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Abstract: Computational aerodynamics has become an indispensable tool in
the design and analysis of modern aircraft. However, traditional high-fidelity
aerodynamics simulations can be computationally too expensive for scenarios
that require responses in real time (e.g., flow control) and/or predictions for
many different configurations (e.g., design-space exploration and flight-parameter
sweep). The goal of model reduction is to accelerate the solution of unsteady
and/or parametrized aerodynamics problems in real-time and/or many-query
scenarios. In this chapter, we survey model reduction techniques for linearized
and nonlinear aerodynamics problems that have been developed in the past
two decades. We discuss essential ingredients of model reduction: stable and
efficient projection methods, generation of the reduced basis tailored for the
specific solution manifold, and offline-online computational decomposition. We
focus on techniques that are designed to address challenges in aerodynamics —
nonlinearity, limited stability, limited regularity, and wide range of scales — and
have been demonstrated for multi-dimensional aerodynamic flows. We highlight
successful applications of model reduction for large-scale aerodynamics problems.
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1 Introduction

1.1 Motivation

With advances in both computational algorithms and hardware, computational
fluid dynamics (CFD) has become an indispensable tool in the analysis and design
of aerospace vehicles. Today’s CFD tools can accurately predict aerodynamics of
aircraft in cruise conditions and complement wind-tunnel and flight tests in the
aircraft design process; in fact, with the advances in CFD, the number of wings
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tested in the design of a typical commercial aircraft has decreased by an order of
magnitude from late 1970s to early 2000s [38].

However, there are computational challenges that still remain out of reach
for traditional CFD solvers. To motivate the model reduction work reviewed in
this chapter, we name a few “grand challenges” outlined in vision papers [51, 61].
First is high-fidelity aerodynamic database generation; the task requires accurate
prediction of aerodynamic forces for the entire range of flight conditions with
variations in, e.g., the free stream Mach number and angle of attack. Second is
real-time dynamic flight simulation; the task requires aerodynamic or aeroelastic
simulation of maneuvering aircraft with the control input specified in real time.
Third is probabilistic design of cooled turbine blades; the task requires accurate
characterization of the turbine blade performance under geometric uncertainties
due to manufacturing variabilities. These tasks are challenging for traditional CFD
solvers because they require (i) predictions for a large number of configurations
(i.e., many-query) and/or (ii) real-time predictions of transient phenomena.
Completing these tasks, especially in the time scale and computational resources
available in typical engineering settings, can be prohibitive with traditional CFD
tools. The objective of this chapter is to survey state of the art in model reduction
for many-query and/or real-time problems in aerodynamics.

1.2 Real-time and many-query scenarios

We now provide examples of many-query and/or real-time engineering scenarios
to which model reduction has been applied. We restrict ourselves to problems in
aerodynamics, rather than more general fluid dynamics; we refer to Chapter 9
of this volume for the latter. We do not attempt a comprehensive review; we
merely present few representative works.
S1. Aerodynamic shape optimization. One of the many-query applications of

model reduction in aerodynamics is shape optimization. Reduced-order mod-
els (ROMs) are used to accelerate aerodynamics analysis under parametric
geometry changes and to optimize the geometry. The task consists three
steps: parametrization of the geometry; construction of a ROM; and iden-
tification of the optimal geometry. ROMs have been used in many-query
analysis [6, 69] and inverse design, where the objective is to identify airfoil
geometry that yields the prescribed pressure distribution [43, 44, 45, 78].

S2. Flight-parameter sweep. Another many-query application of parametric model
reduction in aerodynamics is flight-parameter sweep. ROMs are used to
accelerate the prediction of aerodynamic forces and moments for a range



Computational aerodynamics 3

of flight conditions described in terms of the angle of attack and Mach
number [80, 79, 66, 68, 75, 76].

S3. Aeroelasticity. One of the classical real-time applications of model reduction
in aerodynamics is aeroelasticity. The goal is to analyze the interaction
between aerodynamics forces and elastic structure and to detect, for instance,
the onset of flutter. Aeroelasticity saw one of the earliest uses of model
reduction, with works appearing in at least as early as the mid 1990s for
non-parametrized problems [33, 55, 42, 34, 64]. More recently, techniques
have been extended to parametrized aeroelasticity problems, with angle of
attack and Mach number as parameters [47, 46, 4, 2, 5]. We also note that
there are non-projection-based approaches to model reduction, e.g., by the
Volterra series; however, given the focus of this handbook, we do not cover
these works and refer interested readers to review papers [26, 49, 25].

S4. Model predictive control. Another real-time application of model reduction is
the control of aerodynamic systems using model predictive control (MPC).
Without model reduction, MPC is infeasible for large-scale systems, as
it requires real-time solution of optimization problems. ROMs have been
incorporated in MPC to control shock location in a supersonic diffuser [36] and
to optimize flight-path under fuel consumption and aeroelastic constraints [3].

S5. Uncertainty quantification and state estimation. Model reduction has also
been used for uncertainty quantification (UQ), in which the effect of geometry
or flow-condition uncertainties are propagated to quantities of interests.
ROMs have been used for probabilistic analysis of turbine blades, in which
simulation is carried out for thousands of different configurations [17]. Model
reduction has also been applied to state estimation, where the aerodynamic
flow field is inferred from surface pressure tap data [16, 71].

1.3 Scope and outline

We make four disclaimers regarding the scope of this chapter. First, we restrict our
presentation to works on aerodynamics rather than more general fluid mechanics,
and in particular to works on compressible flow rather than incompressible flow.
We refer to Chapter 9 of this volume for more general coverage of model reduction
in computational fluid dynamics. Second, given the emphasis of this handbook,
we focus on formulation, rather than theoretical, aspects of model reduction.
We however note that mathematical theories have played important roles in
the development of model reduction approaches for aerodynamics problems;
we refer to references provided throughout the chapter for further theoretical
discussions. Third, the model reduction literature for aerodynamics problems
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is vast, with development from both engineering and applied mathematics com-
munities; we attempt to cover representative works but admit the coverage is
not comprehensive and there are inevitable omissions. Fourth, we note that (i)
precise requirements for a ROM depend on the particular engineering scenario
and there is no universal formulation suitable for all scenarios; (ii) even for a
given scenario there are many different approaches; and (iii) there are relatively
few comparative studies due to the recentness of some of the techniques and
the shear cost of performing such studies for large-scale aerodynamics problems.
We hence do not attempt to make definitive recommendations and focus on
surveying existing approaches, with a hope that the chapter will still serve as a
guide to construct a ROM that works for the problem of interest.

This chapter is organized as follows. In Section 2, we review full-order dis-
cretizations for aerodynamics problems. In Section 3, we review model reduction
techniques for linearized aerodynamics problems; the linearized problem is rel-
evant for small perturbation analysis, which arises in applications including
aeroelasticity, flow control, and uncertainty quantification. In Section 4, we
review model reduction techniques for nonlinear aerodynamics equations; the
full nonlinear analysis is often required for aerodynamic shape optimization and
flight-parameter sweep.

2 Full-order model (FOM)
In this section we review full-order models (FOMs) for aerodynamics problems.
We consider both the linearized and full nonlinear FOMs; the associated ROMs
will be constructed in Sections 3 and 4, respectively. We describe FOMs in
abstract forms to accommodate various governing equations and discretizations
under a unified framework.

2.1 Conservation laws of aerodynamics

We introduce the general form of aerodynamics PDEs considered throughout
this chapter. We introduce a 𝑃 -dimensional parameter domain 𝒫 ∈ R𝑃 , a 𝑑-
dimensional spatial domain Ω ⊂ R𝑑, the associated boundary 𝜕Ω, and a time
interval ℐ ≡ (0, 𝑇 ] ⊂ R. Aerodynamic flow in Ω over ℐ is modeled by a system
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of 𝑁𝑐 nonlinear conservation laws of the form

𝜕𝑢

𝜕𝑡
+∇ · (𝑓 inv(𝑢) + 𝑓visc(𝑢,∇𝑢)) = 𝑓 src(𝑢,∇𝑢) in Ω× ℐ,

𝑏(𝑢, 𝑛 · 𝑓visc(𝑢,∇𝑢)) = 0 on 𝜕Ω× ℐ, (1)
𝑢|𝑡=0 = 𝑢0 in Ω,

where 𝑢 is the conservative state, 𝑓 inv is the inviscid flux function, 𝑓visc is the
viscous flux function, 𝑓 src is the source function, 𝑏 is the boundary condition
function, and 𝑢0 is the initial state. While the exact form of the flux, source,
and boundary functions depend on the specific governing equation — the Euler,
Navier-Stokes, or Reynolds-averaged Navier-Stokes (RANS) equations — and
flow conditions, all conservation laws in aerodynamics can be cast in the general
form (1). We also emphasize that, although omitted here for brevity, all functions
in general depend on the parameter 𝜇 ∈ 𝒫 for parametrized problems and the
time 𝑡 ∈ ℐ for unsteady problems.

In many aerodynamics problems, our interest is not necessarily in the entire
state field 𝑢 but in few quantities of interest (i.e. output). Arguably the most
common output in aerodynamics are lift and drag, which can be expressed as a
surface integral of the form

𝑠 ≡
∫︁

Γbody

𝑓out(𝑢, 𝑛 · 𝑓visc(𝑢,∇𝑢); 𝑛)𝑑𝑠,

where Γbody ⊂ 𝜕Ω is the aerodynamic surface of interest, 𝑛 denotes the unit
vector normal to Γbody, and the function 𝑓out maps the surface state and viscous
flux to aerodynamic forces.

We make a few remarks about the governing equations in aerodynamics.
First, inviscid flows are modeled by the Euler equations, which are purely
hyperbolic. Second, viscous flows are modeled by the Navier-Stokes equations
which, for Reynolds number relevant to aerodynamics, is convection-dominated.
Third, for turbulent flow simulations based on the RANS equations, the Navier-
Stokes equations are augmented with additional empirical PDEs that model the
turbulence behavior; most turbulence models are highly nonlinear including the
one-equation Spalart-Allmaras (SA) turbulence model [62] used in most of the
works reviewed in this chapter. Fourth, non-conservative variables, such as the
entropy variables [35], may be used as the working state variables; the entropy
variables are of particular interest for stability analysis of Galerkin methods [12]
and in particular ROMs [9, 39].
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2.2 Semi-discrete form

We now consider a full-order approximation of the conservation law (1). While
there is a number of different discretizations for (1), they must provide stability
for hyperbolic and convection-dominated PDEs. As a result, most work on model
reduction for aerodynamics use one the three full-order discretizations: a finite
volume method [65], stabilized finite element method [15, 37], or discontinuous
Galerkin (DG) method [24, 7]. We refer to the references above for details of the
discretizations, and here describe FOMs in an abstract form.

To introduce a FOM, we first introduce a triangulation 𝒯ℎ ≡ {𝜅1, . . . , 𝜅𝑁𝑒
},

where {𝜅𝑖}𝑁𝑒
𝑖=1 is a set of 𝑁𝑒 non-overlapping elements such that Ω = ∪𝜅∈𝒯ℎ

𝜅

and 𝜅𝑖 ∩ 𝜅𝑗 = ∅, 𝑖 ̸= 𝑗. We next introduce an 𝑁ℎ-dimensional approximation
space 𝑉ℎ ⊂ 𝑉 associated with 𝒯ℎ; the associated dual space is denoted by 𝑉 ′

ℎ

with the duality pairing ⟨·, ·⟩ : 𝑉 ′
ℎ × 𝑉 → R. We then introduce a FOM spatial

residual operator 𝑟ℎ : 𝑉ℎ ×𝒫 → 𝑉 ′
ℎ; the particular form of the residual depends

on the conservation laws and discretization. A semi-discrete form of our FOM
problem is as follows: given 𝜇 ∈ 𝒫, find 𝑢ℎ(𝑡; 𝜇) ∈ 𝑉ℎ, 𝑡 ∈ ℐ, such that

𝜕𝑢ℎ(𝑡; 𝜇)
𝜕𝑡

+ 𝑟ℎ(𝑢ℎ(𝑡; 𝜇); 𝜇) = 0 in 𝑉 ′
ℎ, (2)

and 𝑢ℎ(𝑡 = 0; 𝜇) = Πℎ𝑢0(𝜇); here 𝑢0(𝜇) ∈ 𝑉 is the initial condition, and
Πℎ : 𝑉 → 𝑉ℎ is a projection operator from 𝑉 to 𝑉ℎ. Throughout this chapter,
for any Hilbert space 𝑊 and the associated dual space 𝑊 ′, the statement “𝑔 = 0
in 𝑊 ′” should be interpreted as ⟨𝑔, 𝑤⟩ = 0 ∀𝑤 ∈𝑊 . We then introduce a FOM
output functional 𝑞ℎ : 𝑉ℎ × 𝒫 → R𝑁o , so that the set of 𝑁o outputs is given by

𝑠ℎ(𝑡; 𝜇) = 𝑞ℎ(𝑢ℎ(𝑡; 𝜇); 𝜇). (3)

We assume that the solution and output to the FOM exists and is unique.
We may also consider an “algebraic form” of the problem, i.e., the form

of the problem described by matrices and vectors, which is convenient for the
computational implementation of the formulation. To this end, we first introduce
a basis {𝜙𝑗}𝑁ℎ

𝑗=1 of the space 𝑉ℎ. We next associate any function 𝑣ℎ ∈ 𝑉ℎ with
a generalized coordinate vℎ ∈ R𝑁ℎ by 𝑣ℎ = v𝑗

ℎ𝜙𝑗 , where v𝑗
ℎ denotes the 𝑗-th

component of vℎ and the summation on the repeated indices is implied. We then
introduce algebraic forms of the FOM residual operator rℎ : R𝑁ℎ × 𝒫 → R𝑁ℎ ,
the output functional qℎ : R𝑁ℎ × 𝒫 → R, and the mass matrix Mℎ ∈ R𝑁ℎ×𝑁ℎ

given by

rℎ(wℎ; 𝜇)𝑖 ≡ ⟨𝑟ℎ(w𝑗
ℎ𝜙𝑗 ; 𝜇), 𝜙𝑖⟩, 𝑖 = 1, . . . , 𝑁ℎ,

qℎ(wℎ; 𝜇) ≡ 𝑞ℎ(w𝑗
ℎ𝜙𝑗 ; 𝜇),

Mℎ,𝑖𝑗 ≡ (𝜙𝑗 , 𝜙𝑖)𝐿2(Ω), 𝑖, 𝑗 = 1, . . . , 𝑁ℎ.
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The algebraic form of the FOM problem (2) and (3) is as follows: given 𝜇 ∈ 𝒫,
find uℎ(𝑡; 𝜇) ∈ R𝑁ℎ , 𝑡 ∈ ℐ, such that

Mℎ
𝑑uℎ(𝑡; 𝜇)

𝑑𝑡
+ rℎ(uℎ(𝑡; 𝜇); 𝜇) = 0 in R𝑁ℎ (4)

for uℎ(𝑡 = 0; 𝜇) = u0
ℎ(𝜇), and then evaluate

𝑠ℎ(𝑡; 𝜇) = qℎ(uℎ(𝑡; 𝜇); 𝜇). (5)

This algebraic form of the problem is equivalent to the operator form (2) and
(3); in particular, 𝑢ℎ(𝑡; 𝜇) = u𝑗

ℎ(𝑡; 𝜇)𝜙𝑗 . The solution to (4) is typically obtained
using a Newton-like method.

We make a few remarks. First, for a typical aerodynamics problem, 𝑃 =
𝒪(1 − 10), 𝑁ℎ = 𝒪(105 − 107), and 𝑁o = 𝒪(1). Second, for steady problems,
the time derivative term vanishes and we seek 𝑢(𝜇) ∈ 𝑉ℎ such that

𝑟ℎ(𝑢(𝜇); 𝜇) = 0 in 𝑉 ′
ℎ, (6)

or, equivalently, uℎ(𝜇) ∈ R𝑁ℎ such that rℎ(uℎ(𝜇); 𝜇) = 0 in R𝑁ℎ . Third, for
problems with shape deformations, the spatial domain Ω depends on the param-
eter 𝜇 ∈ 𝒟; we refer to a review [57] for the treatment of parameter-dependent
domains by a reference-domain formulation, which provides an equivalent prob-
lem in a parameter-independent reference domain. Fourth, while finite-volume
methods are typically not presented as a weak formulation (2), the form encom-
passes (in general high-order) finite-volume methods, as the methods can be
recast as a DG method with an appropriate state reconstruction function; see,
e.g., [13]. Fifth, in any event, all FOM discretizations can be expressed in the
algebraic form (4) and (5). Hence, in Sections 3 and 4, we describe all model
reduction techniques using this abstract framework.

2.3 Full-discrete form

We now introduce a full-discrete form of the FOM (4). We first introduce time
instances 0 = 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝐾 = 𝑇 , and the associated sequence of functions
{𝑢𝑘

ℎ(𝜇)}𝐾𝑘=1 = {u𝑘,𝑗
ℎ (𝜇)𝜙𝑗}𝐾𝑘=1 such that 𝑢ℎ(𝑡𝑘; 𝜇) ≈ 𝑢𝑘

ℎ(𝜇), 𝑘 = 1, . . . , 𝐾. We
then discretize the semi-discrete equation (4) using a multi-step or multi-stage
scheme. For instance, if the backward Euler method is used, the full-discrete
FOM problem is as follows: given 𝜇 ∈ 𝒫, find {u𝑘

ℎ(𝜇) ∈ R𝑁ℎ}𝐾𝑘=1 such that

r𝑘
ℎ,Δ𝑡(u

𝑘
ℎ(𝜇); u𝑘−1

ℎ (𝜇); 𝜇) ≡ 1
Δ𝑡

Mℎ(u𝑘
ℎ(𝜇)− u𝑘−1

ℎ (𝜇)) + rℎ(u𝑘
ℎ(𝜇); 𝜇) = 0
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for 𝑘 = 1, . . . , 𝐾, and u𝑘=0
ℎ (𝜇) = u0(𝜇). Here, r𝑘

ℎ,Δ𝑡 : R𝑁ℎ × R𝑁ℎ × 𝒫 → R𝑁ℎ

is the full-discrete residual operator for the backward Euler method at the
time instance 𝑘, which depends on the state at the previous time step u𝑘−1

ℎ (𝜇).
More generally, for a multi-step method, the full-discrete residual operator
depends on the states at 𝑘step previous time instances and takes the form
r𝑘

ℎ,Δ𝑡 : R𝑁ℎ × R𝑁ℎ×𝑘step × 𝒫 → R𝑁ℎ . We assume that an appropriate time-
marching scheme is chosen such that a sequence of stable solutions exists.

We note that the solution to the steady problem (6) is often obtained using
a pseudo-transient continuation (PTC) method [41], which solves the unsteady
problem using pseudo time stepping, to improve the convergence of the nonlinear
solver. Hence the temporal stability is an important consideration even for steady
problems. We refer to [41] for a review of PTC methods.

2.4 Linearized equations

While aerodynamic flow is governed by a system of nonlinear conservation laws,
as discussed in Section 1, time-dependent linearized analysis is also of engineering
interest. The goal of linearized analysis is to propagate small input disturbances
to output perturbations. Here, the input disturbances may result from small
changes in the geometry (e.g., vibrations), boundary conditions (e.g., gust), or
initial conditions; our interest is in the associated change in the aerodynamic
forces and moments.

Before we proceed, we make one notational change. In the previous section, we
introduced the parameter-dependent steady residual operator 𝑟ℎ : 𝑉ℎ ×𝒫 → 𝑉 ′

ℎ;
in this section, to be consistent with literature on linearized aerodynamics analysis,
we explicitly separate the parameters subjected to input disturbances from those
that are not. Specifically, we introduce a 𝑄-dimensional input space 𝒬 ⊂ R𝑄.
We then introduce the steady residual operator 𝑟 : 𝑉ℎ ×𝒬×𝒫 → 𝑉 ′

ℎ, which is a
function of the state, input, and parameter. Similarly, we introduce the output
operator 𝑞 : 𝑉ℎ ×𝒬× 𝒫 → R𝑁o .

In linearized analysis, we decompose the solution 𝑢ℎ ∈ 𝑉ℎ into a base solution
�̄�ℎ and perturbation 𝛿𝑢ℎ so that 𝑢ℎ = �̄�ℎ + 𝛿𝑢ℎ. Similarly, we decompose the
input 𝜈 ∈ 𝒬 into a base input 𝜈 and disturbance 𝛿𝜈 so that 𝜈 = 𝜈 + 𝛿𝜈. The
perturbation is governed by the following linearized problem: given 𝜇 ∈ 𝒫 and
input 𝛿𝜈(𝑡) ∈ 𝒬, find 𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇) ∈ 𝑉ℎ, 𝑡 ∈ ℐ, such that

𝜕𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇)
𝜕𝑡

+ 𝐽ℎ(𝜇)𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇) + 𝐵ℎ(𝜇)𝛿𝜈(𝑡) = 0 in 𝑉 ′
ℎ, (7)

and 𝛿𝑢ℎ(𝑡 = 0; 𝜇) = Πℎ𝛿𝑢0(𝜇) for 𝛿𝑢0(𝜇) ∈ 𝑉ℎ the initial perturbation. Here, the
Jacobian 𝐽ℎ(𝜇) ∈ ℒ(𝑉ℎ, 𝑉 ′

ℎ) is the Fréchet derivative of 𝑟ℎ(·, 𝜈; 𝜇) : 𝑉ℎ → 𝑉 ′
ℎ at
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�̄�ℎ, and the operator 𝐵ℎ(𝜇) ∈ ℒ(𝑄, 𝑉 ′
ℎ) is the Fréchet derivative of 𝑟ℎ(�̄�ℎ, ·; 𝜇) :

𝒬 → 𝑉 ′
ℎ at 𝜈. Given the perturbed state 𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇) ∈ 𝑉ℎ, we evaluate the

associated output perturbation

𝛿𝑠ℎ(𝑡; 𝛿𝜈, 𝜇) = 𝑔ℎ(𝜇)𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇),

where 𝑔ℎ(𝜇) ∈ ℒ(𝑉ℎ,R𝑁o) is the Fréchet derivative of 𝑞ℎ(·, 𝜈; 𝜇) at �̄�ℎ. The
goal of the linearized aerodynamics analysis is to map the disturbances in the
input 𝛿𝜈(𝑡) ∈ 𝒬 to the perturbations in the output 𝛿𝑠ℎ(𝑡; 𝛿𝜈, 𝜇) ∈ R𝑁o for any
parameter value 𝜇 ∈ 𝒫. In aerodynamics, the linearization state �̄� ∈ 𝒱ℎ is often
the solution to the steady-state nonlinear problem (6); i.e., 𝑟ℎ(�̄�ℎ; 𝜇) = 0 in 𝑉 ′

ℎ.
The linearized equations can also be expressed in an algebraic form. To

this end, we introduce the Jacobian matrix Jℎ(𝜇) ∈ R𝑁ℎ×𝑁ℎ , input matrix
Bℎ(𝜇) ∈ R𝑁ℎ×𝑄, and output gradient vector gℎ(𝜇) ∈ R𝑁o×𝑁ℎ such that

Jℎ(𝜇)𝑖𝑗 = ⟨𝐽ℎ(�̄�ℎ; 𝜇)𝜙𝑗 , 𝜙𝑖⟩, 𝑖, 𝑗 = 1, . . . , 𝑁ℎ,

Bℎ(𝜇)𝑖𝑗 = ⟨𝐵ℎ(�̄�ℎ; 𝜇)𝑒𝑗 , 𝜙𝑖⟩, 𝑖 = 1, . . . , 𝑁ℎ, 𝑗 = 1, . . . , 𝑄,

gℎ(𝜇)𝑖𝑗 = ⟨𝑔ℎ(�̄�ℎ; 𝜇)𝜙𝑗 , 𝑒𝑖⟩ 𝑖 = 1, . . . , 𝑁o, 𝑗 = 1, . . . , 𝑁ℎ,

where 𝑒𝑗 is the unit vector with the 𝑗-th entry equal to 1. The algebraic form
of the linearized problem is as follows: given 𝜇 ∈ 𝒫 and input 𝛿𝜈(𝑡) ∈ 𝒬, find
𝛿uℎ(𝑡; 𝛿𝜈, 𝜇) ∈ R𝑁ℎ , 𝑡 ∈ ℐ, such that

Mℎ
𝑑𝛿uℎ(𝑡; 𝛿𝜈, 𝜇)

𝑑𝑡
+ Jℎ(𝜇)𝛿uℎ(𝑡; 𝛿𝜈, 𝜇) + Bℎ(𝜇)𝛿𝜈(𝑡) = 0 in R𝑁ℎ , (8)

then evaluate the output

𝛿𝑠ℎ(𝑡; 𝛿𝜈, 𝜇) = gℎ(𝜇)𝛿uℎ(𝑡; 𝛿𝜈, 𝜇).

We note that, for a fixed parameter 𝜇 ∈ 𝒫 , the problem is in the standard linear
time invariant (LTI) form. The application of a time-marching scheme yields a
full-discrete form of the linearized equations whose solution {𝛿u𝑘

ℎ}𝐾𝑘=1 satisfies
𝛿u𝑘

ℎ ≈ 𝛿uℎ(𝑡𝑘), 𝑘 = 1, . . . , 𝐾, analogously to the discussion for the nonlinear
FOM in Section 2.3.

3 Model reduction for linearized aerodynamics
In this section we discuss model reduction of linearized aerodynamics problems. As
discussed in Section 2.4, linearized (i.e., small-perturbation) analysis of unsteady
aerodynamics provides significant insights in many engineering scenarios. More
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pragmatically, model reduction of linearized PDEs requires fewer ingredients
than that for nonlinear PDEs, and hence we introduce common ingredients in
the linearized context.

3.1 Galerkin method

We now consider reduced-order approximations of the FOM (7) (or equivalently
(8)). To this end, we introduce a sequence of reduced basis spaces 𝑉𝑁=1 ⊂ · · · ⊂
𝑉𝑁=𝑁max each of which is a subset of 𝒱ℎ; for a typical aerodynamics ROM,
𝑁max = 𝒪(10− 100) which is significantly smaller than 𝑁ℎ = 𝒪(105 − 107). We
then introduce associated hierarchical reduced basis {𝜁𝑛 ∈ 𝒱ℎ}𝑁𝑛=1 such that
𝑉𝑁 = span{𝜁𝑛}𝑁𝑛=1, 𝑁 = 1, . . . , 𝑁max. We may also express the reduced basis
in an algebraic form {𝜁𝑛 ∈ R𝑁ℎ}𝑁𝑛=1 such that 𝜁𝑛 = 𝜁𝑛,𝑗𝜙𝑗 , 𝑁 = 1, . . . , 𝑁max;
we introduce the associated reduced basis matrix Z𝑁 = (𝜁1, . . . , 𝜁𝑁 ) ∈ R𝑁ℎ×𝑁 .
We will discuss various methods to construct the reduced basis in Section 3.2;
for now we assume the basis is given.

Given a reduced basis space 𝑉𝑁 , the semi-discrete form of the Galerkin ROM
problem is as follows: given 𝜇 ∈ 𝒫 and 𝛿𝜈(𝑡) ∈ 𝒬, find 𝛿𝑢𝑁 (𝑡; 𝛿𝜈, 𝜇) ∈ 𝑉𝑁 , 𝑡 ∈ ℐ,
such that

𝜕𝛿𝑢ℎ(𝑡; 𝛿𝜈, 𝜇)
𝜕𝑡

+ 𝐽ℎ(𝜇)𝛿𝑢𝑁 (𝑡; 𝛿𝜈, 𝜇) + 𝐵ℎ(𝜇)𝛿𝜈(𝑡) = 0 in 𝑉 ′
𝑁 , (9)

and 𝛿𝑢𝑁 (𝑡 = 0; 𝜇) = Π𝑁 𝑢0(𝜇), where Π𝑁 : 𝑉 → 𝑉𝑁 is a projection operator
from 𝑉 to 𝑉𝑁 . Again, for 𝑔 ∈ 𝑉 ′

ℎ, the statement 𝑔 = 0 in 𝑉 ′
𝑁 should be

interpreted as ⟨𝑔, 𝑣⟩ = 0 ∀𝑣 ∈ 𝑉𝑁 . We then evaluate the output perturbation
𝛿𝑠ℎ(𝑡; 𝛿𝜈, 𝜇) = 𝑔ℎ(𝜇)𝛿𝑢𝑁 (𝑡; 𝛿𝜈, 𝜇). The comparison of the FOM problem (7) and
the Galerkin ROM problem (9) shows that the latter results from the restriction
of the test and trail spaces to the reduced space 𝑉𝑁 ⊂ 𝑉ℎ.

The Galerkin ROM problem (9) can also be expressed in an algebraic (or
matrix-vector) form. To this end, we associate any function 𝑣𝑁 ∈ 𝑉𝑁 with
a generalized coordinate v𝑁 ∈ R𝑁 by 𝑣𝑁 = v𝑗

𝑁 𝜁𝑗 ; we may also express the
full-order generalized coordinate of 𝑣𝑁 ∈ 𝑉𝑁 as vℎ = v𝑗

𝑁 𝜁𝑗 = Z𝑁 v𝑁 ∈ R𝑁ℎ .
Given the reduced basis, we define the ROM operators

M𝑁 ≡ Z𝑇
𝑁 MℎZ𝑁 = ((𝜁𝑗 , 𝜁𝑖)𝐿2(Ω))𝑁

𝑖,𝑗=1 ∈ R𝑁×𝑁 ,

J𝑁 (𝜇) ≡ Z𝑇
𝑁 Jℎ(𝜇)Z𝑁 = (⟨𝐽ℎ(𝜇)𝜁𝑗 , 𝜁𝑖⟩)𝑁

𝑖,𝑗=1 ∈ R𝑁×𝑁 , (10)

B𝑁 (𝜇) ≡ Z𝑇
𝑁 Jℎ(𝜇) = (⟨𝐵ℎ(𝜇)𝑒𝑗 , 𝜁𝑖⟩)𝑁,𝑄

𝑖=1,𝑗=1 ∈ R𝑁×𝑄,

g𝑁 (𝜇) ≡ gℎ(𝜇)Z𝑁 = (⟨𝑔ℎ(𝜇)𝜁𝑗 , 𝑒𝑖⟩)𝑁
𝑗=1 ∈ R𝑁𝑜×𝑁 .
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The algebraic form of the linearized problem is as follows: given 𝜇 ∈ 𝒫 and
𝛿𝜈(𝑡; 𝜇) ∈ 𝒬, find 𝛿u𝑁 (𝑡; 𝛿𝜈, 𝜇) ∈ R𝑁 , 𝑡 ∈ ℐ, such that

M𝑁
𝑑𝛿u𝑁 (𝑡; 𝛿𝜈, 𝜇)

𝑑𝑡
+ J𝑁 (𝜇)𝛿u𝑁 (𝑡; 𝜇) + B𝑁 (𝜇)𝛿𝜈 = 0 in R𝑁 , (11)

then evaluate the output 𝛿𝑠𝑁 (𝑡; 𝛿𝜈, 𝜇) = g𝑁 (u𝑁 (𝜇); 𝛿𝜈, 𝜇)𝛿u𝑁 (𝑡; 𝜇). Again, the
operator form (9) and the algebraic form (11) are equivalent and 𝛿𝑢𝑁 (𝑡; 𝜇) =
𝛿u𝑗

𝑁 (𝑡; 𝜇)𝜁𝑗 . We note that the ROM operators (10) are pre-computed in the
construction stage, so that the ROM (11) can be solved in 𝒪(𝑁∙) operations for
the exponent ∙ between 1 and 3. In particular the cost to solve the ROM (11)
is independent of 𝑁ℎ; we recall that 𝑁 = 𝒪(10− 100) and 𝑁ℎ = 𝒪(105 − 107)
for a typical aerodynamics problem. We discuss this offline-online computational
decomposition in Section 3.4.

3.2 Reduced basis for non-parametrized linearized problems

The efficacy of the Galerkin ROM (9) (or (11)) depends on the choice of the
reduced basis. We now review techniques to identify an effective reduced basis
{𝜁𝑗}𝑁𝑗=1 (or reduced basis matrix Z𝑁 ∈ R𝑁ℎ×𝑁 ). For practical and historical
reasons, we first present procedures for non-parametrized (or fixed-parameter)
problems; the model reduction of time-varying but fixed-parameter aerodynamics
problems enables fast simulation of complex flows, which is essential for, for
instance, model predictive control. As the problems are non-parametrized, we
suppress the argument 𝜇 for all operators throughout this section. In addition, as
our primary goal is to provide recipes for implementation, rather than to discuss
theory, we present algorithms in algebraic forms.

3.2.1 Eigenmodes

A classical approach to identify a reduced basis for linearized aerodynamics
problems is eigenanalysis. The approach, first introduced by Hall [33], is as
follows:
1. Solve the generalized eigenproblem: find the eigenvector 𝜁𝑘 ∈ R𝑁ℎ and the

associated eigenvalue 𝜆𝑘 ∈ C such that

Jℎ𝜁𝑘 = 𝜆𝑘Mℎ𝜁𝑘 in R𝑁ℎ ;

without loss of generality, sort the eigenpairs such that |𝜆1| ≥ · · · ≥ |𝜆𝑁ℎ |.
2. Construct the reduced basis matrix Z𝑁 = (𝜁1, . . . , 𝜁𝑁 ) ∈ R𝑁ℎ×𝑁 .
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While historically important, eigenanalysis has a major limitation: the reduced
basis is based solely on the Jacobian Jℎ and does not account for the system
input Bℎ or output gℎ. Hence, the number of eigenmodes 𝑁 required to achieve
a given solution or output accuracy is typically greater than empirical approaches
based on proper orthogonal decomposition (POD).

3.2.2 Time-domain POD

To address limitations of eigenmodes discussed in Section 3.2.1, Romanowski [55]
proposes (time-domain) POD approach for linearized Euler equations. We here
present the method of snapshots [60] to efficiently compute a POD basis for
large-scale problems in aerodynamics:
1. Choose 𝐿 time-dependent training inputs {{𝛿𝜈𝑙(𝑡)}𝑡∈ℐ}𝐿𝑙=1, where 𝑙 is the

training input index.
2. Solve the full-discrete form of the linearized FOM (7) for the training inputs
{𝛿𝜈𝑙}𝐿𝑙=1 and for 𝐾 time steps {𝑡𝑘}𝐾𝑘=1 to construct a snapshot matrix
S ∈ R𝑁ℎ×𝑁s , whose columns are 𝛿u𝑘

ℎ(𝛿𝜈𝑙) ≈ 𝛿uℎ(𝑡𝑘; 𝛿𝜈𝑙) for 𝑘 = 1, . . . , 𝐾,
𝑙 = 1, . . . , 𝐿, and 𝑁s ≡ 𝐾𝐿.

3. Construct the correlation matrix A = S𝑇 XℎS in R𝑁s×𝑁s . Here, Xℎ ∈
R𝑁ℎ×𝑁ℎ such that Xℎ,𝑖𝑗 = (𝜙𝑗 , 𝜙𝑖)𝑋ℎ

is associated with an appropriate
inner product; a common choice is the 𝐿2(Ω) inner product.

4. Solve the eigenproblem: find (v𝑘, 𝜆𝑘) ∈ R𝑁s × R such that

Av𝑘 = 𝜆𝑘v𝑘 in R𝑁s ;

without loss of generality, sort the eigenpairs such that |𝜆1| ≥ · · · ≥ |𝜆𝑁s |.
5. Set the reduced basis matrix Z𝑁 = (𝜁1, . . . , 𝜁𝑁 ) ∈ R𝑁ℎ×𝑁 where

𝜁𝑘 = 𝜆
−1/2
𝑘 Sv𝑘, 𝑘 = 1, . . . , 𝑁.

The resulting basis Z𝑁 ∈ R𝑁ℎ×𝑁 is orthogonal with respect to the Xℎ inner
product; i.e., Z𝑇

𝑁 XℎZ𝑁 = 𝐼𝑁 . In addition, Z𝑁 minimizes the 𝑋ℎ-projection
error for the snapshots; i.e., Z𝑁 = arg minW𝑁 ∈R𝑁ℎ×𝑁 ‖S−W𝑁 W𝑇

𝑁 XℎS‖Xℎ
. In

this sense, the POD basis is optimal for the approximation of the state 𝛿𝑢ℎ(𝑡; 𝛿𝜈)
associated with the particular system input 𝛿𝜈; however, the system output 𝑠ℎ

is not accounted for in the POD method.
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3.2.3 Frequency-domain POD

A variant of the time-domain POD approach above is the frequency-domain
POD approach proposed by Kim [42] and Hall et al. [34]. As the name suggests,
this approach takes advantage of the linearity of the problem (8) and computes
snapshots in the frequency domain. Namely, we consider time-harmonic distur-
bances of the form 𝛿𝜈(𝑡) = 𝛿𝜈𝑒𝑗𝜔𝑡 of a frequency 𝜔 ∈ R so that the associated
time-harmonic perturbations are of the form 𝛿uℎ(𝑡; 𝛿𝜈, 𝜇) = 𝛿ûℎ(𝛿𝜈)𝑒𝑗𝜔𝑡 for
𝛿ûℎ(𝛿𝜈) = (𝑗𝜔Mℎ + Jℎ)−1Bℎ𝛿𝜈, where 𝑗 ≡

√
−1. The frequency-domain POD

approach replaces the first two steps of the time-domain POD approach in
Section 3.2.2 with the following:
1’. Choose 𝐿 training inputs {𝛿𝜈𝑙 ∈ R𝑄}𝐿𝑙=1 and 𝐾 training frequencies {𝜔𝑘 ∈

R}𝐾𝑘=1.
2’. Solve the frequency domain equation

(𝑗𝜔𝑘Mℎ + Jℎ)𝛿û𝑘(𝛿𝜈𝑙) = Bℎ𝛿𝜈𝑙 (12)

for {𝛿𝜈𝑙}𝐿𝑙=1 and {𝜔𝑘}𝐾𝑘=1 to construct a snapshot matrix S ∈ R𝑁ℎ×𝑁s ,
whose columns are the real and imaginary parts of the frequency-domain
perturbation, ℜ(𝛿û𝑘(𝛿𝜈𝑙)) and ℑ(𝛿û𝑘(𝛿𝜈𝑙)), for 𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿,
and 𝑁s ≡ 2𝐾𝐿.

The training input modes and frequencies can be chosen based on known char-
acteristics of input disturbances; e.g., for aeroelasticity problems, the modes
and frequencies may be chosen to coincide with the resonance modes of the
structure. For linearized aerodynamics problems, frequency-domain POD is often
more efficient than time-domain POD and hence is preferred; the approach
has been successfully applied to the linearized Euler equations in works includ-
ing [42, 34, 64, 47, 46, 4, 2]. We however make two cautionary remarks: first,
implementation must support complex arithmetic; second, just like time-domain
POD, while the POD basis is in some sense optimized for the solution field
𝛿𝑢ℎ(𝑡; 𝛿𝜈) ∈ 𝑉ℎ, it is not specialized for the particular system output 𝑠ℎ.

3.2.4 Balanced POD

The time- and frequency-domain POD approaches construct a reduced space 𝑉𝑁

which is well suited for the approximation of the entire state 𝛿𝑢ℎ(𝑡; 𝛿𝜈) ∈ 𝑉ℎ;
however, in aerodynamics, we are often not interested in the entire state but rather
only in few outputs (i.e., quantities of interest). In these cases, we can construct
a more efficient ROM using the balanced POD (BPOD) method proposed by
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Willcox and Peraire [73], which approximates balanced truncation [52] for large-
scale problems. The key to BPOD is (i) to realize that both the input and output
play equally important roles in characterizing the input-output relationship and
(ii) to incorporate the dual problem to account for the choice of the output. The
dual problem for the linearized aerodynamics problem (8) with a single output
(𝑁𝑜 = 1) is as follows: given 𝛿𝜈(𝑡) ∈ 𝒬, find zℎ(𝑡; 𝛿𝜈) ∈ R𝑁ℎ , 𝑡 ∈ ℐ, such that

− 𝑑zℎ(𝑡; 𝛿𝜈)
𝑑𝑡

+ J𝑇
ℎ z(𝑡; 𝛿𝜈) + g𝑇 = 0 in R𝑁ℎ , (13)

and then evaluate the output

𝛿𝑠ℎ(𝑡; 𝛿𝜈) = 𝛿𝜈B𝑇
ℎ zℎ(𝑡; 𝛿𝜈).

The associated frequency-domain problem seeks 𝛿ẑ(𝛿𝜈) = (−𝑗𝜔Mℎ + J𝑇
ℎ )−1g𝑇

ℎ .
The BPOD procedure based on frequency-domain sampling for 𝑁𝑜 = 1 is as
follows:
1. Choose 𝐿 training inputs {𝛿𝜈𝑙 ∈ R𝑄}𝐿𝑙=1 and 𝐾 training frequencies {𝜔𝑘 ∈

R}𝐾𝑘=1.
2. Solve the frequency-domain problem (12) to collect 𝑁s primal snapshots,

and then obtain the POD mode matrix Zpr
𝑝 ∈ R𝑁ℎ×𝑝 and eigenvalue matrix

Λpr
𝑝 ∈ R𝑝×𝑝 for the 𝑝 ≥ 𝑁 largest eigenvalues.

3. Solve the frequency-domain dual problem (13) to collect 𝑁s adjoint snapshots,
and then obtain the POD mode matrix Zdu

𝑝 ∈ R𝑁ℎ×𝑝 and eigenvalue matrix
Λdu

𝑝 ∈ R𝑝×𝑝 for the 𝑝 largest eigenvalues.
4. Compute the eigenvectors Z𝑁 ∈ R𝑁ℎ×𝑁 associated with the 𝑁 largest eigen-

values of the matrix (Zpr
𝑝 Λpr

𝑝 Zpr
𝑝

𝑇 )(Zdu
𝑝 Λdu

𝑝 Zdu
𝑝

𝑇 ) using a Krylov subspace
method. (Note that the matrix is never explicitly formed.)

The BPOD method produces a reduced basis optimized for the input-output
mapping problem and enables goal-oriented reduction of linearized aerodynamics
problems [73]; depending on the output, BPOD significantly reduces the dimen-
sion of the reduced space required to achieve a given output tolerance compared
to the standard POD, as demonstrated for a two-dimensional plunging airfoil [73].
A variant of BPOD modified for a problem with a large number of outputs is
developed by Rowley in [56].

3.2.5 Other goal-oriented methods

We survey a few other goal-oriented methods to generate reduced basis; we again
restrict ourselves to techniques that have been demonstrated for aerodynamics
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problems. In [74], Willcox et al. propose an Arnoldi-based method, which identifies
a reduced basis by matching moments of the FOM input-output transfer function,
and apply it to aeroelastic analysis of a transonic turbine cascade with unsteady
blade motions. In [72], Willcox and Megretski propose a method which identifies
a reduced basis by computing the Fourier expansion of the discrete-frequency
transfer function, and apply it to analysis of a supersonic diffuser. In [18], Bui-
Thanh et al. propose a more general approach to goal-oriented model reduction
that identifies a reduced basis as a solution of a constrained optimization problem
and apply it to analysis of a subsonic turbine blade. All three methods are goal-
oriented in the sense that they consider both system inputs and outputs to
identify an effective reduced basis.

3.3 Reduced basis for parametrized linearized problems

We have so far discussed the construction of reduced bases for non-parametrized
problems or, equivalently, for one fixed parameter. For parametrized problems,
in general a reduced basis constructed for one parameter value does not provide
a good approximation for another parameter value, as the associated dynamics
can be very different; see, for example, a study for parametrized turbine blades
by Epureanu [28]. We here discuss a few different strategies to construct reduced
basis for parametrized problems.

3.3.1 Global POD

One approach to construct a reduced basis for parametrized problems is to
prepare a “‘global” or “composite” POD basis, which has been trained for a
range of parameters, as proposed for aerodynamics problems by Schmit, Taylor,
and Glauser [59, 63]. In this approach, we first introduce a training parameter set
Ξ𝑁t ≡ {𝜇𝑚}𝑁t

𝑚=1, collect the snapshots for all parameter values, and then apply
POD to the snapshots. The global POD approach for parametrized problem
replaces the first two steps of the time-domain POD approach in Section 3.2.2
with the following:
1’. Choose 𝑁t training parameters {𝜇𝑛}𝑁t

𝑛=1 and 𝐿 training inputs {𝛿𝜈}𝐿𝑙=1.
2’. Solve the full-discrete form of the linearized FOM (7) for the training pa-

rameters {𝜇𝑚}𝑁t
𝑚=1, training inputs {𝛿𝜈𝑙}𝐿𝑙=1, and time steps {𝑡𝑘}𝐾𝑘=1 to

construct a snapshot matrix S ∈ R𝑁ℎ×𝑁s , whose columns are 𝛿u𝑘
ℎ(𝛿𝜈𝑙; 𝜇𝑚) ≈

𝛿uℎ(𝑡𝑘; 𝛿𝜈𝑙) for 𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿, 𝑚 = 1, . . . , 𝑁t, and 𝑁s ≡ 𝐾𝐿𝑁t.
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The global POD approximation works well for problems with a relatively small
parameter dimension and extent; however, the method may suffer from two issues
if the problem exhibits a significant parametric variations. First, the FOM may
need to be solved for a large number of training parameters, which results in a
high training cost. Second, a large number of POD modes may be required to
accurately capture the dynamics. (More precisely, if the Kolmogorov 𝑁 -width of
the parametric manifold {𝑢ℎ(𝑡; 𝛿𝜈, 𝜇)}𝑡∈ℐ,𝛿𝜈∈𝒬,𝜇∈𝒫 is large, then a large number
of modes is required to achieve sufficient accuracy.)

3.3.2 The (weak) greedy algorithm

To address the potentially high training cost associated with the global POD,
the (weak) greedy algorithm has been developed [67, 57]. The greedy algorithm
successively identifies reduced basis {𝜁𝑗}𝑁𝑗=1 based on the behavior of a rapidly
computable error estimate 𝜂𝑁 (𝜇). The algorithm takes as the input the training
parameter set Ξt ⊂ 𝒟 which reasonably covers the domain. Then, in the 𝑁 -th
iteration, given Z𝑁−1 ∈ R𝑁ℎ×(𝑁−1) the algorithm proceeds as follows:
1. Find the parameter with the largest error estimate: 𝜇𝑁 = arg max𝜇∈Ξt 𝜂𝑁−1(𝜇).
2. Solve the FOM for 𝜇𝑁 to obtain uℎ(𝜇𝑁 ) ∈ R𝑁ℎ .
3. Augment the reduced basis with the new snapshot: Z𝑁 = (Z𝑁−1, uℎ(𝜇𝑁 ));

reorthonormalize Z𝑁 using Gram-Schmidt.

The steps are repeated until the user-prescribed error tolerance is met for all
𝜇 ∈ Ξ𝑡. For unsteady problems, Step 3 incorporates an additional reduction
technique (e.g., POD) to compress the multiple temporal snapshots associated
with a single unsteady solve; this approach, called POD-Greedy algorithm, was
proposed and analyzed in [32] and its variant is applied to probabilistic analysis
of turbine cascades in [17].

The weak greedy algorithm has two advantages over POD. First, it requires
only 𝑁 FOM solutions compared to 𝑁𝑡 ≫ 𝑁 solutions for global POD; hence
it reduces the training cost, and a larger Ξt can be used for more exhaustive
training. Second, in the presence of a goal-oriented error estimate, the ROM
trained will meet the error threshold for the engineering quantities of interest at
least for 𝜇 ∈ Ξt. However, one major limitation of the weak greedy algorithm
is that it requires a rapidly computable error estimate; due to the difficulty of
constructing such an error estimate for hyperbolic and convection-dominated
problems in aerodynamics, the greedy algorithm has seen somewhat limited use
in the field. In addition, while the training cost is reduced relative to global
POD, the resulting ROM may still require a large 𝑁 if the problem exhibits
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significant parametric variations. We refer to a review paper [57] for more detailed
description of the weak greedy algorithm.

3.3.3 Parameter domain decomposition

One approach to reduce the ROM size for problems that exhibit a large parameter
extent is to decompose the parameter domain 𝒫 (or time interval ℐ) into smaller
subdomains to limit the parameter extent, which in turn controls the reducibility
(i.e., the Kolmogorov 𝑁 -width) of the parametric manifold. Namely, we first
subdivide 𝒫 into 𝑁𝒫 subdomains {𝒫𝑛}𝑁𝒫

𝑛=1 so that ∪𝑁𝒫
𝑛=1𝒫

𝑛 = 𝒫. We then
construct a set of 𝑁𝒫 reduced bases {Z𝑛}𝑁𝒫

𝑛=1 for the parametric manifolds
{{uℎ(𝜇)}𝜇∈𝒫𝑛}𝑁𝒫

𝑛=1. To make a ROM prediction for a given parameter 𝜇 ∈ 𝒫,
we identify the subdomain 𝒫𝑛 such that 𝜇 ∈ 𝒫𝑛 and then invoke the ROM.

One of the earliest applications of the parameter domain decomposition
approach in aerodynamics is Annonen et al. [6]; the so called multi-POD approach
considers multiple reduced bases associated with different shape deformations.
Washabaugh et al. [68] also employ the approach for Mach number sweep of
a full aircraft configuration. Some versions of the reduced space interpolation
methods [2], which is discussed in Section 3.3.4, also incorporates the idea to
work with a database of reduced spaces. We also refer to [27] for detailed analyses
of parameter domain decomposition approaches.

3.3.4 Reduced space interpolation based on Grassmann manifold

Another approach to reduce the ROM size for problems that exhibit a large
parameter extent is to “interpolate” a set of reduced spaces computed for several
parameter values to construct a new reduced space for the particular parameter
value. One simple idea is to interpolate each basis vector 𝜁𝑗 as a function of 𝜇 ∈ 𝒫 ;
however, this approach, which works with the vectors and not the space, is shown
to work poorly for aeroelasticity problems [48]. To address the problem, Lieu
et al. [48, 47, 46] propose the so-called subspace-angle interpolation method to
interpolate any two reduced spaces. Subsequently, Amsallem et al. [4, 2] propose
a more general approach to interpolate an arbitrary number of reduced spaces
associated with {Z𝑖

𝑁}
𝑁𝑍
𝑖=1 to construct a new reduced basis Z𝑁 . The approach

builds on the observation that the reduced space 𝑉𝑁 spanned by a reduced basis
Z𝑁 is an element of the Grassmann manifold 𝐺(𝑁, 𝑁ℎ). To interpolate reduced
spaces, the approach (i) invokes a logarithmic map to map reduced spaces onto
a tangent space, (ii) performs standard interpolation in the tangent space, and
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(iii) invokes an exponential map to map back the logarithmic representation of
the interpolated basis to identify Z𝑁 . Here we outline the algorithm:
1. Choose parameter values {𝜇𝑖}𝑁𝑍

𝑖=0 and construct the associated reduced bases
{Z𝑖

𝑁}
𝑁𝑍
𝑖=0; 𝑖 = 0 is the reference point.

2. Compute the logarithms {Γ𝑖 ∈ R𝑁ℎ×𝑁}𝑁𝑍
𝑖=1 given by

(I− Z0
𝑁 Z0

𝑁
𝑇 )Z𝑖

𝑁 (Z0
𝑁

𝑇 Z𝑖
𝑁 )−1 = U𝑖Σ𝑖V𝑖 in R𝑁ℎ×𝑁 ,

Γ𝑖 = U𝑖 tan−1(Σ𝑖)V𝑇
𝑖 in R𝑁ℎ×𝑁 ,

where the right hand side of the first step is the thin singular value decom-
position (SVD) of the matrix in the left hand side.

3. Given 𝜇 ∈ 𝒫, interpolate each entries of the parameter-logarithm-matrix
pairs (𝜇𝑖, Γ𝑖)𝑁𝑍

𝑖=1 using a multivariate interpolation scheme for R𝑃 to find
Γ ∈ R𝑁ℎ×𝑁 associated with 𝜇 ∈ 𝒫.

4. Compute the exponential map of the logarithm Γ ∈ R𝑁ℎ×𝑁 given by

Γ = UΣV𝑇

Z𝑁 = Z0
𝑁 V cos(Σ) + U sin(Σ).

This interpolation method on the Grassmann manifold can be thought of as a
generalization of the subspace-angle interpolation method [48, 47, 46]; the two
methods are equivalent when 𝑁𝑍 = 2 reduced bases are used for interpolation,
but the former generalizes to an arbitrary number of reduced bases [4]. For
problems with a large parameter extent, the reduced space interpolation meth-
ods can also be combined with the parameter domain decomposition method
discussed in Section 3.3.3; in this case, the interpolation is performed on a sub-
set of all available reduced bases [2]. The reduced basis interpolation methods
have been demonstrated for parametrized aeroelastic analysis of full aircraft
configurations [4, 2] as discussed further in Section 3.6.

3.4 Offline-online computational decomposition

As briefly discussed in Section 3.1, model reduction achieves computational
speedup through offline-online computational decomposition. The offline stage
is expensive but is performed only once. The online stage is cheap, and it is
invoked in real-time for many different inputs and/or parameters. To describe
offline-online computational decomposition for linearized aerodynamics problems,
we breakdown the model reduction procedure into three steps:
1. Collect the FOM snapshots and construct a reduced basis Z𝑁 (or reduced

bases {Z𝑛
𝑁}) using a method described in Sections 3.2 or 3.3.
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2. Construct the ROM operators by projecting the FOM operators onto the
reduced basis Z𝑁 according to (10).

3. Given the input 𝛿𝜈(𝑡) ∈ 𝒬, 𝑡 ∈ ℐ, solve the ROM problem (11).

In general, Step 1 is the most expensive stage, as it requires time- or frequency-
domain solutions of the FOM for a number of different control inputs and/or
parameters. Step 2 also requires access to the FOM, and hence does require 𝒪(𝑁ℎ)
operations; however, this step is much cheaper than Step 1, as performing the
projection (10) is much cheaper than solving the FOM (11). Step 3, which works
exclusively with the ROM, requires 𝒪(𝑁∙) operations; since 𝑁ℎ = 𝒪(105 − 107)
and 𝑁 = 𝒪(10− 100) for a typical aerodynamics problem, the ROM achieves
significant computational reduction relative to the FOM.

The offline-online computational decomposition takes on different forms de-
pending on whether the problem is parametrized. For non-parametrized problems,
the offline stage comprises Steps 1 and 2; first a reduced basis is identified using a
method in Section 3.2, and then the ROM is constructed in terms of the reduced
operators (10). In the online stage, given an input 𝛿𝜈(𝑡) ∈ 𝒬, 𝑡 ∈ ℐ, we invoke
the ROM (11); note that the online stage requires only 𝒪(𝑁∙) operations.

For parametrized problems, the offline stage comprises only Step 1; either a
global reduced basis or a set of reduced bases is constructed using a method in
Section 3.3. In the online stage, given 𝜇 ∈ 𝒫, we first identify an appropriate
reduced basis: for the parameter domain decomposition method discussed in
Section 3.3.3, this step requires the identification of the subdomain 𝒫𝑛 to which
𝜇 belongs; for the reduced space interpolation method discussed in Section 3.3.4,
this step involves the interpolation of the reduced bases. We then perform Step 2;
project the FOM operators onto Z𝑁 to identify the ROM operators (10). We
finally invoke the ROM to approximate the linearized aerodynamics problem
for the given 𝜇 ∈ 𝒫 and 𝛿𝜈(𝑡) ∈ 𝒬, 𝑡 ∈ ℐ. Unlike the online stage for non-
parametrized problems, the online stage for parametrized problems require the
access to the FOM in Step 2 and hence requires 𝒪(𝑁ℎ) operations. Nevertheless,
significant speedup can be achieved relative to the FOM as Step 2 is still much
cheaper than the unsteady solution of the FOM.

We note that if the parametrized FOM operators admit a decomposition
that is affine in functions of parameters, then the associated reduced operators
can be precomputed in the offline stage and hence the online cost would be
𝒪(𝑁∙); however, most of the relevant problems in aerodynamics do not admit
this so-called affine parameter decomposition. We refer to a review paper [57] for
offline-online computational decomposition in the presence of affine parameter
decomposition. We also note that it may be appropriate to invoke the empirical
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interpolation method [10, 31] or its variant to identify an approximate affine
decomposition; see Chapter 5 of Volume 2.

3.5 Stability of the Galerkin ROM

As discussed in Section 1, the focus of this handbook is on formulation and
not theory. However, as time stability of ROMs (7) is one of the key issues in
model reduction of linearized aerodynamics problems, we briefly mention relevant
literature; here, time stability refers to the ability to bound some norm of the
solution ‖𝑢(𝑡)‖⋆ by the initial state and boundary conditions.

Barone et al. [9] and Kalashinikova et al. [39] analyze the time stability of the
Galerkin ROM (9). The works show that the ROM is stable if the symmetrized
form of the hyperbolic system is used with appropriate boundary conditions. We
note that for compressible Euler and Navier-Stokes equations (i) the symmetrized
system is described in the entropy variables [35, 11]; (ii) the associated energy
norm is given by (𝑤, 𝑣)𝐴0 =

∫︀
Ω 𝑣𝑇 𝐴0𝑤𝑑𝑥, where 𝐴0 is the Jacobian of the

conservative variables with respect to the entropy variables; and (iii) the mass
matrix in (7) is also modified accordingly. Kalashnikova et al. [40] further extend
the stability analysis to aeroelasticity problem where the structured is modeled
by a linearized von Kármán plate equation.

In addition to analysis, we note there are ROM formulations that are designed
to achieve guaranteed stability; we again restrict ourselves to works that have
been demonstrated for aerodynamics problems. The Fourier-based formulation of
Willcox and Megretski [72] discussed in Section 3.2.5, for instance is guaranteed to
preserve stability of the underlying FOM; the method has been applied to model
reduction [72] and model predictive control [36] for which POD yields unstable
ROMs. Amsallem and Farhat [5] also propose an online-efficient stabilization
based on Petrov-Galerkin projection and apply it to aeroelastic analysis of a
wing-store configuration.

3.6 Large-scale applications

We conclude this section on model reduction for linearized aerodynamics problems
with a few applications to large-, industry-scale problems.
∙ Aeroelastic analysis of the AGARD model 445.6 wing [64]. In this work

Thomas et al. consider flutter prediction of a weakened AGARD model
445.6 wing. The FOMs consist 𝑁ℎ ≈ 2.6 × 105 to 7.8 × 105 aerodynamic
degrees of freedom. The flutter boundaries for six different values of base
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flow Mach numbers is analyzed. For each flight Mach number, the snapshots
are computed for the first five structural resonance modes ({𝛿𝜈𝑙}) and six
frequencies ({𝜔𝑘}); POD is applied to identify a ROM with 𝑁 = 55 modes.
The ROM is then used to construct the root loci with respect to the reduced
velocity and to provide accurate predictions of flutter velocities.

∙ Aeroelastic analysis of a full F-16 aeroelastic configuration [2]. In this work
Amsallem et al. consider model reduction of a full aeroelastic F-16 configura-
tion. The FOM consists 𝑁ℎ ≈ 2×106 +1.7×105 aerodynamic and structural
degrees of freedom, respectively. The parameters are the base flow Mach
number and angle of attack. In the offline stage, a set of reduced bases for
83 different flight configurations are prepared using the frequency-domain
POD approach; each basis comprises 𝑁 = 90 modes. In the online stage, the
reduced bases are interpolated on a manifold as discussed in Section 3.3.4.
For the five predictive test configurations considered, the error in the 𝐿2(ℐ)
norm of the unsteady lift varies from 0.4% to 7%. The time to solve the
linearized system is reduced by a factor of 90 in the online stage. (However,
the online stage also requires the computational of the steady-state equilib-
rium solution; when this step is taken into account, the overall speedup is
approximately 7.) The aeroelasticity problem is also considered in [47, 46, 4].

∙ Probabilistic analysis of unsteady turbine blades [17]. In this work Bui-
Thanh et al. consider model reduction of a two-blade turbine system to
analyze the effect of geometric uncertainties on unsteady lift forces. The
FOM consists 𝑁ℎ ≈ 1× 105 degrees of freedom. The geometric modes are
identified using principle component analysis on data from 145 real blades;
geometric perturbations are parametrized using 𝑃 = 10 parameters. The
reduced basis are identified using a greedy algorithm modified for the high-
dimensional parameter space; the resulting ROM consists 𝑁 = 290 modes.
The reduced model is then invoked for 10,000 different geometries to estimate
the distribution of the work per cycle (WPC). Relative to the FOM, the
ROM achieves less than 0.5% error in the mean and 2% error in the variance.
The time to complete the 10,000 analyses is reduced from 516 hours for FOM
to 1.1 hours for ROM, a computational reduction by a factor of 468.

4 Model reduction for nonlinear aerodynamics
In this section we discuss model reduction of nonlinear aerodynamics problems.
While linearized analysis suffices for some aerodynamics scenarios, applications
such as shape optimization and flight-parameter sweep require full nonlinear
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analysis. As some of the model reduction ingredients are the same as those
discussed for linearized problems in Section 3, we focus on techniques and
challenges that are unique to full nonlinear analysis.

4.1 Projection methods

While the Galerkin method is by far the most common approach for model
reduction of linearized aerodynamics problems, there are a few different projection
methods that are commonly used for nonlinear aerodynamics problems. We here
review the two most popular methods, the Galerkin and minimum-residual
methods, and provide a short discussion of other approaches.

4.1.1 Galerkin method

We first introduce the Galerkin approximation of the nonlinear aerodynamics
problem (2). As in Section 3.1, we assume that a sequence of reduced basis spaces
𝑉𝑁=1 ⊂ · · · ⊂ 𝑉𝑁=𝑁max and the associated hierarchical reduced basis {𝜁𝑗}𝑁𝑗=1
is given; we discuss the procedures to generate the reduced basis in Section 4.3.
The semi-discrete form of the Galerkin ROM problem is as follows: given 𝜇 ∈ 𝒫 ,
find 𝑢𝑁 (𝑡; 𝜇) ∈ 𝑉𝑁 , 𝑡 ∈ ℐ, such that

𝜕𝑢𝑁 (𝑡; 𝜇)
𝜕𝑡

+ 𝑟ℎ(𝑢𝑁 (𝑡; 𝜇); 𝜇) = 0 in 𝑉 ′
𝑁 , (14)

and 𝑢𝑁 (𝑡 = 0; 𝜇) = Π𝑁 𝑢0(𝜇). Again, for 𝑔 ∈ 𝑉 ′
ℎ, the statement 𝑔 = 0 in 𝑉 ′

𝑁

should be interpreted as ⟨𝑔, 𝑣⟩ = 0 ∀𝑣 ∈ 𝑉𝑁 . We then evaluate the output
𝑠𝑁 (𝑡; 𝜇) = 𝑞ℎ(𝑢𝑁 (𝑡; 𝜇); 𝜇).

We may also consider the algebraic form of the problem. We recall from
Section 3.1 that we associate any function 𝑣𝑁 ∈ 𝑉𝑁 with a generalized coordinate
v𝑁 ∈ R𝑁 by 𝑣𝑁 = v𝑗

𝑁 𝜁𝑗 ; we may also express the FOM generalized coordinate
of 𝑣𝑁 ∈ 𝑉𝑁 as vℎ = v𝑗

𝑁 𝜁𝑗 = Z𝑁 v𝑁 ∈ R𝑁ℎ . Given the basis, we define the ROM
residual r𝑁 : R𝑁 × 𝒫 → R𝑁 , output functional q𝑁 : R𝑁 × 𝒫 → R, and mass
matrix M𝑁 ∈ R𝑁×𝑁 such that

r𝑁 (w𝑁 ; 𝜇) ≡ Z𝑇
𝑁 rℎ(Z𝑁 w𝑁 ; 𝜇) = (⟨𝑟ℎ(w𝑗

𝑁 𝜁𝑗 ; 𝜇), 𝜁𝑖⟩)𝑁
𝑖=1,

q𝑁 (w𝑁 ; 𝜇) ≡ qℎ(Z𝑁 w𝑁 ; 𝜇) = 𝑞ℎ(w𝑗
𝑁 𝜁𝑗 ; 𝜇),

M𝑁 ≡ Z𝑇
𝑁 MℎZ𝑁 = ((𝜁𝑗 , 𝜁𝑖)𝐿2(Ω))𝑁

𝑖,𝑗=1.
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The algebraic form of the Galerkin ROM problem is as follows: given 𝜇 ∈ 𝒫,
find u𝑁 (𝑡; 𝜇) ∈ R𝑁 , 𝑡 ∈ ℐ, such that

M𝑁
𝑑u𝑁 (𝑡; 𝜇)

𝑑𝑡
+ r𝑁 (u𝑁 (𝑡; 𝜇); 𝜇) = 0 in R𝑁 , (15)

and u𝑁 (𝑡 = 0; 𝜇) = u0
𝑁 (𝜇), where u0

𝑁 (𝜇) ∈ R𝑁 is the generalized coordinate
for Π𝑁 𝑢0(𝜇). We then evaluate the output 𝑠𝑁 (𝑡; 𝜇) = q𝑁 (u𝑁 (𝑡; 𝜇); 𝜇). The
operator form (14) and the algebraic form (15) are equivalent in the sense that
𝑢𝑁 (𝑡; 𝜇) =

∑︀𝑁
𝑗=1 u𝑗

𝑁 (𝑡; 𝜇)𝜁𝑗 .
Most aerodynamics shape optimization and flight-parameter sweep scenarios

consider steady state solutions. The steady state problem seeks u𝑁 (𝜇) ∈ 𝑉𝑁

such that
r𝑁 (u𝑁 (𝜇); 𝜇) = 0 in R𝑁 , (16)

and then evaluates 𝑠𝑁 (𝜇) ≡ q𝑁 (u𝑁 (𝜇); 𝜇).
We make a few observations. First, the reduced-order Galerkin problem (14)

(or (15)) is in semi-discrete form; as described for FOMs in Section 2.3, we apply
a suitable time-marching scheme to obtain a full-discrete form of the Galerkin
ROM problem. Second, the steady-state problem (16) is solved using a pseudo-
time continuation method as discussed for FOMs in Section 2.3, and hence the
unsteady equations are relevant also for steady-state problems. Third, although
the approximation space 𝑉𝑁 is of dimension 𝑁 , the computation of the reduced
residual r𝑁 (w𝑁 ; 𝜇) = Z𝑇

𝑁 rℎ(Z𝑁 w𝑁 ; 𝜇) requires 𝒪(𝑁ℎ) ≫ 𝒪(𝑁) operations,
because the FOM residual rℎ(Z𝑁 w𝑁 ; 𝜇) ∈ R𝑁ℎ must be projected onto the
reduced basis Z𝑁 ∈ R𝑁ℎ×𝑁 . Hyperreduction, which enables 𝒪(𝑁) evaluation of
the residual, is discussed in Section 4.2

4.1.2 Minimum-residual method

We now discuss an alternative projection method: the minimum-residual method.
As the name suggests, we choose the element of 𝑉𝑁 that minimizes the (dual)
norm of the residual as our ROM solution. For steady problems, the minimum-
residual problem is as follows: given 𝜇 ∈ 𝒫, find 𝑢𝑁 (𝜇) ∈ 𝑉𝑁 such that

𝑢𝑁 (𝜇) = arg inf
𝑤𝑁 ∈𝑉𝑁

‖𝑟ℎ(𝑢𝑁 (𝜇); 𝜇)‖𝑉 ′
ℎ
≡ arg inf

𝑤𝑁 ∈𝑉𝑁

sup
𝑣ℎ∈𝑉ℎ

⟨𝑟ℎ(𝑢𝑁 (𝜇); 𝜇), 𝑣ℎ⟩
‖𝑣ℎ‖𝑉ℎ

. (17)
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An algebraic form of the problem is as follows: given 𝜇 ∈ 𝒫, find u𝑁 (𝜇) ∈ R𝑁

such that

u𝑁 (𝜇) = arg inf
w𝑁 ∈R𝑁

‖rℎ(Z𝑁 w𝑁 ; 𝜇)‖2Wℎ
(18)

= arg inf
w𝑁 ∈R𝑁

rℎ(Z𝑁 w𝑁 ; 𝜇)𝑇 Wℎrℎ(Z𝑁 w𝑁 ; 𝜇),

where Wℎ ∈ R𝑁ℎ×𝑁ℎ is the inner product matrix; the choice Wℎ = V−1
ℎ for

Vℎ,𝑖𝑗 = (𝜙𝑗 , 𝜙𝑖)𝑉ℎ
, 𝑖, 𝑗 = 1, . . . , 𝑁ℎ results in (18) to be equivalent to (17).

The minimum-residual formulation can also be extended to unsteady prob-
lems as follows: given 𝜇 ∈ 𝒫, find u𝑁 (𝑡; 𝜇) ∈ R𝑁 , 𝑡 ∈ 𝐼, such that

u𝑘
𝑁 (𝜇) = arg inf

w𝑁 ∈R𝑁

‖rℎ,Δ𝑡(Z𝑁 w𝑁 ; {Z𝑁 u𝑙
𝑁 (𝜇)}𝑘−1

𝑙=1 ; 𝜇)‖Wℎ
, 𝑘 = 1, . . . , 𝐾.

The formulation minimizes the residual associated with each time step.
We make a few observations. First, the minimum-residual method can be

cast as a Petrov-Galerkin method [50]; as a result, the method is also referred to
as a least-squares Petrov-Galerkin (LSPG) method [21]. Second, the minimum-
residual method is a very common approach for model reduction of steady
nonlinear aerodynamics problems and has been used in works including [43,
44, 45, 69, 80, 79]. Third, similarly to the Galerkin method, the evaluation of
the FOM residual in (18) requires 𝒪(𝑁ℎ)≫ 𝒪(𝑁) operations. Hyperreduction,
which enables 𝒪(𝑁) evaluation of the residual, is discussed in Section 4.2

4.1.3 Other approaches: interpolation- and 𝐿1-based ROMs

While the Galerkin and minimum-residual methods are most commonly used
methods for model reduction of nonlinear aerodynamics problems, some works
have used interpolation-based ROMs, which deduce the reduced basis coefficients
u𝑁 ∈ R𝑁 through interpolation. In the context of aerodynamics, the approach
has been applied to flight-parameter sweep scenarios: Bui-Thanh et al. [16]
deduce the reduced basis coefficients using cubic splines for two-dimensional
Euler flow over an airfoil; Franz et al. [30] deduce the reduced basis coefficients
using a manifold learning technique for three-dimensional Euler flow over a wing.

We can also consider minimization of different norms of the residual to deduce
u𝑁 ∈ R𝑁 . Of particular interest is the 𝐿1-norm, which is a more natural norm
for hyperbolic equations. Based on this observation, Abgrall and Crisovan [1]
propose a ROM which identifies the solution through 𝐿1 minimization and apply
it to parameterized transonic Euler flow over an airfoil.
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4.2 Hyperreduction

As discussed in Sections 4.1, seeking the solution in a reduced space 𝑉𝑁 ⊂ 𝑉ℎ

is insufficient to achieve 𝒪(𝑁∙) online cost for nonlinear problems. We need a
means to approximate the projection of the FOM residual rℎ(w𝑁 ; 𝜇) ∈ R𝑁ℎ onto
the reduced basis Z𝑁 ∈ R𝑁ℎ×𝑁 in 𝒪(𝑁) operations for the Galerkin method,
and there is an analogous requirement for the minimum-residual method. This is
the goal of hyperreduction, the term coined by Ryckelynck [58]. We here present
hyperreduction approaches that has been used for aerodynamics problems; we
refer to Chapter 5 of Volume 2 for a more general coverage. We follow the
convention used in much of hyperreduction literature and presents formulations
in algebraic form.

4.2.1 Minimum-residual collocation methods

We first consider arguably the simplest hyperreduction method: minimum-residual
method with a collocation-based approximation of the residual norm. To begin, we
assume that the FOM residual can be decomposed into elemental contributions;
the assumption holds for finite volume and finite element methods — the two
most commonly used discretizations in aerodynamics — as the FOM residual is
assembled element by element. We express this elemental decomposition of the
residual as

rℎ(wℎ; 𝜇) =
𝑁𝑒∑︁

𝜅=1
rℎ,𝜅(wℎ; 𝜇) in R𝑁ℎ ,

where 𝑁𝑒 ≡ |𝒯ℎ| is the number of elements, and rℎ,𝜅 : R𝑁ℎ × 𝒫 → R𝑁ℎ is the
FOM residual operator for the 𝜅-th element. Note that rℎ,𝜅(wℎ; 𝜇) ∈ R𝑁ℎ is
mostly sparse, because a given element contributes to a small number of residual
degrees of freedom.

We now proceed with hyperreduction. We first choose a small subset of
�̃�𝑒 sample elements 𝒯ℎ ⊂ 𝒯ℎ so that 𝑁 ≤ �̃�𝑒 ≪ 𝑁𝑒; we denote the associated
sample element indices by 𝑇 . (Quantities associated with hyperreduction bears ·̃
throughout this section.) We then consider the following hyperreduced approxi-
mation of the minimum-residual problem (18): given 𝜇 ∈ 𝒫, find ũ𝑁 (𝜇) ∈ R𝑁

such that
ũ𝑁 (𝜇) = arg min

w𝑁 ∈R𝑁

‖
∑︁

𝜅∈𝒯ℎ

rℎ,𝜅(wℎ; 𝜇)‖2. (19)

We observe that, if �̃�𝑒 = 𝒪(𝑁) ≪ 𝑁ℎ, then we can solve this hyperreduced
minimum-residual problem in 𝒪(𝑁∙) operations.
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We can also describe the hyperreduction procedure algebraically. To this end,
we first identify the set of �̃�ℐ̃ residual sample indices ℐ̃ ≡ {̃𝑖1, . . . , �̃��̃�ℐ̃

} associated
with the sample elements 𝒯ℎ. For finite volume methods, �̃�ℐ̃ = 𝑁𝑐�̃�𝑒 as the
number of residual degrees of freedom associated with each element is equal to the
number of components 𝑁𝑐 in the PDE. We then introduce the associated sample
matrix P = (𝑒𝑖1 , . . . , 𝑒

𝑖�̃�ℐ̃ ) ∈ R𝑁ℎ×�̃�ℐ̃ whose 𝑗-th column is the canonical unit
vector 𝑒𝑖𝑗 ∈ R𝑁ℎ . The minimum-residual collocation problem (19) is equivalent
to

ũ𝑁 (𝜇) = arg min
w𝑁 ∈R𝑁

‖P𝑇 rℎ(wℎ; 𝜇)‖2.

Here, to achieve hyperreduction, we evaluate the operator (P𝑇 rℎ) : R𝑁ℎ × 𝒫 →
R�̃�ℐ̃ first by checking which indices are requested by P and then computing the
residual for only those indices.

The key to a successful hyperreduction by the minimum-residual collocation
formulation lies in the selection of the sample elements 𝒯ℎ, which is performed
in the offline stage. We here review few approaches that has been applied to
aerodynamics problems.

Physics-informed selection. To our knowledge, LeGresley and Alonso [44]
are the first to consider hyperreduction for aerodynamics problems. In the work,
hyperreduction is achieved by including only 20-30% of the elements near the
airfoil in 𝒯ℎ. This strategy was specialized for aerodynamic shape optimization,
in which most of the solution variations are in the vicinity of the airfoil. Vendl et
al. [66] also consider a physics-informed hyperreduction in the context of flight-
parameter sweep; however, as the parameter affects the boundary conditions,
they also included elements on the farfield boundary in 𝒯ℎ.

Gappy POD on the state snapshots. To devise a more systematic approach to
identify sample elements, Washabaugh et al. [69, 70] invoke Gappy POD [29] on
the solution snapshots S ≡ (uℎ(𝜇1), . . . , uℎ(𝜇𝑁s)) ∈ R𝑁ℎ×𝑁s and set the sample
indices ℐ̃ for the minimum-residual collocation method equal to the Gappy
POD sample indices. Specifically, the method successively processes sets of
snapshots S ∈ R𝑁ℎ×𝑁s in smaller batches S𝑘 = (uℎ(𝜇1), . . . , uℎ(𝜇𝑘)) ∈ R𝑁ℎ×𝑘,
𝑘 = 1, . . . , 𝑁s; assuming the sample indices ℐ̃ have been constructed for S̃𝑘−1,
the sample indices are updated for the batch S̃𝑘 as follows:
1. Compute the Gappy POD reconstruction of the snapshots:

S̃𝑘 = Z𝑁 (P𝑇 Z𝑁 )†P𝑇 S ∈ R𝑁ℎ×𝑁s . Here, (·)† denotes the pseudo inverse.
2. Set 𝑖⋆ = arg max𝑖∈[1,𝑁ℎ] max𝑗∈[1,𝑁s] |S𝑘 − S̃𝑘|𝑖𝑗 .
3. Add the sample index: ℐ̃ = ℐ̃ ∪ 𝑖⋆; update the sample matrix P accordingly.

This approach assumes that the sample indices with which the state can be
approximated work well also for the residual; this assumption allows the method
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to work with the state and not the residual, which significantly reduces the offline
cost relative to GNAT and EQP methods discussed in Sections 4.2.2 and 4.2.3,
respectively. The method has been applied to full aircraft configuration under
shape deformations [69] as discussed further in Section 4.5.

4.2.2 Gauss-Newton approximate tensor (GNAT) method

The GNAT method [21, 22] approximates the minimum-residual problem (18)
for Wℎ = I, u𝑁 (𝜇) = arg infw𝑁 ∈R𝑁 ‖rℎ(Z𝑁 w𝑁 ; 𝜇)‖2, using a Gappy POD
approximation [29] of the residual and Jacobian and then solves the problem
using the Gauss-Newton method. (Although the original work [21, 22] considers
unsteady problems, for notational simplicity we here consider a steady problem.)
The solution of (18) by the Gauss-Newton method requires successive solution
of the linear least-squares problem: find the update 𝛿w𝑁 ∈ R𝑁 such that

𝛿w𝑁 = arg min
v𝑛∈R𝑁

‖Jℎ(Z𝑁 v𝑁 )Z𝑁 v𝑁 + rℎ(Z𝑁 w𝑁 )‖2. (20)

The solution is then updated according to w𝑁 ← w𝑁 + 𝛼𝛿w𝑁 , where the step
length 𝛼 ∈ (0, 1] is deduced by line search. The cost to solve this least-squares
problem is 𝒪(𝑁ℎ) as it requires the FOM residual and Jacobian.

To approximately solve (20) in 𝒪(𝑁) operations, the GNAT method pre-
pares three ingredients for a Gappy POD approximation of the residual rℎ :
R𝑁ℎ × 𝒫 → R𝑁ℎ : (i) a reduced basis for the residual Z𝑟 ∈ R𝑁ℎ×𝑁𝑟 , (ii)
a set of sample indices ℐ = {𝑖1, . . . , 𝑖�̃�ℐ̃

} for �̃�ℐ̃ ≥ 𝑁𝑟, and (iii) the as-
sociated sample matrix P = (𝑒𝑖1 , . . . , 𝑒

𝑖�̃�ℐ̃ ) ∈ R𝑁ℎ×�̃�ℐ̃ whose 𝑗-column is
the canonical unit vector 𝑒𝑖𝑗 ∈ R𝑁ℎ . The residual is then approximated by
regression: r̃ℎ(Z𝑁 w𝑁 ) = arg minv∈v𝑟

‖P𝑇 (rℎ(Z𝑁 w𝑁 ) − Z𝑟v)‖2. The Jaco-
bian is similarly approximated using a reduced basis for the Jacobian Z𝐽 ∈
R𝑁ℎ×𝑁𝐽 and the same sample matrix P𝑇 by regression: J̃ℎ(Z𝑁 w𝑁 )Z𝑁,𝑗 =
arg minv∈v𝑟

‖P𝑇 (Jℎ(Z𝑁 w𝑁 )Z𝑁,𝑗 − Z𝐽 v)‖2, 𝑗 = 1, . . . , 𝑁 . The GNAT method
solves this Gappy-POD-approximated minimum-residual problem using a Gappy-
POD-approximated Gauss-Newton method.

Carlberg et al. [21, 22] introduce four variants of the GNAT method, named
procedure 0–3. We here consider only procedure 1, which has been shown to
exhibit good accuracy and robustness for unsteady aerodynamics problems. We
outline the offline and online stages of the GNAT method.
Offline stage. In the offline stage, we construct all ingredients of GNAT: Z𝑁 ∈
R𝑁ℎ×𝑁𝑟 , Z𝑟 = Z𝐽 ∈ R𝑁ℎ×𝑁𝑟 , and P ∈ R𝑁ℎ×�̃�ℐ̃ .
1. Choose a snapshot parameter set Ξt = {𝜇𝑖}𝑁t

𝑖=1 ⊂ 𝒫.
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2. Solve the FOM (4) for each 𝜇 ∈ Ξt to obtain {uℎ(𝜇)}𝜇∈Ξt . Apply POD to
the snapshots to obtain a state reduced basis Z𝑁 ∈ R𝑁ℎ×𝑁 .

3. Solve the non-hyperreduced ROM (17) for each 𝜇 ∈ Ξt. Collect residual
snapshots {rℎ(Z𝑁 u𝑁 (𝜇); 𝜇)}𝜇∈Ξ𝑠

. Apply POD to the set to obtain a residual
reduced basis Z𝑟 ∈ R𝑁ℎ×𝑁𝑟 for 𝑁𝑟 ≥ 𝑁 . Set Z𝐽 = Z𝑟.

4. Apply the Gappy POD procedure described in Section 4.2.1 (for the state
snapshots) to the residual snapshots to determine the sample index ℐ̃ with
�̃�ℐ̃ ≥ 𝑁𝑟 and the associated sample matrix P ∈ R𝑁ℎ×�̃�ℐ̃ .

5. Pre-compute A ≡ (P𝑇 Z𝐽 )† ∈ R𝑁𝐽 ×𝑁ℐ̃ and B ≡ (Z𝐽 )𝑇 Z𝑟(P𝑇 Z𝑟)† ∈
R𝑁𝐽 ×𝑁ℐ̃ .

Online stage. In the online stage, given 𝜇 ∈ 𝒫, we seek u𝑁 (𝜇) such that

u𝑁 (𝜇) = arg min
w𝑁 ∈R𝑁

‖Z𝑟(P𝑇 Z𝑟)†P𝑇 rℎ(Z𝑁 w𝑁 ; 𝜇)‖2.

This problem is solved using the Gauss-Newton method as follows.
1. Form C(w𝑁 ) = P𝑇 Jℎ(Z𝑁 w𝑁 )Z𝑁 and D(w𝑁 ) = P𝑇 rℎ(Z𝑁 w).
2. Solve the linear least squares problem: find 𝛿w𝑁 ∈ R𝑁 such that

𝛿w𝑁 = arg min
v∈R𝑁

‖AC(w𝑁 )v + BD(w𝑁 )‖2.

3. Update w𝑁 ← w𝑁 + 𝛼𝛿w𝑁 , where 𝛼 is determined from line search.
4. If converged, terminate; otherwise return to 1.

The online computational cost is 𝒪(𝑁∙) and is independent of the FOM. To
evaluate the output, the GNAT method does not explicitly hyperreduce the
output functional qℎ : R𝑁ℎ × 𝒫 → R, but simply leverages the fact that output
functionals for most aerodynamics problems require evaluation on a small subset
of elements; e.g., elements on aerodynamics surfaces. Hence, output evaluation
constitutes a small fraction of the overall cost.

The GNAT method has been applied to large-scale simulation of (non-
parametrized) unsteady turbulent flow over the Amhed body [21, 22] as discussed
further in Section 4.5. We also refer to [20] for a detailed analysis of the method.

4.2.3 Galerkin method with empirical quadrature procedure

One of the limitations of the hyperreduction methods discussed in the previous
two sections is that they do not provide a quantitative control of the solution
and/or output error due to hyperreduction. One approach which provides such
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quantitative error control is the empirical quadrature procedure (EQP) [77, 75, 76].
To describe the method, we first introduce hyperreduced residual r̃𝑁 : R𝑁 ×𝒫 →
R𝑁 and output functional q̃𝑁 : R𝑁 × 𝒫 → R of the form

r̃𝑁 (w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝑟

𝜅r𝑁,𝜅(w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝑟

𝜅Z𝑇
𝑁 rℎ,𝜅(Z𝑁 w𝑁 ; 𝜇), (21)

q̃𝑁 (w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝑞

𝜅q𝑁,𝜅(w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝑞

𝜅qℎ,𝜅(Z𝑁 w𝑁 ; 𝜇); (22)

here 𝜌𝑟 ∈ R𝑁𝑒 and 𝜌𝑞 ∈ R𝑁𝑒 are the EQP weights that are sparse (i.e., most
entries are zero) so that the summand need to be evaluated for a small subset of
elements. The associated hyperreduced problem is as follows: given 𝜇 ∈ 𝒫, find
ũ𝑁 (𝑡; 𝜇) ∈ R𝑁 , 𝑡 ∈ ℐ, such that

M𝑁
𝑑ũ𝑁 (𝑡; 𝜇)

𝑑𝑡
+ r̃𝑁 (ũ𝑁,𝑀 (𝑡; 𝜇); 𝜇) = 0 in R𝑁 ,

for ũ𝑁 (𝑡 = 0; 𝜇) = u0
𝑁 (𝜇), and evaluate the output 𝑠𝑁 (𝑡; 𝜇) = q̃𝑁 (ũ𝑁 (𝑡; 𝜇); 𝜇).

We wish to find EQP weights 𝜌𝑟 ∈ R𝑁𝑒 and 𝜌𝑞 ∈ R𝑁𝑒 so that (i) |𝑠𝑁 (𝑡; 𝜇) −
𝑠𝑁 (𝑡; 𝜇)| ≤ 𝛿 for a user-prescribed tolerance 𝛿 ∈ R>0 and (ii) nnz(𝜌𝑟) = 𝒪(𝑁)
and nnz(𝜌𝑞) = 𝒪(𝑁). The two conditions ensure the accuracy and online effi-
ciency, respectively, of the hyperreduced ROM.

The EQP weights are computed in the offline stage by solving linear pro-
grams (LPs). We first introduce a parameter training set Ξt ≡ {�̂�𝑗}𝑁𝑡

𝑗=1 and the
associated training states 𝑈t = {û𝑁 (𝜇)}𝜇∈Ξt . The training states can be the
non-hyperreduced ROM solution as it is done for GNAT; however when used
in conjunction with the greedy algorithm, 𝑈t can be the hyperreduced ROM
solution in a given iteration [75]. The general form of the linear program, denoted
LP∙ where ∙ is the placeholder for the residual “𝑟” or output function “𝑞”, is as
follows: find the basic feasible solution 𝜌∙,⋆ ∈ R𝑁𝑒 such that

𝜌∙,⋆ = arg min
𝜌∙∈R𝑁𝑒

𝑁𝑒∑︁
𝜅=1

𝜌∙
𝜅

subject to non-negativity constraints

𝜌∙
𝜅 ≥ 0 𝜅 = 1, . . . , 𝑁𝑒,
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and manifold-accuracy and constant-integration constraints⎛⎜⎜⎜⎜⎝
a∙

1(𝜇1) · · · a∙
𝑁𝑒

(𝜇1)
...

. . .
...

a∙
1(𝜇𝑁t) · · · a∙

𝑁𝑒
(𝜇𝑁t)

|𝜅1| · · · |𝜅𝑁𝑒
|

⎞⎟⎟⎟⎟⎠
⎛⎜⎝ 𝜌∙

1
...

𝜌∙
𝑁𝑒

⎞⎟⎠ ≶

⎛⎜⎜⎜⎜⎝
b∙(𝜇1)

...
b∙(𝜇𝑁t)

|Ω|

⎞⎟⎟⎟⎟⎠±
⎛⎜⎜⎜⎜⎝

𝛿∙

...
𝛿∙

𝛿Ω

⎞⎟⎟⎟⎟⎠ ,

(23)
where a𝜅(𝜇) ∈ R𝑁∙

𝑐 , 𝜅 = 1, . . . , 𝑁𝑒, is a set of vectors that depends on the
specific manifold accuracy constraint to be described shortly, 𝑁∙

𝑐 is the number
of constraints per training parameter, 𝑏∙(𝜇) ≡

∑︀𝑁𝑒

𝜅=1 a∙
𝜅(𝜇) ∈ R𝑁∙

𝑐 , 𝛿∙ ∈ R𝑁∙
𝑐 is

the manifold-accuracy tolerance, |𝜅| ≡
∫︀

𝜅
𝑑𝑥, and |Ω| ≡

∫︀
Ω 𝑑𝑥. The LP can be

solved using a simplex method. We now introduce specific manifold accuracy
constraints for the residual (21) and output functional (22).

Residual EQP. The residual EQP weights 𝜌𝑟 ∈ R𝑁𝑒 is found by solving
LP𝑟(Ξ𝑡, 𝑈𝑡, 𝛿𝑟). As our goal is to control the output error, we introduce a reduced
basis approximation of the dual problem: given 𝜇 ∈ 𝒫 and the linearization state
u𝑁 (𝜇) ∈ R𝑁 , find the dual solution z𝑁 (𝜇) ∈ R𝑁 such that

J𝑁 (û𝑁 (𝜇); 𝜇)𝑇 z𝑁 (𝜇) = g𝑁 (û𝑁 (𝜇); 𝜇) in R𝑁 .

As discussed in the context of balanced POD in Section 3.2.4, the dual solution
relates the residual to the output error. The manifold-accuracy constraint (23)
for the residual imposes 𝑁𝑟

𝑐 = 𝑁 constraints per training parameter given by

a𝑟
𝜅(𝜇) ≡ |z𝑁 (𝜇)| ∘ |r𝑁,𝜅(û(𝜇); 𝜇)| in R𝑁 ,

and 𝛿𝑟 = 𝛿𝑟

2 1𝑁 , where 1𝑁 ∈ R𝑁 is the vector of all ones, and ∘ is the Hadamard
(i.e., entry-wise) product. Overall, LP𝑟 has 𝑁𝑒 unknowns, 𝑁𝑒 non-negativity
constraints, and 2(𝑁𝑡𝑁 + 1) inequality constraints (where the leading factor of
two accounts for the upper and lower bounds in (23)).

Output functional EQP. The output EQP weights 𝜌𝑞 ∈ R𝑁𝑒 is similarly
found by solving LP𝑞(Ξ𝑡, 𝑈𝑡, 𝛿𝑞). The manifold-accuracy constraint (23) for the
output functional imposes 𝑁𝑞

𝑐 = 1 constraint per training parameter given by

a𝑞
𝜅(𝜇) ≡ q𝜅(ũ𝑁 (𝜇); 𝜇) in R.

Overall, LP𝑞 has 𝑁𝑒 unknowns, 𝑁𝑒 non-negativity constraints, and 2(𝑁𝑡 + 1)
inequality constraints; the LP for the output functional is much smaller than
that for the residual.

Output a posteriori error estimate. The EQP method also provides an a
posteriori error estimate for the output error. The error estimate is based on the
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dual-weighted residual (DWR) method [14]. To this end, we first introduce a
separate reduced basis for the dual problem Zdu

𝑁 ∈ R𝑁ℎ×𝑁 , which is different
from the primal reduced basis Z𝑁 ∈ R𝑁ℎ×𝑁 . We then introduce an EQP
approximation of the residual, Jacobian, and output gradient evaluated with
respect to the dual reduced basis Zdu

𝑁 : r̃du
𝑁 : R𝑁 × 𝒫 → R𝑁 , J̃du

𝑁 : R𝑁 × 𝒟 →
R𝑁×𝑁 and g̃du

𝑁 : R𝑁 ×𝒟 → R𝑁 such that

r̃du
𝑁 (w; 𝜇) ≡

𝑁𝑒∑︁
𝜅=1

𝜌𝜂
𝜅rdu

𝑁,𝜅(Z𝑁 w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝜂

𝜅Zdu
𝑁

𝑇 rℎ,𝜅(Z𝑁 w𝑁 ; 𝜇),

J̃du
𝑁 (w; 𝜇) ≡

𝑁𝑒∑︁
𝜅=1

𝜌𝜂
𝜅Jdu

𝑁,𝜅(Z𝑁 w𝑁 ; 𝜇) ≡
𝑁𝑒∑︁

𝜅=1
𝜌𝜂

𝜅Zdu
𝑁

𝑇 Jℎ,𝜅(Z𝑁 w𝑁 ; 𝜇)Zdu
𝑁 ,

g̃du
𝑁 (w; 𝜇) ≡

𝑁𝑒∑︁
𝜅=1

𝜌𝜂
𝜅g𝑁,𝜅(Z𝑁 w𝑁 ; 𝜇) ≡

𝑁𝑒∑︁
𝜅=1

𝜌𝜂
𝜅Zdu

𝑁
𝑇 gℎ,𝜅(Z𝑁 w𝑁 ; 𝜇),

for some EQP weights 𝜌𝜂 ∈ R𝑁𝑒 computed in the offline stage. The EQP dual
problem is as follows: given 𝜇 ∈ 𝒟 and ũ𝑁 (𝜇) ∈ R𝑁 , find z̃du

𝑁 (𝜇) ∈ R𝑁 such
that

J̃du
𝑁 (ũ𝑁 (𝜇); 𝜇)𝑇 z̃du

𝑁 (𝜇) = g̃du
𝑁 (ũ𝑁 (𝜇); 𝜇) in R𝑁 .

The output error estimate is given by

𝜂rb
𝑁 (𝜇) ≡ |z̃du

𝑁 (𝜇)𝑇 r̃du
𝑁 (ũ𝑁 (𝜇); 𝜇)|.

Assuming nnz(𝜌𝜂) = 𝒪(𝑁), this error estimate is computable in 𝒪(𝑁) operations.
The output error estimate EQP weights 𝜌𝜂 ∈ R𝑁𝑒 is given by a linear

program LP𝜂(Ξt, 𝑈t, 𝛿𝜂). The manifold-accuracy constraint (23) for the output
error estimate imposes 𝑁𝜂

𝑐 = 3𝑁 constraints per training parameter given by

a𝜂
𝑁,𝜅(𝜇) ≡

⎛⎜⎝ max{|zdu
𝑁 (𝜇)|, zdu

min} ∘ |rdu
𝑁,𝜅(𝜇)|

max{|rdu
𝑁 (𝜇)|, rdu

min} ∘ |Jdu
𝑁 (𝜇)−𝑇 Jdu

𝑁,𝜅(𝜇)𝑇 zdu
𝑁 (𝜇)|

max{|rdu
𝑁 (𝜇)|, rdu

min} ∘ |Jdu
𝑁 (𝜇)−𝑇 gdu

𝑁,𝜅(𝜇)|

⎞⎟⎠ in R3𝑁 ;

here zdu
min ≡ (𝜐𝛿𝜂/𝑁)1/2/2 and rmin ≡ (𝛿𝜂/(𝜐𝑁))1/2/4 for 𝜐 ≡ ‖zdu

𝑁 (𝜇)‖2/‖rdu
𝑁 (𝜇)‖2,

the maximum operator is taken entry wise, and all entities with the ar-
gument 𝜇 is evaluated about the state ũ(�̃�) and the parameter 𝜇; e.g.,
rdu

𝑁,𝜅(𝜇) ≡ rdu
𝑁,𝜅(ũ𝑁 (𝜇); 𝜇). Overall, LP𝜂 has 𝑁𝑒 unknowns, 𝑁𝑒 non-negativity

constraints, and 2(3𝑁𝑡𝑁 + 1) inequality constraints.
The EQP method has been applied to two- and three-dimensional turbulent

aerodynamic flows in the context of flight-parameter sweep [75, 76]. The rapidly
computable output error estimate enables, in the offline stage, the construction of
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a reduced model that meets the user prescribed error tolerance in an automated
manner and, in the online stage, provides reliable predictions.
4.2.4 Choice of a hyperreduction procedure

We make a few remarks about the choice of a hyperreduction method for aerody-
namics problems. One of the challenges in hyperreduction for aerodynamics is
that the FOM is typically very large, with millions of degrees of freedom, and
hence the offline training cost cannot be neglected in a practical engineering
setting. This is unlike some classical model reduction scenarios, where the offline
cost is often neglected. The other challenge is the stability; the hyperreduced
system must provide time stability for unsteady simulations to produce meaning-
ful results and for steady simulations to find solutions using the PTC procedure.
There exist many examples in the literature where a hyperreduction method that
works well for other nonlinear problems have been found to be insufficient for
aerodynamics problems.

For instance, the missing point estimate [8] chooses the sample indices ℐ̃
such that the associated sample matrix P minimizes the condition number
of Z𝑇

𝑁 PP𝑇 Z𝑁 ; however, the method was deemed too expensive for steady
aerodynamics problems in [66]. The empirical interpolation method (EIM) [10,
31] and its discrete counterpart [23], which are arguably the most common
hyperreduction method, to our knowledge have seen limited use in aerodynamics;
in fact, Carlberg et al. [22, 20] report temporal instability for turbulent unsteady
flows. Similarly, the GNAT method, which has been used successfully for non-
parametrized unsteady problems, was deemed too expensive for parametrized
steady aerodynamics problems in Washabaugh [70]; we also refer to the work for
detailed discussion of the choice of a hyperreduction method.
4.3 Construction of reduced basis

Techniques to find an appropriate reduced basis for nonlinear aerodynamics
problems are largely the same as those for linearized aerodynamics problems
discussed in Sections 3.2 and 3.3. By far the most popular method to generate
reduced bases for nonlinear aerodynamics problems is POD [43, 44, 45, 69, 80,
79, 66, 21, 22]. For unsteady problems, the snapshots are collected for 𝐾 time
steps to yield S = {u𝑘

ℎ ≈ uℎ(𝑡𝑘)}𝐾𝑘=1; for parametrized problems, the snapshots
are collected for 𝑁t training parameters Ξt ≡ {𝜇𝑖}𝑁t

𝑖=1 to yield S = {uℎ(𝜇)}𝜇∈Ξt .
Given the snapshot matrix S, the POD procedure to identify Z𝑁 ∈ R𝑁ℎ×𝑁 is
described in the context of linearized problems in Section 3.2.2. For the EQP
method which provides an online efficient a posteriori error estimate, it is also
possible to identify the reduced basis using the weak greedy algorithm discussed
in Section 3.3.2 [75, 76]. We note that while the “standard” POD readily extends
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to nonlinear problems, some of its variants which rely on the linearity of the
PDE, such as frequency-domain POD or balanced POD, do not.
4.4 Treatment of moving discontinuities

One of the challenges in model reduction of transonic aerodynamics problems is
the treatment of shocks. The fundamental challenge is that if uℎ(𝑡; 𝜇) contains a
discontinuity whose location depends on 𝑡 ∈ ℐ or 𝜇 ∈ 𝒫, then the Kolmogorov
𝑁 -width of {uℎ(𝑡; 𝜇)}𝑡∈ℐ,𝜇∈𝒫 is large and the solution manifold is not amenable
to a low-dimensional approximate of the form 𝑢𝑁 (𝜇) = 𝜁𝑗u𝑗

𝑁 (𝜇). We provide a
brief overview of methods developed to address the challenge. We restrict our
coverage to methods tested for multi-dimensional aerodynamics problems, and
refer to the references in [53] and a review paper [54] for a more general coverage.

Domain decomposition. One way to address the problem is to forgo the
reduction of the state over the entire domain and to only reduce solution over a
portion of the domain, as proposed for transonic Euler flows by LeGresley and
Alonso [45]. Namely, we first decompose the domain into two regions: (i) region
Ωrom ⊂ Ω over which the solution varies smoothly and hence {𝑢ℎ(𝜇)|Ωrom}𝜇∈𝒫
is amenable to model reduction; (ii) region Ωfom ≡ Ω ∖ Ωrom which contains
moving discontinuities and hence is not amenable to model reduction. We then
approximate the solution 𝑢ℎ(𝜇)|Ωrom using a reduced basis {𝜁𝑗 |Ωrom}𝑁𝑗=1 and
𝑢ℎ(𝜇)|Ωfom using the native basis of the FOM.

Nonlinear model reduction. Another approach to address moving discontinu-
ities is to consider nonlinear model reduction. Here, nonlinear model reduction
refers to approaches that approximate the solution in not a linear space 𝑉𝑁

but in a nonlinear space. (Nonlinear model reduction should not be confused
with linear model reduction of nonlinear PDEs, which has been considered so
far in this section.) Nonlinear model reduction approaches considered by both
Cagniart et al. [19] and Nair and Balajewicz [53] are based on the following
observation: if the snapshots can be translated in space such that the shocks are
aligned, then the snapshots can be effectively compressed using a linear model
reduction technique (e.g., POD). Specifically, the approach approximates the
solution 𝑢ℎ(·; 𝜇) ∈ 𝑉ℎ by

𝑢𝑁 (𝑥; 𝜇) = 𝜁𝑗(𝑥; 𝜇)u𝑗
𝑁 (𝜇)

for some u𝑁 (𝜇) ∈ R𝑁 and a parameter-dependent basis

𝜁𝑗(𝑥; 𝜇) = 𝑢ℎ(𝑦𝑗(𝑥, 𝜇); 𝜇), 𝑗 = 1, . . . , 𝑁,

where 𝑦𝑗 : Ω × 𝒫 → R𝑑, 𝑗 = 1, . . . , 𝑁 , are parameter-dependent translation
functions. The translation functions {𝑦𝑗} are trained in the offline stage such
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that the shock locations for the translated basis 𝜁𝑗(·; 𝜇) = 𝑢ℎ(𝑦𝑗(·, 𝜇) are
(approximately) aligned with the shock in 𝑢ℎ(·; 𝜇). Nonlinear approximation of
shocks is a relatively new development in the field of model reduction, and hence
we refer to [19, 53, 54] and references therein for specific implementations. The
nonlinear model reduction approach has been applied to transonic Euler over an
airfoil [19] and supersonic forward step [53].
4.5 Large-scale applications

We conclude this section with a few examples of model reduction applied to
large-, industry-scale nonlinear aerodynamics problems.
∙ Unsteady turbulent flow past Amhed body [22]. In this work Carlberg et al.

consider model reduction of non-parametrized turbulent flow over the Ahmed
body modeled by the detached eddy simulation (DES). The FOM consists
𝑁ℎ ≈ 1.7× 107 spatial degrees of freedom. The FOM is hyperreduced using
the GNAT method; the resulting ROM uses a 𝑁 = 283 reduced basis for
the state, 𝑁𝑅 = 𝑁𝐽 = 1514 reduced basis for the residual and Jacobian,
and �̃�𝑒 = 378 sample nodes. The ROM reproduces the unsteady drag time
history with less than 1% discrepancy. The FOM requires 13 hours using 512
cores, whereas the ROM requires 3.9 hours using 4 cores; the ROM reduces
the computational cost by a factor of 438.

∙ Parametric shape deformation of NASA Common Research Model [69]. In
this work Washabaugh et al. consider model reduction of steady RANS-
SA flow over the NASA Common Research Model under parametric shape
deformation. The FOM consists 𝑁ℎ ≈ 6.8× 107 degrees of freedom and is
parametrized by four shape parameters: wingspan, washout, stream-wise
wingtip rake, and vertical wingtip rake. The ROM based on the minimum-
residual formulation with the Gappy POD collocation hyperreduction uses
𝑁 = 23 modes and �̃�𝑒 = 5000 sample nodes. The ROM achieves less than
0.3% error in drag for test parameters considered. A single simulation of
the FOM requires 2 hours using 1024 cores, whereas the ROM requires 2.8
minutes on a laptop.

5 Summary and conclusions
In this chapter, we surveyed model reduction techniques for linearized and
nonlinear aerodynamics problems that have been developed in the past two
decades. We discussed essential ingredients of model reduction, with an emphasis
on techniques that are designed to address challenges in aerodynamics, including



REFERENCES 35

convection dominance, nonlinearity, limited stability, limited regularity, and wide
range of scales. We also reviewed successful applications of model reduction to
large-scale industry-relevant aerodynamics problems to date. There still exist
many open challenges to model reduction of complex aerodynamics problems.
Their industrial relevance and challenging nature make them arguably an ideal
testbed to develop and assess the next generation of model reduction algorithms.
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