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Abstract. We develop a reduced basis method for linear coercive parametrized partial differential equations (PDEs) with
two objectives: providing an energy-norm or functional-output a posteriori error bound with respect to the exact weak solution
of the PDE as opposed to the typical finite element “truth” solution; providing reliable and efficient construction of a reduced
basis model through automatic adaptivity in both physical and parameter spaces. Our error bounds build on two key ingredients.
The first is a minimum-residual mixed formulation which provides an approximate solution as well as an upper bound of the
dual norm of the residual with respect to the infinite-dimensional function space. The second is an extension of the successive
constraint method (SCM) to evaluate a lower bound of the stability constant with respect to the infinite-dimesional function
space; the approach builds on a computable lower bound of the minimum eigenvalue associated with the stability constant.
Both the minimum-residual mixed formulation and the extended SCM admit offline-online computational decomposition. The
offline stage incorporates spatial mesh adaptation and greedy parameter sampling for both the solution approximation and
the stability eigenproblem to yield a reliable online system in an efficient manner. The online stage provides an approximate
solution and an a posteriori error bound with respect to the exact solution for any parameter value in complexity independent
of the size of the finite element spaces. We demonstrate the effectiveness of the approach for a thermal block problem, which
exhibits parameter-dependent spatial singularities.
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1. Introduction. The goal of the certified reduced basis method is to provide rapid and reliable pre-
dictions of functional outputs associated with parametrized partial differential equations (PDEs) in real-time
and many-query applications [18]. The rapidness is provided by an offline-online computational decompo-
sition; the reliability is provided by a posteriori error bounds. The classical certified reduced basis method
provides a posteriori error bounds with respect to the finite element “truth” solution computed in a finite-
dimensional “truth” space, which is assumed to be sufficiently rich such that the difference between the
“truth” solution and the exact weak solution of the PDE is negligible. In practice, this assumption is not
rigorously verified and may be violated for problems that exhibit complex parameter-dependent spatial fea-
tures. An under-refined mesh results in inaccurate predictions and unreliable error bounds with respect to
the exact solution. Conversely, an over-refined mesh results in unnecessarily expensive finite element snap-
shot solves in the offline stage. A typical “truth” mesh suffers from both of these problems as the mesh is
under-refined in some regions and over-refined in other regions. The goal of this work is to eliminate the
issue of “truth” within the classical reduced basis framework; we will develop a reduced basis method that
provides online-efficient a posteriori error bounds with respect to the exact weak solution in the energy norm
as well as for linear functional outputs.

The present work builds on, and addresses the major limitation of, our previous work [23]. The major
limitation of [23] is that the error is assessed in a dual-norm of the residual, which, while equivalent to the
energy norm, quantitatively does not hold any engineering significance. The true value of model reduction
in engineering contexts is only realized if the method provides predictions and associated error bounds for
quantities of interest, expressed in terms of output functionals. The ingredients required to provide error
bounds for quantities of interest using an adjoint-based formulation are the same as those associated with the
energy-norm of the error. Hence in this work we focus on providing online-offline computable error bounds
both in the energy norm and for functional outputs.

Our energy-norm and functional-output error bounds build on two key ingredients: an upper bound of
the dual norm of the residual and a lower bound of the stability constant. Our method provides, in the
online stage, uniform (as opposed to asymptotic) bounds for the dual norm of the residual and the stability
constant, both of which are with respect to the infinite-dimesional function space as opposed to the typical
finite element “truth” space. We adhere to the standard reduced basis goals with regard to the offline-
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online computational efficiency and online certification: i) the online solution is computed in complexity
independent of the underlying finite element discretization; ii) the online error bound is provided for any
parameter value and not just those in the training set. Providing an error bound with respect to the exact
solution is a recent idea in the reduced basis community; we here note related work by Ali et al. [2], Ohlberger
and Schindler [12], and ourselves [22, 23].

Our approximation of the solution field is based on a version of the minimum-residual mixed reduced basis
method [23], which belongs to a family of least-squares methods (see, e.g., [3, 14]). The mixed formulation
simultaneously computes both the (primal) solution and a dual solution, the latter of which provides a
bound for the dual norm of the (primal) residual. The use of the dual solution to provide an error bound
is similar to the complementary variational principle, which has been extensively applied to finite element
methods by, for example, Ladevèze and Leguillion [11], Ainsworth and Oden [1], and Sauer-Budge et al. [19]
and more recently to a reduced basis method [22]. However, our approach [23] differs from the classical
complementary variational principle in that it does not require a space that exactly satisfies dual-feasibility
conditions, construction of which in an offline-online efficient manner can be done in some limited cases [22]
but to our knowledge cannot be accomplished in general. This “relaxation” is accomplished by considering
a dual norm of the residual with respect to a norm that is different from the energy norm. However, as
a consequence of not using the energy norm, the stability constant is not unity and we must compute a
lower bound of the stability constant to bound the error; in this work we extend our minimum-residual
mixed formulation [23] to incorporate a carefully chosen, parameter-dependent norm which facilitate the
construction of error bounds in the energy norm or for functional outputs.

Providing a lower bound of the stability constant requires the evaluation of a lower bound of the minimum
eigenvalue associated with an eigenproblem. It is well-known that an upper bound of the minimum eigenvalue
can be readily computed by any Galerkin method, but a lower bound is much more complicated to compute;
for brevity, we will not attempt to provide a comprehensive overview of eigenvalue bounds and instead refer
to a review paper by Plum [15]. Our formulation is based on the method by Weinstein (see [4], Chapter 6),
which provides a lower bound using the eigenproblem residual or “defect” under the assumption that the
minimum eigenvalue associated with the finite element approximation is closer to the minimum eigenvalue
of the exact problem than to the second smallest eigenvalue. In the offline stage, we provide a bound for the
eigenproblem residual using a mixed formulation similar to that for the solution residual. We then appeal to
the successive constraint method (SCM) of Huynh et al. [7], which to our knowledge is the only method that
can provide a uniform (as opposed to asymptotic) lower bound of the stability constant in an offline-online
efficient manner. Specifically, we extend the original SCM — which was designed to provide a stability
constant with respect to a “truth” finite element space — to provide lower bounds of stability constants
with respect to the infinite-dimesional function space. Our formulation also incorporates a transformation
of the original stability constant such that the effectivity of the stability constant is desensitized from the
relatively poor effectivity of the SCM lower bound.

The contributions of this work are fivefold. First, we develop a minimum-residual mixed formulation
whose dual variable provides a built-in bound of a dual norm of the residual with respect to a parametrized
norm. Second, we extend the SCM to evaluate a lower bound of the stability constant with respect to an
infinite-dimensional function space; here, we appeal to Weinstein’s method to express a lower bound of the
minimum eigenvalue in terms of the eigenproblem residual and then develop a mixed formulation to bound
the dual norm of the residual. Third, we develop a transformation of the stability constant such that the
bound gap for the stability constant is desensitized from the SCM bound gap. Fourth, we develop spatio-
parameter adaptation strategies based on isotropic-h mesh adaptation and greedy parameter sampling for
both the stability eigenproblem and the solution approximation. Fifth, we demonstrate the effectiveness of
the spatio-parameter adaptive strategy for the classical thermal block problem [18], which is defined in a
high-dimensional parameter space and exhibits parameter-dependent spatial singularities.

Before we conclude the introduction, we note the limitations of the error bounds developed in this work.
The first limitation is related to the evaluation of the lower bound of the stability constant. As noted,
one of the ingredients of our error bounds is a lower bound of the stability constant, which is equivalent
to a lower bound of the minimum eigenvalue associated with a parametrized eigenproblem. We appeal to
Weinstein’s method to construct a lower bound. As a consequence, in the offline approximation of the
minimum eigenvalue, we assume that the minimum eigenvalue associated with the Galerkin finite element
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approximation of the eigenproblem is closer to the minimum eigenvalue than the second smallest eigenvalue
of the exact eigenproblem. We unfortunately do not have any means to verify if this assumption is satisfied.
However, in practice for many elliptic equations, the eigenfunction associated with the minimum eigenvalue
is the easiest to approximate, and hence this assumption is often satisfied even on a very coarse mesh.

The second limitation is the class of equations to which the error bound formulation applies; namely,
the formulation applies only to coercive equations. To our knowledge, this is a limitation shared by all error
bound techniques that provide uniform (as opposed to asymptotic) error bounds (as opposed to estimates);
see, e.g., [19, 13, 9, 10]. Coercivity, or the convexity property, is the key to the construction of uniform error
bounds in these works, and our present work is no exception. However, we note that the two important
classes of problems in mechanics — heat transfer and elasticity — are coercive, and the efficacy of uniform
error bounds and adaptivity for numerical approximation of heat-transfer and elasticity problems have been
demonstrated in the aforementioned works.

This paper is organized as follows. Section 2 introduces the problem considered throughout this paper,
defines function spaces, and presents a well-known proposition that identifies key ingredients of our error
bounds. Section 3 introduces a minimum-residual mixed formulation and devise an associated offline-online
computational strategy. Section 4 presents an extension of the SCM to infinite-dimensional function spaces,
including the computation of a lower bound of the stability constant with respect to the exact space. Section 5
presents our error bounds. Section 6 presents two spatio-parameter adaptive strategies, one associated with
the stability constant and the other associated with the solution field. Section 7 assesses the effectiveness
of the proposed strategy using the classical thermal block problem. Finally, we summarize the work in
Section 8.

2. Preliminaries.

2.1. Problem statement. We first introduce a d-dimensional bounded spatial domain Ω ⊂ Rd, for
d = 1, 2, 3, with a Lipschitz boundary ∂Ω; the boundary is decomposed into a Dirichlet boundary ΓD,
which is assumed non-empty, and a Neumann boundary ΓN such that ∂Ω = ΓD ∪ ΓN . We also introduce a
P -dimensional bounded parameter domain D ⊂ RP . We then introduce a Sobolev space

V ≡ {v ∈ H1(Ω) | v|ΓD
= 0},

where H1(Ω) is the standard H1 Sobolev space (see, e.g., [16]). We now consider the following weak
statement: given µ ∈ D, find u(µ) ∈ V such that

a(u(µ), v;µ) = `(v;µ) ∀v ∈ V,(1)

where

a(w, v;µ) ≡
∫

Ω

∇v ·K(µ)∇wdx ∀w, v ∈ V,

`(v;µ) ≡
∫

Ω

vf(µ)dx+

∫
ΓN

vg(µ)ds ∀v ∈ V.

Here, K : D → [L∞(Ω)]d×d is a symmetric diffusivity field, f : D → L2(Ω) is a source function, and
g : D → L2(ΓN ) is a Neumann boundary data; note that each function is parametrized.

We make a few assumptions about the forms that define the problem. First, we assume that K(µ) is uni-
formly positive in the sense that the minimum eigenvalue ofK(µ)(x) is bounded from below: λmin(K(µ)(x)) ≥
Kmin > 0 almost everywhere in Ω for all µ ∈ D. Second, we assume that K(µ), f(µ), and g(µ) admit de-
compositions that are affine in functions of the parameter:

K(µ) =

QK∑
q=1

ΘK
q (µ)Kq, f(µ) =

Qf∑
q=1

Θf
q (µ)fq, g(µ) =

Qg∑
q=1

Θg
q(µ)gq,

where Kq ∈ (L∞(Ω))d×d, fq ∈ L2(Ω), and gq ∈ L2(ΓN ) are parameter-independent fields, and ΘK
q ∈ L∞(D),

Θf
q ∈ L∞(D), and Θg

q ∈ L∞(D) are parameter-dependent functions. Third, we assume that K−1(µ) admits
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a decomposition that is affine in functions of parameter:

K−1(µ) =

QKinv∑
q=1

ΘKinv

q (µ)K inv
q ,(2)

where K inv
q ∈ (L∞(Ω))d×d is a parameter-independent field, and ΘKinv

q ∈ L∞(D) is a parameter-dependent

function; note that K inv
q is in general not related to Kq. (This assumption can be relaxed; see Remark 1.)

Finally, we assume that fields Kq, fq, gq, and K inv
q are piecewise polynomials such that we can evaluate

integrals involving the fields exactly using quadrature rules.
In this work, we develop a reduced basis method that approximates the solution to (1) and provides an

associated error bound. Specifically, we provide a sequence of approximations uN (µ), N = 1, 2, . . . , to u(µ)
and associated error bounds ∆N (µ), N = 1, 2, . . . , such that

|||u(µ)− uN (µ)|||µ ≤ ∆N (µ), N = 1, 2, . . . ,

where |||·|||µ is the energy norm given by |||w|||µ ≡
√
a(w,w;µ). In addition, given a bounded linear functional

`o(·;µ) that admits an affine parameter decomposition and the associated true output s(µ) ≡ `o(u(µ);µ),
we provide a sequence of approximate outputs sN (µ), N = 1, 2, . . . , and associated error bounds ∆s

N (µ),
N = 1, 2, . . . , such that

|s(µ)− sN (µ)| ≤ ∆s
N (µ), N = 1, 2, . . . ;

we note that the output bound is of interest in engineering practice.

Remark 1. We make a few remarks regarding the assumption (2). First, we may develop an alternative
formulation — which also provides an error bound with respect to the exact solution — that does not rely on
this assumption; the construction of this alternative bound is discussed in Appendix A. Second, the assump-
tion (2) allows us to construct an error bound with a higher effectivity by permitting a more flexible choice
of the norm with respect to which the dual norm of the residual and the stability constant are computed.
Third, many problems of practical interest admit an affine decomposition of K−1(µ), including those prob-
lems involving piecewise-affine geometry transformations that are often used in reduced basis formulations
(see, e.g., [18]). For instance, the methodology for parametrized linear elasticity problems with geometry
transformations is demonstrated in [24].

Remark 2. In this work we consider scalar equations to simplify the presentation. However, our ap-
proximation and error bound procedures readily extend to vector-valued equations. (See, e.g., [24].)

2.2. Inner products and norms. We introduce two different inner products that simplify the pre-
sentation of the proposed method. First is the parametrized inner product

(w, v)V(µ;δ) ≡
∫

Ω

∇v ·K(µ)∇wdx+ δ

∫
Ω

vwdx+ δ

∫
ΓN

vwds ∀w, v ∈ V

and the associated induced norm ‖w‖V(µ;δ) ≡
√

(w,w)V(µ;δ) for a parameter µ ∈ D and a weight δ ∈ R>0.
Note that this parametrized norm is related to the energy norm by ‖w‖2V(µ;δ) = |||w|||2µ + δ‖w‖2L2(Ω) +

δ‖w‖2L2(ΓN ). In addition, by the Poincaré-Friedrichs inequality and the trace theorem, the norm ‖ · ‖V(µ;δ) is

equivalent to the energy norm ||| · |||µ, which in turn is equivalent to ‖ · ‖H1(Ω) for all µ ∈ D.
Second is the parametrized inner product

(p, q)K(µ) ≡
∫

Ω

q ·K(µ)pdx ∀p, q ∈ (L2(Ω))d

and the associated induced norm ‖p‖K(µ) ≡
√

(p, p)K(µ). Note that the energy norm may be expressed as
|||w|||µ = ‖∇w‖K(µ). Because the field K(µ) is bounded and positive, the norm ‖ · ‖K(µ) is equivalent to
‖ · ‖L2(Ω) for all µ ∈ D.
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2.3. Energy-norm error bound. We now introduce the two ingredients that constitutes our error
bound: the dual-norm of the residual and the stability constant. We first introduce the residual functional:
for µ ∈ D and ũ ∈ V,

r(v; ũ;µ) ≡ `(v;µ)− a(ũ, v;µ) ∀v ∈ V;

the dual norm of the residual is given by

‖r(·; ũ;µ)‖V′(µ;δ) ≡ sup
v∈V

r(v; ũ;µ)

‖v‖V(µ;δ)
.(3)

We then introduce a stability constant

α(µ; δ) ≡ inf
v∈V

|||v|||2µ
‖v‖2V(µ;δ)

.(4)

The following well-known proposition provides an energy-norm error bound. (See, e.g., [16]).

Proposition 3. For any µ ∈ D and ũ ∈ V, the energy norm of the error is bounded by

|||u(µ)− ũ|||µ ≤
1

(α(µ; δ))1/2
‖r(·; ũ;µ)‖V′(µ;δ).

Proof. For e ≡ u(µ)− ũ, we obtain

|||e|||µ =
a(e, e;µ)

|||e|||µ
=
r(e; ũ;µ)

|||e|||µ
=
‖e‖V(µ;δ)

|||e|||µ
r(e; ũ;µ)

‖e‖V(µ;δ)
≤ sup
v∈V

‖v‖V(µ;δ)

|||v|||µ
sup
v∈V

r(v; ũ;µ)

‖v‖V(µ;δ)

=

(
inf
v∈V

|||v|||µ
‖v‖V(µ;δ)

)−1

sup
v∈V

r(v; ũ;µ)

‖v‖V(µ;δ)
=

1

(α(µ; δ))1/2
‖r(·; ũ;µ)‖V′(µ;δ);

here, the first equality follows from the definition of the energy norm ||| · |||µ, the second equality follows from
the error-residual relationship, and the last equality follows from the definitions of the stability constant and
the dual-norm of the residual.

The proposition shows that the evaluation of an upper bound of the energy-norm of the error requires an
upper bound of the dual norm of the residual and a lower bound of the stability constant.

2.4. Error bound for linear functional outputs. Our energy-norm error bound may be extended
to provide an error bound for a linear functional output s(µ) = `o(u(µ);µ) where

`o(w, µ) ≡
∫

Ω

wfo(µ)dx+

∫
ΓN

wgo(µ)ds ∀w ∈ V.(5)

Here, fo : D → L2(Ω) is the volume output function, and go : D → L2(ΓN ) is the boundary output function;
we assume fo and go admit decompositions that are affine in functions of parameters. Our error-bound
approach follows that for the standard reduced basis method [18] and appeals to the following well-known
proposition regarding the output error. (See, e.g., Giles and Süli [6], Section 4.)

Proposition 4. We define the adjoint problem: given µ ∈ D, find ψ(µ) ∈ V such that

a(v, ψ(µ);µ) = `o(v;µ) ∀v ∈ V.(6)

For a primal approximation ũ ∈ V and an adjoint approximation ψ̃ ∈ V, we introduce an adjoint-corrected
output

s̃(µ) ≡ `o(ũ;µ) + r(ψ̃; ũ;µ).
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Then, the error in the output prediction is bounded by

|s(µ)− s̃(µ)| ≤ 1

α(µ; δ)
‖r(·; ũ;µ)‖V′(µ;δ)‖radj(·; ψ̃;µ)‖V′(µ;δ),(7)

where α(µ; δ) is the stability constant (4) and the adjoint residual radj(·; ·; ·) is defined by

radj(v; ψ̃;µ) ≡ `o(v;µ)− a(v, ψ̃;µ) ∀v ∈ V.

Proof. We note that

|s(µ)− s̃(µ)| = |`o(u(µ);µ)− `o(ũ;µ)− r(ψ̃; ũ;µ)| = |`o(u(µ)− ũ;µ)− a(u(µ)− ũ, ψ̃;µ)|
= |radj(u(µ)− ũ; ψ̃;µ)| ≤ ‖radj(·; ψ̃;µ)‖V′(µ;δ)‖u(µ)− ũ‖V(µ;δ)

≤ ‖radj(·; ψ̃;µ)‖V′(µ;δ)
1

(α(µ; δ))1/2
|||u(µ)− ũ|||µ ≤ ‖radj(·; ψ̃;µ)‖V′(µ;δ)

1

α(µ; δ)
‖r(·; ũ;µ)‖V′(µ;δ).

Here, the first, second, and third equality follows from the definitions of s̃(µ), r(·; ·; ·), and radj(·; ·; ·), respec-
tively; the first, second, and third inequality follows from the definition of the dual norm, the definition of
α(µ; δ), and the bound on |||u(µ)− ũ|||µ, respectively.

The proposition shows that the evaluation of a bound for a functional output requires a lower bound of the
stability constant, an upper bound of the dual norm of the (primal) residual, and an upper bound of the
dual norm of the adjoint residual. As the same technique can be used to bound the dual norm of the primal
and adjoint residuals, bounding the output error requires the same set of ingredients as bounding the energy
norm of the error.

3. An offline-online computable upper bound of the dual norm of the residual.

3.1. Residual bound form. We now develop a computable upper bound of the dual-norm of the
residual (3). The proposed residual bound procedure is a generalization of the procedure introduced in [23]
to the parametrized norm ‖ · ‖V(µ;δ).

We first introduce a vector-valued Hilbert space

Q ≡ H1(div; Ω) ≡ {q ∈ (L2(Ω))d | ∇ · q ∈ L2(Ω)},

endowed with an inner product (w, v)Q ≡ (w, v)H1(div;Ω) ≡
∫

Ω
(∇ ·w)(∇ · v)dx+

∫
Ω
w · vdx and the induced

norm ‖w‖Q ≡
√

(w,w)Q. The following proposition provides a bound of the dual norm of the residual.

Proposition 5. For any µ ∈ D, δ ∈ R>0, and ũ ∈ V, the dual norm of the residual is bounded by

‖r(·; ũ;µ)‖V′(µ;δ) ≤ (F (ũ, q;µ; δ))1/2 ∀q ∈ Q,

where the bound form is given by

F (ũ, q;µ; δ) = ‖∇ũ−K−1(µ)q‖2K(µ) + δ−1‖f(µ) +∇ · q‖2L2(Ω) + δ−1‖g(µ)− q · n‖2L2(ΓN ).(8)
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Proof. We note that for any ũ ∈ V, v ∈ V, and q ∈ Q,

r(v; ũ;µ)

= `(v;µ)− a(ũ, v;µ)

=

∫
Ω

vf(µ)dx+

∫
ΓN

vg(µ)ds−
∫

Ω

∇v ·K(µ)∇ũdx

=

∫
Ω

vf(µ)dx+

∫
ΓN

vg(µ)ds−
∫

Ω

∇v ·K(µ)∇ũdx+

∫
Ω

∇v · qdx+

∫
Ω

v∇ · qdx−
∫

ΓN

vq · nds

=

∫
Ω

v(f(µ) +∇ · q)dx−
∫

Ω

∇v · (K(µ)∇ũ− q)dx+

∫
ΓN

v(g(µ)− q · n)ds

≤ ‖v‖L2(Ω)‖f(µ) +∇ · q‖L2(Ω) + ‖∇v‖K(µ)‖∇ũ−K−1(µ)q‖K(µ) + ‖v‖L2(ΓN )‖g(µ)− q · n‖L2(ΓN )

≤ (δ‖v‖2L2(Ω) + ‖∇v‖2K(µ) + δ‖v‖2L2(ΓN ))
1/2

(δ−1‖f(µ) +∇ · q‖2L2(Ω) + ‖∇ũ−K−1(µ)q‖2K(µ) + δ−1‖g(µ)− q · n‖L2(ΓN )2)1/2

= ‖v‖V(µ;δ)(F (ũ, q;µ; δ))1/2;

here the third equality follows from the Green’s theorem. It thus follows that

‖r(v; ũ;µ)‖V′(µ;δ) ≡ sup
v∈V

r(v; ũ;µ)

‖v‖V(µ;δ)
≤ (F (ũ, q;µ; δ))1/2,

which is the desired inequality.

We make a few observations as regard the behavior of the primal bound form (8) with the weight δ. In
the case of vanishing parameter δ = 0, the bound form (8) evaluates to

F (ũ, q;µ; δ ≡ 0) =

{
‖∇ũ−K−1(µ)q‖2K(µ) ∀ũ ∈ V, ∀q ∈ Q∗(µ),

∞ otherwise,

where the constrained space Q∗(µ) is given by

Q∗(µ) = {q ∈ Q | f(µ) +∇ · q = 0 in L2(Ω) ; g(µ)− q · n = 0 in L2(ΓN )}.(9)

The condition (9) is precisely the dual-feasibility condition for the complementary variational principle. The
exact satisfaction of the dual feasibility condition is possible in the finite-element context, as pursued by,
for instance, Ladevèze and Leguillion [11], Ainsworth and Oden [1], and Sauer-Budge et al. [19]. On the
other hand, the exact satisfaction of the dual feasibility condition in the reduced-basis context, as pursued in
[22], requires a special construction of reduced-basis spaces with limited practicality. Hence, in the present
context, we choose a small but non-zero δ to relax the dual-feasibility requirement; a practical rule for
selecting a δ is discussed in Section 6.3.

3.2. Decomposition of the bound form. In order to facilitate the development of finite-element
and reduced-basis approximations, we introduce a decomposition of the form F (·, ·;µ; δ) defined in (8) into
quadratic, linear, and constant terms. The form (8) may be expressed as

F (w, q;µ; δ) = G({w, q}, {w, q};µ; δ)− 2L({w, q};µ; δ) +H(µ; δ),(10)

where the bilinear form, linear form, and constant term are given by

G({w, p}, {v, q};µ; δ) ≡ G0({w, p}, {v, q};µ) + δ−1GΩ(p, q) + δ−1GΓN
(p, q),(11)

L({v, q};µ; δ) ≡ δ−1LΩ(q;µ) + δ−1LΓN
(q;µ),(12)

H(µ; δ) ≡ δ−1HΩ(µ) + δ−1HΓN
(µ),

7



for

G0({w, p}, {v, q};µ) ≡
∫

Ω

[
q ·K−1(µ)p− q · ∇w −∇v · p+∇v ·K(µ)∇w

]
dx

=

QKinv∑
a=1

ΘKinv

a (µ)

∫
Ω

q ·K inv
a pdx−

∫
Ω

q · ∇wdx−
∫

Ω

∇v · pdx

+

QK∑
a=1

ΘK
a (µ)

∫
Ω

∇v ·Ka∇wdx,

GΩ(p, q) ≡
∫

Ω

(∇ · q)(∇ · p)dx,

GΓN
(p, q) ≡

∫
ΓN

(q · n)(p · n)ds,

LΩ(q;µ) ≡
∫

Ω

(−∇ · q)f(µ)dx =

Qf∑
a=1

Θf
a(µ)

∫
Ω

(−∇ · q)fadx,

LΓN
(q;µ) ≡

∫
ΓN

(q · n)g(µ)ds =

Qg∑
a=1

Θg
a(µ)

∫
Ω

(q · n)gads,

HΩ(µ) ≡
∫

Ω

f(µ)f(µ)dx =

Qf∑
a,b=1

Θf
a(µ)Θf

b (µ)

∫
Ω

fafbdx,

HΓN
(µ) ≡

∫
ΓN

g(µ)g(µ)ds =

Qg∑
a,b=1

Θg
a(µ)Θg

b(µ)

∫
Ω

gagbds.

We note that the parametrized forms associated with the bound form F (·, ·;µ; δ) inherit the affine parameter
decomposition of the fields K(µ), K−1(µ), f(µ), and g(µ). As we will see in Section 3.5, and as in the
standard reduced basis method [18], this affine parameter decomposition plays a key role in offline-online
computational decomposition.

3.3. Minimum-bound mixed finite element method. We first introduce a sequence of conforming,
non-degenerate triangulations Th of Ω. We then introduce conforming finite-element approximation spaces
for V and Q:

VNV ≡ {v ∈ V | v|κ ∈ Pp, ∀κ ∈ Th},(13)

QNQ ≡ {q ∈ Q | q|κ ∈ RTp−1 ≡ (Pp−1)d ⊕ xPp−1, ∀κ ∈ Th};(14)

note that VNV consists of the standard H1 conforming elements and QNQ consists of Raviart-Thomas
elements [17] of degree p− 1 (see, e.g., [16], Chapter 7). The superscripts NV and NQ denote the number of
degrees of freedom associated with the spaces VNV and QNQ , respectively. We in addition set N ≡ NV+NQ,
which serves as a measure of the complexity of the finite-element approximation.

We now consider the minimum-bound solution: given µ ∈ D and δ ∈ R>0, find {uN (µ), pN (µ)} ∈
VNV ×QNQ such that

{uN (µ), pN (µ)} = arg inf
w∈VNV

q∈QNQ

F (w, q;µ; δ).(15)

We identify the associated Euler-Lagrange equation: given µ ∈ D and δ ∈ R>0, find {uN (µ), pN (µ)} ∈
VNV ×QNQ such that

G({uN (µ), pN (µ)}, {v, q};µ; δ) = L({v, q};µ; δ) ∀{v, q} ∈ VNV ×QNQ ,
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where G is the bilinear form (11) and L is the linear form (12). The problem is well posed thanks to the
coercivity of the bilinear form G(·, ·;µ; δ) with respect to V × Q and the fact VNV ⊂ V and QNQ ⊂ Q.
Once we obtain the finite element approximation, we readily bound the dual norm of the residual using
‖r(·;uN (µ);µ)‖V′(µ;δ) ≤ (F (uN (µ), pN (µ);µ; δ))1/2.

3.4. Minimum-bound mixed reduced basis method. We consider our minimum-output-bound
reduced basis approximation. Towards this end, we introduce an N -dimensional primal approximation space
spanned by a basis {ξn}Nn=1,

VN = span{ξn}Nn=1 ⊂ VNV ,

and an N -dimensional dual approximation space spanned by a basis {ηn}Nn=1,

QN = span{ηn}Nn=1 ⊂ QNQ .

We then consider the minimum-bound solution: given µ ∈ D and δ ∈ R>0, find {uN (µ), pN (µ)} ∈ VN ×QN
such that

{uN (µ), pN (µ)} = arg inf
w∈VN
q∈QN

F (w, q;µ; δ).(16)

We identify the associated Euler-Lagrange equation: given µ ∈ D and δ ∈ R>0, find {uN (µ), pN (µ)} ∈
VN ×QN such that

G({uN (µ), pN (µ)}, {v, q};µ; δ) = L({v, q};µ; δ) ∀{v, q} ∈ VN ×QN ,(17)

where G is the bilinear form (11) and L is the linear form (12). The problem is again well posed thanks
to the coercivity of the bilinear form G(·, ·;µ; δ) with respect to V × Q and the fact VN ⊂ V and QN ⊂ Q.
Once we obtain the reduced basis approximation, we readily bound the dual norm of the residual using
‖r(·;uN (µ);µ)‖V′(µ;δ) ≤ (F (uN (µ), pN (µ);µ; δ))1/2.

Remark 6. Our formulation readily accommodates primal and dual reduced basis spaces of different
dimensions. However, in practice, we use the spaces of the same dimension because these basis functions
are associated with the finite element approximation at select parameter values: VN = span{ξn}Nn=1 =
span{uN (µ(n))}Nn=1 and QN = span{ηn}Nn=1 = span{pN (µ(n))}Nn=1. An adaptive procedure for selecting the
snapshots will be described in Section 6.5.

3.5. Offline-online computational decomposition. We now present an offline-online computational
procedure for the reduced basis method. We here appeal to the decomposition of the primal bound (10) into

bilinear forms, linear forms, and constant terms. Specifically, for w ≡
∑N
n=1 ξnwn ∈ VN , p ≡

∑N
n′=1 ηn′pn′ ∈

QN , v ≡
∑N
m=1 ξmvm ∈ VN , and q ≡

∑N
m′=1 ηm′qm′ ∈ QN in the reduced basis spaces, the terms that

9



constitute (10) evaluate to

G0({w, p}, {v, q};µ) = qm′

QKinv∑
a=1

ΘKinv

a (µ)

[∫
Ω

ηm′ ·K inv
a ηn′dx

]
pn′ − qm′

[∫
Ω

ηm′ · ∇ξndx
]

wn

− vm

[∫
Ω

∇ξm · ηn′dx

]
pn′ + vm

QK∑
a=1

ΘK
a (µ)

[∫
Ω

∇ξm ·Ka∇ξndx
]

wn

GΩ(p, q) = qm′

[∫
Ω

∇ · ηm′∇ · ηn′dx

]
pn′ ,

GΓN
(p, q) = qm′

[∫
ΓN

(ηm′ · n)(ηn′ · n)ds

]
pn′ ,

LΩ(q;µ) = qm′

Qf∑
a=1

Θf
a(µ)

[∫
Ω

(−∇ · ηm′)fadx

]
,

LΓN
(q;µ) = qm′

Qg∑
a=1

Θg
a(µ)

[∫
ΓN

(ηm′ · n)gadx

]
,

HΩ(µ) =

Qf∑
a,b=1

Θf
a(µ)Θf

b (µ)

[∫
Ω

fafbdx

]
,

HΓN
(µ) =

Qg∑
a,b=1

Θg
a(µ)Θg

b(µ)

[∫
ΓN

gagbdx

]
;

here the summation on the repeated m′, n′, m, and n are implied. In the offline stage, we compute the terms
appearing in brackets, [·]. In the online stage, we first assemble the matrices and vectors with appropriate
weights Θ··(µ) evaluated for the parameter value of interest. We then solve the primal reduced basis system
(17) of the size 2N to obtain the coefficients uN (µ) ∈ RN and pN (µ) ∈ RN of the primal solution. We
finally appeal to the decomposition (10) to evaluate the bound of the dual-norm of the primal residual,
F (uN (µ), pN (µ);µ; δ).

4. An offline-online computable lower bound of the stability constant.

4.1. Transformation of the stability constant. We now consider a offline-online computable lower
bound of the stability constant (4), α(µ; δ) ≡ infv∈V |||v|||2µ/‖v‖2V(µ;δ). By way of preliminaries, we introduce
an inner product

(w, v)W ≡ (w, v)H1(Ω) + (w, v)L2(ΓN )(18)

and the associated induced norm ‖w‖W ≡
√

(w,w)W . We now present a proposition that relates the stability
constant α(µ; δ) to another quantity τ(µ), which is amenable to offline-online computational decomposition.

Proposition 7. The stability constant α(µ; δ) ≡ infv∈V |||v|||2µ/‖v‖2V(µ;δ) is bounded from the below by

α(µ; δ) ≥
(

1 +
δ

τLB(µ)

)−1

where τLB(µ) satisfies

τLB(µ) ≤ τ(µ) ≡ inf
v∈V

|||v|||2µ
‖v‖2W

.(19)
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Proof. We note that

1

α(µ; δ)
≡

(
inf
v∈V

|||v|||2µ
‖v‖2V(µ;δ)

)−1

= sup
v∈V

‖v‖2V(µ;δ)

|||v|||2µ
= sup
v∈V

|||v|||2µ + δ‖v‖2L2(Ω) + δ‖v‖2L2(ΓN )

|||v|||2µ

= sup
v∈V

(
1 + δ

‖v‖2L2(Ω) + ‖v‖2L2(ΓN )

|||v|||2µ

)
≤ 1 + δ sup

v∈V

‖v‖2W
|||v|||2µ

= 1 +
δ

τ(µ)
;

here, the first equality follows from the definition of the stability constant, the third equality follows from
the definition of ||| · |||µ and ‖v‖V(µ;δ), the inequality follows from ‖v‖2L2(Ω) + ‖v‖2L2(ΓN ) ≤ ‖v‖

2
W , and the last

equality follows from the definition of τ(µ). We obtain the desired result by noting that τLB(µ) ≤ τ(µ).

We make four observations. First, the proposition shows that if we can compute a lower bound of τ(µ) in
an offline-online efficient manner, then we can rapidly evaluate a lower bound of α(µ; δ). Second, we observe
that the lower bound of α(µ; δ) is close to unity if δ is chosen small with respect to τLB(µ); more specifically,
the transformation allows us to desensitize the effectivity of a lower bound of α(µ; δ) from the effectivity of
a lower bound of τ(µ) by choosing δ � τLB(µ). Third, we observe that for δ ≡ 0 the stability constant is
unity; we recall that the minimum-bound solution for δ ≡ 0 must satisfy the dual-feasibility condition (9)
exactly, and for such a solution by complementary variational principle, the dual norm of the residual is
the same as the energy-norm of the error, which implies the stability constant is unity. Fourth, we observe
that τ(µ) ≡ |||v|||2µ/‖v‖2W admits an affine parameter decomposition, as ||| · |||2µ ≡ a(·, ·;µ) admits an affine
decomposition and the norm ‖ · ‖2W is independent of the parameter; this property of τ(µ) makes it suitable
for offline-online computation by the successive constraint method.

Using an argument based on the Rayleigh quotient, we can readily show the quantity τ(µ) is the minimum
eigenvalue of the following eigenproblem: given µ ∈ D, find (zi(µ), λi(µ)) ∈ V × R such that ‖zi(µ)‖W = 1
and

a(zi(µ), v;µ) = λi(µ)(zi(µ), v)W ∀v ∈ V(20)

for indices i = 1, 2, . . . . We will henceforth refer to this eigenproblem as the stability eigenproblem. Without
loss of generality, we order the eigenvalues in ascending order; hence τ(µ) = λ1(µ), where the subscript 1
denotes the first eigenvalue. Hence, to provide a lower bound of τ(µ), we need to provide a lower bound of
λ1(µ).

4.2. Successive constraint method (SCM). Our approach to compute a lower bound of τ(µ) in
an offline-online efficient manner is based on the successive constraint method (SCM) of Huynh et al. [7].
The original SCM was introduced to compute a lower bound of the stability constant with respect to the
finite-dimensional finite element space; here we extend the method to provide a lower bound of the stability
constant with respect to the infinite-dimensional space V. We here present only a brief overview of the SCM
and refer to [7] for a more detailed presentation; we will however highlight the key differences between the
original SCM and our extension.

The SCM, as the name suggests, recasts the minimization problem associated with τ(µ) as a linear
constrained optimization problem. Towards this end, we first introduces the space

Y ≡
{
y ∈ RQK | ∃vy ∈ V s.t. yq =

∫
Ω
∇vy ·Kq∇vydx
‖wy‖2W

, q = 1, . . . , QK

}
and the functional

J (µ; y) ≡
QK∑
q=1

ΘK
q (µ)yq.

We then note that the quantity τ(µ) can be expressed as

τ(µ) = inf
y∈Y
J (µ; y).
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To evaluate a lower bound of the stability constant, we now introduce a space YLB ⊃ Y given by

YLB(Ξcon) ≡

{
y ∈ BQK

|
QK∑
q=1

ΘK
q (µ′)yq ≥ τ(µ′), ∀µ′ ∈ Ξcon

}
;(21)

here BQK
is a bounding box defined by

BQK
≡

QK∏
q=1

[γ−q , γ
+
q ]

for

γ−q ≡ inf
v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

, q = 1, . . . , QK ,(22)

γ+
q ≡ sup

v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

, q = 1, . . . , QK ,(23)

and Ξcon ⊂ D is a set of “SCM constrained points” that are chosen in a careful manner (e.g., using a greedy
algorithm). We then define a lower bound of the stability constant as

τLB(µ) = inf
y∈YLB(Ξcon)

J (µ; y);

here, τLB(µ) ≤ τ(µ) because YLB ⊃ Y.
We note that τLB(µ) admits offline-online computational decomposition: in the offline stage, we compute

the set {τ(µ′)}µ′∈Ξcon
, and the set {γ±q }

QK

q=1, which together define the space YLB(Ξcon); in the online stage,
we solve the linear programming problem τLB(µ) = infy∈YLB(Ξcon) J (µ; y) to find a lower bound for a given
µ.

The two key differences between the original SCM [7] and our extension for τ(µ) with respect to the
infinite-dimesional space V are the following. First, the constants γ±q , q = 1, . . . , QK , defined in (22) and

(23) require infimization and supremization over V, as opposed to a finite element space VN for the original
SCM. Second, the constraints τ(µ′) defined in (19) require infimization over V, as opposed to VN . Because
these supremization and infimization problems are defined over an infinite-dimesional space V, they cannot
be computed directly. We now present our strategies to provide computable bounds for these quantities.

4.3. Offline evaluation of an upper bound of γ±q . To evaluate γ+
q , we appeal to

γ+
q ≡ sup

v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

≤ sup
v∈V

∫
Ω
∇v ·Kq∇vdx
|v|2H1(Ω)

≤ ‖λmax(Kq(x))‖L∞(Ω) ≡ γ̃+
q .(24)

Because the fields Kq ∈ [L∞(Ω)]d×d are known, we can directly compute the upper bounds. Similarly, to
evaluate γ−q , we appeal to

γ−q ≡ inf
v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

≥ − sup
v∈V

|
∫

Ω
∇v ·Kq∇vdx|
‖v‖2W

≥ −‖λmax(Kq(x))‖L∞(Ω) ≡ γ̃−q .(25)

While the above expression for γ̃−q works in general, Kq sometimes possess a special structure such that a
tighter bound for γ−q can be obtained; for instance, if Kq is positive, then γ−q is bounded from below by 0.

4.4. An abstract lower bound of the minimum eigenvalue. In order to express a lower bound
of the minimum eigenvalue using Weinstein’s method, we define a residual associated with the eigenproblem
(20): for µ ∈ D, z̃ ∈ V with ‖z̃‖W = 1, and λ̃ ∈ R,

reig(v; z̃, λ̃;µ) ≡ a(z̃, v;µ)− λ̃(z̃, v)W ∀v ∈ V.(26)
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The associated dual norm of the eigenproblem residual with respect to ‖ · ‖W is

‖reig(·; z̃, λ̃;µ)‖W′ ≡ sup
v∈V

reig(·; z̃, λ̃;µ)

‖v‖W
.

The following proposition by Weinstein relates the dual norm of the residual — which is called the defect in
the original work — to the distance to the closest eigenvalue.

Proposition 8 (Weinstein’s method [4], Chapter 6). Let (z̃, λ̃) ∈ V × R be an approximate eigenpair
where ‖z̃‖W = 1. Then, the distance between λ̃ and the closest eigenvalue is bounded from the above by

min
j=1,2,...

|λj(µ)− λ̃| ≤ ‖reig(·; z̃, λ̃;µ)‖W′ .

Proof. For notational convenience, throughout this proof, we suppress the dependence of the bilinear
form a(·, ·;µ), the residual form reig(·; ·, ·;µ), and the eigenvalues {zi(µ)} on the parameter µ ∈ D. We denote
the coefficients associated with the representation of an arbitrary vector v ∈ V in the eigenbasis {zi}∞i=1 by
v̂ such that v =

∑∞
n=1 v̂nzn. Similarly, we denote the coefficients associated with the representation of the

approximate eigenvector z̃ in the eigenbasis by ˆ̃z such that z̃ =
∑∞
n=1

ˆ̃znzn. The inequality then follows from

‖reig(·; z̃, λ̃)‖W′ = sup
v∈V

a(z̃, v)− λ̃(z̃, v)W
‖v‖W

= sup
v̂∑∞

n=1 v̂nzn∈V

∑∞
m,n=1 v̂m

ˆ̃zn[a(zn, zm)− λ̃(zn, zm)W ]

(
∑∞
m,n=1 v̂mv̂n(zn, zm)W)1/2

= sup
v̂∑∞

n=1 v̂nzn∈V

∑∞
n v̂n ˆ̃zn(λn − λ̃)

(
∑∞
n=1 v̂

2
n)1/2

= (

∞∑
n=1

ˆ̃z2
n(λn − λ̃)2)1/2

≥ min
n=1,2,...

|λn − λ̃|(
∞∑
n=1

ˆ̃z2
n)1/2 = min

n=1,2,...
|λn − λ̃|‖z̃‖W = min

n=1,2,...
|λn − λ̃|.

A few explanations are in order. The third equality follows from the definition of the eigenvalues and the
orthogonality of the eigenbasis with respect to a(·, ·) and (·, ·)W : a(zn, zm) = λn if n = m and a(zn, zm) = 0
if n 6= m; (zn, zm)W = 1 if n = m and (zn, zm)W = 0 if n 6= m. The fourth equality follows from the fact
that the supremizer is v̂n = ˆ̃zn(λn − λ̃), n = 1, 2, . . . . The last equality follows from ‖z̃‖W = 1.

We appeal to the proposition to provide a lower bound of the minimum eigenvalue under one crucial as-
sumption:

Corollary 9. Let (z̃, λ̃) ∈ V × R be an approximate eigenpair where ‖z̃‖W = 1. If |λ1(µ) − λ̃| ≤
|λ2(µ)− λ̃| then

λ1(µ) ≥ λ̃− ‖reig(·; z̃, λ̃;µ)‖W′ .

We make two remarks. First, we unfortunately have no means to rigorously verify whether the condition
|λ1(µ) − λ̃| ≤ |λ2(µ) − λ̃| is satisfied; this, as noted in the Introduction, is a crucial limitation as regard
the rigorousness of error bounds provided by our method. However, we have found that in practice the
first two eigenvalues of (20) are sufficiently well separated for a typical elliptic problem that even a crude
finite element approximation of the eigenproblem is sufficient to meet the condition. Hence, if we could
compute an upper bound of the dual norm of the eigenproblem residual, then we can provide a lower bound
of λ1(µ) = τ(µ).

Second, the bound based on Weinstein’s method is not very effective. Specifically, there exists another
bound technique by Kato [8] which provides a lower bound whose gap scales as the square of the residual
instead of linearly with the residual [15]. However, Kato’s method introduces an additional assumption
regarding the second eigenvalue of the eigenproblem. Here, we sacrifice the effectivity for the robustness of
making one fewer assumptions and build our algorithm on Weinstein’s method. We also note that thanks to
the desensitization provided by the transformation of α(µ; δ) to τ(µ), the loss of effectivity in a lower bound
of τ(µ) does not significantly affect the effectivity of the resulting lower bound of α(µ; δ).
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4.5. Eigenproblem residual bound form. In order to construct a computable lower bound of λ1(µ),
we now develop a computable upper bound of the dual norm of the eigenproblem residual (26). Our approach
is similar to the bounding technique developed in Section 3.1 to bound the dual norm of the (solution)
residual. The following proposition provides a bound of the dual norm of the eigenproblem residual.

Proposition 10. For any µ ∈ D, z̃ ∈ V such that ‖z̃‖W = 1, and λ̃ ∈ R, the dual norm of the
eigenproblem residual is bounded by

‖reig(·; z̃, λ̃;µ)‖W′ ≤ (Feig(z̃, λ̃, q;µ))1/2 ∀q ∈ Q,

where the bound form is given by

Feig(z̃, λ̃, q;µ) = λ̃2(‖∇ · q + z̃‖2L2(Ω) + ‖q − λ̃−1K(µ)∇z̃ +∇z̃‖2L2(Ω) + ‖q · n− z̃‖2L2(ΓN )).(27)

Proof. We note that, for all z̃ ∈ V, v ∈ V, λ̃ ∈ R, and q ∈ Q,

reig(v; z̃, λ̃;µ) =

∫
Ω

∇v ·K(µ)∇z̃dx− λ̃
∫

Ω

(∇v · ∇z̃ + vz̃)dx− λ̃
∫

ΓN

vz̃dx

=

∫
Ω

∇v ·K(µ)∇z̃dx− λ̃
∫

Ω

(∇v · ∇z̃ + vz̃)dx− λ̃
∫

ΓN

vz̃dx

− λ̃
∫

Ω

(∇v · q + v∇ · q)dx+ λ̃

∫
ΓN

vq · nds

= λ̃

∫
Ω

v(−z̃ −∇ · q)dx+ λ̃

∫
Ω

∇v · (λ̃−1K(µ)∇z̃ −∇z̃ − q)dx− λ̃
∫

ΓN

v(z̃ − q · n)ds

≤ (‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) + ‖v‖2L2(ΓN ))
1/2

λ̃(‖∇ · q + z̃‖2L2(Ω) + ‖q − λ̃−1K(µ)∇z̃ +∇z̃‖2L2(Ω) + ‖q · n− z̃‖2L2(ΓN ))
1/2

= ‖v‖W(Feig(z̃, λ̃, q;µ))1/2;

here, the second equality follows from the Green’s theorem. It thus follows

‖reig(·; z̃, λ̃;µ)‖W′ ≡ sup
v∈V

reig(·; z̃, λ̃;µ)

‖v‖W
≤ (Feig(z̃, λ̃, q;µ))1/2,

which is the desired inequality.

4.6. Finite element approximation of τLB(µ). We now present a practical algorithm to compute
τLB(µ) for select values of µ in the offline stage. As before, we use conforming finite-element approxima-
tion spaces VNV ⊂ V and QNQ ⊂ Q defined in (13) and (14). We then seek the Galerkin finite element
approximation of the eigenproblem (20): given µ ∈ D, find (zN1 (µ), λN1 (µ)) ∈ VNV × R such that

a(zN1 (µ), v;µ) = λN1 (µ)(zN1 (µ), v)W ∀v ∈ VNV .(28)

We then compute a minimum-residual approximation ζN (µ) ∈ QNQ which minimizes the dual norm bound:

ζN (µ) = arg inf
q∈QNQ

Feig(zN1 (µ), λN1 (µ), q;µ)(29)

Finally, assuming |λN1 (µ) − λ1(µ)| < |λN1 (µ) − λ2(µ)|, we appeal to Corollary 9 and Proposition 10 to
construct a lower bound of τ(µ),

τNLB(µ) ≡ λN1 (µ)− (Feig(zN1 (µ), λN1 (µ), ζN (µ);µ))1/2 ≤ λ1(µ).(30)

We emphasize that the superscript N on τNLB(µ) signifies that the lower bound approximation is computed
in the O(N )-dimensional finite element space, and it does not signify that the lower bound is with re-
spect to the finite element eigenproblem; the lower bound is indeed with respect to the infinite-dimensional
eigenproblem (20).
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4.7. Exact-space SCM: offline-online computation of τLB,M (µ). We can summarize the exact-
space SCM as follows. In the offline stage, we prepare the space

ỸLB(Ξcon) ≡

{
y ∈ B̃QK

|
QK∑
q=1

ΘK
q (µ′)yq ≥ τNLB(µ′), ∀µ′ ∈ Ξcon

}
,

where τNLB(µ′), µ′ ∈ Ξcon, are computed by (30) and B̃QK
≡
∏QK

q=1[γ̃−q , γ̃
+
q ], where γ̃±q , q = 1, . . . , QK , are

computed by (24) and (25).
In the online stage, we solve the linear programming problem

τLB,M (µ) ≡ inf
y∈ỸLB(Ξcon)

J (µ; y),

which provide a lower bound of τ(µ). We then compute a lower bound of the stability constant α(µ; δ),

αLB,M (µ; δ) ≡ 1 +
δ

τLB,M (µ)
≤ α(µ; δ).(31)

The subscript M on τLB,M (µ) and αLB,M (µ; δ) signifies the cardinality of the constraint set: M ≡ |Ξcon|.

4.8. Galerkin reduced basis method: offline-online computation of τUB,M (µ). While the lower
bound of τ(µ) is needed to construct error bounds, an upper bound of τ(µ) is useful to assess the sharpness
of our lower bound, especially in the context of adaptive mesh refinement and parameter sampling. The
evaluation of an upper bound is significantly simpler than the evaluation of a lower bound; we may simply
appeal to Galerkin projection onto a subspace.

At the finite element level, λN1 (µ) associated with the eigenproblem (28) is an upper bound of the exact
first eigenvalue λ(µ). The upper bound property follows from λ1(µ) = infv∈V |||v|||µ/‖v‖W ≤ infv∈VN |||v|||µ/‖v‖W =
λN1 (µ) for VN ⊂ V. We hence set τNUB(µ) = λN1 (µ). We then readily compute the (relative) bound gap
|τNUB(µ)− τNLB(µ)|/τNUB(µ), which serves as an error estimate.

At the reduced basis level, we first construct a reduced basis space

Veig
M = span{zN1 (µ′)}µ′∈Ξcon

;

here in principle the snapshot parameters need not be the same as the SCM constraint set Ξcon; however, in
practice, we use the same set of parameters because the finite element snapshots (zN1 (µ′), λN1 (µ′)), µ′ ∈ Ξcon,
are generated as a biproduct of evaluating τNLB(µ′), µ′ ∈ Ξcon, as described in Section 4.6. We then solve a

reduced basis eigenproblem: given µ ∈ D, find (zM,1(µ), λM,1(µ)) ∈ Veig
M × R such that

a(zM,1(µ), v;µ) = λM,1(µ)(zM,1(µ), v)W ∀v ∈ Veig
M ;

the Galerkin approximation is an upper bound of the exact first eigenvalue: we hence set τUB,M (µ) ≡
λM,1(µ) ≥ λ1(µ). We note that this reduced basis eigenproblem admits offline-online computational decom-
position. Hence, the combination of τUB,M (µ) from the reduced basis eigenproblem and τLB,M (µ) from the
SCM allows us to rapidly evaluate for any µ ∈ D the (relative) bound gap |τUB,M (µ)− τLB,M (µ)|/τUB,M (µ),
which serves as an error estimate.

5. Error bounds.

5.1. Energy norm. Given our reduced basis approximation (16) to the PDE (1), our computable,
online-efficient bound is given by,

|||u(µ)− uN (µ)|||µ ≤ ∆en
N (µ) ≡ 1

(αLB,M (µ; δ))1/2
(F (uN (µ), pN (µ);µ; δ))1/2,(32)

where F (·, ·; ·; ·) is the bound form (8), and αLB,M (·; ·) is the lower bound of the stability constant associated
with the SCM approximation (31).
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5.2. Linear functional output. As discussed in Section 2.4, the energy-norm error bound may be
readily extended to provide an error bound for linear functional outputs. We here sketch the procedure. We
first introduce an adjoint residual bound form: for any µ ∈ D, δ ∈ R>0, ψ̃ ∈ V, and q ∈ Q,

Fadj(ψ̃, q;µ; δ) ≡ ‖∇ψ̃ −K−1(µ)q‖2K(µ) + δ−1‖fo(µ) +∇ · q‖2L2(Ω) + δ−1‖go(µ)− q · n‖2L2(ΓN ),

where fo and go define the output functional `o(·;µ) as given by (5). Following the same steps as Propo-
sition 5 for the (primal) residual, we can readily show that the adjoint residual bound form satisfies
‖radj(·; ψ̃;µ)‖V′(µ;δ) ≤ (Fadj(ψ̃, q;µ; δ))1/2, ∀q ∈ Q. We then introduce the minimum-bound mixed finite ele-
ment approximation of the adjoint problem (6): given µ ∈ D and δ ∈ R>0, find {ψN (µ), qN (µ)} ∈ VNV×QNQ

such that

{ψN (µ), qN (µ)} = arg inf
v∈VNV

q∈QNQ

Fadj(v, q;µ; δ).

Similarly, given reduced-basis approximation spaces for the adjoint, Vadj
N ⊂ VNV and Qadj

N ⊂ QNQ , we
introduce the minimum-bound mixed reduced basis approximation of the adjoint problem (6): given µ ∈ D
and δ ∈ R>0, find {ψN (µ), qN (µ)} ∈ Vadj

N ×Qadj
N such that

{ψN (µ), qN (µ)} = arg inf
v∈Vadj

N

q∈Qadj
N

Fadj(v, q;µ; δ).

Following Proposition 4, we define the adjoint-corrected reduced basis approximation of the output as

sN (µ) ≡ `o(uN (µ);µ) + r(ψN (µ);uN (µ);µ),

and endow the estimate with a computable, online-efficient output bound

|s(µ)− sN (µ)| ≤ ∆s
N (µ) ≡ 1

αLB,M (µ; δ)
(F (uN (µ), pN (µ);µ; δ))1/2(Fadj(ψN (µ), qN (µ);µ; δ))1/2.(33)

We again emphasize that this output bound is with respect to the exact output and not the finite element
“truth” approximation.

One particular output that is relevant in engineering analysis of coercive systems is the compliance output
s(µ) = `(u(µ);µ), which is associated with the internal energy in the system. Note that for compliance
output, `o(·; ·) = `(·; ·), the primal problem (1) and the adjoint problem (6) are identical, and the solutions

satisfy ψ(µ) = u(µ). In addition, we have F (·, ·; ·; ·) = Fadj(·, ·; ·; ·), ψN (µ) = uN (µ), and, for VN = Vadj
N

and QN = Qadj
N , ψN (µ) = uN (µ). Consequently, for the compliance output, we have sN (µ) = `(uN (µ);µ) +

r(uN (µ);uN (µ);µ) and ∆s
N (µ) = F (uN (µ), pN (µ);µ; δ)/αLB,M (µ; δ) = (∆en

N (µ))2. The compliance output
is not only engineering relevant, but also simplifies certain computational aspects while exercising the most
important aspects of exact error bounds and spatio-parameter adaptive algorithms that will be discussed in
Section 6. We will hence consider this compliance output in the numerical example in Section 7.

6. Spatio-parameter adaptivity.

6.1. Adaptive finite element for the stability eigenproblem. Although we employ the finite
element approximation simply as a means to evaluate τNLB(µ′), µ′ ∈ Ξcon, required in the online stage, we
nevertheless wish to compute τNLB(µ′) efficiently and minimize the computational effort to achieve a given
accuracy. Towards this end, we solve the eigenproblem using an adaptive finite element method.

We drive our adaptive finite element method using the standard solve, estimate, mark, and refine strategy
(see, e.g., [21]). Towards this end, we must define an error indicator for each element κ ∈ Th. We use the
following elemental residual indicator for our finite element approximation of the eigenpair (zN1 (µ), λN1 (µ)) ∈
VNV × R given by (28) and the associated dual field ζN (µ) ∈ QNQ given by (29):

ηeig,κ ≡ (λN1 (µ))2(‖∇ · ζN (µ) + zN1 (µ)‖2L2(κ) + ‖ζN (µ)− (λN1 (µ))−1K(µ)∇zN1 (µ) +∇zN1 (µ)‖2L2(κ)

+ ‖ζN (µ) · n− zN1 (µ)‖2L2(∂κ∩ΓN )), κ ∈ Th.
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Algorithm 1: Spatio-parameter adaptive SCM

input : Ξtrain ⊂ D: SCM training set
εSCM: greedy bound-gap tolerance
εSCM,FE: adaptive finite element tolerance
Mmax: maximum permissible number of finite element solves

output: {τNLB(µ′)}µ′∈Ξcon
: SCM constraints

Veig
M = {zN1 (µ′)}µ′∈Ξcon

: RB eigenproblem space

1 Set µ(1) to the approximate centroid: µ(1) = arg minµ∈Ξtrain
‖µ− µ̄‖`2 for µ̄ = 1

|Ξtrain|
∑
µ∈Ξtrain

µ.

2 for M = 2, . . . ,Mmax do
3 Identify the parameter associated with the largest relative τ(µ) gap

µ(M) = arg sup
µ∈Ξtrain

(τUB,M−1(µ)− τLB,M−1(µ))/τUB,M−1(µ);

if supµ∈Ξtrain
(τUB,M (µ)− τLB,M (µ))/τUB,M (µ) < εSCM, terminate.

4 Solve (28) and (30) to obtain an upper bound τNUB(µ(M)) and a lower bound τN1,LB(µ); invoke

mesh adaptivity as necessary such that (τNUB(µM )− τNLB(µM ))/τNUB(µ) < εSCM,FE

5 Augment the SCM constraint set,

Ξcon ← Ξcon ∪ µ(M),

and update {τNLB(µ′)}µ′∈Ξcon and Veig
M = {zN1 (µ′)}µ′∈Ξcon accordingly.

6 end

Note that ηeig,κ is an elemental contribution to the eigenvalue bound gap in the sense that∑
κ∈Th

ηeig,κ = Feig(zN1 (µ), λN1 (µ), yN (µ);µ) = τNUB(µ)− τNLB(µ).

Once we identify elements with biggest contributions to the eigenvalue bound gap, we employ a fixed-fraction
marking strategy to mark top 5% of the elements for refinement. We repeat the solve-estimate-mark-refine
process until the desired bound-gap tolerance is met.

6.2. Spatio-parameter adaptive SCM. We select the SCM constraint points Ξcon and evaluate the
associated constraints {τNLB(µ′)}µ′∈Ξcon

using the adaptive algorithm described in Algorithm 1. As in the
original SCM [7], we construct the constraint set Ξcon ⊂ Ξtrain by selecting the constraint parameters in a
greedy manner based on the bound gap; however, we emphasize that, unlike the original SCM, this bound
gap is associated with the stability constant with respect to the infinite-dimesional space V. Once we identify
the next constraint point, we then solve the eigenproblem using the adaptive finite element method described
in Section (6.1). The finite element approximation that meets the tolerance requirement is then included in

the updated reduced basis set Veig
N . The greedy procedure continues until the relative bound gap is smaller

than the specified tolerance at all training points.
We make a few remarks regarding the choice of the inputs. First, as in the original SCM [7], we select

a sufficiently rich training set Ξtrain to cover the parameter domain D. Second, again similar to the original
SCM [7], we in theory require εSCM ∈ (0, 1) but in practice select εSCM ∈ [0.5, 0.9]. However, unlike in
the original SCM, a loose bound gap tolerance εSCM does not directly affect the effectivity of the stability
constant αLB,M (µ; δ); this is due to the transformation of the stability constant described in Section 4.1,
which desensitizes the effectivity of αLB,M (µ; δ) from the effectivity of τLB,M (µ) for δ sufficiently small.
Third, in theory, we require that εSCM,FE ≤ εSCM; in practice, we select εSCM,FE ≈ εSCM/10. This selection
criteria is similar to that used for the reduced basis counterpart in the spatio-parameter Greedy algorithm
that is described shortly, and whose choice is analyzed in detail in Appendix B. A tighter tolerance in general
increases the lower bound provided at the constraint points and decreases the number of constraint points
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M to achieve a given εSCM. The online cost will hence decrease for a smaller εSCM,FE/εSCM. The offline cost
on the other hand may decrease or increase: a smaller εSCM,FE/εSCM reduces the number of eigenproblems
to be solved, but increases the cost associated with the approximation of each eigenproblem.

6.3. Selection of δ. While the residual bound introduced in Proposition 5 and the α(µ; δ)-τ(µ) rela-
tionship described in Proposition 7 hold for any δ ∈ R>0, we in practice select δ sufficiently small such that
the effectivity of αLB,M (µ; δ) is desensitized from the effectivity of τLB,M (µ), which can be quite poor for
the SCM. In practice, we set

δ =
1

10
inf

µ∈Ξtrain

τLB,M (µ).

This choice ensures that

inf
µ∈Ξtrain

αLB,M (µ; δ) = inf
µ∈Ξtrain

(
1 +

δ

τLB,M (µ)

)−1

≥ 10

11
.

The stability constant αLB,M (µ; δ) is guaranteed to be close to unity for all µ ∈ Ξtrain; in practice, αLB,M (µ; δ)
is close to unity for all µ ∈ D given Ξtrain ⊂ D is sufficiently rich.

6.4. Adaptive finite element for the solution. Similar to the approximation of the stability eigen-
problem considered in Section 6.1, we also employ an adaptive finite element method based on the solve-
estimate-mark-refine strategy to approximate the solution u(µ) (see, e.g., [21]). A residual indicator as-
sociated with an element κ ∈ Th for our finite element approximation uN (µ) ∈ VNV and pN (µ) ∈ QNQ

is

ηκ ≡ ‖∇uN (µ)−K−1(µ)pN (µ)‖2K(µ),κ + δ−1‖f(µ) +∇ · pN (µ)‖2L2(κ)

+ δ−1‖g(µ)− pN (µ) · n‖2L2(∂κ∩ΓN ), κ ∈ Th.

Note that ηκ is an element contribution to the residual in the sense that∑
κ∈Th

ηκ = F (uN (µ), pN (µ);µ; δ).

As in the adaptive procedure for the stability eigenproblem, we use a fixed-fraction marking strategy with a
threshold of 5% for our adaptive mesh refinement.

6.5. Spatio-parameter adaptive weak Greedy algorithm. Our spatio-parameter adaptive weak
Greedy algorithm was originally introduced in [23] to control the dual norm of the residual with respect
to the exact space V; here we apply the algorithm to control the energy-norm or functional-output error.
Specifically, the goal of the weak greedy algorithm is to drive the quantity ∆N (µ)/ωN (µ) to be less than
a user specified threshold εRB > 0 in an automated manner [18]. Here, the error bound ∆N (µ) can be
the energy-norm bound ∆en

N (µ) defined in (32) or the output bound ∆s
N (µ) defined in (33); ωN (µ) is a

normalization function, which would be 1 if the goal is to control the absolute energy or output error.
In the numerical example in Section 7, we will control the relative compliance output error, for which
∆N (µ) ≡ ∆s

N (µ) = (∆en
N (µ))2 and ωN (µ) ≡ sN (µ).

We select the reduced basis sampling points using the adaptive algorithm described in Algorithm 2. As
in the standard weak Greedy algorithm [18], we choose the sampling point µ(N) in a greedy manner based
on the error bound ∆N (µ); however, unlike in the standard Greedy algorithm, this error bound is associated
with the exact solution u(µ) ∈ V as opposed to the finite element “truth” solution. Once we identify the
next sampling parameter, we find the associated solution using the adaptive finite element method described
in Section 6.4. We then augment our reduced basis spaces VN and QN with the new snapshot. The greedy
procedure is repeated until the quantity ∆N (µ)/ωN (µ) is smaller than the specified threshold at all training
points.

We make a few remarks regarding the choice of the inputs. First, as in the standard weak Greedy
algorithm [18], we select a sufficiently rich training set Ξtrain to cover the parameter domain D; in practice
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Algorithm 2: Spatio-parameter adaptive weak Greedy algorithm

input : Ξtrain: reduced basis training set
εRB: greedy error tolerance
εRB,FE: adaptive finite element tolerance
Nmax: maximum permissible number of finite element solves

output: VN , QN : reduced basis spaces

1 for N = 1, . . . , Nmax do
2 Identify the parameter associated with the largest error bound

µ(N) = arg sup
µ∈Ξtrain

∆N−1(µ)

ωN−1(µ)
;

if supµ∈Ξtrain
∆N−1(µ)/ωN−1(µ) ≤ εRB, terminate.

3 Solve (15) to obtain finite element approximations uN (µ(N)) and pN (µ(N)); invoke mesh

adaptivity as necessary such that ∆N (µ)/ωN (µ) ≤ εRB,FE.
4 Augment the reduced basis spaces

VN = span{VN−1, u
N (µ(N))} and QN = span{QN−1, p

N (µ(N))}.

5 end

we use the same training set as that used for the SCM. Second, in theory, we require that εRB,FE ≤ εRB; this
is a sufficient condition to ensure that maxµ∈Ξtrain ∆N (µ)/ωN (µ) ≤ εRB for some N sufficiently large because
i) each snapshot will satisfy the target tolerance εRB and ii) the error bound associated with the minimum-
bound formulation is a non-increasing function of the dimension of the reduced basis space N for any given
µ. Third, in practice, we set εRB,FE ≈ εRB/10; this choice is required to ensure that the convergence of the
spatio-parameter greedy algorithm does not slow down as the maximum error level approaches the target
εRB. A more detailed discussion on the choice of εRB,FE is provided in Appendix B. Finally, we note that
εRB, and not εRB,FE, ultimately controls the accuracy of the reduced basis model.

6.6. Mesh refinement mechanics: working and common spaces. Our spatio-parameter adaptive
algorithms require the computation of the inner product of two finite element fields associated with two
different spaces. In order to compute various inner products, we employ two different types of meshes: a
“working mesh” which is used to compute the current finite element solution uN (µ) and pN (µ) or the current
finite element eigenfunction zN1 (µ) and ζN (µ); a “common mesh” which is a superset of all working meshes
used in the greedy algorithm. Whenever we need to compute the inner product of two fields associated with
two different spaces, we re-represent the fields on the common space and then perform the inner product
algebraically.

Remark 11. In our current implementation, we keep a single common mesh and perform inner product
between any two finite element fields on the common mesh. Alternatively, we could compute a common mesh
that is a superset of just two fields whose inner product we wish to evaluate. This latter approach could
reduce the computational cost, especially if the finite element mesh required for various parameter values
differ considerably; on the other hand, the approach would require multiple solutions of the mesh intersection
problem.

6.7. Remarks on the spatio-parameter adaptive algorithm. We make four remarks about the
reduced basis model constructed by our spatio-parameter adaptive algorithm. First, for any parameter
µ ∈ D, regardless of whether it belongs to Ξtrain, our reduced model provides a (normalized) error bound
∆N (µ)/ωN (µ) with respect to the exact solution u(µ) ∈ V, and not the typical finite element “truth” solution,
in complexity independent of the size of the finite element spaces.

Second, if the parameter µ belongs to the training set Ξtrain, then the (normalized) error bound
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∆N (µ)/ωN (µ) is guaranteed to be less than the training tolerance: ∆N (µ)/ωN (µ) ≤ εRB, ∀µ ∈ Ξtrain.
In other words, we certify the reduced basis approximation for any µ ∈ D, and the certificate is less than
εRB for µ ∈ Ξtrain.

Third, the proposed algorithm is fundamentally different from the following two-step approach: i) we
invoke the standard reduced-basis Greedy algorithm with an error bound with respect to the finite element
“truth” to identify the worst case; ii) we compute the reduced basis snapshot using an adaptive finite element
method. In the online stage, this two step approach would only provide an error bound with respect to the
finite element “truth” for a general µ ∈ D, and an error bound with respect to the exact solution for snapshot
parameters. Hence, the two-step approach would not certify the reduced basis approximation with respect
to the exact solution for an arbitrary µ ∈ D.

Fourth, both spatio-parameter adaptive SCM and weak Greedy algorithms can be extended in various
ways. For instance, the adaptive finite element solvers could employ hp and/or anisotropic adaptation
(e.g., [20]) to further reduce the cost associated with the computation of the snapshots. Similarly, the
parameter sampling algorithms could use hp partitioning in the parameter space (e.g., [5]); the hp partitioning
may be necessary particularly for high dimensional problems.

7. Numerical example: thermal block.

7.1. Problem description. We demonstrate the proposed reduced basis method for the thermal block
problem [18]. The problem is defined on a unit square domain, Ω ≡ [0, 1]2, shown in Figure 1(a), and a
P = 9-dimensional parameter domain D = [10−1/2, 101/2]9 ⊂ R9. The weak statement for the problem is
the following: given µ ∈ D, find u(µ) ∈ V ≡ {v ∈ H1(Ω) | v|Γtop

= 0} such that

P∑
i=1

∫
Ωi

∇v · µi∇wdx =

∫
Γbottom

vds ∀v ∈ V,

and then evaluate the compliance output

s(µ) =

∫
Γbottom

u(µ)ds.

Note that we impose homogeneous Dirichlet boundary condition on Γtop, homogeneous Neumann bound-
ary condition on Γside, and inhomogeneous Neumann condition on Γbottom. The equation satisfies all as-
sumptions described in Section 2.1: it is coercive for all µ ∈ D, the diffusivity field admits affine de-
composition, the inverse of the diffusivity admits affine decomposition, and all fields are piecewise polyno-
mial. Specifically, our affine decompositions are given by K(µ) =

∑P
q=1 ΘK

q (µ)Kq =
∑QK≡P
q=1 µq1Ωq

and

K−1(µ) =
∑QKinv≡P
q=1 ΘKinv

q (µ)K inv
q =

∑P
q=1

1
µq
1Ωq

, where 1Ωq
is the indicator function associated with a

subdomain Ωq ⊂ Ω.
We consider this thermal block problem because, while it is simple, it exhibits parameter-dependent

spatial singularities. For instance, when all the diffusion coefficients are equal to 1.0, the solution is given by
u(x1, x2) = 1 − x2, exhibiting no spatial singularities. On the other hand, when the diffusivity coefficients
associated with four subdomains that share a corner are different, then the solution becomes singular at the
corner. See, e.g., Figure 5 for such singular solutions.

7.2. Limitations of the standard reduced basis method. Before applying the proposed spatio-
parameter adaptive method to the thermal block problem, we solve the problem using the standard reduced
basis method to highlight its limitations. Towards this end, we employ the Galerkin reduced basis method,
whose snapshots are computed in a fixed “truth” P2 finite element space using the weak Greedy method.
(See, e.g., [18] for details.)

Figure 1(b) shows the convergence of the standard reduced basis method for the problem using two
uniform “truth” spaces with N = 625 and N = 9409. The figure shows the “truth” error bound — with
respect to the finite element “truth” output — and the approximate actual error — with respect to the
reference output sref computed accurately to a relative toleance of 0.001 — as a function of the dimension of
the reduced basis space. First, focusing on the actual error, we observe that the convergence of the standard
reduced basis method stagnates at the error level of ≈ 0.04 and ≈ 0.013 for the two “truth” spaces of the
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Fig. 1. Thermal block problem. (a) Geometry. (b) The maximum relative “truth” error bound,

maxµ∈Ξtrain
∆s,std
N (µ)/sstdN (µ), and the maximum actual relative error, maxµ∈Ξtrain

|sref(µ) − sstdN (µ)|/|sref(µ)|, for the stan-
dard reduced basis method. Here, sref denotes the reference output computed accurately to a relative tolerance of 0.001, and

sstdN and ∆s,std
N denote the output and “truth” error bound, respectively, computed using a standard reduced basis method.

size N = 625 and N = 9409, respectively; this behavior is anticipated due to the lack of spatial resolution
at singularities. Second, focusing on the “truth” error bound, we observe that the “truth” does not serve
as a bound with respect to the exact solution when substantial error due to the lack of spatial resolution
is present. Of course, the use of a finer finite element truth space would mitigate these issues; however, in
practice, a systematic identification of an appropriate “truth” space for problems that exhibit parameter-
dependent singularities requires exhaustive exploration of the parameter space using (say) an adaptive finite
element method, and in any event the prediction provided by the reduced model is never rigorously certified
with respect to the exact solution. These behaviors of the standard reduced basis method motivate the use
of the proposed method with an exact solution certificate and spatio-parameter adaptivity.

7.3. Spatio-parameter greedy training of the stability constant. We first note that, for the
thermal block problem, we readily obtain

γ−q = inf
v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

= inf
v∈V

∫
Ωq
∇v · ∇vdx
‖v‖2W

≥ 0, q = 1, . . . , QK ,

γ+
q = sup

v∈V

∫
Ω
∇v ·Kq∇vdx
‖v‖2W

≤ ‖λmax(Kq)‖L∞(Ω) = ‖1Ωq‖L∞(Ω) = 1, q = 1, . . . , QK .

To select the SCM constraint set Ξcon, we invoke the spatio-parameter adaptive SCM algorithm, Algorithm 1,
with the following inputs. We choose a training set Ξtrain that contains 29 = 512 corner points of the nine-
dimesional parameter domain D, 2000 random points in D, and the midpoint of D; the total size of the
training set is 2513. We choose the SCM and finite element relative bound gap tolerance of εSCM = 0.8 and
εSCM,FE = 0.002, respectively. We choose a 6× 6 P2 finite element space as the initial approximation space.
We note that this initial mesh is somewhat finer than the initial mesh that will be used for the reduced basis
training; this initial refinement is intended to ensure that λN1 (µ) even on the initial mesh is closer to λ1(µ)
than to λ2(µ), though again we have no means to verify if the condition is met.

The result of the training is summarized in Figure 2. Figure 2(a) shows the convergence of the bound
gap with the cardinality of the SCM constraint set M . We require M = 10 SCM constraints to meet the
relative bound gap threshold of εSCM = 0.8; the bound gap decreases slowly initially, but for M = 10 the
relative bound gap is ≈ 0.68 < εSCM. Figure 2(b) shows the distribution of the lower and upper bound of
τ(µ) for the 2513 training points. For this particular problem, we could determine through inspection that
τ(µ) is bounded from below by 10−1; indeed, the minimum τ(µ) over the training set computed with the
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Fig. 2. Spatio-parameter greedy SCM training for τLB,M (µ) and τUB,M (µ).

SCM algorithm is also ≈ 0.1. We will hence set δ = 0.09 in our minimum-residual reduced basis method.
Figure 3 summarizes the behavior of the adaptive finite element method for the stability eigenproblem

for two of the cases. The first case, shown in Figures 3(a), 3(d), and 3(c), is associated with the second SCM
constraint µ(2), which is the most difficult case in terms of N required to meet the bound gap tolerance at
N = 1066. The diffusivity is 10−1/2 for bottom middle block (Ω2) and is 101/2 for the remaining blocks.
Figure 3(a) shows the first eigenfunction. Figure 3(d) shows the associated final adapted mesh. We observe
that the adaptive finite element targets the bottom middle boundary as well as the two singularities at two
of the corners of Ω2; we also note that the smallest element has the edge length of 2−8/3, implying that a
uniform refinement that achieves the same resolution at the singularity would require over 2×106 as opposed
to N = 1066 for the adaptive method. Figure 3(c) shows the evolution of the upper and lower bound of the
first eigenvalue, τNUB(µ(2)) and τNLB(µ(2)), with finite element adaptation; we meet the desired relative bound
gap of εSCM,FE = 0.002 after 11 adaptation iterations.

The second case, shown in Figures 3(b), 3(e), and 3(c), is associated with the fifth SCM constraint µ(5),
which is one of the easier cases in terms of N required to meet the bound gap tolerance at N = 236. The
diffusivity is 10−1/2 for the middle block (Ω2) and is 101/2 for the remaining blocks. Figure 3(b) shows the
first eigenfunction. Figure 3(e) shows the associated final adapted mesh; we observe that only the middle
block is refined, and the refinement is not as aggressive as that observed for µ(2) in Figure 3(d). Figure 3(c)
shows the evolution of the upper and lower bound of the first eigenvalue; we need only three adaptation
iterations to meet the target relative bound gap tolerance.

Figure 3(f) shows the final common mesh for M = 10. The common space is of size N = 2568 and is
refined towards singularities that are present for some of the training parameters. As a result, the common
mesh is larger than any of the working meshes, whose size vary from N = 216 to N = 1066; however, we
recall that the common mesh is simply used to compute various inner products between snapshots and never
used to solve the eigenproblem. It is also worth noting that the smallest element has the edge length of
2−8/3, which implies that a uniform mesh with the same resolution at the singularity would require over
2× 106 degrees of freedom.

7.4. Spatio-parameter greedy training of reduced basis. We now train our reduced basis using
the spatio-parameter adaptive Greedy algorithm, Algorithm 2, with the following inputs. We choose a
training set Ξtrain that is identical to that used for the SCM training described in Section 7.3. We choose
the target relative output error tolerance of εRB = 0.01. We choose the finite element relative output error
tolerance of εRB,FE = 0.002. We choose a 3 × 3 P2 finite element space as the initial approximation space.
The weight parameter, as discussed in Section 7.3, is δ = 0.09 < (1/10) arg infµ∈Ξtrain

τLB,M (µ).
Figure 4 summarizes the behavior of the spatio-parameter Greedy algorithm. The total of N = 26
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Fig. 3. Adaptive finite element approximation of the stability eigenproblem. The pa-
rameter values are µ(2) = (101/2, 10−1/2, 101/2, 101/2, 101/2, 101/2, 101/2, 101/2, 101/2) and µ(5) =
(101/2, 101/2, 101/2, 101/2, 10−1/2, 101/2, 101/2, 101/2, 101/2).

reduced basis functions are required to meet the relative error tolerance of 0.01. Figure 4(a) shows the
variation in the size of the working mesh used to approximate the solution for the 26 parameter values; the
size of the of problem varies from N = 126 for the first parameter to N = 4868 for the ninth parameter.
We note that each of these spaces is significantly smaller than the finer “truth” space considered for the
standard reduced basis method in Section 7.2, which nevertheless is inadequate to deliver the required
accuracy. Figure 4(b) shows the convergence of the relative error bound with the size of the reduced basis
space N ; we observe that the error bound decreases exponentially with N . In addition, we observe that
the error bound is an effective estimate of the actual error with respect to the reference solution computed
accurately to a relative tolerance of 0.001.

Figure 5 summarizes the behavior of the adaptive finite element method for two cases. The first case,
shown in Figures 5(a), 5(d), and 5(c), is associated with the fourth reduced basis function µ(4), which is
one of the easiest cases requiring only N = 230 to meet the error tolerance. Figure 5(a) shows the solution.
Figure 5(d) shows the associated final adapted mesh; the mesh is largely unchanged from the initial coarse
mesh aside from some refinement in the bottom right region. Figure 5(c) shows the error convergence; we
need only two adaptation iterations to meet the error tolerance. We also observe that the effectivity of the
error bound is ≈ 2, which is quite tight; here, for comparison purposes, the reference solution is computed
using the adaptive finite element with an error tolerance 100 times smaller than the target finite element
error tolerance of εRB,FE = 0.002.

The second case, shown in Figures 5(b), 5(e), and 5(c), is associated with the fourth reduced basis
function µ(9), which is the most difficult case in terms of N required to meet the error tolerance at N = 4868.
Figure 5(b) shows the solution; note that the top six blocks form a checkerboard pattern, resulting in two
strong singularities. Figure 5(e) shows the associated final adapted mesh. The mesh is strongly graded
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Fig. 4. Spatio-parameter greedy reduced-basis training. In (b), the maximum relative output error bound is given by
maxµ∈Ξtrain

∆s
N (µ)/sN (µ) and the maximum relative output error is given by maxµ∈Ξtrain

|sref(µ) − sN (µ)|/|sref(µ)|. Here,
sref denotes the reference output computed accurately to a relative tolerance of 10−3.

(a) solution, µ(4) (b) solution, µ(9)
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Fig. 5. Adaptive finite element approximation of the solution. In (c), for µ(i), i = 4, 9, the relative output error bound is
given by ∆s,N (µ(i))/|sN (µ(i))| and the actual relative output error is given by |sref(µ

(i)) − sN (µ(i))|/|sref(µ
(i))|. Here, sref

denotes the reference output, and sN and ∆s,N denote the output and the error bound, respectively, associated with the finite
element approximation. The parameter values are µ(4) = (101/2, 101/2, 10−1/2, 101/2, 101/2, 101/2, 10−1/2, 10−1/2, 10−1/2)
and µ(9) = (101/2, 10−1/2, 101/2, 101/2, 10−1/2, 101/2, 10−1/2, 101/2, 10−1/2).
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towards two of the corners of Ω5; the edge length of the smallest element is 2−10/3, which implies that
a uniform mesh with the same resolution at the singularity would require ≈ 4 × 107 degrees of freedom
as opposed to N = 4868 for the adaptive mesh. Figure 5(c) shows the error convergence; we require 16
adaptation iterations to resolve the singularities and meet the error tolerance. The effectivity of the error
bound is ≈ 3, which is again quite tight.

Figure 5(f) shows the final common mesh for N = 26. The common mesh is of size N = 8264 and
is aggressively refined towards singularities that are present for some of the training parameters; the edge
length of the smallest element is 2−10/3, which implies that a uniform mesh with the same resolution at
the singularity would require ≈ 4× 107 degrees of freedom. We again emphasize that our spatio-parameter
adaptive algorithm computes each snapshot on an adapted mesh specifically tailored for the parameter value;
the common mesh is used only to evaluate various inner products of the snapshots. Hence, the cost associated
with the computation of a snapshot of a given accuracy is reduced in our spatio-parameter adaptive reduced
basis method relative to the standard reduced basis method that uses a fixed “truth” mesh.

Before concluding this section, we make one observation. While the second case analyzed associated
with µ(9) is a difficult case that exhibit a checkerboard pattern in the upper six blocks, none of the N = 26
snapshots is associated with the full nine-block checkerboard configuration for which strong singularities
are present at all four corners of Ω5. We note that this configuration is included in our training set Ξtrain.
Hence, our reduced basis method provides an approximation that meets the tolerance of εRB = 0.01 for
this most difficult configuration even though a snapshot is never explicitly computed for the configuration.
This is because some of the N = 26 snapshots provide basis functions that resolve the singularities at the
lower corners of Ω5, and hence a linear combination of all N = 26 snapshots effectively approximates the
nine-block checkerboard solution.

8. Summary. We present a reduced basis method for parametrized coercive equations with two ob-
jectives: providing error bounds with respect to the exact weak solution in an infinite-dimensional space;
providing reliable and efficient construction of a reduced basis model through adaptivity in both physical
and parameter spaces. The proposed method builds on two key ingredients: a minimum-residual mixed
formulation; an extension of the SCM to the infinite-dimesional function space. Both ingredients build
on a duality-based approach and admits offline-online computational decomposition. We demonstrate the
effectiveness of the proposed approach using the classical thermal block problem which exhibits parameter-
dependent singularities; the spatio-parameter algorithm significantly reduces the offline computational cost,
providing spatial resolution that would be computationally prohibitive with a uniform mesh. We also em-
phasize that the reduced model training using the spatio-parameter adaptive algorithm is fully automatic as
the user need not worry about the choice of the snapshot parameters or the fidelity of the “truth” space. This
automatic and reliable training is expected to play increasingly important role as the spatial and parametric
complexity of problems we wish to solve continue to increase.

However, we note the error bound procedures as presented also have a number of limitations. First,
the method is limited to linear coercive equations; as discussed in the introduction, to our knowledge,
this is a limitation shared by essentially all computational techniques that provide uniform (as opposed to
asymptotic) error bounds (as opposed to estimates). Second, even with the transformation for the stability
constant which improves the effectivity of the SCM, the SCM can still require a large number of constraint
points for complex cases; however, to our knowledge, the SCM is the only method that can provide uniform
(as opposed to asymptotic) lower bound of the stability constant in an offline-online efficient manner. Due to
these limitations, the construction of truly rigorous offline-online computable error bounds for more general
problems is expected to pose significant challenges. In order to bring spatio-parameter adaptivity to more
general classes of problems, it may be necessary to relax the requirement from uniform error bounds to, for
instance, asymptotic error bounds or error estimates.
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Appendix A. Error bounds without an affine decomposition of K−1(µ). The error bound
described in Sections 3 and 4 relies on the affine decomposition of K−1(µ) given by (2). As noted in Remark 1,
it is also possible to construct energy-norm and functional-output error bounds — with respect to the exact
weak solution — without this assumption. In this appendix, we sketch the construction of this alternative
bound and outline tradeoffs with respect to the proposed bound.

The alternative bound is obtained by computing the dual norm of the residual and the stability constant
with respect to the (non-parametrized) norm (18), given by ‖ · ‖W ≡ ‖ · ‖H1(Ω) + ‖ · ‖L2(ΓN ), instead of the
parametrized norm ‖ · ‖V(µ;δ). For any µ ∈ D and ũ ∈ V, the dual norm of the residual is given by

‖r(·; ũ;µ)‖W ≡ sup
v∈V

r(v; ũ;µ)

‖v‖W
;

a bound form for this dual norm with respect to ‖ · ‖W was introduced in our previous work [23]. The
stability constant, which we denote by αW(µ), is given by

αW(µ) ≡ inf
v∈V

|||v|||2µ
‖v‖2W

;

we note that αW(µ) is equal to the quantity τ(µ) defined in (19), for which we have developed an exact-
bound SCM in Section 4. Hence we may construct energy-norm and functional-output error bounds even in
the absence of the affine decomposition of K−1(µ).

One obvious advantage of this alternative formulation, relative to the formulation developed in Sections 3
and 4, is that the formulation works even when a convenient affine decomposition of K−1(µ) does not exist.
However it has two disadvantages. The first is the computational scaling of the quadratic term of the
residual bound form, G(·, ·;µ; δ), with the number of terms in the affine expansion, QK ; specifically, the
number of terms for the alternative formulation is O(Q2

K) instead of O(QK) for the original formulation.
The second is the sharpness of the stability constant. Specifically, the effectivity of the stability constant for
the alternative formulation, αW(µ) = τ(µ), is the same as the effectivity of τLB(µ); we do not benefit from
the desensitization provided by the the transformation from α(µ; δ) to τ(µ) as given in Proposition 7. The
latter is particularly problematic, as a lower bound provided by the SCM, while rigorous, is often not very
effective. For these reasons, we recommend the formulation described in Sections 3 and 4 for problems for
which a convenient affine decomposition of K−1(µ) exists.

Appendix B. The selection of εRB,FE. In this appendix, we study the effect of the adaptive finite
element tolerance, εRB,FE, on the convergence of the spatio-parameter adaptive weak Greedy algorithm,
Algorithm 2. We first note the minimum requirement for εRB,FE from a theoretical perspective. We observe
that εRB,FE ≤ εRB is required to ensure that the reduced basis approximations at the snapshot parameter
values meet the required tolerance εRB. In fact, in principle, εRB,FE ≤ εRB is the only required condition
to obtain ∆s

N (µ)/sN (µ) ≤ εRB for all µ ∈ Ξtrain. This is because if each snapshot is computed accurately
to the tolerance of εRB, we may in principle compute the snapshot at every µ ∈ Ξtrain; thanks to the
minimum-bound formulation which provides non-increasing sequence of bounds for any given parameter,
this construction is guaranteed to yield a reduced basis model that meets the specified tolerance of εRB for
all µ ∈ Ξtrain. However, in practice we wish to use much fewer than |Ξtrain| snapshots.

We now perform a numerical study to analyze the effect of εRB,FE using the thermal block problem
considered in Section 7. Figure 6 shows the convergence of the spatio-parameter adaptive algorithm for a
few different choices of εRB,FE; here εRB,FE is expressed as a fraction of εRB. We observe that the number
of snapshots, N , required to achieve a given error tolerance decreases for a smaller εRB,FE. In fact, for
εRB,FE = εRB, the convergence noticeably slows down as the maximum error approaches εRB. The two
tighter choices of the finite element tolerance, εRB,FE = εRB,FE/5 and εRB,FE = εRB,FE/20, do not suffer
from this slow convergence at the end. We speculate that the reduced basis systems constructed for these two
values of εRB,FE are essentially the same as that obtained in the limit of εRB,FE → 0 with exact snapshots.

An appropriate choice of εRB,FE relative to εRB is dependent on the problem and also on the desired
balance of the offline and online costs. In particular, the online cost decreases for a smaller εRB,FE/εRB thanks
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Fig. 6. The convergence of the spatio-parameter adaptive algorithm for different choices of εRB,FE.

to the reduced size of the reduced model. On the other hand, the offline cost may decrease or increase: a
smaller εRB,FE/εRB reduces the number of snapshots to be computed but increases the cost of computing
each snapshot. Our recommendation is to use a value of εRB,FE/εFE ≈ 5 to 20, which appears to work well
for the problems we have considered to date.
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