over K. We then consider the following finite
element problem: find uh ∈ Vh such that

a(uh, v) = `(v) ∀v ∈ Vh (7.7)

for the bilinear form (7.3) and the linear form (7.4). Because the bilinear form is coercive and
continuous in Vh ⊂ V and the linear form in continuous in Vh ⊂ V, the finite element problem has
a unique solution by the Lax-Milgram theorem. In addition, we may consider the minimization
formulation: find uh ∈ Vh such that

uh = arg min
wh∈Vh

J(wh),

where J : V → R is the functional defined in (7.6).
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7.6 Finite element method: analysis

We can also readily analyze the error in the finite element approximation using the tools introduced
in Lecture 6. Note in particular the linear elasticity problem (7.2) and the associated finite element
problem (7.7) satisfy all the conditions of the Assumptions 6.2 and 6.3; in addition the bilinear
form is symmetric.

To begin, we introduce the energy norm ‖ · ‖a ≡
√
a(·, ·); the energy norm of a displacement

field for the linear elasticity problem is the total strain energy associated with the displacement
field. We immediately obtain the optimality result in the energy norm: if u ∈ V ∩Hs+1(Th)d, then

‖u− uh‖a = inf
wh∈Vh

‖u− wh‖a ≤ Chr|u|Hr+1(Th)

for r ≡ min{s, p} and some C <∞ independent of u and h. (As discussed in Lecture 6, the result
of the first type holds for any Vh ⊂ V, whereas the result of the second type is specific to the
Pp finite element approximation space.) We also obtain a similar result in H1(Ω) using the Céa’s
lemma: if u ∈ V ∩Hs+1(Th)d, then

‖u− uh‖H1(Ω) ≤
√
γ

α
inf

wh∈Vh
‖u− wh‖H1(Ω) ≤ Chr|u|Hr+1(Th)

for r ≡ min{s, p} and some C <∞ independent of u and h. It can also be shown that the elliptic
regularity estimate holds for sufficiently regular domain and Lamé parameter fields, and hence the
L2 error can be analyzed using the Aubin-Nitsche trick: if u ∈ V ∩Hs+1(Th)d, then

‖u− uh‖L2(Ω) ≤ Chr+1|u|Hr+1(Th)

for r ≡ min{s, p} and some C <∞ independent of u and h. Finally, for a linear functional output
`o(u), we obtain the output superconvergence result: if u ∈ V ∩Hs+1(Th)d and ψ ∈ V ∩Hs′+1(Th),
then

|`o(u)− `o(uh)| ≤ inf
wh∈Vh

‖u− wh‖a inf
vh∈Vh

‖ψ − vh‖a ≤ Chr+r
′ |u|Hr+1(Th)|ψ|Hr′+1(Th)

for r = min{s, p}, r′ = min{s′, p}, and some C < ∞ independent of u, ψ, and h. Here ψ ∈ V is
the adjoint associated with the output functional `o(·): a(w,ψ) = `o(w) ∀w ∈ V. One particular
output that is often of interest is the compliance output, which results from `o ≡ ` in (7.4). For the
compliance output, ψ = u and hence, if u ∈ V ∩Hs+1(Th)d,

|`(u)− `(uh)| ≤ inf
wh∈Vh

‖u− wh‖2a ≤ Ch2r|u|2Hr+1(Th),

for r = min{s, p} and some C <∞ independent of u and h.

7.7 Finite element method: implementation

We now discuss the implementation of finite element method. To this end, we introduce the space

H1
h(Ω) ≡ {v ∈ H1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th}
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without any essential boundary conditions. We then introduce the associated Lagrange basis
{φk}mk=1. Note that the space (and the basis) are not vector-valued. Then, given a vector-valued
function v ∈ H1

h(Ω)d, we express its i-th component as

vi(x) = v̂ikφk(x) ∀x ∈ Ω, i = 1, . . . , d,

for some v̂ ∈ Rm×d, with an implied sum on the repeated indices k. (The sum on repeated indices
will be implied throughout this section unless stated otherwise.) Note that we have d ·m coefficients
because we must represent d different fields, each of which using m coefficients.

We now wish to identify the local stiffness matrix associated with an element K ∈ Th. To this
end, we first rearrange the bilinear form (7.5) into a form more amenable to implementation:

a(w, v) =

∫
Ω

(
1

2
µ(∇v +∇vT ) : (∇w +∇wT ) + λ(∇ · v)(∇ · w))dx

=

∫
Ω

(µ∇v : ∇w + µ∇v : ∇wT + λ(∇ · v)(∇ · w))dx;

here we have used the fact that ∇vT : ∇w = ∇v : ∇wT , ∇vT : ∇wT = ∇v : ∇w. We now evaluate
the form for vi|K = v̂Kiαφ

K
α and wj |K = ŵKjβφ

K
β to obtain

a(w|K , v|K)

=

∫
K

(µ
∂vi
∂xj

∂wi
∂xj

+ µ
∂vi
∂xj

∂wj
∂xi

+ λ
∂vi
∂xi

∂vj
∂xj

)dx

=

∫
K

(µv̂Kiα
∂φKα
∂xj

∂φKβ
∂xj

ŵKiβ + µv̂Kiα
∂φKα
∂xj

∂φKβ
∂xi

ŵKjβ + λv̂Kiα
∂φKα
∂xi

∂φKβ
∂xj

ŵKjβ)dx

= v̂Kiα

(∫
K
µ
∂φKα
∂xj

∂φKβ
∂xj

dx

)
ŵKiβ + v̂Kiα

(∫
K
µ
∂φKα
∂xj

∂φKβ
∂xi

dx

)
ŵKjβ + v̂Kiα

(∫
K
λ
∂φKα
∂xi

∂φKβ
∂xj

dx

)
ŵKjβ.

We recognize that the first term can be rearranged using a dummy index and Kronecker delta to
obtain

a(w|K , v|K) = v̂iαÂ
K
iαjβŵjβ,

where the local stiffness matrix ÂK ∈ R(d·ns)×(d·ns) is given by

ÂKiαjβ =

(
d∑

k=1

∫
K
µ
∂φα
∂xk

∂φβ
∂xk

dx

)
δij +

∫
K
µ
∂φα
∂xj

∂φβ
∂xi

dx+

∫
K
λ
∂φα
∂xi

∂φβ
∂xj

dx.

It is convenient to think of the local stiffness matrix as a d×d block matrix; for instance, for d = 2,

ÂK =

(
ÂK1,:,1,: ÂK1,:,2,:
ÂK2,:,1,: ÂK2,:,2,:

)
,
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where matrices ÂKi,:,j,: ∈ Rns×ns , i, j = 1, 2, are given by

ÂK1,α,1,β =
d∑

k=1

∫
K
µ
∂φα
∂xk

∂φβ
∂xk

dx+

∫
K
µ
∂φα
∂x1

∂φβ
∂x1

dx+

∫
K
λ
∂φα
∂x1

∂φβ
∂x1

dx,

ÂK1,α,2,β =

∫
K
µ
∂φα
∂x2

∂φβ
∂x1

dx+

∫
K
λ
∂φα
∂x1

∂φβ
∂x2

dx,

ÂK2,α,1,β =

∫
K
µ
∂φα
∂x1

∂φβ
∂x2

dx+

∫
K
λ
∂φα
∂x2

∂φβ
∂x1

dx,

ÂK2,α,2,β =

d∑
k=1

∫
K
µ
∂φα
∂xk

∂φβ
∂xk

dx+

∫
K
µ
∂φα
∂x2

∂φβ
∂x2

dx+

∫
K
λ
∂φα
∂x2

∂φβ
∂x2

dx.

In this format, the pair of indices for the test function, (i, α) ∈ [1, d]× [1, ns], is mapped to a linear
index i ·ns +α ∈ [1, d ·ns]; similarly the pair of indices for the trial function, (j, β) ∈ [1, d]× [1, ns],
is mapped to a linear index j · ns + β ∈ [1, d · ns].

Similarly, we can readily compute the local load vector. For vi|K = v̂Kiαφ
K
α ,

`(v|K) =

∫
K
vifidx+

∫
ΓN∩∂K

vigids = v̂iα

∫
K
φKα fidx+ v̂iα

∫
ΓN∩∂K

φKα gids.

We find that
`(v|K) = v̂iαf̂

K
iα

where the local load vector f̂K ∈ R(d·ns) is given by

f̂Kiα =

∫
K
φKα fidx+

∫
ΓN∩∂K

φKα gids.

It is again convenient to think of the local stiffness matrix as a d block vector; for instance, for
d = 2,

f̂K =

(
f̂K1,:
f̂K2,:

)
,

where f̂Ki,: ∈ Rns , i = 1, 2, are given by

f̂K1α =

∫
K
φKα f1dx+

∫
ΓN∩∂K

φKα g1ds,

f̂K2α =

∫
K
φKα f2dx+

∫
ΓN∩∂K

φKα g2ds.

A pair of indices for the test function, (i, α) ∈ [1, d]× [1, ns], is mapped to a linear index i ·ns+α ∈
[1, d ·ns]. (In practice, the boundary term can be computed using the assembly technique for facet
terms discussed in Section 4.6.3.)

We finally assemble the local stiffness matrices and load vectors to form a global stiffness matrix
and load vector, respectively. To form the global stiffness matrix Âh ∈ R(d·m)×(d·m), we successively
insert the local stiffness matrices ÂKkh ∈ R(d·ns)×(d·ns) for k = 1, . . . , ne according to

Âh,(ia)(jb) ← Âh,(ia)(jb) + ÂKk(iα)(jβ),
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where a = θK-n(k, α) and b = θK-n(k, β) for θK-n(·, ·) the element-to-node mapping (i.e., connec-
tivity). Similar to the local index, in practice the pairs of global indices (i, a) ∈ [1, d]× [1,m] and
(j, b) ∈ [1, d] × [1,m] are mapped to linear global indices i ·m + a and j ·m + b, respectively. To
form the global load vector f̂h ∈ R(d·m), we successively insert the local load vectors f̂Kkh ∈ R(d·ns)

for k = 1, . . . , ne according to
f̂h,(ia) ← f̂h,(ia) + f̂Kk(iα),

where a = θK-n(k, α); again, the global indices (i, a) ∈ [1, d] × [1,m] are mapped to linear global
indices i ·m+ a. We finally impose the essential (i.e. Dirichlet) boundary conditions following the
procedure discussed in Section 4.7; we remove the rows and columns of Âh (and the columns of f̂h)
associated with the degrees of freedom fixed by the essential boundary conditions. We then solve
the linear system Âhûh = f̂h to obtain the coefficients ûh ∈ R(d·n) associated with the displacement
field (for non-Dirichlet nodes).

7.8 Nearly incompressible materials and locking for the P1 space

As analyzed in Section 7.6, the Galerkin finite element approximation provides a quasi-optimal
approximation in Vh ⊂ V for fixed Lamé parameters λ and µ. However, the performance of the P1

finite element method deteriorates as λ → ∞; this phenomenon is known as locking. To observe
the problem, we first recall the minimization problem: find u ∈ V such that

u = arg min
w∈V

(
1

2

∫
Ω

(2µε(w) : ε(w) + λ(∇ · w)2)dx−
∫

Ω
wfdx−

∫
ΓN

wgds

)
.

In the incompressible limit of λ→∞, the minimization problem becomes

u = arg min
w∈V
∇·w=0

(
1

2

∫
Ω

2µε(w) : ε(w)dx−
∫

Ω
wfdx−

∫
ΓN

wgds

)
; (7.8)

we observe that the solution must lie in the divergence-free space {v ∈ H1(Ω)d | ∇ · v = 0}
because the penalty on the divergence λ goes to ∞. However, for the P1 approximation space
Vh = {v ∈ H1(Ω)d | v|K ∈ P1(K)d, ∀K ∈ Th ; v|ΓD = 0} with the essential boundary condition,
we can show

{v ∈ Vh | ∇ · v = 0} = ∅.

Because there is no nontrivial admissible member in the approximation space, the P1 finite element
method does not converge in the incompressible limit. For λ finite but large (i.e., a nearly incom-
pressible material), the quality of the P1 finite element approximation also deteriorates. Hence,
for nearly incompressible materials, we must use either Pp>1 finite elements or more exotic finite
elements designed for divergence-free spaces.

(Note, the minimization equation for the incompressible limit, (7.8), is in fact also the equation
governing the velocity field associated with incompressible Stokes flow, i.e., very viscous incompress-
ible flow in the limit of vanishing inertia. The governing equation can be recast using a Lagrange
multiplier — which is the pressure — as a saddle-point system. The solution to the saddle-point
system can be approximated in appropriate finite element spaces; however, the approximation
spaces for the velocity and pressure must be chosen to satisfy a stability condition known as the
Brezzi-Babuška inf-sup condition.)
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7.9 Summary

We summarize key points of this lecture:

1. Steady-state linear elasticity problems in Rd are governed by the Navier-Cauchy equations,
which is a vector-valued equations with d components.

2. The weak formulation of the linear elasticity equations is cast in the space V such that
H1

0 (Ω)d ⊂ V ⊂ H1(Ω)d and yields a symmetric, coercive, and continuous bilinear form and a
continuous linear form. In particular, the coercivity in V follows from the Korn’s inequality
assuming the Dirichlet boundary is nonempty to prevent rigid-body motions. The weak
formulation is well-posed thanks to the Lax-Milgram theorem.

3. For any subspace Vh ⊂ V, the finite element approximation is well-posed thanks to the Lax-
Milgram theorem.

4. The (quasi-)optimality of the Galerkin finite element approximations follows from the sym-
metry, coercivity, and continuity of the problem. For a smooth solution (and adjoint), the
error converges as hp in the energy norm and H1(Ω) norm, hp+1 in the L2(Ω) norm, and
h2p for outputs, including the compliance output. If the solution is not smooth, then the
convergence rate may be limited by the regularity of the solution.

5. The implementation of a finite element solver for linear elasticity equations requires the
extension of the implementation techniques developed in Lecture 4 to the system of equations.
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Lecture 8

Adaptive finite element method

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

8.1 Motivation

We have so far considered finite element approximations where the triangulation and the associ-
ated approximation space are chosen a priori by the user. In this lecture we consider adaptive
finite element methods, where a sequence of approximation spaces is constructed intelligently and
automatically based on the solution behavior until a user-specified error tolerance is met (or the
computational resource is exhausted). Adaptive finite element methods build on two key technical
ingredients: the first is an a posteriori error estimation technique which allows the method to esti-
mate, and also localize, the error in a given finite element approximation; the second is an adaptive
mesh refinement strategy that refines appropriate elements based on the behavior of the (localized)
error estimates.

8.2 Problem statement

Throughout this lecture we consider a general weak formulation of a PDE. To this end, we introduce
a Lipschitz domain Ω ⊂ Rd, a Hilbert space V such that H1

0 (Ω) ⊂ V ⊂ H1(Ω), an associated affine
space VE = uE + V where uE ∈ H1(Ω) satisfies the essential boundary conditions, a bilinear form
a : H1(Ω)×H1(Ω)→ R, a linear form ` : H1(Ω)→ R, and an output functional `o : H1(Ω)→ R.
We assume that a(·, ·) is coercive and continuous in V, and `(·) and `o(·) are continuous in V. We
then consider the following weak statement: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V, (8.1)

then evaluate the output
s = `o(µ).

By the Lax-Milgram theorem, the solution to (8.1) exists and is unique. (We may also readily
consider problems with a vector-valued solution field.)

We now consider a finite element approximation of (8.1). To this end, we introduce an approx-
imation space

Vh ≡ {v ∈ V | v|K ∈ Pp(K), ∀K ∈ Th},
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where Th is a triangulation of Ω. (We may also readily consider isoparametric elements for curved
domains.) Our finite element approximation is as follows: find uh ∈ Vh such that

a(uh, v) = `(v) ∀v ∈ Vh, (8.2)

and evaluate the output

sh = `o(uh).

The well-posedness of the problem follows from the coercivity and continuity of the bilinear form
in Vh ⊂ V, the continuity of the linear form in Vh ⊂ V, and the Lax-Milgram theorem.

Our goal in a posteriori error estimation is to provide a computable estimate of the error in the
field ‖u−uh‖V (or output |`o(u)−`o(uh)| for some functional `o ∈ V ′). Our goal in mesh adaptation
is to identify a sequence of triangulations {Th}h>0 that controls the error more efficiently than (say)
uniform refinement.

8.3 Residual-based error estimate

8.3.1 Abstract formulation

By way of preliminaries, we consider an abstract form of error bounds and identify the key ingredi-
ents of an error bound. We first introduce the residual associated with a solution uh ∈ Vh: r ∈ V ′
such that

r(v) ≡ `(v)− a(uh, v) ∀v ∈ V.

The residual is related to the error e ≡ u− uh by

a(e, v) = a(u, v)− a(uh, v) = `(v)− a(uh, v) = r(v) ∀v ∈ V.

We now appeal to (i) the coercivity of the bilinear form, (ii) the error-residual relationship, and
(iii) the definition of the dual norm to obtain

α‖e‖2V ≤ a(e, e) = r(e) ≤ ‖r‖V ′‖e‖V ,

or

‖e‖V ≤
1

α
‖r‖V ′ . (8.3)

We identify the two ingredients of our error bound: (1) the coercivity constant α = infv∈V
a(v,v)
‖v‖2V

; (2)

the dual norm of the residual ‖r‖V ′ ≡ supv∈V
r(v)
‖v‖V . We discuss in the next sections computational

approximation of these quantities.

8.3.2 Coercivity constant

We now consider the approximation of the first key ingredient of the error bound (8.3): the coer-
civity constant. We recall that the coercivity constant is given by

α = inf
v∈V

a(v, v)

‖v‖2V
, (8.4)
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which may be interpreted as the lower bound of the Rayleigh quotient associated with a(·, ·) and
(·, ·)V . The lower bound of the Rayleigh quotient is associated with the lower bound of the eigen-
values of the following eigenproblem: find (uk, λk) ∈ V × R, k ∈ N, such that

1

2
a(uk, v) +

1

2
a(v, uk) = λk(uk, v)V ∀v ∈ V; (8.5)

without loss of generality, we order the eigenvalues such that λ1 ≤ λ2 ≤ . . . and identify the coer-
civity constant α = infk λk. (Here we do not assume a(·, ·) to be symmetric; the symmetrized
eigenproblem (8.5) can be readily obtained as stationary points of the Lagrangian L(w, µ) =
a(w,w)− µ((w,w)V − 1) associated with (8.4).)

The solution to the coercivity eigenproblem (8.5) cannot be found in a closed form for a general
a(·, ·). We can however consider the following finite-dimensional approximation of the coercivity
constant in Vh ⊂ V:

αh ≡ inf
v∈Vh

a(v, v)

‖v‖2V
. (8.6)

The associated finite-dimensional eigenproblem is as follows: find (uh,k, λh,k) ∈ Vh×R, k = 1, . . . , n,
such that

1

2
a(uh,k, v) +

1

2
a(v, uh,k) = λh,k(uh,k, v)V ∀v ∈ Vh;

again, without loss of generality, we order the eigenvalues such that λh,1 ≤ · · · ≤ λh,n and identify
the approximate coercivity constant αh = infk λh,k = λh,1. The matrix form of the eigenproblem is
as follows: find (ûh,k, λh,k) ∈ Rn × R, k = 1, . . . , n, such that

1

2
(Âh + ÂTh )ûh,k = λh,kV̂hûh,k in Rn,

where Âh ∈ Rn×n is the stiffness matrix given by Âh,ij = a(φj , φi), and V̂h ∈ Rn×n is the in-

ner product matrix given by V̂h,ij = (φi, φj)V . The approximate coercivity constant αh in (8.6)
hence can be readily computed by solving the (finite-dimensional) eigenproblem using a (sparse)
eigenproblem solver.

Unfortunately, the approximate coercivity constant αh associated with Vh is an upper (and not
lower) bound of the coercivity constant α associated with V because

αh ≡ inf
vh∈Vh

a(vh, vh)

‖vh‖2V
≥ inf

v∈V

a(v, v)

‖v‖2V
≡ α.

As a result, if we replace the coercivity constant α in the error bound (8.3) by αh, then the
resulting statement is no longer an error bound but merely an error estimate. However, under mild
assumptions, it can also be shown that

|λ1 − λh,1| ≤ C inf
vh∈Vh

‖u1 − vh‖2V (8.7)

for some C <∞. Hence, if the eigenproblem is approximated in a Pp space and the eigenfunction
is in V ∩Hp+1(Th), then the eigenvalue superconverges as

|λ1 − λh,1| ≤ C̃h2p|u1|2Hp+1(Ω). (8.8)

It follows that, even for a fairly coarse approximation space, we obtain a reasonable estimate of the
minimum eigenvalue λ1 and hence the coercivity constant α. In this lecture, we use αh in place of
α, accept the loss of the bound property for the simplicity of the implementation, and justify the
choice by the convergence results in (8.7) and (8.8).
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8.3.3 Dual norm of the residual: advection-reaction-diffusion equation

We now consider the approximation of the second key ingredient of the error bound (8.3): the
dual norm of the residual. For simplicity, we consider the advection-reaction-diffusion equation
associated with the space V ≡ {v ∈ H1(Ω) | v|ΓD = 0} and

a(w, v) ≡
∫

Ω
(∇v · κ∇w + vb · ∇w + cwv)dx ∀w, v ∈ V,

`(v) ≡
∫

Ω
vfdx+

∫
ΓN

vgds ∀v ∈ V.

We first introduce the residual associated with elements and facets. The element residual RK ∈
L2(K), K ∈ Th, is given by

RK ≡ f +∇ · (κ∇uh)− b · ∇uh − cuh; (8.9)

note that RK is the residual associated with the strong form of the equation. To define the facet
residual, we first introduce a skelton of the triangulation Th, ∂Th = {F}, which comprises all facets
of the triangulation. The facet residual RF ∈ L2(F ) is then given by

RF ≡


1
2Jκ∇uhK, F ∈ ∂Th \ ∂Ω,

n · κ∇uh − g, F ∈ ΓN ,

0, F ∈ ΓD,

(8.10)

where the jump operator on F ∈ ∂Th \ ΓN is given by

JϕK(x) = lim
ε→0

(n+ · ϕ(x− εn+) + n− · ϕ(x− εn−)),

where n+ and n− are the outward-pointing unit normal vector from the two neighboring elements.
(Note that the jump operator is independent of the particular assignment of the two elements to
the “+” and “−” sides.) In short, the facet residual RF is the jump in the diffusive flux for the
internal facets and the misfit in the Neumann boundary condition for the facets on ΓN .

We also introduce two constants that are required to estimate the dual norm of the residual
‖r‖V ′ . The first constant is

ρK ≡ sup
v∈H1(K)

‖v − Ihv‖L2(K)

‖v‖V(K)
, (8.11)

where Ihv ∈ Vh is an interpolant of v ∈ V. The second constant is

ρ∂K ≡ sup
v∈H1(K)

‖v − Ihv‖L2(∂K)

‖v‖V(K)
. (8.12)

The analytical solutions to these maximimization problem can be found only in limited cases. We
can however estimate the constants by solving a finite-dimensional eigenproblems associated with
the Rayleigh quotients (as done for the coercivity constant in Section 8.3.2).
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We now bound the dual norm of the residual. To this end, we define Irhv ≡ v − Ihv and note

|r(v)| = |r(Irhv)|

=

∣∣∣∣∫
Ω

(Irhv)fdx+

∫
ΓN

(Irhv)gds−
∫

Ω
(∇(Irhv) · κ∇uh + (Irhv)b · ∇uh + (Irhv)cuh)dx

∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Th

(∫
K

(Irhv)(f +∇ · (κ∇uh)− b · ∇uh − cuh)dx

−
∫
∂K\∂Ω

(Irhv)
1

2
Jκ∇uhKds−

∫
∂K∩ΓN

(Irhv)(n · κ∇uh − g)ds−
∫
∂K∩ΓD

�
��
�*0

(Irhv)(n · κ∇uh)ds

)∣∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Th

(∫
K

(Irhv)RKdx−
∫
∂K

(Irhv)RFds

)∣∣∣∣∣∣
≤
∑
K∈Th

(
‖Irhv‖L2(K)‖RK‖L2(K) + ‖Irhv‖L2(∂K)‖RF ‖L2(∂K)

)
≤
∑
K∈Th

(
ρK‖RK‖L2(K) + ρ∂K‖RF ‖L2(∂K)

)︸ ︷︷ ︸
ηK

‖v‖V(K)

≤

∑
K∈Th

η2
K

1/2∑
K∈Th

‖v‖2V(K)

1/2

≤

∑
K∈Th

η2
K

1/2

‖v‖V

It hence follows that

‖r‖V ′ ≡ sup
v∈V

|r(v)|
‖v‖V

≤

∑
K∈Th

η2
K

1/2

≡ RTh ,

where

ηK ≡ ρK‖RK‖L2(K) + ρ∂K‖RF ‖L2(∂K) ∀K ∈ Th,

where RK , RF , ρK , and ρ∂K are defined by (8.9), (8.10), (8.11), and (8.12).

We make a few observations. First, if all quantities, and in particular ρK and ρ∂K , are computed
exactly, then RTh bounds ‖r‖V ′ from the above. Second, in practice, because ρK and ρ∂K are
estimated, RTh is not a bound but merely an estimate. Third, the element-wise quantities {ηK}K∈Th
can serve as elemental indicators with which we drive our mesh adaptation.

8.3.4 Output error estimate

In many engineering scenarios, our interest is in the prediction of a quantity of interest associated
with a functional. We now wish to construct an error estimate and an associated local error
indicator for the finite-element approximation of the output. To simplify the presentation, we
consider a continuous linear functional `o ∈ V ′ of the form

`o(w) ≡
∫

Ω
wfodx+

∫
ΓN

wgods ∀w ∈ V;
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the first and second terms constitute volume and surface contributions to the output, respectively.
We then introduce the adjoint problem: find ψ ∈ V such that

a(w,ψ) = `o(w) ∀w ∈ V.

The associated finite element approximation is as follows: find ψh ∈ Vh such that

a(w,ψh) = `o(w) ∀w ∈ Vh.

We also introduce the adjoint residual: radj ∈ V ′ such that

radj(w) ≡ `o(w)− a(w,ψh) ∀w ∈ V.

We now appeal to (i) the definition of the adjoint, (ii) the Galerkin orthogonality, and (iii) the
definition of the primal and adjoint residuals to obtain the following error bound: for e ≡ u − uh
and eadj ≡ ψ − ψh,

|`o(u)− `o(uh)| = |a(e, ψ)| = |a(e, ψ − ψh)| = |r(eadj)| ≤ ‖r‖V ′‖eadj‖V ≤
1

α
‖r‖V ′‖radj‖V ′ .

This is our output error bound. However, the bound in general is not actionable because α, ‖r‖V ′
and ‖radj‖V ′ are not computable; we must estimate these quantities.

We have already discussed the estimation of the coercivity constant α by αh in Section 8.3.2,
and the estimation of the dual norm of the residual ‖r‖V ′ in Section 8.3.3. Using a technique similar
to the one used in Section 8.3.3, we can also estimate the dual norm of the adjoint residual ‖radj‖V ′ .
To this end, we introduce the element adjoint residual

Radj
K = fo +∇ · (κT∇ψh) +∇ · (bψh)− cψh

and the facet adjoint residual

Radj
F ≡


1
2JκT∇ψh + bψhK, F ∈ ∂Th \ ∂Ω

n · (κT∇ψh + bψh)− go, F ∈ ΓN ,

0, F ∈ ΓD.

Our estimate for ‖r‖V ′ is then given by

‖radj‖V ′ ≤

∑
K∈Th

(ηadj
K )2

1/2

≡ Radj
Th ,

where

ηadj
K ≡ ρK‖Radj

K ‖L2(K) + ρ∂K‖Radj
F ‖L2(∂K) ∀K ∈ Th.

Finally, the local error indicator can be constructed by combining the primal and adjoint error
indicator

ηoK ≡ ηKη
adj
K ∀K ∈ Th.
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8.4 Extrapolation error estimate

8.4.1 Field error estimate

In this section we consider a simple but practical error estimate based on Richardson extrapolation.
To illustrate the idea, we introduce two triangulations Th and Th′ , where Th′ results from a uniform
refinement of Th in which the linear length of each element is reduced by a factor of two; i.e.,
h′ = h/2. We next introduce two Pp approximation spaces Vh and Vh′ associated with Th and Th′ ,
respectively. We then introduce Pp finite element approximations, uh ∈ Vh and uh′ ∈ Vh′ . We
assume that the error in each solution varies as

‖u− uh‖H1(Ω) ≈ Chr

‖u− uh′‖H1(Ω) ≈ C(h′)r = Chr2−r

for some constant C < ∞ and convergence rate r; we recall r = p if u ∈ Hp+1(Th), but r < p for
less regular solutions. To estimate the error in the refined solution uh′ ∈ Vh′ , we observe that

‖uh′ − uh‖H1(Ω) = ‖(u− uh)− (u− uh′)‖H1(Ω)

≥ ‖u− uh‖H1(Ω) − ‖u− uh′‖H1(Ω) (reverse triangle inequality)

≈ Chr(1− 2−r); (h convergence estimate)

in the last step, we plausibly assume ‖u− uh‖H1(Ω) > ‖u− uh′‖H1(Ω). It follows that

‖u− uh′‖H1(Ω) ≈ Chr2−r =
Chr2−r

Chr(1− 2−r)
Chr(1− 2−r) .

1

2r − 1
‖uh′ − uh‖H1(Ω).

Because ‖uh′ − uh‖H1(Ω) is computable, ‖uh′ − uh‖H1(Ω)/(2
r − 1) serves as a computable estimate

of the error ‖u− uh′‖H1(Ω).
We can also localize the extrapolation error estimate to drive an adaptive finite element method.

Our strategy is as follows: we adaptively refine the coarse mesh Th, but use the solution obtained
on the fine solution uh′ ∈ Vh′ as our current estimate of the solution (since presumably uh′ ∈ Vh′
is more accurate than uh ∈ Vh). To this end, we define the local error indicator for an element
K ∈ Th in the coarse mesh as

ηK ≡ ‖uh′ − uh‖H1(K).

In a practical implementation, it is convenient to first re-represent the solution uh ∈ Vh in the
refined space Vh′ — we can represent the solution exactly because Vh ⊂ Vh′ — and then evaluate
the integral in the refined space according to

η2
K =

∑
K′∈children(K)

‖uh′ − uh‖2H1(K′),

where children(K) ⊂ Th′ is a set of child elements in Th′ that belongs to the parent element K ∈ Th.
The local error indicator can then be used to mark elements with large errors to drive adaptive
mesh refinement.

We make a few comments about our adaptive finite element method based on the extrapolation
error estimate. First, it is a very simple procedure that builds directly on the two solutions rather
than (say) the residual, the formulation is not equation specific and the same formulation can be
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applied to any equations. Second, the procedure can be applied to any norms; for instance, the
L2(Ω) norm of the solution uh′ may be approximated by ‖u−uh′‖L2(Ω) . ‖uh′ −uh‖L2(Ω)/(2

r− 1),
where r = p + 1 if u ∈ Hp+1(Ω). Third, while the procedure requires two solutions — one coarse
and one fine —, the cost associated with the solution of the coarse problem is at least 2d times
smaller than the fine solution, where d is the dimensionality of the space, and in any event we use
the fine solution as our approximation. Fourth, a reliable and effective error estimate requires an
appropriate choice of the convergence rate r for the Richardson extrapolation; the overestimate
of the convergence rate results in an underestimation of the error and vice versa. Fifth, a (very)
conservative choice for r is to choose r = 1/2, which can provide a conservative but robust error
estimate.

8.4.2 Output error estimate

The extrapolation error estimate can also be applied to assess the output error |`o(u)− `o(uh′)| for
some functional `o. By way of preliminaries, we recall that the output error depends on both the
primal solution u ∈ V such that

a(u, v) = `(v) ∀v ∈ V,

and the dual solution ψ ∈ V such that

a(w,ψ) = `o(w) ∀w ∈ V.

Specifically, if u ∈ Hs′+1(Ω) and ψ ∈ Hs′′+1(Ω), then

|`o(u)− `o(uh)| ≤ γ2

α
inf

wh∈Vh
‖u− wh‖V inf

vh∈Vh
‖ψ − vh‖V ≤ Chr

′+r′′

for r′ = min{s′, p} and r′′ = min{s′′, p}. Hence, our extrapolation error estimate is given by

|`o(u)− `o(uh′)| .
1

2r − 1
|`o(uh′)− `o(uh)|,

where r = min{s′, p}+ min{s′′, p}.
We may also localize the output extrapolation error estimate to drive output-based or goal-

oriented adaptive mesh refinement. We note that the output error depends on both the primal and
dual solutions and define an output error indicator as

ηK ≡ ‖uh′ − uh‖H1(K)‖ψh′ − ψh‖H1(K).

Here, ψh ∈ Vh is the finite element approximation of the dual problem and satisfies

a(w,ψh) = `o(w) ∀w ∈ Vh;

the approximation ψh′ ∈ Vh′ is defined in an analogous manner. It is important to note that this
output error indicator marks elements that have a large primal and dual solution errors; if either
error is small, even if the other one is large, then the element is not marked for refinement.
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8.5 Adaptive mesh refinement

8.5.1 General procedure

Once we have a means to localize the error in the solution, we can drive mesh adaptivity. The
standard “loop” employed in an adaptive finite element method is

Solve → Estimate → Mark → Refine,

which is repeated until the desired error tolerance is met. We first provide a brief description of
each step for a general error estimation and error localization technique:

• Solve. This step solves the finite element problem on a given mesh to compute the finite
element solution uh.

• Estimate. This step estimates the solution error (say) ‖u−uh‖V using an a posteriori error
estimate. If the desired error tolerance is met, then the adaptation iteration is terminated.

• Mark. This step marks elements to be refined based on the local error estimates {ηK}K∈Th .
There are many different marking strategies; arguably the simplest strategy is the fixed-
fraction marking strategy, which marks a given fixed fraction (say 10%) of the elements with
the largest ηK for refinement. Elements can also be marked for coarsening, if the mesh
structure supports coarsening.

• Refine. This step refines the marked elements and modifies the mesh. There are many
different refinement strategies; arguably the simplest strategy is to isotropically subdivide
the element. For instance, a line is split into two lines, and a triangle is split into four
triangles. Additional refinements of unmarked neighbor elements may need to be performed
in Rd>1 if we wish to maintain a conforming mesh. (Some adaptive solvers support hanging
nodes, where two neighboring elements can have different levels of refinement, and a node can
“hang” in the middle of the shared facet.)

The steps are repeated until the desired error tolerance is met. The adaptive procedure yields a
sequence of triangulations {Th} and the associated approximation spaces {Vh} that are tailored for
the particular solution u.

8.5.2 Adaptation for extrapolation error estimate

We now outline the adaptation procedure to estimate and control the H1(Ω) norm of the error
using the extrapolation error estimate. Throughout the description, Vh and Vh′ are the Pp finite
element approximation spaces associated with Th and Th′ , respectively.

0. Prepare an initial coarse mesh T (1)
h . Set the iteration counter to i = 1.

1. Uniformly refine the mesh T (i)
h to obtain T (i)

h′ .

2. Solve for the finite element solutions u
(i)
h ∈ V

(i)
h and u

(i)
h′ ∈ V

(i)
h′ .

3. Re-represent the solution uh ∈ V
(i)
h in the refined space V(i)

h′ such that error estimate and local
error indicators can be computed as algebraic operations in the fine space.
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4. Estimate the error in the refined solution as ‖u− u(i)
h′ ‖H1(Ω) . ‖u

(i)
h′ − u

(i)
h ‖H1(Ω)/(2

r − 1). If
the target error tolerance is met, terminate.

5. Mark the top α% of elements with the largest error indicator ηK ≡ ‖uh′ − uh‖H1(K) for
refinement.

6. Refine marked elements.

7. Set i← i+ 1, and go to Step 1.

The procedure is repeated until the target error tolerance is met.
We make two remarks. First, the above procedure can be readily adopted to estimate and control

the error in a functional output by incorporating the output extrapolation error estimate described
in Section 8.4.2. Second, this simple procedure can yield a sequence of adapted meshes that can
significantly improve the efficiency of the finite element method in the presence of singularities and
singular perturbations as outlined in Sections 8.6.2 and 8.6.3.

8.6 Adaptive mesh refinement and singularity

8.6.1 Regularity of Poisson solutions in R2

To illustrate the importance of mesh adaptation, we first analyze the regularity of the solution to
a Poisson problem on a two-dimensional, pie-shaped domain with a corner

Ω ≡ {x = (r cos(θ), r sin(θ)) ∈ R2 | 0 ≤ r < 1 and 0 < θ < ω};

note that the corner angle is ω ∈ (0, π). We then consider a Poisson problem:

−∆u = 0 in Ω,

u(r, θ = 0) = u(r, θ = ω) = 0,

u(r = 1, θ) = sin(
πθ

ω
).

The solution to this Poisson problem is given by

u(r, θ) = r
π
ω sin(

πθ

ω
).

We can readily verify that this solution satisfies the PDE: we recall that

−∆u = −1

r

∂

∂r
(r
∂u

∂r
)− 1

r2

∂2u

∂θ2

and note that

1

r

∂

∂r
(r
∂u

∂r
) =

(π
ω

)2
r
π
ω
−2 sin(

πθ

ω
),

1

r2

∂2u

∂θ2
= −

(π
ω

)2
r
π
ω
−2 sin(

πθ

ω
),

which cancel each other to yield −∆u = 0. We also readily verify that the boundary conditions are
satisfied: u(r, θ = 0) = u(r, θ = ω) = 0 and u(r = 1, θ) = sin(πθ/ω). We now assess the regularity
of the solution for domains with various angles.
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• Quadrant (ω = π/2). We first consider the quadrant. The solution is given by u(r, θ) =
r2 sin(2θ). We readily observe that the L2(Ω) norm of the solution is finite. Through tedious
but straightforward manipulation, we can also show that the H1(Ω) semi-norm of the solution
is given by

|u|2H1(Ω) ≡
∫

Ω
∇u · ∇udx =

∫ ω

θ=0

∫ 1

r=0

((
∂u

∂r

)2

+

(
1

r

∂u

∂θ

)2
)
rdrdθ =

π

2
.

Similarly, the H2(Ω) semi-norm of the solution is given by |u|2H2(Ω) = π. It hence follows that

the solution is (at least) in H2(Ω).

• Crack (ω = 2π). We next consider a crack. The solution is given by u(r, θ) = r1/2 sin(θ/2).
We again readily confirm that both the L2(Ω) norm and the H1(Ω) semi-norm of the solution
are finite: in particular, |u|H1(Ω) = π/2; hence u ∈ H1(Ω). However, in this case, the H2(Ω)
norm of the solution is not finite; hence u 6∈ H2(Ω).

• General. In general, it can be shown that u ∈ Hs+1(Ω) if and only if s ∈ (0, π/ω).

We now assess the impact of the regularity on the convergence rate. As we have seen before, for
the piecewise Pp polynomial approximation space Vh associated with a uniform mesh of element
diameter h, the best-fit approximation error is bounded by

inf
wh∈Vh

‖u− wh‖H1(Ω) ≤ Chr|u|H1+r(Ω),

where r = min{p, s}. To provide a concrete example, consider the L-shaped domain: ω = 3π/2. In
this case, we have s < 2/3 and the convergence rate for the H1(Ω) error is 2/3 for any polynomial
approximation (p ≥ 1). We observe that the convergence rate is limited by the regularity of the
solution, and not the choice of the polynomial. We may hence conclude that the use of a higher-
degree polynomials is not beneficial. This is a true statement for uniform meshes; however, as we
will see shortly, the Pp>1 approximation can be effectively if we consider adaptive mesh refinement.

8.6.2 Singularity in R1

Adaptive mesh refinement in general can improve the convergence of the error (say) ‖u− uh‖H1(Ω)

with respect to the number of degrees of freedom n. (Note that, instead of the maximum element
diameter h ≡ maxK∈Th hK , we use the number of degrees of freedom n ≡ dim(Vh) as the indicator
of complexity, which is more suitable for non-uniform meshes.) To demonstrate the benefit, in this
section, we consider a canonical singular solution in R1,

u(x;α) = xα, x ∈ Ω ≡ (0, 1),

for some parameter α > 1/2. We recall from Section 8.6.1 this xα-type singularity is encountered
at corners of the domain in Rd=2. We can readily show that u(·;α) is in Hs(Ω) for α > s − 1/2,
but not for α = s− 1/2 for α /∈ Z.

We first consider the approximation of the singular solution in Pp approximation space asso-
ciated with uniform meshes for p ≥ α − 1/2. (In practice, α is often in (1/2, 1), and hence the
condition p ≥ α− 1/2 is satisfied even for p = 1.) We can show that the error converges as

‖u− uh‖H1(Ω) ≤ Chα−1/2 = Cn−α+1/2. (8.13)
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The convergence rate is limited the regularity of the solution. In particular, if u(x) = x1/2+ε

for ε small, then u ∈ H1(Ω) and the convergence rate is n−ε; we may observe an arbitrary slow
convergence regardless of the choice of the approximation degree p.

We now consider a graded mesh whose element diameter varies in Ω ≡ (0, 1) according to

h(x) ≈ cxβ

for some c > 0 and a grading parameter β > 0. Note that the elements become smaller towards
the singularity at x = 0. If the grading parameter β is optimally chosen for a given singularity
strength α and polynomial degree p, then we can show that

‖u− uh‖H1(Ω) ≤ C ′n−p. (8.14)

In words, we recover the optimal convergence rate with respect to the number of degrees of freedom
n observed for smooth solutions.

The comparison of the convergence results for the uniform mesh (8.13) and the graded mesh (8.14)
highlights the importance of mesh adaptation for problems with singularities. This is particularly
the case of for higher-order (p > 1) approximations, where the efficiency of higher-order method is
realized only on appropriately graded meshes in the presence of singularities.

8.6.3 Singular perturbation in R1

The next example we consider is a canonical singular perturbation solution in R1,

u(x; ε) = exp(−x/ε), x ∈ (0, 1),

for some ε such that 0 < ε� 1. This is the boundary-layer solution encountered in both reaction-
diffusion and advection-diffusion equation with a weak diffusion (i.e., high Peclet/Reynolds number
flows). Unlike the xα-type singularity, this solution is formally smooth (i.e., infinitely differentiable).
However, the solution exhibit rapid variation in the thin layer of O(ε) in the vicinity of x = 0.

We first consider the approximation of the boundary layer solution in Pp approximation spaces
associated with uniform meshes. Because the solution is formally smooth, the error asymptotically
behaves as

‖u− uh‖H1(Ω) ≤ Cεhp ≤ Cεn−p as h→ 0,

for a constant Cε that depends on ε. However, this asymptotic convergence rate is only observed
for h . ε; i.e., only after the boundary layer is resolved. In the pre-asymptotic regime, the error
behaves as

‖u− uh‖H1(Ω) ∼ Cpre
ε h1/2 ≤ Cpre

ε n−1/2 for h & ε.

Hence, while the approximation is asymptotically quasi-optimal as h→ 0, it exhibits slow conver-
gence for h & ε.

We now consider a graded mesh whose element diameter varies in Ω ≡ (0, 1) according to

h(x) ≈ c exp(νx),

for some c > 0 and a grading parameter ν > 0. If the grading parameter ν is optimally chosen for
a given boundary layer thickness ε and the polynomial degree p, then we can essentially eliminate
the pre-asymptotic behavior and achieve

‖u− uh‖H1(Ω) ≤ C ′εn−p

125



for all n, where C ′ε depends only weakly on ε. Hence, in the case of singular perturbations, while
the formal convergence rate with respect to the number of degrees of freedom is not improved by
the graded meshes (since it is already optimal on uniform meshes), adaptive mesh refinement can
in practice decrease the number of degrees of freedom required to achieve a given accuracy.

8.7 Summary

We summarize key points of this lecture:

1. The solution to the Poisson equation on domain with corners are not smooth in general;
specifically, the solution lies in Hs+1(Ω) if and only if s ∈ (0, π/ω), where ω is the corner
angle.

2. Adaptive finite element methods build on two technical integredients: (localizable) a posteriori
error estimates and adaptive mesh refinement.

3. In residual error estimate, the solution error is bounded as a function of the coercivity constant
and the dual norm of the residual. The coercivity constant can be estimated by solving a
finite-element approximation of the eigenproblem; the residual can be estimated based on the
local element and facet residuals.

4. Extrapolation error estimate allows us to estimate the error using a hierarchy of solutions for
any equations and in any norms or for functional outputs.

5. Adaptive mesh refinement builds on four steps: Solve, Estimate, Mark, and Refine.

6. In the presence of singularities, adaptive mesh refinement can improve the formal asymptotic
convergence rate (with respect to the number of degrees of freedom).

7. In the presence of a boundary layer (which is formally smooth), the adaptive mesh refinement
can reduce the number of degrees of freedom required to enter the asymptotic regime.
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Lecture 9

Hyperbolic and advection-dominated
problems: Galerkin least-squares
method

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

9.1 Motivation

In this lecture we consider hyperbolic and advection-dominated problems, which arise in fluid me-
chanics. As we will see shortly, the standard Galerkin method is ill-suited for advection-dominated
problems; the approximation exhibits spurious oscillations on coarse meshes due to insufficient dis-
sipation. In order to overcome this shortcoming, in this lecture we consider stabilized finite element
methods, and in particular the Galerkin least-squares method.

9.2 Problem description

We first introduce a Lipshitz domain Ω ⊂ Rd. We then introduce an advection field b ∈ L∞(Ω)d

and identify the associated inflow and outflow boundaries:

Γin ≡ {x ∈ ∂Ω | n(x) · b(x) < 0},
Γout ≡ ∂Ω \ Γin.

We next introduce a Dirichlet boundary ΓD and a Neumann boundary ΓN such that ΓD ∩ ΓN = ∅
and ∂Ω = Γ̄D ∪ Γ̄N . We in addition assume that the entire inflow boundary is Dirichlet: i.e.,
Γin ⊂ ΓD. This condition is necessary for the equation to be well posed in the limit of vanishing
diffusion. The strong form of the advection-diffusion equation is

−∇ · (κ∇u) +∇ · (bu) = f in Ω, (9.1)

u = ub on ΓD,

n · κ∇u = g on ΓN ,
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where κ ∈ L∞(Ω) is the diffusion field, b ∈ L∞(Ω)d is the advection field, f ∈ L2(Ω) is the source
term, ub ∈ H1(ΓD) is Dirichlet boundary function, and g ∈ L2(ΓN ) is the Neumann source function.
We assume κ(x) ≥ κmin > 0 a.e. in Ω. For simplicity we consider a scalar (as opposed to tensor)
diffusion field and divergence-free advection field so that ∇ · b = 0; both of these assumptions can
be readily relaxed.

If κ = 0 everywhere, then the advection-diffusion equation (9.1) becomes an advection equation,
which is hyperbolic. The strong from of the advection equation is

∇ · (bu) = f in Ω, (9.2)

u = ub on ΓD = Γin,

with Dirichlet boundary condition on the inflow boundary Γin, and no boundary conditions on the
outflow boundary Γout.

We now consider the weak form of the problem. To this end, we first introduce a Hilbert space

V ≡ {v ∈ H1(Ω) | v|ΓD = 0} (9.3)

and an affine space

VE = uE + V,

where uE ∈ H1(Ω) is any function such that uE |ΓD = ub. The space V is endowed with an inner
product (·, ·)V ≡ (·, ·)H1(Ω) and the associated induced norm ‖ · ‖V ≡ ‖ · ‖H1(Ω). We then multiply
the strong form of the equation by a test function v ∈ V, integrate by parts, and obtain the weak
formulation: find u ∈ VE such that

a(u, v) = `(v) ∀v ∈ V, (9.4)

where

a(w, v) ≡
∫

Ω
∇v · κ∇wdx︸ ︷︷ ︸
aκ(w,v)

−
∫

Ω
∇v · bwdx+

∫
ΓN

v(n · b)wds︸ ︷︷ ︸
ab(w,v)

∀w, v ∈ V (9.5)

`(v) ≡
∫

Ω
vfdx+

∫
ΓN

vgds, ∀v ∈ V. (9.6)

Note, unlike our previous treatment of the equation in e.g., Section 2.8, we apply integration by
parts to also the advection term; the resulting bilinear form is represented in a different form but
of course is identical to the previous form for functions in V. We also identify the decomposition of
the bilinear form into the forms associated with the diffusion and advection contributions, aκ(·, ·)
and ab(·, ·), respectively.

9.3 Weak formulation: analysis

We now analyze the well-posedness of the advection-diffusion equation (9.4). To this end, we
will first show that the bilinear form (9.5) is coercive and continuous and the linear form (9.6) is
continuous in V.
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Proposition 9.1. The bilinear form (9.5) is coercive and continuous in V given by (9.3) with
constants

α =
κmin

1 + CPF

γ = ‖κ‖L∞(Ω) + ‖b‖L∞(Ω) + C2
tr‖b‖L∞(ΓN ),

where CPF is the Poincaré-Friedrichs constant such that ‖v‖2L2(Ω) ≤ CPF|v|2H1(Ω) ∀v ∈ V, and Ctr

is the trace inequality constant such that ‖v‖L2(ΓN ) ≤ Ctr‖v‖H1(Ω) ∀v ∈ V.

Proof. We first analyze the coercivity of the bilinear form. We first note that, ∀v ∈ V,

ab(v, v) = −
∫

Ω
∇v · bvdx+

∫
ΓN

v(n · b)vds

= −1

2

∫
Ω
∇v · bvdx+

1

2

∫
Ω
vb · ∇vdx− 1

2

∫
ΓN

(n · b)v2ds+

∫
ΓN

(n · b)v2ds

=
1

2

∫
ΓN

(n · b)v2ds;

here the first equality follows from integration by parts of −1
2

∫
Ω∇v · bvdx and ∇ · b = 0. We next

note that by the Poincaré-Friedrichs inequality,

|v|2H1(Ω) =
1

1 + CPF
|v|2H1(Ω) +

CPF

1 + CPF
|v|2H1(Ω) ≥

1

1 + CPF
|v|2H1(Ω) +

1

1 + CPF
‖v‖2L2(Ω)

=
1

1 + CPF
‖v‖2H1(Ω);

here the second inequality follows from ‖v‖2L2(Ω) ≤ CPF|v|2H1(Ω). Hence it follows that

a(v, v) =

∫
Ω
∇v · κ∇vdx+

1

2

∫
ΓN

(n · b)v2ds ≥ κmin|v|2H1(Ω) ≥
κmin

1 + CPF
‖v‖2H1(Ω);

here the first inequality follows form (i) κ(x) ≥ κmin > 0 a.e. in Ω, and (ii) n · b ≥ 0 on ΓN ⊂ Γout.

We next analyze the continuity of the bilinear form. We have, ∀v ∈ V,

|a(w, v)| =
∣∣∣∣∫

Ω
∇v · κ∇wdx−

∫
Ω
∇v · bwdx+

∫
ΓN

v(n · b)wds
∣∣∣∣

≤ ‖κ‖L∞(Ω)|v|H1(Ω)|w|H1(Ω) + ‖b‖L∞(Ω)|v|H1(Ω)|w|L2(Ω) + ‖b‖L∞(ΓN )‖v‖L2(ΓN )‖w‖L2(ΓN )

≤ ‖κ‖L∞(Ω)|v|H1(Ω)|w|H1(Ω) + ‖b‖L∞(Ω)|v|H1(Ω)|w|L2(Ω) + C2
tr‖b‖L∞(ΓN )‖v‖H1(Ω)‖w‖H1(Ω)

≤ (‖κ‖L∞(Ω) + ‖b‖L∞(Ω) + C2
tr‖b‖L∞(ΓN ))‖v‖H1(Ω)‖w‖H1(Ω),

where we have invoked the trace inequality ‖v‖L2(∂Ω) ≤ ‖v‖L2(ΓN ) ≤ Ctr‖v‖H1(Ω) ∀v ∈ H1(Ω).

Proposition 9.2. The linear form (9.6) is continuous in V given by (9.3) with a continuity constant

C` = ‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ).
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Proof. We observe that, ∀v ∈ V,

|`(v)| =
∣∣∣∣∫

Ω
vfdx+

∫
ΓN

vgds

∣∣∣∣ ≤ ‖v‖L2(Ω)‖f‖L2(Ω) + ‖v‖L2(ΓN )‖g‖L2(ΓN )

≤ ‖v‖L2(Ω)‖f‖L2(Ω) + Ctr‖v‖H1(Ω)‖g‖L2(ΓN ) ≤ (‖f‖L2(Ω) + Ctr‖g‖L2(ΓN ))‖v‖H1(Ω),

which is the desired result.

Proposition 9.3. The advection-diffusion equation (9.4) has a unique solution.

Proof. Because the bilinear form a(·, ·) is coercive and continuous and the linear form `(·) is con-
tinuous, the existence and uniqueness of the solution follows from the Lax-Milgram theorem.

9.4 Standard Galerkin method: limitations

Because the bilinear form is coercive and continuous and the linear form is continuous, we can
readily consider the (standard) Galerkin approximation of the weak formulation (9.4). To this end,
we introduce a Pp approximation space

Vh ≡ {v ∈ V | v|K ∈ Pp(K), ∀K ∈ Th}

associated with the triangulation Th. We also introduce the affine space VEh = uE + Vh. We then
consider the following finite element approximation: find uh ∈ VEh such that

a(uh, v) = `(v) ∀v ∈ Vh. (9.7)

Because Vh ⊂ V, the conditions of the Lax-Milgram theorem also holds for Vh, and (9.7) is wellposed.

In practice, however, this finite element approximation exhibits unsatisfactory oscillations when
the ratio of the diffusion to advection is small with respect to the element diamester in the sense
that grid Péclet number Peh ≡ |b|hK

2κ is much greater than unity. An example of such a failure
is shown in Figure 9.1. Here the advection-diffusion equation with κ = 1/50 and b = 1 is solved
using the Galerkin finite element method for h = 1/8; the grid Péclet number is Peh = 12.5 � 1.
This poor behavior of the Galerkin method for advection-dominated problems does not violate the
quasi-optimality result provided by the Céa’s lemma:

‖u− uh‖V ≤
γ

α
inf

wh∈Vh
‖u− wh‖V .

The gap between the V-optimal approximation and the finite element approximation for advection-
dominated problems is γ/α = ‖b‖L∞(Ω)/κmin � 1; while we do not necessarily expect the method to
perform poorly as the lemma only provides an upper bound, we do not have an a priori guarantee
that the method works well. This contrasts with, say, Poisson’s equation, for which we know the
Galerkin method provides a quasi-optimal solution with a small gap to the best-fit solution.
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Figure 9.1: Failure of the Galerkin method for one-dimensional advection diffusion with κ = 1/50,
b = 1, and h = 1/8.

9.5 Artificial diffusion method

The instability of the standard Galerkin method for Peh = |b|hK
2κ � 1 is due to the insufficient

amount of “apparent” diffusion provided in the boundary layers when the features are underre-
solved. One way to overcome the instability hence is to artificially add diffusion that scales with
h, such that Peh of the modified equation is of order unity. The approach that simply modifies the
diffusion coefficient κ to scale with h is called the artificial diffusion method The modified bilinear
form is of the form

ah(w, v) =

∫
Ω
∇v · (κ+ ch)∇wdx−

∫
Ω
∇v · bwdx+

∫
ΓN

v(n · b)wds,

for c ≈ 1. However, this approach has two major limitations. First, the artificial diffusion is applied
isotropically in all directions, and in particular also in the direction perpendicular to the streamlines;
as a result, the method excessively diffuses shear layers. Second, due to the O(h) modification of the
bilinear form, the method is at most first-order accurate, even if the underlying solution is smooth
and a higher-order approximation is used. Due to these two limitations, the artificial diffusion
method is not a recommended approach to stabilize the standard Galerkin method.

9.6 Galerkin least-squares method: formulation

To overcome the instability of the standard Galerkin method, we introduce the Galerkin least-
squares (GLS) method. By way of preliminaries, we introduce the differential operator associated
with the strong form:

Lw ≡ −∇ · (κ∇w) +∇ · (bw). (9.8)

The GLS method is a stabilized method, which employs a h-dependent forms ah(·, ·) and `h(·)
that are different from the original forms a(·, ·) and `(·) given by (9.5) and (9.6), respectively.
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Specifically, the forms are augmented by the terms arising from “least-squares” stabilization:

ah(w, v) ≡ a(w, v)︸ ︷︷ ︸
Galerkin

+ (τLv,Lw)L2(Ω)︸ ︷︷ ︸
least-squares stabilization

=

∫
Ω
∇v · κ∇vdx−

∫
Ω
∇v · bwdx+

∫
ΓN

v(n · b)wds+

∫
Ω

(Lv)τ(Lw)dx,

`h(v) ≡ `(v) + (τLv, f)L2(Ω) =

∫
Ω
vfdx+

∫
ΓN

vgds+

∫
Ω

(Lv)τfdx,

where τ is the GLS stabilization parameter given by

τ =

((
2|b|
hK

)2

+ 9

(
4κ

h2
K

)2
)−1/2

.

The GLS problem is as follows: find uh ∈ VEh such that

ah(uh, v) = `h(v) ∀v ∈ Vh. (9.9)

We make a few remarks. First, there are other choices of the stabilization parameter τ , but in order
obtain stability for Peh ≡ |b|hK2κ � 1 and convergence for Peh � 1, the parameter must satisfy

τ =

O
(
hK
|b|

)
, Peh � 1

O
(
h2
K
κ

)
, Peh � 1

.

Second, unlike the forms we have seen so far, the linear and bilinear forms of the GLS method
are h-dependent because τ depends on h; we hence denote the bilinear and linear forms with a
subscript h.

9.7 Galerkin least-squares method: analysis

We now analyze the GLS method. For simplicity, throughout this analysis we assume that the
diffusion field κ and the advection field b are constant over Ω. We first note that the least-squares
term (τLv,Lw)L2(Ω) is non-negative and hence

ah(v, v) ≥ a(v, v) ≥ α‖v‖H1(Ω) ∀v ∈ Vh;

the GLS bilinear form is coercive in Vh. Assuming an inverse estimate |v|H2(κ) ≤ ch−1‖v‖H1(κ)

∀v ∈ Pp(κ) holds, we can readily show that the GLS bilinear and linear forms are also continuous
in Vh. It hence follows that GLS problem (9.9) has a unique solution by the Lax-Milgram theorem.

We second note that the least-squares term (τLv,Lw)L2(Ω) provides diffusion in the streamline
direction. To see this, we consider κ = 0 for simplicity and observe that

(τLv,Lw)L2(Ω) =

∫
Ω

hK
2|b|

(∇ · (bv))(∇ · (bw))dx =

∫
Ω

hK
2|b|

(b · ∇v)(b · ∇w)dx,

where the last equality follows form the assumption ∇· b = 0. We observe that the (i) the artificial
diffusion is added in the direction of b and (ii) the strength of the diffusion is O(hK |b|). This
streamline diffusion adds the requires stability to the Galerkin formulation.
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However, as discussed in the context of the (classical) artificial diffusion method, if we simply
make an O(h) modification to the bilinear form, then the resulting method will be at most first
order. To overcome this limitation, the GLS method modifies the standard Galerkin method such
that the modified forms are consistent. A stabilized method (or more generally a method that uses
a(·, ·) and `(·) that are different from the original weak formulation) is said to be consistent if the
following holds.

Definition 9.4 (consistency). Suppose the exact solution u ∈ V that satisfies a(u, v) = `(v) ∀v ∈ V
is sufficiently smooth. A stabilized method is said to be consistent if for this smooth u ∈ V

ah(u, v) = `h(v) ∀v ∈ Vh.

In other words, the exact solution satisfies the weak statement associated with the stabilized prob-
lem.

Proposition 9.5. The GLS method is consistent.

Proof. The proof follows from the definition of the stabilized forms:

rh(v) ≡ `h(v)− ah(u, v)

= `(v) + (τLv, f)L2(Ω) − a(u, v)− (τLv,Lu)L2(Ω)

= `(v)− a(u, v)︸ ︷︷ ︸
=0 since a(u, v) = `(v)

∀v∈Vh⊂V

+ (τLv, f − Lu︸ ︷︷ ︸
=0 by strong form

)L2(Ω) = 0 ∀v ∈ Vh,

which is the desired result.

Remark 9.6. If a stabilized method is consistent, then Galerkin orthogonality holds with respect
to ah(·, ·):

ah(u− uh, v) = `h(v)− ah(uh, v) = 0 ∀v ∈ Vh.

The Galerkin orthogonality, as usual, plays a key role in our error analysis.

Thanks to the consistency (and Galerkin orthogonality) of the GLS formulation, we can show
that the GLS can achieve higher-order accuracy if the underlying solution is smooth and a higher-
degree polynomials are used. Specifically, we may assess the error in the GLS method in its natural
norm.

Lemma 9.7. Let ‖ · ‖ah : V → R be the GLS norm given by

‖v‖2ah ≡ ah(v, v) ∀v ∈ V.

The error in the GLS approximation is bounded by

‖e‖2ah ≤ 2‖τ−1/2(u− Ihu)‖2L2(Ω) + 2‖τ1/2L(u− Ihu)‖2L2(Ω),

where Ih : V → Vh is the interpolation operator.
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Proof. Let ηh ≡ u− Ihu, and we observe that

‖e‖2ah = ah(e, e) = ah(e, u− Ihu)− ah(e, Ihu− uh) = ah(e, ηh)

= (ηh,Le)L2(Ω) + (τLηh,Le)L2(Ω)

≤ ‖τ−1/2ηh‖2L2(Ω) +
1

4
‖τ1/2Le‖2L2(Ω) + ‖τ1/2Lηh‖2L2(Ω) +

1

4
‖τ1/2Le‖2L2(Ω)

≤ 1

2
‖e‖2ah + ‖τ−1/2ηh‖2L2(Ω) + ‖τ1/2Lηh‖2L2(Ω). (9.10)

A few elaborations are in order. The third equality follows from the Galerkin orthogonality and the
definition ηh = u−Ihu. The first inequality relies on the so-called algebraic-mean geometric-mean
inequality: ∀a, b ∈ R and γ > 0, |ab| ≤ 1

2γa
2 + γ

2 b
2; using the inequality we obtain

(ηh,Le)L2(Ω) ≤ ‖τ−1/2ηh‖2L2(Ω) +
1

4
‖τ1/2Le‖2L2(Ω),

(τLηh,Le)L2(Ω) ≤ ‖τ1/2Lηh‖2L2(Ω) +
1

4
‖τ1/2Le‖2L2(Ω).

The second inequality follows from the definition of ‖ · ‖2ah .

We now specialize Lemma 9.7 to two separate cases. First we consider the advection equation
κ = 0.

Proposition 9.8. Consider the GLS approximation of the advection (9.1) for which κ = 0. If
u ∈ H1(Ω) ∩Hs+1(Th), the error in the GLS approximation is in the GLS norm by

‖u− uh‖ah ≤ Ch
r+1/2|u|Hr+1(Th)

for r = min{s, p}, and in particular the error in the streamwise derivative is bounded by

‖b · ∇(u− uh)‖L2(Ω) ≤ C̃hr|u|Hr+1(Th).

Proof. We first note that for κ = 0, τ = h/(2‖b‖). We then simplify Lemma 9.7 as

‖e‖2ah ≤ 2‖τ−1/2ηh‖2L2(Ω) + 2‖τ1/2Lηh‖2L2(Ω) = 2‖τ−1/2ηh‖2L2(Ω) + 2‖τ1/2b · ∇ηh‖2L2(Ω)

≤ 4‖b‖
h
‖ηh‖2L2(Ω) + h‖b‖‖∇ηh‖2L2(Ω) ≤ 4‖b‖h−1CIh

2r+2|u|2Hr+1(Th) + h‖b‖C ′Ih2r|u|2Hr+1(Th)

≤ Ch2r+1|u|2Hr+1(Th);

here the first inequality follows from Lemma 9.7, the first equality follows from L(·) = b · ∇(·), the
second inequality follows from the definition of τ , the third inequality follows from the interpolation
error bounds. In addition, we note that for κ = 0,

‖v‖2ah ≡ ah(v, v) =
1

2

∫
ΓN

(n · b)v2ds+

∫
Ω

(Lv)τ(Lv)dx =
1

2
‖(n · b)1/2v‖2L2(ΓN ) + ‖τ1/2Lv‖2L2(Ω)

=
1

2
‖(n · b)1/2v‖2L2(ΓN ) +

h

2|b|
‖b · ∇v‖2L2(Ω).

Hence

‖b · ∇e‖2L2(Ω) ≤ 2‖b‖2h−1‖e‖2ah ≤ Ch
2r|u|2Hr+1(Th),

which is the desired second inequality.
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We make a few observations. We first observe that the GLS stabilization provides the control
of the error in the derivative in the streamline direction, and we obtain the optimal order of hr.
We second observe that, as expected for a purely hyperbolic equations, we have no control of the
error in the derivatives in the directions normal to the streamline directions.

We now specialize Lemma 9.7 for κ > 0.

Proposition 9.9. Consider the GLS approximation of the advection-diffusion (9.1) for which
κmin > 0. If u ∈ H2(Ω) ∩Hs+1(Th), the error in the GLS solution is bounded by

‖u− uh‖ah ≤ Ch
r|u|Hr+1(Th)

for r = min{s, p}. Moreover, because the ‖ · ‖ah is equivalent to ‖ · ‖H1(Ω) for κmin > 0, it follows
that

‖u− uh‖H1(Ω) ≤ C̃hr|u|Hr+1(Th).

Proof. We first note that for κ > 0, τ = O(h2) as h→ 0. We then simplify Lemma 9.7 as

‖e‖2ah ≤ 2‖τ−1/2ηh‖2L2(Ω) + 2‖τ1/2Lηh‖2L2(Ω) ≤ ch
−2‖ηh‖2L2(Ω) + c′h2‖∆ηh‖2L2(Ω)

≤ ch−2CIh
2r+2|u|2Hr+1(Th) + c′h2CIh

2r−2|u|2Hr+1(Th) ≤ Ch
2r|u|2Hr+1(Th);

here the first inequality follows from Lemma 9.7, the second inequality follows from the definition
of τ as h→ 0, and the third inequality follows from interpolation error bounds.

We make a few remarks. We first note that, in the presence of diffusion as h → 0, the GLS
formulation recovers the optimal convergence rate of hr in the H1(Ω) norm; this is unlike the
(classical) artificial diffusion formulation, which is at most first order. We second remark that the
asymptotic error analysis cannot highlight the additional stability provided by the GLS formulation,
because the stabilization in fact vanishes as h → 0; however, in practice the GLS method, unlike
the standard Galerkin method, yields a stable approximation when Peh � 1.

9.8 Streamline-upwind Petrov-Galerkin (SUPG) method

The GLS method is closely related to the streamline-upwind Petrov-Galerkin (SUPG) method,
which precedes the GLS method. The bilinear and linear forms for the SUPG method are given by

ah(w, v) ≡ a(w, v) + (τb · ∇v,Lw)L2(Ω)

=

∫
Ω
∇v · κ∇vdx−

∫
Ω
∇v · bwdx+

∫
ΓN

v(n · b)wds+

∫
Ω

(b · ∇v)τ(Lw)dx,

`h(v) ≡ `(v) + (τb · ∇v, f)L2(Ω) =

∫
Ω
vfdx+

∫
Ω

(b · ∇v)τfdx.

In other words, the SUPG method is obtained by replacing the least-squares stabilization term
(τLv,Lw − f)L2(Ω) with (τb · ∇v,Lw − f)L2(Ω).

The SUPG method is called a Petrov-Galerkin method, because the method can be interpreted
as using modified test functions. Specifically, if ΓN = ∅ (i.e., ∂Ω = ΓD), then

ah(w, v) = (v,Lw)L2(Ω) + (τb · ∇v,Lw)L2(Ω) = (v + τb · ∇v,Lw)L2(Ω),

`h(w, v) = (v, f)L2(Ω) + (τb · ∇v, f)L2(Ω) = (v + τb · ∇v, f)L2(Ω).
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Hence the SUPG formulation may be interpreted as a weighted-residual method with test functions
v+ τb · ∇v. These test functions may be considered “upwinded”, as they place more weight to the
upwind side.

We make a few additional remarks. First, the SUPG method, like the GLS method, adds
artificial diffusion in the direction of the streamlines and hence provides additional stability for
advection-dominated problems. Second, the SUPG method, like the GLS method, is consistent.
Third, the SUPG and GLS methods are identical in some cases: (i) for advection equations (i.e.,
κ = 0) the methods are identical because Lv = b · ∇v; (ii) for P1 approximations, the methods are
identical because Lvh = −κ∆vh + b · ∇vh = b · ∇vh.

9.9 Summary

We summarize key points of this lecture:

1. The weak formulation of advection-diffusion equation yields a coercive and continuous bilinear
form and continuous linear form and hence is well-posed.

2. For advection-dominated problems, the Galerkin finite element approximation exhibits spu-
rious oscillation in boundary layers when the grid Péclet number Peh ≡ |b|hK2κ � 1.

3. The GLS method adds a least-squares term to the standard Galerkin method to stabilize the
approximation. This stabilization adds diffusion in the streamline direction and is consistent.
The stabilization removes the spurious oscillation in underresolved boundary layers.

4. The GLS method provides control of the error in the streamline derivative even in the hyper-
bolic limit of no diffusion. The error is optimal (i.e., hp) for the streamline derivative, and
suboptimal (i.e., hp+1/2) in the L2 norm; however, in practice we often observe the optimal
convergence rate of hp+1 in the L2(Ω) norm for smooth problems.

5. The GLS method provides optimal convergence rate of hp in the H1(Ω) norm for advection-
diffusion equations with a smooth solution.

6. The SUPG method is closely related the GLS method; the SUPG method also adds artificial
diffusion in the streamline direction in a consistent manner, and the method can be interpreted
as a Petrov-Galerkin method.

136



Lecture 10

Parabolic equations

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

10.1 Motivation

We have so far considered stationary PDEs; however, many phenomena in continuum mechanics
are time-dependent and hence are modeled by time-dependent PDEs. In this lecture we consider
variational formulations, and the associated finite element approximation, of time-dependent PDEs.
Of particular focus in the lecture is parabolic PDEs — PDEs that are first-order in time and
whose spatial operator is elliptic; the heat equation, which describes unsteady heat transfer, is a
prototypical parabolic PDE.

10.2 Model equation: heat equation

We first introduce our model parabolic equation: the heat equation. Let Ω ⊂ Rd be a Lipschitz
domain and I ≡ (0, T ] be the time interval. We partition the boundary ∂Ω into a Dirichelt
boundary ΓD and a Neumann boundary ΓN such that ∂Ω = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. Unlike
the steady state case, we may consider ΓD = ∅.

We introduce the strong form of the heat equation: find u such that

∂u

∂t
−∇ · (κ∇u) = f in Ω× I,

u = ub on ΓD × I,
n · κ∇u = g on ΓN × I,
u(t = 0) = u0 in Ω,

where κ ∈ L∞(Ω)d×d is the thermal diffusivity tensor field, f : Ω×I → R is the volume heat source,
g : ΓN × I → R is the boundary heat flux on ΓN , ub : ΓD → R is the prescribed temperature on
ΓD, and u0 : Ω → R is the initial condition. We assume that the spatial operator is elliptic: i.e.,
ξTκ(x, t)ξ > 0 ∀ξ ∈ Rd, ξ 6= 0, a.e. x ∈ Ω and t ∈ I. For simplicity, we assume that the prescribed
temperature on ΓD is independent of time. This is a parabolic equation because (i) the equation is
first-order in time and (ii) the spatial operator is elliptic.
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10.3 Variational formulation

We now derive a (spatially) weak form of the heat equation. To this end, we introduce a Hilbert
space

V ≡ {v ∈ H1(Ω) | v|ΓD = 0}

and an affine space

VE ≡ uE + V,

where uE is any function in H1(Ω) such that uE |ΓD = ub. As in the steady-state problem, the
Dirichlet conditions are essential boundary conditions that must be enforced explicitly through the
choice of the space.

We next take an arbitrary test function v ∈ V, multiply the governing equation by v, integrate
by parts, and make appropriate substitutions for the natural boundary conditions to obtain∫

Ω
v
∂u

∂t
dx+

∫
Ω
∇v · κ∇udx =

∫
Ω
vfdx+

∫
ΓN

vgds.

Our weak formulation is as follows: find u(t) ∈ VE , t ∈ I, such that

m

(
∂u

∂t

∣∣∣∣
t

, v

)
+ a(u(t), v; t) = `(v; t) ∀v ∈ V,∀t ∈ I, (10.1)

(u(t = 0), v)L2(Ω) = (u0, v)L2(Ω) ∀v ∈ V,

where

m(w, v) ≡
∫

Ω
vwdx ∀w, v ∈ V,

a(w, v; t) ≡
∫

Ω
∇v · κ∇wdx ∀w, v ∈ V,

`(v; t) ≡
∫

Ω
vfdx+

∫
ΓN

vgds ∀v ∈ V,

where f ∈ L2(Ω × I), g ∈ L2(ΓN × I), and u0 ∈ L2(Ω). Note that the parameter t of the forms
a(·, ·; t) and `(·; t) signifies the forms in general are time dependent. We note that it is also possible
to consider a space-time weak formulation, where we also integrate in the time domain; we do not
consider the formulation here.

Remark 10.1. While the particular forms of (10.1) are associated with the heat equation, both
the formulations and analyses in the remainder of this lecture apply to general parabolic equations
of the form (10.1) with a uniformly coercive and continuous a(·, ·; t) and a uniformly continuous
`(·); i.e., there exist α > 0, γ <∞, and c` such that

a(v, v; t) ≥ α‖v‖2V ∀v ∈ V,∀t ∈ I,
a(w, v; t) ≤ γ‖w‖V‖v‖V ∀w, v ∈ V,∀t ∈ I,
`(v; t) ≤ c`‖v‖V ∀v ∈ V, ∀t ∈ I.

The parabolic equation (10.1) has a unique solution:
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Proposition 10.2. Suppose that the bilinear form a(·, ·; t) is V-coercive and V-continuous a.e.
t ∈ I. Then, given f ∈ L2(Ω× I), g ∈ L2(ΓN × I), and u0 ∈ L2(Ω), there exists a unique solution
u ∈ L2(I;V) ∩ C0(Ī;L2(Ω)) to (10.1).

Proof. Proof is beyond the scope of this course. We refer to Quarteroni and Valli (2008).

Proposition 10.3. Under the assumptions of Proposition 10.2, the energy estimate

‖u(t)‖2L2(Ω) + α

∫ t

τ=0
‖u(τ)‖2Vdτ ≤ ‖u0‖2L2(Ω) +

1

α

∫ t

τ=0
‖`(·; τ)‖2V ′dτ

holds for each t ∈ I, where α is the coercivity constant.

Proof. We set v = u(t) in (10.1) to obtain

(
∂u

∂t

∣∣∣∣
t

, u(t))L2(Ω) + a(u(t), u(t)) = `(u(t); t).

We now make three observations. First, the first term can be written as ( ∂u∂t
∣∣
t
, u(t))L2(Ω) =

1
2
d
dt‖u(t)‖2L2(Ω). Second, the coercivity statement yields for the second term: a(u(t), u(t); t) ≥

α‖u(t)‖2V . Third, the definition of the dual norm and the Young’s inequality yield |`(u(t); t)| ≤
‖`(·; t)‖V ′‖u(t)‖V ≤ 1

2α‖`(·; t)‖
2
V ′ +

α
2 ‖u(t)‖2V . We hence obtain

1

2

d

dt
‖u(t)‖2L2(Ω) + α‖u(t)‖2V ≤

1

2α
‖`(·; t)‖2V ′ +

α

2
‖u(t)‖2V ,

which further simplifies to

d

dt
‖u(t)‖2L2(Ω) + α‖u(t)‖2V ≤

1

α
‖`(·; t)‖2V ′ .

The integration of the relationship over (0, t) for t ∈ I yields the desired energy statement.

Proposition 10.3 shows that the energy at any time t ∈ I is bounded by (i) the energy at the
initial time ‖u0‖2L2(Ω) and (ii) the data `, which can be further divided into the volume source term

f and the boundary term g. Note that the coercive bilinear form a(·, ·; t) provides the dissipation.
For a homogeneous system (i.e., ` = 0), we have ‖u(t)‖2L2(Ω) ≤ ‖u

0‖2L2(Ω), and the energy strictly
decays over time.

10.4 Semi-discrete formulation

Our strategy to numerical approximation of the initial value problem comprises two steps: the
spatial approximation by a finite element method; the temporal approximation by a time-marching
scheme for a system of ordinary differential equations (ODEs). We first consider the spatial ap-
proximation (only) to introduce a semi-discrete form. (The form is called semi-discrete as it is only
discretized in space.) To this end, we introduce a finite element space,

Vh = {v ∈ V | v|K ∈ Pp(K), ∀K ∈ Th}.
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We then consider the following semi-discrete problem: find u(t) ∈ Vh, t ∈ I, such that

m(
∂uh
∂t

∣∣∣∣
t

, v) + a(uh(t), v; t) = `(v; t) ∀v ∈ Vh, t ∈ I, (10.2)

(uh(t = 0), v)L2(Ω) = (u0, v)L2(Ω) ∀v ∈ Vh.

Since Vh ⊂ V, we appeal to Propositions 10.2 and 10.3 to conclude that (10.2) has a unique solution
and is energy stable, respectively.

To facilitate the presentation of the (fully) discrete equation, we now introduce the algebraic
form of (10.2). We first introduce a basis {φi}ni=1 of the space Vh. We then represent the solution
as

uh(x, t) =
n∑
j=1

ûh,j(t)φj(x),

where ûh ∈ Rn is finite element coefficients; note that, because the basis is independent of time,
the time derivative of the finite element solution is given by

∂uh
∂t

∣∣∣∣
(x,t)

=

n∑
j=1

dûh,j
dt

∣∣∣∣
t

φj(x).

We now rewrite (10.2) as follows: find ûh(t) ∈ Rn, t ∈ I, such that

m(

n∑
j=1

dûh,j
dt

∣∣∣∣
t

φj , φi) + a(

n∑
j=1

ûh,j(t)φj , φi; t) = `(φi; t) ∀i = 1, . . . , n, t ∈ I.

We then appeal to the bilinearity of m(·, ·) and a(·, ·; t) to obtain the following system of ODEs:
find ûh(t) ∈ Rn, t ∈ I, such that

M̂h
dûh(t)

dt

∣∣∣∣
t

+ Âh(t)ûh(t) = f̂h(t) in Rn, ∀t ∈ I, (10.3)

ûh(t = 0) = û0 in Rn,

where the mass matrix M̂h ∈ Rn×n, stiffness matrix Âh(t) ∈ Rn×n, and load vector f̂h(t) ∈ Rn are
given by

M̂h,ij = m(φj , φi), i, j = 1, . . . , n,

Âh,ij(t) = a(φj , φi; t), i, j = 1, . . . , n,

f̂h,i(t) = `(φi; t), i = 1, . . . , n,

and the initial condition vector ĥ ∈ Rn satisfies

M̂hû
0 = ĥ in Rn

for ĥi = (u0, φi)L2(Ω), i = 1, . . . , n. As the ODE (10.3) is simply an algebraic reformulation of the
semi-discrete form (10.2) for a particular basis {φi}ni=1, the ODE has a unique solution.
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10.5 Semi-discrete formulation: error analysis

We now analyze the error in the semi-discrete approximation (10.2). For simplicity, we assume (i)
a(·, ·; t) is independent of t and (ii) u0 ∈ Vh.

Proposition 10.4. Suppose in the heat equation (10.1) the bilinear form a(·, ·; t) is independent of
t and the initial condition u0 is in Vh. Let ΠA,h : V → Vh be the projection operator with respect to
the symmetric, coercive bilinear form a(·, ·); i.e., for w ∈ V, ΠA,hw ∈ Vh satisfies a(w−ΠA,hw, v) = 0
∀v ∈ Vh. Then the error in the semi-discrete form of the heat equation 10.2 is bounded by

‖u(t)− uh(t)‖L2(Ω) ≤ ‖(u−ΠA,hu)(t)‖L2(Ω) +

∫ t

τ=0
exp(−α(t− τ))

∥∥∥∥ ∂(u−ΠA,hu)

∂t

∣∣∣∣
τ

∥∥∥∥
L2(Ω)

dτ.

Proof. We first introduce e1 ≡ ΠA,hu−uh and e2 ≡ u−ΠA,hu such that u−uh = e1 + e2. We next
note that, ∀v ∈ Vh,

m

(
∂e1

∂t

∣∣∣∣
t

, v

)
+ a(e1(t), v) = m

(
∂ΠA,hu

∂t

∣∣∣∣
t

, v

)
+ a(ΠA,hu(t), v)︸ ︷︷ ︸

a(u,v)

−m
(
∂uh
∂t

∣∣∣∣
t

, v

)
− a(uh(t), v)︸ ︷︷ ︸

−`(v)︸ ︷︷ ︸
−m( ∂u

∂t
,v)

= −m
(
∂e2

∂t

∣∣∣∣
t

, v

)
.

We then note e1(t) ∈ Vh, ∀t ∈ I, and choose v = e1(t) to obtain

1

2

d

dt
‖e1(t)‖2L2(Ω) + a(e1(t), e1(t)) = −

(
∂e2

∂t

∣∣∣∣
t

, e1(t)

)
L2(Ω)

.

We then appeal to the coercivity of the bilinear form to obtain

1

2

d

dt
‖e1(t)‖2L2(Ω) + α‖e1(t)‖2H1(Ω) ≤

∣∣∣∣∣
(
∂e2

∂t

∣∣∣∣
t

, e1(t)

)
L2(Ω)

∣∣∣∣∣ .
We then invoke (i) 1

2‖e1(t)‖2L2(Ω) = ‖e1(t)‖L2(Ω)
d
dt‖e1(t)‖2L2(Ω) on the first term, (ii) ‖e1(t)‖H1(Ω) ≥

‖e1(t)‖L2(Ω) on the second term, (iii)

∣∣∣∣( ∂e2∂t ∣∣∣t , e1(t)
)
L2(Ω)

∣∣∣∣ ≤ ‖∂e2∂t ‖L2(Ω)‖e1(t)‖L2(Ω) by Cauchy-

Schwarz on the third term, and (iv) divide through by ‖e1(t)‖L2(Ω) to obtain

d

dt
‖e1(t)‖L2(Ω) + α‖e1(t)‖L2(Ω) ≤

∥∥∥∥ ∂e2

∂t

∣∣∣∣
t

∥∥∥∥
L2(Ω)

We integrate the ODE from t = 0 to t to obtain

‖e1(t)‖ ≤ exp(−αt)‖e1(t = 0)‖L2(Ω) +

∫ t

τ=0
exp(−α(t− τ))

∥∥∥∥ ∂e2

∂t

∣∣∣∣
τ

∥∥∥∥
L2(Ω)

dτ
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For u0 ∈ Vh, uh(t = 0) = ΠA,hu(t = 0) and hence e1(t = 0) = 0. Hence

‖u(t)− uh(t)‖L2(Ω) ≤ ‖e1(t)‖L2(Ω) + ‖e2(t)‖L2(Ω)

≤
∫ t

τ=0
exp(−α(t− τ))

∥∥∥∥ ∂e2

∂t

∣∣∣∣
τ

∥∥∥∥
L2(Ω)

dτ + ‖e2(t)‖L2(Ω),

which is the desired relationship.

We make a few remarks about Proposition 10.4. First, the error in the semi-discrete solution
uh at time t depends on two sources: (i) the projection error at time t; (ii) the projection errors
committed in all previous times, as expressed as a time integral. Second, while the error at time t
formally depends on all projection errors over (0, t), the influence of the projection error at t′ < t on
the solution uh(t) decays exponentially in time. Third, the particular rate of this decay depends on
the coercivity constant α; the larger the coercivity constant, quickly the influence decays. Fourth,
one limiting case of this observation is if the solution reaches a steady state as t → ∞; in steady
state, the error in the solution uh(t) depends only on the spatial projection error at the steady
state.

We may also construct a particular bound for the piecewise polynomial space Vh = {v ∈
V | v|K ∈ Pp(K), ∀K ∈ Th}. We observe that if u ∈ C1(Ī;Hs+1(Ω)), then

‖(u−ΠA,hu)(t)‖L2(Ω) ≤ Chr+1|u(t)|Hr+1(Ω)

‖
∂(u−ΠA,hu)

∂t
‖L2(Ω) = ‖∂u

∂t
−ΠA,h

∂u

∂t
‖L2(Ω) ≤ Chr+1|∂u

∂t
|Hr+1(Ω)

for r = min{s, p}. It follows that, if u ∈ C1(Ī;Hs+1(Ω)), then

‖u(t)− uh(t)‖L2(Ω) ≤ Chr+1

for some constant C independent of h. We observe that if the weak solution is sufficiently regular
(i.e,. u ∈ C1(Ī;Hp+1(Ω))), then the error in the semi-discrete solution uh converges as hp+1 in the
L2(Ω) norm.

10.6 Full discrete formulation

We now apply a time integration scheme to the time derivative to obtain a full discrete form. We
first introduce time steps 0 = t0 < t1 < · · · < tK = T ; the time steps need not be equispaced.
We then seek a sequence of solutions ˆ̂uk, k = 0, . . . ,K, such that ˆ̂uk ≈ û(tk). For instance, we
may apply a family of two-step integration schemes parameterized by θ ∈ [0, 1] to the (algebraic)
semi-linear form (10.3) to obtain

1

∆tk
M̂h(ˆ̂ukh − ˆ̂uk−1

h ) + θÂh ˆ̂ukh + (1− θ)Âh ˆ̂uk−1
h = θ

ˆ̂
fkh + (1− θ) ˆ̂

fk−1
h in Rn, k = 1, . . . ,K,

ˆ̂uk=0
h = û0 in Rn,

where ∆tk ≡ tk − tk−1. The choices of θ = 0, 1/2, and 1 yield the forward-Euler, Crank-Nicolson,
and backward-Euler schemes, respectively.

As the focus of this course is on finite element methods and not ODE integration techniques,
we will not discuss time integration in great depth; we simply make few remarks. First, there are
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many other time-marching scheme that can be used; we refer to the AER336 course notes for some
examples. Second, as the ODEs arising from the finite element discretization of parabolic equations

are stiff — the condition number of
ˆ̂
Ah scales as h−2 — implicit, and unconditionally stable, schemes

are often used; the backward Euler and Crank-Nicolson schemes are the two classical choices. Third,

due to the presence of the non-diagonal mass matrix
ˆ̂
Mh, a linear system must be solved even if an

explicit time-integration scheme is used. Fourth, to circumvent this required linear solve, the mass
matrix is often approximated by a diagonal matrix using a technique called “mass-lumping” if an
explicit time marching scheme is used.

10.7 Full discrete formulation: error analysis

We now wish to assess the error in the full discrete solution ukh,∆t ≡
∑n

j=1
ˆ̂ukh,jφj , k = 1, . . . ,K. To

this end, we combine the error bound for the semi-discrete solution and for time-marching schemes
to obtain, for spatially and temporally smooth solutions,

‖u(tk)− ukh,∆t‖L2(Ω) ≤ ‖u(tk)− uh(tk)‖L2(Ω) + ‖uh(tk)− ukh,∆t‖L2(Ω) ≤ Chp+1 + C ′∆tq,

where q is the order of accuracy of the time integration scheme (e.g., q = 1 for backward Euler). To
control the error in uh,∆t, we must control the spatial and temporal error by choosing sufficiently
small h and ∆t, respectively. For non-smooth solutions, the spatial and temporal convergence rates
would be limited by the regularity of the solution.

10.8 Summary

We summarize key points of this lecture:

1. A weak formulation of parabolic equation is characterized by a mass bilinear form m(·, ·), a
time-dependent bilinear form a(·, ·; t), and a time-dependent linear form `(·; t).

2. The energy ‖u(t)‖2L2(Ω) at time t is bounded by the energy at the initial time ‖u0‖2L2(Ω) and

the time-integrated data (source term)
∫ t
τ=0 ‖`(·; τ)‖2V ′dτ .

3. A semi-discrete formulation is obtained by discretizing the spatial operator of the parabolic
equation. If the solution is sufficiently smooth (i.e., u ∈ C1(Ī;Hp+1(Ω))) and a Pp finite
element method is used, then the error in the semi-discrete formulation converges as Chp+1

in L2(Ω) norm.

4. A full discrete formulation is obtained by applying a time-marching scheme to a semi-discrete
formulation. If the solution is sufficiently smooth (i.e., u ∈ Cq+1(Ī;Hp+1(Ω))) and the
formulation is based on a Pp finite element and a q-th order time integration scheme, then
the error converges as Chp+1 + C ′∆tq in L2(Ω) norm.
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Lecture 11

Wave equation

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

11.1 Motivation

In this lecture we consider a variational formulation and the associated finite element approxima-
tion of the wave equation, which is a prototypical second-order hyperbolic equation that models
the propagation of waves through a medium. Second-order hyperbolic equations are relevant in
many engineering applications. In acoustics, the acoustic wave equation models the propagation
of pressure waves. In structural dynamics, the elastodynamics equations model the dynamics of
elastic structures. In electromagnetics, the Maxwell’s equations model the propagation of electric
and magnetic waves. In this lecture we focus on the model equation — the wave equation — to
introduce numerical approximation of second-order hyperbolic equations.

11.2 Model problem: the wave equation

We first introduce our model second-order hyperbolic equation: the wave equation. To this end,
we introduce a Lipschitz spatial domain Ω ∈ Rd and a time interval I ≡ (0, T ]. We partition the
domain boundary ∂Ω into the Dirichlet boundary ΓD and the Neumann boundary ΓN . We then
introduce a wave equation

∂2u

∂t2
−∇2u = f in Ω× I, (11.1)

u = 0 on ΓD × I,
∂u

∂n
= 0 on ΓN × I,

u|t=0 = u0 on Ω,

∂u

∂t

∣∣∣∣
t=0

= u1 on Ω.

Note that because the equation is second-order in time, we require initial conditions on both the
value and time-derivative. For simplicity we consider the problem with constant coefficients and
homogeneous boundary conditions.
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11.3 Weak formulation

We first introduce the space V ≡ H1
0 (Ω), which is appropriate for our problem (11.1) with homoge-

neous Dirichlet data. We then multiply the strong form by a test function and integrate by parts
to obtain a weak form of the wave equation: find u(t) ∈ V, t ∈ I, such that

m(
∂2u

∂t2

∣∣∣∣
t

, v) + a(u(t), v) = `(v) ∀v ∈ V, ∀t ∈ I, (11.2)

m(u(t = 0), v) = m(u0, v) ∀v ∈ V,

m(
∂u

∂t

∣∣∣∣
t

, v) = m(u1, v) ∀v ∈ V,

where the bilinear forms are given by

m(w, v) ≡
∫

Ω
vwdx ∀v, w ∈ V,

a(w, v) ≡
∫

Ω
∇v · ∇wdx ∀v, w ∈ V,

`(v) ≡
∫

Ω
vfdx ∀v ∈ V.

The solution to the wave equation (11.2) possesses the following energy conservation property.

Proposition 11.1 (energy conservation). If `(v) = 0 ∀v ∈ V, then the solution to the wave
equation (11.2) conserves the total energy in the sense that

d

dt

( 1

2
m(

∂u

∂t
,
∂u

∂t
)︸ ︷︷ ︸

kinetic

+
1

2
a(u, u)︸ ︷︷ ︸

potential

)
= 0.

Proof. We set v = ∂u
∂t in (11.2) and appeal to the symmetry of the forms m(·, ·) and a(·, ·) to obtain

0 = m(
∂2u

∂t2
,
∂u

∂t
) + a(u,

∂u

∂t
) =

d

dt

(1

2
m(

∂u

∂t
,
∂u

∂t
) +

1

2
a(u, u)

)
,

which is the desired result.

11.4 Semi-discrete formulation

We now introduce the semi-discrete formulation based on a finite-element spatial approximation.
To this end, we introduce a finite element space

Vh = {v ∈ V | v|K ∈ Pp(K), ∀K ∈ Th}.

Our semi-discrete formulation is as follows: find uh(t) ∈ Vh, t ∈ I, such that

m

(
∂2uh
∂t2

∣∣∣∣
t

, v

)
+ a(uh(t), v) = `(v) ∀v ∈ Vh, (11.3)

m(uh(t = 0), v) = m(u0, v) ∀v ∈ Vh,

m

(
∂uh
∂t

∣∣∣∣
t

, v

)
= m(u1, v) ∀v ∈ Vh.
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The solution to this semi-discrete equation also conserves the total energy; the proof follows that
in Proposition 11.1.

To facilitate the presentation of the (fully) discrete equation, we now introduce the algebraic
form of (11.3). We first introduce a basis {φi}ni=1 of the space Vh. We then represent the solution
uh(x, t) =

∑n
j=1 ûh,j(t)φj(x), where ûh ∈ Rn is the finite element vector. We now rewrite (11.3) as

follows: find ûh(t) ∈ Rn, t ∈ I, such that

m(
n∑
j=1

d2ûh,j
dt2

∣∣∣∣
t

φj , φi) + a(
n∑
j=1

ûh,j(t)φj , φi) = `(φi) ∀i = 1, . . . , n, t ∈ I.

We then appeal to the bilinearity of m(·, ·) and a(·, ·) to obtain the following system of ODEs: find
ûh(t) ∈ Rn, t ∈ I, such that

M̂h
d2ûh
dt2

∣∣∣∣
t

+ Âhûh(t) = f̂h in Rn, ∀t ∈ I, (11.4)

ûh(t = 0) = û0 in Rn,
dûh
dt

∣∣∣∣
t=0

= û1 in Rn,

where the mass matrix M̂h ∈ Rn×n, stiffness matrix Âh ∈ Rn×n, and load vector f̂h ∈ Rn are given
by

M̂h,ij = m(φj , φi), i, j = 1, . . . , n,

Âh,ij = a(φj , φi), i, j = 1, . . . , n,

f̂h,i = `(φi), i = 1, . . . , n,

and the initial condition vectors û0 ∈ Rn and û1 ∈ Rn satisfy

M̂hû
0 = ĥ0 in Rn

M̂hû
1 = ĥ1 in Rn

for ĥ0
i = (u0, φi)L2(Ω) and ĥ1

i = (u1, φi)L2(Ω), i = 1, . . . , n.

11.5 First-order formulation and full discrete form

To obtain a full discrete form using a standard ODE time-integration scheme designed for first-
order ODEs, we recast the second-order ODE in a first-order form. To this end, we introduce an
auxiliary variable v̂h ≡ ∂ûh

∂t . The second-order ODE (11.4) is now recast as a system of (systems
of) first-order ODEs:

M̂h
dûh
dt

∣∣∣∣
t

− M̂hv̂h(t) = 0 in Rn, ∀t ∈ I, (11.5)

M̂h
dv̂h
dt

∣∣∣∣
t

+ Âhûh(t) = f̂h in Rn, ∀t ∈ I,

ûh(t = 0) = û0 in Rn,
v̂h(t = 0) = û1 in Rn.
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The system can be written more compactly written using a block matrix(
M̂h 0

0 M̂h

)
d

dt

(
ûh
v̂h

)
+

(
0 −M̂h

Âh 0

)(
ûh
v̂h

)
=

(
0

f̂h

)
in R2n.

This first-order system can be solved using any time-integration scheme.
We now briefly discuss the choice of a time integration scheme. (Similar to the lecture on

parabolic equations, we refer to the AER336 course notes for more detailed treatment of time
integration schemes.) One classical choice of time integrator for the wave equation is the Crank-
Nicolson method, which yields an algebraic system of the form(

M̂h −∆t
2 M̂h

∆t
2 Âh M̂h

)(
ˆ̂uk+1
h

ˆ̂vk+1
h

)
=

(
M̂h

∆t
2 M̂h

−∆t
2 Âh M̂h

)(
ˆ̂ukh
ˆ̂vkh

)
+

(
0

∆tf̂h

)
in R2n.

The Crank-Nicolson method is well-suited for the wave equation, as the full discrete system, just
like the continuous counterpart, conserves the total energy in the system. The Crank-Nicolson
method applied to the wave equation conserves energy because (i) the eigenvalues of the matrix(

0 −M̂h

Âh 0

)
are purely imaginary and (ii) the stability boundary for the Crank-Nicolson method

is along the imaginary axis.

11.6 Error analysis

For smooth problems, it can be shown that the Pp finite element spatial discretization and the
Crank-Nicolson time integration yields

‖u(t)− uh,∆t(t)‖L2(Ω) ≤ C1h
p+1 + C2∆t2,

‖u(t)− uh,∆t(t)‖H1(Ω) ≤ C1h
p + C2∆t2.

In other words, the scheme is p+ 1-st order in space in L2(Ω) and second-order in time. In general,
if the initial condition and/or the data f is not smooth, then the scheme still converges but at a
lower convergence rate.

11.7 Generalization to other second-order hyperbolic equations

As noted in the introduction, the wave equation is a model equation for second-order hyperbolic
equations. In fact, because of the abstraction provided by the weak formulation (11.2), we can
simply redefine (i) the function space and (ii) bilinear forms to obtain various equations. We here
provide a few examples.

Acoustic wave equation. The solution field for the acoustic wave equation is the time-dependent
pressure (perturbation) field. As the pressure field is a scalar field we consider V such that H1

0 (Ω) ⊂
V ⊂ H1(Ω). The bilinear forms are given by

m(w, v) ≡
∫

Ω

1

c2
wvdx ∀w, v ∈ V,

a(w, v) ≡
∫

Ω
∇v · ∇wdx ∀w, v ∈ V,
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where c > 0 is the speed of sound.
Elastodynamics. The solution field for the elastodynamics equation is the time-dependent dis-

placement field. As we have seen in the lecture on linear elasticity, we consider a vector-valued field
V such that H1

0 (Ω)d ⊂ V ⊂ H1(Ω)d. The bilinear forms are given by

m(w, v) ≡
∫

Ω
ρv · wdx ∀w, v ∈ V,

a(w, v) ≡
∫

Ω
(2µε(v) : ε(w) + λtr(ε(v))tr(ε(w)))dx ∀w, v ∈ V,

where ρ is the density (field), ε(v) = 1
2(∇v + ∇vT ) is the strain tensor, and λ ∈ L∞(Ω) and

µ ∈ L∞(Ω) are the first and second Lamé parameters, respectively.
We make two remarks. First, the weak formulation must be completed by incorporating the

particular boundary conditions associated with the physical problem; for instance, in acoustics
the boundary condition depends . Second, because m(·, ·) is symmetric and positive and a(·, ·) is
symmetric and coercive, both the acoustic wave equation and the elastodynamics equations share
much of mathematical properties of “the” wave equation studied in this lecture; for instance, the
total energy is conserved for both systems following Proposition 11.1.

11.8 Summary

We summarize key points of this lecture:

1. A weak formulation of the second-order hyperbolic equation is characterized by a mass bilinear
form m(·, ·) and a spatial bilinear form a(·, ·).

2. The solution to the wave equation preserves the total energy, which is the sum of the kinetic
and potential energies.

3. A classical approach to discretize the wave equation is to apply a Pp finite element approxima-
tion in space, rewrite the second-order ODE as a system of first-order ODEs, and then apply
the Crank-Nicolson time integration. The resulting approximation preserves the total energy
and, assuming the solution is smooth, is p+ 1-st order in space in L2(Ω) and second-order in
time.

4. Equations in continuum mechanics that have the same mathematical structure as the wave
equation include the acoustic wave equation and the elastodynamics equations.

148



Lecture 12

Discontinuous Galerkin methods

12.1 Motivation

In the previous lecture, we observed that the standard Galerkin method is not well-suited for
hyperbolic or advection-dominated problems and devised a stabilized method: the Galerkin least-
squares method. In this lecture we consider an alternative formulation: the discontinuous Galerkin
(DG) method.

12.2 Problem statement

We first introduce a Lipschitz domain Ω ⊂ Rd, a time interval I ≡ (0, T ], an advection field
b ∈ L∞(Ω)d, and the associated inflow and outflow boundaries:

Γin ≡ {x ∈ ∂Ω | n(x) · b(x) ≤ 0},
Γout ≡ ∂Ω \ Γin.

The strong form of a general hyperbolic equation is given by

∂u

∂t
+∇ · f(u) = 0 in Ω× I, (12.1)

u = ub on Γin × I,
u(t = 0) = u0 in Ω,

where f(u) is the flux function, which is f(u) = bu for advection equation. Note that the boundary
condition is imposed only on the inflow boundary.

12.3 Discontinuous Galerkin method

To introduce the DG method, we first introduce a triangulation Th = {K} of domain Ω such that∑
K∈Th K̄ = Ω̄ and K∩K ′ = ∅ ∀K,K ′ ∈ Th. We also denote the set of all facets of the triangulation

by Σh = {σ}. We further decompose the facet set Σh into the boundary facet set Σb
h = Σh ∩ ∂Ω

and the interior facet set Σi
h = Σh \ Σb

h. On each interior facet, we arbitrarily assign one of the
elements abutting the facet as the “+” element and the other element as the “−” element. (The
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DG scheme will be independent of this arbitrary assignment.) We then introduce an associated
space of discontinuous piecewise polynomials

Vh ≡ {v ∈ L2(Ω) | v|K ∈ Pp(K),∀K ∈ Th}.

We only require the functions to be in L2(Ω) and not H1(Ω) and hence the space Vh contains
discontinuous functions. As the functions in the space are discontinuous, the functions are “double-
valued” on the interior facets; to circumvent the ambiguity, we denote the function w ∈ Vh evaluated
on the + and − elements by w+ and w−, respectively.

To derive a DG method we first multiply the strong form (12.1) by vh ∈ Vh and integrate by
parts on each K ∈ Th:∫

K
vh
∂uh
∂t

dx+

∫
K
vh∇ · f(uh)dx =

∫
K
vh
∂uh
∂t

dx−
∫
K
∇vh · f(uh)dx+

∫
∂K

v+
h n

+ · f(u+
h )ds = 0,

where, for notational simplicity, we have assumed that the element K is on the “+” side of each of
the abutting facets. We then replace the flux on the interface with a numerical flux. For an interior
facet σ ∈ Σi

h, the numerical flux depends on the state on both sides of the facet and is of the form

f̂(w+, w−;n+) =
1

2
n+ · (f(w+) + f(w−)) +

1

2
c(w+, w−;n+)(w+ − w−);

here the function c(w+, w−;n+) is chosen such that the numerical flux is

i. consistent : f(w,w;n+) = n+ · f(w),

ii. conservative: f(w+, w−;n+) = −f(w−, w+;n−),

iii. dissipative: [w]+−f̂(w+, w−;n+) ≥ 0,

where [w]+− = w+−w−. For instance, for the advection equation with f(u) = bu, a common choice
is c(w+, w−;n+) = |b · n+|, which yields the “upwinding” flux:

f̂(w+, w−;n+) =

{
n+ · f(w+), b · n+ ≥ 0,

n+ · f(w−), b · n+ < 0;

in words, our numerical flux is based on the function value upwind of the facet. For a boundary
facet σ ∈ Σb

h, the numerical flux is given by

f̂b(w+, ub;n+) =

{
n+ · f(ub) on Γin

n+ · f(w+) on Γout

;

the boundary flux again results from upwinding. With these choices of the numerical fluxes, the
element-wise DG residual statement becomes∫
K
vh
∂uh
∂t

dx−
∫
K
∇vh · f(uh)dx+

∫
∂K∩Σi

h

v+
h f̂(u+

h , u
−
h ;n+)ds+

∫
∂K∩Σb

h

v+
h f̂

b(u+
h , u

b;n+)ds = 0.
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We now sum over all K ∈ Th to obtain the global DG residual statement: find uh(t) ∈ Vh, t ∈ I,
such that ∑

K∈Th

(∫
K
vh
∂uh
∂t

dx−
∫
K
∇vh · f(uh)dx

)
+
∑
σ∈Σi

h

∫
σ
[vh]+−f̂(u+

h , u
−
h ;n+)ds

+
∑
σ∈Σb

h

∫
σ
v+
h f̂

b(u+
h , u

b;n+)ds = 0 ∀vh ∈ Vh,

where we have appealed to the conservativity of the numerical flux to combine the interior facet
terms for the + and − elements. The statement may be more compactly stated as follows: find
uh(t) ∈ V, t ∈ I, such that ∫

Ω
vh
∂uh
∂t

dx+ rh(uh, vh) = 0 ∀vh ∈ Vh,

where the spatial residual form is given by

rh(w, v) ≡ −
∫
Th
∇v · f(w)dx+

∫
Σi
h

[v]+−f̂(w+, w−;n+)ds+

∫
Σb
h

v+f̂b(w+, ub;n+)ds.

12.4 Energy-stability analysis for linear equations

We now analyze the energy stability of a linear advection equation given by the flux f(u) ≡ bu:

∂u

∂t
+∇ · (bu) = 0 in Ω× I. (12.2)

For simplicity, we assume that the advection field b is divergence-free: ∇ · b = 0.

We first analyze the energy stability of the exact problem (12.2).

Proposition 12.1. The advection equation is energy stable (modulo boundary condition) with
the following energy balance:

1

2

∫
Ω
u(t = T )2dx+

1

2

∫
I

∫
Γout

|b · n|u2dsdt =
1

2

∫
Ω
u(t = 0)2dx+

1

2

∫
I

∫
Γin

|b · n|u2dsdt,

where 1
2‖u‖

2
L2(Ω) is the energy in the system. In other words,

(energy at t = T ) + (energy leaving Ω) = (energy at t = 0) + (energy entering Ω);

i.e., the energy is conserved in the advection equation (modulo the boundary conditions).

Proof. We multiply the advection equation (12.2) by the solution u and integrate in both space
and time ∫

I

∫
Ω
u
∂u

∂t
dxdt+

∫
I

∫
Ω
u∇ · (bu)dxdt = 0.
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The time derivative term simplifies to

∫
I

∫
Ω
u
∂u

∂t
dxdt =

∫
I

∫
Ω

∂

∂t

(
1

2
u2

)
dxdt =

∫
I

d

dt

(
1

2

∫
Ω
u2dx

)
dt

=
1

2

∫
Ω
u(t = T )2dx− 1

2

∫
Ω
u(t = 0)2dx

To simplify the advection term, we first note that

∫
Ω
u∇ · (bu)dx =

1

2

∫
Ω
ub · ∇udx− 1

2

∫
Ω
∇u · budx+

1

2

∫
∂Ω

(b · n)u2ds

=
1

2

∫
∂Ω

(b · n)u2ds =
1

2

∫
Γout

|b · n|u2ds− 1

2

∫
Γin

|b · n|u2ds,

where the first equality uses ∇ · b = 0. We then integrate the advection term over I to obtain the
desired relationship.

We now analyze the energy stability of the DG approximation. To this end, we first note that
the flux is given by f(u) = bu and then set the c(w+, w−;n+) term of the interior flux to c = |b ·n|.
With this choice, we obtain the following energy balance.

Proposition 12.2. The DG approximation of the advection equation is energy stable (modulo
boundary condition) with the following energy balance:

1

2

∫
Ω
u2
h(t = T ) +

1

2

∫
I

∫
Σi
h

[uh]+−|b · n|[uh]+−dsdt+
1

2

∫
I

∫
Σb
h∩Γout

u+
h |b · n|u

+
h ds

=
1

2

∫
Ω
u2
h(t = 0) +

1

2

∫
I

∫
Σb
h∩Γin

u+
h |b · n|u

b
hdsdt.

In other words,

1

2

∫
Ω
u2
h(t = T ) ≤ 1

2

∫
Ω
u2
h(t = 0) +

1

2

∫
I

∫
Σb
h∩Γin

u+
h |b · n|u

b
hdsdt.
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Proof. We first observe that

r(uh, uh) = −
∫
Th
uh · f(uh)dx+

∫
Σi
h

[uh]+−f̂(u+
h , u

−
h ;n+)ds+

∫
Σb
h

u+
h f̂

b(u+
h , u

b;n+)ds

=
∑
K∈Th

(
−1

2

∫
K
∇uh · f(uh)dx+

1

2

∫
K
uh∇ · f(uh)dx− 1

2

∫
∂K

uhn · f(uh)ds

)
+

∫
Σi
h

[uh]+−f̂(u+
h , u

−
h ;n+)ds+

∫
Σb
h

u+
h f̂

b(u+
h , u

b;n+)ds

=

∫
Th

(−1

2
∇uh · f(uh) +

1

2
uh∇ · f(uh))︸ ︷︷ ︸

(I)

dx

+

∫
Σi
h

(−1

2
u+
h n

+ · f(u+
h )− 1

2
u−h n

− · f(u−h ) + [uh]+−f̂(u+
h , u

−
h ;n+))︸ ︷︷ ︸

(II)

ds

+

∫
Σb
h∩Γin

(−1

2
u+
h n

+ · f(u+
h ) + u+

h f̂
b(u+

h , u
b;n+))︸ ︷︷ ︸

(III)

ds

+

∫
Σb
h∩Γout

(−1

2
u+
h n

+ · f(u+
h ) + u+

h f̂
b(u+

h , u
b;n+))︸ ︷︷ ︸

(IV)

ds.

We now analyze the terms (I), (II), (III), and (IV). We first observe that

(I) = −1

2
∇uh · f(uh) +

1

2
uh · ∇ · f(uh) = −1

2
∇uh · buh +

1

2
uh · ∇ · (buh) = 0

for a divergence-free advection field b. We next observe that the interface facet term simplifies as

(II) = −1

2
u+
h n

+ · f(u+
h )− 1

2
u−h n

− · f(u−h ) + [uh]+−f̂(u+
h , u

−
h ;n+)

= −1

2
u+
h n

+ · (bu+
h )− 1

2
u−h n

− · (bu−h ) + [uh]+−(
1

2
n+ · (bu+

h + bu−h ) +
1

2
|b · n|[uh]+−)

=
1

2
(−u+

h n
+ · (bu+

h )− u−h n
− · (bu−h ) + u+

h n
+ · (bu+

h + bu−h ) + u−h n
− · (bu+

h + bu−h ) + [uh]+−|b · n|[uh]+−)

=
1

2
[uh]+−|b · n|[uh]+−.

We then observe that the inflow boundary facet term simplifies to

(III) = −1

2
u+
h n

+ · f(u+
h ) + u+

h f̂
b(u+

h , u
b;n+) = −1

2
u+
h n

+ · (bub) + u+
h n

+ · bub = −1

2
u+
h |b · n|u

b
h,

where the last equality follows from b · n+ = −|b · n| on Γin. Similarly, the outflow boundary facet
term simplifies to

(IV) = −1

2
u+
h n

+ · f(u+
h ) + u+

h f̂
b(u+

h , u
b;n+) = −1

2
u+
h n

+ · (bu+
h ) + u+

h n
+ · bu+

h =
1

2
u+
h |b · n|u

+
h ,
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where the last equality follows from b · n+ = |b · n| on Γout. It follows that

r(uh, uh) =
1

2

∫
Σi
h

[uh]+−|b · n|[uh]+−ds−
1

2

∫
Σb
h∩Γin

u+
h |b · n|u

b
hds+

1

2

∫
Σb,out∩Γout

u+
h |b · n|u

+
h ds.

The integration of the residual term over I yields

1

2

∫
Ω
u2
h(t = T ) +

1

2

∫
I

∫
Σi
h

[uh]+−|b · n|[uh]+−dsdt+
1

2

∫
I

∫
Σb
h∩Γout

u+
h |b · n|u

+
h ds

=
1

2

∫
Ω
u2
h(t = 0) +

1

2

∫
I

∫
Σb
h∩Γin

u+
h |b · n|u

b
hdsdt,

which is the desired result.

We observe that in the DG formulation the jump term on the interior facet 1
2

∫
I
∫

Σi
h
[uh]+−|b ·

n|[uh]+−dsdt provides additional dissipation relative to the original weak formulation. This dissipa-
tion ensures that the DG formulation is energy stable.

12.5 Observations

We make a few additional observations about the DG method:

• For Pp=0, the DG method reduces to the finite volume method without reconstruction.

• The DG method is locally conservative:

d

dt

∫
K
uhdx+

∫
∂κ
f̂(u+

h , u
−
h ;n+)ds = 0 ∀K ∈ Th.

The result is a direct consequence of the test space which includes element-wise constant
functions.

• The mass matrix is block diagonal. The block-diagonal mass matrix enables efficient imple-
mentation of explicit time-marching schemes. The block-diagonal mass matrix is a direct
consequence of the discontinuous approximation space.

• A priori error analysis: if u ∈ Hs+1(Ω), then

‖u− uh‖L2(Ω) ≤ Chr+1/2|u|Hr+1(Ω),

for r ≡ min{s, p}. This formal convergence rate is suboptimal by the order of 1/2; however, in
practice, we almost always observe the optimal convergence rate of hp+1 for smooth problems.

• The DG method is energy stable for linear hyperbolic systems for an appropriate choice of
the numerical fluxes (as analyzed in Section 12.4).

• The DG method is entropy stable for nonlinear hyperbolic systems for an appropriate choice
of the numerical fluxes.
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12.6 DG methods for elliptic equations (brief overview)

DG methods can treat also elliptic PDEs. To illustrate a formulation using a concrete example, we
introduce a Poisson’s problem in Ω ⊂ Rd:

−∆u = f in Ω,

u = ub on ΓD,

∂u

∂n
= g on ΓN .

There are several different DG discretizations for the elliptic equations. For simplicity, we consider
the interior penalty (IP) method.

To introduce the IP-DG method, we first recall the DG approximation space

Vh ≡ {v ∈ L2(Ω) | v|K ∈ Pp(K),∀K ∈ Th}.

We note that, unlike the finite element space for the standard Galerkin discretization, the DG space
does not incorporate the Dirichlet boundary condition. We then define for vh ∈ Vh the facet jump
operator

JvK =

{
v+n+ + v−n− on Γih,

v+ on Γbh ≡ ΓD ∪ ΓN ,

and the facet averaging operator

{v} =

{
1
2(v+ − v−) on Γih,

v+ on Γbh.

The IP-DG approximation of the Poisson’s problem is as follows: find uh ∈ Vh such that

ah(uh, vh) = `h(vh) ∀vh ∈ Vh,

where

ah(w, v) ≡
∫

Ω
∇v · ∇wdx−

∫
Σih∪ΓD

({∇v} · JwK + JvK · {∇w})ds+

∫
Σih∪ΓD

ϑJvK · JwKds,

`h(v) ≡
∫

Ω
vfdx+

∫
ΓN

vgds−
∫

ΓD

(∇v+ · n)ubds+

∫
ΓD

ϑv+ubds,

and ϑ ∈ R>0 is the stabilization parameter that scales as ϑ ∼ 1/h. The bilinear form comprises
the standard Galerkin term on Ω and the DG-specific terms on Σi

h ∪ΓD. Similarly, the linear form
comprises the standard Galerkin terms on Ω and ΓN and the DG-specific terms on ΓD. We note
that both the Dirichlet and Neumann boundary conditions are weakly enforced.

We conclude this short section with a few remarks:

• Let the DG-norm by given by

‖v‖2DG ≡
∑
κ∈Th

‖∇v‖2L2(κ) +

∫
Σih∪ΓD

(ϑ|JvK|2 + ϑ−1|{∇v}|2)ds.

The bilinear form ah(·, ·) is coercive with respect to ‖ · ‖DG in Vh assuming ϑ > C/h, where
the minimum value of C depends on the shape of the elements.
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• The IP-DG method is (primal) consistent and adjoint consistent.

• The DG error converges at the optimal rate: if u ∈ Hs+1(Ω), then ‖u − uh‖DG < Chr for
r = min{s, p}.

12.7 Summary

We summarize key points of this lecture:

1. The DG method provides energy/entropy stable approximations of hyperbolic equations.

2. The DG method seeks solution in discontinuous element-wise polynomial spaces.

3. The choice of the numerical flux — which should be consistent, conservative, and dissipative
— plays a crucial role in ensuring the energy/entropy stability of the DG formulation. The
dissipation is provided by the jump in the state across elements.

4. We refer to Section 12.5 for a bullet list of additional properties of the DG method for
hyperbolic PDEs.

5. DG methods can also treat elliptic PDEs.
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Lecture 13

Navier-Stokes equations

©2018–2022 Masayuki Yano. Prepared for AER1418 Variational Methods for PDEs taught at the
University of Toronto.

13.1 Motivation

In this lecture we consider a weak formulation and the associated finite element approximation of
the incompressible Navier-Stokes equations. The Navier-Stokes equations play an important role
in the design and analysis of fluids systems and multi-physics systems that involve fluids, such
as fluid-thermal transport and fluid-structure interaction. The Navier-Stokes equations also allow
us to exercise the formulation and implementation of finite element methods for nonlinear and
non-coercive PDEs.

13.2 Strong and weak formulations

Let Ω ⊂ Rd be a Lipschitz domain. We partition the boundary ∂Ω into an inflow boundary Γin,
outflow boundary Γout, and (no-slip) wall boundary Γwall, such that ∂Ω = Γin ∪ Γout ∪ Γwall and
Γin ∩ Γout = Γin ∩ Γwall = Γout ∩ Γwall = ∅. The strong form of the Navier-Stokes equations for the
(vector-valued) velocity u and (scalar-valued) pressure p is given by

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

where the first (vector-valued) equation is associated with the conservation of momentum, the
second (scalar-valued) equation is associated with the conservation of mass, and ν ∈ R>0 is the
kinematic viscosity. The first equation is often called momentum equation; the second equation is
often called continuity equation or divergence-free condition. The equations are augmented by the
following boundary conditions:

u = uin on Γin,

ν(n · ∇u)− pn = 0 on Γout,

u = 0 on Γwall.
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(We can readily consider other boundary conditions, but we focus on these three boundary condi-
tions in this lecture (i) to simplify the presentation and (ii) as they are frequently encountered in
practice.) The equations can also be written using index notation:

∂ui
∂t

+ uj
∂ui
∂xj
− ν ∂2ui

∂xj∂xj
+
∂p

∂xi
= 0 in Ω,

∂uj
∂xj

= 0 in Ω,

with boundary conditions

ui = uin,i on Γin,

νnj
∂ui
∂xj
− pni = 0 on Γout,

ui = 0 on Γwall;

here the equations are enforced for i = 1, . . . , d, and the summation on repeated j indices are
implied.

To obtain the weak form of the Navier-Stokes equations, we first introduce approximation spaces
for the velocity and pressure,

V ≡ {v ∈ H1(Ω)d | v|Γwall∪Γin = 0},
Q ≡ L2(Ω),

and the associated velocity space with nonhomogeneous boundary conditions

VE ≡ {v ∈ H1(Ω)d | v|Γwall
= 0, v|Γin = uin} = uE + V,

where uE is any function that satisfies uE |Γin = uin. (The pressure space would have to be modified
to {q ∈ L2(Ω) |

∫
Ω qdx = 0} if we wish to estimate flow in a closed domain without inflow and

outflow boundaries, as there is no “absolute” pressure in this case. We will not consider this
closed-domain case in this lecture.) We then multiply the momentum equation by v ∈ V and the
continuity equation by q ∈ Q, integrate by parts, and incorporate the boundary condition on Γout.
The resulting weak formulation is as follows: for each t ∈ (0, T ], find (u(t), p(t)) ∈ VE × Q such
that∫

Ω
v · ∂u

∂t
(t)dx+

∫
Ω
ν∇v : ∇u(t)dx+

∫
Ω
v · (u(t) · ∇u(t))dx−

∫
Ω

(∇ · v)p(t)dx = 0 ∀v ∈ V,

−
∫

Ω
q(∇ · u(t))dx = 0 ∀q ∈ Q.

We could more compactly express the equations by introducing bilinear forms m(·, ·), a(·, ·) and
b(·, ·) and a trilinear form c(·, ·, ·): for each t ∈ (0, T ], find (u(t), p(t)) ∈ VE ×Q such that

m(
∂u

∂t
(t), v) + a(u(t), v) + c(u(t), u(t), v) + b(p(t), v) = 0 ∀v ∈ V,

b(q, u(t)) = 0 ∀q ∈ Q,
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where

m(w, v) ≡
∫

Ω
v · wdx =

∫
Ω
vjwjdx ∀w, v ∈ H1(Ω)d,

a(w, v) ≡
∫

Ω
ν∇v : ∇wdx =

∫
Ω
ν
∂vi
∂xj

∂wi
∂xj

dx ∀w, v ∈ H1(Ω)d,

b(q, v) ≡ −
∫

Ω
(∇ · v)qdx = −

∫
Ω

∂vj
∂xj

qdx ∀q ∈ L2(Ω), ∀v ∈ H1(Ω)d,

c(z, w, v) ≡
∫

Ω
v · (z · ∇w)dx =

∫
Ω
vizj

∂wi
∂xj

dx ∀z, w, v ∈ H1(Ω)d.

We obtain the steady Navier-Stokes equations by setting ∂u
∂t = 0: find (u, p) ∈ VE ×Q such that

a(u, v) + c(u, u, v) + b(p, v) = 0 ∀v ∈ V,
b(q, u) = 0 ∀q ∈ Q.

We will focus on the solution of this steady form of the equations for the rest of the lecture.

13.3 Well-posedness: Stokes problem

The (steady) Navier-Stokes equations, unlike equations that we have studied so far, is neither
coercive nor linear. The lack of coercivity and linearity necessitates the use of new technical tools
to show well-posedness in the sense that the solution (i) exists, (ii) is unique, and (iii) is stable.
In this lecture we introduce tools required to analyze non-coercive problems but not nonlinear
problems.

To this end, we introduce the Stokes equations, which models incompressible flows in the limit
of vanishing inertia effect relative to the viscous effect (i.e., the Reynolds number approaching 0).
The weak form of the Stokes equations is as follows: find (u, p) ∈ V ×Q such that

a(u, v) + b(p, v) = `(v) ∀v ∈ V, (13.1)

b(q, u) = 0 ∀q ∈ Q,

where ` ∈ V ′ is a continuous linear form. Note that nonhomogeneous Dirichlet boundary conditions
can be absorbed in the linear form `(·), and hence we choose V, and not VE , as the trial space.

We recall that the Lax-Milgram theorem played a key role in showing the well-posedness of
coercive problems. The theorem that plays a similar role for non-coercive problems is the Banach-
Nečas-Babuška (BNB) theorem:

Theorem 13.1 (Banach-Nečas-Babuška (BNB) theorem). Let W be a Banach space, V be a
reflexive Banach space, A :W×V → R be a bilinear form, and ` ∈ V ′ be a linear form. Consider a
weak problem: find u ∈ W such that A(u, v) = `(v) ∀v ∈ V. Then, the weak problem is well-posed
if and only if there exists the inf-sup constant

β ≡ inf
w∈W

sup
v∈V

A(w, v)

‖w‖W‖v‖V
> 0 (13.2)

and
∀v ∈ V, (∀w ∈ W, A(w, v) = 0) ⇒ (v = 0).
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In addition, the following stability statement holds:

‖u‖W ≤
1

β
‖`‖V ′ .

Proof. See Ern and Guermond, Theory and Practice of Finite Elements, 2004.

The BNB theorem provides necessary and sufficient condition for a weak formulation to be
well-posed. This is unlike the Lax-Milgram theorem, which identifies conditions that are sufficient
but not necessary for well-posedness. The BNB theorem is more general than the Lax-Milgram
theorem; the latter can be readily derived from the former for coercive problems.

The application of the BNB theorem to the Stokes problem yields the following result:

Proposition 13.2. The Stokes problem (13.1) has a unique solution, and the following stability
statement holds:

‖u‖V ≤
1

α
‖`‖V ′ ,

‖p‖Q ≤
1

β

(
1 +

γ

α

)
‖`‖V ′ ,

where the coercivity and continuity constant for a(·, ·) are given by

α ≡ inf
v∈Z

a(v, v)

‖v‖2V
and γ ≡ sup

w∈V
sup
w∈V

|a(w, v)|
‖w‖V‖v‖V

for the space Z ≡ {v ∈ V | b(q, v) = 0 ∀q ∈ Q}, and the Babuška-Brezzi (BB) inf-sup constant is
given by

β ≡ inf
q∈Q

sup
v∈V

b(q, v)

‖q‖Q‖v‖V
> 0. (13.3)

Sketch of proof. We provide a sketch of a proof. For a complete proof, see, for example, Ern and
Guermond, Theory and Practice of Finite Elements, 2004.

We first observe that in the space Z ≡ {v ∈ V | b(q, v) = 0 ∀q ∈ Q} the Stokes problem (13.1)
simplifies to the following: find u ∈ Z such that

a(u, v) = `(v) ∀v ∈ Z. (13.4)

We note that the space Z ⊂ V is a Hilbert space. In addition, the bilinear form a(·, ·) is coercive
in V because (i) a(·, ·) is equivalent to the H1(Ω) semi-norm and (ii) we can invoke the Poincaré-
Friedrichs inequality. It follows that a(·, ·) is also coercive in Z ⊂ V. The bilinear form a(·, ·) is also
continuous in Z ⊂ V. Hence, by the Lax-Milgram theorem in Z, the problem (13.4) has a unique
solution and satisfies the stability statement ‖u‖V ≤ 1

α‖`‖V ′ .
We next observe that given velocity u ∈ V, the pressure satisfies the following statement: find

p ∈ Q such that
b(p, v) = `(v)− a(u, v) ∀v ∈ V.

For V such that H1
0 (Ω)d ⊂ V ⊂ H1(Ω)d and Q ≡ L2(Ω), it can be shown that the BB inf-

sup constant β is bounded away from 0. Hence the solution p exists and is unique by the BNB
theorem. In addition, by the BNB theorem and continuity of a(·, ·) and `,

‖p‖Q ≤
1

β
‖`(·)− a(u, ·)‖V ′ ≤

1

β
(‖`‖V ′ + γ‖u‖V) ≤ 1

β

(
1 +

γ

α

)
‖`‖V ′ ,

which is the desired stability result.

160



Note that the combination of the coercivity constant α and the inf-sup constant β plays the
role of a stability constant in the Stokes problem.

Remark 13.3. The Stokes problem is a prototypical saddle-point problem, and admits a saddle-
point formulation. To see this, we first introduce a Lagrangian

L(w, q) ≡ 1

2
a(w,w) + b(q, w)− `(w) ∀w ∈ V, ∀q ∈ Q.

The solution to the Stokes problem (13.1), (u, p) ∈ V ×Q, is the saddle point of the Lagrangian in
the sense that

L(u, p) = inf
w∈V

sup
q∈Q
L(w, q).

In the saddle-point formulation, the pressure p is the Lagrange multiplier that enforces the divergence-
free condition. The well-posed analysis we have considered in this section applies to any saddle-point
problem.

13.4 Finite element formulation

We now consider finite element approximation of the Stokes and Navier-Stokes equations. To this
end, we first introduce approximation spaces associated with Taylor-Hood elements:

Vh = {v ∈ V | v|K ∈ Pp(K)d, ∀K ∈ Th},
Qh = {q ∈ Q | q|K ∈ Pp−1(K), ∀K ∈ Th}.

In words, Vh is the space of piecewise Pp polynomials with appropriate Dirichlet boundary condi-
tions, and Qh is the space of piecewise Pp−1 polynomials. As we will see shortly, as the equations
are only inf-sup stable and not coercive, the use of non-equal polynomial degrees for Vh and Qh is
necessary to ensure the finite element problem is well posed. For problems with nonhomogeneous
Dirichlet boundaries, we also introduce

VEh ≡ uEh + Vh,

where uEh ∈ Vh satisfies uEh |Γ = ubh.
The finite element approximation of the Stokes equations is as follows: find (uh, ph) ∈ Vh ×Qh

such that

a(uh, vh) + b(ph, vh) = `(vh) ∀vh ∈ Vh,
b(qh, uh) = 0 ∀qh ∈ Qh.

Similarly the finite element approximation of the Navier-Stokes equations is as follows: find (uh, ph) ∈
VEh ×Qh such that

a(uh, vh) + c(uh, uh, vh) + b(ph, vh) = 0 ∀vh ∈ Vh,
b(qh, uh) = 0 ∀qh ∈ Qh.

Remark 13.4. Similarly to the advection-diffusion equation considered in Lecture 9, the finite
element approximation of the Navier-Stokes equations may exhibit spurious oscillations if the grid
Peclet number is large: i.e., |u|hKν � 1. The spurious oscillations can be eliminated by incorporating
a GLS or SUPG stabilization considered in Lecture 9. In this lecture, we for simplicity assume that
h is sufficiently small such that |u|hKν < 1, and we do not consider these stabilization techniques.
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13.5 Finite element theory

We now analyze the error in the finite element approximation. We limit our analysis to the Stokes
equations. We begin with a generalized Céa’s lemma which applies to non-coercive problems that
satisfy the BNB conditions:

Lemma 13.5 (Céa’s lemma (non-coercive)). Consider the setting of the BNB theorem, Theo-
rem 13.1, and the associated finite-dimensional approximation: find uh ∈ Wh ⊂ W such that
A(uh, vh) = `(vh) ∀vh ∈ Vh ⊂ V. Then

‖u− uh‖W ≤
(

1 +
γ

βh

)
inf

wh∈Wh

‖u− wh‖W ,

where the (discrete) inf-sup constant βh and the continuity constant γ are given by

βh ≡ inf
wh∈Wh

sup
vh∈Vh

A(wh, vh)

‖wh‖W‖vh‖V
,

γ ≡ sup
w∈W

sup
v∈V

A(w, v)

‖w‖W‖v‖V
.

Proof. By the definition of the discrete inf-sup constant, for an arbitrary wh ∈ Wh,

βh‖uh − wh‖W ≤ sup
vh∈Vh

A(uh − wh, vh)

‖vh‖V
= sup

vh∈Vh

A(u− wh, vh)

‖vh‖V
≤ γ‖u− wh‖W ,

where the equality follows from the Galerkin orthogonality A(u − uh, vh) = 0 ∀vh ∈ Vh, which
implies A(uh − wh, vh) = A(u− wh, vh) ∀wh, vh ∈ Vh. It follows that by the triangle inequality

‖u− uh‖W ≤ ‖u− wh‖W + ‖uh − wh‖W ≤
(

1 +
γ

βh

)
‖u− wh‖.

We choose wh to be the infimizer of the norm to conclude the proof.

We again note that the inf-sup constant βh plays the role of the “stability constant” that the
coercivity constant α plays for coercive problems. However, one key distinction is that that the
discrete inf-sup constant is not bounded from below by the (continuous) inf-sup constant : i.e.,

βh ≡ inf
wh∈Wh

sup
vh∈Vh

A(wh, vh)

‖wh‖W‖vh‖V
6≥ inf

w∈W
sup
v∈V

A(w, v)

‖w‖W‖v‖V
≡ β,

because while the infimizer space is smaller the supremizer space is also smaller. This is unlike the
case of the coercivity constant for which

αh ≡ inf
wh∈Wh

a(wh, wh)

‖wh‖2W
≥ inf

w∈W

a(w,w)

‖w‖2W
≡ α.

The fact βh 6≥ β means that, for non-coercive problems, the approximation of the weak solution
in a subspace (as we do in finite element) may not produce a well-posed problem even if the
original problem is well-posed. This in turn often implies that we have to either (i) choose the
approximation spaces carefully such that the discrete inf-sup condition is satisfied for all h or (ii)
add a stabilization term to the bilinear form.

We now apply the generalized Céa’s lemma to the saddle-point problem associated with the
Stokes equations. To begin, we introduce the discrete Babuška-Brezzi condition associated with
Stokes (or more generally saddle-point) problems:
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Proposition 13.6 (Babuška-Brezzi condition). A finite-element approximation of the Stokes equa-
tion is well-posed if the Babuška-Brezzi condition

βh ≡ inf
qh∈Qh

sup
vh∈Vh

b(qh, vh)

‖qh‖Q‖vh‖V
> 0

is satisfied.

We again observe that the Babuška-Brezzi inf-sup constant βh is not bounded from below by
the continuous counterpart β:

βh ≡ inf
qh∈Qh

sup
vh∈Vh

b(qh, vh)

‖qh‖Q‖vh‖V
6≥ inf

q∈Q
sup
v∈V

b(q, v)

‖q‖Q‖v‖V
≡ β.

We cannot choose an infimizer space (i.e., the pressure space Qh) that is “too large” relative to the
supremizer space (i.e., the velocity space Vh) as such a choice could yield βh = 0 and an ill-posed
finite element problem. In particular, if we choose the equal-degree polynomials for Vh and Qh,
then the finite element approximation of the Stokes problem is not well-posed. The Babuška-Brezzi
condition is also referred to as inf-sup condition, Ladyzhenskaya-Babuška-Brezzi (LBB) condition,
or compatibility condition in literature.

There are two approaches to ensure that the Babuška-Brezzi condition is satisfied: the first is to
choose an appropriate pair of Vh and Qh; the second is to add an explicit pressure stabilization. In
this lecture we pursue the first approach and use the Taylor-Hood elements, for which the following
result holds:

Proposition 13.7 (Taylor-Hood elements). The Pp-Pp−1 Taylor-Hood element space, based on
piecewise Pp velocity space and piecewise Pp−1 pressure space, satisfies the Babuška-Brezzi condition
for any triangulation Th.

Having ensured the well-posedness of the finite element approximation of the Stokes equation,
we next analyze the error in the finite element approximation:

Proposition 13.8. Consider the finite element approximation of the Stokes problem with the
velocity approximation space Vh ⊂ V and the pressure approximation space Qh ⊂ Q. Let Zh ⊂ Vh
be the space of discretely divergence-free functions: Zh ≡ {vh ∈ Vh | b(qh, vh) = 0, ∀qh ∈ Qh}. We
introduce the following constants:

αh ≡ inf
vh∈Zh

a(vh, vh)

‖vh‖2V
, γ ≡ sup

w∈V
sup
v∈V

a(w, v)

‖w‖V‖v‖V
,

βh ≡ inf
qh∈Qh

sup
vh∈Vh

b(qh, vh)

‖qh‖Q‖vh‖V
, δ ≡ sup

q∈Q
sup
v∈V

b(q, v)

‖q‖Q‖v‖V
.

The following error estimates hold:

‖u− uh‖V ≤
(

1 +
γ

αh

)
inf

wh∈Zh
‖u− wh‖V +

δ

αh
inf

qh∈Qh
‖p− qh‖Q,

‖p− ph‖Q ≤
γ

βh

(
1 +

γ

αh

)
inf

wh∈Zh
‖u− wh‖V +

(
1 +

δ

βh
+

γδ

αhβh

)
inf

qh∈Qh
‖p− qh‖Q.

Moreover, the best-fit approximation error in Zh is bounded by

inf
wh∈Zh

‖u− wh‖V ≤
(

1 +
δ

βh

)
inf

vh∈Vh
‖u− vh‖V .
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Proof. See Ern and Guermond, Theory and Practice of Finite Elements, 2010.

In words, the Taylor-Hood approximation of the Stokes problem is quasi-optimal in the sense
that the finite-element approximation is only some constant away from the best-fit approximation
for a given space Vh ×Qh The combination of the proposition and the polynomial approximation
theory yields the following result:

Proposition 13.9. If u ∈ H1(Ω) ∩ Hs+1(Th) and p ∈ L2(Ω) ∩ Hs′(Th), the error in the finite
element approximation based on the Pp-Pp−1 Taylor-Hood elements is bounded by

‖u− uh‖H1(Ω) ≤ C1h
r(|u|Hr+1(Th) + |p|Hr(Th))

‖p− ph‖L2(Ω) ≤ C2h
r(|u|Hr+1(Th) + |p|Hr(Th))

where r ≡ min{s, s′, p}.

The proposition shows that if the solution is smooth then the finite element approximation
converges as ‖u − uh‖H1(Ω) ≤ Chp and ‖p − ph‖L2(Ω) ≤ C ′hp. In addition, if the problem is
sufficiently regular such that the elliptic regularity estimate hold, then ‖u− uh‖L2(Ω) ≤ C ′′hp+1.

13.6 Finite element implementation

We now consider the implementation of the finite element method. To this end, we first introduce
polynomial spaces

H1
h,p(Ω) ≡ {v ∈ C1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th},

H1
h,p−1(Ω) ≡ {v ∈ C1(Ω) | v|K ∈ Pp−1(K), ∀K ∈ Th},

which do not incorporate any essential boundary conditions. We then introduce bases {φk}mk=1 and
{χk′}m

′
k′=1 so that

H1
h,p(Ω) = span{φk}mk=1 and H1

h,p−1(Ω) = span{χk′}m
′

k=1.

We can then uniquely express any vector-valued velocity uh ∈ H1
h,p(Ω)d and any scalar-valued

pressure ph ∈ H1
h,p−1(Ω) as

uh,j(x) =
m∑
k=1

ûh,jkφk(x) and ph(x) =
m′∑
k′=1

p̂h,k′χk′(x)

for some coefficients ûh ∈ Rdm and p̂h ∈ Rm′ . For notational convenience, we also introduce the
“full” coefficient vector U ∈ Rdm+m′ such that

U =


ûh,1

...
ûh,d
p̂h

 .

Our goal is to find the vector U ∈ Rdm+m′ associated with the finite element approximation.
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To define the solution, we first define the (discrete) residual operator associated with our finite
element approximation that does not (yet) incorporate the Dirichlet boundary conditions: R :
Rdm+m′ → Rdm+m′ given by

R(U) =


R1(U)

...

Rd(U)

Rd+1(U)


where

Ri(U)a =

∫
Ω

(
ν
∂φa
∂xk

∂uh,i
∂xk

+ φauh,k
∂uh,i
∂xk

− ∂φa
∂xi

ph

)
dx, i = 1, . . . , d,

Rd+1(U)a′ = −
∫

Ω
χa′

(
∂uh,j
∂xj

)
dx,

for a = 1, . . . ,m and a′ = 1, . . . ,m′. The first d blocks are associated with the momentum equation,
and the last block is associated with the continuity equation. For instance, for a two-dimensional
problems the residual is given by

R1(U)a =

∫
Ω

(
ν
∂φa
∂x1

∂uh,1
∂x1

+ ν
∂φa
∂x2

∂uh,1
∂x2

+ φauh,1
∂uh,1
∂x1

+ φauh,2
∂uh,1
∂x2

− ∂φa
∂x1

ph

)
dx

R2(U)a =

∫
Ω

(
ν
∂φa
∂x1

∂uh,2
∂x1

+ ν
∂φa
∂x2

∂uh,2
∂x2

+ φauh,1
∂uh,2
∂x1

+ φauh,2
∂uh,2
∂x2

− ∂φa
∂x2

ph

)
dx

R3(U)a′ = −
∫

Ω
χa′

(
∂uh,1
∂x1

+
∂uh,2
∂x2

)
dx,

for a = 1, . . . ,m and a′ = 1, . . . ,m′.

We now consider two distinct approaches to impose Dirichlet boundary condition that yield
exactly the same solution. The first approach is consistent with our function space interpretation
Vh ⊂ H1

h,p(Ω)d; however, this approach is admittedly more complicated to implement than the

second approach and hence is not recommended. We first decompose the coefficient vector U as

U = U e + Ũ ,

where U e ∈ Rdm+m′ is chosen such that the associated finite element solution (ueh, p
e
h) satisfies

— or more precisely approximates — the Dirichlet boundary conditions (i.e., the values of U e

on a Dirichlet boundary node is given by the associated boundary value), and Ũ ∈ Rdm+m′ is a
vector that is zero on Dirichlet boundary nodes. We next introduce a vector R̂ ∈ Rdn+n′ which
we obtain by removing the degrees of freedom associated with the Dirichlet boundary nodes from
R ∈ Rdm+m′ . The solution to our finite element problem is given by the following equations for the
coefficients: find U = U e + Ũ ∈ Rdm+m′ such that

R̂(U) = 0 in Rdn+n′ .

This approach is consistent with our construction VE = uE + Vh, but is somewhat cumbersome to
implement.
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Alternative — implementationally simpler and recommended — approach to impose the Dirich-
let boundary condition is to replace the residual associated with Dirichlet nodes with a “penalty
equation” associated with the boundary condition as follows:

R
E
i (U)a =

{
Ri(U)a if component i of node a is not Dirichlet BC

ûh,ia − ubi(xa) if component i of node a is Dirichlet BC
,

for i = 1, . . . , d. This approach is simpler to implement as (i) the size of the residual vector is
unchanged and (ii) the Dirichlet boundary condition is imposed as part of the residual.

The solution to our finite element problem is given by the following equations for the coefficients:
find Ū ∈ Rdm+m′ such that

R̄E(Ū) = 0 in Rdm+m′ .

This equation is nonlinear in Ū ; we will find the solution using Newton’s method.

13.7 Solution of nonlinear problems by Newton’s method

We now solve the nonlinear equation for the coefficients U using Newton’s method. To this end,
we first identify the Jacobian matrix J(U) ∈ R(dm+m′)×(dm+m′) given by

J(U) =
∂R

∂U
=


J1,1(U) · · · J1,d(U) J1,d+1(U)

...
. . .

...
...

Jd,1(U) · · · Jd,d(U) Jd,d+1(U)

Jd+1,1(U) · · · Jd+1,d(U) 0

 ,

where

J i,j(U)ab =

[
∂Ri

∂U j

]
a,b

=

∫
Ω

(
ν
∂φa
∂xk

∂φb
∂xk

δij + φauh,k
∂φb
∂xk

δij + φa
∂uh,i
∂xj

φb

)
dx, i, j = 1, . . . , d,

J i,d+1(U)ab′ =

[
∂Ri

∂Ud+1

]
a,b′

= −
∫

Ω

∂φa
∂xi

χb′dx, i = 1, . . . , d,

Jd+1,j(U)a′b =

[
∂Rd+1

∂U j

]
a′,b

= −
∫

Ω
χa′

∂φa
∂xj

dx, j = 1, . . . , d,

for a, b = 1, . . . ,m and a′, b′ = 1, . . . ,m′. For instance, for a two-dimensional problems the Jacobian
is given by

J(U) =
∂R

∂U
=

 J11(U) J12(U) J13(U)

J21(U) J22(U) J23(U)

J31(U) J32(U) 0

 ,
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where

J11(U)ab =

[
∂R1

∂U1

]
a,b

=

∫
Ω

(
ν
∂φa
∂x1

∂φb
∂x1

+ ν
∂φa
∂x2

∂φb
∂x2

+ φauh,1
∂φb
∂x1

+ φauh,2
∂φb
∂x2

+ φaφb
∂uh,1
∂x1

)
dx

J12(U)ab =

[
∂R1

∂U2

]
a,b

=

∫
Ω
φa
∂uh,1
∂x2

φbdx,

J13(U)ab′ =

[
∂R1

∂U3

]
a,b′

= −
∫

Ω

∂φa
∂x1

χb′dx,

J21(U)ab =

[
∂R2

∂U1

]
a,b

=

∫
Ω
φa
∂uh,2
∂x1

φbdx,

J22(U)ab =

[
∂R2

∂U2

]
a,b

=

∫
Ω

(
ν
∂φa
∂x1

∂φb
∂x1

+ ν
∂φa
∂x2

∂φb
∂x2

+ φauh,1
∂φb
∂x1

+ φauh,2
∂φb
∂x2

+ φaφb
∂uh,2
∂x2

)
dx,

J23(U)ab′ =

[
∂R2

∂U3

]
a,b′

= −
∫

Ω

∂φa
∂x2

χb′dx,

J31(U)a′b =

[
∂R3

∂U1

]
a,b′

= −
∫

Ω
χa′

∂φb
∂x1

dx,

J32(U)a′b =

[
∂R3

∂U2

]
a,b′

= −
∫

Ω
χa′

∂φb
∂x2

dx,

for a, b = 1, . . . ,m and a′, b′ = 1, . . . ,m′.
We now impose Dirichlet boundary conditions. We recall that we have considered two distinct

approaches to implement Dirichlet boundary conditions. For the first approach, we introduce
Ĵ ∈ R(dn+n′)×(dn+n′) which we obtain by removing the degrees of freedom associated with the
Dirichlet boundary nodes from J ∈ R(dm+m′)×(dm+m′). Note that this operation involves the
elimination of both the rows and columns of the Jacobian matrix associated with Dirichlet nodes.

For the second (and again simpler and recommended) approach to impose Dirichlet boundary

conditions, we consider the Jacobian J
E

(U) associated with R
E

(·) whose entries are given by

J
E
ij(U)a,b =


J ij(U)a,b if a is not a Dirichlet node,

1 if component i of node a is Dirichlet BC and a = b and i = j,

0 if component i of node a is Dirichlet BC and a 6= b or i 6= j,

for i, j = 1, . . . , d. This operation corresponds to setting all entries of the rows associated with
Dirichlet nodes equal to 0 except for the diagonal entry (i.e., a = b and i = j) which is set to 1.
Note that we do not modify the columns associated with the Dirichlet node.

Given the expression for the residual R
E

(U) and Jacobian J
E

(U), we solve for the root of R
E

(·)
using Newton’s method. Here, for simplicity, we consider the second (and recommend) approach
to imposing Dirichlet boundary conditions. Newton’s method proceeds as follows:

0. Initialize state coefficient vector U
k=0 ∈ Rdm+m′ . Set k = 0.

1. Evaluate the residual and Jacobian

R
E

(U
k
) ∈ Rdm+m′ and J

E
(U

k
) ∈ R(dm+m′)×(dm+m′),
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where the rows associated with Dirichlet nodes are modified to incorporate the boundary
condition.

2. If ‖RE(U
k
)‖∞ ≤ εtol, then terminate.

3. Compute the update δU
k ∈ Rdm+m′ by solving

[J
E

(U
k
)]δU

k
= −RE(U

k
) in Rdm+m′ .

4. Update the state as U
k+1

= U
k

+ δU
k
.

5. Set k ← k + 1, and return to 1.

We obtain a solution U which satisfies the residual as well as Dirichlet boundary conditions at
convergence.

Remark 13.10. If the problem is strongly nonlinear and the initial state is far from the solution,
then (pure) Newton’s method as described here might not converge. In these cases, Newton’s
method must be used in conjunction with a homotopy (or continuation) strategy. The idea is to
solve a sequence of increasingly nonlinear problems, the last of which is the problem of interest. In
the case of Navier-Stokes equations, we can first solve the problem for a large kinematic viscosity
ν, which yields a nearly linear problem with a Stokes-like solution, and then successively decrease
ν (i.e., increase the Reynolds number) using the solution for the previous (higher) ν case as the
initial state for the new (lower) ν case.

13.8 Variational Newton’s method

We can also describe the Newton’s method in any (infinite-dimensional) Hilbert space. To this end,
we first introduce the residual form

r((u, p), (v, q)) ≡ a(u, v) + c(u, u, v) + b(p, v) + b(q, u) ∀u, v ∈ V, ∀p, q ∈ Q.

(The spaces V and Q can be replaced the finite-dimensional counterpart Vh ⊂ V and Qh ⊂ Q.)
The associated Fréchet derivative is

r′((u, p); (w, z), (v, q)) ≡ lim
ε→0

1

ε
[r((u+ εw, p+ εz), (v, q)) + r((u, p), (v, q))]

= a(w, v) + c(z, u, w) + c(u,w, v) + b(z, v) + b(q, w).

The variational Newton’s method proceeds as follows:

0. Initialize state (uk, pk) ∈ V ×Q. Set k = 0.

1. Terminate if

‖r((uk, pk), (·, ·))‖(V×Q)′ = sup
(v,q)∈V×Q

|r((uk, pk), (v, q))| ≤ εtol.

2. Evaluate the update: find (δuk, δpk) ∈ V ×Q such that

r′((uk, pk); (δuk, δpk), (v, q)) = −r((uk, pk), (v, q)) ∀v ∈ V, ∀q ∈ Q.
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3. Update the state uk+1 = uk + δuk and pk+1 = pk + δpk.

4. Set k ← k + 1, and return to 1.

The procedure at termination yields a solution (u, p) ∈ V × Q that satisfies the Navier-Stokes
equations.

13.9 Summary

We summarize key points of this lecture:

1. Incompressible flows are modeled by the Navier-Stokes equations, which is a system of non-
linear PDEs with vector-valued velocity and scalar-valued pressure.

2. Incompressible flows in the limit of vanishing inertia effect relative to viscosity is modeled by
the Stokes equations, which is a linear saddle-point problem.

3. The weak formulation of the Stokes and Navier-Stokes equations are defined for a velocity
space V ⊂ H1(Ω)d and a pressure space Q ⊂ L2(Ω). The inertia term of the Navier-Stokes
equations involve quadratic nonlinearity, which can be concisely expressed as a trilinear form.

4. The Stokes problem is well-posed: it has a unique solution and is stable.

5. The finite element approximation is well-posed if the velocity and pressure spaces are chosen
to satisfy the Babuška-Brezzi condition (or ins-sup condition). The Pp-Pp−1 Taylor-Hoods
elements are an example of finite elements that satisfy the Babuška-Brezzi condition uniformly
in h.

6. The Pp-Pp−1 Taylor-Hoods elements provide a quasi-optimal approximation for both the ve-
locity and pressure.

7. The solution to the nonlinear algebraic equation associated with the Navier-Stokes equations
is obtained using Newton’s method. The method requires the evaluation of the residual and
the associated Jacobian.

8. Newton’s method can also be described in any (infinite-dimensional) Hilbert space.
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