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A SPACE-TIME PETROV-GALERKIN CERTIFIED REDUCED
BASIS METHOD:
APPLICATION TO THE BOUSSINESQ EQUATIONS

MASAYUKI YANO*

Abstract. We present a space-time certified reduced basis method for long-time integration of
parametrized parabolic equations with quadratic nonlinearity which admit an affine decomposition in
parameter but with no restriction on coercivity of the linearized operator. We first consider a finite
element discretization based on discontinuous Galerkin time integration and introduce associated
Petrov-Galerkin space-time trial- and test-space norms that yield optimal and asymptotically mesh
independent stability constants. We then employ an hp Petrov-Galerkin (or minimum residual) space-
time reduced basis approximation. We provide the Brezzi-Rappaz-Raviart a posteriori error bounds
which admit efficient offfine-online computational procedures for the three key ingredients: the dual
norm of the residual, an inf-sup lower bound, and the Sobolev embedding constant. The latter are
based respectively on a more round-off resistant residual norm evaluation procedure, a variant of
the successive constraint method, and a time-marching implementation of a fixed-point iteration
of the embedding constant for the discontinuous Galerkin norm. Finally, we apply the method
to a natural convection problem governed by the Boussinesq equations. The result indicates that
the space-time formulation enables rapid and certified characterization of moderate-Grashof-number
flows exhibiting steady periodic responses. However, the space-time reduced basis convergence is
slow, and the Brezzi-Rappaz-Raviart threshold condition is rather restrictive, such that offline effort
will be acceptable only for very few parameters.
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1. Introduction. We present a certified reduced basis (CRB) method for long-
time integration of parametrized parabolic partial differential equations (PDEs) with
quadratic nonlinearity which admit an affine decomposition in parameter but with
no restriction on coercivity of the linearized operator. Our equations of interest in-
clude, but are not limited to, the unsteady incompressible Navier-Stokes equations
and the Boussinesq equations that exhibit moderate unsteadiness including time-
periodic responses. While reduced basis approxzimation based on, for example, proper
orthogonal decomposition (POD) readily applies to unsteady equations [12, 13], cer-
tification based on traditional time-marching L?(£2) error bounds has been shown to
be ineffective when the spatial operator linearized about the solution trajectory is
non-coercive [19, 16]. In particular, the time-marching L?(2) error bound — which
is based on the consideration of the worst-case perturbation at each time step and
the propagation of its effect over time — grows exponentially in time for non-coercive
(linearized) spatial operator even if the solution is asymptotically stable (and steady).

In order to overcome the limitation of the time-marching L?() error bound
and enable effective long-time certification of a reduced basis approximation of non-
coercive (but asymptotically stable) PDEs, Urban and Patera have recently intro-
duced an error bound based on a space-time variational formulation [25, 24]. In-
stead of accumulating the effect of the worst-case perturbation at each time step,
the formulation directly considers the space-time structure of the problem and con-
structs a space-time error bound. For spatially non-coercive and asymptotically stable
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convection-diffusion equations, the formulation has been shown (empirically) to yield
an error bound that grows linearly, rather than exponentially, with the final time.

More recently, we (Yano, Urban, and Patera) have applied the space-time approx-
imation and error certification technique in a simple nonlinear setting: one-parameter,
one-dimensional Burgers’ equation [28]. The work employed an interpolation-based
reduced basis approximation and the associated Brezzi-Rappaz-Raviart (BRR) er-
ror bound [3] specialized for quadratic nonlinearity (as used by Veroy and Patera for
steady Navier-Stokes [26]). The primary advantage of the formulation in [28] is its sim-
plicity in many aspects: the Crank-Nicolson in time truth discretization, the reduced
basis approximation (in fact, interpolation), the inf-sup stability bound, and the sam-
pling procedure.! The method however has a number of disadvantages: a (stringent)
restriction on the form of the equation — the linearized form must be independent of
the parameter; the weak stability of the natural space-time norm associated with the
Crank-Nicolson time-stepping; the associated poor behavior of the Sobolev embed-
ding constant (which is required for the BRR error bound); and the non-optimality of
the interpolation-based (as oppose to projection-based) reduced-basis approximation.
Nevertheless the simple formulation demonstrated the applicability of the space-time
formulation for Burgers’ equation and significant improvement in the effectivity of the
error bound compared to the time-marching formulation.

The point of departure for the current work is the above work on Burgers’ equa-
tion [28]. Our new formulation improves upon previous approach in several regards.
First, we relax the constraint that the linearized form is independent of the param-
eter; specifically, we consider equations whose linear and quadratic spatial operators
admit decompositions that are affine in functions of parameter. (We assume that
the first term of the linear expansion is positive and symmetric; the diffusion term of
the parabolic equation constitutes this operator.) Second, we employ a new “truth”
space-time finite element discretization based on the discontinuous Galerkin (DG)
time stepping [15, 10] and introduce associated space-time trial and test norms, which
yield unity inf-sup and continuity constants for the heat equation and produce a L*
embedding constant that is only weakly dependent on the mesh and final time. Third,
we employ an hp Petrov-Galerkin-projection-based (or minimum residual) reduced ba-
sis approximation [18] instead of the interpolation-based approximation used in the
previous work, facilitating applicability of the method in a multi-parameter setting.
Fourth, we use a modified version of natural-norm successive constraint method [14]
in the space-time context that provides a tighter bound than the original formulation
while maintaining a similar cost for nonlinear equations. Fifth, we present a variant of
the hp-adaptive reduced basis sampling strategy [9] that is particularly suited for non-
linear equations with limited stability. Finally, we apply the new space-time certified
reduced basis formulation to a natural convection problem governed by the unsteady
Boussinesq equations — a system for which the classical time-marching L?(£2) error
bound produces pessimistic and meaningless error bounds.

We however note that the space-time CRB method proposed in this work suffers
from a number of limitations that warrant future work. The first is the disadvantage of
space-time snapshots relative to POD-Greedy approaches in terms of the convergence
of the reduced-basis approximation and hence offline effort; future work will consider
how we may incorporate a POD-Greedy approximation into a space-time certification.
The second is the very restrictive (normalized) residual criterion imposed by the

IDue to its simplicity, in particular from an implementation perspective, certain aspects of the
formulation in [28] may be preferred in some cases.
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Brezzi-Rappaz-Raviart theory, which in turn requires a very accurate reduced basis
approximation (“overkill”) before we can endow the solution with any error certificate;
it might be difficult to address this from a purely computational perspective, but in
an estimation or controls context — one of the target applications of reduced basis
methods — data may help to mitigate the effect. We will observe both of these
limitations in our model Boussinesq equations.

The results nevertheless demonstrate that rigorous long-time a posteriori error
bounds are possible for unsteady and “unstable”? hydrodynamic and transport sys-
tems. The natural convection system considered in the results section exhibits qualita-
tively different responses as the Grashof number increases: from a Stokes-like smooth
transition at a low Grashof number to a convection-dominated steady-periodic re-
sponse at a high Grashof number. The method is able to rigorously confirm that
these changes in flow regime are not the result of an overly truncated low-order
model, which is a demonstrated danger in a reduced-order approximation of unsteady
flows [7]. With the space-time formulation we achieve rigorous bound (by avoiding
spurious dynamics), but to achieve this rigor, we do not lose the sharpness.

This paper is organized as follows. Section 2 introduces a space-time variational
and finite element formulation based on a discontinuous Galerkin time-marching and
associated space-time trial and test norms. Section 3 presents our space-time certified
reduced basis framework. The section describes the construction of the reduced basis
approximation and the three ingredients of the BRR-based error certification: the
dual norm of the residual, a inf-sup constant lower bound, and a Sobolev embedding
constant. Section 4 presents our hp-adaptive reduced basis sampling strategy. Finally,
Section 5 shows the result of applying the space-time certified reduced basis method
to a laterally heated natural convection problem.

2. Truth Solution.

2.1. Problem Description. Let us first recall a few standard spaces that are
used throughout this work [20]. The L? Hilbert space over a domain Q € R? is denoted
by L?(2) and is equipped with an inner product (¢, @) 2(q) = [, ¢(2)¢(z)dz and the
induced norm [|9[|.2(q) = 1/(¥, V) 12(q)- The space of vector valued L?(Q) functions is
denoted by (L?(£2))™, where m is the dimension of vectors, and is equipped with an in-
ner product (§,7)r2(q) = Jo1(%)§;(x)dr = 377 (&,15) L2() and the induced norm
€l 2(2) = /(& €) L2 (0); to avoid notational clutter, we will not explicitly indicate in
the subscript that inner product (or norm) is taken in the vector sense. The summa-
tion on repeated indices is implied throughout this paper unless stated otherwise; how-
ever, we will employ the explicit summation notation when the limit of summation is

1
ambiguous. The L? norm is defined by [|¢)||1r (o) = (fQ(Z;n:1 V;(2)v; (37)>p/2d95) "
The H'(Q) space is equipped with an inner product (U, ) ) = (VY, V)20
and the induced norm |[¢||g1) = /(¥,¥)a1(). We will also consider Gelfand
triple (V, H,V’) and associated duality pairing (-, )y xy; we take H = L*(Q) (or
(L?(©2))™) throughout this work and appropriately choose V to suit the equation of
interest. The norm of £ € V' is defined by €|y = sup,ecv (L, ¥)vixv/[[¢]lv. The
Riesz representation R¢ € V satisfies ||Rl||v = |||y, where the Riesz operator is
defined as R : V' — V such that, for each ¢ € V', (Rl,¢)y = ({,d)vixv, Vo € V.

We now introduce the form of governing equation considered in this work. Let Q C
R? be the spatial domain of interest, I = (0,T] be the time interval, and D C R¥ be

2In the sense of having a non-coercive (linearized) spatial operator.
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the parameter domain. We consider parametrized quadratically-nonlinear parabolic
equations of the following form: find u € C°(I; H) N L?(I; V) such that [20, 22]

(4, v) g + alu, vy p) + c(u,u,v; ) = f(o;p), YveV,tel, peD, (2.1)
(w(0),mu = (M), mu, VneH,
where u = %, h(p) € H is the initial condition, and, as mentioned above, V is a

Hilbert space appropriately chosen for the particular equation of interest. We as-
sume that the parametrized linear form f(-;-), bilinear form a(-,-;-), trilinear form
¢(+,+, ), and initial condition h(-) are affine in functions of parameters and admit
decompositions

Qf
= Z@é(u)fq@)
a(w,v; 1) Z@ wag(w,v),

c(w, z,v; ) Z@c eq(w, z,v),

Qh

= Z @Z(H)hq
q=1

where f,(-), ¢ = 1,...,Q7, a,(-,"), ¢ = 0,...Q% and ¢,(-,-,*), ¢ = 1,...,Q°, are
parameter-independent forms, h, € H, ¢ = 1,.. ., Q", are parameter-independent
functions, and @{; , 97, O, and @Z are parameter-dependent functions that map
from D to R. We assume that ag(:,-) is symmetric and positive and defines a natural
inner product and norm for the space V according to

(w,v)y = ap(w,v) and Jw|v = v/ (w,w)y.

Furthermore, we assume that each of the trilinear forms is symmetric in the first two
arguments

cq(w, z,v) = ¢q(z,w,v), Yw,z,veV, g=1,...,Q°,
and is bounded in the sense that
cq(w, z,v) < CCq||w||L4(Q)HZ||L4(Q)||'U||V7 Vw,z,veV, q=1,...,Q° (2.3)

for some constants C°, ¢ = 1,...,Q°¢. For the inequality to be meaningful, we as-
sume that ||w||z+(q) < pra)-vlwllv, Yw € V, for some Sobolev embedding constant
pri(o)-v- Note that, for many governing equations of fluid flows, we may associate the
diffusion term (positive and symmetric) with ag(-,-) and the convection term (written
in a symmetrized form) with ¢;(-, -, ).

2.2. Space-Time Variational Formulation. We now define Bochner spaces

used in our space-time formulation. The L?(I;V) space is equipped with an in-
ner product (w,v)p2(r,vy = [;(w(t),v(t))vdt and the induced norm |jwl|z2(r,v) =

V(w,w) 21,y Its dual, L?(1; V'), is equipped with an inner product (w,v) 2,17y =
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J;(Rw(t), Ru(t))ydt and the induced norm |[wl|r2(s,v) = \/(w,w)p2(r;v7), where
R: V’ — V is the aforementioned Riesz operator on (V, H,V’). Finally, the space
HY(I; V') is equipped with a (semi) inner product (w,v) g1 (v = (W, 0) 2(ryv7y and
a (semi) norm [|w|| g1 (z,vy) = v/ (W, w) g 107y

In order to treat nonzero initial conditions in a variational manner, we choose
our space-time trial and test spaces following the work of Schwab and Stevenson [22].
The space-time trial space is given by

X =L*LV)nHYI; V')
and is equipped with an inner product
(w,v)x = (w,0) vy + (W, v) r2(rv) + (w(T),v(T)) 1 (2.4)

and the induced norm ||w|x = v/ (w,w)x. Note that X is not restricted to functions
that vanish at ¢ = 0. The norm is not the graph norm but includes the control of
the solution at the final time as used by Urban and Patera [25]. Our space-time test
space ) is

Y=L*LV)x H
equipped with an inner product
(w,v)y = (WM, 0V 21y + (WP, 0@y (2.5)

and the induced norm |lwl|ly = \/(w,w)y for w = (w®,w®) and v = (v, ).
The second part of the couple, which is in H, is used to enforce the initial condition
in a weak manner.

Our space-time semilinear form G(-,; p) : X x Y — R is given by

G(w,v; ) = M(w, o) + Aw, v™; p) + C(w, w, 05 1) + F(v; )
+ (w(0), vy, Ywe X, Vve,

where the parametrized space-time forms are given by integrating corresponding
space-only forms with respect to time. Each space-time form inherits from its space-
only counterpart the operator decomposition that is affine in functions of parameters:

M(w,v) = /<w,v>wvdt,
I

Qa

A(w,v;u)z/ (w, v; p)dt = Z@a /aqudt Z@a ,U),

I

C(w,z,v;u):/c(wzvudt Z@C /cqwzvdt Z@C Cy(w, z,v),
I

Flo: ) /f p)dt + (—h(), v ) g

Q" Qf
- Z o7 () / 0Dt + 37 01 () (—hgy v @)y = 3 OF () Fy (v
g=1 I g=1 q=1
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where Qf = Qf + Q"; for notational convenience, we group the data terms that
arise from the volume forcing f and the initial condition A into a single space-time
functional F. The space-time trilinear forms C,(-,-,-), ¢ = 1,---,Q°, inherit the
symmetry with respect to the first two arguments and the boundedness, i.e.

Cy(w,z,v) = Cy(z,w,v), Yw,z€ X, Yve L*(L;V),q=1,...,Q°
Co(w, 2,v) < Clwl|pacr;za) 12l 2a a0l L2 vy (2.8)
Yw,z € X, Yo e LA(LI;V), ¢g=1,...,Q°,

where C%, ¢ = 1,...,Q° are the constants in Eq. (2.3). The boundedness of the
space-time trilinear form follows from integrating the inequality Eq. (2.3) in time and
then twice invoking the Cauchy-Schwarz inequality. Note that for the bound to be
useful, we have assumed that ||w||p+(7,4(0)) < praxl|wl|x, Yw € X, for some Sobolev
embedding constant pra_y; we will later verify this assumption for our discrete spaces.

Our space-time variational formulation yields the following weak statement: find
u € X such that

G(u,v;p) =0, Yve.

The Fréchet derivative bilinear form associated with G evaluated about z € X is
denoted by 9G(+, z, ;) and is given by

G (w, z,v; p) = M(w,v) + A(w, v; 1) + 2C(w, 2, v; ) ;

the linearization of C follows from its symmetry with respect to the first two argu-
ments.

2.3. Finite Element Discretization. We consider the standard Galerkin dis-
cretization in space and a discontinuous Galerkin (DG) discretization in time [15, 10].
Let us denote our spatial finite element space by V},, where the subscript h signifies
the characteristic diameter of elements in the triangulation 7;, of the domain €. The
choice of the spatial finite element is dependent on the particular equation of interest;
for example, the standard linear finite element may be used for Burgers’ equation,
whereas Taylor-Hood finite element would be better suited for the incompressible
Navier-Stokes equations.

For our temporal discretization, we first partition the interval I = (0,7 into K
non-overlapping intervals I¥ = (t*~1 ¢¥], k = 1,..., K, delineated by 0 = t* < ¢! <
- <t¥ =T. Our DG temporal finite element space is given by

Sae ={ve LA(I) :v|p € PP(I*), k=1,...,K},

where PP(I*) denotes the space of degree-p univariate polynomials on the interval I*.
Our temporal finite element space is non-conforming and discontinuous in time.
We denote our space-time finite element trial and test spaces by

Xs =5 @V, and V5 = Sar ® Vi,

respectively. The subscript § = (At, h) signifies that the spaces are dependent on both
the temporal and spatial meshes; we denote the dimension of the space-time finite
element spaces by N, i.e., N = dim(Xs) = dim(Ys). Note that unlike its continuous
counterpart, our choice of the Vs space is not a couple of functions over 2 x I and €2,
the latter of which is used to enforce the initial condition.
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To facilitate the presentation of norms associated with our finite element space,
let us first recall the DG discretization of the temporal evolution bilinear form M(-, -).
The DG discretization for the evolution term is given by

. K K
Ms(w,v) = Z/ (i, vy v dt + Z (w(t’j__l) _ w(tﬁ_l)vv(tﬁ-_l))H ,
k=171" k=2

where w(t}) = lim. o+ w(t® + €) and w(th) = lim,_,o+ w(t* — €) are based on the
function values in interval I**1 and I*, respectively [10].

We equip our space-time finite element test space Vs with a discrete analog of the
Y inner product Eq. (2.5),

(wvv)y(s = (w7v)L2(I;V) + (w(tg—)vv(tg))H’

and the induced norm |[|v]|y; = 1/(v,v)y,. Note that the Vs inner product is decoupled
in time owing to the time-discontinuous test functions. The trial space X5, on the
other hand, is equipped with an inner product

(w,v) 2, = (Rsw, Rsv)y, + (w,v)r2(1,v) + (wtX), wtX))
K
£ (i) w1, o) — o),
k=2

where the lifting operator Rs : X5 — Vs satisfies, for each w € Xy,
(Rsw,v)y, = Mg(w,v), Yo € Vs ; (2.9)

the associated induced norm is ||w||x; = v/ (w,w)x,. We choose our lifting operator
in a manner that is consistent with the DG interpretation of the temporal derivative
operator, which includes the jump contribution. In addition, our X5 norm includes
the extra jump penalty term. As we will see shortly, this choice of the X5 norm in fact
arises naturally when we consider the DG discretization of the heat equation. The X5
inner product is coupled in time through the jump terms in the lifting term and the
penalty term.

The combination of the DG temporal scheme and spatial finite element discretiza-
tion yields our space-time finite element statement: find us € X5 such that

Gs(us,v;u) =0, Vv €Yy, (2.10)
where the discrete semilinear form is give by
Gs(w,v; p) = Ms(w,v) + A(w, v; ) + C(w, w, v; i) + Fs(v; ) + (w(tS), v(t))a ;

here, the data term, which includes the initial condition, is given by

Fs(vip) = / — Fvs )t + (—h(p), () -

The well-posedness of the finite element formulation will be verified a posteriori by the
Brezzi-Rappaz-Raviart theory. The Fréchet derivative associated with Gs evaluated
about z € X is denoted by 9Gs and is given by

0Gs(w, 2, v; 1) = Ms(w,v) + Aw, v; ) + 2C(w, z,v; ) + (w(t5), v(t3))
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where we again appeal to the symmetry of C in the first two arguments.

With the above space-time discretization and (discrete) norms, we have the fol-
lowing statement for the heat equation?:

THEOREM 2.1. For the heat equation, which is defined by the semilinear form

Gy (w, v) = Ms(w,v) + Ao (w, ) + (w(t]), v(t})) + F5(v),
the inf-sup constant is

heat —

89};"“ (w7 U)

= inf sup =1,
WEXs ye s ”wHXs HU”MS
and the continuity constant is
) o heat ,
,yheat = sup sup gé (w ’U) _ 17

weXs veys Wl vllys

where G2 (w,v) = Ms(w,v) + Ao(w, v) + (w(t), v(t%)) u.
Proof. First, because ag(w,v) = (w,v)v, we have Ag(w,v) = (w,v)r2(s;v). Thus,
our Fréchet derivative bilinear form is given by

ag?eat('w7v) = Mg(w, ’U) + AO(w7v) + (w(ti),v(ti))H
= Ms(w,v) + (w,v) r2(r,vy + (w(t)), v(t5))m
= M5(w, ’U) + (’LU, U)y(;,

where the last equality follows from the definition of the )s inner product. Let us
introduce a supremizing operator S : X5 — Vs associated with the bilinear form,

(Sw, )y, = 0GI (w,v), Yw € X5, v € Vs.

Because G (w,v) = Ms(w,v) + (w,v)y,, the supremizing operator may be de-
composed as S = SM 4 Id where

(SMw,v)y5 = Mg(w,v), Yw € X5, v € Vs.

We recognize SM = Rj, where Rs is the DG lifting operator defined by Eq. (2.9). We
then substitute the definition of the supremizing operator to the expression for the
inf-sup constant and the continuity constant and solve the supremization problem on
Y5 using the Cauchy-Schwarz inequality (which yields vg,, = Sw) to obtain

[Swllys [Swllys

/that — inf d ,that = sup

. (2.11)
wEXs ||U)||X,; wEXs HU)||X5

Using the decomposition for our supremizing operator, S = Rs + Id, the (square of
the) numerator of Eq. (2.11) can be expressed as

ISw]3, = (Rsw, Rsw)y, + (w,w)y, +2(Rsw, w)y,.

3In the context of Navier-Stokes equation, the “heat equation” corresponds to the Stokes equa-
tions



SPACE-TIME PETROV-GALERKIN CERTIFIED REDUCED BASIS 9

We now appeal to the definition of the lifting operator Rs, invoke integration by parts
to (the half of) (w,w)y/xv, and carry out algebraic manipulation to simply the last
term of the right-hand side:

_ K K
(Rsw,w)y, = Ms(w,w) = Z /Ik (w, w)yr v dt + Z (w(ti_l) - w(t’i_l),w(ti_l))H
k=1 k=2

K
-3 ["“’“m”?f 3 ) — w2 + o),
k=2

Thus, the numerator of Eq. (2.11) simplifies to

K-1
ISwl3, = (Bsw, Rsw)y, + (w,w)y, — [wtDlz + Y lw(th) — w(t)l1F + [lw()1%
k=1
K-1
= (Rsw, Rsw)y, + (w,w) 2z + ()7 + Y [lw(th) —w(t)|1F.
k=1

This is precisely our definition of the X5 norm. Thus, we have ||Sw|y,/||w|x; = 1,
Vw € Xy, which proves the desired results. 0

Remark 2.2. The above proof shows that our X5 norm (and inner product), which
is closely related to the graph norm of H!(I; V') x L?(I; V), is in fact the (space-time)
natural norm (and inner product) [23] associated with the DG discretization of the
heat equation with the )s test norm. In Section 3.5, we will take advantage of this
equivalence to efficiently solve the Xs-projection problem.

Remark 2.3. Our space-time DG discretization for piecewise constant (p = 0)
temporal approximation space is equivalent to the backward Euler discretization of
the parabolic equation (see, e.g. Eriksson and Johnson [10]). Thus, the space-time
DG finite element formulation and associated space-time norms yield a variational
framework for the backward Euler scheme.

Let us make a few comments on the computational cost associated with the
solution of the DG-in-time system, Eq. (2.10). Due to the time-discontinuous nature
of the DG temporal discretization, Eq. (2.10) can be solved one time interval at a time,
starting from I''. Each time step requires the solution of a (p+1)-dim(V},)-dimensional
nonlinear equation, which is solved using the Newton’s method. Note that, to achieve
second-order accuracy using the DG discretization, we must solve a system that is
twice as large as the Crank-Nicolson system at each time step; however, we accept
the additional cost for the L- and algebraic stability of the DG formulation [2].

The use of DG-in-time discretization instead of the Crank-Nicolson time-stepping
— as considered in the preceding papers [25, 28] — is motivated by its better stability
properties; in particular, the (discrete) L*-Xs; Sobolev embedding constant depends
only weakly on the temporal and spatial meshes, as we will demonstrate in Section 3.5.
(Note that the DG discretization also enables arbitrarily high-order discretization
by increasing the polynomial order — the property often noted by its practitioners;
however, our primary interest here is its stability and variational construction, which
facilitate the error analysis.)

3. Space-Time Certified Reduced Basis Method. Our space-time certified
reduced basis method is based on the hp reduced basis method of Eftang et al. [9]
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In the hp reduced basis method, the parameter space D C R¥ is partitioned into
N,, non-overlapping subdomains D;, j = 1,...,N,. For each subdomain D;, we
associate reduced basis approximation space X, p, C X5 of dimension ;. In this
section, we construct our space-time reduced basis approximation and associated error
bounds for single partition assuming that the partitions D; and the trial space Xn; p,
have already been constructed. We detail the selection of the partition and spaces in
Section 4. In addition, to avoid notational clutter — and as the focus of this section
is approximation and certification for a single partition, we will simply denote the
trial space associated with the partition of interest by X instead of Xy, p,, where
the subscript NV signifies the dimension of the particular reduced basis space.

3.1. Space-Time Petrov-Galerkin Reduced Basis Approximation. Be-
cause our space-time semilinear form is non-coercive, the standard Galerkin projec-
tion is not guaranteed to yield a good — or even a stable — approximation. Thus,
we employ the minimum residual formulation of Maday et al. [18] for our space-time
reduced basis approximation. First, note that the dual norm of the residual may be
expressed as

Gs(wn,v; )
1Gs(wn, -3 p)lly; = sup —————

= HS(wN§M)Hy5 )
vEYs HU”;V&

where S(wy; ) € Y satisfies
(S(wnsp),v)y; = Gs(wn,vip), Vv e Vs .

Then, given a reduced basis trial space X C X, we seek uy € Xy such that

uy = arginf ||Gs(wy, - ;u)||y(/s = arginf sup M
wn EXN wy EXN VEYs ”U”ys
= arginf ||S(wn; 1)lys - (3.1)

wNEXN
We remark on the optimality of the approximation in a certain sense:

Remark 3.1. The minimum residual scheme may be interpreted as a Petrov-
Galerkin projection with the stability-maximizing test space. To see this, note that the
first-order optimality condition associated with the minimization statement Eq. (3.1)
is

(S(wnsp), S'lwn](ens p)ys =0, Van € A, (3.2)
where the derivative operator satisfies
(S/[U)N](ZN;M),’U)M; :8g5(ZN>wNav;,u')a Yo e Vs .
Then, by the definition of the supremizing operator, we have
g5(uNaS/[uN](ZN;M);/‘L):Oa VZNGXN 5
or, equivalently, by appealing to the definition of S’'[un](zxn; 1),
g(S('U/N,’UN;,U/):O, V'UNGyN(XN;uNa/J’)v

where

0 ,UNS V'
In(Xn;un, ) = {v € Vs : v = argsup Go(w, un, v's 1)

; , W E XN} .
v’ €Vs ||’LU||)(5||7) ”375
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Note that Yy (Xn;un, ) C Vs is the space of the inf-sup supremizers of the Fréchet
derivative bilinear form linearized about uy associated with the space Xn. Conse-
quently, the inf-sup constant of the Petrov-Galerkin reduced basis problem is bounded
below by that of the finite element problem. In particular, the reduced basis problem
is well-posed given the finite element problem is well-posed. (For a similar stability-
guaranteed formulation for the Brezzi inf-sup condition (rather than the Babuska
inf-sup condition used here), see Rozza and Veroy [21].)

We now demonstrate that the solution of Eq. (3.1) permits offline-online com-
putational decomposition. Given a Xs-orthonormalized set of space-time trial-space
basis functions, {&;}Y |, we wish to find ay(u) € RY such that uy = Erank(p).
Appealing to the affine decomposition of our semilinear form, we can express our
supremizer S(wy; (1) as

S(wni i) = xi i + O ()" an + O (W)X e + OF (W™,
where the basis functions for the supremizer is the Riesz representations of our
parameter-independent space-time forms:

(X?’l,v)yé M(&g,v), YveVs, k=1,...,N,

(xf“,v)ya Ag(&,v), YweVs,k=1,....,N,q=0,...,Q%

(XS, 0)ys = Caléhr &,0), Yw € Vs, kl=1,...,N, ¢=1,...,Q",
(7, 0)y, = Fy(v), Yoeds, q=1,...,Q". (3.3)

The supremizer S(wy; 1) is expressed as a linear combination of N+ QaN—i—%QCN(N—i—

1) + Qf parameter-independent basis functions. The (square of the) dual norm of the
residual is then expressed as

1S (Eroves 1)|13,
= O M) s ane + 205 (1) (G, X )y aneri + 205 (1) O X5F )y, iy
+207 (1) O X7 vy + O (1) O2 (1) (X" X ) ys i
+ 208 ()05 (1) (™ X5 T ) ys iy + 208 (1) O (1) (e X7 ) s v
+ 0510 (1) (Xt X7 )ws mencvia; + 208 (1)OF (1) (xit - x7* ) ys ke
+ 0 (1O (1) (X" X")p; - (3.4)

Tedious but straightforward differentiation of Eq. (3.4) yields the first order optimality
condition for Eq. (3.1), which corresponds to Eq. (3.2). The differentiation of the
optimality condition then yields the Hessian, which is used to solve the optimization
problem using Newton’s method.

The offline-online computational procedure is now clear from Eq. (3.4). In the
offline stage, we first compute the Riesz representations XkM7 X‘;q, Xi;’, and 7 in
ON - (14 Q*N + Q°N? + @f)) operations. We then compute the inner products of
Riesz representations that appear in Eq. (3.4). In the online stage, we assemble the
reduced basis residual (and the associated derivative and Hessian) using Eq. (3.4) in
O((Q°)2N*) operations and solve the nonlinear problem using Newton’s method. In
particular, the online cost is independent of the finite element complexity N, which
includes the number of time steps K (c.f. time-marching POD-based approach of,
e.g., Haasdonk and Ohlberger [13]).



12 M. YANO

Remark 3.2. In practice, for many problems we have considered, the standard
Galerkin projection works well. However, the Galerkin formulation is theoretically
less sound, i.e. unproven stability. As the size of reduced basis system is small —
especially in the space-time and hp context, we prefer the minimum residual (or
Petrov-Galerkin) formulation presented above.

3.2. Brezzi-Rappaz-Raviart Error Bound. Asin our previous work on Burg-
ers’ equation [28], our space-time a posteriori error bound relies on the Brezzi-Rappaz-
Raviart (BRR) theory:

THEOREM 3.3. Let 75 (u) be a normalized residual associated with an approzi-
mation un (@) defined by

472 (1)
™0 = GEE )

en (), (3.5)

where the continuity constant of the trilinear form, v(u), a lower bound of inf-sup
constant of the linearized form, BXP(u), and the dual norm of the residual, exn(p),
satisfy, respectively,

Clw, z,v; ) < V2 ()l[w]] a5 |21l s 0]l s
0G(w,un (), v; 1)

W <= 2 el 50
en () = G, )y = sup T30 (37
veys  vllys
Suppose the normalized residual is less than unity:
Tn(p) < 1. (3.8)

Then, there exists a unique solution us(u) € B(un (1), BLP(1)/(2v*(1))) to Eq. (2.10)
where B(z,r) ={w € Xy : ||w — z||x; < r}. Moreover, the error in un(p) is bounded

by

lus() = un (0l < Ano = D (1 Ty () . 39)

292(p)

Proof. The proof for quadratic nonlinearity is provided in, e.g., Veroy and Pat-
era [26]. O

Remark 3.4. For a trilinear form Eq. (2.7) with the parameter-independent forms
bounded in the sense of Eq. (2.8), the continuity constant 72 is given by

V(1) = p*O5 (1) C,

where C¢, ¢ = 1,...,Q°, are the continuity constants in Eq. (2.3), and p is the
space-time L*-X; Sobolev embedding constant defined by

Wl r4(r1:
p= sup H ||L (I;L*(2))

(3.10)
wexs  |lwllx

It can be shown [17] that, in two dimensions, the space-time L*-X; embedding con-
stant is bounded independent of the mesh size d; however, in three dimensions, the
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constant is weakly dependent on the mesh size. We will study the behavior of the
constant and provide associated computational techniques in Section 3.5.

Remark 3.5. The condition Eq. (3.8) defines a neighborhood of the solution
un(p) about which the effect of the quadratic term is rigorously bounded and hence
the linear theory applies. In the limit of ey (u) — 0, the BRR bound reduces to a
more familiar linear bound: Ay (u) — en(p)/B5%E (1); in addition, for any 7a (1) < 1,
the BRR error bound is bounded from above by Ax (1) < 2en(1)/B% ().

Remark 3.6. The condition on the normalized residual Eq. (3.8) imposes a con-
straint on the maximum error level that can be certified using the BRR error bound
procedure. Namely, if 7y < 1, then

LB LB
293 (n)  2p2 D1 O5 () CCa

In other words, we cannot certify — that is, cannot provide any error bound for —
a low-fidelity reduced basis approximation whose error is greater than E even if we
assume the perfect effectivity. This is unlike in the linear case, where error bounds
may be constructed for reduced basis approximation of any fidelity.

The construction of our space-time error bound requires evaluation of the follow-
ing quantities: 1) the dual norm of the residual defined by Eq. (3.7); 2) an inf-sup
lower bound satisfying Eq. (3.6); and 3) the Sobolev embedding constant Eq. (3.10),
which in turn provides a continuity constant . In the following three sections, we de-
tail evaluation and approximation of these three quantities, with particular emphasis
on offline-online computational decomposition.

3.3. Dual Norm of the Residual. In Section 3.1, we have already developed
an explicit expression for the dual norm of the residual, ex(u) = [|Gs(wn, - ;1)|ly; =
[IS(wn; w)]lys, in Eq. (3.4). The standard offline-online computational decomposition
appeals directly to Eq. (3.4) and evaluates the residual in online complexity indepen-
dent of N'. However, this procedure is known to suffer from numerical precision issues
if high accuracy is desired [4]; the precision issue arise because the residual evalua-
tion relies on cancellation of O(1) inner product pieces. A solution to this problem
was recently proposed by Casenave [5]. Casenave’s idea is based on representing the
dual norm of the residual not as a linear combination of inner product pieces, each
of which is of O(1), but as a linear combination of residuals evaluated at different
parameter points, each of which is of order of the residual itself. Recently, Casenave
has further improved the conditioning and computational efficiency of the procedure
by incorporating the empirical interpolation method (EIM) [1] in his residual evalu-
ation procedure [6]. We use this latter procedure to enable more round-off resistant
offline-online computational decomposition of the residual dual norm evaluation.

First, we note that the (square of the) dual norm of the residual, as expressed in
Eq. (3.4), can be interpreted as an inner product of two M-vectors, where M is the
number of terms in Eq. (3.4): a parameter-independent vector g € RM whose entries
consist of the inner products of the basis functions for the Riesz representation of
the residual, e.g. (x2!, x20)y,, and a parameter-dependent vector f(u) € RM whose
entries consist of the affine decomposition weights ©(p) and reduced basis coefficients
a(pw). We thus have

(i) = grbi (). (3.12)
k=1
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To reduce the size of the problem, we now apply the EIM procedure to 6 : D — RM
and approximate it as a linear combination

Mgiv

O(w) = 3 0(15)o;(n),

where Mgy < M (formally but Mgpy <« M in practice) is the number of EIM
interpolation points, and o(u) is selected to satisfy the interpolation condition

Mgim
Pi*(i)éi*(i) (/},) = Z P,*(z)ez*(z) (M;)JJ(M), (HO sum on Z), 1= ]., [N ,MEIM.
j=1
(3.13)

Here, {yj }jj\i’“:f“ is a set of EIM parameter interpolation points and {i*(i)}5™ is a
set of EIM interpolation indices; both sets are chosen in a Greedy manner following
the standard EIM procedure; see, e.g., Barrault et al. [1] The variable Piyy is a
simple preconditioner for the interpolation problem: Pj.(;) = (supuea Hi*(i)(u))_l,
t=1,..., Mgny. With the EIM approximation, Eq. (3.12) becomes
X (1) = g (On (1) (1) = (980k (1)) o5 (1) = €x (1) (1) - (3.14)
The dual norm of the residual for a particular parameter is expressed as a linear
combination of the dual norm of the residual at select Mg EIM interpolation points.
The online-offline computational decomposition of the EIM-based residual-norm
approximation procedure is apparent from the construction. In the offiine stage, we
select the EIM interpolation parameters {u;}MEIM and indices {i* (i)} /5™ construct

j=1
(the PLU factors of ) the preconditioned EIM interpolation matrix (P« (;)0.(s) (uj))%‘“ﬂl}‘,
Mg

and evaluate the residual vector (€3 (1)) In the online stage, we compute

j=1
(CY0) (1)) Mem - solve the interpolation condition Eq. (3.13) for o(u), and evaluate

Eq. (3.14) in O(M§g;,,) operations.

3.4. Inf-Sup Lower Bound: A Modified Successive Constraint Method
(SCM).

3.4.1. Lower Bound Formulation. Our objective is to compute a lower bound
for the space-time inf-sup constant

Bn(u) = inf sup 0Gs(w, un (1), v; 1)

(3.15)
WEXs yeYs [[wll s [[v]| s

The procedure presented here largely follows the natural-norm successive constraint
method (SCM) [14] for linear stationary equations with a few modifications. First, we
apply the method to the linearized form of a nonlinear equation; this introduces re-
duced basis coeflicients in the expansion of the linearized form, which in turn requires
a particular relationship between SCM control points and reduced basis snapshot
points for an efficient computation. Second, we tighten the bounding boxes associ-
ated with the SCM method; as we will see shortly, the modification, unlike in the
linear case, only moderately increases the cost in the nonlinear case (assuming the
reduced basis dimension N is larger than the number of affine expansion coefficients
Q%). Third, we compute all coefficients in space-time spaces; we propose an effective
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time-marching based computational procedures for the coefficients in the following
subsection.

By way of preliminaries, we state two important assumptions of our modified
SCM procedure:

e SCM Assumption 1: the SCM anchor point (i) is included in the reduced
basis snapshot points.

e SCM Assumption 2: the SCM control points (M5“M) are included in the
reduced basis snapshot points.

The roles that the anchor point and control points play in the procedure will become
clear shortly. These two assumptions greatly simply the extension of the natural-norm
SCM algorithm to nonlinear equations. Both assumptions are verified by construction
for the sampling algorithm proposed in Section 4.

We now present the modified SCM procedure. As in the standard SCM, we first
fix the supremizing operator to be that computed at an SCM anchor point f, i.e.
SH : X5 — Y5 such that

(S*w,v)y, = 0Gs(w,un(fi),v; i), Yw € X5, v € Vs .

Note that, by SCM Assumption 1, the SCM anchor point is always included in the
reduced basis snapshots; thus, un(jiz) = us(jz) and the supremizing operator S¥ is
independent of N. Then we construct a lower bound of the inf-sup constant following

i 0Gs(w, un (1), SPw; p)
Bn(p) > inf 7
vz e Sl

. By
> {jnf ”wa’é} inf 595(1071”\1(#);5 w; )
wWEX; ||w||X5 wWEXs ||SuwHy6

= B (1) B (1),

where we have identified the term in the first bracket as Sy () and defined the term
in the second bracket as BK, Note that ,B]‘(, is dependent on N as our Fréchet deriva-
tive bilinear form changes with our reduced basis approximation uy(u). The goal of
natural-norm SCM is to construct lower and upper bounds for the second term in a
manner that permits offline-online computational decomposition. We make modifica-
tions to the SCM to improve the tightness of the lower bound.

To facilitate construction of bounds, we first express Bf{, as

i o 0Gs(w, un(p), S"w; )
K = inf — 1
ﬁN(:u) wng(s ||SH11)||§;8 (3 6)
, M(w, SFw) + Ag(w, SFw (w, SPw)
wed, B Ze ||s~w\|2

—|—ZZ@C aNk 2Cq(wi§k,5ﬂw)

22 EXIR

Now we regroup the terms to express the correction factor as a deviation from the
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linearization at the anchor point

Q” ~
i 0G5 (w, u(p), S*w; ) A (w, SPw)
{ 01 (1) — 0 () W S"w)
=, [ 15wl ;( A o
(i i7 2C w, 5 2 Sﬂw
R i
=1 k=1 Vs
Q* _
i A (w, SPw)
=1 f ac )\ _ @a(g)) 22 W)
B PR G T
q=1 5
Q° N i
¢ c/~ _ 2C w7§ 7SMU}
+D > (O (wank(p) —eq(u)am(ﬂ))W] ;
q=1 k=1 3,
note that the reduced basis coefficients ayg, k = 1,..., N, enter the expansion as the

coeflicients of the trilinear form. The correction factor may be expressed as

Ay(p) =1+ inf In(zp),
ZEZN
where

N
Z@C Jank (i) — Og(f)ank (i zk—l—z (O7(1) —O4(1) 2N +q
1 k=1

(3.17)

9=

and

ch(wza gka Sﬁwz)
157w 13,

Zyn = {z € RUNTC" . Ju, € Xs, z(g_1ynph = k=1,...,N,

.A(w Sﬁw)
c . q Z) z a
q_17"'7Q 3 RQ°N+q = ||SﬁwzH§;5 aq_la'-~7Q .

To compute a lower bound of 5% (1), B4 " (1), we construct Z§B O Zy. Towards

this end, we first define a (fi-dependent) bounding box B, C R N+Q" that satisfies

. [ 2c,(w, &, SPw) 20, (w, &, SPw)
B = | inf =L 5k a0 Sk 3.18
N,(g—1)N+k w1£X5 ||Suw‘|§}5 ’we% ||5uw||§}5 ’ ( )
k=1,...,N, ¢g=1,...,Q°, (3.19)
" Ay (w, SFw) Ay (w, SPw)
B . = T sup S g=1,...,Q% 3.20
Vaewsa = |2, Tsmalg, o2, TsmulB, (320)

Clearly, Zy C Bk,. We define our ZkP as

zLB{zeBﬂ 33 O anela) — O oe(i) (3.21)

qlkl

—l—Z @a O% (1)) 2N+q > mf In(zp), V' € MSCM}7 (3.22)
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where MSCM € D is a set of SCM control points. By SCM Assumption 2, our SCM
control point, p/ € MS®M  is a reduced basis snapshot. This implies that, once the
constraint inf,ez, Jn(z; ') = B (') — 1 is computed at the k'-th reduced basis
sampling point p’, it need not be updated as N increases because ayg(ug) = 0,

k =k +1,...,N, due to the hierarchical construction of the basis. To evaluate a
lower bound for the inf-sup correction factor, we solve a linear program:
BRP (1) =1+ inf_ Tn(z;p), (3.23)
ZEZJL\‘,B

where Jy is the function defined in Eq. (3.17). As regards the sharpness of the

modified SCM inf-sup lower bound, we have the following proposition:
PROPOSITION 3.7. Given the same set of SCM control points, the lower bound for

the inf-sup correction factor presented above, B%LB(N), is sharper than the original

bound [14], here denoted by Biy™> & (p), i.e.

B (1) > B (1) > BREETE (1), (3.24)

Proof. The only difference in the original formulation [14] and the above formu-
lation is the choice of the bounding box. Thus, to prove Eq. (3.24), it suffices to show
that

BJ%,kCBJ%,(;Crig7 k:17"'aQCN+Qa-
The original SCM bounding box is given by*

porig | Vk Tk
%*{mwmﬂ

where

[ Thwl|y,

Yk = sup (3.25)

wEXs ”wHXs ’
and Ty : Xs — Vs, k=1,...,Q°N + Q%, satisfy
(T(q—l)N-i-k:w,v)y(s = 2Cq(w’£k7v)7 Yw € X(sa v e y57 k= 13 .. 'aNa q= 17 .. '5Qca
(Toen+rw, v)y, = Ak(w,v), Ywe Xs,ve Vs, k=1,...,Q%
Let us first show that the upper limit of Bff,,k is less than that of Bg,ﬁ;ig for k =
O°N +1,...,Q°N + Q:
_oe SH Tow, S* T,
sup Ar—q Jy(w; w) < |(Thw, Izv)y5| < sup 1 Twllys
wexs  [|[SPwl]3, wexs  |[SFwl]3, wexs [[SFwl|y;
T Z -1
c p M (101
weX; Hw”Xé wEXs Hw”Xé B(M)

we recognize that the final expression is precisely the upper limit of BZ’fig . Moreover,

the lower limit of BY, , is greater than that of B%;rig because

i i
nf Aq(lf»SQU)) > sup |(Thw, S 120)34;| >
weXs || SFw|3), wexs  |[SPwl[3, B()

4Qriginally presented for Galerkin formulation; here generalized for Petrov-Galerkin formulation.
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(The same arguments for the upper and lower bounds follow for £ = 1,...,Q°N.)
Thus, we have By, C BNY™®, k = 1,...,Q°N + Q°, which is the desired result.
0

We remark that the modified SCM improve the sharpness without a significant
increase in the computational cost for nonlinear equations:

Remark 3.8. For linear equations (in which the linearized form is independent
of the reduced basis approximation), the original bounding box construction pro-
cedure [14] is computationally less expensive than the new procedure as the fac-
tors 7y, defined in Eq. (3.25) are independent of the anchor point f; i.e. the g,
k=Q°N+1,...,Q°N+Q, (with N = 0), need to be computed only once for all hp-
partitions. However, for equations with quadratic nonlinearity, vx, k = 1,...,Q°N,
arising from the linearization of the quadratic term would have to be computed for
each partition separately. Thus, the computational cost of the new procedure is com-
parable to that of the original formulation, while providing a tighter inf-sup lower
bound.

3.4.2. Offline-Online Procedure. We first compute an upper bound of the
inf-sup correction factor to facilitate the SCM sampling process. The construction
is identical to the original procedure [14]; here we present a brief description for
completeness. An upper bound for the correction factor is constructed by choosing
Z}\J,B C Zn. We simply choose

Cq (wlv fkv Sﬂwl)
[[SFw|I3),
Ay, SPu)

ZyB = {zeRQcNW“ L2 DNtk = L k=1,...,N, ¢g=1,...,Q%

CNai = — i=1,...,Q%
ZQeN+j ||S“w’||§,§ y J ) aQ )
w’ = arg inf agg(w,uNgu/), Stw; i) w e MSCM
B A

In other words, z € ZyP consists of the forms evaluated about the infimizer at a
given SCM control point. Note that every element in this set must be updated when
N is increased, i.e. compute the new term arising from the addition of the trilinear
form evaluated about the new linearization point. Our upper bound for the inf-sup
correction factor is the solution of a linear program

B (1) =1+ inf T (z;p), (3.26)
zeZLP

where again Jy is the function defined in Eq. (3.17).
The online-offline computational decomposition is apparent from the construc-
tion. In the offline stage, we compute
e the inf-sup constant at the anchor point fi, By (2);
e the SCM bounding box Bk, € R“N+@" defined by Egs. (3.20) and (3.19);
e and the SCM correction factors B (1), p' € MSCM, defined in Eq. (3.16)
(for Z&B) and its infimizers (for Z\P) evaluated at the SCM control points.
In the online stage, we simply solve the linear programs Egs. (3.23) and (3.26) to
obtain a lower bound B]@LB(M) and an upper bound B][(;UB(M), respectively, for a
select 1. The inf-sup lower and upper bounds are given by %8 (1) = Bn(f1) 7]%’LB (1)

and BYE (1) = B () BR"" (1)
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Before concluding this discussion on the construction of the inf-sup lower bound,
let us clarify computations involved in the offline construction of ZLB. First, evalua-
tion of the inf-sup constant at the SCM anchor point fi, Sy (ii), requires the minimum
eigenvalue of a generalized symmetric eigenproblem Pw = AQw with

P =G(n)"Y 'G(n) (3.27)
Q=X (3.28)

and setting Sy (&) = v/ Amin. Here, the matrices, all of dimension RNMN*N | are given by
G(1)ij = 0G(8;, (), ¢; 1), Yij = (05, 0:)ps, and Xij = (65, di)x, The set {d; Y,
is a space-time finite element basis. Effectively locating the minimum eigenvalue by a
Krylov method requires generation of a Krylov space K(P~1Q). Application of P! =
G(1)"*YG(2)~T requires solution to the adjoint problem (G(z)~7), multiplication
by Y, followed by the solution to the linearized forward problem (G (f)~1); all of these
operations can be performed in a time-marching manner, not requiring fully-coupled
space-time solves.
The construction of the bounding boxes B%k, k=1,...,Q°N, defined by Eq. (3.19)

require the extreme eigenvalues of QN eigenproblems Pw = A\Qw with

P=G(n)"Y 'Cy(&) + Cy(&)"Y ' G(p)
Q=G " Y 'G(n), (3.29)

where Cy(&;) = Cy(¢j, &k, ¢i) and {&}_, is the Xs-orthonormalized reduced basis
set. The maximum and minimum eigenvalues correspond to the upper and lower
limits, respectively, of the bounding box. Similarly, the bounding boxes Bﬁth Nk
k=1,...,Q% defined by Eq. (3.20) require extreme eigenvalues of Q% eigenproblems
Pw = AQw with

[G(n)"Y'A,L+ AlY'G(p)]
Q=G(n)"Y 'G(n), (3-30)

where (Ay)i; = Ag(d;,¢;). The extreme eigenvalues for the bounding boxes can
be effectively approximated in a Krylov space K(Q™'P) (assuming the minimum
eigenvalue is negative and is far from the origin). The application of Q™! is identical
to the application of P! for the inf-sup calculation; the operation permits time-
marching.

The evaluation of the correction factor at a SCM control point pu/ € MSCM,
BZ’_(, (1), by Eq. (3.16) requires the minimum eigenvalue of Pw = AQw with

P = 1 [G(0)"Y ' G) + G )Y G(p)
Q=G(n)"Y 'G(p).

Effectively locating the minimum eigenvalue requires a Krylov space K(QP~!). Un-
fortunately, the application of P~! cannot be performed in a time-marching manner in
general. However, the eigenvalue of interest is one of the extreme eigenvalues, thus we
have found that we can seek the eigenvalue in a Krylov space K(Q~'P), which allows
for time-marching computation, and obtain a reasonable (albeit slower) convergence.
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3.5. L*-X; Sobolev Embedding Constant. The final piece required for the
evaluation of the BRR error bound is the L*-X}s space-time Sobolev embedding con-
stant, Eq. (3.10). To our knowledge, the embedding constant cannot be evaluated
analytically due to the nonlinearity of the L* norm. However, a few numerical tech-
niques for estimating the constant have been devised. Here, we employ the fixed point
algorithm of Deparis [8] in the space-time context. We have found the algorithm con-
verges more rapidly and reliably than the Newton-homotopy algorithm of Veroy and
Patera [26]. For the purpose of relating numerical results with analysis, we restrict
ourselves to a Cartesian-product domain, @ = H‘;:l [0, L;] € R% and take V = HZ(9).
However, the technique used here applies to arbitrary domains, and we expect prop-
erties of the L*-X; space-time embedding constant observed for the particular case to
be retained in more general cases.

First, we analyze a closely related linear problem: L2-X embedding. A bound
for the embedding constant can be found analytically using Fourier decomposition in
space and time. (The technique is identical to that used in our previous work [28];
however, the temporal Fourier modes here are different as functions in X do not vanish
at t = 0.) The L2-X constant is bounded by

PrL2-x = Sup
wex  Jlwllx

1
™/ H?:l Li_2

Note that the L2-X embedding constant is bounded independent of the final time 7.

We now (computationally) demonstrate that the L?-X5 embedding constant for
our DG X5 norm is largely independent of the final time 7" as well as the discretization
resolution — both in space and time. To compute the embedding constant, we seek
the maximum eigenvalue of a space-time eigenproblem: find (w,\) € X5 x R such
that |w|lx, = 1 and

sup

1/2
lwllzzza@) lllZe 1322 0))
- weX ||w||%2(l;vl) + HU}”%Q(I;V)

IN

(w,v)L2(1;L2(Q)) = )\(w,v)xé, Yov € Xs ) (3.31)

we then evaluate the L?-X; embedding constant, prz_y, = A2 Table 3.1(a) shows
the variation in the embedding constant for a several combinations of spatial and
temporal discretizations for the final time of T = 1.0. The result suggests that
the embedding constant is only weakly dependent on both the spatial and temporal
discretizations. Table 3.1(b) shows that the embedding constant is also only weakly
dependent on the final time T'; the constant exhibits less than 3% variation as T
varies from 0.5 to 2.0. In particular, the L?-X5 embedding constant appears to be
bounded by approximately 0.3, which is in a good agreement with the (continuous)
L?-X embedding bound of approximately 0.2996 for this space-time domain, Q x I =
((0,4) x (0,1)) x (0,1].5 In contrast, the Sobolev embedding constant for a space-time
norm associated with the Crank-Nicolson scheme is (provably) weakly dependent on
the final time 7', and the supremizer of the embedding constant is also dependent on
the number of time steps K [28].

5Note that that the embedding constants p;2_p and pr2_x; are associated with two different
norms, and hence in general the upper bound of p;2_» does not serve as an upper bound of PL2 x5
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(a) L2-Xs5 mesh dependence (T = 1) (b) L2-Xs T-dependence
K ‘ |Th| = 32 128 512 2048 T ‘ PL2-Xs
4 0.3170 0.3089  0.3064  0.3060 0.5 | 0.3023
8 0.3170 0.3089  0.3064  0.3060 1.0 | 0.3089
16 0.3170 0.3089  0.3064  0.3060 2.0 | 0.3110
(c) L*-Xs mesh dependence (T = 1) (d) L*-Xs T-dependence
K | |Th|=32 128 512 2048 T | p
4 0.4820 0.4916  0.4947  0.4950 0.5 | 0.4929
8 0.4850 0.4946  0.5002  0.5009 1.0 | 0.4946
16 0.4829 0.4929  0.5009  0.5026 2.0 | 0.4916
TABLE 3.1

Variation in the L2-Xs and L*-Xs space-time Sobolev embedding constant with the space-time
discretization and the final time T. The computation is carried out on the space-time domain
Qx I =((0,4) x(0,1)) x (0,T] discretized by |T;,| P? conforming finite elements in space and K P2
DG elements in time. The results on Tables (b) and (d) are obtained on the |T},| = 32 spatial mesh.

We finally (computationally) demonstrate that the L*-Xs5 embedding constant is
only weakly dependent of the final time 7" and the discretization resolution. We em-
ploy the fixed-point algorithm of Deparis [8] to estimate the embedding constant; here
we briefly outline the algorithm. We first define an operator z : X5 — L*(I; L*(2))
given by z(w) = ||wHZ42(I;L4(Q))w2. We then introduce an eigenproblem: for a given
¢ € Xy, find (w, ) € X5 x R such that |w|x, =1 and

// 2()wvidrdt = Apax(w,0) x5, Yo € Xs; (3.32)
1Ja

we denote the maximum eigenvalue and the associated eigenfunction, parametrized
by 2(€), by Amax(2(€)) and wmax(2(€)), respectively. The L*-Xjs supremizer, £, is
the fixed point £* = wWmax(2(£*)) and the embedding constant is p = y/Amax(2(£*)).
We thus have a fixed-point algorithm [8]: initialize £ = 1 and set k = 0; for k > 1,
set €8 = wnax(2(€F71)) and ¥ = Apax(2(€5F71)). The computational results in
Tables 3.1(c) and 3.1(d) show that the L*-X; embedding constant is only weakly
dependent on the discretization resolution and the final time, exhibiting less than 5%
variation. The behavior implies that the embedding constant need to be evaluated
for a single final time. (We use p = 0.51 for all our later numerical results.)

We make a few comments as regard the computation of the embedding constant.
The computation of the L*-Xs embedding constant by the fixed-point algorithm of
Deparis [8] requires solution to multiple eigenproblem of the form Eq. (3.32). An
effective solution of the eigenproblem via a Krylov method requires the action of the
inverse of the X5 operator. (This requirement also applies to the L2-X;s eigenproblem,
Eq. (3.31).) Although the matrix X € RV*V with X,; = (6, ¢i)x, (where {¢;}Y, is
a space-time finite element basis) is a block tridiagonal matrix, we can form a block
bidiagonal decomposition of the matrix by using the fact that X is the natural norm
associated with the heat equation (see Remark 2.2). Namely, we have

X = G"geathil(}hcat and X71 = Gl'?elatYGlTef,t’
where Geat.ij = Ms (05, ¢i) +Ao (95, di) + (¢;(t%), $:(t%)). With the decomposition,
the action of X! can be computed in a time-marching manner without requiring a
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fully-coupled space-time solve. Namely, we first perform the backward (adjoint) solve
starting from the final time (G}Teq;t), apply Y, and then perform the linearized forward
solve (G 1,).

3.6. Output Approximation and Certification. Let ¢ € Xj be a output
functional of interest. For simplicity we consider a linear output functional in this
work; we refer to Deparis [8] for a treatment of quadratic functional outputs within a
(space-only, not space-time) BRR framework.

For approximation, we appeal to the linearity of the functional and uy(u) =
Erank(p) to express the reduced basis output as

Lun () = €n(Ek)ank(p).

In the offline stage, we compute £y (&), k= 1,..., N; in the online stage we evaluate
the above expression.

For certification, we employ a simple error bound that does not require the so-
lution of a dual problem. Namely, we construct our output error bound according
to

[€Qus (p0); 1) — Elun (p); )| = [€Ces )| < [16C-5 )l lle(p) || s
< e ) flas An (1) = Al (p),

where we recall [|€(-;pu)|lx; = supyex, L(w;p)/||wllx; and [|Deltan(p)|| is the Xs-
norm BRR error bound defined in Eq. (3.9).

Remark 3.9. A primal-dual formulation would yield a sharper error bound; for
its application within the BRR formulation, see, e.g., Veroy and Patera [26] and
Deparis [8].

4. hp-Adaptive Sampling Algorithm. We now describe an hp parameter-
domain decomposition and parameter sampling strategy employed in the offline stage.
The algorithm is motivated by the following observations. First, we note that the
(modified) natural norm SCM algorithm, which uses a fixed supremizing operator
computed about the anchor point, provides positive inf-sup lower bounds only in the
neighborhood of the anchor point; the bound becomes negative (and hence meaning-
less) if the linearized form evaluated at the anchor point is significantly different —
due to the change either directly in the parameter p or indirectly in the linearization
point uy (1) — and the supremizing operator becomes ineffective. Second, the number
of terms in the expansion of the linearized form considered in the SCM formulation
depends on the dimension of the reduced basis space N; in order to control the num-
ber of space-time eigenvalue problems in the offline stage and the size of the linear
program in the online stage, it is advantageous to reduce the size of each reduced basis
space. Third, the inability of the supremizing operator at an anchor point to produce
a positive inf-sup constant at another parameter point indicates that the dynamics is
in fact sufficiently different at the two parameter points; we thus conjecture that two
different reduced basis spaces are required to efficiently approximate the two different
dynamics. The above observations suggest an application of an hp parameter-domain
decomposition.

We first present our algorithm for the construction of a certified reduced basis
model over a single parameter domain in the neighborhood of the parameter sampling
point fi that serves as the SCM anchor point. The inputs to the algorithm are

o = € [D]Nuain: a set of Ny training points that sufficiently covers D;
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[ parameter “anchor” point;
é_t"l € RT: error bound tolerance;
BRIBl e (0,1), g8 ¢ RT: threshold parameters.

The role of the threshold parameters will become clear shortly. The outputs of the
algorithm are

geertified(y © =: a training set representation of the certified parameter
region such that A(u) < Aol vy g Zoertified (),

The (inner products of the) Riesz pieces for Petrov-Galerkin reduced basis
approximation by Eq. (3.4)

The quantities required for the EIM-based residual dual norm evaluation by
Eq. (3.14)

The SCM pieces: inf-sup constant at the anchor point Sy () defined by
Eq. (3.15); the SCM bounding boxes Bpey,,, ¢ = 1,...,Q%, defined by

Eq. (3.20) and quil)]wk, k=1,...,N,q=1,...,Q¢, defined by Eq. (3.19);

SCM control points MSCM C E; and the inf-sup correction factors evaluated
at the SCM control points Bk (1), 1 € MSM | defined by Eq. (3.16).

The algorithm for constructing a certified reduced basis model over a single hp-
partition, from hereon denoted as Algorithm 1, is summarized as follows:

1.
2.

10.

11.

12.
13.

Set 1 = [, which serves as the SCM “anchor point”; set N = 1.

Obtain the finite element solution us(f) by solving Eq. (2.10); normalize the
solution and set & = ugs(f)/||us (&) ]| x-

Compute the Riesz pieces and their inner products required for the Petrov-
Galerkin reduced basis approximation.

Compute the quantities required for the EIM-based residual dual norm eval-
uation.

Compute the inf-sup constant at the anchor point, Sy (). )
Construct SCM bounding intervals for the bilinear forms A;(-,-), Bgc e
q = 1,...,Q% and that for the linearized quadratic form Cy(-,&1,), BY,
qg=1,...,Q°

Obtain RB approximation and BRR certification for each p € =; record the
BRR normalized residual 7y (), the error bound Ay (u), the lower bound of

the inf-sup correction factor BZ’@LB(N), and the upper bound of the inf-sup

correction factor B%UB (p) for each p € Z.

cMfmaxg o zare o g Lecol An(p) < At we are done with this subdomain;
—FN N

set, Zeertified () = £, e = BLEP () > BRLEP1Y and terminate.

. Within a set of points having the inf-sup lower bound above the tolerance

(_]‘_f,’LB > B]’%,’LB’WL choose the point with the maximum BRR normalized
residual, i.e. pyi1 = argmaxge s, . 5oe ol 7~ () (or AN () if
max,ez(Tn (1)) < 1, Vu € E); increment the size of the reduced basis set,
N <+ N+ 1.

Compute the finite element solution us(py) and Xs-orthonormalize it with
respect to &1,...,&En_1 to generate .

Update the Riesz pieces required for Petrov-Galerkin projection and the vari-
ables required for residual dual norm evaluation.

Construct the SCM bounding interval for Cq (-, En, -), Béqul)NJrN’ q=1,...,Q°
If the SCM gap is sufficiently large in the sense that

(BRUT (un) — BN T (1)) /BT (uv) > BE™!, then add puy to the set of
SCM control points (MSCM < [MSCM 1) and compute the associated
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correction factor Bh ().
14. Update ZyJ® to account for C linearized about &y .
15. Go to Step 7.

This algorithm constructs a certified reduced basis model in the neighborhood of the
anchor point ji. Note that we do not partion the parameter domain a priori: we
initially apply the algorithm to the (full) training set = associated with the (full)
domain D; we then, at the termination of the algorithm, obtain an implicitly defined
subdomain based on the positivity (more precisely, threshold) constraint on the inf-
sup lower bound. As the linearized form (and hence the inf-sup bound) changes with
the number of reduced basis functions, the certified subdomain changes accordingly.
The reduced basis snapshots are chosen in a greedy manner based on the subdomain
definition at each iteration; due to the change in the subdomain with N, a snapshot
computed in the earlier stage could fall outside of the final subdomain.

To construct a set of certified reduced basis models that enables reduced basis
approximation and certification over the entire parameter domain D, we recursively
use Algorithm 1. Namely, the algorithm, referred to as Algorithm 2, is summarized
as follows:

Set fi; = centroid(D); set k = 1.

Execute Algorithm 1; Set the new working region = « 2\ Zeertified (),

If 2 = (), terminate.

Pick jig+1 = argming,ez B5° (1) with the lowest kP (1) prediction based on
the RB/SCM approximation over region k; set k + k + 1.

5. Go to Step 2.

Ll e

In words, we first pick the centroid of the domain as the SCM snchor point and
construct a reduced basis model which certifies the solution in the neighborfood of
the point, =Z¢ertified(f7,): we then choose the next SCM anchor point to be the point
with the smallest inf-sup lower bound lower bound and construct another reduced
basis model about the point. Note that the size of each domain is implicitly defined
by the positivity (more precisely, threshold) constraint on the inf-sup lower bound
approximated by the SCM that uses a fixed supremizing operator; however, as noted
in the beginning of the section, we conjecture that the hp-partioning also facilitates
construction of more efficient reduced basis approximation for each parameter region.

In the online stage, given a parameter value u, we first identify the subdomain
D; to which the parameter belongs. We then use the reduced basis model associated
with the subdomain to obtain the reduced basis approximation (and the associated
output predictions). We finally endow the approximation with a BRR error bound;
in this step, we carry out the online stage of the residual dual-norm calculation and
the inf-sup lower bound computation.

5. Numerical Results.

5.1. Model Problem: Laterally Heated Cavities. We assess the effective-
ness of our space-time certified reduced formulation using a laterally heated cav-
ity flow governed by the Boussinesq equations. The spatial domain of interest is
Q = [0,4] x [0,1]; the domain is normalized by its height h, and is characterized by
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Fic. 5.1. Boundary specification for the laterally heated cavity flow.

the aspect ratio a = 4. The (normalized) Boussinesq equations in R? are given by

8w1 /—8ij1 2. 9w _
Z Zaxjaxj

8w2 6w]w2 2. Pwy
Z vG Z axj&fc] VGruws =0

8w3 ﬁaijg | 9%ws B
Z Z Pr 8;z:j8xj =0
8w1 8w2

- P 0’
833‘1 * 8332

where wy and wy are the velocities in the x; and x, directions respectively, ws is
the temperature, p is the pressure, Gr = gah*gS/(kv?) is the Grashof number, and
Pr = v/k is the Prandtl number. The scales used for time, length, velocity, pressure,
and temperature are h?/v, h, /Grv/h, pv?/h?, and qah/k, respectively.® The fluid
properties are viscosity v, density p, conductivity k, thermal diffusivity «, and thermal
expansion coefficient 5. The heat flux along I's is denoted by ¢, and the gravitational
acceleration is g. The boundary conditions are given by

wy =wge =0 on 9N,

w3:0 on F17

0

U _ 0 onlsand Iy,
on

81113

g _ 2 T

on a ont2

where the boundaries are identified in Figure 5.1. The unsteady Boussinesq equations
are integrated from t = 0 to t = T' = 0.5. Because we employ the viscous time scale,
T = 0.5 corresponds to many convective time units in a high Grashof number case.
We take the Grashof number as the parameter of interest and fix the Prandtl
number to Pr = 0.015. In particular, we wish to estimate the change in the velocity
and thermal field as a function of the Grashof number; the pressure is not of interest
in this work. Finally, we choose the space-time average temperature on the right

6This particular temperature scaling ensures that, for a given Grashof number, the flow behavior
for the fixed-heat-flux case considered in this work is understood loosely in terms of the fixed-
temperature-difference case that has been extensively studied by, for example, Gelfgat et al. [11]



26 M. YANO

boundary as our output, i.e.

1
L(w) = T|F2/1/F2 wsdzdt. (5.1)

We will shortly verify that this is a bounded functional in our space-time setting.

5.2. Variational Formulation. To recast the Boussinesq equations in a weak
form, we identify the function space V of the abstract formulation in Section 2.1 with
the space of temperature and divergence-free velocity, i.e.

8w1 8w2

— 4+ —=0,w =0.

81‘1 81‘2 ’ S‘FD

In particular, as our interest is to approximate the velocity field and the temperature
field — and not the pressure field — we consider formulation in explicitly divergence-
free space. We recast the parametrized Boussinesq equations in a general form of
Eq. (2.2) by identifying the spatial forms as follows:

Z dvy Owy 5’112 Ows 1 Ovs Ows
(w,v) / [339] 0z c')xj 0z o oz 5‘%—] de, 05 () =1,

V= {((wl,w),wg) € [HY()]? x HY(Q) :

a(w,0) = [ vrwads, 610 =~
c1(w, z,v) ——f/zza

i=1 j=1

2j + ziw;) de, - O(p) = v,

where p; = Gr is the Grashof number. Note that ©f : D — R enters the continuity
condition of the BRR error bound. The trilinear form is symmetric in the first two
arguments and satisfies the boundedness assumption Eq. (2.3) with C* =1, i.e.

le1 (w, z,v)] /ZZ@

i=1 j=1

iz; + ziwj) dr| < |lwllpa@)llzllLa lv]lv,

where the L*(£2) norm for the vector field is as specified in Section 2.1. Thus, the above
weak formulation of the Boussinesq equations conforms to the abstract formulation
of Section 2.1.

The dual norm of the output functional Eq. (5.1) is bounded by

2
1
2 (T|F2‘ Ji fF? w3d$dt) T&‘2| i fr widadt 4Pr
[€][% = sup 5 < sup ,
weX; lwll%, wers &= [, Jo Vws - Vwsdadt  T|Ts]

where the inequality follows from [lw||%, > ||w||L2(I;V) > ﬁngHLQ(I;HI(Q)) and the
last equality follows from recognizing the supremizer is w; = we = 0, w3 = = (and
its scalar multiples). For the particular laterally heated flows of interest, the upper
bound of the dual norm evaluates to [|€[|x; ~ 0.3464.

5.3. Finite Element Discretization. We use P2-P! Taylor-Hood elements for
our finite element approximation. Namely, our discrete spatial approximation space
is

Vi = {w eV iwl, € P*(r)% k€ T; / V - wqdz, Vg € QN} (62
Q
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where Qn = {q € Q : ¢l € P(k), k € Tn; [, qdx = 0}. Conceptually, it is straight-
forward to consider the divergence-free space for the evaluation of the finite element
solution and the associated reduced-basis pieces: the dual norm of the residual, the inf-
sup constant, and the Sobolev embedding constant. Of course, in practice, we impose
the divergence free condition using Lagrange multipliers; the computational detail is
summarized in Appendix A. The finite element discretization contains approximately
8,300 spatial degrees of freedom. We employ the P? discontinuous Galerkin discretiza-
tion for temporal integration with K = 32 time steps. Thus, the total number of
space-time degrees of freedom for our finite element discretization is N =~ 800,000.

5.4. Results. We assess the ability of our space-time certified reduced basis
formulation to approximate and certify the solution of the laterally heated cavity
flow as the Grashof number is varied from 1 to 150,000. The flow behaviors for the
Grashof number of 6,000, 100,000, and 150,000 are depicted in Figure 5.2. For each
case, the figure shows streamlines and isotherms at the final time (¢t = T) as well
as the velocity history at (x,y) = (1.25,0.73). At the Grashof number of 6,000,
the flow exhibits little nonlinear behavior, as evident from straight and equispaced
isotherms in Figure 5.2(a). At the Grashof number of 100,000, convection plays an
important role in characterizing the flow, as shown in Figure 5.2(b); this is evident
from the characteristic “S” shape in the isotherms. However, the flow reaches steady
state after the initial transient. At the Grashof number of 150,000, the flow exhibits
steady-periodic behavior, as shown in Figure 5.2(c).

For purposes of comparison, we note that the classical time-marching L?(f2) error
bound [19, 16] is inadequate for the certification of the flow considered in this work.
The parameter that dictates the growth of the time-marching L?(Q) error bound is
the stability constant”

ao(v,0) + 252 ag(v,v5 1) + 452 cq(v,us(t), v 1)

)

w(t) = inf [Es
it can be shown that, in the limit of At — 0 by considering the continuous evolu-
tion equation, the time-marching L?(Q) error bound takes the form ||e(T)||2LQ(Q) <
€2, w (—exp(—wT) + 1), where €%, is the L?*(I) integral of the dual norm of the
spatial residual.® The stability constant w associated with the steady-state solutions
of the Gr = 20,000, 30,000, and 40,000 flows are, respectively, w ~ —48, —380, and
—1300; the associated amplification factors for T' = 0.5 are w™!(—exp(—wT) + 1) =
5 x 108, 10™, and 10%%4. We observe that even if the residual is small, the classi-
cal time-marching L?(Q2) error bounds would be too pessimistic to be meaningful for
Gr > 30,000; thus, we will not consider the classical time-marching formulation in
this work.

We now study the behavior of the space-time reduced basis approximation and the
associated space-time error bounds. We apply the hp-adaptive sampling algorithm to
the flow of interest. The algorithm parameters are set as follows: the training set = is
a set of 1,000 points equidistributed over D = [1,150,000]; SCM sampling parameters
are SN = 0.25 and 48" = 0.25; and the target error tolerance is A = 0.01.

Figure 5.3 shows the result of applying the space-time certified reduced basis
method to the laterally heated cavity flow. The hp adaptive reduced basis yields 25

"The constant slightly differs from that in [16] due to the difference in the trilinear forms.
8To simplify the expression for the bound, we consider a case in which the stability factor w is
invariant in time; however, the analysis readily extends to a non-stationary w.
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1G. 5.2. Streamlines at t =T (top left), isotherms at t =T (bottom left), and velocity history
at (z,y) = (1.25,0.73) (right) for three different values of the Grashof number. The streamlines
corresponds to evenly divided stream function values within each figure, and the isotherms are in
tncrements of 0.05.

partitions; the reduced basis dimension for each partition varies from three to six, as
shown in Figure 5.3(a), and the total of 125 reduced basis functions span the entire
parameter space. The reduced basis sample points are marked by circles.® Note that

9As noted in Section 4, a reduced basis sampling point sometimes falls outside of the final
subdomain to which it is associated; this is due the change in the subdomain, which is implicitly
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FiG. 5.3. Results of applying the space-time certified reduced basis method to the laterally heated
cavity flow. (See the main text for descriptions.)

our space-time formulation requires a large number of finite element offline solves
to cover the parameter domain, as the formulation only generates one reduced basis
snapshot from each offline solve. This is unlike in the POD-Greedy approximation,
in which a large number of spatial snapshots (and hence a large reduced basis space)
may be generated from a single offline solve of the evolution equation.

Figure 5.3(b) shows the behavior of the inf-sup lower bound over the parameter
domain. We observe a rapid decay of the inf-sup lower bound away from each anchor
point, especially in the high Grashof number regime; the decay suggests significant
variations in the space-time dynamics induced by a small change in the parameter.
For this reason, a relatively large number of SCM anchor points (and hence small par-
titions) are used to maintain positive inf-sup lower bounds over the entire parameter
domain.

Figure 5.3(c) shows the variation in the X5 error bound with the parameter.
Note that while the target X5 error for the reduced order model is 0.01, the actual
error bound is driven to a much lower value. This is precisely due to the limitation
noted in Remark 3.6; the BRR error bound cannot certify a low-fidelity reduced basis
approximation that does not meet the residual criterion Eq. (3.8). For example, for

defined by the positive (more precisely threshold) inf-sup constraint, with N.
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the worst case of Gr = 150,000, the constants in Eq. (3.11) of Remark 3.6 evaluate to
BB ~ 0.0121, ©5 ~ 387, Ct =1, and p = 0.5. This yields the maximum certifiable
error of approximately 6.25 x 10~°, which is significantly smaller than the target error
of 0.01. Nevertheless, the space-time formulation provides a certified reduced basis
approximation of a high Grashof number (Gr = 150,000) flow that exhibits limited
stability, a marked contrast to the classical time-marching L?(f2) error bound that
becomes meaningless for the Grashof number over 30,000.

Figure 5.3(d) shows the variation in the time-integrated average temperature on
the right boundary and associated error bound with the Grashof number. As the
convection effect becomes more dominant, the temperature decreases for the constant
heat-flux configuration considered. Note that the output error bound is very tight;
recall that the output error bound is approximately 0.3464 times the X5 error bound
shown in Figure 5.3(c).

Lastly, let us make a few comments regarding the offline and online computa-
tional performance of the certified reduced basis method.'® For the Gr = 150,000
case, the solution of the finite element discretization with A/ ~ 800,000 degrees of
freedom requires about 520 seconds. The certified reduced basis method requires, in
the online stage, about 0.016 seconds to generate a reduced basis approximation and
an associated error bound of less than 10~° in the Xs-norm; the rapid computation in
the online stage is due to the space-time formulation whose online cost is independent
of the number of time steps. On the other hand, the space-time formulation requires
a significant computational effort in the offline stage, as the method requires not only
a large number (in this particular case 125) truth solves but also computation of vari-
ous space-time eigenproblems that, even with the time-marching procedures, are still
computationally intensive.

6. Conclusions. We considered a certified reduced basis method for long-time
integration of parametrized PDEs with quadratic nonlinearity that exhibit limited
stability (non-coercive). We incorporated several new components to the previous
work on space-time certification [25, 28]: a DG-in-time discretization and the associ-
ated norms that provide favorable stability properties; an hp Petrov-Galerkin reduced
basis approximation that offers guaranteed stability; a variant of the natural norm
SCM with considerations for the nonlinear equation and an associated efficient space-
time computational strategy; and an hp sampling strategy for the nonlinear equation
with limited stability. We applied the method to the unsteady Boussinesq equations
that exhibits qualitatively different responses as the Grashof number increases: from
a Stoke-like smooth transition to a steady-periodic response. We demonstrated that
rigorous long-time a posteriori error bounds are possible for unstable hydrodynamic
systems — systems that could not be certified with the classical time-marching L?()
error bounds; the method is able to rigorously confirm that changes in flow regime
are not the result of an overly truncated low-order model, which is a demonstrated
danger in a reduced-order approximation of unsteady flows [7].

We have however observed a number of limitations of the space-time formulation;
we now reiterate on these points and propose future work. First, the space-time
approach requires a large offline computational effort due to the small dimension
of the reduced basis space constructed from a single truth solve compared to, say,

10The research code developed in this work is a hybrid of Matlab and C (via mex) and is not
optimized for computational performance. However, we believe the relative speed up achieved by
the certified reduced basis method here is indicative of the relative speed up that would be observed
in comparing optimized finite element and reduced basis codes.
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POD-Greedy approach; future work will consider incorporation of a POD-Greedy
approximation within the space-time certification framework in particular as regard
the inf-sup (lower bound) calculation. Second, the BRR formulation, while providing
rigorous bounds for nonlinear equations, places a very stringent requirement on the
size of the normalized residual; while this limitation might be difficult to mitigate from
a purely computational perspective, we will consider if in particular target applications
— for example an estimation or controls — this effect can be mitigated through the
incorporation of data. Lastly, we note that the substantial offline cost prohibits the
treatment of significant variations in many parameters; however, an interpretation
of the space-time variational formulation [27] provides a framework to demonstrate
stability with respect to (very) small disturbances of potentially high dimensionality
(for example, in initial conditions): the interpretation relies on BRR and the space-
time inf-sup (and the associated computational strategy) introduced in this work.
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Appendix A. Computation in the Divergence-Free Space. In this ap-
pendix, we present details regarding computation in the divergence-free space approx-
imated by P2-P! Taylor-Hood elements, Eq. (5.2). As our objective is to illustrate
the divergence-free aspect of the computational procedure, we consider the Stokes
equations: find u € X such that

G (u,v) = Ms(u,v) + A(u,v) = F(v), Yoe;

the extension to the multi-parameter Boussinesq equations is straightforward.

Let {x;}}; be (vector-valued) IP? spatial basis for the velocity field and {v; };Zl
be P! spatial basis for the pressure field. The spatial velocity mass matrix m, €
R™ *™  the velocity Laplacian matrix a € R™*™  the divergence-free constraint
matrix b € R™ > and the load vector f € R™ are given by

Oxi Ox;
Q 63% 8$k dx

Mg i = (vaXi)lﬂ(Q)v a;; = a(XjaXi) =

Lq

Oxi
bij = b(vj, xi) = —/ aX vide, f;=f(xi) -
Q

We then introduce (n, + np) X (n, +n,) expanded spatial matrices and a (n, + np)
expanded vector

Thsz[? 8}7 dz[g 8}, BE[bOT g], and }':{‘g]

Note that @ + b is the standard saddle-point matrix associated with the steady-state
discretization of the Stokes equations by the Taylor-Hood elements.
ne

Let {07 T = (p + 1)K, be temporal DG basis. The temporal mass matrix
my; € R™*"t the evolution matrix rn; € R™>*™ and the initial condition matrix
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my, € R"*™ are given by

my ;= /ai(t)aﬂ'(t)dt

K—1
i = / D+ 3 o ()0 (1) — o7 (1)
=1 k=1
My, ij =0 ( 1) Uj(to)

These matrices may be tensorized to emphasize their block structures; for instance, by
introducing reference elemental basis {¢; }fii , by forming a (p+ 1) x (p+ 1) reference
elemental matrix m, i = f(] fz )&;(t)dt, and by introducing a diagonal scaling matrix
d; = diag(At!,..., AtF) € RE, we have m; = d; ® m.. While we take advantage
of this tensorization in our implementation, for notational simplicity, we will not use
the tensorized form for the presentation here.

We now introduce the “forward” space-time operator associated with the bilinear
form 0G that acts on the velocity-pressure space

G:mt®7hs+mt®d+mto®7’hs .

The corresponding “inverse” operator that appropriately enforces the divergence-free
constraint is

G'=(G+m;@b)!

Then, the space-time finite element coefficient vector @ € RE@+D(v+n0) gyuch that

u(t, x) = a¥o¥(t)xi(z) and p(t,z) = uﬁ 40" (t)v;(2) is the solution of

Gau=F,

where the load vector is given by F=m® f. Note that f (and hence F) has zeros for
the entries corresponding to the continuity equation and b (and hence m; ® b) has the
divergence operator for the entries corresponding to the continuity equation; together,
they enforce the divergence-free constraint. We emphasize that G. operates on the
velocity-pressure space (i.e. the velocity-Lagrange-multiplier space) of the dimension
RE@+D(o+nm0) and is different from the operator G in Sections 3.4.2 and 3.5 that
operates on the divergence free space; however, the application of G_ ! onto a vector
with zeros for the continuity equation produces the result of applying G~! in the
divergence free-space.

Similarly, all the action of the Y, Y~!, X, and X~! operators that appear in
Sections 3.4.2 and 3.5 are accomplished by using the following expanded velocity-
pressure matrices:

Y=m;@a+my,m, Y. =(Y+mob "
X Gheathléheata XZ = (Gheat +m; ® b)7 Y(Gheat +m; ® b)iT

For instance, we may express the inf-sup eigenproblem Eq. (3.28) using the space-time
expanded matrices: Find (w,\) € R™*"» x R such that

TG = \Xw .

G.Y
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The generation of an_effective Krylov space for the minimum eigenvalue is accom-
plished by ¥ + G;'YG[TX%; the resulting Krylov space is clearly divergence-free.
(Alternatively, © < éc’l?céc’Tﬁf) can be used. Up to rounding errors, the two ve-
locity spaces are identical; however, the pressure approximations are different (which
does not affect the inf-sup constant in our context).)

[10]
[11]

[12]

(13]

[14]

[15]

[16]

[20]
(21]

22]

REFERENCES

M. BARRAULT, Y. MADAY, N. C. NGUYEN, AND A. T. PATERA, An “empirical interpolation”
method: application to efficient reduced-basis discretization of partial differential equations,
C. R. Acad. Sci. Paris, Ser. I, 339 (2004), pp. 667-672.

C. BoTTASSO, A new look at finite elements in time: a variational interpretation of runge-kutta
methods, Appl. Numer. Math., 25 (1997), pp. 355-368.

F. BrEzz1, J. RApPAZ, AND P. A. RAVIART, Finite dimensional approximation of nonlinear
problems. part I: Branches of nonsingular solutions, Numer. Math., 36 (1980), pp. 1-25.

C. CanuTo, T. ToNN, AND K. URBAN, A poseteriori error analysis of the reduced basis method
for nonaffine parametried nonlinear PDEs, SIAM J. Numer. Anal., 47 (2009), pp. 2001—
2022.

F. CASENAVE, Accurate a posteriori error evaluation in the reduced basis method, C. R. Acad.
Sci. Paris, Ser. I, (2012), pp. 539-542.

F. CASENAVE, A. ERN, AND T. LELIEVRE, Accurate and efficient evaluation fo the a posteriori
error estimator in the reduced basis method, Math. Model. Numer. Anal., (submitted).

J. H. Curry, J. R. HERRING, J. LONCARIC, AND S. A. ORSZAG, Order and disorder in two-
and three-dimensional bénard convection, J. Fluid Mech., 147 (1984), pp. 1-38.

S. DEPARIS, Reduced basis error bound computation of parameter-dependent Navier-Stokes
equations by the natural norm approach, SIAM J. Numer. Anal., 46 (2008), pp. 2039-2067.

J. L. EFTANG, A. T. PATERA, AND E. M. RONQUIST, An “hp” certified reduced basis method
for parametrized elliptic partial differential equations, SIAM J. Sci. Comput., 32 (2010),
pp. 3170-3200.

K. ERIKSSON AND C. JOHNSON, Error estimates and automatic time step control for nonlinear
parabolic problems, I, SIAM J. Numer. Anal., 24 (1987), pp. 12-23.

A. Y. GELFGAT, P. Z. BAR-YOSEPH, AND A. L. YARIN, Stability of multiple steady states of
convection in laterally heated cavities, J. Fluid Mech., 388 (1999), pp. 315-334.

M. A. GREPL AND A. T. PATERA, A posteriori error bounds for reduced-basis approximations
of parametrized parabolic partial differential equations, Math. Model. Numer. Anal., 39
(2005), pp. 157-181.

B. HAASDONK AND M. OHLBERGER, Reduced basis method for finite volume approximations of
parametrized linear evolution equations., Math. Model. Numer. Anal., 42 (2008), pp. 277—
302.

D. B. P. HuynH, D. J. KNEZEVIC, Y. CHEN, J. S. HESTHAVEN, AND A. T. PATERA, A natural-
norm successive constraint method for inf-sup lower bounds, Comput. Methods Appl.
Mech. Engrg., 199 (2010), pp. 1963-1975.

P. JAMET, Galerkin-type approximations which are discontinuous in time for parabolic equa-
tions in a variable domain, SIAM J. Numer. Anal., 15 (1978), pp. 912-928.

D. J. KNeEzEvVICc, N.-C. NGUYEN, AND A. T. PATERA, Reduced basis approzrimation and a
posteriori error estimation for the parametrized unsteady Boussinesq equations, Math.
Mod. Meth. Appl. S., 21 (2011), pp. 1415-1442.

Y. MADAY. Private communication, Dec. 2012.

Y. MADAY, A. T. PATERA, AND D. V. Rovas, A blackboz reduced-basis output bound method for
noncoercive linear problems, in Studies in Mathematics and its Applications, D. Cioranescu
and J. L. Lions, eds., Elsevier Science B. V., 2002, pp. 533-569.

N.-C. NGUYEN, G. Rozza, AND A. T. PATERA, Reduced basis approzimation and a posteriori
error estimation for the time-dependent viscous Burgers’ equation, Calcolo, 46 (2009),
pp. 157-185.

A. QUARTERONI AND A. VALLI, Numerical Approximation of Partial Differential Equations,
Springer, New York, 1997.

G. Rozza AND K. VEROY, On the stability of the reduced basis method for stokes equations in
parametrized domains, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1244-1260.

C. SCHWAB AND R. STEVENSON, Space-time adaptive wavelet methods for parabolic evolution
problems, Math. Comp., 78 (2009), pp. 1293-1318.



34 M. YANO

[23] S. SEN, K. VEROY, D. B. P. HuYNH, S. DEPARIS, N. C. HGUYEN, AND A. T. PATERA, ”Natural
norm” a posteriori error estimators for reduced basis approximations, J. Comput. Phys.,
217 (2006), pp. 37-62.

[24] K. URBAN AND A. T. PATERA, An improved error bound for reduced basis approzimation of
linear parabolic problems, Math. Comp., (2012), p. submitted.

[25] ——, A new error bound for reduced basis approzimation of parabolic partial differential
equations, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), pp. 203-207.

[26] K. VEROY AND A. T. PATERA, Certified real-time solution of the parametrized steady incom-
pressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Inter-
nat. J. Numer. Methods Fluids, 47 (2005), pp. 773-788.

[27] M. YANO AND A. T. PATERA, A space-time analysis of finite-amplitude global and output
hydrodynamic stability, Proc. R. Soc. A, (2013), p. accepted.

(28] M. YaNo, A. T. PATERA, AND K. URBAN, A space-time certified reduced basis method for
Burgers’ equation, Math. Mod. Meth. Appl. S., (submitted).





