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Abstract

We extend the linear program empirical quadrature procedure proposed in [9] and subsequently [3] to the case
in which the functions to be integrated are associated to a parametric manifold. We pose a discretized linear
semi-infinite program: we minimize as objective the sum of the (positive) quadrature weights, an `1 norm which
yields sparse solutions and furthermore ensures stability; we require as inequality constraints that the integrals
of J functions sampled from the parametric manifold are evaluated to accuracy δ̄. We provide an a priori error
estimate and numerical results which demonstrate that under suitable regularity conditions the integral of any
function from the parametric manifold is evaluated by the empirical quadrature rule to accuracy δ̄ as J → ∞.
We present two numerial examples: an inverse Laplace transform; reduced basis treatment of a nonlinear partial
differential equation. To cite this article: AT Patera, M Yano, C. R. Acad. Sci. Paris, Ser. I Volume (Date).

Résumé

Une procédure de quadrature empirique par programmation linéaire pour fonctions à paramètres.
Nous étendons la procédure de quadrature empirique par programmation linéaire proposée dans [9] et par la
suite [3] au cas où les fonctions à intégrer sont associées à une variété paramétrique. Nous posons un problème
de programmation linéaire discret et semi-infini : nous minimisons la fonction objectif qui est la somme des
poids (positifs) de quadrature, qui constitue une norme `1 menant à des solutions parcimonieuses et assurant
la stabilité ; les contraintes d’inégalité requises étant que les intégrales de J fonctions échantillonnées à partir
de la variété soient évaluées à une précision δ̄. Nous fournissons un estimateur d’erreur a priori et des résultats
numériques qui démontrent que sous certaines conditions de régularité toute fonction de la variété est évaluée par
la méthode de quadrature empirique avec précision δ̄ quand J → ∞. Nous présentons deux exemples numériques :
une transformée inverse de Laplace ; un traitement par base réduite d’une équation aux dérivées partielles non-
linéaire. Pour citer cet article : AT Patera, M Yano, C. R. Acad. Sci. Paris, Ser. I Volume (Date).
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1. Introduction

In this note we consider the integration of parametrized functions,

I(µ) =

∫
Ω

g(µ; ξ) dξ , (1)

for µ in parameter domain D ⊂ RP , Ω ⊂ Rd, and g ∈ L∞(D;L∞(Ω)). (We note that although Ω is
parameter-independent, this spatial domain may be the result of a transformation from a parameter-
dependent spatial domain through standard change-of-variable techniques.) Parametrized integrals arise
in a variety of applications, from transform methods for ordinary differential equations, in which (say) ξ
is frequency and µ includes time, to variational approximation of partial differential equations, in which
ξ is a spatial coordinate and µ includes constitutive constants, sources, and geometric transformations.

We are interested in particular in the many-query context, in which µ ∈ D 7→ I(µ) must be performed
many times, often in real-time, for different values of µ in D. We may thus gainfully consider offline-
online approaches: an empirical quadrature rule — points and weights particularly optimized for (1) — is
developed, once, in a relatively expensive offline stage; this efficient quadrature rule is then invoked, many
times, in a very inexpensive online stage. The effort of the offline stage is justified, in fact amortized, over
the many parameter queries µ ∈ D 7→ I(µ) of the online stage.

One approach to (1) is interpolation-then-integration: we develop an interpolant for g(µ; ·) which then
serves as surrogate for g(µ; ξ) in (1); as an example of interpolation schemes for parametric functions we
cite the Empirical Interpolation Method [2]. Although interpolation-then-integration can be quite effective
in practice, in fact the objectives and metrics associated with interpolation and integration are quite
different, and thus a more direct approach — empirical quadrature rather than empirical interpolation
— is also of interest.

An empirical quadrature procedure for parametrized functions is developed in [1] and further extended
in [6]. These approaches consider an `2 framework and thus sparsity must be introduced explicitly, either
through a heuristic sequential point selection process (as in [1]) or through an approximate `0 optimization
(as in [6]); in both cases, a somewhat challenging non-negative least-squares problem must be addressed.
In the current paper we propose an `1 framework: a stronger norm which naturally yields sparse designs
and which furthermore can be cast as a linear program (LP) efficiently treated by the dual simplex
method. Our approach is an extension to the parametric context of the LP quadrature framework first
proposed in [9] and further developed in [3].

2. Formulation

We define a parameter domain D ⊂ RP , a point in which will be denoted µ = (µ1, . . . , µP ), and an
integration domain Ω ⊂ Rd, a point in which will be denoted ξ = (ξ1, . . . , ξd). We then introduce a set of
parametrized functions gm : D × Ω → R,∀m ∈ M; here M ≡ {1, . . . ,M} for M a finite positive integer.
We shall assume that our set of functions satisfies a Lipschitz condition,

sup
m∈M

sup
µ′,µ′′∈D2

‖gm(µ′; ·)− gm(µ′′; ·)‖L∞(Ω) ≤ Lg‖µ′ − µ′′‖2 , (2)

for Lg a finite constant and ‖z‖2 the usual Euclidean norm (here) for z ∈ RP .
We next define the set of integrals of interest:

Im(µ) =

∫
Ω

gm(µ; ξ) dξ ,∀m ∈M,∀µ ∈ D . (3)
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We shall also require a “truth” quadrature,

Itruth
m (µ) =

N∑
i=1

wtruth
i gm(µ; ξtruth

i ),∀m ∈M,∀µ ∈ D , (4)

where {wtruth
i }i=1,...,N and {ξtruth

i }i=1,...,N are the truth (non-negative) quadrature weights and truth
quadrature points, respectively. We shall assume that (a) for ε a prescribed error tolerance,

|Im(µ)− Itruth
m (µ)| ≤ ε/2,∀m ∈M,∀µ ∈ D , (5)

and (b) the truth quadrature rule integrates exactly the constant function so that

N∑
i=1

wtruth
i = |Ω| , (6)

where |Ω| denotes the measure of the domain of integration Ω.
We now search for an empirical quadrature rule, points {ξνk}k=1,...,Kν and associated non-negative

weights {wνk}k=1,...,Kν , in terms of which we approximate our integrals as

Iνm(µ) =

Kν∑
k=1

wνkgm(µ; ξνk ),∀m ∈M,∀µ ∈ D ; (7)

the “hyperparameter” ν characterizes the procedure by which the empirical quadrature rule is derived.
(Note hyperparameter here refers to hyperreduction and in particular distinguishes the parameter ν
which determines the quadrature rule from the parameter µ which defines the parametrized functions of
interest.) We wish to find an empirical quadrature rule which is efficient, Kν � N , and accurate,

|Itruth
m (µ)− Iνm(µ)| ≤ δ̄,∀m ∈M,∀µ ∈ D ; (8)

we shall typically chose δ̄ = ε/2 such that, from (5) and (8), |Im(µ)− Iνm(µ)| ≤ ε,∀m ∈M,∀µ ∈ D.
We consider an offline-online strategy: in the offline stage, the empirical quadrature rule, points and

weights, is identified; in the online stage, the empirical quadrature rule is “queried,”

µ ∈ D 7→ {Iνm(µ)}m∈M . (9)

The offline stage will typically be expensive but can be justified by a premium on real-time response
or alternatively amortized over many parameter queries, (9). In contrast, the online stage, (9) evaluated
as (7), is inexpensive (under the assumption that Kν � N ): operation count O(KνM). In the remainder
of this paper we focus on the offline stage.

We first specify δ̄ ∈ R+. We next define J ≡ {1, . . . , J} for J ∈ N+ and provide a parameter training
sample Ξtrain

J ≡ {µtrain
j ∈ D}j∈J and associated set of snapshots on the parametric manifold, {φm,j ≡

gm(µtrain
j ; ·)}j∈J,m∈M. We may then define our hyperparameter ν = {δ̄, J,Ξtrain

J } and pose a linear program

LPνquad: find a basic feasible vector ρνopt ∈ RN which minimizes

N∑
i=1

ρi

subject to
ρi ≥ 0, 1 ≤ i ≤ N , (10)

and the MJ “accuracy” (inequality) constraints∣∣∣ N∑
i=1

wtruth
i φm,j(ξ

truth
i )−

N∑
i=1

ρiφm,j(ξ
truth
i )

∣∣∣ ≤ δ̄, ∀j ∈ J, ∀m ∈M . (11)
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We know that LPνquad is feasible: the truth quadrature rule satisfies (10) and (11). However, we search
in particular for a solution of LPνquad which is basic feasible with respect to the constraints (10)-(11);
we shall ensure the latter condition by application of the (dual) simplex method. (Note that in practice
(11) is unfolded into two one-sided constraints in order to cast the linear program in standard form.)
We then identify the indices associated with non-zero values of ρνopt as iνk, 1 ≤ k ≤ Kν , and set ξνk =

ξtruth
iν
k

, wνk = (ρνopt)iνk , 1 ≤ k ≤ Kν . (We may also consider, under suitable hypotheses, a relative version

of the constraint: in that case δ̄ is multiplied by |Itruth
m (µtrain

j )|; we exercise this variant in our second
example of Section 3.)

Our optimization problem LPνquad is a discretization of a linear semi-infinite program with respect to

the parametric manifold. We wish to integrate to accuracy δ̄ any function on the parametric manifold
{gm(µ, ·) |µ ∈ D}m∈M; in that regard, we observe that our constraint (11) considers a finite sample of
J functions, and it is thus plausible for a smooth manifold and J sufficiently large that we will indeed
realize the desired accuracy. However, we also wish to obtain a solution of LPνquad which corresponds to
a sparse quadrature rule such that Kν � N (in fact, Kν � min{MJ,N}) even as we increase J and
refine our discretization; in that regard, we observe that our objective function (2) is the `1 norm of ρ,
and thus it is plausible that sparse (basic feasible) solutions will indeed exist.

We now compare LPνquad to the approach proposed in [3]. In fact, both [3] and LPνquad invoke the
`1-norm objective function. However, [3] treats constraints in a fundamentally different fashion from (10)-
(11):

(i ) [3] considers a finite-dimensional linear space, W , rather than a parametric manifold;

(ii) [3] imposes equality constaints (such that any member of W , as represented in a basis, is integrated
exactly), rather than inequality constraints.

We contend that the LPνquad choices in (i) and (ii) are related: we prefer direct consideration of the
parametric manifold to permit more explicit control of the error; inequality constraints are then required to
preserve sparsity in the limit of refinement. To illustrate the latter we consider δ̄ = 0 (equivalent to equality
constraints) in (11): a solution exists with Kν = MJ [7,5], and furthermore, for independent constraints,
(generically) no solution exists with Kν < MJ [4] — clearly not sparse, and hence unacceptable, for
J large; in contrast, with inequality constraints, δ̄ > 0, we can obtain Kν � min{MJ,N}, and in
particular Kν will equal not the number of constraints but rather the number of active constraints. (Of
course from the latter we understand that we could in principle impose equality constraints at a few
well-selected parameter values; however the identification of these parameter values — or alternatively, a
good linear approximation space — perforce entails a search over a much larger set of parameter values.)
Inequality constraints are also well-motivated from the perspective of applications: the tolerance δ̄ is
selected consistently with the desired accuracy, δ̄ = ε/2.

Although we do not attempt to identify optimal parameter values for our constraint set, we do never-
theless anticipate that, for smooth manifolds, maxm∈M maxµ∈D |Itruth

m (µ)− Iνm(µ)| will tend to δ̄ rapidly
as J increases: a small sample should suffice. Even for limited smoothness we can demonstrate that the
error should decrease as 1/J . To begin, we provide a general result:

Lemma 2.1 For any µ ∈ D, and given hyperparameter ν,

max
m∈M

|Itruth
m (µ)− Iνm(µ)| ≤ max

m∈M

(
inf
α∈RJ

(
δ̄

J∑
j=1

|αj |+ 2|Ω| ‖ gm(µ; ·)−
J∑
j=1

αjφm,j ‖L∞(Ω)

))
. (12)

PROOF. We first fix m ∈M. Then, for any α ∈ RJ ,
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| Itruth
m (µ)− Iνm(µ)| =

∣∣∣ N∑
i=1

wtruth
i gm(µ; ξtruth

i )−
Kν∑
k=1

wνkgm(µ; ξνk )
∣∣∣

≤
∣∣∣ N∑
i=1

wtruth
i

J∑
j=1

αjφm,j(ξ
truth
i )−

Kν∑
k=1

wνk

J∑
j=1

αjφm,j(ξ
ν
k )
∣∣∣

+
∣∣∣ N∑
i=1

wtruth
i

(
gm(µ; ξtruth

i )−
J∑
j=1

αjφm,j(ξ
truth
i )

)∣∣∣+
∣∣∣ Kν∑
k=1

wνk

(
gm(µ; ξνk )−

J∑
j=1

αjφm,j(ξ
ν
k )
) ∣∣∣

≤
∣∣∣ J∑
j=1

αj

( N∑
i=1

wtruth
i φm,j(ξ

truth
i )−

Kν∑
k=1

wνkφm,j(ξ
ν
k )
) ∣∣∣

+
∣∣∣ N∑
i=1

wtruth
i

(
gm(µ; ξtruth

i )−
J∑
j=1

αjφm,j(ξ
truth
i )

) ∣∣∣+
∣∣∣ Kν∑
k=1

wνk

(
gm(µ; ξνk )−

J∑
j=1

αjφm,j(ξ
ν
k )
) ∣∣∣ .

(13)

For the first term we can now invoke (11) and apply Hölder’s inequality (p = 1, q = ∞). For the second
term we appeal to (6) and, again, Hölder’s inequality. Finally, for the third term, we recall that the truth
quadrature is in fact feasible; we may then invoke optimality — here equivalent to stability — to conclude
that

∑K
k=1 w

ν
k ≤

∑N
i=1 w

truth
i = |Ω|, and again apply Hölder’s inequality. The result directly follows. 2

We note that (12) of Lemma 2.1 quantifies how (first term) stably we can (second term) approximate,
for any m ∈M and any µ ∈ D, the function gm(µ; ·) — and hence Itruth

m (µ) — in terms of our snapshots
{φm,j}j∈J,m∈M.

As presented, Lemma 2.1 is not actionable. We can however, now choose an interpolation system and
then quantify the error in terms of associated regularity estimates. Most simply, we can demonstrate

Theorem 2.2 Let

∆ν ≡ max
µ∈D

(
min
j∈J
‖µ− µtrain

j ‖2
)
. (14)

Then, under the hypothesis of Lipschitz continuity, (2), for any µ ∈ D,

max
m∈M

|Itruth
m (µ)− Iνm(µ)| ≤ δ̄ + 2|Ω|Lg ∆ν . (15)

PROOF. We choose in (12) not the best α ∈ RJ but rather the sub-optimal coefficients

α∗j =

{
1 for j = j∗

0 for j ∈ J \ j∗
(16)

for j∗ = arg minj∈J ‖µ− µtrain
j ‖2. The result then directly follows from Lemma 2.1, (16), (2), and (14). 2

We can further introduce a sampling hypothesis: ∆ν → 0 as J → ∞; it then follows from Theorem 2.2
that for J sufficiently large Iνm(µ) approximates Itruth

m (µ) to within the prescribed tolerance δ̄ for any
m ∈M and any µ ∈ D. Note here that ν depends on J ; in actual practice, the quadrature scheme changes
very little for sufficiently large J .
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3. Examples

We consider two examples: one relates to the Fourier transform, the other to the reduced basis method.
All computations of LPνquad are performed with the Matlab implementation of the dual simplex method
on commodity laptops. Note we confirm in (selected) numerical tests that the number of quadrature
points does indeed equal the number of active accuracy constraints.

We discuss in these examples both the offline stage, and in particular the generation of the quadrature
rule, and then the online stage, which corresponds to the evaluation of the quadrature rule for particular
instances. We emphasize that in the online stage we must evaluate µ ∈ D → gm(µ; ξνk ), 1 ≤ k ≤ Kν ,∀m ∈
M, which corresponds to (effectively) MKν function (g) evaluations. (A similar operation count would
apply to integration-by-interpolation techniques, since function evaluations are required to determine
the interpolation coefficients.) We do not discuss here acceleration of the function evaluations; rather,
empirical integration focuses on reduction of the number of function evaluations. In particular, we note
that the savings (factor) associated with sparse quadrature relative to truth quadrature is independent
of the cost of the individual function evaluation.

3.1. Fourier Transform

We consider a function f(α, t) for α a real scalar parameter and t time, and associated Laplace transform

f̂(α; s); we assume that all poles of f̂(α; s) reside in the left-hand s-plane. The inverse Laplace transform

relates f and f̂ as

f(α, t) =

∫ ∞
0

1

π
<
(

exp(iωt)f̂(α; iω)
)
dω , (17)

where i ≡
√
−1 and < denotes real part. We now map to our framework: ξ ≡ ω, Ω ≡ [0,∞), µ ≡ (µ1, µ2) ≡

(α, t) ∈ P ⊂ RP=2 such that f(α, t) = I(µ) of (1) for

g(µ; ξ) ≡ 1

π
<
(

exp(iξµ2)f̂(µ1; iξ)
)
. (18)

We now introduce the truth quadrature by which we calculate Itruth(µ): the trapezoidal rule over N
equi-spaced points on the interval [0, ξmax]. (In this example M = 1, and hence we omit the subscript
m = 1.) Note that in this case the truth quadrature introduces errors due to discretization, reflected in
N , as well as truncation, reflected in ξmax.

In actual practice Itruth(µ) would serve to estimate (unknown) f(α, t) from known f̂(α; s). In our
example we take a known pair,

f(α, t) = e−0.002t sin t+ t2e−αt, f̂(α, s) =
1

(s+ 0.002)2 + 1
+

2

(s+ α)3
; (19)

we further specify α ∈ [0.2, 2.0] and t ∈ [0, 4] such that P ≡ [0.2, 2.0]× [0, 4]. Note that, for the parameter
values of interest, f(α, t) is order unity, and hence absolute error and relative error are roughly equiv-
alent. Finally, we choose for our truth quadrature ξmax = 4 and N = 1200: we confirm that the latter
choices yield an error in Itruth(µ) relative to I(µ) of several percent; we may thus meaningfully compare
computational cost for δ̄ on the order of 0.01 (but not for δ̄ � 0.01, which implictly places a larger burden
than necessary on the truth approximation).

Our goal now is to develop an efficient empirical quadrature formula which introduces errors no greater
than several percent. Towards that end, we let J = (J ′)2 and create our train parameter sample Ξtrain

J

as a J ′ × J ′ uniform grid over D. We may then obtain, for any given J , our empirical quadrature rule
{ξνk}k=1,...,Kν , {wνk}k=1,...,Kν , as the post-processed solution to LPνquad; computation times range from
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J ′ 25 30 35 40 45

Kν 10 11 11 12 11

Eν 0.1578 0.1321 0.1009 0.1010 0.1011

J ′ 25 30 35 40 45

Kν 14 14 14 16 15

Eν 0.0234 0.0120 0.0131 0.0101 0.0102

Table 1

Fourier transform example: number of quadrature points, Kν , and error over test sample, Eν , as a function of J ′ for δ̄ = 0.1
(left) and δ̄ = 0.01 (right). Note that our train sample for LPνquad, Ξtrain

J , is of size J = (J ′)2, and our test sample for Eν ,

Ξtest, is of size 1002.

≈ 1 s (J = 252) to ≈ 8 s (J = 452). Finally, we further create a test parameter sample Ξtest of size
1002 constructed as the tensorization of a uniform random grid of size 100 in each of the two parameter
directions; we then measure our error as

Eν(Ξtest) = max
µ∈Ξtest

|Itruth(µ)− Iν(µ)| . (20)

We present our results for a range of J ′ in Table 1 for δ̄ = 0.1 (left) and δ̄ = 0.01 (right).
We first observe that Kν is (i) indeed very small, (ii) relatively insensitive to J , and (iii) only modestly

dependent on δ̄. The actual quadrature point distribution is unremarkable, though we do note the clus-
tering observed also in [9]. We next observe, consistent with Theorem 2.2, that Eν rapidly approaches δ̄
as we increase J .

3.2. Reduced basis approximation of a nonlinear reaction-diffusion equation

We consider a second example, related to the reduced basis method, to further illustrate the approach.
(We refer to [8] for a review of the reduced basis method.) We introduce a spatial domain Ω ≡ (−1, 1)×
(0, 1) ⊂ R2, which is split into two subdomains Ω1 ≡ (−1, 0) × (0, 1) and Ω2 ≡ (0, 1) × (0, 1). We also
introduce a parameter domain D ≡ [1, 1000]2 ⊂ RP≡2. We then consider the following parametrized
nonlinear reaction-diffusion equation: given µ ∈ D, find u(µ) ∈ V ≡ H1

0 (Ω) ≡ {v ∈ H1(Ω) | v|∂Ω = 0}
such that

r(u(µ), v;µ) = 0 ∀v ∈ V, (21)

where

r(z, v;µ) ≡
∫

Ω

∇v(ξ) · ∇z(ξ)dξ +

∫
Ω

v(ξ)z(ξ)3dξ −
2∑
i=1

µi

∫
Ωi

v(ξ)dξ = 0 ∀z, v ∈ V.

The space V is endowed with the standard H1(Ω) inner product and norm.
We next introduce a quadratic finite element space Vh ≡ {v ∈ V | v|κ ∈ P2(κ), ∀κ ∈ Th} ⊂ V over a

triangulation Th of Ω which comprises 16× 8× 2 triangular elements. We may then state the associated
finite dimensional problem: given µ ∈ D, find uh(µ) ∈ Vh such that

r(uh(µ), v;µ) = 0 ∀v ∈ Vh; (22)

the cubic reaction term
∫

Ω
v(ξ)z(ξ)3dξ, whose integrand is a piecewise eighth-degree polynomial, is inte-

grated exactly by a (truth) quadrature rule which consists of N = 4864 points.
We now consider a reduced basis approximation of (22). Towards this end, we introduce a reduced

basis space VN ≡ span{uh(µ)}µ∈Ξrb
N
⊂ Vh associated with a snapshot parameter set Ξrb

N ⊂ D of size N .

We can then state our reduced basis problem (exact quadrature): given µ ∈ D, find uN (µ) ∈ VN such
that

r(uN (µ), v;µ) = 0 ∀v ∈ VN . (23)

We identify the hierarchical snapshot parameter sets Ξrb
N=1 ⊂ · · · ⊂ Ξrb

N=Nmax
and associated reduced

basis approximation spaces VN=1 ⊂ · · · ⊂ VN=Nmax
by application of the strong greedy procedure [8] over

7



a training set Ξrb,train ⊂ D which consists of |Ξrb,train| ≡ 202 points uniformly distributed over log(D); we
require the relative V-norm of the error to be less than 0.05 for all µ ∈ Ξrb,train, which yields Nmax = 7.

We then consider an empirical quadrature approximation of (23) and introduce the following residual
form:

rν(z, v;µ) ≡
∫

Ω

∇v(ξ) · ∇z(ξ)dξ +

Kν∑
k=1

wνkv(ξνk )z(ξνk )3 −
2∑
i=1

µi

∫
Ωi

v(ξ)dξ = 0 ∀z, v ∈ V.

The reduced basis approximation associated with the reduced quadrature rule is defined as follows: given
µ ∈ D, find uνN (µ) ∈ VN such that

rν(uνN (µ), v;µ) = 0 ∀v ∈ VN . (24)

We next train the quadrature rule: given VN ≡ span{uh(µ)}µ∈Ξrb
N

, we require the residual and Jacobian
of the nonlinear reaction terms,

gmres(λ′)(µ; ξ) = u(λ′; ξ)(uN (µ; ξ))3dξ ∀λ′ ∈ Ξrb
N ,

gmJac(λ′,λ′′)(µ; ξ) = u(λ′; ξ)(uN (µ; ξ))2u(λ′′; ξ) ∀λ′, λ′′ ∈ Ξrb
N ,

to be integrated to within accuracy δ̄ ≡ 10−4 in the relative sense for all µ ∈ Ξtrain
J ≡ Ξrb,train; the

formulation corresponds to M = N +N2 and J = |Ξtrain
J | = |Ξrb,train|, the latter of which we determine

is sufficiently large to ensure a relative error close to δ̄ for any µ ∈ D. We note that the quadrature
points are not hierarchical: we obtain different points for each N . In the online stage, the evaluation of
the residual and Jacobian of the cubic reaction term requires O(KνN) storage and O(KνN2) operations.

We summarize in Table 2 the result of solving the nonlinear reaction-diffusion equation using the
reduced basis method with the empirical quadrature rule for δ̄ = 10−4. We first observe that, in general,
Kν increases with N because the number of functions we wish to integrate exactly increases as M =
N + N2; nevertheless, we observe Kν � N = 4864 for each N . We now introduce a set Ξtest which
consists of 1000 uniformly distributed random points over log(D). We first observe that the maximum
quadrature error for both the residual and Jacobian of the cubic reaction term, Eν(Ξtest), is close to
δ̄ = 10−4. We next observe (the fourth column of Table 2) that the maximum difference in the reduced
basis approximations uN (µ) and uνN (µ), which use the exact and empirical quadrature rules, respectively,
is also small: an order of magnitude smaller than the error in the reduced basis approximation itself (the
fifth column of Table 2).

We finally remark on the cost. The offline computational times for LPνquad with N = 4864 ranges from
≈ 1 s (N = 1, MJ = 800) to ≈ 70 s (N = 7, MJ = 22400). In the online stage, rapid and accurate
solution of the parametrized nonlinear reaction-diffusion is effected in O(NKν) storage and O(N2Kν)
operations for formation of the linear system, and O(N3) operations for solution of the linear system.
We emphasize that the online storage and operation count are independent of both the dimension of the
finite element space dim(Vh) and the number of truth quadrature points N .
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N Kν Eν(Ξtest) max
µ∈Ξtest

‖uN (µ)− uνN‖V
‖uh(µ)‖V

max
µ∈Ξtest

‖uh(µ)− uνN (µ)‖V
‖uh(µ)‖V

1 1 1.00× 10−4 2.41× 10−5 7.79× 10−1

2 5 1.00× 10−4 2.13× 10−4 7.15× 10−1

3 15 1.00× 10−4 3.69× 10−4 3.01× 10−1

4 27 1.00× 10−4 1.38× 10−3 1.56× 10−1

5 33 1.01× 10−4 1.57× 10−3 7.87× 10−2

6 42 1.02× 10−4 2.39× 10−3 5.74× 10−2

7 42 1.01× 10−4 4.00× 10−3 3.63× 10−2

Table 2

Reduced basis method example: the number of reduced basis functions N , the number of reduced quadrature points Kν ,
the maximum quadrature error for the cubic reaction term over the test set Ξtest, Eν(Ξtest), the maximum difference in

the reduced basis approximation using the exact quadrature and reduced quadrature, maxµ∈Ξtest
‖uN (µ)−uνN‖V
‖uh(µ)‖V

, and the

error in the reduced basis approximation using the reduced quadrature, maxµ∈Ξtest
‖uh(µ)−uνN (µ)‖V
‖uh(µ)‖V

.
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