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Summary

We introduce a goal-oriented model reduction framework for rapid and reliable
solution of parametrized nonlinear partial differential equations with applications
in aerodynamics. Our goal is to provide quantitative and automatic control of var-
ious sources of errors in model reduction. Our framework builds on the following
ingredients: a discontinuous Galerkin finite element (FE) method, which provides
stability for convection-dominated problems; reduced basis (RB) spaces, which pro-
vide rapidly convergent approximations; the dual-weighted residual (DWR) method,
which provides effective output error estimates for both the FE and RB approxima-
tions; output-based adaptive RB snapshots; and the empirical quadrature procedure
(EQP), which hyperreduces the primal residual, adjoint residual, and output forms
to enable online-efficient evaluations while providing quantitative control of hyper-
reduction errors. The framework constructs a reduced model which provides, for
parameter values in the training set, output predictions that meet the user-prescribed
tolerance by controlling the FE, RB, and EQP errors; in addition, the reduced model
equips, for any parameter value, the output prediction with an effective, online-
efficient error estimate. We demonstrate the framework for parametrized aerodynam-
ics problems modeled by the Reynolds-averaged Navier-Stokes equations; reduced
models provide over two orders of magnitude online computational reduction and
sharp error estimates for three-dimensional flows.
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1 INTRODUCTION

In this work we consider a goal-oriented framework for rapid and reliable solution of parametrized nonlinear partial differential
equations (PDEs) with applications in aerodynamics. We are interested in the output prediction problem, in which we wish to
evaluate an engineering quantity of interest — such as lift or drag — for a given configuration parameter — such as angle of
attack and free streamMach number. In particular, our interest is in many-query scenarios, in which the output must be evaluated
for a large number of different input parameter values. Our approach to the problem is projection-based model reduction: in
the offline stage, we construct, once, a reduced model through a relatively expensive exploration of the parameter space; in
the online stage, we invoke, many times, the reduced model for many different parameter values. In this work, we introduce a
goal-oriented model reduction framework for nonlinear PDEs which provides, in the offline stage, an efficient and automated
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training with quantitative output error control of various sources of model reduction errors and, in the online stage, rapid output
predictions and associated error estimates.
To make the goal-oriented model reduction setting mathematically precise, we define an abstract form of the output prediction

problem considered throughout this work. We introduce a parameter space  ⊂ ℝP , a spatial domain Ω ⊂ ℝd , a Hilbert space
 over Ω, a residual form r ∶  ×  ×  → ℝ, and an output functional q ∶  ×  → ℝ. The output prediction problem
is as follows: given a parameter � ∈ , find the state u(�) ∈  such that r(u(�), v;�) = 0 ∀v ∈  and evaluate the output
s(�) = q(u(�);�) ∈ ℝ. Many engineering problems are of this form, where the parameter � ∈  is mapped to the state
u(�) ∈  , which in turn is mapped to the output s(�) ∈ ℝ. For instance, in flight-envelope characterization in aerodynamics, the
parameter may be the angle of attack and Mach number, the state is the flow field, and the output may be lift, drag, or moment.
For one- or few-query scenarios, we may consider a finite element (FE) approximation of the output prediction problem. To

this end, we introduce a FE approximation space ℎ of dimension , FE residual form rℎ ∶ ℎ × ℎ × → ℝ, and FE output
functional qℎ ∶ ℎ ×  → ℝ. We then consider the FE problem: given � ∈ , find uℎ(�) ∈ ℎ such that rℎ(uℎ(�), v;�) = 0
∀v ∈ ℎ and evaluate sℎ(�) = qℎ(uℎ(�);�). This work employs a discontinuous Galerkin (DG) method, which provides stability
for conservation laws and is high-order accurate; we refer to1,2 for reviews of DG methods. The solution of the FE problem
requires ( �) for some power � greater than 1, which may be fast enough for few-query scenarios but not for many-query
scenarios.
For many-query and real-time scenarios, we consider the reduced basis (RB) approximation3,4. To this end, we introduce an

RB space N ≡ span{uℎ(�)}�∈ΞrbN ⊂ ℎ of dimension N ≪  associated with the snapshot parameter set ΞrbN ⊂ ; the RB
space is designed to approximate the parametric manifold {uℎ(�) | � ∈ }. We then consider the RB problem: given � ∈ ,
find uN (�) ∈ N such that rℎ(uN (�), v;�) = 0 ∀v ∈ N and evaluate sN (�) = qℎ(uN (�);�). If the PDE is linear and admits a
so-called affine decomposition, the offline-online computational decomposition of the problem is straightforward; in the online
stage, the reduced model can provide an output prediction � → s(�) and an output error bound for |sℎ(�) − sN (�)| in (N 
 )
operations, for some power 
 greater than 1. We refer to a review paper3 for a (goal-oriented) RB treatment of linear problems.
The goal of this work is to extend the goal-oriented RB formulation to PDEs with general nonlinearity, general paramet-

ric dependence, and a wide range of spatial scales. In the next three paragraphs, we discuss our approach to (1) provide
online-efficient output predictions, (2) provide online-efficient error estimates, and (3) enable automatic construction of accu-
rate reduced models. All the ingredients of our approach is developed with the aim to bring to complex nonlinear problems the
similar level of automatic and quantitative error control that the RB method achieves for linear problems; we wish to minimize
user intervention and case-specific tuning.
To provide online-efficient output predictions for nonlinear PDEs, we consider so-called hyperreduction of the reduced model

(Section 2). We introduce a hyperreduced residual form r̃ℎ ∶ ℎ×ℎ× → ℝ and an output functional q̃ℎ ∶ ℎ× → ℝ, which
(i) can be evaluated in(N) operations and (ii) approximate the FE forms in the sense that r̃ℎ(w, v;�) ≈ rℎ(w, v;�) ∀w, v ∈ N
and q̃ℎ(w;�) ≈ qℎ(w;�) ∀w ∈ N . We then consider the hyperreduced RB problem: given � ∈ , find ũN (�) ∈ N such
that r̃ℎ(ũN (�), v;�) = 0 ∀v ∈ N and evaluate s̃N (�) = q̃ℎ(ũN (�);�). Since dim(N ) = N and the evaluation of r̃ℎ(⋅, ⋅; ⋅) and
q̃ℎ(⋅; ⋅) requires(N) operations, the solution of the hyperreduced RB problem requires(N 
 ) operations; the approximation is
hence online efficient. There exist many hyperreduction approaches, including the empirical interpolation method (EIM)5, the
hyperreductionmethod6, the optimized cubaturemethod7, Gauss-Newton approximate tensor (GNAT)method8, and the energy-
conserving sampling andweighting (ECSW)method9, to name a few. In this workwe employ the empirical quadrature procedure
(EQP)10,11, which provides (i) a sparse quadrature for r̃ℎ(⋅, ⋅; ⋅) and q̃ℎ(⋅; ⋅) to enable(N) evaluation and (ii) quantitative control
of the solution error ‖uN (�) − ũN (�)‖ due to hyperreduction; in this work we extend the EQP to the goal-oriented setting to
control the output error |s(�) − s̃N (�)| due to hyperreduction.
To provide online-efficient error estimates for nonlinear PDEs, we apply the dual-weighted residual (DWR) method to the

RB(-EQP) problem (Section 3). The original DWR method was proposed by Becker and Rannacher12 to estimate the FE output
error |s(�) − sℎ(�)| in ( �) operations using the residual and adjoint zℎ̂(�) computed in an enriched FE space ℎ̂ ⊃ ℎ. The
DWR method, while not providing error bounds, provides effective error estimates for hyperbolic and convection-dominated
problems and has been used successfully in many aerodynamics applications13. The DWR method has been used also in the
context of model reduction for offline training14 and for online adaptation (but without hyperreduction)15. In this work we extend
the framework to the RB-EQP formulation: we first approximate the adjoint in an adjoint RB space span{zℎ(�)}�∈ΞrbN ; we then
appeal to the DWR method to construct an output error estimate �rbℎ (�) for |sℎ(�) − sN (�)|. To treat nonlinearity, we again
appeal to the EQP to (i) evaluate the adjoint and residual in (N 
 ) operations and (ii) provide quantitative control of the error
in the error estimate |�rbN (�) − �̃

rb
N (�)| due to hyperreduction. Our RB-EQP formulation for the DWR does not provide rigorous
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error bounds like the standard RB formulation for linear problems3 or the Brezzi-Rappaz-Raviart formulation for quadratic
nonlinearity16; it merely provides error estimates. However, it readily provides error estimates for hyperbolic and convection-
dominated PDEs with general nonlinearity and parametric dependence. In addition, the DWR approach eliminates the need for
a stability constant (i.e., inf-sup constant), and inasmuch also provides much sharper error estimates for convection-dominated
PDEs.
To enable automatic construction of accurate reduced models for nonlinear PDEs that exhibit a wide range of scales, we

incorporate in the simultaneous RB and EQP training algorithm proposed in11 a spatially adaptive computation of the snapshots
(Section 4). The use of spatially adaptive RB snapshots has been considered for linear PDEs in, e.g.,17,18. In particular, in18 we
devised, for linear coercive PDEs, a spatio-parameter adaptive offline training algorithm which constructs a reduced model with
an output error bound on |s(�) − sN (�)| for all � in the training set ΞtrainJ ⊃ ΞrbN . As the construction of output error bounds is
infeasible for general nonlinear PDEs, we settle for estimation and control of |s(�) − s̃N (�)| for snapshot parameters � ∈ ΞrbN ,
and the estimation and control of |sℎ(�) − s̃N (�)| for � ∈ ΞtrainJ ⧵ ΞrbN . The spatio-parameter adaptivity is almost a necessity for
accurate prediction of high Reynolds number aerodynamics13, and we demonstrate its efficacy in Section 5.
We demonstrate our goal-oriented model reduction framework for two- and three-dimensional turbulent aerodynamics prob-

lems (Section 5). The previous works on model reduction of parametrized and nonlinear aerodynamics flows include works by
LeGresley and Alonso19,20,21, Washabaugh et al22, and Zimmermann and Görtz23,24. (Given the application focus of this work,
we here omit works on nonparametrized or linearized problems.) The key differentiator of the proposed goal-oriented formu-
lation is that it enables “automated” construction of aerodynamic reduced models that meets the user-prescribed output error
tolerance by quantitatively and automatically controlling the FE, RB, and EQP hyperreduction errors.
We summarize the fivefold contributions of this work. First, we introduce an EQP which provides quantitative control of the

output error |sN (�) − s̃N (�)| due to hyperreduction of the residual and output forms. Second, we introduce an online-efficient
RB output error estimate �̃rbN (�) for |sℎ(�) − s̃N (�)| based on the DWR error estimate; an EQP controls the error in the output
error estimate |�rbN (�)− �̃

rb
N (�)| due to hyperreduction of the residual and the adjoint problem. Third, we extend the simultaneous

RB and EQP training procedure to the context of output prediction and error estimation. Fourth, we incorporate output-based
adaptive snapshot calculation to control |s(�) − sℎ(�)| for � ∈ ΞrbN . Fifth, we demonstrate the goal-oriented model reduction
framework for parametrized aerodynamics flows over an RAE 2822 airfoil and an ONERAM6 wing governed by the Reynolds-
averaged Navier-Stokes equations; the framework constructs, in a fully automated manner, reduced models that provide over
two orders of magnitude online computational reduction and sharp error estimates for the three-dimensional flows.

2 OUTPUT PREDICTION

In this section we present our approach to the output prediction problem. Specifically, we introduce notations in Section 2.1, a
precise form of the output prediction problem in Section 2.2, its FE approximation in Section 2.3, its RB approximation without
hyperreduction in Section 2.4, and its RB-EQP approximation in Sections 2.5–2.7.

2.1 Notations
To concisely describe our formulation for systems of PDEs, we adhere to the standard vector and tensor notations in this work.
Given vectors (i.e., order-1 tensors) w ∈ ℝm and v ∈ ℝm, their dot product is given by w ⋅ v =

∑m
i=1wivi ∈ ℝ, and their

Hadamard (i.e., element-wise) product is w◦v ∈ ℝm whose i-th entry is wivi. Given vectors w ∈ ℝm and v ∈ ℝn, their outer
product is w ⊗ v ∈ ℝm×n whose (i, j) entry is wivj . Given matrices (i.e., order-2 tensors) W ∈ ℝm×n and V ∈ ℝm×n, their
double dot product is given byW ∶ V =

∑m
i=1

∑n
j=1WijVij ∈ ℝ. Given an order-4 tensor K ∈ ℝm×n×m×n and an order-2 tensor

V ∈ ℝm×n, their product is KV ∈ ℝm×n whose (i, j) entry is given by (KV )i,j =
∑m
k=1

∑n
l=1KijklVkl.

We in addition introduce notations associated with differentiable functions. Given a vector-valued function v ∈ H1(Ω)m over
Ω ⊂ ℝd , its gradient ∇v ∈ L2(Ω)m×d is matrix-valued and is given by (∇v)ij =

)vi
)xj

for i = 1,… , m and j = 1,… , d. Given a

matrix-valued function V ∈ H1(Ω)m×d , its divergence ∇ ⋅ V ∈ L2(Ω)m is vector-valued and is given by (∇ ⋅ V )i =
∑d
j=1

)Vij
)xj

for i = 1,… , m. Similarly, given a matrix-valued function V ∈ H1(Ω)m×d and a normal vector n on )Ω, their dot product n ⋅ V
is vector-valued and is given by (n ⋅ V )i =

∑d
j=1 njVij for i = 1,… , m. Note that both the divergence and the dot product with a

normal vector contracts the second index of the matrix-valued function.
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2.2 Problem statement
We first define the precise form of our output prediction problem governed by a system of second-order nonlinear PDEs. To this
end, we introduce a parameter space  ⊂ ℝP and a spatial domain Ω ⊂ ℝd with a Lipschitz boundary )Ω. We then consider
the following problem: given a parameter � ∈ , find the state u(�) that satisfies

∇ ⋅ F (u(�);�) − ∇ ⋅K(u(�);�)∇u(�) = S(u(�),∇u(�);�) in Ω

and appropriate boundary conditions, and then evaluate the output

s(�) ≡ q(u(�);�) ≡ ∫
Ω

qv(u(�);�)dx + ∫
)Ω

qb(u(�), n ⋅K(u(�);�)∇u(�);�)ds;

here F (⋅; ⋅) is the advection flux, K(⋅; ⋅) is the diffusion tensor, S(⋅, ⋅; ⋅) is the source function, and q(⋅; ⋅) is the output functional
which is defined by the volume output integrand qv(⋅; ⋅) and the boundary output integrand qb(⋅, ⋅; ⋅). Note that we consider
second-order PDEs whose viscous term is linear in the gradient because (i) all aerodynamics equations of our interest are in this
form and (ii) the form admits various discontinuous Galerkin discretizations. Throughout this work, we refer to this problem as
the output prediction problem.

2.3 Discontinuous Galerkin (DG) method
We now review the DGmethod based on an upwinded numerical flux and Bassi and Rebay’s second discretization (i.e., BR2)25,
whose complete form in the presence of gradient-dependent source term is presented in26. We in particular consider an element-
wise decomposition of the DG residual introduced in27, which yields hyperreduced residuals that are stable for linear advection
and advection-diffusion systems. We here describe the DG formulation for completeness, and refer to review papers1,2 and
textbooks28,29 for more detailed treatment.
We first introduce a tessellation ℎ that comprises elements {�} such that � ∩ �′ = ∅ for � ≠ �′ and ∪�∈ℎ �̄ = Ω̄. We denote

the set of all facets of ℎ by Σℎ ≡ {�}. The facet set Σℎ is divided into a boundary facet set Σbℎ ≡ {� ∈ Σℎ | � ∩ )Ω ≠ ∅} and an
interior facet set Σiℎ ≡ Σℎ ⧵ Σbℎ; an interior facet � ∈ Σiℎ has two abutting elements, whereas a boundary facet � ∈ Σbℎ has one
abutting element. We then introduce a DG approximation space of discontinuous piecewise polynomials

ℎ ≡ {v ∈ L2(Ω)m | v|� ∈ ℙp(�)m, ∀� ∈ ℎ},

where m is the number of components in the state, and p is the polynomial degree of the approximation space. The DG residual
form rℎ ∶ ℎ × ℎ × → ℝ is given by

rℎ(w, v;�) ≡
∑

�∈ℎ

r�(w, v;�). (1)

The elemental DG residual form r� ∶ ℎ × ℎ × → ℝ can be further decomposed into

r�(w, v;�) ≡ rc�(w, v;�) + r
d
�(w, v;�) + r

s
�(w, v;�),

where the superscripts c, d, and s denote the convection, diffusion, and source contributions, respectively.
The elemental DG residual form associated with the convection term is given by

rc�(w, v;�) ≡ − ∫
�

∇v ∶ F (w;�)dx + ∫
)�∩Σi

(1
4
[(v ⊗ n) ∶ F (w;�)]+− +

1
2
[v]+− ⋅ F̂ (w

+, w−; n+;�)
)

ds

+ ∫
)�∩Σb

v+ ⋅ F̂ b(w+; n+;�)ds;

here w+ is w evaluated on )� from the side of �, w− is w evaluated on )� from the side of the neighboring element, F ∶
ℝm ×  → ℝm×d is the convection flux function, F̂ ∶ ℝm × ℝm × ℝd ×  → ℝm is an interior numerical flux function, and
F̂ b ∶ ℝm × ℝd ×  → ℝm is a boundary numerical flux function. We note that the non-standard term on the interior facets,
[(v ⊗ n) ∶ F (w;�)]+−, is required to ensure that the hyperreduced system is energy stable for linear hyperbolic systems27.
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The elemental DG residual form associated with the diffusion term is given by

rd�(w, v;�) ≡∫
�

∇v ∶ K(w;�)∇wdx

− ∫
�

(1
2
∇v+ ∶ K(w+;�)JwK + 1

2
JvK ∶ K(w+;�)(∇w+ + ��l+� (JwK))

)

ds

− ∫
�

(

∇v ∶ K(w+;�)((w+ − ub(w+;�))⊗ n)

+ (v+ ⊗ n+) ∶
(

K(w+;�)(∇w+ + ��lb�(w
+;�))

)

)

ds,

where JwK ≡ w+⊗n+ +w−⊗n− is the jump operator, K ∶ ℝm × → ℝm×d×m×d is the diffusion tensor, ub ∶ ℝm × → ℝm is
the boundary state function, l+� is the interior lifting operator, lb� is the boundary lifting operator, and �� is the lifting operator
penalty factor. We refer to25 for the lifting operators for the BR2 scheme and2 for other choices of lifting operators. This
particular element-wise decomposition of the residual ensures that, for linear equations, each elemental matrix associated with
the diffusion term is symmetric positive semi-definite and hence the hyperreduced system is energy-stable for any choice of
non-negative weights27.
The elemental DG residual form associated with the source term is given by

rs�(w, v;�) ≡ ∫
�

v ⋅ S(w,∇w + le�(w);�)dx

where S ∶ ℝm × → ℝm is the source function, and le� is the element lifting operator given by

le�(w) ≡
∑

�∈)�∩Σi
l+� (JwK) +

∑

�∈)�∩Σb
lb�(w

+).

The lifting of the gradient is required to ensure that the DG residual is asymptotically dual consistent, a required condition for
output superconvergence30.
We also introduce an element-wise decomposition of the output functional. The DG output functional qℎ ∶ ℎ ×  → ℝ is

given by
qℎ(w;�) ≡

∑

�∈ℎ

q�(w;�). (2)

The elemental DG output form q� ∶ ℎ × → ℝ is given by

q�(w;�) ≡ ∫
�

qv(w;�)dx + ∫
)�∩Σb

qb(w+, n ⋅K(w+;�)(∇w+ + ��lb�(w
+;�));�)ds,

where qv ∶ ℝm ×  → ℝ is the volume output function, qb ∶ ℝm × ℝm ×  → ℝ is the boundary output function, and the
superscript v and b denote the volume and boundary outputs, respectively. We note that the boundary output is a function of the
boundary state and the diffusion flux based on the lifted gradient.
Having defined the DG residual and output forms, we now introduce the DG-FEM, or more simply FE, output prediction

problem: given � ∈ , find uℎ(�) ∈ ℎ such that

rℎ(uℎ(�), v;�) = 0 ∀v ∈ ℎ, (3)

and evaluate the output
sℎ(�) ≡ qℎ(uℎ(�);�),

where rℎ(⋅, ⋅, ; ⋅) and qℎ(⋅; ⋅) are the DG residual form (1) and output form (2), respectively. We assume that the FE problem (3)
is well posed.

2.4 RB output prediction
We now consider an RB approximation of the output prediction problem. To this end, we first introduce an RB parameter set
ΞrbN = {�(i)}Ni=1 that comprises N snapshot parameter values; a systematic procedure to select the parameter set is discussed
in Section 4.2. We next introduce the associated (hierarchical, primal) RB spaces prN ≡ span{uℎ(�)}�∈ΞrbN ⊂ ℎ for N =
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1,… , Nmax ≤ dim(ℎ); in practice,Nmax ≪ dim(ℎ). We then introduce the RB output prediction problem: given � ∈ , find
uN (�) ∈ prN such that

rℎ(uN (�), v;�) = 0 ∀v ∈ prN , (4)
and evaluate the output

sN (�) ≡ qℎ(uN (�);�),
where rℎ(⋅, ⋅, ; ⋅) and qℎ(⋅; ⋅) are the DG residual form (1) and output form (2), respectively. We assume that the RB problem (4)
is well posed.
For notational convenience, we also introduce an algebraic form of the problem. To this end, we first introduce a -

orthonormal basis {�pri }
N
i=1 of 

pr
N . We next introduce an operator V pr

N ∶ ℝN → prN which associates a generalized coordinate
w ∈ ℝN to a function w = V pr

N w =
∑N
j=1 �jwj ∈ prN . We then introduce the algebraic RB residual evaluated with respect to

primal RB and output functional: rprN ∶ ℝN × → ℝN and qN ∶ ℝN × → ℝ such that

rprN (w;�)i ≡ rℎ(V
pr
N w, �pri ;�), i = 1,… , N,

qN (w;�) ≡ qℎ(V
pr
N w;�).

The RB primal problem is as follows: given � ∈ , find uN (�) ∈ ℝN such that

rprN (uN (�);�) = 0 in ℝN , (5)

and evaluate the output
sN (�) ≡ qN (uN (�);�).

Given the RB problem (4) is well posed, the algebraic RB problem (5) is well posed and uN (�) = V
pr
N uN (�).

Remark 1. The RB approximation of the output often includes the so-called dual correction term and takes on the form sN (�) ≡
qℎ(uN (�);�) − rℎ(uN (�), z(�);�), where z(�) is an approximation to the dual solution computed in a dual RB space that differs
from prN

3. However, in this work we refrain from including the dual correction in the output prediction itself, and instead use
the correction term to estimate the error in the output.

2.5 RB-EQP output prediction
We now introduce the hyperreduced residual and output forms associated with an RB-EQP approximation. Throughout this
work, we denote the EQP approximation of an operator (e.g., residual) or a variable associated with the EQP approximation (e.g.,
solution) with a tilde ̃(⋅).We first introduce the EQP residual associatedwith a given set of residual EQPweights {�r� ∈ ℝ≥0}�∈ℎ :

r̃ℎ(w, v;�) ≡
∑

�∈ℎ

�r�r�(w, v;�); (6)

the superscript r on �r� signifies the EQP weight is associated with the residual form r�(⋅, ⋅; ⋅). We next introduce the EQP output
functional associated with a given set of output-functional EQP weights {�q� ∈ ℝ≥0}�∈ℎ :

q̃ℎ(w;�) ≡
∑

�∈ℎ

�q�q�(w;�); (7)

the superscript q on �q� signifies the EQP weight is associated with the output functional q�(⋅; ⋅). The EQP weights are found
using a linear programming (LP) procedure described shortly. We then introduce the RB-EQP output prediction problem: given
� ∈ , find ũN (�) ∈ prN such that

r̃ℎ(ũN (�), v;�) = 0 ∀v ∈ prN (8)
and evaluate the output

s̃N (�) ≡ q̃ℎ(ũN (�);�). (9)
We assume the RB-EQP problem is well posed.
We can again recast the problem in an algebraic form. To this end, we introduce the discrete RB-EQP residual and output

functional evaluated with respect to the primal RB: r̃prN ∶ ℝN × → ℝN and q̃N ∶ ℝN × → ℝ such that

r̃prN (w;�)i ≡ r̃ℎ(V
pr
N w, �pri ;�), i = 1,… , N,

q̃N (w;�) ≡ q̃ℎ(V
pr
N w;�).
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The RB primal problem is as follows: given � ∈ , find ũN (�) ∈ ℝN such that

r̃prN (ũN (�);�) = 0 in ℝN ,

and evaluate the output
s̃N (�) ≡ q̃N (ũN (�);�).

We note that ũN (�) = V
pr
N ũN (�).

2.6 EQP: general form of the linear program
We find the EQP weights {�r� ∈ ℝ≥0}�∈ℎ and {�

q
� ∈ ℝ≥0}�∈ℎ for the EQP residual form (6) and output form (7), respectively,

using a linear programming (LP) procedure introduced for integration of parametric functions in10 and for hyperreduction of RB
residuals in11. The procedure considers l1 minimization of the EQP weights {�∙�}�∈ℎ subject to a set of constraints designed
to control the error in the RB-EQP solution with respect to the RB solution; here the superscript ∙ may be r for the residual or q
for the output functional (or later � for the error estimate). In11, we introduced an LP procedure with a constraint that controls
the -norm of the error in the RB-EQP solution due to hyperreduction, ‖uN (�) − ũN (�)‖ . As the goal of the current work is
to control the hyperreduction error in the output and the associated error estimate, we will impose different LP constraints. To
this end, we first introduce the general form of the LP, and introduce the specific constraints required for output error control in
subsequent sections.
To introduce the LP procedure, we first introduce a parameter training set ΞtrainJ ≡ {�̂j ∈ }Jj=1 that comprises J training

parameters. We then introduce the associated training state set U train
J ≡ {ûN (�) ∈ ℝN}�∈ΞtrainJ

; the training state set in gen-
eral need not be the set of RB states {uN (�)}�∈ΞtrainJ

or RB-EQP states {ũN (�)}�∈ΞtrainJ
. The general form of the LP, denoted

LP∙(ΞtrainJ , U train
J , �∙), is as follows: find {�∙�}�∈ℎ such that

{�∙�}�∈ℎ = argmin{��}

∑

�∈ℎ

��

subject to non-negativity constraints
�� ≥ 0 ∀� ∈ ℎ,

a constant integration constraint
|

|

|

|

|

|

|Ω| −
∑

�∈ℎ

��|�|
|

|

|

|

|

|

≤ �Ω,

and manifold accuracy constraints

|c({��}�∈ℎ ;�)|i ≤ �∙, i = 1,… ,M, ∀� ∈ ΞtrainJ ; (10)

here, |Ω| and |�| are the volumes of the domain Ω and element �, respectively, and c ∶ ℝ|ℎ| ×  → ℝM is linear in the
first argument and imposes M manifold accuracy constraints per training set parameter. The particular value of the manifold
accuracy tolerance �∙ depends on the specific instance of the LP (e.g., the residual-form tolerance would be �r).

Remark 2. In practice, theM absolute-value manifold accuracy constraints for each � ∈ ΞtrainJ can be expressed as 2M linear
inequality constraints in LP: i.e., c({��}�∈ℎ ;�)k ≤ �∙ and −c({��}�∈ℎ ;�)k ≤ �∙ for k = 1,… ,M .

Remark 3. As we will see shortly, all of the manifold accuracy constraints ℝ|ℎ| × → ℝM that we consider in this work have
a property that c({�� = 1}�∈ℎ ;�) = 0 for all � ∈ ; i.e., the exact (non-sparse) EQP weights satisfy the manifold accuracy
constraints exactly. The weights {�� = 1}�∈ℎ also satisfy the constant-integration constraints. As a result, the LP problem is
guaranteed to have a feasible solution.

2.7 EQP: output-prediction accuracy constraints
Wenowwish to identify the EQPmanifold accuracy constraints to control the error in the RB-EQP output s̃N (�) = q̃N (ũN (�);�)
with respect to the RB output sN (�) = qN (uN (�);�). To this end, we note that the difference in the two outputs sN (�) and
s̃N (�) is due to two sources of hyperreduction errors: (i) the EQP approximation of the residual rprN (⋅;�), whose root is the RB-
EQP solution ũN (�) which in general differs from the RB solution uN (�); (ii) the EQP approximation of the output functional
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qN (⋅;�) itself. Mathematically, we invoke the triangle inequality to obtain

|sN (�) − s̃N (�)| = |qN (uN (�);�) − q̃N (ũN (�);�)|
≤ |qN (uN (�);�) − qN (ũN (�);�)| + |qN (ũN (�);�) − q̃N (ũN (�);�)|,

where the first and second terms are associated with the sources (i) and (ii), respectively. We wish to control both sources of the
error to provide accurate hyperreduced output predictions.
To control the error due to source (i) — the approximation of rprN (⋅;�)—, we first introduce the dual problem approximated

in the primal RB space: find zprN (�) ∈ ℝN such that

JprN (ûN (�);�)
T zprN (�) = gprN (ûN (�);�) in ℝN

where

JprN (ûN (�);�)ij ≡ r′ℎ(V
pr
N ûN (�);�

pr
j , �

pr
i ), i, j = 1,… , N,

gprN (ûN (�);�)j ≡ q′ℎ(V
pr
N ûN (�);�

pr
j ), j = 1,… , N,

where r′ℎ(V
pr
N ûN (�);�

pr
j , �

pr
i ;�) and q

′
ℎ(V

pr
N ûN (�);�

pr
j ;�) are the Gâteaux derivatives of rℎ(⋅, �

pr
i ;�) and qℎ(⋅;�), respectively,

about V pr
N ûN (�) in the direction �

pr
j . We next introduce a modified adjoint

zpr,wN (�) = max{|zprN (�)|, z
pr,min(�)},

where zpr,min(�) ≡ N1∕2
√

�r‖zprN (�)‖2 and the max operator between the vector and scalar is applied to each element of the
vector; e.g., zpr,wN (�)i = max{|zprN (�)|i, z

pr,min(�)}, i = 1,… , N . This is the modified dual “weight” with a minimum value
constraint and is denoted by the superscript “w”. We then introduce the residual manifold accuracy constraints

|zpr,wN (�)◦(rprN (û(�);�) −
∑

�∈ℎ

�r�r
pr
N,�(û(�);�))|i ≤

2�r
3N

, i = 1,… , N, ∀� ∈ ΞtrainJ , (11)

where ◦ denotes the Hadamard (i.e., element-wise) product as described in Section 2.1. Each of theN absolute-value constraint
can be expressed as two linear inequality constraints as discussed in Remark 2, and hence the constraint is admissible in LP.
In addition, the LP has a feasible solution for any ΞtrainJ ⊂ , as the left hand side of the constraint evaluates to 0 for the exact
(non-sparse) weights {�r� = 1}�∈ℎ . The LP procedure for the residual, denoted LPr(ΞtrainJ , U train

J ≡ {ûN (�)}�∈ΞtrainJ
, �r), results

from the substitution of the residual manifold accuracy constraint (11) in place of the generic manifold accuracy constraint (10)
of the generic LP procedure LP∙. The number of manifold accuracy constraints per training parameter point is M = N ; the
total number of manifold accuracy constraints for J training parameter points is henceNJ (which can be written as 2NJ linear
inequality constraints following Remark 2). We note that the manifold accuracy constraints are evaluated about a training state
set U train

J ≡ {ûN (�)}�∈ΞtrainJ
, which differs from {ũN (�)}�∈ΞtrainJ

; the use of the surrogate training set is necessary as the RB-EQP
state ũN (�) depends on the RB-EQP residual r̃N (⋅;�), which itself depends on the solution to LPr.
To control the error due to source (ii)— the approximation of qN (⋅; ⋅)—,we introduce an output-functional manifold accuracy

constraint
|qN (ũN (�);�) −

∑

�∈ℎ

�q�qN,�(ũN (�);�)| ≤ �q ∀� ∈ ΞtrainJ . (12)

We again note that each absolute-value constraint can be expressed as two linear inequality constraints and hence is admissible
in LP; see Remark 2. In addition, the LP has a feasible solution for any ΞtrainJ ⊂ , as the left hand side of the constraint evaluates
to 0 for the exact (non-sparse) weights {�q� = 1}�∈ℎ . The LP procedure for the output functional, denoted LPq(ΞtrainJ , U train

J ≡
{ũN (�)}�∈ΞtrainJ

, �q), is obtained by substituting the output-functional manifold accuracy constraint (12) in place of the generic
manifold accuracy constraint (10) of the generic LP procedure LP∙. The number of manifold accuracy constraints per training
parameter point isM = 1; the number of total constraints for J training parameter points is J (which can be written as 2J linear
inequality constraints following Remark 2). Note that, in LPr, {ũN (�)}�∈ΞtrainJ

are not yet known because ũN (�) depends on LPr;
however, in LPq , the states {ũN (�)}�∈ΞtrainJ

are already known. We hence use U train
J ≡ {ũN (�)}�∈ΞtrainJ

in the EQP training of the
output functional.
We readily observe that the constraint (12) directly controls the error due to source (ii) for � ∈ ΞtrainJ . We now provide a

proposition that relates the error due to source (i) to the constraint (11).



9

Proposition 1 (Output error due to EQP approximation of rprN (⋅; ⋅)). Suppose

‖zpr,wN ◦(rprN (û) − r̃prN (û))‖∞ ≤ 2�r
3N

, (13)

‖I − JprN (ûN )J̃
pr
N (ûN )

−1
‖max ≤ �J, (14)

where ‖A‖max denotes the maximum entry of the matrix A ∈ ℝN×N . Then

|qN (uN ) − qN (ũN )| ≤ �r + (�2J) + (�̂2) + (�̃2),

where �̃ ≡ ‖uN − ũN‖2 and �̂ ≡ ‖uN − ûN‖2.

Proof. For notational convenience, we first define �ûN ≡ uN − ûN and �ũN ≡ uN − ũN so that �̂ ≡ ‖�ûN‖2 and �̃ ≡ ‖�ũN‖2.
We then note that, by the Taylor series expansion about ûN ,

qN (uN ) − qN (ũN ) = gprN (ûN )
T (uN − ûN ) + (‖uN − ûN‖2) − gprN (ûN )

T (ũN − ûN ) + (‖ũN − ûN‖2)

= gprN (ûN )
T �ũN + (�̂2) + (�̃2) = zprN

T JprN (ûN )�ũN + (�̂2) + (�̃2), (15)

where the second equality follows from the definitions of �ũN and �ûN and the relationship ‖ũN − ûN‖2 = ‖− �ũN + �ûN‖2 ≤
2(�̃2 + �̂2), and the last equality follows from the definition of the adjoint zprN . We also note that

rprN (ûN ) − r̃prN (ûN )
= rprN (uN ) − JprN (uN )�ûN − r̃prN (ũN ) − J̃prN (ũN )(�ũN − �ûN ) + (�̂2) + (�̃2)
= −JprN (ûN )�ûN − J̃prN (ûN )(�ũN − �ûN ) + (�̂2) + (�̃2)
= −J̃prN (ûN )�ũN + (J̃

pr
N (ûN ) − JprN (ûN ))�ûN + (�̂2) + (�̃2).

It follows that

�ũN = −J̃prN (ûN )
−1(rprN (ûN ) − r̃prN (ûN )) + (I − J̃prN (ûN )

−1JprN (ûN ))�ûN + (�̂2) + (�̃2). (16)

The substitution of (16) into (15) yields

|qN (uN ) − qN (ũN )|

= | − zprN
T JprN (ûN )J̃

pr
N (ûN )

−1(rprN (ûN ) − r̃prN (ûN )) + zprN
T JprN (ûN )(I − J̃prN (ûN )

−1JprN (ûN ))�ûN + (�̂2) + (�̃2)|
= | − zprN

T (I − (I − JprN (ûN )J̃
pr
N (ûN )

−1))(rprN (ûN ) − r̃prN (ûN ))
+ zprN

T (I − JprN (ûN )J̃
pr
N (ûN )

−1)JprN (ûN )�ûN + (�̂2) + (�̃2)|
≤ |zprN

T (rprN (ûN ) − r̃prN (ûN ))| + |zprN
TA(rprN (ûN ) − r̃prN (ûN ))| + |zprN

TAJprN (ûN )�ûN | + (�̂2) + (�̃2). (17)

for A ≡ I − JprN (ûN )J̃
pr
N (ûN )

−1. The first term of (17) is bounded by

|zprN
T (rprN (ûN ) − r̃prN (ûN ))| ≤ N‖zprN◦(r

pr
N (ûN ) − r̃prN (ûN ))‖∞ ≤ 2

3
�r, (18)

where the first equality follows from |aTb| ≤ N‖a◦b‖∞ for all a,b ∈ ℝN , and the second inequality follows from zprN ≤ zpr,wN
and (13). To bound the second term of (17), we first note that

zpr,min‖rprN (û) − r̃prN (û)‖∞ ≤ ‖zpr,wN ◦(rprN (û) − r̃prN (û))‖∞ ≤ 2�r
3N

by the definition of zpr,wN , and hence

‖rprN (û) − r̃prN (û)‖∞ ≤ 2�r

3Nzpr,min
=

2
√

�r

3N3∕2
‖zprN‖2

(19)

by the definition of zpr,min. It follows that the second term of (17) is bounded by

|zprN
TA(rprN (ûN ) − r̃prN (ûN ))| = ‖zprN‖2‖A‖2‖r

pr
N (ûN ) − r̃prN (ûN )‖2

≤ N3∕2
‖zprN‖2‖A‖max‖r

pr
N (ûN ) − r̃prN (ûN )‖∞ ≤ 2

3
�J
√

�r ≤ 1
3
(�r + �2J), (20)
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where the second to last inequality follows from (19) and the constraint (14), and the last inequality follows from Young’s
inequality. The third term of (17) is bounded by

|zprN
TAJprN (ûN )�ûN | ≤ ‖zprN‖2‖A‖2‖J

pr
N (ûN )�ûN‖2 = (�J�̂) = (�2J) + (�̂2). (21)

The substitution of (18), (20), and (21) into (17) yields

|qN (uN ) − qN (ũN )| ≤ �r + (�̂2) + (�̃2) + (�2J),

which is the desired inequality.

We now relate the EQP residual constraint (11) to Proposition 1. We first note that the residual constraint (13) in Proposition 1
is precisely the residual manifold accuracy constraint (11) enforced for � ∈ ΞtrainJ in LPr. We second observe that the Jaco-
bian constraint (14) is not directly enforced in our LPr. This Jacobian constraint measures the proximity of RB-EQP Jacobian
J̃N (ûN (�);�) to the RB counterpart JN (ûN (�);�); while the constraint is not LP admissible as it requires the inverse of
J̃N (ûN (�);�), a closely related constraint ‖I − JN (ûN (�);�)−1J̃N (ûN (�);�)‖max is in fact LP admissible. (The two constraints
can be formally related using small-perturbation matrix inequalities.) Nevertheless, we do not enforce this Jacobian constraint in
our EQP formulation as (a) the inclusion of the Jacobian constraint would increase the number of manifold accuracy constraints
per training parameter point fromN toN +N2, (b) we hope the direct control of the EQP residual error by the constraint (11)
also indirectly controls the related Jacobian error, and (c) in any event the effect of the Jacobian error on the output is second
order (i.e., (�2J)). In practice, as will be shown in a numerical example in Section 5, we have found that the EQP residual con-
straint (11) is sufficient to control the error |qN (uN (�);�) − qN (ũN (�);�)|. (The Jacobian constraint was also omitted in11 in
the context of the -norm solution error control, instead of the output error control.)

Remark 4. In this work we consider two separate LPs: (i) LPr with the constraints (11) for the residual, which yields {�r�}�∈ℎ ; (ii)
LPq with the constraints (12) for the output functional, which yields {�q�}�∈ℎ . Alternatively, we could consider a single LP, LP

rq ,
with constraints (11) and (12) and yield a single set of weights {�rq}�∈ℎ for both residual and output evaluation. In general, the
number of nonzero (nnz) elements in these sets are related by nnz({�r}�∈ℎ) ≤ nnz({�rq}�∈ℎ) ≤ nnz({�r�}�∈ℎ)+nnz({�

q
�}�∈ℎ).

The relationship indicates that the alternative formulation (a) reduces thememory footprint of the reducedmodel but (b) increases
the number of elements involved in online residual evaluation, which increases the online cost. In this work, we use the two
separate LPs to reduce the online cost.

3 OUTPUT ERROR ESTIMATION

As discussed in the introduction, our goal in output error estimation is twofold. First, in the offline stage, we wish to estimate
the output error in the FE snapshots, |s(�) − sℎ(�)|, for all � ∈ ΞrbN . Second, in the online stage, we wish to estimate the error
|sℎ(�) − s̃N (�)| for any � ∈ ; we in particular wish to compute the error estimate (i) in an online-efficient manner and (ii) for
parameter values that in general do not belong to the training set ΞtrainJ . We address the offline FE error estimation procedure in
Section 3.1 and the online RB(-EQP) error estimation procedure in Sections 3.2–3.4.

3.1 FE output error estimation
We now wish to estimate the error in the FE output relative to the exact PDE output, |s(�) − sℎ(�)|. To this end, we employ the
DWR method12. We first introduce an enriched space for the surrogate adjoint ℎ̂ ⊃ ℎ; in this work we enrich the space by
globally increasing the polynomial degree by one, i.e., ℎ̂ ≡ {v ∈ L2(Ω)m | v ∈ ℙp+1(�)m, ∀� ∈ ℎ}. We then introduce the
dual problem: given � ∈  and uℎ(�) ∈ ℎ, find zℎ̂ ∈ ℎ̂ such that

r′ℎ(uℎ(�);w, zℎ̃(�);�) = q
′
ℎ(uℎ(�);w;�) ∀w ∈ ℎ̂,

where r′ℎ(uℎ(�);w, v;�) and q
′
ℎ(uℎ(�);w;�) are the Gâteaux derivatives of rℎ(⋅, v;�) and qℎ(⋅;�), respectively, about uℎ(�) in

the direction w. The error in the output is then estimate by

|s(�) − sℎ(�)| ≈ �feℎ (�) ≡ |rℎ(uℎ(�), zℎ̂(�);�)|.
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The error in the error estimate arises from (i) the use of uℎ(�) as the linearization point of the adjoint problem (instead of the
mean-value linearization between uℎ(�) and u(�)) and (ii) the approximation of the adjoint in ℎ̃ (instead of in the infinite-
dimensional )12. In practice, the estimate has been used successfully in many aerodynamics applications; see a review paper13.

3.2 RB output error estimation
We now wish to estimate the error in the RB-EQP output |sℎ(�) − s̃N (�)| for any � ∈  in an online-efficient manner. To this
end, we first invoke the triangle inequality to obtain

|sℎ(�) − s̃N (�)| = |qℎ(uℎ(�);�) − q̃ℎ(ũN (�);�)|
≤ |qℎ(uℎ(�);�) − qℎ(ũN (�);�)| + |qℎ(ũN (�);�) − q̃ℎ(ũN (�);�)|; (22)

here, the first term is associated with the approximation of the state uℎ(�) by ũN (�), and the second term is associated with the
approximation of the functional output qℎ(⋅; ⋅) by q̃ℎ(⋅; ⋅). As discussed in Section 2.7 and as wewill also numerically demonstrate
in Section 5, the second term is controlled using a tight EQP tolerance �q for the output functional evaluation. Hence, our goal
in the online-efficient error estimation is to approximate |qℎ(uℎ(�);�) − qℎ(ũN (�);�)|, the error in the output due to the use of
the RB-EQP state ũN (�) instead of the FE state uℎ(�).
To estimate |qℎ(uℎ(�);�) − qℎ(ũN (�);�)|, we again employ the DWR method. However, as we wish the DWR error estimate

to be online-efficient — i.e., computable in (N) operations — the space in which the adjoint is approximated must be (N)-
dimensional. Our approach is to approximate the adjoint by a linear combination of adjoint snapshots; this is an approach
commonly used in existing goal-oriented RB formulations (for linear PDEs)3. Specifically, we introduce dual RB spaces duN ≡
span{zℎ(�)}�∈ΞrbN associated with the RB parameter set ΞrbN forN = 1,… , Nmax. Although in principle the primal and dual RB
spaces may be associated with different RB parameter sets, in practice we use the same RB parameter set to reduce the offline
computational cost. We then introduce an RB dual problem linearized about the RB-EQP state: given � ∈  and ũN (�) ∈ prN ,
find zduN (�) ∈ duN such that

r′(ũN (�); v, zduN (�);�) = q
′(ũN (�); v;�) ∀v ∈ duN . (23)

The dual problem is linearized about the RB-EQP state ũN (�) ∈ prN since we wish to estimate the error in qℎ(ũN (�);�) (and
not qℎ(uN (�);�)). The output error of interest is then estimated by

|qℎ(uℎ(�);�) − qℎ(ũN (�);�))| ≈ �rbN (�) ≡ |r(ũN (�), zduN (�);�)| (24)

We assume that the RB dual problem (23) is well posed and zduN (�) ∉ prN so that the error estimate evaluates to a nonzero value.

Remark 5. Similarly to the FE error estimate discussed in Section 3.1, the difference in this error estimate and the true error
|qℎ(uℎ(�);�) − qℎ(ũN (�);�))| arises from (i) the use of ũN (�) as the linearization point of the adjoint problem (instead of
the mean-value linearization between ũN (�) and uℎ(�)) and (ii) the approximation of the adjoint in duN (instead of in ℎ). In
particular, the error due to (ii) could be significant for certain problems; this error estimate in fact does not work when the primal
and dual solutions are identical so that prN = span{uℎ(�)}�∈ΞrbN = span{zℎ(�)}�∈ΞrbN = duN (e.g., the compliance output for
linear elasticity, which is self-adjoint), as the error estimate would evaluate to zero by Galerkin orthogonality. In principle, we
could introduce an enriched RB dual space duNdu for Ndu > N , in a manner similar to the FE counterpart with an enriched p,
to make the error estimate more reliable. However, for typical output prediction problems in aerodynamics, we have found the
error estimate associated with duN of dimensionN to work well, as we demonstrate in Section 5.

We now recast the problem in a discrete form. To this end, we first introduce a -orthonormal basis {�dui }
N
i=1 of 

du
N . We next

introduce an operator V du
N ∶ ℝN → duN which associates a generalized coordinate v ∈ ℝN to v = V du

N v =
∑N
j=1 vj�

du
j ∈ duN .

We then introduce a Jacobian and output gradient evaluated with respect to the dual RB: JduN ∶ ℝN ×  → ℝN×N and gduN ∶
ℝN × → ℝN such that

JduN (w;�)ij ≡ r′ℎ(V
pr
N w;�duj , �

du
i ;�), i, j = 1,… , N,

gduN (w;�)j ≡ q′ℎ(V
pr
N w;�duj ;�), j = 1,… , N.

We note that these operators are not the discrete Jacobian and gradient:

JduN (uN (�);�)ij ≠
)rprN,i
)wj

|

|

|

|

|

|(uN (�);�)

and gduN (uN (�);�)j ≠
)qN
)wj

|

|

|

|

|(uN (�);�)
.
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The linearization points of JduN (w;�) and g
du
N (w;�) are in 

pr
N but the Gâteaux derives are evaluted in duN ; in other words, this is

an RB approximation of the continuous dual problem and not the dual of the discrete RB problem. The RB dual problem is as
follows: given � ∈  and ũN (�) ∈ ℝN , find zduN (�) ∈ ℝN such that

JduN (ũN (�);�)
T zduN (�) = gduN (ũN (�);�) in ℝN ;

note that the problem is again linearized about ũN (�) (and not uN (�)), and zduN (�) = V
du
N zduN (�). To provide a discrete expression

for the output error of interest, we first introduce the discrete RB residual evaluated with respect to the dual RB: rdu ∶ ℝN × →
ℝN such that

rduN (w;�)i ≡ rℎ(V
pr
N w, �dui ;�), i = 1,… , N.

The error estimate is given by
�rbN (�) ≡ |zduN (�)

T rduN (ũN (�);�)|,
which is simply a discrete form of (24).

Remark 6. Because the DG approximation is dual consistent, the solution zprN ∈ prN to the dual of the discrete RB problem
associated with prN also provides a consistent approximation of the continuous dual problem. However, zprN ∈ prN may converge
slowly to z, or may not converge at all, as the space prN is tailored for the primal solution and not the dual solution. In addition,
�rbN would evaluate to zero if zprN is used due to Galerkin orthogonality. Hence we employ zduN ∈ duN which converges rapidly to
z (or more precisely zℎ) and provides an effective error estimate.

3.3 RB-EQP output error estimation
The error estimate �rbN (�) is not online-efficient because (a) the RB dual problem (23) requires the evaluation of the FE Jacobian
and output forms and (b) the error estimate (24) requires the evaluation of the FE residual form. We now consider EQP approx-
imations of these problems. To this end, we introduce EQP approximations of the residual, Jacobian, and output gradient forms
associated with a given set of EQP weights {��� ∈ ℝ≥0}�∈ℎ :

r̃ℎ(w, v;�) ≡
∑

�∈ℎ

���r�(w, v;�),

r̃′ℎ(y;w, v;�) ≡
∑

�∈ℎ

���r
′
�(y;w, v;�),

q̃′ℎ(y;w;�) ≡
∑

�∈ℎ

���q
′
�(y;w;�);

the superscript � on ��� signifies the EQP weight is associated with the error estimate �rbN (�). We then introduce an RB-EQP dual
problem: given � ∈  and ũN (�) ∈ prN , find z̃duN (�) ∈ duN such that

r̃′ℎ(ũN (�); v, z̃
du
N (�);�) = q̃

′
ℎ(ũN (�); v;�) ∀v ∈ duN . (25)

Our output error estimate is given by

|qℎ(uℎ(�);�) − qℎ(ũN (�);�)| ≈ �̃rbN (�) ≡ |r̃ℎ(ũN (�), z̃duN (�);�)|. (26)

We again assume z̃duN (�) ∉ prN such that the error estimate evaluates to a nonzero value; see Remark 5.
We now recast the problem in a discrete form. To introduce the dual problem, we first introduce EQP approximations of the

Jacobian and output gradient evaluated with respect to the dual RB: J̃duN ∶ ℝN × → ℝN×N and g̃duN ∶ ℝN × → ℝN such that

J̃duN (w;�)ij ≡ r̃′ℎ(V
pr
N w;�duj , �

du
i ;�), i, j = 1,… , N,

g̃duN (w;�)j ≡ q̃′ℎ(V
pr
N w;�duj ;�), j = 1,… , N.

The RB-EQP dual problem is as follows: given � ∈  and ũN (�) ∈ ℝN , find z̃duN (�) ∈ ℝN such that

J̃duN (ũN (�);�)
T z̃duN (�) = g̃duN (ũN (�);�) in ℝN ;

note that z̃duN (�) = V
du
N z̃duN (�). To provide a discrete expression for the output error estimate �̃rbN (�), we then introduce the discrete

RB-EQP residual evaluated with respect to the dual RB: r̃duN ∶ ℝN × → ℝN such that

r̃duN (w;�)i ≡ r̃ℎ(V
pr
N w, �dui ;�), i = 1,… , N.
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The output error estimate is given by
�̃rbN (�) ≡ |z̃duN (�)

T r̃duN (ũN (�);�)|,
which is a discrete form of (26).
Following the goal set forth in Section 3.2, the online-efficient output error estimate �̃rbN (�) given by (26) approximates the

error in the output due to the RB-EQP approximation of the state |qℎ(uℎ(�);�) − qℎ(ũN (�);�)|. The error estimate �̃rbN (�) does
not account for the output error due to the EQP approximation of the output functional |qℎ(ũN (�);�) − q̃ℎ(ũN (�);�)|, the other
component of the overall output error in (22); however, this error is controlled by using a tight output functional EQP tolerance
�q in the offline stage, as discussed further in Section 4.2.

3.4 EQP: DWR accuracy constraints
We now wish to identify EQP constraints such that the error in the error estimates due to hyperreduction, |�rbN (�) − �̃

rb
N (�)|, is

controlled to the user-specified tolerance �� ∈ ℝ>0. To this end, we first note a decomposition of the hyperreduction error:

�rbN (�) − �̃
rb
N (�) = zduN (�)

T rduN (ũN (�);�) − z̃duN (�)
T r̃duN (ũN (�);�)

= zduN (�)
T (rduN (ũN (�);�) − r̃duN (ũN (�);�)) + (z

du
N (�) − z̃duN (�))

T rduN (ũN (�);�)
+ (zduN (�) − z̃duN (�))

T (rduN (ũN (�);�) − r̃duN (ũN (�);�)).

The decomposition shows that the hyperreduction error in the error estimate comprises three terms: (i) the error in the residual
evaluation; (ii) the error in the adjoint approximation; and (iii) the product of the two errors. Our plan is to introduce two sets
of EQP constraints whose primary purpose is to control (i) and (ii), which are first order; the same set of constraints, with little
modifications, will also control (iii), which is second order. Specifically, we wish to ensure that sources (i) and (ii) are each less
than ��∕2 so that their sum is less than the user-specific tolerance �� .
We first introduce scaling constants required for the modification to control the second-order error:

�(�) ≡
‖zduN (�)‖2

‖rduN (ũN (�))‖2
, zdu,min(�) ≡ 1

2

√

�(�)��
N

, and rdu,min(�) ≡ 1
2

√

��
�(�)N

.

We then define

zdu,wN (�) = max{|zduN (�)|, z
du,min(�)},

rdu,wN (ũN (�);�) = max{|rduN (ũN (�);�)|, r
du,min(�)},

where the max operator between the vector and scalar is applied to each element of the vector. These are the modified dual and
residual “weights” with minimum value constraints and are denoted by the superscript “w”.
We now introduce the constraints. To control the error due to source (i) — the approximation of rduN (⋅;�)—, we introduce an

(primal) residual EQP constraint: for i = 1,… , N and for all � ∈ ΞtrainJ ,

|zdu,wN (�)◦(rduN (ũN (�);�) −
∑

�∈ℎ

���r
du
N,�(ũN (�);�))|i ≤

��

2N
. (27)

To control the error due to source (ii) — the approximation of the dual solution z̃duN (�)—, we impose a set of two constraints:
for i = 1,… , N and for all � ∈ ΞtrainJ ,

|rdu,wN (ũN (�);�)◦JduN (ũN (�);�)
−T (JduN (ũN (�);�)

T zdu(�) −
∑

�∈ℎ

���J
du
N,�(ũN (�);�)

T zdu(�))|i ≤
��

4N
, (28)

|rdu,wN (ũN (�);�)◦JduN (ũN (�);�)
−T (gduN (ũN (�);�) −

∑

�∈ℎ

���gN,�(ũ
du
N (�);�))|i ≤

��

4N
. (29)

These sets of constraints, thanks to the replacement of zduN (�) and r
du
N (ũN (�);�)with z

du,w
N (�) and rdu,wN (ũN (�);�), will also con-

trol the error due to source (iii), the second-order term. The constraints (27)–(29) can be written as linear inequality constraints
in {���}�∈ℎ using Remark 2 and hence are admissible in LP. In addition, the LP has a feasible solution for any ΞtrainJ ⊂ , as
the left hand side of the constraints evaluates to 0 for the exact (non-sparse) weights {��� = 1}�∈ℎ . The LP procedure for the
DWR, denoted by LP�(ΞtrainJ , U train

J ≡ {ũN (�)}�∈ΞtrainJ
, ��), is obtained by the substitution of the three DWR manifold accuracy

constrains (27)–(29) in the place of the generic manifold accuracy constraint (10) of the generic LP procedure LP∙. The number
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of manifold accuracy constraints per training parameter point isM = 3N ; the total number of manifold accuracy constraints
for the J training parameter points is 3NJ (which can be written as 6NJ linear inequality constraints following Remark 2).
We now introduce a proposition that relates the constraint (27) to the error due to source (i).

Proposition 2 (DWR error due to approximation of rduN (⋅; ⋅)). Suppose

‖zdu,wN ◦(rduN (ũN ) − r̃duN (ũN ))‖∞ ≤ ��

2N
. (30)

Then

|(zduN )
T (rduN (ũN ) − r̃duN (ũN ))| ≤

��

2
, (31)

‖rduN (ũN ) − r̃duN (ũN )‖2 ≤
√

��
�
. (32)

Proof. The inequality (31) follows from

|(zduN )
T (rduN (ũN ) − r̃duN (ũN ))| ≤ N‖zdu,wN ◦(rduN (ũN ) − r̃duN (ũN ))‖∞ ≤ ��

2
,

where the first inequality follows from |zduN |i ≤ |zdu,wN |i for i = 1,… , N and the fact that |aTb| ≤ N‖a◦b‖∞ for any a,b ∈ ℝN ,
and the second inequality follows from (30).
The inequality (32) follows from

‖zmin(rduN (ũN ) − r̃duN (ũN ))‖2 ≤
√

N‖zdu,wN ◦(rduN (ũN ) − r̃duN (ũN ))‖∞ ≤ ��

2
√

N
,

where the first inequality follows from zmin ≤ |zdu,wN |i for i = 1,… , N and ‖a‖2 ≤
√

N‖a‖∞ for any a ∈ ℝN , and the second
inequality follows from (30). The division of the equation by zmin ≡ 1

2

√

���∕N gives the desired result.

We note that the constraint (30) in Proposition (2) is precisely the first DWR manifold accuracy constraint (27) enforced for
� ∈ ΞtrainJ in LP� . Hence, the first DWR constraint (27) controls the error due to source (i) to ��∕2 for � ∈ ΞtrainJ .
We next introduce a proposition that relates the constraints (28) and (29) to the error due to source (ii).

Proposition 3. Suppose

‖rdu,wN (ũN )◦(JduN (ũN )
−T (JduN (ũN )

T zduN − J̃duN (ũN )
T zduN ))‖∞ ≤ ��

4N
, (33)

‖rdu,wN (ũN )◦(JduN (ũN )
−T (gduN (ũN ) − g̃duN (ũN )))‖∞ ≤ ��

4N
, (34)

‖I − J̃duN (ûN )
−T JduN (ûN )

T
‖max ≤ �J, (35)

where ‖A‖max denotes the maximum entry of the matrix A ∈ ℝN×N . Then

|rduN (ũN )
T (zduN − z̃duN )| ≤

��

2
+ ((��)2) + (�2J), (36)

‖zduN − z̃duN ‖2 ≤
1
2

√

��� + (��) + (�2J). (37)

Proof. For notational brevity, we omit ũN in the argument for rduN , JduN , and gduN as these operators are always evaluated about
ũN . We first prove (36). We recall z̃duN = J̃duN

−T g̃duN and obtain

zduN − z̃duN = zduN − J̃duN
−T g̃duN = J̃duN

−T (J̃duN
T zduN − g̃duN ) = (I − (I − J̃duN

−T JduN
T ))JduN

−T (J̃duN
T zduN − g̃duN )

= (I − A)JduN
−T (J̃duN

T zduN − g̃duN ), (38)

where A ≡ I − J̃duN
−T JduN

T . It hence follows that

|rduN
T (zduN − z̃duN )| = |rduN

T (I − A)JduN
−T (J̃duN

T zduN − g̃duN )|
≤ |rduN

T JduN
−T (J̃duN

T zduN − g̃duN )| + |rduN
TAJduN

−T (J̃duN
T zduN − g̃duN )|. (39)

To bound the first term of (39), we combine (33) and (34) to obtain

‖rdu,wN ◦(JduN
−T (J̃duN

T zduN − g̃duN ))‖∞ = ‖rdu,wN ◦JduN
−T ((J̃duN

T zduN − g̃duN ) − (J
du
N
T zduN − gduN ))‖∞

= ‖rdu,wN ◦JduN
−T ((J̃duN

T zduN − JduN
T zduN ) − (g̃

du
N − gduN ))‖∞ ≤ ��

2N
,
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and hence
|rduN

T JduN
−T (J̃duN

T zduN − g̃duN )| ≤ N‖rduN ◦(J
du
N
−T (J̃duN

T zduN − g̃duN ))‖∞ ≤ ��∕2. (40)
To bound the second term of (39), we note the following:

rdu,min‖JduN
−T (J̃duN

T zduN − g̃duN )‖∞ ≤ ‖rdu,wN ◦JduN
−T (J̃duN

T zduN − g̃duN )‖∞ ≤ ��

4N
by rdu,min ≤ rdu,wN and (33); it follows that

‖JduN
−T (J̃duN

T zduN − g̃duN )‖∞ ≤ ��

4Nrdu,min
≤

√

���

2
√

N
=

√

��‖zduN ‖2

2
√

N‖rduN ‖2

(41)

by the definition of rdu,min and �; and hence

|rduN
TAJduN

−T (J̃duN
T zduN − g̃duN )| ≤ ‖rduN ‖2‖A‖2‖JduN

−T (J̃duN
T zduN − g̃duN )‖2

≤ N3∕2
‖rduN ‖2‖A‖max‖JduN

−T (J̃duN
T zduN − g̃duN )‖∞ ≤ N

2

√

‖rduN ‖2‖zduN ‖2
√

���J ≤ ��� + (�2J) (42)

for an arbitrary small � by Young’s inequality. The substitution of (40) and (42) into (39) yields

|rduN
T (zduN − z̃duN )| ≤ (

1
2
+ �)�� + (�2J)

for � arbitrarily small, which is the desired inequality (36).
We now prove the second inequality (37):

‖zduN − z̃duN ‖2 = ‖(I − A)JduN
−T (J̃duN

T zduN − g̃duN )‖2 ≤ (1 + ‖A‖2)‖JduN
−T (J̃duN

T zduN − g̃duN )‖2
≤ (1 +N‖A‖max)

√

N‖JduN
−T (J̃duN

T zduN − g̃duN )‖∞ ≤ 1
2
(1 +N�J)

√

��� ≤ 1
2

√

��� + (��) + (�2J);

here, the first equality follows from (38), the first inequality follows from ‖(I −A)v‖2 ≤ (1 + ‖A‖2)‖v‖2 ∀v ∈ ℝN , the second
inequality follows from the norm inequalities, the third inequality follow from (35) and (41), and the last inequality follows from
Young’s inequality.

Corollary 1. The combination of (32) and (37) in Propositions 2 and 3, respectively, implies that

|(zduN − z̃duN )
T (rduN (ũN ) − r̃duN (ũN ))| ≤ ‖zduN − z̃duN ‖2‖r

du
N (ũN ) − r̃duN (ũN )‖2 ≤ ��∕2;

the higher-order error is at most ��∕2 (and is nominally (��)2).

We now relate the EQP DWR constraints (28) and (29) to Proposition (3). We first note that the two constraints (33) and (34)
in Proposition (3) are precisely the DWR manifold accuracy constraints (28) and (29) enforced for � ∈ ΞtrainJ in LP� . We second
note that the Jacobian constraint (35) is not directly enforced in our LP� . As discussed for a similar Jacobian constraint (14)
in Proposition 1, a closely related Jacobian constraint ‖I − JN (ûN (�);�)−T J̃N (ûN (�);�)T ‖max is LP admissible. However, we
again omit the Jacobian constraint in our EQP formulation as (a) the inclusion of the Jacobian constraint would increase the
number of manifold accuracy constraint per training parameter value from 3N to 3N + N2 and (b) in any event the effect of
the Jacobian error on the output is second order (i.e., (�2J)). Again, as will be shown in a numerical example in Section 5, we
have found that the Jacobian constraint is not necessary in practice for aerodynamics problems tested.

4 ADAPTATION

In this section we describe an algorithm that automatically trains the FE spaces, RB spaces, and EQP weights associated with
the reduced model such that the model yields output predictions and error estimates that meet the user-prescribed tolerances.
To this end, we first discuss the FE mesh adaptation strategy in Section 4.1. We next discuss the simultaneous FE, RB, and EQP
training algorithm in Section 4.2. We then summarize the online computational procedure in Section 4.3.
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4.1 FE spatial adaptation
The FE adaptive solve follows the standard solve, estimate, mark, and refine strategy. The DG-FEM solver used in this work
was described in Section 2.3. The error estimation for the quantity of interested is provided by the DWR method described in
Section 3.1. To mark elements for refinement, we first localize the error estimate �feℎ according to

�fe� ≡ |rℎ(uℎ(�), zℎ̃(�)|� ;�)| ∀� ∈ ℎ;

we then mark top 10% of the elements with the largest error indicators for refinement. We finally refine the marked ele-
ment using the standard hanging-node refinement with the one-level regularity constraint. While our formulation works with
any sequence of nested meshes, we consider quadrilateral and hexahedral meshes for two- and three-dimensional numerical
examples, respectively, in Section 5.

4.2 Simultaneous FE, RB, and EQP offline training
We now present our goal-oriented offline training algorithm, Algorithm 1, for the FE space, RB spaces, and EQP weights. The
input to the algorithm are as follows: the parameter training set ΞtrainJ ⊂  consists of J parameter points; the FE output error
tolerance �fe ∈ ℝ>0; the RB output error tolerance �rb ∈ ℝ>0; the three EQP tolerances �r, �q , and �� for the residual, output
functional, and DWR, respectively; and the maximum dimension of the RB space. The output of the algorithm are as follows:
the primal and dual reduced bases {�pri }

Nmax
i=1 and {�dui }

Nmax
i=1 , respectively; and the three sets of EQP weights {�r�}�∈ℎ , {�

q
�}�∈ℎ ,

and {���}�∈ℎ for residual, output functional, and DWR, respectively.
Before we describe the algorithm, we discuss the choice of FE, RB, and EQP tolerances. For the FE and RB tolerances, we

recall that we wish to control the total output error |s(�)− s̃N (�)| for (at least) snapshot parameters � ∈ ΞrbN to be less than a user-
prescribed error tolerance say �; since |s(�)− s̃N (�)| ≤ |s(�)− sℎ(�)|+ |sℎ(�)− s̃N (�)| ≲ �feℎ (�)+ �̃

rb
N (�) ≲ �

fe+ �rb, we select
the sum of �fe and �rb to be less than the desired user-prescribed output error tolerance �. For the EQP tolerances associated with
output prediction (i.e., �r and �q), we choose �r ≤ �rb and �q ≤ �rb such that the EQP hyperreduction error is smaller than the
RB approximation error. In practice, we choose �r ≈ �rb∕10 and �q ≈ �rb∕100; we choose a tight output functional tolerance �q
because (i) the output functional EQP evaluation error |qℎ(ũN (�)) − q̃ℎ(ũN (�))| is not accounted for in our DWR formulation
and (ii) the number of nonzero output functional EQP weights tends to be small even for a tight error tolerance. For the EQP
tolerance �� associated with the output error estimate, we choose �� ≈ �rb∕10; we choose the DWR EQP tolerance to be tighter
than the RB tolerance �rb so that the error estimate �̃rbN (�) remain effective even when the output error approaches �rb.
We now discuss Algorithm 1. Suppose we have constructed a reduced model of dimension N − 1 and wish to construct a

reduced model of dimension N . We first solve the output and the associated error estimates for all � ∈ ΞtrainJ ; we then choose
the parameter value that yields the largest error estimate as the next snapshot parameter �(N) (line 6). We then solve for uℎ(�(N))
using the adaptive FE solver discussed in Section 4.1 so that �feℎ (�

(N)) ≤ �fe (line 9). If the FE space ℎ is refined in the
previous step, we then update the RBs {�pri }

N−1
i=1 and {�dui }

N−1
i=1 by recomputing the snapshots {uℎ(�)}�∈ΞrbN−1 and {zℎ(�)}�∈ΞrbN−1

on the refined ℎ and reorthonormalizing the RBs (line 10); although this step in principle should not be necessary since the
original snapshots in the coarser space had met the tolerance �fe, we perform this step because (i) updating the snapshots for
the refined mesh requires a small number of nonlinear solver iterations and (ii) we have found in practice the step improves
the RB convergence. We next compute the dual FE solution zℎ(�(N)) (line 11). We then update the snapshot parameter set ΞrbN
and the associated primal and dual RBs {�pri }

N
i=1 and {�

du
i }

N
i=1, respectively (line 12); the RBs are -orthonormalized using

the Gram-Schmidt algorithm. We then update the residual EQP weights {�r�} (lines 13–16). We recall that LPr, which finds the
residual EQP weights, itself requires an approximate solutions U train

J = {ûN (�)}�∈ΞtrainJ
. To find these approximate solutions,

we use a “bootstrapping” strategy which starts the training process using our current best approximation of the states. Namely,
the training state U train

J = {ûN (�)}�∈ΞtrainJ
comprises the FE solution for snapshot parameters � ∈ ΞrbN and our current RB-EQP

approximation for � ∈ ΞtrainJ ⧵ ΞrbN . We have found in practice Neqp,smooth = 3 is sufficient to obtain good EQP weights. We
finally update the output functional and DWR EQP weights {�q�} and {�

�
�} (lines 18–19); note that, unlike in the computation

of {�r�}, we need not iterate here since the RB-EQP states, which are used as training states, do not depend on {�q�} and {�
�
�}.

We now comment on the offline cost of the training algorithm. For a typical (nonlinear) aerodynamics problem, the dominant
computational cost of the algorithm are (i) the adaptive computation of the FE solution (line 9) and (ii) the identification of
the EQP weights (lines 15, 18, and 19). As regard (i), the adaptive computation of the FE solution requires the evaluation of
(potentially) multiple FE solutions; the evaluation of each FE solution requires multiple Newton(-like) iterations, each of which
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Algorithm 1 Greedy algorithm for goal-oriented simultaneous FE, RB, and EQP training.
Input:

parameter training set: ΞtrainJ ⊂ 
FE tolerance: �fe ∈ ℝ>0
RB tolerance: �rb ∈ ℝ>0
EQP tolerances: �r, �q , �� ∈ ℝ≥0
maximum RB space dimension:Nmax ∈ ℝ>0

Output:
reduced bases: {�pri }

Nmax
i=1 , {�dui }

Nmax
i=1

EQP weights: {�r�}�∈ℎ , {�
q
�}�∈ℎ , {�

�
�}�∈ℎ

1: Set ΞrbN=0 = ∅, {�
pr
i }

0
i=1 = {�

du
i }

0
i=1 = ∅.

2: forN = 1,… , Nmax do
3: if N = 1 then
4: Set �(N) = arg inf�∈ΞtrainJ

‖�̄ − �‖ where �̄ ≡ 1
N

∑

�∈ΞtrainJ
�.

5: else
6: Set �(N) = arg sup�∈ΞtrainJ

�̃rbN (�) ≡ arg sup�∈ΞtrainJ
|r̃ℎ(ũN−1(�), z̃N−1(�);�)|

7: end if
8: If �̃rbN (�

(N)) < �rb, terminate.
9: Find FE solution uℎ(�(N)) ∈ ℎ; invoke adaptivity as necessary such that �feℎ (�

(N)) ≤ �fe.
10: If ℎ was refined in the previous step, then resolve {�

pr
i }

N−1
i=1 and {�pri }

N−1
i=1 on ℎ.

11: Find the dual FE solution zℎ(�(N)) ∈ ℎ.
12: Update RB: ΞrbN = ΞrbN−1 ∪ �

(N); {�pri }
N
i=1 = GS{{�

pr
i }

N−1
i=1 , uℎ(�

(N))};
{�dui }

N
i=1 = GS{{�dui }

N−1
i=1 , zℎ(�

(N))}.
13: for i = 1,… , Neqp,smooth do

14: Set U train
J ≡ {ûN (�)}�∈ΞtrainJ

where ûN (�) =

{

uℎ(�) ∀� ∈ ΞrbN
ũN (�) ∀� ∈ ΞtrainJ ⧵ ΞrbN

.

15: Solve LPrN (Ξ
train
J , U train

J , �r) for {�r�}�∈ℎ .
16: end for
17: Set U train

J ≡ {ũN (�)}�∈ΞtrainJ
.

18: Solve LPqN (Ξ
train
J , U train

J , �q) for {�q�}�∈ℎ .
19: Solve LP�N (Ξ

train
J , U train

J , ��) for {���}�∈ℎ .
20: end for

requires one FE residual evaluation, one FE Jacobian evaluation, and one linear solve using an iterative solver. Hence, the cost
of (i) per training iteration is ( ⋅), where the leading constant can be potentially large.
As regard (ii), the evaluation of the EQP weights— and in particular the residual weights {�r�} and the DWRweights {���}—

requires the evaluation of the FE residual for all of J parameter values in ΞtrainJ ; hence, the cost to evaluate the manifold accuracy
constraints for LPr and LP� are (J ). However, we note that the evaluation of a FE residual is significantly cheaper than the
evaluation of a FE solution, as the residual evaluation does not require Newton(-like) iterations; hence the cost to evaluate (J )
EQP constraints is comparable to, or a small constant multiple of, the cost to evaluate a single FE solution (i.e., cost (i)). The
evaluation of the manifold accuracy constraints for the output functional in LPq is at least an order of magnitude smaller than
those for LPr and LP� for typical aerodynamics problems. For all three LPs, the cost to solve the LP is a small fraction of the
cost to evaluate the constraints.
The rest of the steps in the algorithms are relatively inexpensive. In particular, the greedy sampling of the output error is fast

thanks to the online-efficient output error estimates (line 6). Similarly, the boostrapping strategy for the EQPs permits the use
of online-efficient RB-EQP solutions as the EQP training states (lines 14 and 17). Hence, the overall cost of a single iteration
of the training algorithm is comparable to, or at least a small constant multiple of, the cost to evaluate the FE solution for the
single snapshot parameter value.
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Remark 7. Our simultaneous FE, RB, and EQP offline training yields a single adaptively refined FE space for the entire parameter
domain and represents all RB snapshots in this FE space. The use of a single “common” FE space significantly simplifies the
implementation. However, this approach can be limiting in the presence of features (i) whose locations are strongly parameter
dependent and (ii) that require aggressive mesh refinement, such as parameter-dependent shock waves. In such a problem, a
“common” FE space could have significantly higher degrees of freedom than an FE space refined for a single parameter for a
given error level. In addition, in such a problem the use of a single RB space itself can lead to slow convergence31. One approach
to remedy the issue, though we do not pursue in this work, is to partition the parameter domain into subdomains to limit the
range of the movement of the features32.

4.3 Online computational procedure
We now discuss the online storage requirement and computational procedure. In the offline stage, we invoke Algorithm 1 to
simultaneously identify the FE space ℎ, the primal and dual RBs {�pri ∈ ℎ}Ni=1 and {�

du
i ∈ ℎ}Ni=1, respectively, and the three

sets of EQP weights {�r�}�∈ℎ , {�
q
�}�∈ℎ , and {�

�
�}�∈ℎ for residual, output functional, and DWR, respectively. We then identify

the primal and dual EQP element sets

̃ pr
ℎ ≡ {� ∈ ℎ | �r�′ ≠ 0, �

q
�′ ≠ 0, or �

�
�′ ≠ 0 for �

′ = (� or facet neighbor of �)},
̃ du
ℎ ≡ {� ∈ ℎ | �

�
�′ ≠ 0 for �

′ = (� or facet neighbor of �)}.

We then store (FE coefficients associated with) the primal and dual RBs restricted to the EQP element sets, {{�pri |�}�∈̃ pr
ℎ
}Ni=1

and {{�dui |�}�∈̃ du
ℎ
}Ni=1. These restriction of the RBs, in conjunction with the EQP weights {�r�}�∈ℎ , {�

q
�}�∈ℎ , and {�

�
�}�∈ℎ ,

store necessary and sufficient information to evaluate the EQP residual (6), the EQP output functional (7), and the EQP DWR
error estimate (26) in the online stage. Note that online storage requirement for the primal and dual RBs are NlocN|̃ pr

ℎ | and
NlocN|̃ du

ℎ |, respectively, where Nloc is the number of FE degrees of freedom per element which depends on the polynomial
degree p and the number of state components m. In particular, assuming |̃ pr

ℎ | = (N) and |̃ du
ℎ | = (N), the online storage

requirement is (N2) and is independent of the underlying FE space.
We now discuss the online computational procedure. Given � ∈ , we first solve the RB-EQP problem (8),

r̃ℎ(ũN (�), v;�) = 0 ∀v ∈ prN ,

for ũN (�) using a Newton-like method. This step uses the RB-EQP residual form r̃ℎ(⋅, ⋅; ⋅), which is based on the EQP weights
{�r�}�∈ℎ computed by LPr. This step requires multiple evaluation of the EQP residual and Jacobian as well as linear solves at
the cost of (N|̃ pr

ℎ |), (N2
|̃ pr
ℎ |) and (N3), respectively.

Once we obtain the solution ũN (�), we evaluate the EQP output given by (9),

s̃N (�) ≡ q̃ℎ(ũN (�);�),

to provide an output prediction s̃N (�). This step uses the RB-EQP output functional form q̃ℎ(⋅; ⋅), which is based on the EQP
weights {�q�}�∈ℎ computed by LPq . The evaluation of the form requires (N|̃ pr

ℎ |) operations.
Finally, to provide the error estimate, we first compute the dual solution z̃duN (�) ∈ duN given by (25),

r̃′ℎ(ũN (�); v, z̃
du
N (�);�) = q̃

′
ℎ(ũN (�); v;�) ∀v ∈ duN .

We then evaluate the output error estimate �̃rbN (�) given by (26),

�̃rbN (�) ≡ |r̃ℎ(ũN (�), z̃duN (�);�)|.

These two steps uses the forms associated with EQP weights {���}�∈ℎ computed by LP� . The steps require the assembly of the
adjoint problem, the solution of the adjoint problem, and the evaluation of the DWR residual at the cost of (N2

|̃ du
ℎ |), (N3),

and (N|̃ du
ℎ |), respectively.

In summary, assuming |̃ pr
ℎ | = (N) and |̃ du

ℎ | = (N), the online computational complexity to evaluate the output s̃N (�)
and the associated error estimate �̃rbN (�) is (N

3); the online complexity is independent of the dimension of the underlying FE
space.



19

(a) Mach number (b) SA working variable

FIGURE 1 Solution to the RAE 2822 problem for the centroidal parameter value of � = 2◦ andM∞ = 0.3.

5 EXAMPLES: PARAMETRIZED AERODYNAMICS PROBLEMS

In this section we consider two parametrized aerodynamics problems: two-dimensional turbulent flow over an RAE 2822 airfoil
and three-dimensional turbulent flow over an ONERA M6 wing. The turbulent flows are modeled by the Reynolds-averaged
Navier-Stokes (RANS) equations with the Spalart-Allmaras (SA) turbulence model33. Specifically, the flow equations are
expressed in the entropy variables34, and the SA equation is in the so-called SA-neg form35. The two input parameters that we
consider are the angle of attack and the free stream Mach number; the specific parameter range will be subsequently described
for each case. For both cases, compressibility effect is present but the flow remains subsonic (i.e., the maximum local Mach
number remains below unity) for the entire parameter range so that there are no shocks in the flow. The mean-flow solutions of
the RANS equations are hence smooth and do not contain parameter-dependent discontinuities. On the other hand, the SA tur-
bulence model33 exhibits a singular perturbation on the outer edge of the turbulent boundary layer whose location depends on
the parameter value; however, this feature does not appear to cause convergence issues at least at the drag error level we consider
in the two cases. Hence, we expect rapid convergence of the RB(-EQP) error for these cases.

5.1 Two-dimensional turbulent flow over an RAE2822 airfoil
We consider two-dimensional turbulent flow over an RAE2822 airfoil modeled by the RANS equations with the SA turbulence
model. We consider two input parameters: the angle of attack �1 ≡ � ∈ [1◦, 3◦] and the free stream Mach number �2 ≡M∞ ∈
[0.2, 0.4]. The Reynolds number is Rec = 6.5× 106. The output of interest is the drag. The solution for the centroidal parameter
value of � = 2◦ andM∞ = 0.3 is shown in Figure 1. The initial mesh is the coarse mesh supplied for the first AIAA high-order
workshop and comprises 506 elements. The training parameter set ΞtrainJ comprises J = 5 × 5 uniformly distributed points in
the parameter domain ≡ [1◦, 3◦] × [0.2, 0.4]. (We consider a relatively small parameter domain; one approach to increase the
parametric extent is to consider parameter-space decomposition as discussed in Remark 7.) The snapshots are computed using an
isotropic ℎ-adaptive ℙ2 DGmethod. Over the parameter domain, the drag coefficient takes on a value in [8.0×10−3, 9.1×10−3].
Our goal is to construct a reduced model with a drag error of 10−4 (i.e., 1 drag count) or approximately 1%. To this end, we set
the finite element and reduced basis output error tolerances to �fe = 2.5 × 10−5 and �rb = 7.5 × 10−5, respectively, and the EQP
tolerances to �r = 10−5, �q = 10−6, and �� = 10−5. We refer to Section 4.2 for a discussion on the choices of the FE, RB, and
EQP tolerances. The nonlinear problems associated with the FE, RB, and RB-EQP discretization are solved using a pseudo-
time continuation (PTC) method, a Newton-like method designed to robustly solve highly nonlinear problems associated with
aerodynamic flows; we refer to36 for the particular PTC method used in this work.
Table 1(a) shows the convergence behavior of our goal-oriented model reduction method for the case where the test parameter

set is the same as the training parameter set, Ξtest = ΞtrainJ . We first comment on the dimension of the RB space and the number
of nonzero EQP weights, shown in the first and second blocks of Table 1(a); these values directly affect the cost of the reduced
model evaluation. The RB dimension ofN = 12 is sufficient tomeet the user-prescribed output error tolerance of �rb = 7.5×10−5
in this case. We observe that the number of nonzero residual EQP weights M r ≡ nnz{�r�} increases gradually with N ; the
number of nonzero weights ofM r = 114 forN = 12 is nevertheless less than 5% of the number of elements in the final adapted
FE mesh with 2454 elements. We next observe that the number of nonzero output functional EQP weightsMq ≡ nnz{�q�} also
increases with N ; however, the number of nonzero output functional EQP weights is relatively small despite the use of tight
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TABLE 1 Convergence behavior for the RAE 2822 problem. The columns are as follows: first column shows the dimension of
the RB space; the next three columns show the number of nonzero EQP weights for residual {�r�}, output functional {�

q
�}, and

DWR {���}; the next two columns show the output error and output error estimate; the last three columns show the error due to
EQP in the output, output functional, and error estimate. For fifth through ninth columns, the reported values are the maximum
values over the test set Ξtest ; e.g., the output error reported is sup�∈Ξtest |sℎ(�)− s̃N (�)|. Recall the EQP tolerances are �r = 10−5,
�q = 10−6, and �� = 10−5.

(a) Ξtest = ΞtrainN

N M r Mq M�
|sℎ − s̃N | �̃rbN |q(uN ) − q(ũN )| |q(ũN ) − q̃(ũN )| |�rbN − �̃

rb
N |

1 4 5 11 2.69 × 10−2 2.44 × 10−2 3.15 × 10−5 1.00 × 10−6 7.58 × 10−6

3 10 9 85 4.14 × 10−3 3.09 × 10−3 8.98 × 10−5 1.00 × 10−6 8.58 × 10−6

5 32 11 125 1.14 × 10−2 1.45 × 10−2 9.83 × 10−5 1.05 × 10−6 6.86 × 10−6

7 69 14 147 2.55 × 10−3 2.56 × 10−3 9.68 × 10−5 1.12 × 10−6 2.62 × 10−6

9 78 14 116 1.01 × 10−3 1.00 × 10−3 3.71 × 10−5 1.46 × 10−6 5.66 × 10−6

11 103 15 126 1.11 × 10−4 1.14 × 10−4 1.04 × 10−5 2.01 × 10−6 7.62 × 10−6

12 114 15 136 6.96 × 10−5 6.66 × 10−5 4.90 × 10−5 2.43 × 10−6 1.01 × 10−5

(b) Ξtest ≠ ΞtrainN

N M r Mq M�
|sℎ − s̃N | �̃rbN |q(uN ) − q(ũN )| |q(ũN ) − q̃(ũN )| |�rbN − �̃

rb
N |

1 4 5 11 1.53 × 10−2 1.38 × 10−2 9.52 × 10−6 8.84 × 10−7 6.09 × 10−6

3 10 9 85 3.42 × 10−3 2.90 × 10−3 7.26 × 10−5 1.21 × 10−6 1.67 × 10−5

5 32 11 125 9.52 × 10−3 1.18 × 10−2 7.85 × 10−5 1.05 × 10−6 1.02 × 10−5

7 69 14 147 2.43 × 10−3 2.45 × 10−3 8.20 × 10−5 1.62 × 10−6 2.50 × 10−6

9 78 14 116 4.53 × 10−4 4.53 × 10−4 2.80 × 10−5 1.97 × 10−6 3.77 × 10−6

11 103 15 126 1.11 × 10−4 1.08 × 10−4 1.99 × 10−5 1.92 × 10−6 7.12 × 10−6

12 114 15 136 5.49 × 10−5 5.81 × 10−5 3.94 × 10−5 2.34 × 10−6 8.43 × 10−6

output functional EQP tolerance �q = 10−6 because the output functional is a relatively simple integral compared to the residual.
We also observe that the number of nonzero DWR EQP weightsM� ≡ nnz{���} increases withN ; the number of nonzero DWR
EQP weights is larger than that for the residual, but this does not cause a significant increase in the overall online evaluation
cost because the DWR error estimate is performed only once per evaluation whereas the residual is evaluated multiple times in
the Newton(-like) solver.
We next comment on the accuracy of the RB output predictions and the associated error estimates, shown in the third block of

Table 1(a). The maximum RB output errormax�∈ΞtrainJ
|sℎ(�)− s̃N (�)| converge rapidly withN , decreasing by over two orders of

magnitude using justN = 12 RB. The maximum relative error for theN = 12 approximation is ≈ 0.9%. We also observe that
the output RB-EQP error estimate �̃rbN (�) provides an effective estimate of the output error. In particular, forN ≥ 7, the error in
the maximum error estimate is less than 5%. We observe that, by forgoing rigorous error bounds and accepting error estimates,
the DWR error estimate eliminates the stability constant in more standard RB error estimates3 or the Brezzi-Rappaz-Raviart
formulation16, and inasmuch also provides sharp estimates (albeit not bounds) for the convection-dominated problem. The
effective error estimate implies that we can use the RB-EQP DWR error estimate �̃rbN (�), which admits rapid (N ⋅) evaluation,
confidently in both offline greedy training and for online certification.
We finally comment on the accuracy of the EQP hyperreduction, shown in the fourth block of Table 1(a). We observe that

the maximum error in the output due to the residual EQP,max�∈Ξtest |qℎ(uN (�);�) − qℎ(ũN (�);�)|, is of order of �r = 10−5; the
residual EQP error is in fact least well-controlled out of the three EQP errors, most likely due to the strong nonlinearity present in
the residual form associated with the RANS equations. We next observe that the maximum error in the output due to the output
functional EQP,max�∈Ξtest |qℎ(ũN (�);�)− q̃ℎ(ũN (�);�)|, is again of order of �q = 10−6; the output functional EQP error is more
tightly controlled than the residual counterpart, most likely as the EQP constraint (12) more directly relates to the error we wish
to control. We finally observe that the maximum error in the DWR error estimate due to DWR EQP,max�∈Ξtest |�rbN (�)− �̃

rb
N (�)|,

is of order of �� = 10−5; the DWR EQP error, despite requiring both the adjoint and residual approximations, is relatively tightly
controlled. The well-controlled EQP error in the DWR error estimate again ensures that we can use the online-efficient output
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(a) FE error (b) RB-EQP Error

FIGURE 2 The FE and RB-EQP error convergence for the RAE 2822 problem.

(a) initial mesh (b) final adapted mesh

FIGURE 3 Initial and final meshes for the RAE 2822 problem.

error estimate �̃rbN (�) confidently. Figure 2(b) summarized the rapid convergence of the RB-EQP output and the effectiveness of
the DWR EQP error estimate.
Having discussed the convergence of the output error due to RB and EQP, we now discuss the convergence of the FE error in

snapshots. Figure 2(a) shows the convergence of the output error estimate for all snapshots used in the reducedmodel.We observe
that the evaluation of the drag on the initial coarse mesh with 506 elements ( = 15180 for ℙ2 approximation of the RANS
equations withm = 5 components) shown in Figure 3(a) results in a drag error of over 1.5×10−3 or 15% for sℎ(�(1)). The adaptive
FE method rapidly decreases the error to less than the user-prescribed output tolerance of �fe = 2.5 × 10−5 in five adaptation
iterations; the adapted mesh contains 1901 elements ( = 57030). In the next greedy training iteration, however, the FE solver
finds this mesh is insufficient for the accurate evaluation of sℎ(�(2)) and adaptively refines the mesh one more time to meet the
user-prescribed output tolerance �fe; the new mesh contains 2454 elements ( = 73620). This mesh, shown in Figure 3(b), is
found to be sufficiently refined to provide accurate drag predictions for all subsequent parameter values �(3),… , �(12).
Table 1(b) shows the convergence behavior of the goal-oriented model reduction for the case where the test parameter set

is a set of 25 uniformly distributed random points in  and in particular Ξtest ≠ ΞtrainJ . We find that the convergence behavior
for this “predictive” case, where the test points are different from the training points, is very similar to the “reproduction” case
shown in Table 1(a) due to the use of the sufficiently large training set ΞtrainJ for this problem. We note that the use of sufficiently
large training set ΞtrainJ is afforded by the simultaneous FE, RB, and EQP training algorithm discussed in Section 4.2 which only
requires FE calculation for the final snapshot parameter set ΞrbN ⊂ ΞtrainJ . (The “predictive” case has smaller maximum errors
than the “reproduction” case because the random Ξtest has fewer points near the parameter domain boundary than the structured
ΞtrainJ , where the maximum error is often encountered.)
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(a) pressure (b) SA working variable

FIGURE 4 Solution to the ONERA M6 problem for the centroidal parameter value of � = 1◦ andM∞ = 0.4.

We finally report the online computational savings. All solvers are implemented in an in-house C++ code, and all computa-
tions are performed on a commodity desktop. Over 25 test cases defined by Ξtest , the DG-RB-EQP solver (N = 12) on average
takes ≈ 0.04tfe to provide an output prediction and ≈ 0.013tfe to provide the associated error estimate, where tfe is the time to
solve an FE problem on the mesh that has been already adapted (without FE error estimation). In other words, the DG-RB-EQP
solver (N = 12) on average reduces wall-clock time by ≈ 25 for output prediction (only) and ≈ 20 for output prediction and
error estimate. We note that these computational savings are relative to the adaptive high-order DG method; for the same error
level, much greater savings would be observed relative to a lower-order and/or non-adaptive method.

5.2 Three-dimensional turbulent flow over an ONERA M6 wing
We now consider three-dimensional turbulent flow over an ONERA M6 wing modeled by the RANS equations with the SA
turbulence model. Amore detailed description of the RANS-SA equations is provided in the beginning of Section 5.We consider
two input parameters: the angle of attack �1 ≡ � ∈ [0◦, 2◦] and the free stream Mach number �2 ≡ M∞ ∈ [0.3, 0.5]. The
Reynolds number is fixed at Rec = 106. The output of interest is the drag. The solution for the centroidal parameter value
of � = 1◦ and M∞ = 0.4 is shown in Figure 4. The initial mesh is a coarse mesh that comprises 2976 elements. As in
the RAE case, the training parameter set ΞtrainJ comprises J = 5 × 5 uniformly distributed points over the parameter domain
 ≡ [0◦, 2◦] × [0.3, 0.5]. The snapshots are computed using an anisotropic ℎ-adaptive ℙ2 DG method. Over the parameter
domain, the drag coefficient takes on a value in [2.03 × 10−2, 2.47 × 10−2]. We wish to construct a reduced model with a drag
error of 2 × 10−4 or approximately 1%. To this end, we set the finite element and reduced basis output error tolerances to
�fe = �rb = 10−4; the EQP tolerances are �r = 10−5, �q = 10−6, and �η = 10−5.
Table 2 shows the convergence behavior of the goal-oriented model reduction method for the “predictive” case where the test

parameter is a set of 25 uniformly distributed random points in andΞtest ≠ ΞtrainJ . As the behavior for this ONERAM6 problem
is similar to the RAE problem, we highlight the key figures and refer to Section 5.1 for more detailed discussions. The RB space
dimension of N = 9 is sufficient to meet �rb = 10−4; the maximum output error is max�∈ΞtestJ

|sℎ(�) − s̃N (�)| = 5.62 × 10−5,
which is the relative error of ≈ 0.3%. We obtainM r = 72 nonzero residual EQP weights forN = 9, which is less than 0.5% of
16887 elements in the final adapted FE mesh; despite the significant reduction in the number of elements, the output error due
to the EQP approximation |q(uN ) − q(ũN )| is bounded by 6.5 × 10−5, which is comparable to the target value of �r = 10−5. The
number of output functional EQP elementsMq is small for allN ; nevertheless, the error in the output functional evaluation due
to EQP |q(ũN )− q̃N (ũN )| is bounded by 2.6×10−6, which is comparable to the target value of �q = 10−6. Finally, the maximum
number of DWR EQP elements isM� = 112, which is greater thanM r but nevertheless less than 0.7% of the elements in the
final adapted mesh; the error in the error estimate due to EQP |�rbN − �̃

rb
N | is bounded by 6.1 × 10−6 which is comparable to the

target value of �� = 10−6. Thanks to the control of each part of the total output error, overall the error between the adaptive
FE and RB-EQP approximation |sℎ − s̃N | decays rapidly with N , and the error estimate �̃rbN provides a sharp estimate of the
error. Figure 5(b) summarizes the performance of our goal-oriented model reduction method; similarly to the RAE problem, the
RB-EQP output convergences rapidly and the DWR EQP error estimate is effective.
We now discuss the convergence of the FE error in the snapshots. Figure 5(a) shows the convergence of the output error

estimate for all snapshots used in the reduced model. We observe that the evaluation of the drag on the initial coarse mesh with
2976 elements ( = 178560 for ℙ2 approximation of the RANS equations with m = 6 components) shown in Figure 6(a)
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TABLE 2 Convergence behavior for the ONERA M6 problem with Ξtest ≠ ΞtrainJ . The columns are as follows: first column
shows the dimension of the RB space; the next three columns show the number of nonzero EQP weights for residual {�r�},
output functional {�q�}, and DWR {���}; the next two columns show the output error and output error estimate; the last three
columns show the error due to EQP in the output, output functional, and error estimate. For fifth through ninth columns, the
reported values are the maximum values over the test set Ξtest ; e.g., the output error reported is sup�∈Ξtest |sℎ(�)− s̃N (�)|. Recall
the EQP tolerances are �r = 10−5, �q = 10−6, and �� = 10−5.

N M r Mq M�
|sℎ − s̃N | �̃rbN |q(uN ) − q(ũN )| |q(ũN ) − q̃(ũN )| |�rbN − �̃

rb
N |

1 4 5 12 9.15 × 10−3 1.18 × 10−2 9.73 × 10−6 1.02 × 10−6 6.05 × 10−6

3 7 10 61 1.07 × 10−3 2.20 × 10−3 6.31 × 10−6 1.20 × 10−6 5.13 × 10−6

5 21 12 86 1.68 × 10−3 1.70 × 10−3 5.97 × 10−5 1.19 × 10−6 5.30 × 10−6

7 47 13 111 2.75 × 10−4 2.99 × 10−4 6.22 × 10−5 1.26 × 10−6 4.85 × 10−6

9 72 16 112 5.62 × 10−5 5.90 × 10−5 6.75 × 10−6 2.57 × 10−6 5.32 × 10−6

(a) FE error (b) RB-EQP error

FIGURE 5 The FE and RB-EQP error convergence for the ONERA M6 problem.

results in a drag error of over 230% for sℎ(�(1)). The adaptive FE method rapidly decreases the error to less than the user-
prescribed output tolerance of �fe = 1×10−4; the adapted mesh shows significant refinement in the boundary layer and contains
13528 elements ( = 811680). This mesh is used for �(2),… , �(4), but a further refinement is performed for �(5); the refined
mesh contains 16887 elements ( = 1013220). This mesh, shown in Figure 6(b), is used for all subsequent parameter values
�(6),… , �(9).
We finally report the online computational savings; all computations are performed on a computational cluster with 80 cores.

We use the CPU time required to solve an FE problem on the mesh that has been already adapted (without FE error estimation)
as the time unit tfe; we note that the cost is in CPU time and not wall-clock time. Over 25 test cases defined by Ξtest , the DG-
RB-EQP solver (N = 9) on average takes ≈ 0.0029tfe to provide an output prediction and ≈ 0.0005tfe to provide the associated
error estimate. In other words, the DG-RB-EQP solver (N = 9) on average reduces CPU time by ≈ 340 for output prediction
(only) and ≈ 290 for output prediction and error estimate. We again note that these computational savings are relative to the
adaptive high-order DG method; for the same error level, much greater savings would be observed relative to a lower-order
and/or non-adaptive method.
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(a) initial mesh (b) final adapted mesh

FIGURE 6 Initial and final meshes for the ONERA M6 problem.
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