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Abstract We present a model reduction formulation for parametrized nonlinear partial differential equa-
tions (PDEs) associated with steady hyperbolic and convection-dominated conservation laws. Our for-
mulation builds on three ingredients: a discontinuous Galerkin (DG) method which provides stability for
conservation laws; reduced basis (RB) spaces which provide low-dimensional approximations of the para-
metric solution manifold; and the empirical quadrature procedure (EQP) which provides hyperreduction
of the Galerkin-projection-based reduced model. The hyperreduced system inherits the stability of the
DG discretization: (i) energy stability for linear hyperbolic systems, (ii) symmetry and non-negativity for
steady linear diffusion systems, and hence (iii) energy stability for linear convection-diffusion systems.
In addition, the framework provides (a) a direct quantitative control of the solution error induced by
the hyperreduction, (b) efficient and simple hyperreduction posed as a `1 minimization problem, and (c)
systematic identification of the reduced bases and the empirical quadrature rule by a greedy algorithm.
We demonstrate the formulation for parametrized aerodynamics problems governed by the compressible
Euler and Navier-Stokes equations.

Keywords parametrized nonlinear PDEs · conservation laws · model reduction · hyperreduction ·
empirical quadrature · discontinuous Galerkin method

1 Introduction

We consider rapid and reliable solution of parametrized nonlinear partial differential equations (PDEs)
associated with steady hyperbolic and convection-dominated problems with an emphasis on the compress-
ible Euler and Navier-Stokes equations in aerodynamics. Our interest is in many-query and/or real-time
scenarios, which require the solution of the problem for many different parameter values and/or in real
time. Our approach to address the problem is model reduction based on offline-online computational
decomposition: in the offline stage, which is expensive but performed once, we explore the parameter
domain to build a reduced model which captures the essential features of the problem; in the online
stage, we invoke many times and/or in real time the reduced model.

Model reduction of nonlinear PDEs requires two ingredients. The first ingredient is a low-dimensional
reduce basis (RB) space VN of dimension N in which the reduced-model solution (i.e., the RB solution)
is sought. In the context of parametrized PDEs, two popular approaches to compute the reduced basis,
which spans the reduced space VN , are the proper orthogonal decomposition (POD), which identifies
dominant modes in “snapshots” associated with different parameter values, and the greedy algorithm,
which successively computes the bases using a greedy search in the parameter space based on an error
estimate. In this work, we employ the latter approach, originally introduced in the reduced basis method,
to minimize the number of snapshots computed in the offline stage; we refer to [33,19,31] for reviews of
the reduced basis method and the greedy algorithm for parametrized PDEs.
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The second ingredient for model reduction of nonlinear PDEs is “hyperreduction”, which enables
the approximation of the nonlinear residual in O(N) operations. Specifically, for weak formulations, the
evaluation of the residual requires integration over the spatial domain; the goal of hyperreduction is to
approximate this integral in O(N) operations. Hyperreduction approaches for projection-based reduced
models fall into two distinct categories. The first class of methods first interpolate the residual using
empirical functions and then integrate the interpolated residual. Methods in this class include the gappy
POD method [14,10], the empirical interpolation method (EIM) [6,17], the best point interpolation
method (BPIM) [24], the missing point estimation (MPE) method [4], and the Gauss-Newton approxi-
mate tensor (GNAT) method [11]. The second class of methods are based on a direct evaluation of the
residual integrals using empirical, sparse quadrature rules. Methods in this class include the optimal
cubature formulation of An et al. [1], the energy-conservative sampling and weighting (ECSW) method
of Farhat et al. [15,16], the empirical cubature method of Hernández [18], and our empirical quadrature
procedure (EQP) [28,39]. The hyperreduction approach in this work is based on the EQP, which is mo-
tivated by the `1 framework of Ryu and Boyd [34] and provides two attractive features: (i) it provides a
direct control of the RB solution error induced by the approximate quadrature; (ii) it efficiently identifies
an empirical quadrature rule by solving a `1 minimization problem cast as a linear program. Specifically,
in this work we extend the EQP formulation to discontinuous Galerkin (DG) methods, with an additional
emphasis on preserving certain structures of the underlying problem.

The importance of reduced models that preserve the underlying structure of the PDE — especially
to ensure the stability of the reduced model applied to complex problems in continuum mechanics — has
been highlighted in a number of recent works. For nonlinear problems, both the projection and hyper-
reduction approaches must be chosen carefully to preserve the structure. In the aforementioned ECSW
method [15,16] and in a separate work by Carlberg et al [12], the primary criterion in hyperreduction is
to preserve the Lagrangian structure of the problem and to ensure energy stability for nonlinear struc-
tural dynamics problems. The energy stability is an important property not only for structural dynamics
problems but also for fluid dynamics problems. In the context of model reduction, Barone et al [5] has
studied the construction of energy-stable reduced models for the linearized Euler equations. In fact, due
to the lack of coercivity, the construction of an energy-stable scheme for hyperbolic and convection-
dominated problems is not straightforward even for the full-fidelity (non-reduced) discretizations. The
DG method, which is used in this work, is designed specifically to address the stability issue associated
with (continuous) Galerkin methods for hyperbolic and convection-dominated problems; for reviews of
DG methods, we refer to a general review [13], a review for conservation laws [7], a review for elliptic
equations [3], and textbooks [20,32,29]. The DG-EQP hyperreduction procedure proposed in this work
preserves this energy stability property of the DG method; hence, in addition to the two aforementioned
features, the DG-RB-EQP method provides (iii) energy-stability for linear hyperbolic and convection-
dominated systems. We note that the DG method has also been used in the context of model reduction
of multiscale elliptic problems [2,27].

Given the application focus of this work on aerodynamic flows, we also note previous work on
model reduction for parametrized and nonlinear aerodynamic flows. (As the emphasis of this work is on
parametrized nonlinear PDEs, we here omit works on non-parametrized and/or linearized aerodynamic
flows.) LeGresley and Alonso [22] considered model reduction of parametrized Euler equations using
POD and hyperreduction based on the proximity of the cells to the airfoil. Washabaugh et al considered
model reduction of parametrized Euler equations based on local reduced bases (but without hyperreduc-
tion) [35] and later extended the work to Reynolds-averaged Navier-Stokes equations using a (global)
reduced basis and hyperreduction based on a masking procedure [36]. Zimmermann and Görtz [40] also
considered model reduction of parametrized Euler equations using POD but without hyperreduction.

The contribution of this work is fourfold. We first introduce the DG-RB-EQP method, an extension
of the EQP to DG methods (Section 3). We second prove various structure-preserving properties of
the DG-RB-EQP method; we prove that (a) the method applied to linear hyperbolic systems is energy
stable, (b) the method applied to linear diffusion systems preserves the symmetry and non-negativity,
and hence (c) the method applied to linear convection-dominated convection-diffusion systems is energy
stable (Section 4). We third provide an alternative error estimate for the DG-RB-EQP method that is
asymptotically sharper than the original estimate in [39] (Section 4). We finally demonstrate the method
for two- and three-dimensional aerodynamic flows governed by the compressible Euler and Navier-Stokes
equations (Section 5).
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Before we conclude the introduction, we note the scope and limitation of this work. As mentioned in
the beginning of the introduction, the two ingredients for model reduction of nonlinear problems are a low-
dimensional reduced-basis space and a hyperreduction procedure. As regard the former, one of the known
challenges in model reduction of hyperbolic and convection-dominated systems is the approximation of
sharp features whose locations are parameter dependent; e.g., moving shear layers in viscous flows and
moving shocks in transonic and supersonic flows. In the presence of parameter-dependent discontinuities,
the Kolmogorov N -width [30] decays as O(N−1/2) in L2(Ω); hence, any model reduction approach based
on the approximation of the parametric manifold by a linear space cannot provide a rapidly convergent
approximation. For transonic aerodynamics, this limitation of model reduction was recognized from early
on [23]. In the past several years, there has been significant effort in the model reduction community
to overcome this fundamental limitation through nonlinear approximation; works include [25,21,37] and
those in a review paper [26].

While the systematic identification of a low-dimensional approximation space is an important issue, in
this work we solely focus on the development of a hyperreduction procedure. As a result, in this work we
focus on parametrized subsonic aerodynamic flows, which do not involve shocks; subsonic aerodynamics
is important in many applications, including the analysis of unmanned aerial vehicles, gas turbines, and
wind turbines. Subsonic Euler flows in particular exhibit neither shocks nor shear layers, and can be
rapidly approximated in linear reduced basis spaces, as demonstrated in Section 5. More generally, the
formulation presented in this work applies to a broad range of second-order PDEs, including those in
heat transfer and elasticity.

2 Discontinuous Galerkin method

2.1 Vector and tensor notations

To concisely describe discretizations for systems of conservation laws, we adhere to the standard vector
and tensor notations in this work. Given vectors (i.e., order-1 tensors) w ∈ Rm and v ∈ Rm, their
dot product is given by w · v =

∑m
i=1 wivi ∈ R. Given matrices (i.e., order-2 tensors) W ∈ Rm×n and

V ∈ Rm×n, their double dot product is given by W : V =
∑m
i=1

∑n
j=1WijVij ∈ R. Given two vectors

w ∈ Rm and v ∈ Rn, their outer product is w ⊗ v ∈ Rm×n whose (i, j) entry is wivj . Given an order-4
tensor K ∈ Rm×n×m×n and an order-2 tensor V ∈ Rm×n, their product is KV ∈ Rm×n whose (i, j)
entry is given by

∑m
k=1

∑n
l=1KijklVkl.

We in addition introduce notations associated with differentiable functions. Given a vector-valued
function v ∈ H1(Ω)m over Ω ⊂ Rd, its gradient ∇v ∈ L2(Ω)m×d is matrix-valued and is given by
(∇v)ij = ∂vi

∂xj
for i = 1, . . . ,m and j = 1, . . . , d. Given a matrix-valued function V ∈ H1(Ω)m×d, its

divergence ∇ · V ∈ L2(Ω)m is vector-valued and is given by (∇ · V )i =
∑d
j=1

∂Vij

∂xj
for i = 1, . . . ,m.

Similarly, given a matrix-valued function V ∈ H1(Ω)m×d and a normal vector n on ∂Ω, their dot

product n ·V is vector-valued and is given by (n ·V )i =
∑d
j=1 njVij for i = 1, . . . ,m. Note that both the

divergence and the dot product with a normal vector contracts the second index of the matrix-valued
function.

2.2 Problem statement

We introduce a general form of conservation laws considered in this work. We first introduce a d-
dimensional physical domain Ω ⊂ Rd and a P -dimensional parameter domain D ⊂ RP . We then in-
troduce a system of nc parametrized, steady, nonlinear conservation laws: given µ ∈ D, find the state
u(µ) such that

∇ · F (u(µ);µ)−∇ · (K(u(µ);µ)∇u(µ)) = 0 in Ω, (1)

with appropriate boundary conditions; here F (u(µ);µ) is the nc×d-valued parametrized convection flux,
K(u(µ);µ)∇u(µ) is the nc× d-valued parametrized viscous flux, K(u(µ);µ) is the nc× d×nc× d-valued
parametrized diffusion tensor, and n is the d-valued outward-pointing unit normal on ∂Ω. In general, the
convection flux function and the diffusion tensor are nonlinear in both the state and parameter. Many
conservation laws can be expressed in this form, including the compressible Euler and Navier-Stokes
equations, which are the focus of this work and are considered in Section 5.
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2.3 Discontinuous Galerkin method

We now consider discontinuous Galerkin (DG) discretization of the conservation law (1). While we employ
the “standard” DG discretization with an upwinded convection flux and the so-called BR2 scheme [8]
for the diffusion term, we here briefly review the formulation to facilitate the presentation of our energy-
stable element-wise decomposition of the residual in Section 3.1. For more detailed presentations of DG
methods, we refer to review papers [3,13,7] and textbooks [20,32,29].

We first introduce a tessellation Th ≡ {κi}n
e

i=1 of Ω comprising ne non-overlapping elements so that
∪κ∈Th κ̄ = Ω̄ and κi∩κj = ∅, i 6= j; the tessellation comprises polygonal elements with hanging nodes of an

arbitrary level. We also introduce a skelton Σh ≡ {σi}n
f

i=1 of Th comprising nf facets; each facet is a facet
of at least one element. We identify the boundary and interior facet set by Σb

h ≡ {σ ∈ Σh | σ ∩ ∂Ω 6= ∅}
and Σi

h ≡ Σh \Σb
h, respectively; note that each interior facet σ ∈ Σi

h has two abutting elements, whereas
a boundary facet σ ∈ Σb

h has only one abutting element.
We next introduce a discontinuous, piecewise-polynomial approximation space,

Vh ≡ {v ∈ (L2(Ω))n
c

| v|κ ∈ (Pp(κ))n
c

, κ ∈ Th};

the space is endowed with the L2(Ω) inner product (w, v)Vh ≡ (w, v)L2(Ω) ≡
∫
Ω
v · wdx and the associ-

ated norm ‖w‖Vh ≡
√

(w,w)Vh . Note that functions in Vh are in general discontinuous across element
interfaces. Given an interior facet σ ∈ Σi

h, we identify an element on one side of the facet by + and the
other side of the facet by −, which are chosen arbitrarily; while the notation is necessary to describe
the DG discretization, the final discretization considered in this work is independent of the particular
choice. For a boundary facet σ ∈ Σb

h, without loss of generality, we identify the abutting element by
+. For w ∈ Vh, the function evaluated on the + and − side of a facet are denoted by w+ and w−,
respectively. In addition, given an interior facet σ ∈ Σi

h, we introduce the following jump and averaging
operators [3]. For a function w ∈ Vh, the averaging operator is given by {w} ≡ 1

2 (w+ + w−), the (non-

directional) jump operator is given by [w]+− = w+ − w−, and the directional jump operator is given by
JwK ≡ w+ ⊗ n+ + w− ⊗ n− for ⊗ the outer product. We note that the averaging operator {·} and the
(non-directional) jump operator [·]+− are nc valued; the directional jump operator J·K is nc× d valued. In
addition, the averaging operator {·} and the directional jump operator J·K are independent of the order of
+ and −, and hence we do not explicitly denote + and −; the (non-directional) jump operator depends
on the order of + and −, and hence we explicitly denote + and −.

We now introduce the DG residual form for the conservation law (1). The DG residual form rh :
Vh × Vh ×D → R is given by

rh(w, v;µ) = rc
h(w, v;µ) + rd

h(w, v;µ), (2)

where rc
h : Vh × Vh × D → R and rd

h : Vh × Vh × D → R are associated with convection and diffusion
contributions, respectively. (For notational brevity, here and throughout the work we do not explicitly
denote that the statement holds ∀w, v ∈ Vh and ∀µ ∈ D when we define a form unless there is an
ambiguity.) The convection residual form rc

h : Vh × Vh ×D → R is given by

rc
h(w, v;µ) ≡

∑
κ∈Th

rc,e
κ (w, v;µ) +

∑
σ∈Σh

rc,f
σ (w, v;µ), (3)

where the elemental and facet residual forms are given by

rc,e
κ (w, v;µ) ≡ −

∫
κ

∇v : F (w;µ)dx, κ ∈ Th, (4)

rc,f
σ (w, v;µ) ≡

∫
σ

[v]+− · F̂ (w+, w−;n+;µ)ds, σ ∈ Σi
h, (5)

rc,f
σ (w, v;µ) ≡

∫
σ

v+ · F̂ b(w+;n+;µ)ds, σ ∈ Σb
h; (6)

here F (·; ·) is the aforementioned convection flux function, F̂ (·, ·; ·; ·) is the interior numerical flux func-
tion, and F̂ b(·; ·; ·) is the boundary numerical flux function, which weakly enforces appropriate Dirichlet
boundary conditions. We assume that the interior numerical flux is consistent (i.e., F̂ (w,w;n+;µ) =
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n+ · F (w;µ)) and conservative (i.e., F̂ (w+, w−;n+;µ) = −F̂ (w−, w+;n−;µ)) and provides appropriate
numerical dissipation and hence stability in the DG method; see e.g., [13,7]. The boundary numerical flux
function weakly enforces boundary conditions and its precise form depends on the particular condition;
here we omit the presentation for brevity.

The diffusion residual form rd
h : Vh × Vh ×D → R is given by

rd
h(w, v;µ) =

∑
κ∈Th

rd,e
κ (w, v;µ) +

∑
σ∈Σh

rd,f
σ (w, v;µ), (7)

where

rd,e
κ (w, v;µ) ≡

∫
κ

∇v : K(w;µ)∇wdx, κ ∈ Th, (8)

rd,f
σ (w, v;µ) ≡ −

∫
σ

(
{K(w;µ)T∇v} : JwK + JvK : {K(w;µ)(∇w + θσ`σ(JwK))}

)
ds, σ ∈ Σi

h, (9)

rd,f
σ (w, v;µ) ≡ −

∫
σ

(
(K(w+;µ)T∇v) : ((w+ − ub(w+;µ))⊗ n+)

+ (v+ ⊗ n+) : K(w+;µ)(∇w+ + θσ`
b
σ(w+;µ))

)
ds, σ ∈ Σb

h. (10)

Here, ub(·; ·) provides the Dirichlet boundary value. The interior lifting operator `σ(·) provides, for a
vector jump JwK on σ ∈ Σi

h, the matrix-valued lifted function `σ(JwK) ∈ (Vh)d that has the support over
the two abutting elements κ+ and κ− and satisfies∫

κ+∪κ−
v : `σ(JwK)dx = −

∫
σ

{v} : JwKds, ∀v ∈ (Vh)d. (11)

Similarly, the boundary lifting operator `bσ(·) provides, for a trace w+ on σ ∈ Σb
h, the lifted function

`bσ(w+) ∈ (Vh)d that has the support over the abutting element κ+ and satisfies∫
κ+

v : `bσ(w+;µ)dx = −
∫
σ

v : ((w+ − ub(w+;µ))⊗ n+)ds, ∀v ∈ (Vh)d. (12)

The BR2 penalty parameter θσ ∈ R>0 on each facet is chosen to be greater than the maximum number
of facets on the abutting elements. In the presence of hanging nodes, the total number of divided facets
is counted; e.g., if a quadrilateral element has a hanging node on two of its facets, then the total number
of facets is six. In practice we set θσ equal to twice the maximum total number of facets on the abutting
elements. While these particular lifting operators are used in the BR2 formulation, there also exist other
choices of lifting operators (see, e.g., [3]).

Having defined the residual form (2), the DG-FEM “truth” approximation is given by the following:
given µ ∈ D, find uh(µ) ∈ Vh such that

rh(uh(µ), vh;µ) = 0 ∀vh ∈ Vh. (13)

We assume that the “truth” problem is well posed and refer to uh(µ) ∈ Vh as the “truth” solution.

2.4 Nonlinear solver: pseudo-time continuation

As (13) is nonlinear in uh(µ), we employ a pseudo-time continuation (PTC) procedure to reliably solve
the nonlinear algebraic system. An effective PTC strategy depends on the specific conservation law; we
here describe our strategy for the compressible Euler and Navier-Stokes equations. We first introduce
the time-dependent counterpart of (13): given µ ∈ D, find uptc

h (t;µ) ∈ Vh such that∫
Ω

vh
∂uptc

h (t;µ)

∂t
dx+ rh(uptc

h (t;µ), vh;µ) = 0 ∀vh ∈ Vh, ∀t ∈ R>0,

uptc
h (t = 0;µ) = u0

h(µ),

where u0
h(µ) is a suitable initial state, which for aerodynamic flows is often the freestream condition.

We then apply the backward Euler method to the unsteady equation and march forward in (pseudo)
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time until the steady state solution is obtained. As our interest is only in the steady-state solution, we
adaptively increase the time-step size in the solution process; in each step, we also monitor the changes
in the density and pressure at all quadrature points and, as necessary, backtrack such that the changes in
the quantities are smaller than a prescribed threshold value. We refer to [38] for a detailed presentation
of the particular PTC strategy employed in this work.

3 Discontinuous Galerkin reduced basis empirical quadrature procedure

The empirical quadrature procedure (EQP) approximates the finite element residual using a small subset
of quadrature points. In our original EQP formulation for continuous Galerkin finite element methods [39],
we decompose the finite element residual to the level of quadrature points. In the current work on an
EQP formulation for DG methods, we decompose the DG residual instead to the level of elements and not
quadrature points. This element-wise decomposition, instead of quadrature-point-wise decomposition, is
motivated by two factors. First, as mentioned in the Introduction, one of our goals is to ensure that
the EQP hyperreduced model remains energy stable for linear hyperbolic and convection-dominated
problems; using a carefully chosen element-wise decomposition is one way to achieve this goal. Second, the
element-wise decomposition allows us to leverage the fast and vectorized element-wise residual evaluation
routines implemented in many DG code.

We achieve the construction of energy-stable and accurate hyperreduced model in two steps. We first
devise an element-wise decomposition of the DG residual form (2) such that each elemental residual form
is energy stable (Section 3.1); the choice implies that the hyperreduced model based on any subset of
elements will be energy stable. We second invoke the EQP procedure to identify a subset of elements
which yields a hyperreduced model (i) that meets the accuracy requirement and (ii) such that only a
small number of elements are involved in residual evaluations (Section 3.3).

3.1 Energy-stable element-wise decomposition of the DG residual

In this section we identify an element-wise decomposition of the DG residual form (2)

rh(w, v;µ) ≡
∑
κ∈Th

ηκ(w, v;µ) (14)

for
ηκ(w, v;µ) ≡ ηc

κ(w, v;µ) + ηd
κ(w, v;µ) (15)

such that each elemental convection residual form ηc
κ(·, ·;µ) is energy stable for linear hyperbolic systems

(in the sense made more precise in Section 4.1) and each elemental diffusion residual form ηd
κ(·, ·;µ) is

symmetric and non-negative for linear diffusion systems (in the sense made more precise in Section 4.2).
We note that we use the term “element-wise” to indicate that the residual is expressed as a sum of the
terms associated with elements in the sense of (14). However, the evaluation of the individual ηκ(w, v;µ)
in general requires the values of the functions w and v on not just the element κ but also its neighbor
elements as the DG residual on a facet depends on the state of all abutting elements. Hence, “element-
wise” does not imply the evaluation of ηκ(w, v;µ) only depends on the function values over κ.

We define an energy-stable elemental convection residual form ηc
κ : Vh × Vh ×D → R as follows:

ηc
κ(w, v;µ) ≡ rc,e

κ (w, v;µ) +
∑

σ∈∂κ∩Σi
h

rc,f,split
σ,κ (w, v;µ) +

∑
σ∈∂κ∩Σb

h

rc,f
σ (w, v;µ), (16)

where rc,e
κ (·, ·; ·) for κ ∈ Th and rc,f

σ (·, ·; ·) for σ ∈ Σb
h are as defined in (4) and (6), respectively, and

rc,f,split
σ,κ (·, ·; ·) for the elements on the + and − side of σ ∈ Σi

h is given by

rc,f,split
σ,κ± (w, v;µ) ≡

∫
σ

(
1

4
[(v ⊗ n) : F (w;µ)]±∓ +

1

2
[v]+− · F̂ (w+, w−;n+;µ)

)
ds. (17)

More explicitly, the first term evaluates to (v+ ⊗ n+) : F (w+;µ)− (v− ⊗ n−) : F (w−;µ) for the element
κ+ on the + side, and the term evaluates to (v−⊗n−) : F (w−;µ)− (v+⊗n+) : F (w+;µ) for the element
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κ− on the − side; the second term is independent of the side to which the element belongs because
[v]+− · F̂ (w+, w−;n+;µ) = [v]−+ · F̂ (w−, w+;n−;µ) by the conservative property of the numerical flux.
We note that this element-wise split interior facet residual is consistent with the original facet residual
rc,f
σ (w, v;µ) for σ ∈ Σi

h defined in (5) in the sense that the sum of the residuals for the + and − elements
yields

rc,f,split
σ,κ+ (w, v;µ) + rc,f,split

σ,κ− (w, v;µ) =

∫
σ

[v]+− · F̂ (w+, w−;n+;µ)ds = rc,f
σ (w, v;µ).

It follows that
∑
κ∈Th η

c
κ(w, v;µ) = rc

h(w, v;µ), and hence ηc
κ(·, ·; ·) merely provides an alternative de-

composition of the convection residual form (3); however as we will see in Section 4.1, the elemental
residual (16) is energy stable for linear hyperbolic systems.

We next define an energy-stable elemental diffusion residual form ηc
κ : Vh × Vh ×D → R as follows:

ηd
κ(w, v;µ) ≡ rd,e

κ (w, v;µ) +
∑

σ∈∂κ∩Σi
h

rd,f,split
σ,κ (w, v;µ) +

∑
σ∈∂κ∩Σb

h

rd,f
σ (w, v;µ) (18)

where rd,e
κ (·, ·; ·) for κ ∈ Th and rd,f

σ (·, ·; ·) for σ ∈ Σb
h are as defined in (8) and (10), respectively, and

rd,f,split
σ,κ (·, ·; ·) for the element on the + and − side of σ ∈ Σi

h is given by

rd,f,split
σ,κ± (w, v;µ) ≡ −

∫
σ

(
1

2
∇v± : K(w±;µ)JwK +

1

2
JvK : K(w±;µ)(∇w± + θσ`

±
σ (JwK))

)
ds. (19)

Similarly to the convection residual, we note that this element-wise split interior facet residual is consis-
tent with the original facet residual rd,f

σ (·, ·; ·) for σ ∈ Σi
h defined in (9) in the sense that the sum of the

residuals for the + and − elements yields

rd,f,split
σ,κ+ (w, v;µ) + rd,f,split

σ,κ− (w, v;µ)

= −
∫
σ

(
{K(w;µ)T∇v} : JwK + JvK : {K(w;µ)(∇w + θσ`σ(JwK))}

)
ds = rd,f

σ (w, v;µ).

It again follows that
∑
κ∈Th η

d
κ(w, v;µ) = rd

h(w, v;µ), and hence ηd
κ(·, ·; ·) merely provides an alterna-

tive decomposition of the diffusion residual form (7); however, as we will in Section 4.2, the elemental
residual (18) is symmetric and non-negative for linear diffusion systems.

3.2 Reduced-basis approximation

We now consider a reduced basis approximation of the DG-FEM problem (13). To this end, we introduce
a reduced basis space VN ≡ span{uh(µ)}µ∈Ξrb

N
⊂ Vh associated with a snapshot parameter set Ξrb

N ⊂ D
of size N . The snapshot parameter set and the associated reduced basis are hierarchical in the sense that
Ξrb
N=1 ⊂ · · · ⊂ Ξrb

N=Nmax
and VN=1 ⊂ · · · ⊂ VN=Nmax

. The snapshot parameter sets are constructed using
the greedy algorithm discussed in Section 3.4. The associated “truth”-quadrature reduced basis problem
is as follows: given µ ∈ D, find uN (µ) ∈ VN such that

rh(uN (µ), vN ;µ) = 0 ∀vN ∈ VN . (20)

We assume that the problem is well posed and refer to uN (µ) ∈ VN as the “truth”-quadrature RB
solution or, more simply, the RB solution. In practice, we solve the nonlinear problem (20) using the
pseudo-time continuation strategy discussed in Section 2.4.

We now introduce a discrete form of the RB problem (20) to facilitate the discussion of our hy-
perreduction procedure in Section 3.3. By way of preliminaries, we introduce Vh-orthonormal basis
{φi}Nmax

i=1 such that VN = span{φi}Ni=1, N = 1, . . . , Nmax. We also introduce the associated reduced
basis operator ZN : RN → VN which maps a generalized coordinate w ∈ RN to the associated field
w = ZNw ≡

∑N
i=1 wiφi ∈ VN . We then introduce the discrete residual form rN : RN × D → RN such

that

rN (w;µ) ≡
∑
κ∈Th

ηN,κ(w;µ), (21)

7



where the discrete reduced basis element residual form ηN,κ : RN ×D → RN satisfies

ηN,κ(w;µ)i ≡ ηκ(ZNw, φi;µ), ∀i = 1, . . . , N.

We also introduce the associated Jacobian JN : RN ×D → RN×N such that

JN (w;µ)ij ≡
∂rN (v;µ)i

∂vj

∣∣∣∣
(w,µ)

= r′h(ZNw;φj , φi;µ), ∀i, j = 1, . . . , N, (22)

where r′h(ZNw;φj , φi;µ) is the Gâteaux derivative of rh(·, φi;µ) at ZNw in the direction φj ; for conve-
nience, we refer to r′h(·; ·, ·; ·) as a Jacobian form. The discrete form of the RB problem (20) is as follows:
given µ ∈ D, find uN (µ) ∈ RN such that

rN (uN (µ);µ) = 0 in RN ; (23)

the RB solution is given by uN (µ) = ZNuN (µ).

3.3 Empirical quadrature procedure (EQP)

We now consider an EQP approximation of the RB problem (20) and in particular the (discrete) RB
problem (23). Our procedure is a modification of the RB-EQP procedure for (continuous) Galerkin
methods [39] to discontinuous Galerkin methods with an emphasis on preserving energy stability. As
discussed in the introduction to Section 3, we achieve energy stability in two steps: we first identify an
element-wise energy-stable splitting of the DG residual; we then select a subset of elements to estimate
the residual. The first step was discussed in Section 3.1; we now discuss the application of the EQP for
the second step.

We introduce the RB-EQP residual form rν : Vh × Vh ×D → RN such that

rν(w, v;µ) ≡
∑
κ∈Th

ρνκηκ(w, v;µ), (24)

where ηκ(·, ·; ·) is the energy-stable elemental residual form (15) and {ρνκ}κ∈Th are the EQP weights
determined by a linear programming procedure introduced shortly. The RB-EQP problem is as follows:
find uνN (µ) ∈ RN such that

rν(uνN (µ), v;µ) = 0 ∀v ∈ VN . (25)

To facilitate the presentation of the RB-EQP procedure, we also introduce the discrete residual form
rνN : RN ×D → RN given by

rνN (w;µ) ≡ {rν(ZNw, φi;µ)}Ni=1 =
∑
κ∈Th

ρνκηN,κ(w;µ), (26)

and the associated (discrete) RB-EQP solution, uνN (µ) ∈ RN such that

rνN (uνN (µ);µ) = 0 in RN ; (27)

note that uνN (µ) = ZNuνN (µ). In practice, we compute the solution to (25) (or equivalently (27)) using
the pseudo-time continuation strategy discussed in Section 2.4.

We now wish to identify EQP quadrature weights {ρνκ}κ∈Th for the hyperreduced residual (24) (or
equivalently the discrete counterpart (26)) such that (i) the weights are sparse (i.e., mostly zero) to
facilitate fast evaluations of the residual but (ii) the associated solution uνN (µ) is accurate in the sense
that ‖uN (µ)−uνN (µ)‖Vh is small for all µ ∈ D. Our algorithm to identify the EQP quadrature weights is
informed by the error analysis provided in Section 4.4; we here merely present the algorithm and defer
the discussions of the design of the algorithm to Section 4.4. To introduce the algorithm, following [39],
we specify (a) an accuracy parameter δ ∈ R>0, (b) a parameter training set Ξtrain

J ≡ {µtrain
j }Jj=1 ⊂ D

of size J , and (c) the associated state training set {utrain
N (µ)}µ∈Ξtrain

J
= {ZNutrain

N (µ)}µ∈Ξtrain
J
⊂ VN . We

then consider a linear programming (LP) problem LPνN : find a basic feasible solution {ρ}κ∈Th such that

ρν,? = arg min
ρ∈Rne

∑
κ∈Th

ρνκ
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subject to ne non-negativity constraints

ρνκ ≥ 0 ∀κ ∈ Th,

the constant-function accuracy constraint∣∣∣∣∣|Ω| − ∑
κ∈Th

ρνκ|κ|

∣∣∣∣∣ ≤ δ|Ω|,
and NJ manifold accuracy constraints∥∥∥∥∥JN (utrain

N (µ);µ)−1

(
rN (utrain

N (µ);µ)−
∑
κ∈Th

ρνκηN,κ(utrain
N (µ);µ)

)∥∥∥∥∥
∞

≤ δ√
N

∀µ ∈ Ξtrain
J . (28)

The solution to LPνN provides the EQP weights for (24) (or equivalently (26)). We provide error estimates
for the hyperreduction error ‖uN (µ)− uνN (µ)‖Vh in Section 4.4.

3.4 Greedy algorithm: simultaneous training of RB and EQP

We now discuss a systematic procedure to find the reduced basis {φi}Ni=1 and the associated EQP weights
{ρκ}κ∈Th . To this end, we employ the greedy algorithm devised in [39], which is reproduced as Algorithm 1
for completeness. We here provide a brief description and refer to [39] for a complete description. The
algorithm takes as input a training set Ξtrain

J ⊂ D, the EQP tolerance δ ∈ R>0, and the RB residual
tolerance δrb ∈ R>0. It then outputs the reduced basis {φi}Ni=1 and the associated EQP weights {ρνκ}κ∈Th .
In each greedy iteration, the algorithm evaluates the RB-EQP solution uνN (µ) and the associated dual
norm of the “truth” residual ‖rh(uνN (µ), ·;µ)‖V′h ≡ supv∈Vh |rh(uνN (µ), v;µ)|/|v|Vh for all µ ∈ Ξtrain

J and

then chooses the parameter that is least-well represented (i.e., maximizes the “truth” residual) as µ(N)

(line 6). It then computes the “truth” solution uh(µ(N)) by solving the “truth” DG problem (13) (line 9).
The algorithm then updates the snapshot parameter set Ξrb

N and the associated reduced basis {φi}Ni=1

(line 10). It finally solves the EQP linear program LPνN to find the associated EQP weights {ρνκ}κ∈Th (lines
11-20). We here “bootstrap” and use for the “best-available” state as the training state {utrain

N (µ)}µ∈Ξtrain
J

in smoothing iterations i = 1, . . . , Neqp,smooth. Specifically, we proceed as follows: (i) in the very first
iteration (i = 1 and N = 1), we set the training state utrain

N (µ) to uh(µ(N=1)) for all parameter values,
which is a crude but the only available approximation; (ii) for i = 1 but N 6= 1, we set the training state
utrain
N (µ) to the “truth” solution uh(µ) for µ ∈ Ξrb

N and to the DG-RB-EQP approximation uνN−1(µ) (and

not uνN (µ)) for µ ∈ Ξtrain
J \Ξrb

N since the EQP rule has not been updated for the new RB of size N ; (iii)
for i > 1, we set the training state to the “truth” solution uh(µ) for µ ∈ Ξrb

N and to the DG-RB-EQP
approximation uνN (µ) for µ ∈ Ξtrain

J \Ξrb
N . The number of smoothing iterations of Neqp,smooth = 3 is used

in this work. As discussed shortly and shown in numerical examples in Section 5, one of the dominant
costs of the offline training is associated with the construction of the EQP linear program; we hence
wish to minimize the number of smoothing iterations. For the aerodynamics problems considered in this
work and for the hyperelasticity problem considered in [39], we have found Neqp,smooth = 3 is sufficient
for the number of EQP elements to “converge” in the “bootstrap” strategy; the ability of the strategy
to yield the quadrature rule that meets the desired error tolerance will be demonstrated numerically in
Section 5.

We briefly remark on the computational cost. Each greedy iteration requires (i) one evaluation of the
“truth” solution (line 9), (ii) J · (Neqp,smooth + 1) = |Ξtrain

J | · (Neqp,smooth + 1) evaluations of the “truth”
residual (lines 6 and 13), and (iii) J ·Neqp,smooth evaluation of the DG-RB-EQP solutions (lines 6 and 13).
The dominant cost for the algorithm are (i) and (ii), which requires the evaluation of “truth” quantities.
For nonlinear problems, the cost associated with the solution evaluation is significantly higher than the
residual evaluation, as the former requires multiple PTC (or Newton) iterations, each of which requires a
residual evaluation, a Jacobian evaluation, and a linear solve. Hence, the cost for the single solution in (i)
can be comparable to the cost for multiple residuals in (ii). Consequently, the overall computational cost
to construct a (hyper)reduced model of dimension N is comparable to the cost for N “truth” solution
evaluations. We will confirm this behavior in Section 5.
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Algorithm 1: Greedy algorithm for simultaneous RB and EQP training.

inputs : parameter training set: Ξtrain
J ⊂ D

EQP tolerance: δ ∈ R≥0

RB residual tolerance: δrb ∈ R>0

outputs: reduced basis: {φi}Nmax
i=1

EQP weights: {ρνκ}κ∈Th
1 Set Ξrb

N=0 = ∅, {φi}0i=1 = ∅.
2 for N = 1, . . . , Nmax do
3 if N = 1 then

4 Set µ(N) = arg infµ∈Ξtrain
J

‖µ̄− µ‖ where µ̄ ≡ 1
N

∑
µ∈Ξtrain

J
µ.

5 else

6 Set µ(N) = arg supµ∈Ξtrain
J

‖rh(uνN−1(µ), ·;µ)‖(Vh)′ .

7 end

8 If ‖rh(uN−1(µ(N));µ)‖(Vh)′ < δrb, terminate.

9 Find “truth” solution uh(µ(N)) ∈ Vh.

10 Update reduced basis: Ξrb
N = Ξrb

N−1 ∪ µ
(N), {φi}Ni=1 = Gram-SchmidtV{φ1, . . . , φN−1, uh(µ(N))}.

11 for i = 1, . . . , Neqp,smooth do
12 if i = 1 and N = 1 then

13 Set utrainN (µ) = uh(µ(N=1)), µ ∈ Ξtrain
J

14 else if i = 1 then

15 Set utrainN (µ) =

{
uh(µ), µ ∈ Ξrb

N

uνN−1(µ), µ ∈ Ξtrain
J \ Ξrb

N

16 else

17 Set utrainN (µ) =

{
uh(µ), µ ∈ Ξrb

N

uνN (µ), µ ∈ Ξtrain
J \ Ξrb

N

18 end

19 Solve LPνN for ν ≡ {δ, Ξtrain
J , {utrainN (µ)}µ∈Ξtrain

J
} to update {ρνκ}κ∈Th .

20 end

21 end

4 Analysis

We now analyze various properties of the DG-RB-EQP discretization devised in Section 3. In Section 4.1
we analyze the energy stability for linear hyperbolic systems. In Section 4.2 we analyze the symme-
try and non-negativity for linear diffusion systems. In Section 4.3 we analyze the energy stability for
convection-diffusion systems. In Section 4.4 we provide a priori error estimates for the formulation. For
notational brevity, we will not explicitly denote the parametric dependence of various forms and functions
throughout this section.

4.1 Energy stability for linear hyperbolic systems

We first consider the application of the DG-RB-EQP formulation to a linear hyperbolic system

∂u

∂t
+∇ · (Au) = 0 in Ω × (0, T ],

A(n)−u = A(n)−ub on ∂Ω × (0, T ], (29)

u(t = 0) = u0 in Ω × {0},

where Au is the nc × d-valued flux function, A ∈ Rnc×d×nc

is the flux tensor that is symmetric in
the sense that Aikj = Ajki for i, j = 1, . . . , nc, A(n) ∈ Rnc×nc

the directional flux tensor given by

A(n)ij =
∑d
k=1 nkAikj , A(n)− ≡ 1

2 (A(n) − |A(n)|) ∈ Rnc×nc

imposes inflow states, u0 ∈ L2(Ω) is the
initial condition, and T is the final time. As discussed in the Introduction, one of the advantages —
and in fact a design criterion for the numerical flux — of the DG method is the energy stability for
hyperbolic systems and convection-dominated systems. Specifically, the solution uh associated with the
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DG discretization of (29) satisfies

d

dt
‖uh‖2L2(Ω) ≤ −

∑
σ∈Σb

h

2

∫
σ

u+
h ·A(n+)−ubds; (30)

in words, the energy, defined as ‖uh‖2L2(Ω), enters the system only through the boundary, and no spurious

energy is created by the discretization (see, e.g., [7]). The energy stability is an important property
even for steady-state calculations, as the solution is obtained through the PTC procedure describe in
Section 2.4.

We now show that the DG-RB-EQP formulation of (29) is also energy stable for any EQP weights
{ρνκ ∈ R≥0}κ∈Th . The semi-discrete form associated with the DG-RB-EQP spatial discretization of the
linear hyperbolic system (29) is as follows: find uνN (t) ∈ VN , t ∈ (0, T ], such that∑
κ∈Th

ρνκ

∫
κ

v · ∂u
ν
N

∂t

∣∣∣∣
t

dx+ rν(uνN (t), v) =
∑
κ∈Th

ρνκ

(∫
κ

v · ∂u
ν
N

∂t

∣∣∣∣
t

dx+ ηc
κ(uνN (t), v)

)
= 0 ∀v ∈ VN . (31)

The elemental residual form ηcκ(·, ·) given in (16) is fully described by the the convection flux F (w) =
Aw, the upwinded interior numerical flux F̂ (w+, w−;n+) = 1

2 (A(n+)w+ + A(n+)w−) + 1
2 |A(n+)|[w]+−,

where | · | denotes the matrix absolute value, and the upwinded boundary numerical flux F̂ b(w+;n+) =
F̂ (w+, ub;n+). We have the following energy-stability statement.

Proposition 1 (energy stability for linear hyperbolic systems) For any EQP weights {ρνκ ∈
R≥0}κ∈Th , the solution uνN to the DG-RB-EQP problem (31) associated with the linear hyperoblic sys-
tem (29) is energy stable (modulo inflow data ub) with the following energy balance:

d

dt

(∑
κ∈Th

ρνκ‖uνN‖2L2(κ)

)
+
∑
κ∈Th

ρνκ

 ∑
σ∈∂κ∩Σi

h

1

2

∫
σ

[uνN ]+− · |A(n+)|[uνN ]+−ds+
∑

σ∈∂κ∩Σb
h

∫
σ

uνN
+ · |A(n+)|uνN

+ds


= −

∑
κ∈Th

ρνκ
∑

σ∈∂κ∩Σb
h

2

∫
σ

uνN
+ ·A(n+)−ubds. (32)

Consequently,

d

dt

(∑
κ∈Th

ρνκ‖uνN‖2L2(κ)

)
≤ −

∑
κ∈Th

ρνκ
∑

σ∈∂κ∩Σb
h

2

∫
σ

uνN
+ ·A(n+)−ubds. (33)

In words, no spurious energy is created by the discretization.

Proof We analyze the energy stability of the element-wise decomposed convection residual (16). To this
end, we first note that, by integration parts and the symmetry of A (i.e., Aikj = Ajki for i, j = 1, . . . , nc),

rc,e
κ (v, v) = −

∫
κ

∇v : Avdx =

d∑
k=1

nc∑
i,j=1

(
−
∫
κ

∂vi
∂xk

Aikjvjdx

)

=

d∑
k=1

nc∑
i,j=1

(
−1

2

∫
κ

∂vi
∂xk

Aikjvjdx+
1

2

∫
κ

viAikj
∂vj
∂xk

dx− 1

2

∑
σ∈∂κ

∫
σ

v±i n
±
k Aikjv

±
j ds

)

= −1

2

∑
σ∈∂κ

∫
σ

v± ·A(n±)v±ds,

where + (resp. −) is chosen for the element κ+ (resp. κ−) of the facet σ. It hence follows that

ηc
κ(v, v) = rc,e

κ (v, v) +
∑

σ∈∂κ∩Σi
h

rc,f,split
σ,κ (v, v) +

∑
σ∈∂κ∩Σb

h

rc,f
σ (v, v)

=
∑

σ∈∂κ∩Σi
h

∫
σ

(
−1

2
v± ·A(n±)v± +

1

4
[v ·A(n)v]±∓ +

1

2
[v]+− · F̂ (v+, v−;n+)

)
ds

+
∑

σ∈∂κ∩Σb
h

∫
σ

(
−1

2
v+ ·A(n+)v+ + v+ · F̂ b(v+;n+)

)
ds
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A tedious but straightforward algebraic manipulation simplifies the integrand over the interior facet σ ∈
∂κ ∩Σi

h to

− 1

2
v± ·A(n±)v± +

1

4
[v ·A(n)v]±∓ +

1

2
[v]+− · (

1

2
A(n+)v+ +

1

2
A(n+)v− +

1

2
|A(n+)|[v]+−) =

1

4
[v]+− · |A(n+)|[v]+−,

where we have used the definition of the interior numerical flux F̂ and the fact that n+ = −n− and hence
A(n+) = −A(n−). A similar manipulation simplifies the integrand over the boundary facet σ ∈ ∂κ ∩Σb

h

to

− 1

2
v+ ·A(n+)v+ +

1

2
v+ ·A(n+)v+ +

1

2
v+ ·A(n+)ub +

1

2
v+ · |A(n+)|(v+ − ub)

=
1

2
v+ · |A(n+)|v+ +

1

2
v+ · (A(n+)− |A(n+)|)ub =

1

2
v+ · |A(n+)|v+ + v+ ·A(n+)−ub,

where we have used the definition of the boundary numerical flux F̂ b and the inflow flux matrix (n+ ·A)−.
We hence conclude that the elemental residual form is non-negative in the sense that

ηc
κ(v, v) =

∑
σ∈∂κ∩Σi

h

1

4

∫
σ

[v]+− · |A(n+)|[v]+−ds+
∑

σ∈∂κ∩Σb
h

∫
σ

(
1

2
v+|A(n+)|v+ + v+A(n+)−ub

)
ds. (34)

On the other hand, we note that ∫
κ

v · ∂v
∂t
dx =

1

2

d

dt
‖v‖2L2(κ). (35)

The substitution of (34) and (35) to (31) yields the energy balance statement (32). We then note that
the second term of (32) is non-negative to obtain the energy stability statement (33).

We make a few remarks on Proposition 1.

Remark 1 If we had naively decomposed the convection residual as rc
h(w, v) =

∑
κ∈Th r

c
h(w, v|κ), then

the elemental residuals would not be element-wise energy stable when applied to the linear hyperbolic
system (29). The associated EQP approximation hence would not be energy stable in general.

Remark 2 Due to the particular form of the (split) interior facet residual form rc,f,split
σ,κ (·, ·) defined by (17),

the DG-RB-EQP formulation inherits the energy stability (30) for the DG formulation for any set of
EQP weights. We emphasize that the energy stability is preserved independent of the tolerance used in
EQP LPνN .

Remark 3 The energy stability can be shown for more general forms of interior numerical fluxes that

provide dissipation in the sense that [w]+− ·
(
F̂ (w+, w−;n+)− n+ · 1

2 (F (w+) + F (w−))
)
≥ 0 ∀w+, w− ∈

Rnc

. This generalization includes fluxes such as the Lax-Friedrichs flux.

Remark 4 If all EQP weights ρν are set to unity, then the DG-RB-EQP energy stability statement (32) is
identical to the DG energy statement (30); this is a direct consequence of the fact that the element-wise
residual ηc

κ(·, ·) in the DG-RB-EQP formulation is a proper decomposition of the DG residual.

4.2 Symmetry and non-negativity for diffusion systems

We next consider the application of the DG-RB-EQP formulation to a (steady) linear diffusion system

−∇ · (K∇u) = 0 in Ω, (36)

u = ub on ∂Ω,

where K ∈ Rnc×d×nc×d is an order-4 tensor that is symmetric (i.e., Kikjl = Kjkil) and satisfies the
ellipticity condition (i.e., ξ : Kξ > 0 for all ξ ∈ Rnc×d such that ξ 6= 0). The bilinear form associated
with the weak formulation of (36) is symmetric and non-negative, and so are the bilinear forms associ-
ated with many finite element discretizations including the BR2 DG discretization [3]. As discussed in
the Introduction, preserving the symmetry and non-negativity of diffusive systems, which also arise in
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structural mechanics, was a focus of the recent hyperreduction works in [15] and [12]. (For simplicity,
we here consider a (pure) Dirichlet problem; however, both the symmetry and non-negativity analyses
readily extend to mixed problems with Dirichlet and Neumann boundary conditions.)

We now show that the bilinear form for the DG-RB-EQP formulation of (36) is also symmetric and
non-negative. The DG-RB-EQP formulation of (36) is as follows: find uνN ∈ VN such that

rν(uνN , v) ≡
∑
κ∈Th

ρνκη
d
κ(uνN , v) = 0 ∀v ∈ VN . (37)

The bilinear form associated with this linear problem is the Jacobian form

rν ′(·;w, v) =
∑
κ∈Th

ρνκη
d
κ
′(·;w, v). (38)

(The Jacobian form rν ′(·; ·, ·) is independent of the first argument (i.e., the linearization point) since
the residual form rν(·, ·) is affine in the first argument for a linear problem.) We will show rν ′(·;w, v)
is symmetric and non-negative with respect to w and v ∈ Vh. The symmetry and non-negativity of the
Jacobian form implies the symmetry and non-negativity of the (algebraic) Jacobian JνN ∈ Rnc×nc

given
in (22) because (JνN )ij = rν ′(·;φj , φi), i, j = 1, . . . , N .

To facilitate the analysis of the Jacobian form (38), we introduce the boundary lifting operator
associated with the homogeneous Dirichlet boundary condition: `b,0σ (w+) ∈ (Vh)d that has the support
over κ+ and satisfies ∫

κ+

v : `b,0σ (w+)dx = −
∫
σ

v : (w+ ⊗ n+)ds, ∀v ∈ (Vh)d. (39)

Due to the linearity of the lifting operator, the lifting operator (12) for inhomogneous Dirichlet boundary
condition can be expressed in terms of the homogeneous counterpart (39) as `bσ(w+) = `b,0σ (w+)−`b,0σ (ub).
We in addition introduce an element-wise (rather than facet-wise) lifting operator [3],

Lκ(v) ≡
∑

σ∈∂κ∩Σi
h

`σ(JvK) +
∑

σ∈∂κ∩Σb
h

`b,0σ (v+).

We now prove the symmetry of rν ′(·;w, v) with respect to w and v.

Proposition 2 (symmetry of the Jacobian for diffusion systems) For any EQP weights {ρνκ ∈
R≥0}κ∈Th , the Jacobian form (38) associated with the linear diffusion system (36) is symmetric in the
sense that

rν ′(·;w, v) = rν ′(·; v, w) ∀w, v ∈ Vh.

Proof It suffices to show that the Jacobian form for the elemental residual (18), ηd′
κ(·, ·) = rd,e

κ
′(·, ·) +∑

σ∈∂κ∩Σi
h
rd,f,split
σ,κ

′(·, ·) +
∑
σ∈∂κ∩Σb

h
rd,f
σ
′(·, ·), is symmetric. The symmetry of rd,e

κ
′(·, ·) is obvious from

the definition (8). The symmetry of the interior facet Jacobian form rd,f,split
σ,κ

′(·, ·), σ ∈ Σi
h, follows from

the definition of the interior lifting operator (11): for σ ∈ Σi
h,

rd,f,split
σ,κ±

′(·;w, v) ≡ −
∫
σ

(
1

2
∇v± : KJwK +

1

2
JvK : K(∇w± + θσ`

±
σ (JwK))

)
ds

= −
∫
σ

(
1

2
∇v± : KJwK +

1

2
JvK : K∇w±

)
ds+ θσ

∫
κ±
`σ(JvK) : K`σ(JwK)dx;

we readily observe that the form is symmetric. Similarly, the symmetry of the boundary facet Jacobian
form rd,f

σ
′(·, ·), σ ∈ Σb

h, follows from the definition of the boundary lifting operator (39): for σ ∈ Σb
h,

rd,f
σ
′(·;w, v) ≡ −

∫
σ

(
∇v+ : K(w+ ⊗ n+) + (v+ ⊗ n+) : K(∇w+ + θσ`

b,0
σ (w+;µ))

)
ds

= −
∫
σ

(
∇v+ : K(w+ ⊗ n+) + (v+ ⊗ n+) : K∇w+

)
ds+ θσ

∫
κ

`b,0σ (v+) : K`b,0σ (w+)dx;

we again observe that the form is symmetric. Since each Jacobian form that comprises ηd
κ
′(·, ·) is symmet-

ric, the elemental Jacobian form ηd
κ
′(·, ·) is symmetric. It follows that the EQP Jacobian form rν ′(·; ·, ·),

which results from a sum of elemental Jacobian forms ηd
κ
′, is symmetric.
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Before we prove the non-negativity of the Jacobian form rν ′(·; v, v) with respect to v ∈ Vh, we provide
the following lemma.

Lemma 1 The elemental residual for the linear diffusion system (36) satisfies

ηd
κ(v, v) =

∫
κ

(∇v + Lκ(v)) : K(∇v + Lκ(v))dx+

[
−
∫
κ

Lκ(v) : KLκ(v)dx

+
∑

σ∈∂κ∩Σi
h

θσ

∫
κ

`σ(JvK) : K`σ(JvK)dx+
∑

σ∈∂κ∩Σb
h

θσ

∫
κ

`bσ(v+) : K`bσ(v+)dx

]
(40)

+
∑

σ∈∂κ∩Σb
h

∫
σ

(
∇v+ : K(ub ⊗ n+) + (v+ ⊗ n+) : Kθσ`

b,0
σ (ub)

)
ds.

Consequently,

ηd
κ(v, v) ≥

∑
σ∈∂κ∩Σb

h

∫
σ

(
∇v+ : K(ub ⊗ n+) + (v+ ⊗ n+) : Kθσ`

b,0
σ (ub)

)
ds. (41)

Proof A direct manipulation of the elemental residual form yields

ηd
κ(v, v) = rd,e

κ (v, v) +
∑

σ∈∂κ∩Σi
h

rd,f,split
σ,κ± (v, v) +

∑
σ∈∂κ∩Σb

h

rd,f
σ (v, v)

=

∫
κ

∇v : K∇vdx−
∑

σ∈∂κ∩Σi
h

∫
σ

(
1

2
∇v± : KJvK +

1

2
JvK : K(∇v± + θσ`

±
σ,j(JvK))

)
ds

−
∑

σ∈∂κ∩Σb
h

∫
σ

(
∇v+ : K((v+ − ub)⊗ n+) + (v+ ⊗ n+) : K(∇v+ + θσ`

b,0
σ (v+)− θσ`b,0σ (ub))

)
ds

=

∫
κ

∇v : K∇vdx+
∑

σ∈∂κ∩Σi
h

∫
κ

(∇v : K`σ(JvK) + `σ(JvK) : K(∇v + θσ`σ(JvK))) dx

+
∑

σ∈∂κ∩Σb
h

∫
κ

(
∇v : K`b,0σ (v+) + `b,0σ (v+) : K(∇v + θσ`

b,0
σ (v+))

)
dx

+
∑

σ∈∂κ∩Σb
h

∫
σ

(
∇v+ : K(ub ⊗ n+) + (v+ ⊗ n+) : Kθσ`

b,0
σ (ub)

)
ds

=

∫
κ

(∇v + Lκ(v)) : K(∇v + Lκ(v))dx+

[
−
∫
κ

Lκ(v) : KLκ(v)dx

+
∑

σ∈∂κ∩Σi
h

θσ

∫
κ

`σ(JvK) : K`σ(JvK) +
∑

σ∈∂κ∩Σb
h

θσ

∫
κ

`b,0σ (v+) : K`b,0σ (v+)

]

+
∑

σ∈∂κ∩Σb
h

∫
σ

(
∇v+ : K(ub ⊗ n+) + (v+ ⊗ n+) : Kθσ`

b,0
σ (ub)

)
ds;

here the first equality follows from the definition of the residual forms and the relationship between
the homogeneous and inhomogeneous boundary lifting operators, the second equality follows from the
definition of the lifting operators, and the last equality follows from simple algebraic manipulations,
proving (40).

We now prove (41). We readily observe that the first term of (40) is non-negative because it is
quadratic and K is elliptic. We wish to show that the term in the bracket in (40) is non-negative. For
notational convenience, we introduce

`•σ(v) ≡

{
`σ(JvK), σ ∈ Σi

h

`b,0σ (v+), σ ∈ Σb
h

.

14



With this notation the element lifting operator can be written concisely as Lκ(v) ≡
∑
σ∈∂κ `

•
σ(v). We

then observe that∫
κ

Lκ(v) : KLκ(v)dx =

∫
κ

( ∑
σ∈∂κ

`•σ(v)
)

: K
( ∑
σ′∈∂κ

`•σ′(v)
)
dx =

∑
σ∈∂κ

∑
σ′∈∂κ

∫
κ

`•σ(v) : K`•σ′(v)dx

≤
∑
σ∈∂κ

∑
σ′∈∂κ

(∫
κ

`•σ(v) : K`•σ(v)dx
)1/2(∫

κ

`•σ′(v) : K`•σ′(v)dx
)1/2

≤
∑
σ∈∂κ

∑
σ′∈∂κ

∫
κ

`•σ(v) : K`•σ(v)dx ≤
∑
σ∈∂κ

θσ

∫
κ

`•σ(v) : K`•σ(v)dx;

here, the first inequality follows from the Cauchy-Schwarz inequality (which applies since K is elliptic),
the second inequality follows from the Young’s inequality, and the last inequality follows from the fact
that θσ is greater than the number of facet on κ (as we specified in Section 2.3). We hence observe that
the term in the bracket in (40) satisfies

[
−
∫
κ

Lκ(v) : KLκ(v)dx+
∑
σ∈∂κ

θσ

∫
κ

`•σ(v) : K`•σ(v)dx
]

≥ −
∑
σ∈∂κ

θσ

∫
κ

`•σ(v) : K`•σ(v)dx+
∑
σ∈∂κ

θσ

∫
κ

`•σ(v) : K`•σ(v)dx ≥ 0;

the term in the bracket in (40) is non-negative. As both the first term and the term in the bracket in (40)
are non-negative, we conclude that (40) implies (41).

Proposition 3 (non-negativity of the Jacobian for diffusion systems) For any EQP weights
{ρνκ ∈ R≥0}κ∈Th , the Jacobian form (38) associated with the linear diffusion system (36) is non-negative
in the sense that

rν ′(·; v, v) ≥ 0 ∀v ∈ Vh.

Proof It suffices to show that the elemental Jacobian form ηd
κ
′(·; v, v) is non-negative with respect to

v ∈ Vh. The linearization of the form (40) in Lemma 1 yields

ηd
κ
′(·; v, v) =

∫
κ

(∇v + Lκ(v)) : K(∇v + Lκ(v))dx+

[
−
∫
κ

Lκ(v) : KLκ(v)dx

+
∑

σ∈∂κ∩Σi
h

θσ

∫
κ

`σ(JvK) : K`σ(JvK) +
∑

σ∈∂κ∩Σb
h

θσ

∫
κ

`b,0σ (v+) : K`b,0σ (v+)

]
.

As in the proof of Lemma 1, the term in the bracket is non-negative if θσ is greater than the number of
facet on κ (as we specified in Section 2.3). We hence conclude that ηd

κ
′(·; v, v) ≥ 0. The summation of

the elemental Jacobians form according to (38) yields the desired result.

We make a few remarks on Propositions 2 and 3, which are the counterpart of the earlier remarks on
Proposition 1.

Remark 5 If we had naively decomposed the diffusion residual as rd
h(w, v) =

∑
κ∈Th r

d
h(w, v|κ), then the

elemental residuals would be neither symmetric nor non-negative when applied to the linear diffusion
system (36). The associated EQP approximation hence would be neither symmetric nor non-negative in
general.

Remark 6 Due to the particular form of the (split) interior facet residual form rd,f,split
σ,κ (·, ·) defined

by (19), the DG-RB-EQP formulation inherits the symmetry and non-negativity of the Jacobian form
for the DG formulation for any set of EQP weights. We emphasize that the symmetry and non-negativity
are preserved independent of the tolerance used in the EQP LPνN .
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4.3 Energy stability for convection-diffusion systems

We now consider the application of the DG-RB-EQP formulation to a convection-diffusion system

∂u

∂t
+∇ · (Au)−∇ · (K∇u) = 0 in Ω × (0, T ],

u = ub on ∂Ω × (0, T ],

u(t = 0) = u0 in Ω × {0},

where, as considered in problems (29) and (36), A ∈ Rnc×d×nc

is symmetric (i.e., Aikj = Ajki), and
K ∈ Rnc×d×nc×d is symmetric (i.e., Kikjl = Kjkil) and satisfies the ellipticity condition (i.e., ξ : Kξ > 0
for all ξ ∈ Rnc×d such that ξ 6= 0).

The semi-discrete form associated with the DG-RB-EQP spatial discretization of the problem is as
follows: find u(t) ∈ VN , t ∈ (0, T ], such that∑

κ∈Th

ρνκ

(∫
κ

v · ∂u
∂t

∣∣∣∣
t

dt+ ηc
κ(u(t), v) + ηd

κ(u(t), v)

)
= 0 ∀v ∈ VN , (42)

where ηc
κ(·, ·) and ηd

κ(·, ·) are identical to the element-wise convection and diffusion residual forms for (31)
and (37), respectively. We have the following energy stability statement.

Proposition 4 (energy stability for linear convection-diffusion systems) For any EQP weights
{ρνκ ∈ R≥0}κ∈Th , the DG-RB-EQP formulation applied to (42) is energy stable (modulo boundary data
ub) in the sense that

d

dt

(∑
κ∈Th

ρνκ‖u‖2L2(κ)

)

≤ −
∑
κ∈Th

ρνκ
∑

σ∈∂κ∩Σb
h

2

∫
σ

(
u+ ·A(n+)−ub +∇u+ : K(ub ⊗ n+) + (u+ ⊗ n+) : Kθσ`

b,0
σ (ub)

)
ds.

In words, no spurious energy is created by the discretization.

Proof The proof is a direct consequence of the stability of the DG-RB-EQP discretization for hyperbolic
systems in Proposition 1 and the non-negativity of the discretization for diffusion systems in Proposition 3
and in particular (41) in Lemma 1.

4.4 A priori error estimates

In Sections 4.1 through 4.3, we analyzed the stability of the DG-RB-EQP discretization for linear hy-
perbolic and convection-diffusion systems. We now analyze the error between the RB solution (20) and
the RB-EQP solution (25), ‖uN − uνN‖Vh , using two approaches. The first analysis builds on the Brezzi-
Rappaz-Raviart (BRR) theorem [9], provides conditions under which the RB-EQP solution exists, and
provides a bound of the error. This BRR error bound was originally presented in [39] in the context of
continuous Galerkin method; we here reproduce the result for completeness.

Proposition 5 (Brezzi-Rappaz-Raviart error bound (Proposition 3.2 in [39])) For a fixed
µ ∈ D, we introduce ûN ∈ RN such that

‖uN − ûN‖2 ≤ δT (43)

for some δT ∈ R≥0 and such that JN (ûN ) is non-singular. Suppose

‖JN (ûN )−1rνN (ûN )‖∞ ≤ δR (44)

‖JN (ûN )−1JνN (ûN )− I‖max ≤ δJ (45)

for some δR ∈ R≥0 and δJ ∈ [0, 1/N); here, for any A ∈ RN×N , ‖A‖max ≡ maxi,j |Aij |. We in addition

define L(α) ≡ 2 supw∈B̄(uN ,α) ‖JN (ûN )−1JνN (w)− I‖2. Suppose L(2
√
NδR/(1−NδJ)) ≤ (1−NδJ)/2.

16



Then, for all β ≥ 2
√
NδR/(1−NδJ) such that L(β) ≤ 1−NδJ , there exists a unique solution uνN ∈ RN

to (25) in the ball B̄(ûN , β). Moreover,

‖uN − uνN‖Vh = ‖uN − uνN‖2 ≤
2
√
NδR

1−NδJ
+ δT (46)

Proof See Proposition 3.2 in [39].

The BRR analysis in Proposition 5 identifies a sufficient condition for the solution to the RB-EQP
problem (25) to exist; it also provides an error bound for ‖uN − uνN‖Vh . However, this BRR error bound
is not asymptotically sharp. Here we provide an alternative analysis which provides an asymptotically
sharper error estimate.

Proposition 6 (asymptotic error estimate) Suppose the following assumptions hold: (i) the training
condition (43) and the Jacobian condition (45) (but not the residual condition (44)) of the BRR error
bound in Proposition 5 are satisfied; (ii) a residual condition

‖JN (ûN )−1(rN (ûN )− rνN (ûN ))‖∞ ≤ δR (47)

for some δR ∈ R≥0 is satisfied; (iii) the conditions for the existence of the unique solution uνN ∈ RN
in Proposition 5 are satisfied; and (iv) the residual rN : RN → RN and rνN : RN → RN are thrice
differentiable. Then

‖uN − uνN‖Vh = ‖uN − uνN‖2 =

√
NδR

1−NδJ
+

NδJδT
1−NδJ

+O(δ2
T ) +O(‖uN − uνN‖22). (48)

In particular, as ‖uN − uνN‖22 → 0 and δT → 0, ‖uN − uνN‖2 ≤
√
NδR/(1−NδJ) +NδJδT /(1−NδJ).

Proof For notational convenience, we define δûN ≡ ûN − uN and δuνN ≡ uN − uνN . We appeal to the
differentiability of the residual forms rN : RN → RN and rνN : RN → RN and invoke the Taylor series
expansion first about uN and then about uνN to obtain

JN (ûN )−1(rN (ûN )− rνN (ûN ))

= JN (ûN )−1[rN (uN ) + JN (uN )δûN − rνN (uN )− JνN (uN )δûN +O(‖δûN‖22)]

= JN (ûN )−1[−rνN (uνN )− JνN (uνN )δuνN + (JN (uN )− JνN (uN ))δûN +O(‖δuνN‖22) +O(‖δûN‖22)]. (49)

We note that the first term in the bracket of (49) vanishes since rνN (uνN ) = 0. We next note uνN − ûN =
−δuνN − δûN , appeal to the thrice differentiability of rνN : RN → RN (which implies JνN : RN → RN×N
is twice differentiable), and invoke the Taylor series expansion of the second term in the bracket of (49)
about ûN to obtain

−JνN (uνN )δuνN = −JνN (ûN )δuνN − JνN
′(ûN ; uνN − ûN )δuνN +O(‖uνN − ûN‖2)

= −JνN (ûN )δuνN − JνN
′(ûN ;−δuνN − δûN )δuνN +O(‖δuνN‖22) +O(‖δûN‖22)

= −JνN (ûN )δuνN +O(‖δuνN‖22) +O(‖δûN‖22) (50)

where JνN
′(ûN ; a) is the directional derivative of JνN (·) about ûN in the direction a ∈ RN . We similarly

appeal to the thrice differentiability of rN : RN → RN and rνN : RN → RN (which implies JN : RN →
RN×N and JνN : RN → RN×N ares twice differentiable) and invoke the Taylor series expansion of the
third term in the bracket of (49) about ûN to obtain

(JN (uN )− JνN (uN ))δûN = (JN (ûN )− JνN (ûN ))δûN +O(‖δûN‖22). (51)

The substitution of (50) and (51) to (49) yields

JN (ûN )−1(rN (ûN )− rνN (ûN ))

= −δuνN + (I − JN (ûN )−1JνN (ûN ))δuνN + (I − JN (ûN )−1JνN (ûN ))δûN +O(‖δuνN‖22) +O(‖δûN‖22).
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We then invoke the triangle inequality, note ‖δûN‖ ≤ δT by the condition (43), and note ‖I−JN (ûN )−1JνN (ûνN )‖2 ≤
N‖I − JN (ûN )−1JνN (ûνN )‖max ≤ NδJ by the condition (45) to obtain

‖JN (ûN )−1(rN (ûN )− rνN (ûN ))‖2
≥ ‖δuνN‖2 − ‖I − JN (ûN )−1JνN (ûN )‖2‖δuνN‖2 − ‖I − JN (ûN )−1JνN (ûN )‖2‖δûN‖2
−O(‖δuνN‖22)−O(‖δûN‖22)

≥ (1−NδJ)‖δuνN‖2 −NδJδT −O(δ2
T )−O(‖δuνN‖22)

We next rearrange the expression and note ‖JN (ûN )−1rνN (ûN )‖2 ≤
√
N‖JN (ûN )−1rνN (ûN )‖∞ ≤

√
NδR

by the condition (47) to obtain

‖δuνN‖2 ≤
‖JN (ûN )−1(rN (ûN )− rνN (ûN ))‖2

1−NδJ
+

NδJ
1−NδJ

‖δûN‖2 +O(δ2
T ) +O(‖δuνN‖22)

≤
√
NδR

1−NδJ
+

NδJδT
1−NδJ

+O(δ2
T ) +O(‖δuνN‖22),

which is the desired bound.

We make a few remarks on Propositions 5 and 6.

Remark 7 For δT = 0 and as δR → 0, the asymptotic error estimate (48) is tighter than the BRR error
bound (46) by a factor of 2. Our EQP linear program LPνN described in Section 3.3 is motivated by this
asymptotic error estimate, as discussed in the next remark.

Remark 8 We relate the asymptotic error estimate Proposition 6 and in particular the three conditions
— the training condition (43), the residual condition (47), and the Jacobian condition (45) — to our EQP
linear program LPνN . The manifold accuracy constraints (28) is the residual condition (47) for ûN (µ) =

utrain
N (µ) and δR = δ/

√
N . We next assume (i) the training condition ‖utrain

N (µ)−uN (µ)‖ ≤ δT is satisfied
for δT small. We in addition assume (ii) the Jacobian condition (45) is satisfied for δJ � 1/N . Under
these two assumptions, the error is asymptotically bounded by ‖uN−uνN‖Vh ≤

√
NδR/(1−NδJ)+δT ≈ δ.

Hence, the EQP linear program LPνN directly controls the hyperreduction error if (i) δT is small and (ii)
δJ � 1/N . We aim to satisfy condition (i) by using the bootstrapping strategy in the greedy algorithm
discussed in Section 3.4, though the condition cannot be rigorously verified. We also hope the Jacobian
condition (ii) is satisfied indirectly through the enforcement of the residual condition (47) by the accuracy
constraints (28), though again the condition cannot be rigorously verified. We will show in Section 5
through numerical examples that in practice the EQP formulation provides control of the asymptotic
error. (For a related discussion on relationships between the BRR error bound (Proposition 5) and the
EQP linear program LPνN , we refer to [39].)

Remark 9 On one hand, the stability of the DG-RB-EQP formulation for linear hyperbolic and convection-
diffusion systems is guaranteed for any EQP weights {ρνκ}κ∈Th as shown in Sections 4.1 through 4.3.
On the other hand, the accuracy of the DG-RB-EQP formulation depends on the EQP weights and in
particular the tolerance used in the EQP LPνN .

5 Numerical examples

In this section we numerically assess the DG-RB-EQP formulation for three aerodynamics problems.
Both the “truth” and DG-RB-EQP formulations are implemented in an in-house PDE solver, and all
computations are performed on a commodity desktop.

5.1 Euler flow over a NACA 0012 airfoil

We first consider inviscid flow over a NACA 0012 airfoil modeled by the compressible Euler equations;
the equations are expressed in entropy variables [7]. We consider two parameters: the angle of attack
µ1 ≡ α ∈ [0◦, 3◦]; and the freestream Mach number µ2 ≡M∞ ∈ [0.3, 0.5]. We note that, forM∞ = 0.5 and
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(a) solution (b) mesh

Fig. 1 The solution (α = 1.5◦ and M∞ = 0.4) and the mesh for the NACA 0012 airfoil Euler problem.

α = 3◦, the local Mach number on the suction side of the airfoil exceeds 0.8 but the flow remains subsonic.
Figure 1(a) shows the solution associated with the centroidal parameter value. To assess the DG-RB-
EQP method for different “truth” discretizations (i.e., polynomial degree) and the training parameter
set Ξtrain

J , we first consider a “nominal” case and then compare the result with other discretizations and
training parameter set.

Nominal case. We first consider the DG-RB-EQP formulation for a “nominal” case. In this nominal
case, we obtain the finite element “truth” solution using the P2 DG method. The mesh, which will be fixed
for all parameter values, is obtained through an output-based anisotropic adaptation for the centroidal
parameter value of α = 1.5◦ and M∞ = 0.4 such that the error in the lift coefficient is less than 1 count
(i.e., 1× 10−4); the initial mesh for adaptation is the mesh supplied for the NACA problem in the first
AIAA high-order workshop. The “truth” space comprises 1963 P2 elements, and hence 47112 degrees
of freedom; the mesh comprises a relatively small number of elements due to the use of a high-order
method. Figure 1(b) shows the mesh in the vicinity of the airfoil. The training parameter set Ξtrain

J for
the simultaneous greedy algorithm comprises J = 5 × 5 uniformly distributed points in the parameter
domain D ≡ [0◦, 3◦]× [0.3× 0.5]. The EQP tolerance is set to δ = 10−4.

Table 1(a) summarizes the behavior of the method for the case in which the test parameter set Ξtest is
the same as the training parameter set Ξtrain

J . We first observe that the number of nonzero EQP weights
increases as the dimension of the reduced basis space (N) increases. We second observe that the dual
norm of the “truth” residual decreases as N increases, but the convergence behavior is not monotonic;
due to the use of the Galerkin projection (instead of the minimum-residual projection), we do not in
general expect the residual to decrease monotonically. We third observe that the L2(Ω) norm of the error
decreases as N increases; the RB approximation and the EQP hyperreduction reduces the L2(Ω) error
by over five orders of magnitude using just N = 11 RB functions and 80 integration elements relative
to the 47112 degrees of freedom and 1963 integration elements of the “truth” DG discretization. (We
observe the rapid convergence as the flow remains subsonic; if this were a transonic flow with a parameter-
dependent shock, then we would observe a much lower convergence rate as disucssed in the Introduction.)
We fourth observe that the EQP hyperreduction error is controlled for N > 7; the maximum error for
µ ∈ Ξtest = Ξtrain

J in the exact-integral RB solution uN (µ) and the RB-EQP solution uνN (µ) is bounded
by 5.0× 10−4 (including for even N), which is comparable to the target EQP tolerance of δ = 10−4. We
finally note that PTC strategy reliably finds the DG-RB-EQP solution for all cases used in the greedy
algorithm and testing in at most 13 nonlinear iterations.

Table 1(b) summarizes the behavior of the DG-RB-EQP formulation for the case in which the test
parameter set Ξtest 6= Ξtrain

J comprises 30 uniformly distributed random points in the parameter domain
D. Due to the use of the relatively dense training set Ξtrain

J in D, the behavior of the algorithm in this
“predictive” scenario — where the test points differ from the training points — is essentially the same as
“reproduction” scenario summarized in Table 1(a). As the results for Ξtest = Ξtrain

J and Ξtest 6= Ξtrain
J

are similar, and the latter provides a more comprehensive assessment of the predictive setting, we set
Ξtest 6= Ξtrain

J for the remainder of the section.

We now report the computational cost. For the training parameter set of size J = 25, the average
offline training time per greedy iteration is ≈ 3.8 times the time for a single “truth” solve; this cost per
iteration includes the cost for (i) the single “truth” solve to compute the snapshot, (ii) J = 25 evaluations
of the dual norm of the “truth” residual for error estimation, and (iii) J ·Neqp,smooth = 25 × 3 “truth”
residual evaluations to setup the EQP linear program. The average online computational reduction for
the N = 5 and N = 11 cases were ≈ 170 and 110, respectively. The online computational reduction is
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Table 1 Convergence behavior for the NACA 0012 airfoil Euler problem. The columns correspond to the dimension of
the reduced basis space, the number of nonzero EQP weights, the dual norm of the residual, the L2 norm of the error
with respect to the FE “truth”, and the L2 norm of the error with respect to the “truth”-quadrature RB solution. For the
last three columns, the reported values are the maximum values over the test set Ξtest; e.g., the dual norm of the residual
reported is supµ∈Ξtest ‖rh(uνN (µ), ·;µ)‖V′

h
.

(a) p = 2, |Ξtrain
J | = 5× 5, Ξtest = Ξtrain

J

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 8 1.68× 10+0 7.48× 10+2 6.35× 10−1

3 26 2.05× 10−1 9.66× 10+1 7.60× 10−5

5 41 1.06× 10−1 3.59× 10−2 1.82× 10−3

7 60 9.18× 10−2 2.72× 10−2 1.72× 10−3

9 69 1.92× 10−1 1.74× 10−2 4.93× 10−4

11 80 7.11× 10−3 1.60× 10−3 5.20× 10−5

13 93 1.00× 10−3 6.81× 10−4 1.27× 10−4

(b) p = 2, |Ξtrain
J | = 5× 5, Ξtest 6= Ξtrain

J

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 8 1.56× 10+0 7.13× 10+2 6.05× 10−1

3 26 1.57× 10−1 8.96× 10+1 6.17× 10−5

5 41 9.13× 10−2 2.91× 10−2 1.60× 10−3

7 60 7.70× 10−2 2.21× 10−2 1.62× 10−3

9 69 1.49× 10−1 1.50× 10−2 3.45× 10−4

11 80 7.14× 10−3 1.72× 10−3 4.86× 10−5

13 93 9.61× 10−4 6.78× 10−4 1.04× 10−4

(c) p = 1, |Ξtrain
J | = 5× 5, Ξtest 6= Ξtrain

J

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 8 1.05× 10+0 7.12× 10+2 1.86× 10−2

3 22 1.01× 10−1 4.96× 10+1 6.35× 10−3

5 44 9.06× 10−2 2.83× 10−2 1.28× 10−3

7 62 7.85× 10−2 2.00× 10−2 9.43× 10−5

9 83 1.36× 10−1 1.26× 10−2 1.35× 10−4

11 90 1.35× 10−2 1.33× 10−3 5.69× 10−5

13 102 2.07× 10−3 6.76× 10−4 6.02× 10−5

(d) p = 2, |Ξtrain
J | = 9× 9, Ξtest 6= Ξtrain

J

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 8 1.56× 10+0 7.13× 10+2 6.04× 10−1

3 26 1.57× 10−1 8.96× 10+1 5.69× 10−5

5 42 8.95× 10−2 2.87× 10−2 1.11× 10−3

7 67 7.39× 10−2 2.18× 10−2 9.06× 10−5

9 73 1.61× 10−1 1.52× 10−2 3.52× 10−5

11 81 7.52× 10−3 1.73× 10−3 7.99× 10−5

13 95 1.10× 10−3 7.65× 10−4 6.94× 10−5

achieved due to (i) the reduction in the number of elements involved in the residual evaluation, (ii) the
elimination of large sparse linear solves, and (iii) the reduction in the number of PTC iterations; for this
Euler problem with a very small element in the training edge region, the item (iii) plays a larger role in
achieving the savings relative to the Navier-Stokes case considered in Section 5.3. Comparing the offline
training cost and the online speedup, we may conclude that the DG-RB-EQP formulation results in an
overall computational reduction in many-query scenarios that require & 19 queries for N = 5 and that
require & 41 queries for N = 11.

Effect of the polynomial degree. We next assess how the choice of the “truth” discretization affects
the performance of the DG-RB-EQP formulation. To this end, we obtain the finite element “truth”
discretization using an adaptive P1 DG method with the lift error tolerance of 1 count; the “truth” space
comprises 13511 P1 elements and hence 162132 degrees of freedom. Note that, for the same error level,
the P1 mesh contains approximately seven times more elements than the P2 mesh due to the lower-order
approximation. We now compare Tables 1(c) and 1(b); the only difference between the tables is that
the former uses the P1 discretization and the latter uses the P2 discretization. We first observe that,
for a given N , the number of nonzero EQP weights are comparable for both P1 and P2 discretizations,
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(a) solution

Fig. 2 The solution (α = 1.5◦ and M∞ = 0.4) for the ONERA M6 wing Euler problem.

despite the former having seven times more “truth” elements. We second observe that the L2(Ω) norm
of the DG-RB-EQP error with respect to the “truth” solution for a given N is similar for the P1 and P2

discretizations; the result suggests that both “truth” discretizations are sufficiently accurate and “truth”
solutions well approximate the true parametric manifold. We third observe that the EQP error control
works equally well for the P1 and P2 discretizations. As regards the computational cost, for the given lift
error level of 1 count, the P1 “truth” solver is approximately 10 times slower than the P2 “truth” solver,
and hence the P1 discretization is not competitive for this particular problem; the longer computational
time is due to (i) the larger number of elements, (ii) the slower PTC convergence due to the presence of
smaller elements, and (iii) the implementation designed for higher-order discretizations. (Note that the
P1 discretization, with a higher offline cost, achieves a larger “online speedup” than the P2 discretization;
however, this is a misleading assessment as the “speedup” is not relative to a state-of-the-art adaptive
high-order method.)

Effect of the training set. We next assess how the choice of the training set Ξtrain
J affects the perfor-

mance of the DG-RB-EQP formulation. To this end, we consider a refined training set Ξtrain
J′=81 comprises

9×9 uniformly distributed points over the parameter domain D. We now compare Tables 1(d) and 1(b);
the only difference between the tables is that the former uses Ξtrain

J=25 and the latter uses Ξtrain
J′=81. We

first observe that, for a given N , the number of nonzero EQP weights and the associated L2(Ω) error
are comparable for both Ξtrain

J=25 and Ξtrain
J′=81. However, we observe that the larger training set results

in a tighter control of the EQP hyperreduction error. Hence, as expected, a denser training set yields
better hyperreduction error control in the predictive setting. However, the cost of the “truth” residual
evaluations to setup the EQP linear program is proportional to the number of training parameter points;
as a result, the offline training time per greedy iteration is ≈ 10 times the time for a single “truth” solve
for J ′ = 81, as opposed to ≈ 3.8 times for J = 25.

5.2 Euler flow over an ONERA M6 wing

We next consider inviscid flow over an ONERA M6 wing modeled by the compressible Euler equations.
With exception of the three-dimensional geometry, the setting of the analysis is the same as the NACA
0012 case in Section 5.1. We consider two parameters: the angle of attack µ1 ≡ α ∈ [0◦, 3◦]; and the
freestream Mach number µ2 ≡M∞ ∈ [0.3, 0.5]. We note that the flow remains subsonic for all parameter
values. We obtain the finite element “truth” solution using the P2 DG method. The “truth” mesh
comprises 7936 elements, which translates to 396800 degrees of freedom for the P2 elements. Figure 2(a)
shows the solution associated with the centroidal parameter value of α = 1.5◦ and M∞ = 0.4. The
training parameter set Ξtrain

J comprises J = 5× 5 uniformly distributed points in the parameter domain
D ≡ [0◦, 3◦]× [0.3× 0.5]. The EQP tolerance is δ = 10−4.

Table 2 summarizes the behavior of the DG-RB-EQP formulation for the case the test parameter set
Ξtest comprises 30 randomly chosen points over D; i.e., the “predictive” case in which Ξtest 6= Ξtrain

J .
The observed behavior for this three-dimensional flow is very similar to the observe behavior for the two-
dimensional flow considered in Section 5.1. Namely, we observe that the DG-RB-EQP approximation
reduces the L2(Ω) norm of the error by over six orders of magnitude using just N = 11 RB functions
and 89 integration elements compared to 396800 degrees of freedom and 7936 elements for the “truth”
discretization. We also observe that the EQP hyperreduction error is controlled for N ≥ 7 (including for
even N) to less than 2.3×10−4, with exception of the N = 9 case; the hyperreduction error is comparable
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Table 2 Convergence behavior for the ONERA M6 wing Euler problem. The columns correspond to the dimension of the
reduced basis space, the number of nonzero EQP weights, the dual norm of the residual, the L2 norm of the error with
respect to the FE “truth”, and the L2 norm of the error with respect to the “truth”-quadrature RB solution. For the last
three columns, the reported values are the maximum values over the test set Ξtest; e.g., the dual norm of the residual
reported is supµ∈Ξtest

‖rh(uνN (µ), ·;µ)‖V′
h

.

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 10 9.59× 10+0 1.05× 10+2 1.92× 10−3

3 26 7.09× 10−1 1.52× 10+1 4.49× 10−5

5 28 5.13× 10−2 8.49× 10−3 1.53× 10−3

7 50 3.21× 10−2 1.76× 10−3 1.69× 10−4

9 60 8.43× 10−2 2.83× 10−3 1.88× 10−3

11 91 1.27× 10−2 4.70× 10−4 9.57× 10−5

13 101 2.24× 10−2 2.18× 10−4 1.50× 10−4

(a) solution (b) mesh

Fig. 3 The solution (Rec = 4000 and M∞ = 0.4) and the mesh for the NACA 0012 airfoil Navier-Stokes problem.

to the inviscid flow case considered in Section 5.1. The PTC strategy reliably finds the DG-RB-EQP
solution for all training and testing cases in at most 7 nonlinear iterations.

We now report the computational cost. For the training parameter set of size J = 25, the offline
training time per greedy iteration is approximately ≈ 4.3 times the time for a single “truth” solve; as
before, the majority of the cost per iteration is associated with (i) the single “truth” solve to compute
the snapshot, (ii) J = 25 evaluations of the dual norm of the “truth” residual for error estimation, and
(iii) J ·Neqp,smooth = 25× 3 “truth” residual evalutions to setup the EQP linear program. The average
online speed up for the N = 5 and N = 11 cases were ≈ 1080 and 420, respectively. A significant speedup
is achieved for this three-dimensional flow. Comparing the offline training cost and the online speedup,
we may conclude that the DG-RB-EQP formulation results in an overall computational reduction in
many-query scenarios that require & 22 queries for N = 5 and that require & 47 queries for N = 11.

5.3 Navier-Stokes flow over a NACA 0012 airfoil

We now consider viscous flow over a NACA 0012 airfoil modeled by the compressible Navier-Stokes
equations; the equations are expressed in entropy variables [7]. We consider two parameters: the (chord-
based) Reynolds number µ1 ≡ Rec ∈ [3000, 5000]; and the freestream Mach number µ2 ≡M∞ ∈ [0.3, 0.5].
The angle of attach is fixed at α = 1◦. (As the angle of attack is fixed, the direction of the shear layer
is also fixed.) We obtain the finite element “truth” solution using the P2 DG method. The mesh, which
will be fixed for all parameter values, is obtained through an output-based anisotropic adaptation for
the centroidal parameter value of Rec = 4000 and M∞ = 0.4 such that the error in the drag coefficient is
less than 0.2 counts (i.e., 2× 10−5); the initial mesh for adaptation is the mesh supplied for the NACA
problem in the first AIAA high-order workshop. The “truth” mesh comprises 1647 elements. Figure 3(b)
shows the mesh in the vicinity of the airfoil. Figures 3(a) shows the solution associated with the centroidal
parameter value. The training parameter set Ξtrain

J comprises J = 5× 5 uniformly distributed points in
the parameter domain D ≡ [3000, 5000]× [0.3× 0.5]. The EQP tolerance is δ = 10−4.

Table 3 summarizes the behavior of the DG-RB-EQP formulation for the case the test parameter set
Ξtest comprises 30 randomly chosen points over D; i.e., the “predictive” case in which Ξtest 6= Ξtrain

J .
The behavior for this viscous flow is similar to the behavior for the inviscid flow considered in Section 5.1.
The DG-RB-EQP approximation reduces the L2(Ω) norm of the error by over five orders of magnitude
using just N = 11 RB functions and 91 integration elements compared to 39528 degrees of freedom and

22



Table 3 Convergence behavior for the NACA 0012 airfoil Navier-Stokes problem. The columns correspond to the dimension
of the reduced basis space, the number of nonzero EQP weights, the dual norm of the residual, the L2 norm of the error
with respect to the FE “truth”, and the L2 norm of the error with respect to the “truth”-quadrature RB solution. For the
last three columns, the reported values are the maximum values over the test set Ξtest; e.g., the dual norm of the residual
reported is supµ∈Ξtest

‖rh(uνN (µ), ·;µ)‖V′
h

.

N nnz{ρκ} ‖rh(uνN , ·;µ)‖V′
h

‖uh − uνN‖L2(Ω) ‖uN − uνN‖L2(Ω)

1 7 1.36× 10+0 7.93× 10+2 8.48× 100

3 17 2.70× 10−2 1.07× 10−1 5.66× 10−4

5 40 3.75× 10−2 1.42× 10−2 9.50× 10−5

7 59 1.51× 10−2 1.75× 10−3 2.03× 10−4

9 69 3.99× 10−3 6.88× 10−4 1.92× 10−4

11 89 1.95× 10−3 3.46× 10−4 1.53× 10−4

1647 elements for the “truth” discretization. We also observe that the EQP hyperreduction error is well
controlled for N ≥ 7; the maximum error for µ ∈ Ξtest = Ξtrain

J in the exact-integral RB solution uN (µ)
and the RB-EQP solution uνN (µ) is bounded by 3.4× 10−4 (including for even N), which is comparable
to the inviscid flow case considered in Section 5.1. The PTC strategy reliably finds the DG-RB-EQP
solution for all cases used in the greedy algorithm and testing in at most 10 nonlinear iterations.

We now report the computational cost. For the training parameter set of size J = 25, the offline
training time per greedy iteration is approximately ≈ 8.4 times the time for a single “truth” solve; as
before, the majority of the cost per iteration is associated with (i) the single “truth” solve to compute the
snapshot, (ii) J = 25 evaluations of the dual norm of the “truth” residual, and (iii) J ·Neqp,smooth = 25×3
“truth” residual evalutions to setup the EQP linear program. The average online speed up for the N = 5
and N = 11 cases were ≈ 70 and 35, respectively. For this case, the savings is due to the reduction in
the number of elements in the residual evaluation and the elimination of the elimination of large sparse
linear solves; the number of required PTC iterations were similar for both the “truth” and DG-RB-EQP
discretizations. Comparing the offline training cost and the online speedup, we may conclude that the
DG-RB-EQP formulation results in an overall computational reduction in many-query scenarios that
require & 42 queries for N = 5 and that require & 92 queries for N = 11.
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