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Abstract We present a reduced basis method for parametrized linear elasticity
equations with two objectives: providing an error bound with respect to the ex-
act weak solution of the PDE, as opposed to the typical finite-element “truth”, in
the online stage; providing automatic adaptivity in both physical and parameter
spaces in the offline stage. Our error bound builds on two ingredients: a minimum-
residual mixed formulation with a built-in bound for the dual norm of the residual
with respect to an infinite-dimensional function space; a combination of a minimum
eigenvalue bound technique and the successive constraint method which provides a
lower bound of the stability constant with respect to the infinite-dimensional func-
tion space. The automatic adaptivity combines spatial mesh adaptation and greedy
parameter sampling for reduced bases and successive constraint method to yield a
reliable online system in an efficient manner. We demonstrate the effectiveness of
the approach for a parametrized linear elasticity problem with geometry transfor-
mations and parameter-dependent singularities induced by cracks.

1 Introduction

Reduced basis (RB) methods provide rapid and reliable solution of parametrized
partial differential equations (PDEs), including linear elasticity equations, in real-
time and many-query applications; see, e.g., a review paper [13] and early applica-
tions to linear elasticity in [10, 14, 4, 7]. However, until recently, RB methods have
focused on approximating the high-fidelity “truth” solution — typically a finite ele-
ment (FE) solution on a prescribed mesh — and not the exact solution of the PDE,
which is of actual interest. Classical RB methods assume that the “truth” model is
sufficiently accurate to serve as an surrogate for the exact PDE. However, in prac-
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tice, satisfying the assumption requires a careful mesh construction especially in the
presence of sharp corners and cracks (as done in [4]), and in any event the assump-
tion is never rigorously verified for all parameter values. In this work, we present
a RB method which provides a certificate with respect to the exact solution of the
parametrized PDE and automatically produces a reduced model that meets the de-
sired tolerance through automatic adaptivity, eliminating the issue of the “truth”.

Specifically, we present a RB method for linear elasticity problems that provides

1. error bounds with respect to the exact solution in energy norm or for functional
outputs for any parameter value in the online stage;

2. automatic adaptivity in physical space and parameter space to control the error
with respect to the exact solution;

3. a strict offline-online computational decomposition such that the online compu-
tational cost is independent of the offline FE solves.

Item 3 provides rapidness, as in the case for the standard RB method. Items 1 and 2,
which provide certification and adaptivity with respect to the exact solution, distin-
guish our method from the standard RB method.

Recently, a number of RB methods has been proposed to provide error bounds
with respect to the exact solution. Ali et al. [1] consider a RB method based on
snapshots generated by an adaptive wavelet method. Ohlberger and Schindler [8]
considers a RB method for multiscale problems with an error bound with respect
to the exact solution. We have also introduced RB methods which provide error
bounds with respect to the exact solution using the complementary variational prin-
ciple [15] and using a minimum-residual mixed formulation [16, 17]. This work
shares a common goal with the above recent works in the RB community.

The error certification and adaptation approach that we present in this paper is
an extension of the method we introduced in [17] for scalar equations to linear elas-
ticity equations with piecewise-affine geometry transformations. We provide a solu-
tion approximation and an upper bound of the residual dual norm using a minimum-
residual mixed formulation. We provide a lower bound of the stability constant using
a version of the successive constraint method (SCM) [5], which has been extended
to provide bounds relative to an appropriate infinite-dimesional function space by
appealing to Weinstein’s method and a residual-based bounding technique. In ex-
tending the approach to linear elasticity, special attention is paid to the treatment of
rigid-body rotation modes and the construction of the dual space in the presence of
geometry transformations.

The paper is organized as follows. Section 2 defines the problem of interest.
Section 3 presents our residual bound procedure. Section 4 presents our stability-
constant bound procedure. Section 5 presents the error bound. Section 6 presents
spatio-parameter adaptive algorithms. Section 7 presents numerical results.
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2 Preliminaries

2.1 Problem statement

Notations. In order to describe tensor operations that appear in linear elasticity, we
now fix the notations. Given a order-2 tensor w, we “reshape” it as a vector w ∈ Rd2

with entries (w)i·d+j = wij . Similarly, given a order-4 tensorA, we “reshape” it as a
matrix A ∈ Rd2×d2 with entiries (A)i·d+j,k·d+l = Aijkl. These reshaped notations
allow us to precisely express operations on order-2 and -4 tensors using the standard
linear algebra notations without introducing explicit indices.

Using the convection, the derivative of a vector field v : Ω → Rd evaluated at
x is expressed as a vector v(x) ∈ Rd2 with entries (∇v(x))i·d+j = ∂vi

∂xj
. Similarly,

the divergence of a order-2 tensor field q : Ω → Rd2 evaluated at x is expressed
as a vector ∇q(x) ∈ Rd with entries (∇q(x))i =

∑d
j=1

∂qij
∂xj

; the evaluation of q
at x in the direction of n ∈ Rd is expressed as a vector n · q(x) ∈ Rd with entries
(n · q(x))i =

∑d
j=1 qij(x)nj .

Problem description over a parametrized domain. We first introduce a P -
dimensional parameter domain D ⊂ RP . We next introduce a d-dimensional
parametrized physical domain Ω̃(µ) ⊂ Rd with a Lipchitz boundary ∂Ω̃(µ). For
each component i = 1, . . . , d, the boundary ∂Ω̃(µ) is decomposed into a Dirichlet
part Γ̃D,i(µ) and a Neumann part Γ̃N,i(µ) such that ∂Ω̃(µ) = Γ̃D,i(µ) ∪ Γ̃N,i(µ).
We then introduce a Sobolev space V(Ω̃) = {ṽ ∈ (H1(Ω̃))d | ṽi|Γ̃D,i = 0, i =

1, . . . , d}, where H1(Ω̃) is the standard H1 Sobolev space over Ω̃. (See, e.g., [2].)
We now introduce order-4 tensors, unwrapped as d2 × d2 matrices, associated

with our linear elasticity problem. We first introduce the strain tensor operator E ∈
Rd2×d2 such that E∇ṽ(x̃) ∈ Rd2 is the reshaped strain tensor. We next introduce a
parametrized stiffness tensor field K̃ : D× Ω̃ → Rd2×d2 ; by definition the stiffness
tensor is symmetric positive definite for all µ ∈ D and x̃ ∈ Ω̃. We also introduce
the associated parametrized compliance tensor field C̃ : D × Ω̃ → Rd2×d2 . The
stiffness and compliance tensor are related by K̃(µ; x̃)C̃(µ; x̃) = Id2 , where Id2
denotes the d2 × d2 identity matrix.

We now consider the following weak formulation of linear elasticity: given µ ∈
D, find ũ(µ) ∈ V(Ω̃(µ)) such that

aΩ̃(µ)(ũ(µ), ṽ;µ) = `Ω̃(µ)(ṽ;µ) ∀ṽ ∈ V(Ω̃) (1)

where

aΩ̃(µ)(w̃, ṽ;µ) =

∫
Ω̃(µ)

∇̃ṽTET K̃(µ)E∇̃w̃dx̃, (2)

`Ω̃(µ)(ṽ;µ) =

∫
Ω̃(µ)

ṽT f̃(µ)dx̃+

∫
Γ̃N (µ)

ṽT g̃(µ)ds̃.
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Here, f̃(µ) is the body force on the solid, g̃(µ) is the traction force on the Neumann
boundaries, and the subscript Ω̃(µ) on the forms emphasizes the problem is defined
over a parameterized physical domain.

Reference-domain formulation. Following the standard approach to treat parametrized
geometric variations in the RB method (see, e.g., [14, 13]), we recast the problem
over the parametrized domain Ω̃(µ) to a parameter-independent reference domain
Ω. Specifically, we consider each point x̃ ∈ Ω̃(µ) to be associated with a unique
point x ∈ Ω by a piecewise affine map. We denote the Jacobian of the parametrized
map by J(µ) ∈ Rd×d and the associated determinant by |J(µ)|. Similarly, we de-
note the Jacobian associated with the mapping of a boundary segment by |∂J(µ)|.
We also introduce a block matrix Y = Id⊗J(µ) ∈ Rd2×d2 that facilitates transfor-
mation of tensors; here ⊗ is the Kronecker product.

We now introduce a Sobolev space over Ω,

V ≡ V(Ω) ≡ {v ∈ (H1(Ω))d | vi|ΓDi = 0, i = 1, . . . , d}

endowed with an inner product

(w, v)V ≡
∫
Ω

∇vT∇wdx+

∫
Ω

vTwdx+

∫
ΓN

vTwds (3)

and the associated induced norm ‖v‖V ≡
√
(v, v)V . We then introduce a weak

formulation that is equivalent to (1) but is associated with the reference domain:
given µ ∈ D, find u(µ) ∈ V such that

a(u(µ), v;µ) = `(v;µ) ∀v ∈ V, (4)

where

a(w, v;µ) =

∫
Ω

∇vTY (µ)−1EK(µ)EY (µ)−T∇w|J(µ)|dx

`(v;µ) =

∫
Ω

vT f(µ)|J(µ)|dx+

∫
ΓN

vT g(µ)|∂J(µ)|ds.

Here the tensor fields in the physical and reference domains are related by ṽ(x̃) =
v(x), K̃(µ; x̃) = K(µ;x), f̃(µ; x̃) = f(µ;x), and g̃(µ; x̃) = g(µ;x). We readily
verify that a(·, ·;µ) is symmetric and bounded in V . We also note that a(·, ·;µ) is
coercive in V due to the Korn inequality and the trace theorem [2]; we denote the
associated energy norm by ||| · |||µ ≡

√
a(·, ·;µ).

Remark 1 In the standard RB formulation [13], we simply treat the elasticity equa-
tion as a vector-valued equation with the stiffness matrix K̂(µ) ≡ |J(µ)|Y (µ)−1EK(µ)EY (µ)−T .
Unfortunately, our exact error-bound formulation does not permit this simple treat-
ment; our formulation [17] requires the inverse of the stiffness matrix, while the ma-
trix K̂(µ) is singular because EK(µ)E is rank-deficient. We will keep the explicit
representation of the stiffness matrix to clearly show how our bound formulation for
linear elasticity circumvents the issue.
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Assumptions. We clarify the set of assumptions for our RB formulation. First,
we assume that the stiffness tensor K(µ), the compliance tensor C(µ), the body
force f(µ), and the boundary traction force g(µ) each admit a decomposition
that is affine in functions of parameter: K(µ) =

∑QK
q=1Θ

K
q (µ)Kq , C(µ) =∑QC

q=1Θ
C
q (µ)Cq , f(µ) =

∑Qf
q=1Θ

f
q (µ)fq , and g(µ) =

∑Qg
q=1Θ

g
q (µ)gq , where

Kq : Ω → Rd2×d2 , Cq : Ω → Rd2×d2 , fq : Ω → Rd, and gq : Ω → Rd are
parameter-independent fields, and ΘKq : D → R, ΘCq : D → R, Θfq : D → R,
and Θgq : D → R are parameter-dependent functions. Second, we assume that the
mapping from the reference domain Ω to the physical domain Ω̃(µ) is piecewise
affine such that both the Jacobian J(µ) and the inverse Jacobian J(µ)−1 admit a
decomposition that are affine in functions of parameter: J(µ) =

∑QJ
q=1Θ

J
q (µ)Jq

and J(µ)−1 =
∑QJinv

q=1 ΘJ
inv

q (µ)J inv
q . Finally, we assume that the fields K(µ),

C(µ), f(µ), and g(µ) are piecewise polynomials such that we can integrate the
fields exactly using standard quadrature rules.

2.2 Abstract error bounds: energy norm and compliance output

To simplify the presentation of our formulation, we introduce a parametrized inner
product

(w, v)W(µ;δ) = a(w, v) + δ(w, v)V

and the associated induced norm ‖w‖W(µ;δ) ≡
√
(w,w)W(µ;δ) for a parameter

µ ∈ D and a weight δ ∈ R>0. Here a(·, ·;µ) is the bilinear form (2), and (·, ·)V
is the inner product (3). The parametrized norm is related to the energy norm by
‖v‖2W(µ;δ) = |||v|||

2
µ + δ‖v‖2V . For any δ ∈ R>0, the norm ‖ · ‖W(µ;δ) is equivalent

to the energy norm ||| · |||µ, which in turn is equivalent to ‖ · ‖H1(Ω). The role of δ in
our formulation is discussed in Sect. 5.

In order to bound the error, we now introduce the residual form

r(v;w;µ) ≡ `(v;µ)− a(w, v;µ) ∀w, v ∈ V (5)

and the associated dual norm ‖r(·;w;µ)‖W′(µ;δ) ≡ supv∈V
r(v;w;µ)
‖v‖W(µ;δ)

. We also in-
troduce the stability constant

α(µ; δ) ≡ inf
v∈V

|||v|||2µ
‖v‖2W(µ;δ)

. (6)

The following proposition bounds the energy norm of the error.

Proposition 2 Given µ ∈ D and an approximation w ∈ V , the error is bounded by

|||u(µ)− w|||µ ≤
1

(α(µ; δ))1/2
‖r(·;w;µ)‖W′(µ;δ),
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where r(·, ·; ·) is the residual form (5), and α(·, ·) is the stability constant (6).

Proof. See, e.g., Rozza et al. [13].

We can also construct an error bound for the compliance output s(µ) ≡ `(u(µ);µ).

Proposition 3 Let the compliance output associated with an approximation w ∈ V
be ŝ(µ) ≡ `(w;µ) + r(w;w;µ), where r(·; ·; ·) is the residual form (5). Then, the
error in the compliance output is bounded by

|s(µ)− ŝ(µ)| ≤ 1

α(µ; δ)
‖r(·;w;µ)‖2W′(µ;δ).

Proof. We suppress µ for brevity. It follows s(µ)−ŝ(µ) = `(u)−(`(w)+r(w;w)) =
`(u)− `(w)− `(w) + a(w,w) = `(u− w)− a(u− w,w) = a(u− w, u− w) =
|||u− w|||2µ. Proposition 2 then yields the desired result.

The energy-norm and compliance-output error bound both require the same ingre-
dients: an upper bound of the dual norm of the residual and a lower bound of the
stability constant. In the next two sections, we develop offline-online efficient com-
putational procedures for both of these quantities.

Remark 4 The output bound framework may be extended to any linear functional
output by introducing the adjoint equation; see, e.g., Rozza et al. [13].

3 Upper bound of the dual norm of the residual

3.1 Bound form

Our bound formulation is based on a mixed formulation and requires a dual field [16,
17]. Our dual space over a physical domain is the H(div)-conforming space

Q(Ω̃(µ)) ≡ {q̃ ∈ (L2(Ω̃(µ)))d
2

| ∇̃ · q̃ ∈ (L2(Ω̃(µ)))d}.

The dual space over the reference domain is given by

Q ≡ {q ∈ (L2(Ω))d
2

| ∇ · q ∈ (L2(Ω))d}.

We relate a field in a physical domain q̃ ∈ Q(Ω̃(µ)) and a field in the reference
domain q ∈ Q by the Piola transformation, q̃(x̃) = |J(µ)|−1Y q(x). The Piola
transformation has an important property that it preserves H(div)-conformity.

The following proposition introduces a version of the bound form introduced
in [17] extended to linear elasticity equations with geometry transformations.

Proposition 5 For any w ∈ V , q ∈ Q, µ ∈ D, and δ ∈ R>0,

‖r(·;w;µ)‖W′(µ;δ) ≤ (F (w, q;µ; δ))1/2,
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where the bound form is given by

F (w, q;µ; δ) = ‖|J(µ)|−1/2C(µ)1/2Y (µ)q − |J(µ)|1/2K(µ)1/2EY (µ)−T∇w‖2L2(Ω)

+ δ−1‖Y (µ)−1(I − E)Y (µ)q‖2L2(Ω) + δ−1‖∇ · q + f(µ)|J(µ)|‖2L2(Ω)

+ δ−1‖g(µ)|∂J(µ)| − n · q‖2L2(ΓN ) (7)

Proof. For notational simplicity, we suppress µ from parameter-dependent opera-
tors and forms in the proof. For all v ∈ V , w ∈ V , q ∈ Q, and δ ∈ R>0,

r(v;w;µ; δ)

=

∫
Ω

vT f |J |dx+

∫
ΓN

vT g|∂J |ds−
∫
Ω

∇vTY −1ETKEY −T∇w|J |dx

+

∫
Ω

vT∇ · qdx+

∫
Ω

∇vT qdx−
∫
ΓN

vTn · qds

=

∫
Ω

∇vTY −1ETK|J |(|J |−1CY q − EY −T∇w)dx+

∫
Ω

∇vTY −1(I − E)Y qdx

+

∫
Ω

vT (∇ · q + f |J |)dx+

∫
ΓN

vT (g|∂J | − n · q)ds

≤ (‖|J |1/2K1/2EY −1∇v‖2L2(Ω) + δ‖∇v‖2L2(Ω) + δ‖v‖2L2(Ω) + δ‖v‖2L2(ΓN ))
1/2

(‖|J |−1/2C1/2Y q − |J |1/2K1/2EY −T∇w‖2L2(Ω) + δ−1‖Y −1(I − E)Y q‖2L2(Ω)

+ δ−1‖∇ · q + f |J |‖2L2(Ω) + δ−1‖g|∂J | − n · q‖2L2(ΓN ))
1/2

= ‖v‖W(µ;δ)(F (w, q;µ; δ))
1/2.

Note, the second line of the first equality vanishes by the Green’s theorem. Hence,
‖r(·;w;µ; δ)‖W′(µ;δ) = supv∈V r(v;w;µ; δ)/‖v‖W(µ;δ) ≤ (F (w, q;µ; δ))1/2,
∀q ∈ Q, which is the desired inequality.

The bound form (7) for linear elasticity is similar to the bound form for scalar
equations introduced in [17]. However, the bound form differs in that it includes
the “asymmetric penalty” term ‖Y (µ)−1(I − E)Y (µ)q‖2L2(Ω); this term penalizes

asymmetry in the dual tensor field in the physical domain, q̃ ∈ Q̃(µ). In our bound-
ing procedure, this term arises because the linear elasticity equation has zero energy
with respect to not only translation but also rotation. In fact, the presence of this term
is closely related to the complementary variational principle for elasticity equations
requiring a symmetric dual field [9], as discussed in detail in Sect. 5.

The form (7) admits a decomposition into a quadratic, linear, and constant forms:

F (w, p;µ; δ) = G((w, p), (w, p);µ; δ)− 2L((w, p);µ; δ) +H(µ; δ).

We here omit the explicit expressions for brevity and refer to a similar decomposi-
tion without the “asymmetric penalty” term in [17]. The forms G, L, and H inherit
the affine decomposition of the parametrized operators K(µ), C(µ), f(µ), g(µ),
J(µ) and J(µ)−1, which makes the bound form F amenable to offline-online com-
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putational decomposition. In addition, the formG(·, ·;µ; δ) is coercive and bounded
in V ×Q; the proof relies on Korn’s inequality and is omitted here for brevity.

3.2 Minimum-bound solutions and approximations

Exact solution. We consider the following minimum bound problem: given µ ∈ D
and δ ∈ R>0, find (u(µ), p(µ)) ∈ V ×Q such that

(u(µ), p(µ)) = arg inf
w∈V, q∈Q

F (w, q;µ; δ).

The associated Euler-Lagrange equation is the following: given µ ∈ D, find
(u(µ), p(µ)) ∈ V ×Q such that

G((u(µ), p(µ)), (v, q);µ; δ) = L((v, q);µ; δ) ∀v ∈ V, ∀q ∈ Q.

The problem is wellposed due to the coercivity and boundedness of G in V ×Q.
We can readily show that the primal solution u(µ) is the weak solution of the

original problem (4), and the dual solution p(µ) in the reference domain is related
to the primal solution by |J(µ)|−1Y (µ)p(µ) = K(µ)EY −T (µ)∇u(µ). The as-
sociated residual bound is 0 as expected. Equivalently, the dual solution and the
primal solution are related in the physical domain by p̃(µ) = K̃(µ)E∇̃ũ(µ); the
dual solution in the physical domain is the stress field. The tensor associated with
the dual field p̃(µ) is symmetric in the physical domain, which is consistent with the
constitutive relation, but is not symmetric in the reference domain.

FE. For a FE approximation of the minimum bound problem, we first intro-
duce a primal FE space VN of H1-conforming Lagrange elements and a dual FE
space QN of H(div)-conforming Raviart-Thomas elements [11]. We then con-
sider the minimum-bound FE approximation: given µ ∈ D and δ ∈ R>0, find
(uN (µ), pN (µ)) ∈ VN ×QN such that

G((uN (µ), pN (µ)), (v, q);µ; δ) = L((v, q);µ; δ) ∀v ∈ VN , ∀q ∈ QN . (8)

The problem is wellposed due to the coercivity and boundedness of G and L. The
dual norm of the residual is bounded by ‖r(·;uN (µ);µ)‖W′(µ;δ) ≤ F (uN (µ), pN (µ);µ; δ)1/2.

RB. For a RB approximation of the minimum bound problem, we first introduce
primal and dual RB spaces VN = span{ξi}Ni=1 ⊂ V and QN = span{ηi}Ni=1 ⊂ Q.
We then introduce a minimum-bound RB approximation: given µ ∈ D and δ ∈
R>0, find (uN (µ), pN (µ)) ∈ VN ×QN such that

G((uN (µ), pN (µ)), (v, q);µ; δ) = L((v, q);µ; δ) ∀v ∈ VN , ∀q ∈ QN .

The problem is again wellposed due to the coercivity and boundedness of G
and L. The dual norm of the residual is bounded by ‖r(·;uN (µ);µ)‖W′(µ;δ) ≤
F (uN (µ), pN (µ);µ; δ)1/2.
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4 Stability constant

4.1 Transformation of the stability constant

We recall that a lower bound of the stability constant α(µ; δ) is needed to bound
the energy norm of the error. In our approach, we do not compute a lower bound
of α(µ; δ) directly but rather consider a related problem associated with another
quantity τ(µ). The following proposition relates the two quantities.

Proposition 6 For any µ ∈ D and δ ∈ R>0, the stability constant α(µ; δ) is
bounded from the below by

α(µ; δ) ≡ inf
v∈V

|||v|||2µ
‖v‖2W(µ;δ)

≥
(
1 +

δ

τLB(µ)

)−1
≡ αLB(µ; δ),

where τLB(µ) satisfies τLB(µ) ≤ τ(µ) ≡ infv∈V |||v|||2µ/‖v‖2V .

Proof. We note that

1

α(µ; δ)
= sup
v∈V

‖v‖2W(µ;δ)

|||v|||2µ
= sup
v∈V

|||v|||2µ + δ‖v‖2V
|||v|||2µ

= 1+ δ sup
v∈V

‖v‖2V
|||v|||2µ

= 1+
δ

τ(µ)
.

Appealing to τLB(µ) ≤ τ(µ) provides the desired inequality.

We make a few observations. First, if we can provide a lower bound of τ(µ), then we
can provide a lower bound of α(µ; δ). Second, the stability constant is close to unity
if we choose δ � τLB(µ); in particular, the effectivity of αLB(µ; δ) is desensitized
from the effectivity of τLB(µ) as long as δ � τLB(µ). Third, in the limit of δ → 0,
the stability constant is unity; this is closely related to the complementary varia-
tional principle, as discussed in detail in Sect. 5. Fourth, the fraction that appears in
the definition of τ(µ) admits an affine decomposition because |||v|||2µ ≡ a(v, v;µ)
admits an affine decomposition and ‖v‖2V is parameter independent.

4.2 A residual-based lower bound of the minimum eigenvalue

By the Rayleigh quotient, the constant τ(µ) is related to the minimum eigenvalue
of the following eigenproblem: given µ ∈ D, find (zi(µ), λi(µ)) ∈ V ×R such that

a(zi(µ), v;µ) = λi(µ)(zi(µ), v)V ∀v ∈ V and ‖zi(µ)‖V = 1; (9)

here the subscript i denotes the index of the eigenpair. We order the eigenpairs in
the ascending order of eigenvalues; hence τ(µ) = mini λi(µ) = λ1(µ).

To compute a lower bound of the minimum eigenvalue, we appeal to Weinstein’s
method. Towards this end, we introduce the eigenproblem residual associated with



10 Masayuki Yano

any approximate eigenpair (w,χ) ∈ V × R,

reig(v;w,χ;µ) = a(w, v;µ)− χ(w, v)V ,

and the associated dual norm ‖reig(·;w,χ;µ)‖V′ ≡ supv∈V
reig(v;w,χ;µ)
‖v‖V . The

eigenproblem residual is sometimes called the “defect” in the literature. We then
introduce the following proposition by Weinstein. (See [3], Chapter 6.)

Proposition 7 For any µ ∈ D and a pair (w,χ) ∈ V × R such that ‖w‖V = 1, the
distance between χ and the closest eigenvalue is bounded by

min
i
|λi(µ)− χ| ≤ ‖reig(·;w,χ;µ)‖V′ .

Proof. See [3] Chapter 6 for a general case or [17] for the specific case.

Corollary 8 Consider any µ ∈ D and a pair (w,χ) ∈ V × R such that ‖w‖V = 1.
If |λ1(µ)− χ| < |λ2(µ)− χ|, then λ1(µ) ≥ χ− ‖reig(·;w,χ;µ)‖V′ .

In order to provide a lower bound of the minimum eigenvalue, the corollary re-
quires that the eigenvalue of the approximate eigenpair (χ,w) ∈ V × R is closer to
λ1(µ) than to λ2(µ). Assuming this condition is satisfied, we can provide a lower
bound of the minimum eigenproblem by bounding the dual norm of the eigenprob-
lem residual, as shown in the following proposition.

Proposition 9 For any w ∈ V , χ ∈ R, q ∈ Q, and µ ∈ D,

‖reig(·;w,χ;µ)‖V′ ≤ (Feig(w,χ, q;µ))
1/2 ∀q ∈ Q,

where the bound form is given by

Feig(w,χ, q;µ) ≡ χ2(‖χ−1|J(µ)|Y (µ)−1EK(µ)EY (µ)−T∇w −∇w − q‖2L2(Ω)

+ ‖w +∇ · q‖2L2(Ω) + ‖w − n · q‖
2
L2(ΓN )). (10)

Proof. The proof is omitted here for brevity. We refer to [17] for a complete proof;
unlike the proof of Proposition 5, rigid-body rotation modes do not introduce addi-
tional difficulties relative to the scalar case in [17].

We can readily show that for an eigenpair (z1(µ), λ1(µ)) ∈ V × R of (9),
infq∈Q Feig(z1(µ), λ1(µ), q;µ) = 0. Hence, given the exact eigenvalue λ1(µ), there
exists (w, q) ∈ V ×Q such that the lower bound collapses to the exact eigenvalue.

4.3 FE approximation of bounds of τ (µ)

Upper bound. An upper bound of τ(µ) is readily given by a FE approximation of
the eigenproblem (9): given µ ∈ D, find (zN1 (µ), λN1 (µ)) ∈ VN × R such that
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a(zN1 (µ), v;µ) = λN1 (µ)(zN1 (µ), v)V ∀v ∈ V and ‖zNi (µ)‖V = 1. (11)

Because λ1(µ) ≡ infv∈V |||v|||2µ/‖v‖2V ≤ infv∈VN |||v|||2µ/‖v‖2V ≡ λN1 (µ), we con-
clude τ(µ) ≡ λ1(µ) ≤ λN1 (µ) ≡ τNUB(µ). We hence set τNUB(µ) ≡ λN1 (µ).

Lower bound. To compute a lower bound of τ(µ) using a FE approximation,
we first solve the Galerkin FE problem (11) to obtain an approximate eigenpair
(zN1 (µ), λN1 (µ)) ∈ VN ×R. We then solve the minimum bound problem associated
with (10) for the dual field: given µ ∈ D, find yN (µ) ∈ QN such that

yN (µ) = arg inf
q∈QN

Feig(z
N
1 (µ), λN1 (µ), q;µ).

We then assume that |λ1(µ)− λN1 (µ)| < |λ2(µ)− λN1 (µ)| and set

τNLB(µ) ≡ λN1 (µ)− (Feig(z
N
1 (µ), λN1 (µ), yN (µ);µ))1/2 ≤ τ(µ). (12)

We unfortunately have no means to verify whether the assumption |λ1(µ)−λN1 (µ)| <
|λ2(µ)−λN1 (µ)| is satisfied. However, in practice, we have found that smaller eigen-
values of (9) are well separated, and the associated eigenfunctions are well approxi-
mated even on very coarse meshes. Hence, τNLB(µ) defined by (12) provides a lower
bound of the stability constant τ(µ).

4.4 Offline-online efficient SCM and RB bounds of τ (µ)

Lower bound. While the approach described in Sect. 4.3 provides a lower bound
of the stability constant τ(µ) under a plausible assumption, the approach requires
FE approximations and is not suited for rapid online evaluation. To overcome the
difficultly, we appeal to a version of the successive constraint method (SCM) of
Huynh et al. [5] that has been extended to compute a lower bound of the stability
constant with respect to an infinite-dimensional function spaces [17]. We refer to [5,
17] for detailed discussion of the algorithm; we here simply present the mechanics
for completeness.

For notational simplicity, we first define an operator associated with the bilin-
ear form a(w, v;µ), A(µ) ≡ |J(µ)|Y (µ)−1EK(µ)EY (µ)−T . Because K(µ) and
Y (µ)−1 = Id⊗J(µ)−1 admit affine decompositions,A(µ) also admits an affine de-
composition, which we denote by A(µ) =

∑QA
q=1Θ

A
q (µ)Aq. The number of terms

in the affine expansion QA is at most QJQ2
J invQK .

The SCM computes the lower bound as follows. We first introduce a bound-
ing box BQA ≡

∏QA
q=1[γ̂

−
q , γ̂

+
q ] ⊂ RQA , where γ̂±q ≡ ‖λmax(Aq)‖L∞(Ω);

we can readily evaluate ‖λmax(Aq)‖L∞(Ω) since Aq are known. We then define

YLB,M ≡
{
y ∈ BQA |

∑QA
q=1Θ

A
q (µ

′) ≥ τNLB(µ′), ∀µ′ ∈ Ξcon

}
; here Ξcon ⊂ D

is a set of judiciously chosen “SCM constraint points” (e.g., by a greedy algorithm)
of cardinality M , and τNLB(µ

′), µ′ ∈ Ξcon, are the FE approximations of lower
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bound of eigenvalues in (12). The SCM lower bound of τ(µ) is then given by

τLB,M (µ) = inf
y∈YLB,M

QA∑
q=1

ΘAq (µ)yq. (13)

We can readily show τLB,M (µ) ≤ τ(µ); we refer to [5] or [17] for a proof.
The SCM algorithm is online-offline efficient: in the offline stage, we evaluate

the constants {γ±q } by taking the L∞-norm of Aq and {τNLB(µ′)}µ′∈Ξcon by solving
M ≡ |Ξcon| FE problems (12); in the online stage, we solve a linear programming
problem (13) with QA variables and M inequality constraints.

Upper bound. While bounding the error in the online stage requires only the
lower bound τLB,M (µ), our offline training algorithm also requires a rapidly com-
putable upper bound of τ(µ) to select Ξcon. Towards this end, we appeal to a
Galerkin RB approximation of τ(µ) (c.f. [12]). We introduce a RB space spanned by
the eigenfunctions associated withM parameter values: Veig

M = span{zN1 (µ′)}µ′∈Ξcon
.

We then solve a RB eigenproblem: given µ ∈ D, find (zM,1(µ), λM,1(µ)) ∈
Veig
M × R such that ‖zM,1(µ)‖V = 1 and

a(zM,1(µ), v;µ) = λM,1(µ)(zM,1(µ), v)V ∀v ∈ Veig
M . (14)

Because λ1(µ) ≡ infv∈V |||v|||2µ/‖v‖2V ≤ infv∈Veig
M
|||v|||2µ/‖v‖2V ≡ λ1,M (µ), we

conclude τ(µ) ≡ λ1(µ) ≤ λN1 (µ) ≡ τUB,M (µ). We hence set τUB,M (µ) ≡
λM,1(µ). The RB eigenproblem (14) is amenable to offline-online computational
decomposition because the form a(·, ·;µ) admits an affine decomposition. In addi-
tion, the basis Veig

M is generated as a biproduct of computing {τNLB(µ′)}µ′∈Ξcon by
FE eigenproblem (11) in the offline stage.

5 Error bounds

Bounds. Having devised offline-online efficient approach for computing an upper
bound of the dual norm of the residual and a lower bound of the stability constant,
we appeal to Proposition 2 to obtain a computable bound of an energy norm of the
error:

|||u(µ)− uN (µ)|||µ ≤ ∆N (µ) ≡ 1

(αLB,M (µ; δ))1/2
(F (uN (µ), pN (µ);µ; δ))1/2.

Similarly, we appeal to Proposition 3 to define an approximate compliance output
sN (µ) = `(uN (µ)) + r(uN (µ), uN (µ);µ) and to provide an error bound

|s(µ)− sN (µ)| ≤ ∆s
N (µ) ≡ 1

α(µ; δ)
F (uN (µ), pN (µ);µ; δ).
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We note that the term r(uN (µ), uN (µ);µ) is nonzero because our approximation
uN (µ) is based on the minimum-bound formulation and not a Galerkin projection.

Complementary variational principle. There exists a close relationship be-
tween our error bound formulation and finite-element error bounds based on the
complementary variational principle in, e.g., [6, 9]. If we consider the limit of δ → 0
for our norm ‖ ·‖W(µ;δ), our bound form (7) expressed in the physical domain Ω̃(µ)
becomes

F (w, q;µ; δ) =

{
‖C̃(µ)1/2q̃ − K̃(µ)1/2∇̃w̃‖2

L2(Ω̃)
, q ∈ Q̃?(µ),

∞, q 6∈ Q?(µ),

where

Q̃?(µ) = {q̃ ∈ Q̃(µ) | −∇̃ · q̃ = f̃(µ), ñ · q̃ = g(µ), q̃-tensor is symmetric} (15)

The associated stability constant for δ → 0 is limδ→0 α(µ; δ) = 1.
The conditions that define Q̃(µ) in (15) are the dual-feasibility conditions asso-

ciated with the complementary variational principle. The symmetry of the dual field
is a required condition for linear elasticity [9], which is not present for scalar equa-
tions. In addition, for q̃ ∈ Q̃(µ), the complementary variational principle yields
|||w̃|||2µ ≤ ‖C̃(µ)1/2q̃ − K̃(µ)1/2∇̃w̃‖2

L2(Ω̃)
, which implies that the stability con-

stant is unity. Hence, our bound formulation in the limit δ → 0 is equivalent to the
complementary variational principle.

For δ > 0, our approach is a “relaxation” of the complementary variational prin-
ciple in the sense that it does not require the dual field to lie in the dual-feasible
space (15). This relaxation facilitates offline-online decomposition, as the construc-
tion of the parameter-dependent dual-feasible space Q̃?(µ) in an online-efficient
manner seems only possible for rather limited cases [15]. However, as a conse-
quence, our stability constant α(µ; δ) is not unity, and we require an explicit com-
putation of a lower bound of the stability constant.

6 Spatio-parameter adaptation

Our spatio-parameter adaptation algorithm for SCM and RB offline training are
presented in [17]; we here reproduce the algorithms for completeness.

SCM. The SCM training algorithm is shown as Algorithm 1. The algorithm
leverages the offline-online efficient upper and lower bounds of τ introduced in
Sect. 4. In short, the algorithm computes the relative bound gap for each µ ∈ Ξtrain,
identifies µ with the largest bound gap, computes τNUB and τNUB to prescribed accu-
racy εSCM,FE using the adaptive FE eigensolver, and updates the SCM constraint
set and reduced basis for the eigenproblem. The process is repeated until the bound
gap meets εSCM for all µ ∈ Ξtrain. The two threshold parameters must satisfy
εSCM,FE ≤ εSCM < 1; in practice we set εSCM ≈ 0.8 and εSCM,FE ≤ εSCM,FE/2.
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Algorithm 1: Spatio-parameter adaptive SCM training
input : Ξtrain ⊂ D: SCM training set

εSCM, εSCM,FE: greedy and finite-element bound-gap tolerances
output: {τNLB(µ′)}µ′∈Ξcon

: SCM constraints
Veig
M = {zN1 (µ′)}µ′∈Ξcon

: RB eigenproblem space
1 for M = 1, 2, . . . do
2 Identify the maximum relative τ(µ) gap parameter

µ(M) = arg supµ∈Ξtrain
(τUB,M−1(µ)− τLB,M−1(µ))/τUB,M−1(µ).

3 If supµ∈Ξtrain
(τUB,M (µ)− τLB,M (µ))/τUB,M (µ) < εSCM, terminate.

4 Solve (11) and (12) to obtain eigenpair (zN1 (µ(M)), λN1 (µ(M)) ≡ τNUB(µ(M))) and
a lower bound τN1,LB(µ); invoke mesh adaptivity as necessary such that
(τNUB(µM )− τNLB(µM ))/τNUB(µ) < εSCM,FE.

5 Augment the SCM constraint set, Ξcon ← Ξcon ∪ µ(M), and update
{τNLB(µ′)}µ′∈Ξcon

and Veig
M = {zN1 (µ′)}µ′∈Ξcon

accordingly.
6 end

RB. The RB training algorithm is shown as Algorithm 2. The algorithm lever-
ages the offline-online efficient error bound ∆N . In short, the algorithm computes
the error bound for each µ ∈ Ξtrain, identifies µ with the largest error bound, ap-
proximate the solution to prescribed accuracy using the adaptive mixed FE solver,
and updates the reduced basis. The process is repeated until the error bound meets
εRB for all µ ∈ Ξtrain. The two threshold parameters must satisfy εRB,FE ≤ εRB ; in
practice we set εRB,FE ≤ εRB/2. We set δ ≡ minµ∈Ξtrain τLB,M (µ)/10 throughout
the training (and in online evaluation); the choice ensures that the stability constant
satisfies 10/11 ≤ αLB,M (µ) ≤ 1 and in particular is close to unity.

The reduced model constructed by Algorithms 1 and 2 provides an RB approxi-
mation uN (µ) such that the error |||u(µ)− uN (µ)|||µ with respect to the exact solu-
tion is guaranteed to be less than εRB for all µ ∈ Ξtrain; for µ /∈ Ξtrain, the model
may yield an approximation with an error greater than εRB, but the approximation
is nevertheless equipped with an error bound with respect to the exact solution.

Algorithm 2: Spatio-parameter adaptive RB training
input : Ξtrain: RB training set

εRB, εRB,FE: greedy and finite-element error tolerance
output: VN ,QN : RB spaces

1 for N = 1, 2, . . . do
2 Identify the maximum bound parameter µ(N) = arg supµ∈Ξtrain

∆N−1(µ).
3 If supµ∈Ξtrain

∆N−1(µ) ≤ εRB, terminate.
4 Solve (8) to obtain FE approximations uN (µ(N)) and pN (µ(N)); invoke mesh

adaptivity as necessary such that ∆N (µ) ≤ εRB,FE.
5 Update RB spaces: VN = span{VN−1, uN (µ(N))} and

QN = span{QN−1, pN (µ(N))}.
6 end
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7 Numerical results

7.1 Problem description

We consider a linear elasticity problem associated with a cracked square patch of
unit-length edges shown in Fig. 1. We will refer to the crack embedded in the do-
main as the “embedded crack” and crack in the center as the “primary crack.” Two
parameters characterize the embedded crack: the first parameter, µ1 ∈ [0.25, 0.4],
controls the vertical location of the crack; the second parameter, µ2 ∈ [0.3, 0.7],
controls the length of the crack. The patch is clamped along ΓD, is subjected to ver-
tical traction force along ΓT , and is traction-free on all other boundaries. The output
of interest is compliance.

72
71

!T

!D

Fig. 1 Geometry and parametrization of the cracked patch problem.

7.2 Uniform spatio-parameter refinement

We first solve the parametrized cracked patch problem using uniform refinement.
The spatial meshes are obtained by uniformly refining the initial mesh shown in
Fig. 2(a). The snapshot locations are 22, 32, 42, and 52 equispaced points over D ≡
[0.25, 0.4] × [0.3, 0.7]. All mixed FE discretization is based on P3 Lagrange and
RT2 Raviart-Thomas elements. For the purpose of assessment, the error bounds are
computed on the sampling set Ξ ⊂ D consisting of 31× 41 = 1271 equidistributed
parameter points.

Figure 2(b) shows the result of the uniform refinement study. On the coarsest
mesh withN = 1008 degrees of freedom, the output error bound stagnates forN ≥
9 and is of O(1) independent of the number of snapshots; the error is dominated by
the insufficient spatial resolution. Even on the finest mesh with N ≈ 220,000, the
convergence of the error bound is affected by the spatial resolution for N ≥ 16.
This behavior is due to the relatively slow convergence of the FE method in the
presence of spatial singularity and a rapid convergence of the RB method for the
parametrically smooth problem.
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Fig. 2 Uniform refinement convergence study: (a) initial mesh with the cracks denoted in red; (b)
convergence with N for several FE meshes.

7.3 Spatio-parameter adaptive SCM and RB refinement

SCM. We now apply the spatio-parameter adaptive SCM training, Algorithm 1, us-
ing threshold parameters εSCM = 0.8 and εSCM,FE = 0.2. Figure 3 summarizes the
result of the training process. Figure 3(a) shows that the dimension of the adaptive
FE space varies from ≈ 3500 to ≈ 7500, depending on the configuration. Fig-
ure 3(b) shows that the target maximum relative SCM bound gap of εSCM = 0.8 is
achieved using M = 40 constraint points for all µ ∈ Ξ ⊂ D. Figure 3(c) shows
that, similar to the original SCM [5], the SCM lower bound of the eigenvalue is
rather pessimistic away from the constraint points; as discussed earlier, we accept
the pessimistic estimate for the rigor it provides, and in any event the effectivity
of the stability constant αLB,M will be desensitized from the pessimistic estimate
τLB,M thanks to the transformation introduced in Sect. 4.1. Figure 3(d) shows that
the Galerkin approximation of the upper bound — which in fact approximates very
closely the true value of τ — varies smoothly over the parameter domain. The min-
imum τLB is bounded from the below by 0.0018; we hence set δ = 0.00018 to
ensure that αLB,M (µ) > 0.9.

In order to more closely analyze the adaptive FE approximation of the stability
eigenproblem, we show in Fig. 4 the adaptation behavior for two configurations as-
sociated with the smallest and largest FE spaces. Figures 4(a)–(c) summarize the
behavior for µ(6), the configuration where the embedded crack is shortest and is
far from the primary crack; the final N = 3514 mesh exhibits strong refinement
towards the primary crack tip, but relatively weak refinement towards the embed-
ded crack tips. Figures 4(d)–(f) summarize the behavior for µ(3), the configuration
where the embedded crack is longest and is closest to the primary crack; the final
N = 7690 mesh exhibits much stronger refinement towards the embedded crack
tips compared to the mesh for µ(6). As shown in Figs. 4(c) and 4(f), the lower bound
is not as effective as the upper bound in general, but we accept the ineffectiveness
for the rigor it provides.
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Fig. 3 Behavior of the spatio-parameter adaptive greedy method for SCM: (a) the dimension of
the FE spaces; (b) reduction in the bound gap with number of SCM constraints; (c) SCM lower
bound of τ over D; (d) Galerkin reduced-basis upper bound of τ over D.

RB. We now train the RB model using the spatio-parameter adaptive method,
Algorithm 2, for threshold parameters εRB = 0.01 and εRB,FE = 0.005. Figure 5
summarizes the result of the greedy training. Figure 5(a) shows that the number of
degrees of freedom varies from ≈ 13,000 to ≈ 21,000. Figure 5(b) shows the ex-
ponential convergence of the compliance output error with the dimension of the RB
space; this is contrary to the behavior for uniform meshes for which the convergence
with respect to the parameter dimension is limited by the insufficient spatial resolu-
tion. Figure 5(c) shows that reduced model produces an error less than εRB = 10−2

for any parameter value in D (or more precisely at least Ξ). Figure 5(d) shows that
the final common mesh which reflects refinement required for all configurations
over D exhibits strong refinement towards the crack tips and some corners.

As we have done for the eigenproblem, we show in Fig. 6 the adaptive FE so-
lution for two configurations associated with the smallest and largest FE spaces.
Figures 6(a)–(c) summarize the behavior for µ(17), the configuration where the em-
bedded crack is shortest and far from the primary crack; the final N = 13270 mesh
shows relatively weak refinement towards the embedded crack tips. Figure 6(d)–(f)
summarize the behavior for µ(2), the configuration where the embedded crack is
longest and closest to the primary crack; we observe much stronger refinement to-
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(a) µ(6) least-stable mode (b) final mesh (N = 3514)
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(d) µ(3) least-stable mode (e) final mesh (N = 7690)

102 103 104

N

-6

-4

-2

0

2

4

6

8

=
(7

)

#10-3

upper bound, =N
UB(7)

lower bound, =N
LB(7)

(f) error convergence

Fig. 4 Adaptive FE eigenproblem approximation for (a)–(c) µ(6) = (0.29, 0.3) and (d)–(f)
µ(3) = (0.4, 0.7).

wards all crack tips. For both cases, the effectivity of the compliance output error
bound is less than 10, which is acceptable given that this is (rigorous) bounds of the
error in the outputs. For assessment purpose, the reference output is computed using
an adaptive FE method with an error tolerance that is 10 times tighter than the target
tolerance.
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