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Abstract

We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy
associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive
partial differential equations with piecewise polynomial forcing and operators that admit decom-
positions that are affine in functions of parameters. The construction of the upper bound appeals
to the standard primal variational argument; the construction of the lower bound appeals to the
complementary variational principle. We identify algebraic conditions for the reduced basis approx-
imation of the dual variable that results in an exact satisfaction of the dual feasibility conditions
and hence a rigorous lower bound. The formulation permits an offline-online computational decom-
position such that, in the online stage, the approximation and exact certificates can be evaluated in
complexity independent of the underlying finite element discretization. We demonstrate the tech-
nique in two numerical examples: a one-dimensional reaction-diffusion problem with a parametrized
diffusivity constant; a planar linear elasticity problem with a geometry deformation. We confirm
in both cases that the method produces guaranteed upper and lower bounds of the energy at any
parameter value, for any finite element discretization, and for any reduced basis approximation.

Keywords: reduced basis, a posteriori error bound, complementary variational principle, partial
differential equations

1. Introduction

The theory and applications of the certified reduced basis method — a model reduction tech-
nique that aims to achieve a rapid and reliable characterization of parametrized partial differential
equations — have advanced considerably in the past decade (see Rozza et al. [15], Quarteroni et
al. [13], and references therein). A computationally efficient offline-online construction of error
bounds has been one of the main focuses of the certified reduced basis method; however, to our
knowledge, with few recent exceptions [18, 20], the existing reduced basis error bounds are with
respect to some finite element “truth” which is assumed to be sufficiently accurate. This assump-
tion may not be true for problems with spatial singularities and in any event is often not verified
in a rigorous manner. The lack of reliable feedback on the validity of the “truth” can lead to either
an inaccurate reduced basis prediction in the online stage (with respect to the infinite-dimensional

∗Corresponding author
Email address: myano@mit.edu (Masayuki Yano)

Preprint submitted to Elsevier January 14, 2015



weak solution) or overly conservative finite element “truth” and expensive computation in the of-
fline stage. In this work, we introduce a reduced basis method that provides rigorous upper and
lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized
steady symmetric coercive partial differential equations under two assumptions: the equation of
interest consists of piecewise polynomial forcing functions (or “data”); the differential operator and
data admit decompositions that are affine in functions of the parameters. We hence aim to entirely
remove the issue of the “truth” within the certified reduced basis framework.

Our reduced basis method appeals to the complementary variational principle (or constitutive
relation error), a principle that has been successfully used in the construction of finite element error
bounds by, for instance, Ladevèze and Leguillion [7], Ainsworth and Oden [1], and Sauer-Budge et
al. [16, 17]. More recently, in the context of model reduction, the principle has been used in the
construction of rigorous error bounds for the proper generalized decomposition by Ladevèze and
Chamoin [6]; the principle has also been applied to computational homogenization by Kerfrieden et
al. [5]. In the context of certified reduced basis method for parametrized partial differential equa-
tions, the key to the application of the complementary variational principle is the identification of
algebraic conditions for the dual reduced basis space associated with an arbitrary parameter value.
In particular, the construction of the dual reduced basis space must be independent of the finite
element complexity. We will demonstrate that this is indeed possible under the usual reduced basis
assumption of the affine parameter dependence.

The contribution of the paper is the reduced basis formulation that provides upper and lower
bounds for the energy associated with the infinite-dimensional weak solution of steady symmetric
coercive equations. The bounds are uniform, as opposed to asymptotic, and certifies the approxima-
tion for any parameter value, for any finite element resolution, and for any reduced basis resolution.
In addition, for our particular bound construction, we may associate the bound gap of the energy
with the energy norm of the reduced basis solution error, and hence the energy bound provides
an exact certificate of the solution field. The method admits an offline-online computational de-
composition such that the online computational cost, including the cost associated with the bound
computation, is independent of the underlying finite element discretization. As mentioned above,
the formulation removes the issue of the finite element “truth” in the reduced basis certification
process; the formulation is particularly suited for problems that exhibit spatial singularity in which
the reliability of the finite element “truth” space can be questionable.

Before we proceed, we note limitations of the proposed bound strategy based on the comple-
mentary variational principle; the first three are inherited from the finite element counterpart.
First, the method applies only to symmetric coercive problems. Second, the method requires the
“data” — both from the interior forcing and boundary conditions — that is exactly representable
as piecewise polynomials with respect to the underlying finite element triangulation. Third, the
formulation requires, in the offline stage, a non-standard finite element approximation of the dual-
feasible solution. Fourth, the formulation requires, in the online stage, a potentially large algebraic
expansion, which could compromise the online efficiency. We discuss potential extensions that could
remedy some of these limitations at the conclusion of this paper in Section 5.

This paper is organized as follows. In Section 2, we introduce our reduced basis method with
exact-solution certificates for a diffusion equation with a parametrized diffusivity tensor; we recall
the complementary variational principle, review a computational strategy for the dual variables,
and present an offline-online computational strategy for the reduced basis method. In Section 3 we
consider various extensions of the method: we consider a parametrized right-hand side, multiple
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domain-dependent parameters, reaction-diffusion equation, (planar) linear elasticity equations, and
affine geometry transformations. In Section 4, we demonstrate the method on two examples: one-
dimensional reaction-diffusion equation with a variable diffusivity constant; planar-stress linear
elasticity with an affine geometry transformation. In Section 5, we summarize the key contributions
and identify several future research directions.

2. A Reduced Basis Method with Exact-Solution Certificates

2.1. Model Problem: Parametrized Diffusion Equation

By way of preliminaries, we first introduce a Lipschitz domain Ω ⊂ Rd with a boundary par-
tition ∂Ω = ΓD ∪ ΓN for ΓD non-empty. We then introduce a Hilbert space V ≡ {v ∈ H1(Ω) :
v|ΓD = 0} over Ω endowed with an inner product (w, v)V ≡

∫
Ω∇w · ∇vdx and the induced norm

‖w‖V =
√

(w,w)V . We next introduce a parameter space D ⊂ RP . We then consider the following
parametrized elliptic problem: given µ ∈ D, find u(µ) ∈ V such that

a(u(µ), v;µ) = `(v), ∀v ∈ V,

where

a(w, v;µ) ≡
∫

Ω
∇v ·D(µ)∇wdx, ∀w, v ∈ V,

`(v) ≡
∫

Ω
fvdx+

∫
ΓN

gvds, ∀v ∈ V,

for D(µ) ∈ Rd×d a symmetric positive definite matrix (that is invariant over Ω), f ∈ L2(Ω), and
g ∈ L2(ΓN ). We assume thatD(µ) permits a decomposition that is affine in functions of parameters:
D(µ) =

∑Q
q=1 Θq(µ)Dq for parameter-dependent functions Θq: D → R and parameter-independent

matrices Dq ∈ Rd×d, q = 1, . . . , Q. We in addition assume that the data f and g admit piecewise
polynomial representations of a degree at most pf over Ω and ΓN , respectively. Recall that the
solution u(µ) ∈ V is the infimizer of an energy functional:

u(µ) = arg inf
w∈V

Jp(w;µ),

where

Jp(w;µ) ≡ 1

2
a(w,w;µ)− `(w);

here the subscript “p” stands for “primal.” We are interested in the energy associated with the
exact solution J(µ) ≡ Jp(u(µ);µ). We in particular consider an efficient construction of upper and
lower bounds denoted by J+

N (µ) and J−N (µ), respectively, over the entire parametrer range:

J−N (µ) ≤ J(µ) ≤ J+
N (µ), ∀µ ∈ D.

We will later see that the above bounds, for our particular construction of J+
N (µ), may be used to

bound the energy norm of the error |||u(µ)− uN (µ)|||µ associated with a low-dimensional approxi-
mation uN (µ) of the exact solution u(µ); here the energy norm is defined as ||| · |||µ ≡

√
a(·, ·;µ).
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2.2. Certified Finite Element Method

2.2.1. Upper Bound

The construction of an upper bound of the exact energy J(µ) is straightforward owing to the
variational structure of the elliptic problem. We first introduce a triangulation Th of Ω and denote
the skeleton of the triangulation by ∂Th; we require Th to be chosen such that f |κ ∈ Ppf (κ), ∀κ ∈ Th,
and g|γ ∈ Ppf (γ), ∀γ ∈ ∂Th. Here, Pp(D) denotes the space of polynomials of degree at most p over
a domain D. We then introduce a N -dimensional subspace V N ≡ {v ∈ V : v|κ ∈ Pp(κ), ∀κ ∈ Th}
on the triangulation Th. We seek the finite element approximation: given µ ∈ D, find

uN (µ) ≡ arg inf
wN∈V N

Jp(wN ;µ) ;

recall that the infimizer is the solution of the weak statement: find uN (µ) ∈ V N such that

a(uN (µ), v;µ) = `(v) , ∀v ∈ V N .

We now note that

J+,N (µ) ≡ Jp(uN (µ);µ) = inf
wN∈V N

Jp(wN ;µ) ≥ inf
w∈V
Jp(w;µ) = J(µ) ;

thus, for any given µ ∈ D, J+,N (µ) is an upper bound of the exact energy J(µ). The superscript
“+,N” on J+,N (µ) signifies that the quantity is an upper bound computed in a N -dimensional
finite element space. We note that, owing to the piecewise polynomial assumption on f and g, the
interior and boundary data can be integrated exactly and hence we do not commit variational crimes
in the upper bound construction. The computational complexity of the upper bound construction
is O(N k), where the exponent k ≥ 1 dependents on the linear solver strategy.

2.2.2. Lower Bound: Principle

We now construct a lower bound of the exact energy J(µ). Towards this end, we first introduce
a bilinear form

b(q, w) =

∫
Ω
q · ∇wdx, ∀q ∈ (L2(Ω))d, ∀w ∈ V.

We then introduce a broken space defined on the triangulation Th,

V̂ ≡ {v ∈ L2(Ω) : v|κ ∈ H1(κ), ∀κ ∈ Th} ⊃ V. (1)

We next define a space of vector-valued functions Ŷ ≡ (V̂ )d. We then introduce a space of dual
variables that plays a key role in the certification procedure,

Q ≡ {q ∈ Ŷ : b(q, w) = `(w), ∀w ∈ V };

for a reason that becomes clear shortly, we refer to the condition b(q, w) = `(w), ∀w ∈ V , as the
dual feasibility condition. We finally introduce a dual energy functional

Jd(q;µ) ≡ −1

2

∫
Ω
q ·D−1(µ)qdx, ∀q ∈ Ŷ ;

here the subscript “d” stands for “dual.”
We now state the key proposition for our lower bound construction:
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Proposition 1. For any q ∈ Q and µ ∈ D,

J(µ) ≥ Jd(q;µ) .

Proof. By the complementary variational principle,

0 ≤ 1

2

∑
κ∈Th

∫
κ
(q −D(µ)∇w) ·D−1(µ)(q −D(µ)∇w)dx

=
1

2

∫
Ω
q ·D−1(µ)qdx+

1

2

∑
κ∈Th

∫
κ
∇w ·D(µ)∇wdx−

∑
κ∈Th

∫
κ
q · ∇wdx

= −Jd(q;µ) +
1

2
a(w,w)− b(q, w)

= −Jd(q;µ) +
1

2
a(w,w)− `(w), ∀q ∈ Q, ∀w ∈ V ;

here the last equality follows from the definition of the dual space Q. Since u(µ) ∈ V , it follows
that

Jd(q;µ) ≤ 1

2
a(u(µ), u(µ))− `(u(µ)) = J(µ), ∀q ∈ Q ,

which is the desired relationship.

The proposition suggests that, if we can efficiently construct the dual space Q, then we may use
any element of Q to construct a lower bound. In addition, as regard its sharpness, we may appeal
to

Proposition 2. The lower bound estimate is sharp in the sense that

sup
q∈Q
Jd(q;µ) = J(µ).

Proof. We set p(µ) = D(µ)∇u(µ). We readily confirm that p(µ) ∈ Q because

b(p(µ), w) = b(D(µ)∇u(µ), w) = a(u(µ), w) = `(w), ∀w ∈ V.

In addition,

Jd(p(µ);µ) = −1

2

∫
Ω
∇u(µ) ·D(µ)∇u(µ)dx =

1

2

∫
Ω
∇u(µ) ·D(µ)∇u(µ)dx− `(u(µ)) = J(µ),

and hence p(µ) ∈ Q is the supremizer and the desired equality holds.

In the construction of the reduced basis lower bound to be introduced in Section 2.3, we will
only appeal to the fact that an element in Q that approximates p(µ) is computable in the offline
stage. In other words, our reduced basis lower bound does not rely on a particular finite element
approximation procedure for p(µ). However, in below for completeness, we review a finite-element
approximation strategy for p(µ) that exactly satisfies the dual feasibility condition. (See also Pled et
al. [12] for other approximation strategies.)
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2.2.3. Lower Bound: Localization by Relaxation

We wish to construct an approximation of the exact flux p(µ) ∈ Q in a computationally effi-
cient manner; here we follow the approach of Sauer-Budge et al. [16] which employs a two-stage
procedure: the computation of an approximate inter-elemental flux; the maximization of localized
dual problems with the exact dual feasibility constraint.

Towards this end, we consider an elemental decomposition of the dual feasibility constraint for
the space Q:

`(w)− b(q, w) =

∫
Ω
fwdx+

∫
ΓN

gwds−
∑
κ∈Th

∫
κ
q · ∇wdx

=
∑
κ∈Th

[∫
κ
(f +∇ · q)wdx−

∫
∂κ\ΓN

(nκ · q)wds+

∫
∂κ∩ΓN

(g − nκ · q)wds

]
, ∀w ∈ V .

Note that sufficient conditions to satisfy the constraints are, in the sense of distribution,

−∇ · q = f in H−1(κ), ∀κ ∈ Th, (2)

n̂κ · q = g in H−1/2(∂κ ∩ ΓN ), ∀κ ∈ Th, (3)

n̂κ · q|κ = n̂κ′ · q|κ′ in H−1/2(κ̄ ∩ κ̄′), ∀κ, κ′ ∈ Th; (4)

here κ̄ denotes the closure of κ, and hence κ̄ ∩ κ̄′ is the face shared by the elements κ and κ′.
The last condition requires the continuity of the normal fluxes across elemental interfaces, which
introduces a global coupling. In order to localize the problem, we now introduce a trace space on
the skeleton of the triangulation ∂Th:

Λ ≡ {χ : χ|γ ∈ H−1/2(γ) ,∀γ ∈ ∂Th; χ|γ = g, ∀γ ∈ ΓN} .

We then note that, if we introduce an arbitrary fixed element χ ∈ Λ, we may enforce the flux
condition on Neumann boundaries (3) and the normal flux continuity constraint (4) by

n̂κ · q|κ = σκχ in H−1/2(∂κ), ∀κ ∈ Th . (5)

Here σκ is a function over each elemental face of κ ∈ Th and, for a face shared with κ′ ∈ Th and for
an arbitrary ordering of the elements,

σκ =

{
−1, κ < κ′,

1, otherwise
;

for a face on ΓN , σκ = 1. In words, χ specifies the inter-elemental flux for every face of the
triangulation, which in turn ensures the continuity of the inter-elemental normal flux.

We may express this form of the space Q̂(χ) ⊂ Q, characterized by the interface flux χ, in a
more convenient form. We first introduce a broken bilinear form

b̂(q, w) =
∑
κ∈Th

∫
κ
q · ∇ŵdx, ∀q ∈ (L2(Ω))d, ∀ŵ ∈ V̂ ,
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where we recall V̂ is the broken space defined in (1). We next introduce a “jump” bilinear form

ĉ(ŵ, χ) =
∑
κ∈Th

∫
∂κ
σκŵχds, ∀ŵ ∈ V̂ , ∀χ ∈ Λ .

We finally define

Q̂(χ) ≡ {q ∈ Ŷ : b̂(q, ŵ) = `(ŵ) + ĉ(ŵ, χ), ∀ŵ ∈ V̂ } .

Note that, in order to ensure that the space is not empty, the interface flux χ ∈ Λ must be
equilibrating in the sense that 0 = `(1κ) + c(1κ, χ), ∀κ ∈ Th, where 1κ = 1 on κ and 1κ = 0 on
Ω \ κ. We emphasize that Q̂(χ) ⊂ Q for any equilibrating flux χ ∈ Λ.

2.2.4. Lower Bound: Computation

We now consider a finite element approximation of the interface flux λ(µ) ∈ Λ and the dual
variable p(µ) ∈ Q̂(λ(µ)). Towards this end, we first introduce a finite element flux space ΛN ≡ {λ ∈
Λ : λ|γ ∈ Pp(γ), ∀γ ∈ ∂Th}. (Note that the dimension of this space is not N but is of O(N ).) We
then seek an approximate interface flux associated with the finite element solution uN (µ) ∈ V N :
find λN (µ) ∈ Λ such that

ĉ(ŵ, λN (µ)) = a(uN (µ), ŵ;µ)− `(ŵ) , ∀ŵ ∈ V̂ N . (6)

We solve this so called equilibration problem using the method of Ladevèze and Leguillon [7] and
in particular its high-order extension by Ainsworth and Oden [1], which has a computational cost
that scales linearly with the number of finite element unknowns.

We next introduce a broken finite element space of interior fluxes: Ŷ N ≡ (V̂ N )d. We now wish
to construct a dual-feasible subspace Q̂N (λN (µ)) ⊂ Q̂(λN (µ)) ⊂ Q,

Q̂N (λN (µ)) ≡ {q ∈ Ŷ N : b(q, ŵ) = `(ŵ) + c(ŵ, λN (µ)), ∀ŵ ∈ V̂ } . (7)

We must satisfy exactly the dual feasibility condition (2), (3), and (4). We also recall that we may
replace the constraints (3) and (4) by a single condition (5). Hence, the sufficient condition for
dual feasibility in strong form is

−∇ · q = f in H−1(κ), ∀κ ∈ Th ,
n̂κ · q = σκλ

N (µ) in H−1/2(∂κ), ∀κ ∈ Th .

Note that our volume data f |κ ∈ Ppf (κ) and boundary data λN (µ)|γ ∈ Pp(γ), γ ∈ ∂κ. In addition,
by our choice of the space for q, ∇ · q|κ ∈ Pp−1(κ). It follows that we need only test the equation
over κ against the finite-dimensional space Pp−1(κ) (for p ≥ pf +1) and not the infinite-dimensional
space H1(κ). Similarly, we need only test the equations over ∂κ against finite-dimensional spaces
Pp(γ), γ ∈ ∂κ. Thus, we can construct — implicitly using a finite number of constraints — the
space Q̂N (λN (µ)) ⊂ Q that satisfies exactly the dual feasibility condition. The existence of at
least one q ∈ Ŷ N that satisfies the dual feasibility conditions, and hence the non-emptiness of
Q̂N (λN (µ)), is discussed in [16].

We may now readily construct a finite element approximation of a lower bound of the energy.
We first solve (6) for the approximate flux function λN (µ) associated with the finite element solution
uN (µ). We then compute the finite element approximation of the dual variable

pN (µ) ≡ arg sup
qN∈Q̂N (λN (µ))

Jd(qN ;µ) .
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We finally evaluate the associated lower bound

J−,N (µ) ≡ Jd(pN (µ);µ) ≤ J(µ);

the inequality is a direct consequence of Proposition 1 and Q̂N (λN (µ)) ⊂ Q. The superscript
“−,N” on J−,N (µ) signifies that the quantity is a lower bound computed in a O(N )-dimensional
finite element space. Note that the dual maximization problem is a quadratic program with linear
constraints, which reduces to element-wise saddle problems that can be solved efficiently. The
computational complexities of the inter-elemental flux calculation and local dual problems are of
O(N ) (provided that the primal solution uN (µ), which is used in the calculation of λN (µ), has
already been computed).

2.3. Reduced Basis Method

2.3.1. Upper Bound

We now introduce a reduced basis method that provides rigorous upper and lower bounds
of the exact energy. As before, the construction of an upper bound is straightforward owing to
the variational structure of the elliptic equation. We first introduce a hierarchical N -dimensional
reduced basis space

VN ≡ span{uN (µ(n)), µ(n) ∈MN} ≡ span{ξNn }Nn=1 ⊂ V N ,

where MN ≡ {µ(n)}Nn=1 is the set of N reduced basis parameter points (for formally N ≤ N
but typically N � N ), and {ξNn }Nn=1 is the orthonormal basis with respect to, say, (·, ·)V . Our
reduced-basis approximation is given by

uN (µ) ≡ arg inf
wN∈VN

Jp(wN ;µ) ;

again, the infimizer is given by the Galerkin statement: find uN (µ) ∈ VN such that

a(uN (µ), vN ;µ) = `(vN ) , ∀vN ∈ VN .

Our reduced basis upper bound is then given by

J+
N (µ) ≡ Jp(uN (µ);µ) = inf

wN∈VN
Jp(wN ;µ) ≥ inf

wN∈V N
Jp(wN ;µ) = J+,N (µ) ≥ J(µ) ;

The superscript and subscript “·+N” on J+
N (µ) signifies that the quantity is an upper bound computed

in a N -dimensional reduced basis space. The reduced basis upper bound is looser than the finite
element upper bound.

The computation of the reduced basis upper bounds permits the standard offline-online com-
putational decomposition. (See, for example, Rozza et al. [15].) In the offline stage, we first solve
N finite element problems to obtain basis functions uN (µ(n)), n = 1, . . . , N , for the reduced basis

space. We then orthonormalize the functions to obtain ξNn , n = 1, . . . , N . We next appeal to
the decomposition of the diffusion coefficient that is affine in functions of parameter and compute
parameter-independent matrices Âij ∈ RN×N , i, j = 1, . . . , d, and vector F ∈ RN with entries

(Âij)mn =

∫
Ω

∂ξm
∂xi

∂ξn
∂xj

dx, m, n = 1, . . . , N ,

Fm = `(ξm), m = 1, . . . , N .
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In the online stage, we take a three-step procedure. We first compute a parameter-dependent
matrix

A(µ) ≡
d∑

i,j=1

Dij(µ)Âij .

We then solve a N ×N reduced basis problem: find α?N (µ) ∈ RN such that

A(µ)α?N (µ) = F

We finally evaluate the reduced basis upper bound

J+
N (µ) = −1

2
(α?N (µ))TA(µ)α?N (µ) .

The computational complexity of the online stage is O(d2N2) + O(N3) and is in particular in-
dependent of the finite element complexity of O(N ) (or the exact infinite-dimensional problem
complexity of infinity).1

2.3.2. Lower Bound

We now construct a reduced basis approximation of the energy lower bound. We first define
the reduced basis space associated with the dual variable

ŶN ≡ span{pN (µ(n)), µ(n) ∈MN} ≡ span{ηNn }Nn=1 ⊂ Ŷ N .

Here, {ηNn }Nn=1 is the orthonormal basis with respect to, say, (·, ·)(L2(Ω))d ; we in addition introduce

the change of basis matrix ω ∈ RN×N that satisfies

ηNn =

N∑
n′=1

pN (µ(n′))ωn′n, n = 1, . . . , N.

We then define the key space for the lower bound computation: the reduced basis dual space with
the dual feasibility constraint,

QN ≡ {q ∈ ŶN : b(q, w) = `(w), ∀w ∈ V } ; (8)

we again must satisfy exactly the dual feasibility conditions. Towards this end, we substitute the re-
duced basis approximation of the dual variable pN =

∑N
n=1 η

N
n βNn =

∑N
n=1

∑N
n′=1 p

N (µ(n′))ωn′nβNn
to express the dual feasibility condition (8) in terms of the reduced basis coefficients βN ∈ RN :

b(pN , w) = b(
N∑
n=1

N∑
n′=1

pN (µ(n′))ωn′nβNn, w) = `(w), ∀w ∈ V. (9)

1The O(d2N2) term associated with the assembly process is an upper bound of the O(QaN
2) term associated with

the “standard” expression for the reduced-basis assembly, where Qa is the number of terms in the affine expansion
of a(·, ·; ·) [15], for the spatially invariant diffusivity tensor D(µ) ∈ Rd×d.
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On the other hand, we appeal to the bilinearity of the form b(·, ·) and the fact that each pN (µ(n′)) ∈
Q — which implies b(pN (µ(n′)), w) = `(w), ∀w ∈ V , n′ = 1, . . . , N — to obtain

b(

N∑
n=1

N∑
n′=1

pN (µ(n′))ωn′nβNn, w) =

N∑
n=1

N∑
n′=1

ωn′nβNnb(p
N (µ(n′)), w)

=

N∑
n=1

N∑
n′=1

ωn′nβNn`(w), ∀w ∈ V. (10)

The comparison of (9) and (10) shows that the sufficient condition for pN ∈ QN is

N∑
n=1

N∑
n′=1

ωn′nβNn = 1.

With the constraint, the effective dimension of the reduced basis coefficient space is N − 1. We
now define our reduced basis energy lower bound as

J−N (µ) ≡ sup
qN∈QN

Jd(qN ;µ) = sup
qN∈ŶN∑N

n=1

∑N
n′=1 ωn′nβNn=1

Jd(qN ;µ);

The superscript and subscript “·−N” on J−N (µ) signifies that the quantity is a lower bound computed
in a N -dimensional reduced basis space. We note that the reduced basis lower bound, unlike the
upper bound, can be tighter than the finite element lower bound. This is because the function
pN (µ) is optimized for the tightest bound from a set of dual feasible functions in QN ⊂ Q whereas
the finite element dual variable pN (µ) — computed by the procedure described in Section 2.2.4 —
is chosen from a subspace Q̂N (λ̂N (µ)) ⊂ Q restricted by the choice of λ̂N (µ).

The evaluation of the reduced basis lower bound also permits an offline-online computational
decomposition. In the offline stage, we first solve N finite element dual problems to obtain basis
functions pN (µ(n′)), n

′ = 1, . . . , N , for the reduced basis space ŶN . We then orthonormalize the

functions to obtain ηNn , n = 1, . . . , N , and the change of basis matrix ω ∈ RN×N . We next sum
the leading index of the change of basis matrix to form ωsum

n ∈ RN with entries

ωsum
n ≡

N∑
n′=1

ωn′n, n = 1, . . . , N.

We then compute parameter-independent matrices K̂ij ∈ RN×N , i, j = 1, . . . , d, with entries

(K̂ij)mn =

∫
Ω
ηNm,iη

N
n,jdx ,

where ηNm,i denotes the i-th vector component of the m-th basis function.
In the online stage, we take a three-step procedure. We first form a parameter-dependent matrix

K(µ) ∈ RN×N defined by

K(µ) ≡
d∑

i,j=1

D−1
ij (µ)K̂ij .

10



We then solve a N ×N quadratic program with a single linear constraint

β?N (µ) = arg sup
βN∈RN

(ωsum)T βN=1

−1

2
βTNK(µ)βN ,

which requires the solution of a (N + 1) × (N + 1) saddle system. We finally evaluate the lower
bound

J−N = −1

2
(β?N (µ))TK(µ)β?N (µ) .

The computational complexity of the online stage is O(d2N2) + O((N + 1)3) and is in particular
independent of the finite element complexity of O(N ) (or the exact infinite-dimensional complexity
of infinity).

Remark 1. Here we choose the same set of parameter values for the primal snapshots that spans
VN and the dual snapshots that spans ŶN . In general the parameter values associated with the
primal and dual snapshots need not be the same. In particular, for online efficiency — that is
to reduce N — it is in general advantageous to consider different parameter values because the
parametric manifold associated with the primal and dual solutions can be quite different. However,
for offline efficiency, it is advantageous to consider the same snapshot parameter values because
the computation of the finite element dual solution by the equilibration procedure requires the
primal solution. We recall that the complexity of the primal solve is O(N k), k ≥ 1, where as the
complexity of the equilibration procedure is O(N ).

2.3.3. Energy Norm of the Error

The upper and lower bounds of the energy functional may be used for the global certification
of the reduced-basis solution in the energy norm |||w|||µ ≡

√
a(w,w;µ):

Proposition 3. The upper and lower bound of the energy functional is related to the energy norm
of the error in the sense that, for any µ ∈ D,

|||u(µ)− uN (µ)|||2µ ≤ 2(J+
N (µ)− J−N (µ)) .

Proof. We appeal to the definition of the energy norm, Galerkin orthogonality, and the definition
of the energy functional to obtain

|||u(µ)− uN (µ)|||2µ ≡ a(u(µ)− uN (µ), u(µ)− uN (µ);µ) = a(u(µ), u(µ);µ)− a(uN (µ), uN (µ);µ)

= −2Jp(u(µ);µ) + 2Jp(uN (µ);µ) ≤ 2(J+
N (µ)− J−N (µ)) ;

this concludes the proof.

3. Extensions

3.1. Extension 1: Parametrized Right-Hand Side

We now consider an extension of the method for the case in which the right-hand side data `(·)
is parametrized but permits a decomposition that is affine in functions of the parameter:

`(v;µ) ≡
S∑
s=1

Θs(µ)`s(v) (11)

11



for parameter-dependent functions Θs : D → R and parameter-independent functionals `s ∈ V ′,
s = 1, . . . , S. The primal formulation requires no modifications, and the construction of the upper
bound follows from the same variational argument as before.

To construct a lower bound, we appeal to the linearity of the dual solution p(µ) on the right
hand side. We first note that the dual feasibility space is now parameter-dependent and is given by

QN (µ) ≡ {q ∈ ŶN : b(q, w) =
S∑
s=1

Θs(µ)`s(w), ∀w ∈ V }. (12)

We next substitute the form of our reduced basis approximation
pN ≡

∑N
n=1 η

N
n βNn =

∑N
n=1

∑N
n′=1 p

N (µ(n′))ωn′nβNn to the expression for the constraint, ap-

peal to the bilinearity of b(·, ·), and invoke pN (µ(n′)) ∈ Q(µ(n′)), n = 1, . . . , N — which implies

b(pN (µ(n′)), w) =
∑S

s=1 Θs(µ)`s(w), ∀w ∈ V , n′ = 1, . . . , N — to obtain

b(
N∑
n=1

N∑
n′=1

pN (µ(n′))ωn′nβNn, w) =
N∑
n=1

N∑
n′=1

ωn′nβNnb(p
N (µ(n′)), w) (13)

=
S∑
s=1

N∑
n=1

N∑
n′=1

Θs(µ(n′))ωn′nβNn`s(w), ∀w ∈ V. (14)

The comparison of (12) and (14) shows that a sufficient condition for pN ∈ QN (µ) is

N∑
n=1

N∑
n′=1

Θs(µ(n′))ωn′nβNn = Θs(µ), s = 1, . . . , S ;

the set of S constraints is a generalization of the single constraint
∑N

n=1

∑N
n′=1 ωn′nβNn = 1 for

the non-parametrized right-hand side case. Note that the effective dimension of the reduced basis
space is N −S (assuming the S constraints are linearly independent); we consequently require that
N ≥ S.

The offline-online computational decomposition follows from the non-parametrized right-hand
side case with one exception: in the online stage, we simply impose S constraints instead of the
single constraint. The computational complexity of the online stage is O(d2N2) + O((N + S)3),
where N + S is the size of the saddle system with the S constraints. Note that, as the effective
dimension of the reduced basis space is N − S, the dimension N may need to be larger than the
non-parametrized right-hand side case.

Remark 2. Instead of the procedure described above, we may construct S parameter-independent
dual feasibility spaces, each corresponding to the specific `s. Specifically, we may construct separate
spaces Qs,N ≡ {q ∈ Ŷs,N : b(q, w) = `s(w), ∀w ∈ V }, s = 1, . . . , S, with Ys,N ≡ span{pNs (µ(n))}Nn=1

associated with `s.

3.2. Extension 2: Multiple Domains

We now consider an extension of the method for the case in which the bilinear form a(·, ·)
constitutes of contributions from Kdom subdomains, Ω(k), k = 1, . . . ,Kdom:

a(w, v;µ) ≡
Kdom∑
k=1

∫
Ω(k)

∇v ·D(k)(µ)∇wdx, ∀w, v ∈ V ;

12



we assume symmetric positive definite matrices D(k)(µ) ∈ Rd×d, k = 1, . . . ,Kdom, are constant over
each subdomain (but in general different across subdomains). The construction of the upper bound
follows from the same variational argument, and the primal formulation requires no modifications.

To construct a lower bound, the dual energy functional is modified to

Jd(q;µ) ≡ −1

2

Kdom∑
k=1

∫
Ω(k)

q · (D(k)(µ))−1qdx .

With the redefinition, we may follow the proof of Proposition 1 and still show that

Jd(q;µ) ≤ J(µ), ∀q ∈ Q,

where Q ≡ {q ∈ Ŷ : b(q, w) = `(w), ∀w ∈ V } as before. We in particular note that Q is
independent of the diffusion coefficients D(k)(µ), k = 1, . . . ,Kdom. It follows that, for any given
µ ∈ D, we may find a dual feasible function pN (µ) ∈ Q using the finite element procedure described
in Section 2.2.4. In addition, the constraints for the reduced basis coefficients are unchanged:∑N

n=1

∑N
n′=1 ωn′nβNn = 1.

We need to make only minor modifications to the offline-online computational procedure. In
the offline stage, we first solve N finite element dual problems to obtain snapshots pN (µ(n)), n =

1, . . . , N . We then orthonormalize the functions to obtain the basis {ηNn }Nn=1 for the reduced basis
space ŶN , and the change of basis matrix ω ∈ RN×N . We next compute parameter-independent

matrices K̂
(k)
ij ∈ RN×N , i, j = 1, . . . , d, k = 1, . . . ,Kdom, with entries

(K̂
(k)
ij )mn =

∫
Ω(k)

ηNm,iη
N
n,jdx .

In the online stage, we first form a parameter-dependent matrix K(µ) ∈ RN×N defined by

K(µ) ≡
Kdom∑
k=1

d∑
i,j=1

(D(k)(µ))−1
ij K̂

(k)
ij .

We then solve the N ×N quadratic program with the single linear constraint and form the lower
bound as before. The computational complexity in the online stage is O(Kdomd

2N2)+O((N+1)3).

3.3. Extension 3: Reaction-Diffusion Equation

We now consider an extension of the method to the reaction-diffusion equation. The bilinear
form associated with the equation is

a(w, v;µ) ≡
∫

Ω
(∇v ·D(µ)∇w + c(µ)vw) dx

and the associated energy functional is Jp(w;µ) ≡ 1
2a(w,w;µ) − `(w). The solution u(µ) ∈ V

such that a(u, v;µ) = `(v), ∀v ∈ V , is the infimizer of the energy functional. Thus, owing to the
variational structure, the construction of an upper bound requires no modifications.

To construct a lower bound, we first introduce the second dual variable z ∈ V̂ , where we recall
V̂ is the broken space defined in (1). We then redefine the bilinear form that induces the dual
feasibility constraint:

b((q, z), w) ≡
∫

Ω
(q · ∇w + zw) dx, ∀q ∈ Ŷ , ∀z ∈ V̂ , ∀w ∈ V .
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We next redefine the dual feasible space

Q ≡ {(q, z) ∈ Ŷ × V̂ : b((q, z), w) = `(w), ∀w ∈ V } .

We finally introduce the dual energy functional

Jd((q, z);µ) ≡ −1

2

∫
Ω

(
q ·D−1(µ)q + c−1(µ)zz

)
dx, ∀q ∈ Ŷ , ∀z ∈ V̂ .

We may then show

J(µ) ≥ Jd((q, z);µ), ∀(q, z) ∈ Q ,

following the same argument as the proof of Proposition 1.
In order to construct a finite element approximation of the dual variables (q, z) ∈ Q, we follow

the same localization procedure. (See Sauer-Budge and Peraire [17] for details.) Namely, we
first compute the equilibrating inter elemental flux λN (µ) ∈ Λ as defined by (7) (for the a(·, ·;µ)
associated with the reaction-diffusion equation). We then identify the strong form of the local
constraints

−∇ · q + z = f in H−1(κ), ∀κ ∈ Th ,
n̂κ · q = σκλ

N (µ) in H−1/2(∂κ), ∀κ ∈ Th .

Here, for f |κ ∈ Ppf (κ), λN (µ)|γ ∈ Pp(γ), ∀γ ∈ ∂κ, and p > pf , we may choose q|κ ∈ Pp(κ) and
z|κ ∈ Pp−1(κ); we then realize, as before, we need only test the equation over κ against Pp−1(κ) and
the equations over ∂κ against Pp(γ), γ ∈ ∂κ. Thus, we can express the dual feasibility condition as a
finite dimensional constraints. The existence of at least one solution (q, z) ∈ Ŷ N × V̂ N that satisfies
the dual feasibility conditions, and hence the non-emptiness of Q̂N (λN (µ)), is a consequence of the
existence condition for the diffusion equation; the presence of the dual variable associated with
the reaction term, z ∈ V̂ N , increases the number of unknowns while the number of constrains is
unchanged. We then seek (pN (µ), rN (µ)) ≡ arg sup(qN ,zN )∈Q̂N (λN (µ)) Jd((q

N , zN );µ).
We now deduce the constraints in the reduced basis setting. We first introduce an orthonor-

malized basis of the reduced basis space ŶN , {(ηNn , ζNn )}Nn=1; the change of basis matrix ω ∈ RN×N
satisfies

(ηNn , ζ
N
n ) =

(
N∑

n′=1

pN (µ(n′))ωn′n,

N∑
n′=1

rN (µ(n′))ωn′n

)
.

We express our reduced basis approximation as pN =
∑N

n=1 η
N
n βNn =

∑N
n=1

∑N
n′=1 p

N (µ(n′))ωn′nβNn

and rN =
∑N

n=1 ζ
N
n βNn =

∑N
n=1

∑N
n′=1 r

N (µ(n′))ωn′nβNn, appeal to the bilinearity of b(·, ·),
and (pN (µ(n′)), r

N (µ(n′))) ∈ Q — which implies b((pN (µ(n′)), r
N (µ(n′))), w) = `(w), ∀w ∈ V ,

n′ = 1, . . . , N — to obtain

b((pN , rN ), w) = b((
N∑
n=1

N∑
n′=1

pN (µ(n′))ωn′nβNn,
N∑
n=1

N∑
n′=1

rN (µ(n′))ωn′nβNn), w)

=
N∑
n=1

N∑
n′=1

ωn′nβNnb((p
N (µ(n′)), r

N (µ(n′))), w)

=

N∑
n=1

N∑
n′=1

ωn′nβNn`(w), ∀w ∈ V ;
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we recognize the sufficient condition for pN (µ) ∈ Q is
∑N

n=1

∑N
n′=1 ωn′nβNn = 1 — the same

condition as the diffusion-only case.
The offline-online computational decomposition is similar to the diffusion-only case. In the

offline stage, we first solve N finite element dual problems to obtain basis functions pN (µ(n′))

and rN (µ(n′)), n
′ = 1, . . . , N . We then orthonormalize the functions to obtain ηNn and ζNn , n =

1, . . . , N , and the change of basis matrix ω ∈ RN×N . We next sum the leading index of the change
of basis matrix to form ωsum

n =
∑N

n′=1 ωn′n. We then compute parameter-independent matrices

K̂ij ∈ RN×N , i, j = 1, . . . , d and Ĉ ∈ R, with entries

(K̂ij)mn =

∫
Ω
ηNm,iη

N
n,jdx and Ĉmn =

∫
Ω
ζNm ζ

N
n dx .

In the online stage, we take a three-step procedure as before. We first form parameter-dependent
matrices K(µ) ∈ RN×N and C(µ) ∈ RN×N defined by

K(µ) ≡
d∑

i,j=1

D−1
ij (µ)K̂ij and C(µ) ≡ c−1(µ)Ĉ .

We then solve a N ×N quadratic program with a single linear constraint

β?N (µ) = arg sup
βN∈RN

(ωsum)T βN=1

−1

2
βTN (K(µ) + C(µ))βN ,

which requires the solution of a (N + 1) × (N + 1) saddle system. We finally evaluate the lower
bound

J−N (µ) = −1

2
(β?N (µ))T (K(µ) + C(µ))β?N (µ) .

The computational complexity in the online stage is O(d2N2) +O((N + 1)3).

Remark 3. We have here used the same reduced basis coefficients, βN , for pN =
∑N

n=1 η
N
n βNn and

rN =
∑N

n=1 ζ
N
n βNn. We may instead consider different coefficients for the two spaces. The coupled

formulation, as considered in this work, is typically more online efficient as p(µ) and r(µ) tend
to be correlated. The decoupled formulation is less online efficient but is more offline efficient: it
produces an online system of size 2N , but the reduced basis space has a larger dimension for a
given number of offline snapshots.

3.4. Extension 4: Affine Geometry Transformation (Reaction-Diffusion)

We now consider an application of the method to problems with an affine geometry transfor-
mation. By way of preliminaries, we introduce a parameter-independent reference domain Ω̃ and a
parameter-dependent transformed domain Ω(µ). A point x̃ ∈ Ω̃ is mapped to a point x ∈ Ω(µ) by
an affine transformation

x = G(x̃;µ) ≡ T (µ)x̃+ x0(µ),

where T (µ) ∈ Rd×d is the Jacobian of the transformation, and x0(µ) ∈ Rd is associated with the
translation.
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We may readily transform the forms associated with the parameter-dependent domain Ω(µ) to
the forms associated with the parameter-independent reference domain Ω̃. (We refer to Rozza et
al. [15] for more detailed discussion in the standard reduced basis context.) We first transform the
bilinear form a(·, ·;µ): for w̃ = w ◦G(·;µ) and ṽ = v ◦G(·;µ),

a(w, v;µ) ≡
∫

Ω(µ)
[∇v ·D(µ)∇w + c(µ)vw] dx =

∫
Ω̃

[
∇̃ṽ · D̃(µ)∇̃w̃ + c̃(µ)w̃ṽ

]
dx̃ ≡ ã(w̃, ṽ;µ),

where D̃(µ) ≡ det(T (µ))T−T (µ)D(µ)T−1(µ) and c̃(µ) ≡ det(T (µ))c(µ). We then transform the
linear form `(·;µ): for ṽ = v ◦G(·;µ),

`(v;µ) ≡
∫

Ω(µ)
f(µ)vdx+

∫
ΓN (µ)

g(µ)vds =

∫
Ω̃
f̃(µ)ṽdx̃+

∫
Γ̃N

g̃(µ)ṽds̃ ≡ ˜̀(ṽ;µ),

where f̃(µ) ≡ (det(T (µ))f(µ)) ◦ G(·;µ) and g̃(µ) ≡ (det(TΓN (µ))g(µ)) ◦ G(·;µ). We in addition
define the primal energy functional on the reference domain: J̃p(·;µ) ≡ 1

2 ã(·, ·;µ) − ˜̀(·;µ). The
transformation for a(·, ·;µ) and `(·;µ) are in fact the standard transformation in the reduced basis
context [15].

We now introduce a key transformation for the lower bound construction. We transform the
bilinear form b(·, ·;µ), which is now parameter dependent due to the presence of Ω(µ), as follows:
for q̃ ≡ (det(T (µ))T−T (µ)q) ◦G(·;µ), z̃ ≡ (det(T (µ))z) ◦G(·;µ), and w̃ = w ◦G(·;µ),

b((q, z), w;µ) ≡
∫

Ω(µ)
(q · ∇w + zw) dx =

∫
Ω̃

(
q · T−1(µ)∇̃w̃det(T (µ)) + zw̃det(T (µ))

)
dx̃

=

∫
Ω̃

(
q̃ · ∇̃w̃ + z̃w̃

)
dx̃ ≡ b̃((q̃, z̃), w̃).

We note that the transformed bilinear form b̃(·, ·) is in fact independent of the parameter µ. Ac-
cordingly, we may identify the space of dual feasible functions in the reference domain

Q(Ω̃;µ) ≡ {(q̃, z̃) ∈ Ŷ (Ω̃)× V̂ (Ω̃) : b̃((q̃, z̃), w̃) = ˜̀(w̃;µ), ∀w̃ ∈ V (Ω̃)}, (15)

where the parameter-dependence of the dual-feasibility condition arises only through the right-
hand side, ˜̀, and can be treated using the technique in Section 3.1. We readily confirm that, if
(q̃, z̃) ∈ Q(Ω̃;µ), then (q, z) ≡ (((det(T (µ)))−1T T (µ)q̃) ◦ G−1(·, µ), ((det(T (µ)))−1z̃) ◦ G−1(·, µ)) ∈
Q(Ω;µ) for Q(Ω;µ) ≡ {(q, z) ∈ Ŷ (Ω(µ)) × V̂ (Ω(µ)) : b((q, z), w;µ) = `(w;µ), ∀w ∈ V (Ω(µ))}.
We in addition note that the dual energy functional admits the following transformation: for
q̃ ≡ (det(T (µ))T−T (µ)q) ◦G(·;µ) and z̃ ≡ (det(T (µ))z) ◦G(·;µ),

Jd((q, z);µ) ≡ −1

2

∫
Ω(µ)

(
q ·D−1(µ)q + c−1(µ)zz

)
dx

= −1

2

∫
Ω̃

(
q̃ · D̃−1(µ)q̃ + c̃−1z̃z̃

)
dx̃ ≡ J̃d((q̃, z̃);µ),

where D̃(µ) and c̃(µ) are as defined for ã(·, ·;µ).
We summarize the computational strategy. We first recast the primal and dual problems on Ω(µ)

as those on the reference domain Ω̃; we identify the associated forms ã(·, ·;µ), ˜̀(·;µ), J̃p(·;µ), b̃(·, ·),
and J̃d(·;µ). We then apply the method developed in Section 2 (with the extensions introduced in
Sections 3.1 and 3.3) in the reference domain Ω̃ to construct the bounds J+

N (µ) and J−N (µ).
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3.5. Extension 5: Linear Elasticity

We now consider an extension of the method to linear elasticity. For clarity in this section, we
employ the index notation with the implied summation on repeated indices. We first introduce a
space of vector-valued functions

V ≡ {v ∈ (H1(Ω))d : vi|ΓD,i = 0, i = 1, . . . , d},

where ΓD,i is the boundary with the homogeneous Dirichlet condition on the i-th equation. The
bilinear form is

a(w, v;µ) ≡
∫

Ω
εki(v)Ckilj(µ)εlj(w)dx;

here ε(v) ∈ (L2(Ω))d×d is the strain tensor given by εij(v) ≡ 1
2( ∂vi∂xj

+
∂vj
∂xi

), and C(µ) is the rank-four

stiffness tensor. The linear form is

`(w) =

∫
Ω
fkvkdx+

∫
ΓN

gkvkdx,

where f ∈ (L2(Ω))d specifies the body force, and g ∈ ⊗di=1L
2(ΓN,i) specifies the traction on

boundaries. The associated energy functional is Jp(w;µ) ≡ 1
2a(w,w;µ) − `(w). Again, owing to

the variational structure of the problem, the construction of an upper bound is straightforward.
To construct a lower bound, we first introduce a broken space of vector-valued functions V̂

associated with V and a space of rank-two tensor-valued functions Ŷ ≡ (V̂ )d. We then redefine the
bilinear form

b(q, w) ≡
∫

Ω
qkiεki(w)dx, ∀q ∈ Ŷ , ∀w ∈ V .

We next redefine the dual feasible space

Q ≡ {q ∈ Ŷ : b(q, w) = `(w), ∀w ∈ V }.

We finally redefine the dual energy functional

Jd(q;µ) ≡ −1

2

∫
Ω
qkiC

−1
kilj(µ)qljdx, ∀q ∈ Ŷ .

We may then show that J(µ) ≥ Jd(q;µ), ∀q ∈ Q, following a vectorized version of the proof of
Proposition 1.

In order to construct a finite element approximation of the dual variable, we follow the procedure
of Pares et al. [10]. We first extend the definition of the trace space Λ to vector-valued functions
(in the same manner as V ). We accordingly refine the bilinear forms ĉ(·, ·) and b̂(·, ·) as

ĉ(ŵ, χ) ≡
∑
κ∈Th

∫
∂κ
σκŵkχkds, ∀ŵ ∈ V̂ , ∀χ ∈ Λ

b̂(q, ŵ) ≡
∑
κ∈Th

∫
κ
qkiεki(w)dx, ∀q ∈ Ŷ , ∀ŵ ∈ V̂ .
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We may readily compute the vector-valued equilibrating inter elemental flux, λN (µ) ∈ Λ, as defined
by (7). On the other hand, the construction of the dual feasible functions via the localization is
more complicated than for the diffusion equation, not because it is a vector equation, but because
the map from the space of gradients to the strain is not bijective. Nevertheless, a piecewise Pp
polynomial representation of a function inQ over each κ ∈ Th may be found, for any f |κ ∈ (Ppf (κ))d,
g|γ ∈ (Ppf (γ))d, and λ|γ ∈ (Pp(γ))d, ∀γ ∈ ∂κ, using a subgrid computation procedure described by
Pares et al. [10]; we omit the presentation of the procedure for brevity. (See also Pled et al. [12]
for alternative strategies.)

While the finite element approximation of the dual variable is more complicated, the reduced
basis approximation requires only minor modifications from the diffusion equation case considered
in Section 2. This is because, for pN =

∑N
n=1

∑N
n′=1 p

N (µ(n′))ωn′nβNn, the condition for pN ∈ Q is∑N
n=1

∑N
n′=1 ωn′nβNn = 1 as before.

In the offline stage, we first compute snapshots pN (µ(n′)) ∈ Q, n′ = 1, . . . , N . We then or-

thonormalize the functions to form the basis {ηNn }Nn=1 for the reduced basis space ŶN and the
change of basis matrix ω ∈ RN×N . We next sum the leading index of the change of basis matrix
to form ωsum

n =
∑N

n′=1 ωn′n. We then compute parameter-independent matrices K̂ijkl ∈ RN×N ,
i, j, k, l = 1, . . . , d, with entries

(K̂kilj)mn =

∫
Ω
ηNm,kiη

N
n,ljdx ;

here ηm,ki denotes the (k, i) tensor-entry of the m-th basis function. In the online stage, we first
form a parameter-dependent matrix K(µ) ∈ RN×N defined by

K(µ) ≡
d∑

k,i,l,j=1

C−1
kilj(µ)K̂kilj ;

we then solve a quadratic program

J−N (µ) ≡ sup
qN∈QN

Jd(qN ;µ) = sup
qN∈ŶN

(ωsum)T βN=1

Jd(qN ;µ)

with a single linear constraint and form the lower bound as before. The computational complexity
in the online stage is O(d4N2) +O((N + 1)3).

3.6. Extension 6: Affine Geometry Transformation (Linear Elasticity)

We now consider an application of the method to linear elasticity problems with affine geometry
mapping. The strategy is similar to that for the reaction-diffusion equation presented in Section 3.4;
however, we must now transform the vector-valued primal variable and rank-two tensor-valued dual
variable in a consistent manner. As before, the transformation from the parameter-independent
reference domain Ω̃ to the parameter-dependent transformed domain Ω(µ) is denoted by x =
G(x̃;µ) ≡ T (µ)x̃+ x0(µ). To avoid the notational clutter, we simply state T (µ) as T from hereon.

We first note the transformation of the strain tensor: for w̃k = (Tlkwl) ◦ G(·;µ), εij(w) =

T−1
ki T

−1
lj ε̃kl(w̃) where ε̃kl(w̃) ≡ 1

2

(
∂w̃k
∂x̃l

+ ∂w̃l
∂x̃k

)
. We next transform the bilinear form a(·, ·;µ): for

w̃k = (Tlkwl) ◦G(·;µ) and ṽk = (Tlkvl) ◦G(·;µ),

a(w, v;µ) ≡
∫

Ω(µ)
εki(v)Ckilj(µ)εlj(w)dx =

∫
Ω̃
ε̃ki(ṽ)C̃kilj ε̃lj(w̃)dx̃ ≡ ã(w̃, ṽ;µ),
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where C̃kilj(µ) ≡ det(T )T−1
sk T

−1
mi T

−1
tl T

−1
nj Csmtn(µ). We then transform the linear form: for ṽk =

(Tlkvl) ◦G(·;µ),

`(w) ≡
∫

Ω(µ)
fkvkdx+

∫
ΓN

gkvkds =

∫
Ω̃
f̃kṽkdx̃+

∫
Γ̃N

g̃kṽkds̃ ≡
∫

Ω̃
(w̃),

where f̃k(µ) = (det(T )T−1
kl fl(µ))◦G(·;µ) and g̃k(µ) = (det(TΓN )T−1

kl gl(µ))◦G(·;µ). We in addition

define the primal energy functional on the reference domain: J̃p(·;µ) ≡ 1
2 ã(·, ·;µ)− ˜̀(·;µ).

We now consider transformations associated with the lower bound construction. We transform
the bilinear form b(·, ·;µ), which again is parameter dependent due to the presence of Ω(µ), as
follows: for q̃kl = (det(T )T−1

ki T
−1
lj qij) ◦G(·;µ)

b(q, w;µ) ≡
∫

Ω(µ)
qkiεki(w)dx =

∫
Ω̃
q̃kiε̃ki(w̃)dx̃ ≡ b̃(q̃, w̃).

We again note that the transformed bilinear form b̃(·, ·) is independent of the parameter µ. We
then introduce the space of dual feasible functions on the reference domain Q(Ω̃;µ) ≡ {q̃ ∈
Ŷ (Ω̃) : b̃(q̃, w̃) = ˜̀(w̃;µ), ∀w̃ ∈ V (Ω̃)}. We readily confirm that, if q̃(µ) ∈ Q(Ω̃;µ), then
qkl ≡ ((det(T ))−1TkiTlj q̃ij) ◦ G−1(·, µ) ∈ Q(Ω;µ) for Q(Ω;µ) ≡ {q ∈ Ŷ (Ω(µ)) : b(q, w;µ) =
`(w;µ), ∀w ∈ V (Ω(µ))}. Finally, we note that the dual energy functional admits the following
transformation: for q̃kl = (det(T )T−1

ki T
−1
lj qij) ◦G(·;µ),

Jd(q;µ) ≡ −1

2

∫
Ω(µ)

qkiC
−1
kilj(µ)qljdx = −1

2

∫
Ω̃
q̃kiC̃

−1
kilj(µ)q̃ljdx̃ ≡ Jd(q̃;µ),

where C̃ is as defined for ã(·, ·;µ).
The computational strategy follows that of the reaction-diffusion case in Section 3.4. We first

recast the primal and dual problems on Ω(µ) to those on the reference domain Ω̃; we identify the
associated forms ã(·, ·;µ), ˜̀(·;µ), J̃p(·;µ), b̃(·, ·), and J̃d(·;µ). We then apply the method developed
in Section 2 (with the extensions introduced in Sections 3.1 and 3.5) in the reference domain Ω̃ to
construct the bounds J+

N (µ) and J−N (µ).

4. Results

4.1. One-Dimensional Reaction-Diffusion Equation

We first apply the exact certification technique to a parametrized reaction-diffusion equation:
−µ∆u + u = x over Ω ≡ (0, 1) with homogeneous Dirichlet boundary conditions at x = 0 and
x = 1. The diffusion coefficient takes on µ ∈ D ≡ [10−3, 1]. Our finite element spaces consist
of ne equal-sized P2 elements (N = 2ne − 1). Our reduced basis space is constructed from the
finite element solution evaluated at N Chebyshev-Lobatto nodes of D mapped by a logarithmic
transformation [9]. The exact energy J(µ) is computed using a P30 pseudo-spectral discretization.
Our reduced basis formulation exercises the extension considered in Sections 3.3.

The bound behavior for the ne = 128, N = 3 case is shown in Figure 1. The P2 finite element
discretization with ne = 128 elements is sufficient to obtain the maximum error over the parameter
range of O(10−8); hence, this is the typically assumed reduced basis scenario where the finite
element discretization may be taken as the “truth.” As a result, the error plot over the parameter
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Figure 1: The behavior of the bounds for the reaction-diffusion problem for ne = 128 and N = 3. (J : truth; J±N :
reduced basis bounds; J±,N : finite element bounds)

domain exhibits the typical reduced basis method error behavior; namely, the error essentially
vanishes at the reduced basis parameter evaluation points and grows away from the points.

The bound behavior for the ne = 4, N = 3 case is shown in Figure 2. The P2, ne = 4 finite
element discretization provides insufficient resolution particularly for a small µ; this is reflected in
the noticeable finite element bound gap. The quality of the reduced basis bound is limited by the
inadequacy of the underlying finite element discretization.

Table 1 summarizes the maximum error of the reduced basis bound over Ξ ⊂ D, where the
surrogate subset Ξ consists of 1001 points equidistributed over D in the logarithmic sense. The
error in the bound is expressed as a function of the physical space resolution (as reflected in ne)
and the parameter space resolution (as reflected in N). We first report that the upper and lower
bounds are indeed rigorous bounds of the exact energy J(µ): J+

N (µ)−J(µ) > 0 and J −J−N (µ) > 0
for all µ ∈ D, ne, and N . We next comment on the two extreme cases shown in the table: for
ne = 4, the physical space resolution limits the bound quality independent of the parameter space
resolution; for N = 1, the parameter space resolution limits the bound quality independent of the
physical space resolution. We also note that the finite element bounds converge at the optimal
rate of h2p = h4 for this smooth problem. Finally, given a sufficient finite element resolution (for
instance for ne = 128), the reduced basis bounds exhibit an exponential convergence with N .

4.2. Planar Linear Elasticity

We now consider a planar (stress) elasticity problem with a geometry deformation; we refer
to, for instance, Rozza et al. [15] for the treatment of linear elasticity problems in the standard
reduced basis context. We consider an rectangular elastic beam of a length (normalized with
respect to the height) of L/H ∈ [2.0, 8.0] composed of a material with a (non-dimensionalized)
Young’s modulus 1.0 and Poisson’s ratio of 0.3. The beam is fully clamped on one end, and we
apply an unit tangential traction on the other end; all other boundaries are traction free. We
then compute upper and lower bounds of the elastic energy as the length is varied; recall that,
by Proposition 3, the energy bound gap may be used to construct a bound of the energy norm
of the field. Our finite element spaces consist of P3 elements on a sequence of uniformly refined
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Figure 2: The behavior of the bounds for the reaction-diffusion problem for ne = 4 and N = 3. (J : truth; J±N :
reduced basis bounds; J±,N : finite element bounds)

(a) upper bound error: maxµ∈Ξ⊂D(J+
N (µ)− J(µ))

ne = 4 8 16 32 64 128

N = 1 1.90× 10−2 1.84× 10−2 1.83× 10−2 1.83× 10−2 1.83× 10−2 1.83× 10−2

2 5.10× 10−3 2.69× 10−3 3.16× 10−3 3.26× 10−3 3.27× 10−3 3.27× 10−3

3 5.10× 10−3 1.01× 10−3 2.30× 10−4 2.31× 10−4 2.32× 10−4 2.32× 10−4

4 5.10× 10−3 1.01× 10−3 1.20× 10−4 1.10× 10−5 7.83× 10−6 7.64× 10−6

5 5.10× 10−3 1.01× 10−3 1.20× 10−4 9.54× 10−6 6.39× 10−7 4.39× 10−7

6 5.10× 10−3 1.01× 10−3 1.20× 10−4 9.54× 10−6 6.39× 10−7 4.07× 10−8

FE 5.10× 10−3 1.01× 10−3 1.20× 10−4 9.54× 10−6 6.39× 10−7 4.07× 10−8

(b) lower bound error: maxµ∈Ξ⊂D(J(µ)− J−N (µ))

ne = 4 8 16 32 64 128

N = 1 8.36× 10−1 8.21× 10−1 8.20× 10−1 8.20× 10−1 8.20× 10−1 8.20× 10−1

2 9.39× 10−3 9.51× 10−3 1.01× 10−2 1.02× 10−2 1.02× 10−2 1.02× 10−2

3 7.58× 10−3 1.11× 10−3 6.95× 10−4 7.04× 10−4 7.06× 10−4 7.06× 10−4

4 6.17× 10−3 1.06× 10−3 1.21× 10−4 2.84× 10−5 2.84× 10−5 2.84× 10−5

5 5.66× 10−3 1.02× 10−3 1.20× 10−4 9.54× 10−6 2.20× 10−6 2.18× 10−6

6 5.32× 10−3 1.01× 10−3 1.20× 10−4 9.54× 10−6 6.39× 10−7 1.00× 10−7

FE 1.06× 10−2 1.21× 10−3 1.23× 10−4 9.55× 10−6 6.39× 10−7 4.07× 10−8

Table 1: Convergence of the reduced basis upper and lower energy bounds (and the finite element bounds) for the
reaction-diffusion problem with the number of elements in the underlying P2 finite element discretization (ne) and
the reduced basis space dimension (N).
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N = 175 637 2,425 9,457 37,345 148,417

N = 1 9.95× 10−1 9.93× 10−1 9.92× 10−1 9.92× 10−1 9.92× 10−1 9.92× 10−1

2 5.56× 10−2 5.32× 10−2 5.18× 10−2 5.10× 10−2 5.07× 10−2 5.06× 10−2

3 2.17× 10−2 8.34× 10−3 3.23× 10−3 1.21× 10−3 4.36× 10−4 2.95× 10−4

4 2.16× 10−2 8.21× 10−3 3.15× 10−3 1.19× 10−3 4.34× 10−4 1.55× 10−4

5 2.15× 10−2 8.19× 10−3 3.14× 10−3 1.18× 10−3 4.33× 10−4 1.55× 10−4

Table 2: Convergence of the (normalized) reduced basis bound gap maxµ∈Ξ⊂cD(J+
N (µ) − J−N (µ))/|Jref(µ)| for the

linear elasticity problem with the number of degrees of freedom of the underlying P3 finite element discretization
(N ) and the reduced basis space dimension (N). The reference value for normalization (and not assessment per se),
|Jref(µ)|, is computed using a N = 591,745 finite element solution.

uniform meshes. Our reduced basis space is constructed from the finite element solution evaluated
at N Chebyshev-Lobatto nodes of D mapped by a logarithmic transformation. The reduced basis
formulation exercises the extensions developed in Sections 3.1, 3.5, and 3.6. The number of terms
in the affine expansion of the right-hand side (11) is S = 1; hence we may readily find the solution
for any N ≥ 1.

Unlike the reaction-diffusion problem considered in Section 4.1, the exact solution of this planar
elasticity problem is not smooth; in particular, in the presence of the 90◦ corners with the fully-
clamped and traction-free interfaces, the solution can be shown to be in (H3/2+ε(Ω))2, ε > 0, for
` ∈ (L2(Ω))2 [14]. Hence, we will not attempt to compute the exact output for this case; we instead
report the convergence of the bound gap, J+

N (µ)− J−N (µ), with the finite element resolution N and
the reduced basis dimension N . Note that this is in fact the mode of operation for many complicated
practical problems and is precisely when the rigorous bounds for infinite-dimensional variational
problem is important: the computation of the “exact” solution is unreasonably expensive and yet
we wish to have guaranteed certainty in our computation.

Table 2 shows the convergence of the maximum (normalized) bound gap over Ξ ⊂ D, where
the surrogate subset Ξ consists of 201 points equidistributed over D in the logarithmic sense. The
bound gap is expressed a function of the physical space resolution (as reflected in N ) and the
parameter space resolution (as reflected in N). For N = 1, the parameter space resolution limits
the bound quality independent of the physical space resolution; for N = 175, the bound quality
is largely limited by the finite element resolution. We again observe, for N = 148,417, a rapid
initial convergence of the bound gap with N . Due to the spatial irregularity mentioned above, the
convergence of the bound with the uniform mesh refinement is rather slow.

5. Summary and Discussions

We propose a reduced basis certification strategy that provides rigorous upper and lower bounds
of the energy associated with the exact infinite-dimensional weak solution of parametrized steady
symmetric coercive equations. The upper bound construction is based on the usual variational
argument over a subspace; the lower bound construction is based on a reduced basis approximation
of the dual variable that satisfies exactly the dual feasibility conditions. We then consider various
extensions of the basic technology. The formulation yields truly rigorous certificates of the reduced
basis energy prediction (and the energy norm of the solution) without any assumptions as regard
the accuracy of the underlying finite element discretization.
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We identify several future research directions that address some of the limitations noted in the
Introduction. We also reference relevant past work developed in different contexts. First is the
extension to coercive but nonsymmetric equations and to other functional output quantities; we
refer to Sauer-Budge and Peraire [17] for the formulation in the finite element context. Second is
the extension to noncoercive equations; we refer to the work of Peraire and Patera [11] for a related
formulation which provides asymptotic bounds in the finite element context. Third is the extension
to nonlinear equations; for a limited class of nonlinearities, it may be possible to incorporate the
technique developed in Machiels et al. [8] in the finite element context. Fourth is the extension to
nonaffine parameter dependence; we may incorporate the empirical interpolation method [2] and
the associated error bounds [3]. Fifth is the simplification of the finite element equilibration pro-
cedure; we may incorporate certain discontinuous Galerkin methods which automatically produce
equilibrated fluxes [19]. Sixth is the application to large-scale engineering systems; we may develop
an approach similar to the component-based reduced-basis method [4]. Although all these exten-
sions should in principle be possible, none is simple and furthermore the complementary energy
approach is clearly most advantageous in the symmetric coercive context.

We also identify an important related development which is more widely applicable: an adap-
tation strategy that controls both the physical space error due to the lack of the finite-element
resolution and parameter space error due to the lack of reduced-basis resolution. We note two
recent work that demonstrate the effectiveness of spatial adaptivity in the reduced basis context:
the work of Steih and Urban [18] which uses an adaptive wavelet discretization; our work which
uses a minimum-residual mixed method [20]. The latter formulation is built on duality but not on
complementary energy. In this adaptive context, we can consider a larger class of equations, as the
emphasis is on the development of an optimal approximation even if we cannot confirm accuracy
with complete rigor.
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