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Abstract. We provide extended analyses and interpretations of the parametrized-background
data-weak (PBDW) formulation, a real-time in situ data assimilation framework for physical sys-
tems modeled by parametrized partial differential equations. The new contributions are threefold.
First, we conduct an a priori error analysis for imperfect observations: we provide a bound for the
variance of the state error and identify distinct contributions to the noise-induced error. Second,
we illustrate the elements of the PBDW formulation for a physical system, a raised-box acoustic
resonator, and provide detailed interpretations of the data assimilation results in particular related
to model and data contributions. Third, we present and demonstrate an adaptive PBDW formu-
lation in which we incorporate unmodeled physics identified through data assimilation of a select
few configurations.
Keywords: variational data assimilation; parametrized partial differential equations; model order
reduction; imperfect observations; acoustics.

1. Introduction

Numerical prediction based on a given mathematical model is often inadequate due to limitations im-
posed by available knowledge, calibration requirements, and computational costs. Accurate prediction thus
requires the incorporation of experimental observations to accommodate both anticipated, or parametric,
uncertainty as well as unanticipated, or nonparametric, uncertainty. Towards this end, we introduced in [16]
a Parametrized-Background Data-Weak (PBDW) formulation for variational data assimilation; the formula-
tion combines a “best-knowledge” model encoded in a parametrized partial differential equation (PDE) and
experimental observations to provide a real-time in situ estimation of the state of the physical system.

We now state the precise problem that the PBDW formulation addresses. We first denote by C the
configuration of the physical system. In the context of the raised-box acoustic resonator introduced in [16]
and revisited in Section 5 of the current paper, C encodes information which describes the system: operating
conditions, such as the frequency; environmental factors, such as the temperature; physical constituents,
such as the materials. We now consider a physical system in configuration C ∈ S, where S is the set of all
configurations of interest. The PBDW formulation then integrates a parametrized mathematical model and
M experimental observations associated with the configuration C to estimate the true field utrue[C] as well
as any desired output `out(utrue[C]) ∈ C for given output functional `out.

The PBDW formulation is endowed with the following characteristics:
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• Weak formulation. We interpret M experimental data as an M -dimensional experimentally ob-
servable space. We then abstract the estimate based on M observations as a finite-dimensional
approximation — effected by projection-by-data — of an infinite-dimensional variational problem.

• Actionable a priori theory. The weak formulation facilitates the construction of a priori error esti-
mates informed by the standard analysis techniques developed for PDEs [17]. The a priori theory
guides the optimal choice of the parametrized mathematical model and the experimental observa-
tions.

• Background space. The PBDW formulation incorporates background spaces that accommodate an-
ticipated parametric uncertainty. The background space is constructed in two steps: i) the identifi-
cation of a parametrized PDE that best reflects our (prior) best knowledge of the phenomenon under
consideration and the associated anticipated uncertainty — a best-knowledge model —; ii) the ap-
plication of a model reduction technique — the WeakGreedy algorithm of the certified reduced basis
method [18] — to encode the knowledge in the parametrized model in a linear space appropriate for
real-time evaluation.

• Design of experiment. The PBDW formulation incorporates the SGreedy algorithm which identifies
a quasi-optimal set of observations from a library of experimentally realizable observations in order
to maximize the stability of the data assimilation.

• Correction of unmodeled physics. The PBDW formulation, unlike many parameter calibration meth-
ods, provides a mechanism by which to correct the unanticipated and nonparametric uncertainty
present in the physical model. The unmodeled physics is included through an “update field” that
completes the inevitably deficient best-knowledge model. In short, our formulation provides an
update field that completes the physics in the model.

• Online computational efficiency. The PBDW formulation provides an offline-online computational
decomposition. The online computational cost is O(M), and thus we may realize real-time state
estimation limited only by the speed of the data acquisition.

• Simple implementation and generality. The mathematical model appears only in the offline stage.
The formulation permits a simple non-intrusive implementation and the incorporation of high-fidelity,
“expensive,” mathematical models.

Several of these ingredients have appeared, often separately, in different contexts. The weak formulation
in the PBDW formulation, as in many other data assimilation schemes, is built upon least squares [2, 11–
13]. For a recent variational analysis of least squares method in functional setting, we refer to Cohen et
al. [7]. The best-knowledge background space in PBDW, as opposed to a background singleton element
in 3dVAR [2, 12, 13], is found in earlier work in the context of gappy proper orthogonal decomposition
(Gappy POD) [9, 20], generalized empirical interpolation method (GEIM) [14, 15], and nearfield acoustical
holography (NAH) [6,21]; the PBDW emphasis on parametrized PDEs is shared with the GEIM. The SGreedy
optimization procedure is related to the E-optimality criteria considered in the design of experiments [10].
Finally, the correction of unmodeled physics through Riesz representation is first introduced in the work of
Bennett [1]; the formulation is also closely related to the approximation by radial basis functions [5]. The
detailed formulation, analysis, and demonstration of the PBDW framework is presented in [16].

In this work, we extend the previous analysis and demonstration of the PBDW formulation in a number
of ways. In particular, the contributions of this work are threefold:

(1) We provide an a priori error analysis in the presence of observation imperfections. Specifically, we
consider observation noise which is zero-mean, homoscedastic, and uncorrelated; we then provide an
a priori error bound for the variance of the state estimation error.

(2) We provide a detailed interpretation of the PBDW data assimilation results obtained for a particular
(interesting) physical system: a raised-box acoustic resonator. Specifically, we analyze two different
configurations of the system: a first configuration for which the dominant dynamics of the physical
system is well anticipated, the dynamics is captured by the best-knowledge model, and the modeling
error is small; a second configuration for which the dominant dynamics of the physical system is
poorly anticipated, the dynamics is absent from the best-knowledge model, and the modeling error
is large.
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(3) We provide a strategy to update the PBDW based on empirical representation of unmodeled physics
obtained through data assimilation for a select few configurations. The strategy improves the ex-
perimental efficiency of the data assimilation procedure for all configurations of interest, and is
particularly suited in many-query scenarios. We illustrate the approach for the raised-box acoustic
resonator.

The paper is organized as follows. In Section 2, we provide a brief overview of the PBDW formulation; for a
more elaborate presentation, we refer to [16]. In Section 3, we provide an a priori error analysis of the PBDW
state estimation error in the presence of observation errors; we subsequently identify design requirements for
the PBDW formulation. In Section 4, we provide practical procedures by which to implement the PBDW
formulation. In Section 5, we apply the PBDW formulation to the raised-box acoustic resonator, provide
detailed interpretations of the data assimilation results, and present our configuration adaptive approach.

2. Formulation

2.1. Preliminaries

By way of preliminaries, we introduce the mathematical notations used throughout this paper. We first
introduce the standard complex-valued `2(Cn) space, the set of all n-tuples of complex numbers, endowed
with the Euclidean inner product (w, v)`2(Cn) ≡

∑n
i=1 wiv̄i and induced norm ‖w‖`2(Cn) ≡

√
(w,w)`2(Cn).

Here ā indicates the complex conjugate of a. Note that the inner product is linear in the first argument
and antilinear in the second argument; we follow this convention for all our inner products. We next
introduce the standard complex-valued L2(Ω) Hilbert space over the domain Ω ∈ Rd endowed with an inner
product (w, v)L2(Ω) ≡

∫
Ω
wv̄dx and induced norm ‖w‖L2(Ω) ≡

√
(w,w)L2(Ω); L

2(Ω) consists of functions

{w | ‖w‖L2(Ω) < ∞}. We then introduce the H1(Ω) Hilbert space over Ω endowed with an inner product

(w, v)H1(Ω) ≡
∫

Ω
∇w · ∇v̄dx +

∫
Ω
wv̄dx and induced norm ‖w‖H1(Ω) ≡

√
(w,w)H1(Ω); H

1(Ω) consists of

functions {w | ‖w‖H1(Ω) <∞}. We also introduce the H1
0 (Ω) Hilbert space over Ω endowed with the H1(Ω)

inner product and norm; H1
0 (Ω) consists of functions {w ∈ H1(Ω) | w|∂Ω = 0}.

We now introduce a space U , a closed subspace of H1(Ω), endowed with an inner product (w, v) and

induced norm ‖w‖ ≡
√

(w,w); U is a Hilbert space when provided with a norm ‖ · ‖ which is equivalent
to ‖ · ‖H1(Ω). We assume that H1

0 (Ω) ⊂ U ⊂ H1(Ω). We next introduce the dual space U ′ and denote
the associated duality pairing by 〈·, ·〉U ′×U ; the pairing is linear in the first argument and antilinear in the
second argument. The dual space U ′ is endowed with the norm ‖`‖U ′ ≡ supw∈U |`(w)|/‖w‖ and consists
of functionals {` | ‖`‖U ′ < ∞}. The operator U : U → U ′ associated with the inner product satisfies
〈Uw, v〉U ′×U = (w, v) ∀w, v ∈ U . The Riesz operator RU : U ′ → U satisfies, for each linear (and not
antilinear) functional ` ∈ U ′, (v,RU`) = `(v), ∀v ∈ U . We finally define, for any closed subspace Q ⊂ U , a
projection operator ΠQ : U → Q that satisfies, for any w ∈ U , (ΠQw, v) = (w, v) ∀v ∈ Q.

2.2. PBDW Statement

As discussed in the introduction, our goal is the estimation of the deterministic state utrue[C] ∈ U of a
physical system in configuration C ∈ S based on a parametrized best-knowledge model and M (potentially
noisy) observations. Towards this end, we first introduce a sequence of background spaces that reflect our
(prior) best knowledge,

Z1 ⊂ · · · ⊂ ZNmax
⊂ · · · ⊂ U ;

here the second ellipsis indicates that we may consider the sequence of length Nmax as resulting from a
truncation of an infinite sequence. Our goal is to choose the background spaces such that

lim
N→∞

inf
w∈ZN

‖utrue[C]− w‖ ≤ εZ ∀C ∈ S,

for εZ an acceptable tolerance. In words, we choose the background spaces such that the most dominant
physics that we anticipate to encounter for various system configurations is well represented for a relatively
small N . Specifically, the background spaces may be constructed through, for instance, the application of a
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model reduction approach to a parametrized PDE, as discussed in Section 4.1; we refer to [16] for various
approaches to generate the background space.

We now characterize our data acquisition procedure. Given a system in configuration C ∈ S, we assume
our observed data yobs[C] ∈ CM is of the form,

∀m = 1, . . . ,M, yobs
m [C] = `om(utrue[C]) + em;

here yobs
m [C] is the value of the m-th observation, `om ∈ U ′ is the linear (and not antilinear) functional

associated with the m-th observation, and em is the noise associated with the m-th observation. The form
of the functional depends on the specific transducer used to acquire data. For instance, if the transducer
measures a local state value, then we may model the observation as a Gaussian convolution

`om(v) = Gauss(v;xc
m, rm) ≡

∫
Ω

{
(2πr2

m)−d/2 exp

(
−
‖x− xc

m‖2`2(Rd)

2r2
m

)}
v(x)dx,

where xc
m ∈ Rd is the center of the transducer, and rm ∈ R>0 is the filter width of the transducer; localized

observation is of particular interest in this work. Concerning the form of the noises (em)m, we make the
following three assumptions:

(A1) zero mean: E[em] = 0, m = 1, . . . ,M ;
(A2) homoscedastic: E[e2

m] = σ2, m = 1, . . . ,M ;
(A3) uncorrelated: E[emen] = 0, m 6= n.

Note that we do not assume that the observation error follows any particular distribution (e.g. normal
distribution), but only assume that the mean and the covariance of the distribution exist. We note that in
practice the mean and covariance of the data acquired is more readily quantifiable than the distribution.

We now introduce a sequence of function spaces associated with our observations. We first associate with
each observation functional `om ∈ U ′ an observable function,

∀m = 1, . . . ,M, qm = RU`
o
m,

the Riesz representation of the functional [1]. We then introduce hierarchical observable spaces,

∀M = 1, . . . ,Mmax, . . . , UM = span{qm}Mm=1;

here the second ellipsis indicates that we may consider the sequence of the length Mmax as resulting from a
truncation of an infinite sequence. We next introduce an observable state uobs

M [C] ∈ U as any function that
satisfies

∀m = 1, . . . ,M, `m(uobs
M [C]) = yobs

m [C].

We now note from the construction of the observable space, the definition of the observable state, and the
definition of Riesz representation, that

∀m = 1, . . . ,M, (uobs
M [C], qm) = (uobs

M [C], RU`om) = `om(uobs
M [C]) = yobs

m [C];

we may evaluate the inner product of the observable state and a canonical basis function qm ∈ UM as the

m-th observation. More generally, for any v =
∑M
m=1 vmqm ∈ UM , v ∈ CM ,

(uobs
M [C], v) =

M∑
m=1

v̄my
obs
m [C]. (1)

We say that the space UM is experimentally observable: for the given inner product, UM comprises precisely
the elements of U whose norm we can evaluate from observations. Note that we introduce uobs

M [C] to facilitate
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the presentation and variational analysis of the PBDW formulation; however, we do not reconstruct this
“intermediate” field during the actual data assimilation process.

We may now state the PBDW estimation statement: given a physical system in configuration C ∈ S, find
(u∗N,M [C] ∈ U , z∗N,M [C] ∈ ZN , η∗N,M [C] ∈ U) such that

(u∗N,M [C], z∗N,M [C], η∗N,M [C]) = arg inf
uN,M∈U
zN,M∈ZN

ηN,M∈U

‖ηN,M‖2 (2)

subject to

(uN,M , v) = (ηN,M , v) + (zN,M , v) ∀v ∈ U ,

(uN,M , φ) = (uobs
M [C], φ) ∀φ ∈ UM .

We may readily derive the associated (reduced) Euler-Lagrange equations as a saddle problem [16]: given a
physical system in configuration C ∈ S, find (η∗N,M [C] ∈ UM , z∗N,M [C] ∈ ZN ) such that

(η∗N,M [C], q) + (z∗N,M [C], q) = (uobs
M [C], q) ∀q ∈ UM ,

(η∗N,M [C], p) = 0 ∀p ∈ ZN , (3)

and set

u∗N,M [C] = η∗N,M [C] + z∗N,M [C]. (4)

We emphasize that the inner product that appears on the right hand side — (uobs
M [C], q) — can be evaluated

for any q ∈ UM directly from the experimental data yobs[C], as described by (1).
We note that the PBDW state estimate u∗N,M [C] in (4) consists of two components: the element in

the background space, z∗N,M [C]; the element in the observable space, η∗N,M [C]. The background space ZN
accommodates anticipated uncertainty, and the (experimentally observable) update space UM accommodates
unanticipated uncertainty. Specifically, as evident from the minimization statement (2), we seek the state
estimate u∗N,M which is consistent with the M observations and which minimizes the update contribution.

We note that η∗N,M [C] ∈ UM but also, from the orthogonality relation (3)2, η∗N,M [C] ∈ UM ∩ Z⊥N : η∗N,M thus
augments, or complements, an incomplete background space ZN ; it is for this reason that we refer to the
observable space UM as the update space.

We make a few remarks about the PBDW saddle (3). First, the saddle problem (3) is well-posed for an
appropriate pair of the background space ZN and the observable space UM ; the precise condition required
for well-posedness is discussed in Section 3 in the context of an a priori error analysis. Second, there
is no reference to any mathematical model in the saddle problem; the connection to the mathematical
model is through the hierarchical linear background spaces ZN , N = 1, . . . , Nmax, . . . . The absence of
the mathematical model permits application to a wide class of problems, including problems for which the
mathematical model is too expensive computationally to invoke in real-time. In addition, the method is
perforce non-intrusive, which greatly simplifies the implementation.

2.3. Algebraic Form: Offline-Online Computational Procedure

We now introduce an algebraic form of the PBDW formulation that is amenable to computation. Towards
this end, we introduce a N -dimensional approximation of the infinite-dimensional space U , UN . We similarly
introduce approximations of subspaces ZN ⊂ U and UM ⊂ U , ZNN ⊂ UN and UNM ⊂ UN , respectively. The
space UN typically arises from a finite-element discretization; we assume that ∪NUN is dense in U .

We then introduce a basis for the background space {ζn ∈ UN }Nn=1. The background space is thus given
by ZNN ≡ span{ζn}Nn=1. The associated background space operator is Z : CN → ZNN such that

Zz =

N∑
n=1

znζn in UN ;

148



we may represent any z ∈ ZNN as z = Zz for the matrix Z ∈ CN×N and for some z ∈ CN .
Similarly, for the observation functionals {`om}Mm=1, we introduce the associated observation operator

L : UN → CM such that

∀m = 1, . . . ,M, (Lw)m = `om(w) ∀w ∈ UN ;

given an algebraic (vector) representation of the observation functional `om : UN → C, the observation
operator L is a matrix L ∈ CM×N that arises from the concatenation of the vectors. We then introduce
the canonical basis for the update space {qm ≡ RNU `

o
m}Mm=1; here RNU `

o
m ∈ UN satisfies (v,RNU `

o
m) = `om(v),

∀v ∈ UN . The update space is given by UNM ≡ span{qm}Mm=1. The associated update space operator is
Q : CM → UNM such that

Qv =

M∑
m=1

vmqm in UN , ∀v ∈ CM ;

we may represent any v ∈ UNM as v = Qv for the matrix Q ∈ CN×M and some v ∈ CM .
We now state the algebraic form of the PBDW saddle problem (3) such that η∗N,M [C] = Qη∗[C] ∈ UNM

and z∗N,M [C] = Zz∗[C] ∈ ZNN : given observation data yobs[C] ∈ CM associated with a physical system in

configuration C ∈ S, find (η∗[C] ∈ CM , z∗[C] ∈ CN ) such that(
A B

BH 0

)(
η∗[C]
z∗[C]

)
=

(
yobs[C]

0

)
, (5)

where

A ≡ Q†UQ = LQ ∈ CM×M

B ≡ Q†UZ = LZ ∈ CM×N ,

where Q† : (UNM )′ → CM is the adjoint of Q : CM → UNM .
The offline-online decomposition is clear from the construction. In the offline stage, we compute the

supermatrices Amax ≡ LmaxQmax ∈ CMmax×Mmax and Bmax ≡ LmaxZmax ∈ CMmax×Nmax , where Lmax ∈
CMmax×N is the observation operator associated with the Mmax observations, Zmax ∈ CN×Nmax is the
background operator associated with the Nmax-dimensional background space, and Qmax ∈ CN×M is the
update operator associated with the Mmax-dimensional update space. In the online stage, we first extract the
principle submatrices of Amax ∈ CMmax×Mmax and Bmax ∈ CMmax×Nmax to form A ∈ CM×M and B ∈ CM×N ,
respectively; we then solve the saddle system (5).

3. A Priori Error Analysis

3.1. Error Decomposition

We now analyze the error associated with the PBDW data assimilation procedure. We attribute our error
to two distinct contributions. The first contribution arises from the fact that modeling error is inevitable
(i.e. utrue 6∈ ZN ) and that the update space UM with which we augment ZN is finite dimensional; this error
is present even if each observation is noise-free — that is, even if we could probe the true deterministic state
— and hence we refer to this component of the error as the deterministic error. The second contribution
arises from the fact that each observation is noisy, corrupted by the random observation noise; we refer to
this component of the error as the stochastic error.

In order to precisely distinguish the two components of the error, we introduce the PBDW state estimate
that would be obtained in the absence of the noise e, unf

N,M [C] ∈ U ; the superscript “nf” denotes “noise-free.”
The noise-free state is governed by the following weak statement: given a physical system in configuration
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C ∈ S, find (ηnf
N,M [C] ∈ UM , znf

N,M [C] ∈ ZN ) such that

(ηnf
N,M [C], q) + (znf

N,M [C], q) = (utrue[C], q) ∀q ∈ UM ,

(ηnf
N,M [C], p) = 0 ∀p ∈ ZN , (6)

and set

unf
N,M [C] = ηnf

N,M [C] + znf
N,M [C].

Note that the saddle problem is identical to the PBDW saddle (3) except that the right hand side of the
first equation is (utrue[C], q) and hence we probe the true deterministic state.

The following lemma provides a characterization of the error in terms of the deterministic and stochastic
components.

Lemma 1. The expectation of the norm of the state error may be decomposed into deterministic and sto-
chastic components and is bounded by

E[‖utrue[C]− u∗N,M [C]‖] ≤ ‖utrue[C]− unf
N,M [C]‖+ E[‖unf

N,M [C]− u∗N,M [C]‖];

here utrue[C] is the true deterministic state, u∗N,M [C] is the PBDW estimate given by (3), unf
N,M [C] is the

noise-free estimate given by (6), and E refers to expectation.

Proof. The result follows from the triangle inequality and the fact that both utrue[C] and unf
N,M [C] are deter-

ministic. �

3.2. Error Analysis and Interpretation: Deterministic Component

We first bound the deterministic error.

Proposition 2. The deterministic component of the error is bounded by

‖utrue[C]− unf
N,M [C]‖ ≤

(
1 +

1

βN,M

)
inf

q∈UM∩Z⊥N
‖ΠZ⊥Nu

true[C]− q‖, (7)

where βN,M is the inf-sup constant given by

βN,M ≡ inf
w∈ZN

sup
v∈UM

(w, v)

‖w‖‖v‖
; (8)

here utrue[C] is the true deterministic state, and unf
N,M [C] is the noise-free estimate given by (6).

Proof. See [16], Proposition 2. �

We identify three contributions to the deterministic error bound (7). First is the inf-sup (or stability)
constant, βN,M ∈ [0, 1], which is a metric of how well the elements in the background space are observed
and are distinguished by the observable space UM . Note that the stability constant is a decreasing function
of the dimension of the background space, N , and an increasing function of the dimension of the observable
space, M .

The second contribution to the deterministic error bound is the background best-fit error, εbkN (utrue[C]) ≡
infz∈ZN

‖utrue[C]−z‖ ≡ ‖ΠZ⊥Nu
true[C]‖, which is a non-increasing function of the dimension of the background

space, N . We recall that we strive to select the background spaces ZN , N = 1, . . . , Nmax, such that this
best-fit error is small for a relatively small N .

The third contribution to the deterministic error bound is the update best-fit error, infq∈UM∩Z⊥N ‖ΠZ⊥Nu
true−

q‖. The error is a non-increasing function of the dimension of the update space, M . The error decreases
as the update space enriches and corrects for more and more components of utrue[C] that lie outside of the
inevitably deficient background space ZN . We in particular note that, for a sequence UM → U as M →∞,
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we expect the deterministic component of the error to vanish as M → ∞; in other words, the noise-free
estimate unf

N,M [C] converges to utrue[C] as M →∞. However, this convergence in M is unfortunately rather

slow: in d physical dimensions, the error may converge as slowly as M−1/d [5, 16].

3.3. Error Analysis and Interpretation: Stochastic Component

We now analyze the stochastic component of the error.

Proposition 3. Suppose the observation error e satisfies the assumptions (A1), (A2), and (A3). Then, the
mean of the stochastic error is zero:

E
[
unf
N,M [C]− u∗N,M [C]

]
= 0; (9)

here unf
N,M [C] is the noise-free estimate given by (6), and u∗N,M [C] is the PBDW estimate given by (3).

Moreover, the variance of the stochastic error is bounded by√
E
[
‖unf

N,M [C]− u∗N,M [C]‖2
]
≤ σ

(
1 +

2

β2
N,M

)√
trace(A−1), (10)

where A ≡ Q†UQ ∈ CM×M , βN,M is the inf-sup constant defined in (8), and σ2 is the variance of the
measurement noise.

Proof. For notational simplicity, we suppress in this proof the configuration parameter [C] for all state and
state estimates.

We first define ηst
N,M ≡ ηnf

N,M − η∗N,M and zst
N,M ≡ znf

N,M − z∗N,M . We next subtract (3) from (6) to obtain

(ηst
N,M , q) + (zst

N,M , q) = (utrue − uobs
M , q) ∀q ∈ UM ,

(ηst
N,M , p) = 0 ∀p ∈ ZN . (11)

We may express any q ∈ UM as q =
∑M
m=1 qmαm, where qm ≡ RU`m; hence it follows that the right hand

side of (11)1 can be expressed as

(utrue − uobs
M , q) =

M∑
m=1

ᾱm(utrue − uobs
M , qm) =

M∑
m=1

ᾱm(`m(utrue)− `m(utrue)− em) = −
M∑
m=1

ᾱmem.

Because (11) is linear, the right hand side depends linearly on e, and E[e] = 0, we conclude that E[unf
N,M −

u∗N,M ] = E[ηst
N,M ] + E[zst

N,M ] = 0; this proves (9).

We next bound the expectation of the norm of the error. We test (11)1 against ηst
N,M ∈ UM ∩ Z⊥N and

note that (zst
N,M , η

st
N,M ) = 0 to obtain

(ηst
N,M , η

st
N,M ) = (utrue − uobs

M , ηst
N,M ) = (ΠUM (utrue − uobs

M ), ηst
N,M ).

We now invoke the Cauchy-Schwarz inequality to obtain

‖ηst
N,M‖ ≤ ‖ΠUM (utrue − uobs

M )‖. (12)

We in addition note that

βN,M‖zst‖ ≤ sup
q∈UM

(zst
N,M , q)

‖q‖
= sup
q∈UM

(utrue − uobs
M , q)− (ηst

N,M , q)

‖q‖
≤ ‖ΠUM (utrue − uobs

M )‖+ ‖ηst
N,M‖ ≤ 2‖ΠUM (utrue − uobs

M )‖;
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here the first relation follows from the definition of the inf-sup constant (8), the second relation follows
from (11)1, the third relation follows from Cauchy-Schwarz, and the last relation follows from (12). We
hence obtain an intermediate result,

‖unf
N,M − u∗N,M‖ ≤ ‖ηst

N,M‖+ ‖zst
N,M‖ ≤

(
1 +

2

βN,M

)
‖ΠUM (utrue − uobs

M )‖, (13)

where the first inequality follows from the triangle inequality.
We now derive an explicit expression for ΠUM (utrue − uobs

M ) and then bound its norm. Towards this end,

we note that ΠUM (utrue − uobs
M ) =

∑M
m=1 qmαm for α ∈ CM that satisfies

∀m′ = 1, . . . ,M,

M∑
m=1

(qm, qm′)αm = (utrue − uobs
M , qm′) = −em′ .

Recalling (qm, qm′) = Am′m, we obtain α = −A−1e. It follows that ΠUM (utrue − uobs
M ) = −QA−1e. Thus,

we obtain an equality for the norm,

‖ΠUM (utrue − uobs
M )‖2 = ‖QA−1e‖2 = eHA−1e. (14)

We then note that E[eeH ] = σ2IM , where IM ∈ CM×M is the identity matrix, to obtain

E[‖ΠUM (utrue − uobs
M )‖2] = E[eHA−1e] = E[trace(eeHA−1)] = σ2trace(A−1). (15)

We finally substitute (15) into (13) to obtain

E[‖unf
N,M − u∗N,M‖2] ≤

(
1 +

2

βN,M

)2

σ2trace(A−1),

which is the desired bound on the norm of the stochastic error (10).
�

Remark 4. We may obtain an alternative bound that does not rely on the assumption of uncorrelated noise.
At (14), we invoke

‖ΠUM (utrue − uobs
M )‖2 = eHA−1e ≤ λmax(A−1)‖e‖`2(CM );

we then take the expectation to obtain

E[‖ΠUM (utrue − uobs
M )‖2] ≤ λmax(A−1)E[‖e‖`2(CM )] = λmax(A−1)E[

M∑
m=1

e2
m] = λmax(A−1)σ2M,

where λmax(A−1) it the maximum eigenvalue of the Hermitian matrix A−1, and σ2 is the variance of the
noise. The bound on the norm of the stochastic error is hence

E[‖unf
N,M − u∗N,M‖2] ≤

(
1 +

2

βN,M

)2

σ2Mλmax(A−1).

Note that this bound cannot be sharper than (10) but is valid for correlated noise.

We identify three distinct contributions to the stochastic error bound (10). First is the variance of the
observation noise, σ2; the smaller the variance in the observation noise, the smaller the stochastic error
in the state estimate. Note that, while the observation procedure employed dictates the variance of the
observation noise σ2 associated with a single observation, we may reduce the effective variance through
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(b) two-dimensional case

Figure 1. The scaling of trace(A−1) with the dimension of the observable space UM in (a)
one physical dimension and (b) two physical dimensions. The observation functionals are of
the form `om ≡ Gauss(·;xc

m, r) for uniformly distributed observation centers {xc
m}Mm=1 and

the spread parameter as indicated in the legend.

repeated observations assuming the assumptions (A1) and (A3) are satisfied. In particular, the effective

variance of independent, homoscedastic noise scales as 1/M̃ , where M̃ is the number of repetitions.
The second contribution to the stochastic error is the inf-sup (or stability) constant, βN,M . The inf-sup

constant characterizes the influence of the observation noise on the background component of the stochastic
error. As we have discussed in the context of the bound for the deterministic error, the inf-sup constant is a
metric of how well the elements in the background space are observed and distinguished by the observable
space UM . We can hence maximize the constant through a judicious choice of the observation functionals.

The third contribution to the stochastic error is trace(A−1). We in particular wish to understand the
relationship between the observable space UM and trace(A−1). Unfortunately, we have not been able to
analyze the spectrum theoretically. Here we empirically study the trace through computation.

We first consider a one-dimensional problem over the unit-segment domain, Ω ≡ (0, 1). The space U
consists of H1(Ω) functions and is endowed with the standard H1 inner product and norm. We introduce
Gaussian observation functionals of the form `om ≡ Gauss(·;xc

m, r), m = 1, . . . ,M ; here we consider equidis-
tributed observation centers {xc

m}Mm=1 over the unit segment and four different values of the spread parameter
r: {0.0025, 0.005, 0.01, 0.02}. The problem is discretized using 128 P8 finite elements. The result of the com-
putation is shown in Figure 1(a). We empirically observe that, if the spread parameter r is sufficiently small
relative to the spacing between the observation centers (1/M), then trace(A−1) scales algebraically and in
particular as M2. On the other hand, if the spread parameter r is comparable to the spacing between the
observation centers (1/M), then trace(A−1) scales exponentially with M .

We next consider a two-dimensional problem over the unit-square domain, Ω ≡ (0, 1)2. The space U
consists of H1(Ω) functions and is endowed with the standard H1 inner product and norm. We introduce
Gaussian observation functionals of the form `om ≡ Gauss(·;xc

m, r), m = 1, . . . ,M ; here we consider equidis-
tributed observation centers {xc

m}Mm=1 over the unit square and four different values of the spread parameter
r: {0.0025, 0.005, 0.01, 0.02}. The problem is discretized using 64 × 64 × 2 P5 triangular finite elements.
The result of the computation is shown in Figure 1(b). We empirically observe a behavior similar to the
one-dimensional case. If the spread parameter r is sufficiently small relative to the spacing between the
observation centers (1/M1/2), then trace(A−1) scales algebraically and in particular as (M1/2)2 = M . If the
spread parameter r is comparable to the spacing between the observation centers (1/M1/2), then trace(A−1)
scales exponentially with M .
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Based on the empirical results for the one- and two-dimensional cases, we speculate that in d dimensions
trace(A−1) scales as (M1/d)2 = M2/d for uniformly distributed observation functionals with sufficiently
small spread parameters. From the stochastic error bound (10), we conclude that σ2 must decrease faster

than M−2/d; in other words, since σ2 ∼ M̃−1 for M̃ the number of repeated observations, M̃ > M2/d to
ensure convergence as M →∞.

3.4. Roles of the Background Space ZN and the Update Space UM
We now identify the roles played by the background space ZN and the update space UM based on the a

priori error analyses. We first consider the role of the background space ZN . Proposition 2 shows that, in
order to minimize the deterministic error, the space ZN must provide

(RZN
1) primary approximation: εbkN (utrue[C]) ≡ inf

z∈ZN

‖utrue[C]− z‖ is small ∀C ∈ S.

In words, the ZN must well represent the true state utrue[C] for all C ∈ S for ideally a relatively small N .
The background space also influences the stability constant βN,M in the deterministic error bound (7) and
the stochastic error bound (10); however, we choose to select ZN solely based on the requirement (RZ1) and
to employ the update space to control the stability constant βN,M .

We next consider the roles of the update space UM . Proposition 2 shows that, in order to minimize the
deterministic error, the space UM must provide

(RUM 1) primary stability: βN,M ≡ inf
w∈ZN

sup
v∈UM

(w, v)

‖w‖‖v‖
> 0,

(RUM 2) secondary approximation: inf
η∈UM∩Z⊥N

‖ΠZ⊥Nu
true[C]− η‖.

In words, UM must ensure that (RUM 1) the elements in the background space are experimentally observable
and distinguishable and (RUM 2) the update space well approximates the functions not in the background
space ZN as to complete any deficiency in ZN . In addition, Proposition 3 shows that, in order to control
the stochastic error, the space UM must also provide

(RUM 3) well-conditioned observations: trace(A−1) is not large.

In words, the canonical basis {qm ≡ RU`om}Mm=1 of UM must be well-conditioned in the sense that the eigen-
values of the Gramian matrix A ≡ Q†UQ are not small. As observed in Section 3.3, for local observations
modeled by `om ≡ Gauss(·;xc

m, rm), the requirement (RUM 3) is satisfied if the observation centers are suffi-
ciently distinct in the sense that the minimum distance between two observation centers is sufficiently large
relative to the filtering width rm.

4. Construction of Spaces

4.1. Background Spaces

As discussed in Section 3.4, we wish to choose a background space that provides (RZN
1): the background

best-fit error εbkN (utrue[C]) ≡ infw∈ZN
‖utrue[C]−w‖ is small and in particular decays rapidly with N . Towards

this end, we consider a construction of ZN based on the (prior) best knowledge as reflected in a parametrized
best-knowledge model.

We first introduce a parameter µ ∈ D ⊂ RP ; here D is the parameter domain associated with the
anticipated uncertainty in the parameter of the best-knowledge model. We next introduce a parametrized
form Gµ : U × U → C; we assume the form is antilinear in the second argument. We then define the
best-knowledge solution ubk,µ as the solution of a parametrized PDE: given µ ∈ D, find ubk,µ ∈ U such that

Gµ(ubk,µ, v) = 0 ∀v ∈ U ;
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we assume that the problem is well-posed in the sense that ubk,µ exists and is unique for any µ ∈ D. The
parametrized PDE induces the parametric manifold

Mbk ≡ {ubk,µ ∈ U | µ ∈ D}.

Note that the manifold reflects the state uncertainty induced by the anticipated uncertainty in the parameter
of the model. We define the model error as the best-fit-over-manifold error:

εbk,Dmod (utrue[C]) ≡ inf
w∈Mbk

‖utrue[C]− w‖ = inf
µ∈D
‖utrue[C]− ubk,µ‖ ≡ ‖utrue[C]− FMbkutrue[C]‖,

where FMbk : U →Mbk identifies the infimizer; here the superscript bk,D on εbk,Dmod (utrue[C]) emphasizes that
the model error is associated with the manifoldMbk induced by the parameter domain D. We would like to
choose the parametrized form Gµ(·, ·) and the parameter domain D to minimize the model error. However,
we must also consider approximation of Mbk.

Based on the (prior) best-knowledge encoded in Mbk, we construct a sequence of linear spaces ZN ,
N = 1, . . . , Nmax. In this work we consider the WeakGreedy procedure described in [16]. In short, the
procedure identifies snapshots on the manifold,

∀n = 1, . . . , N, µ̂n ∈ D → ubk,µ̂n ≡ ζn,

such that ZN ≡ span{ζn}Nn=1 approximates well the elements inMbk. More precisely, the algorithm ensures
that the discretization error

εbk,Ddisc,N ≡ sup
w∈Mbk

inf
z∈ZN

‖w − z‖ = sup
µ∈D

inf
z∈ZN

‖ubk,µ − z‖

decays rapidly with N and comparable to the Kolmogorov N -width associated with Mbk [3]; here the

superscript bk,D on εbk,Ddisc,N emphasizes that the discretization error is the maximum error over the parametric

manifold Mbk induced by the parameter domain D. Note we prefer the linear space ZN rather than the
manifold Mbk for purposes of online computational efficiency.

We may now decompose the background best-fit error into two contributions:

εbkN (utrue[C]) = inf
w∈ZN

‖utrue[C]− w‖ ≤ ‖utrue[C]−ΠZN
FMbkutrue[C]‖

≤ ‖utrue[C]− FMbkutrue[C]‖+ ‖FMbkutrue[C]−ΠZN
FMbkutrue[C]‖

≤ εbk,Dmod (utrue[C]) + εbk,Ddisc,N . (16)

The first term εbk,Dmod (utrue[C]) is the modeling error, which arises from the fact that we cannot anticipate all
forms of the uncertainty present in the system and/or cannot represent the uncertainty parametrically; hence,

in general, utrue[C] /∈Mbk and εbk,Dmod (utrue[C]) 6= 0. In particular, the modeling error can be large if the system
exhibits unanticipated and unmodeled dynamics. The second term is the discretization error, which arises
from the approximation of the manifoldMbk by a finite dimensional linear space ZN ; in general,Mbk 6⊂ ZN
and εbk,Ddisc,N 6= 0 — however, the WeakGreedy procedure ensures that the discretization error decays rapidly

with N , in any event at a rate commensurate with the Kolmogorov N -width as proven in [3, 4, 8].
The particular procedure discussed above is one of many procedures for the construction of the background

space; we refer to [16] for alternatives.

Remark 5. The form of the model error εbk,Dmod (utrue[C]) and the discretization error εbk,Ddisc,N in the decom-

position (16) guides the selection of the parametrized best-knowledge model and the discretization procedure,
respectively. This error decomposition, however, does not necessarily provide a sharp characterization of the
background best-fit error. In particular, an alternate decomposition based on the modified definition of the
model error as infw∈span{Mbk} ‖utrue[C] − w‖ — where the best-fit is sought over the span of the manifold
Mbk — provides a sharper characterization. However, this later form, while convenient for error analysis,
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is not particularly intuitive and does not guide the selection of the parametrized best-knowledge model or the
discretization procedure.

We also introduce the prior prediction associated with our best knowledge of the problem in the absence
of data. We in particular define our prior prediction as the parametrized best-knowledge model instan-

tiated for the best-knowledge parameter µbk: ubk,µ
bk

. We then define the error in the prior prediction as

εbk,µ
bk

mod ≡ ‖utrue[C]−ubk,µbk‖. We emphasize that this prior prediction error — associated with ubk,µ
bk

(utrue[C])
corresponding to the specific parameter µbk — is different from, and is no less than, the best-fit-over-manifold

error εbk,Dmod (utrue[C]) ≡ infµ∈D ‖utrue[C]− ubk,µ‖ — associated with the parametric manifold Mbk induced by
the parameter domain D. We elaborate the distinction using the superscripts.

4.2. Update Spaces

As discussed in Section 3.4, the update space UM must provide (RUM 1) primary stability, (RUM 2) sec-
ondary approximation, and (RUM 3) well-conditioned observations. Towards this end, we employ the stability-
maximizing greedy algorithm SGreedy introduced in [16]. In short, from a library L of candidate observation
functionals, the algorithm sequentially chooses the observation functionals to maximize the stability constant
βN,M for each M . In particular, for localized observations considered in this work, the library L consists of
functionals associated with different observation centers, and the SGreedy algorithm selects a sequence of
observation centers that maximizes the stability constant βN,M .

The SGreedy algorithm explicitly addresses the requirement on primary stability, (RUM 1). The SGreedy

algorithm also addresses implicitly the requirement on well-conditioned observations, (RUM 3); the maximiza-
tion of the stability constant results in the selection of observation functionals that are distinct from each
other, which constitutes well-conditioned observations. The SGreedy algorithm does not address (RUM 2);
however, we find that the convergence with the number of observations M is slow in any event, and hence
we focus on providing stability.

Again, the particular procedure discussed above is one of many procedures for the construction of the
update space; we refer to [16] for alternatives, including the SGreedy’ algorithm designed to balance the
criteria on primal stability (RUM 1) and secondary approximation (RUM 2).

5. Application: Raised-Box Acoustic Resonator

5.1. Physical System

We consider the application of the PBDW framework to a physical system: a raised-box acoustic resonator.
The system is depicted in Figure 2(a). We note that this problem was first considered in [16]; a detailed
description of the physical system, data-acquisition procedure, and best-knowledge mathematical model is
provided in [16]. We provide here only a brief overview of the raised-box acoustic resonator system and the
experimental protocol. We instead focus on providing a more detailed analysis and interpretation of the
data assimilation results.

5.2. System Configuration

By way of preliminaries, we introduce a nondimensional frequency,

k̃ ≡
2πf̃dimr̃dim

spk

c̃dim
0

,

where f̃dim is the driving frequency of the speaker, r̃dim
spk ≈ 2.54cm is the radius of the speaker diaphragm,

and c̃dim
0 ≈ 346m/s is the speed of sound. Here the tilde (̃·) implies that the quantity is a measured quantity.

Note that k̃ may also be interpreted as the measured nondimensional wavenumber.
We then define a system configuration

C = (k̃, box dimensions, box material properties, speaker placement,

speaker characteristics, temperature, extra-box environment, . . .).
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(a) physical system (b) computational domain

Figure 2. The raised-box acoustic resonator and the robotic observation platform: (a) the
physical model, and (b) the best-knowledge computational domain. The figures reproduced
with permission from [16].

We distinguish the nondimensional frequency k̃ — which we will actively vary and control — from all other
properties that define the configuration and over which we have no control. To make the distinction more
explicit, we denote the configuration of the acoustic resonator driven at the nondimensional frequency k̃ by
Ck̃.

5.3. Robotic Observation Platform

We perform autonomous, rapid, and accurate data acquisition using a robotic observation platform. A
microphone mounted on a three-axis actuation platform measures the time-harmonic acoustic pressure of the
system in the configuration Ck̃ at the specified location. We next convert the time-harmonic signal to complex

pressure, p̃dim
m , through a least-squares fit. The error in the time-harmonic complex pressure is estimated to be

about 5%. This error includes not only the noise-induced stochastic error considered in Section 3.3, but also
the error associated with the calibration of the instruments. The error also includes the effect of inevitable
variations in the configuration during the data-acquisition sequence; in actual physical experiments, unlike
in the ideal abstract setting we have considered, we cannot perfectly maintain the configuration Ck̃ invariant.
We refer to [16] for detailed descriptions of the microphone calibration and validation procedures. We take
these pressure observations as effectively “exact”; more precisely, we will only attempt to assess the accuracy
of the data assimilation procedure to the 5% error level consistent with the observations.

We now normalize p̃dim
m [Ck̃] as

ỹm[Ck̃] =
p̃dim
m [Ck̃]

ρ̃dim
0 c̃dim

0 V bk,dim
spk (k̃)

, (17)

where, ρ̃dim
0 ≈ 1.18kg/m3 is the density of air, and V bk,dim

spk (k̃) is the speaker diaphragm velocity deduced from
the speaker best-knowledge model introduced below. For the purpose of PBDW estimation and subsequent
assessment, we collect 84 observations on a 7 × 4 × 3 axis-aligned grid for each nondimensional frequency
k̃ ∈ [0.3, 0.7].

5.4. Best-Knowledge Model and Imperfections

We now introduce our parametrized best-knowledge model. The model is defined over an extended domain
Ωbk ⊂ Ω shown in Figure 2(b), such that a radiation boundary condition can be specified away from the
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acoustic resonator itself; the details of this “super-domain” formulation is provided in [16]. The model
consists of two parameters: the nondimensional frequency k ∈ Dk ≡ [0.3, 0.7]; the speaker amplification and
phase-shift factor γ ∈ Dγ ≡ C. We now introduce the best-knowledge nondimensionalized pressure field,

ubk,µ ≡ pbk,µ,dim

ρdim
0 cdim

0 V bk,dim
spk (k)

, (18)

as the solution of the following weak statement: given µ ≡ (k, γ) ∈ Dk×Dγ ≡ D, find ubk,µ ∈ Ubk ≡ H1(Ωbk)
such that

a(ubk,µ, v;µ) = f(v;µ) ∀v ∈ Ubk,

where

a(w, v;µ) ≡
∫

Ω

∇w · ∇v̄dx− k2

∫
Ω

wv̄dx+

(
ik +

1

R

)∫
Γrad

wv̄ds ∀w, v ∈ Ubk,

f(v;µ) ≡ ikγ
∫

Γspk

1v̄ds ∀v ∈ Ubk.

We model the time-harmonic propagation of the sound wave in air by the Helmholtz equation. We model the
walls of the raised-box resonator by a homogeneous Neumann boundary condition, which imposes infinite
acoustic impedance. We model the time-harmonic forcing generated by the speaker as a uniform Neumann
condition over Γspk of magnitude k → γV bk,dim(k), where V bk,dim(k) is derived from a second-order oscillator
model for the electromechanical speaker; note this model appears in our equations indirectly through the
nondimensionalization of (18) and directly in the Neumann condition on Γspk through the γ (amplitude)
and “1” (spatial uniformity). We model the radiation into free space by a first-order radiation condition
on Γrad; the radiation term also ensures that the problem is well-posed for all µ ∈ D. We approximate the
solution by a finite element solution associated with a 35,325-element P3 space.

While we choose the best-knowledge model to reflect our best-knowledge of the physical problem (subject
to experimental and computational constraints), the model is not perfect. Here we identify some anticipated
model imperfections and hence unmodeled physics.

The first set of imperfections is associated with our speaker model, k → γV bk,dim(k). First, the real
speaker may exhibit non-rigid diaphragm motion, which is not captured by our uniform-velocity speaker
model. Second, the real speaker may exhibit nonlinear response, which is not captured by our second-
order harmonic oscillator model. Third, the real speaker may experience feedback from the variation in the
pressure inside the box, which is not captured by our Neumann speaker model. Fourth, the real speaker
may not be mounted perfectly symmetrically about the x2 plane, unlike the perfectly centered Γspk of our
mathematical model. As we will see shortly, this unmodeled asymmetry in the speaker can have a significant
consequence: on one hand, every solution to our mathematical model is symmetric about the x2 plane, and
hence our background space is symmetric about the x2 plane; on the other hand, the slightest asymmetry
in the speaker location can excite non-symmetric modes, especially when the speaker is operating near an
anti-symmetric resonance frequency.

The second set of imperfections is associated with our wall model. First, the real wall is elastic and
has a finite and spatially varying acoustic impedance, which is not captured by the perfectly rigid (infinite
impedance) wall of our best-knowledge model. Second, the real elastic wall provides a dissipative mechanism
through damping which is again not captured by the rigid wall of our best-knowledge model. Third, the real
raised-box enclosure has fasteners and joints not captured by the homogeneous wall of our best-knowledge
model.

The third set of imperfections is associated with our radiation model. The real acoustic resonator is not
placed in a free space, and the pressure field inside the box can be affected by various environmental factors.

We now turn to the prior prediction and prior prediction error. For the prior prediction, we take the
best-knowledge solution ubk,µ at µ = µbk = (kbk = k̃, γbk = 1). The prior prediction shall perforce suffer
from the same imperfections as the parametrized best-knowledge model. However, in addition, errors will be
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Figure 3. Convergence of the discretization error.

incurred due to the choice of µbk. (It is less that the prior prediction suffers from an incorrect choice of these
parameters, and more that the best-fit-over-manifold can exploit flexibility in these parameters within the
Helmholtz structure. In particular, the best-fit-over-manifold can benefit from a choice of k different from
kbk = k̃ (even though k̃ is an accurate measurement of the actual frequency) and a choice of γ different from
γbk = 1 as a way to represent a shift in resonance frequency and modification of amplitude and phase due
in fact to the imperfect modeling of wall interactions, damping, and speaker.)

5.5. PBDW Formulation

We first introduce Hilbert space U ≡ H1(Ω) endowed with a weighted H1 inner product

(w, v) ≡
∫

Ω

∇w · ∇v̄dx+ k2
ref

∫
Ω

wv̄dx ∀w, v ∈ U ,

and the associated induced norm ‖w‖ ≡
√

(w,w); we choose kref = 0.5 as the reference frequency.
We next introduce the background space. The background space is generated in two steps: we first

apply the WeakGreedy algorithm to Mbk ≡ {ubk,µ | µ ∈ D} to obtain hierarchical reduced basis spaces
Zbk
N ≡ span{ubk,µ̂n}Nn=1, N = 1, . . . , 8 ≡ Nmax; we then restrict the functions over Ωbk in Zbk

N to the domain
of interest Ω to form ZN ≡ {z ∈ U | z = zbk|Ω, zbk ∈ Zbk

N }, N = 1, . . . , Nmax. Note that this procedure, which
first computes the basis over Ωbk and then restricts the basis to Ω ⊂ Ωbk, can generate an ill-conditioned
basis if any two basis functions differ only over Ωbk \ Ω; a more stable approach is to work on functions
restricted to Ω ⊂ Ωbk in the initial selection of the basis functions. However, this latter procedure requires
non-trivial localization of residual and does not permit the direct application of the WeakGreedy algorithm,
which operates on the PDE defined over Ωbk. Note also that if the localized basis is ill-conditioned, then we
could apply POD and discard unnecessary elements to improve the conditioning. In any event, we do not
encounter this ill-conditioning issue in our raised-box acoustic resonator.

We show in Figure 3 the convergence of an estimate of the discretization error εbk,Ddisc,N ≡ supw∈Mbk infz∈ZN
‖w−

z‖; recall that (RZN
1), in view of (16), requires a small discretization error. Thanks to the judicious choice

of the snapshots by the WeakGreedy algorithm, the discretization error decays rapidly with N .
We next introduce the observation functionals and the associated experimentally observable update space.

We model the experimental observations provided by the microphone with Gaussians, `om ≡ Gauss(·;xc
m, rm =

0.2). We then form a library L of 84 observation functionals consistent with the dataset described in Sec-
tion 5.3. We apply the SGreedy algorithm to the library L and ZNmax

to choose a sequence of observation
functionals, `om, m = 1, . . . , 48 ≡ Mmax, that maximizes the stability constant βN,M . We finally form the
associated experimentally observable update spaces, UM ≡ {qm ≡ RU`om}Mm=1, M = 1, . . . ,Mmax. Note that
the precise choice of the filter width rm is not important here since the microphone dimension is quite small
compared to the wavelengths of interest.
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Figure 4. Behavior of the stability constant βN,M and the observation-conditioning metric trace(A−1).

We show in Figure 4(a) the behavior of the stability constant βN,M ; recall that (RUM 1) requires the inf-
sup constant to be away from zero and close to the unity. We note that the inf-sup constant associated with
the observation sequence identified by SGreedy is considerably larger than the inf-sup constant associated
with a random sequence of observations, as demonstrated in [16]. The SGreedy algorithm ensures that
this requirement is satisfied. We show in Figure 4(b) the behavior of the observation-conditioning metric
trace(A−1); recall that (RUM 3) requires that trace(A−1) is not too large. Because the transducers have
relatively narrow filter width, and the maximization of the stability constant by SGreedy tends to result in
the selection of observation centers that are distant from each other, the observations are well-conditioned; in
particular, we do not observe the exponential divergence observed for some cases in Figure 1. In conjunction
with the relatively small observation error of 5% as reported in Section 5.3, we conclude that the stochastic
error is relatively small, and in any event does not grow exponentially with M .

5.6. Real-Time In Situ State Estimation

We now report a typical data assimilation result. Figure 5(a) shows the imaginary component of the

time-harmonic pressure field for k̃ = 0.69 estimated from the PBDW formulation for a N = 7 dimensional
background space and M = 12 observations. The observation points are depicted by the orange dots.
Although the 12 observations arguably provide only sparse coverage relative to the complexity of the field,
we are able to recover a qualitatively convincing pressure field thanks to the information provided by the
background space. (We will quantitatively confirm in Section 5.7 that the estimated field is indeed a good
approximation of the true pressure field.)

The PBDW formulation provides a full state estimation, and hence we may compute other derived fields
of engineering interest, such as the sound intensity field depicted in Figure 5(b). For a time harmonic field,
the sound intensity is related to the pressure field by

Iavg = <

(
−i

4πρ̃dim
0 f̃dim

pdim
N,M∇p̄dim

N,M

)
,

where <(·) takes the real component of the complex number, and pdim
N,M is the dimensional pressure. We may

readily post-process the pressure field to obtain the sound intensity field. We observe in Figure 5(b) that the
sound intensity is highest near the speaker. We note that the sound intensity exhibits a rather complicated
structure even for this relatively simple acoustics problem.

We make a few remarks about the timing associated with data acquisition, data assimilation, and render-
ing. The robotic observation platform requires on average little over 3 seconds per observation to reposition
the microphone and to acquire the time harmonic signal. The acquisition of the M = 12 observations hence
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(a) pressure field (b) intensity field

Figure 5. The N = 7, M = 12 PBDW estimate of the (a) pressure field and (b) intensity

field for the normalized frequency of k̃ = 0.69.

takes approximately 40 seconds. The solution of the saddle system of size N + M = 19 takes less than 0.1
milliseconds on a laptop. The rendering of the solution using the current implementation takes approxi-
mately 0.8 seconds; we speculate that this time can be significantly reduced by optimizing the rendering
procedure at the software and hardware level. In any event, the total online time is dictated by the data
acquisition step and is approximately 3M seconds.

5.7. Error Analysis and Interpretations

5.7.1. Assessment Procedure

From the 84 observations we collect, we choose J = 36 observations associated with observation functional
centers {ξc

m}J=36
j=1 as assessment observations. We ensure that the observation centers {xc

m}
Mmax=48
m=1 used in

the PBDW state estimation and the observation centers {ξc
m}J=36

j=1 used in the assessment are mutually

exclusive: ξc
j /∈ {xc

m}
Mmax
m=1 , j = 1, . . . , J . We then introduce the following pressure estimates associated with

the assessment observations:

P prior(j; k̃) ≡ Gauss(ubk,µ
bk=(kbk≡k̃,γbk≡1); ξc

j , 0.2),

P ∗N,M (j; k̃) ≡ Gauss(u∗N,M [Ck̃]; ξc
j , 0.2),

P true(j; k̃) = (nondimensionalized experimental observation (17)

at ξc
j for configuration Ck̃),

where Ck̃ specifies the experimental configuration. Throughout the assessment process, we take the assess-
ment observation as the “truth”; more precisely, as noted in Section 5.3, we will only attempt to assess the
state error to the observation error level, ≈ 5%, such that the observations can serve as a surrogate for the
truth. We finally introduce an a posteriori error indicator,

Eavg[Ck̃] ≡

√√√√ 1

J

J∑
j=1

|P true(j; k̃)− P ∗N,M (j; k̃)|2; (19)
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Figure 6. Frequency response (amplitude and phase) at the assessment center (a) ξc
j =

(2.67, 2.67, 4, 50) and (b) ξc
j = (9.33, 2.67, 4.50).

here, we recall that N is the dimension of the background space, M is the dimension of the observable space,
J is the number of assessment observations, and k̃ is the operating frequency. A formulation and analysis
for this experimental a posteriori error estimate is provided in [19].

5.7.2. Frequency Response

We first study the frequency response obtained at a single observation point. In Figure 6(a), we compare
three frequency response curves observed at ξc

j = (2.67, 2.67, 4.50): the prior prediction; the prediction by the
N = 7, M = 12 PBDW estimate; and the value observed by the microphone, which we take as the truth. We
observe that the prior prediction differs considerably from the truth. The prior prediction overestimates the
amplitude near the resonances and underestimates the resonance frequencies; we speculate the discrepancy
arises from the use of the perfectly rigid wall in the best-knowledge model. The model also suffers from
a phase shift. The PBDW estimate closely tracks the truth frequency response over the entire frequency
range, in part due to the parametric flexibility provided in the speaker model, γ 6= γbk = 1, in part due to
the intrinsic flexibility of model superposition provided by our linear space. (In actual practice, the former
and latter are not distinguishable.)

We compare in Figure 6(b) the frequency response curves observed at ξc
j = (9.33, 2.67, 4.50). We again

observe that the prior prediction overestimates the resonance amplitude, underestimates resonance frequency,
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(a) kresonance = 0.449 (b) kresonance = 0.520 (c) kresonance = 0.523

(d) kresonance = 0.629 (e) kresonance = 0.681 (f) kresonance = 0.690

Figure 7. Resonance modes associated with the simple Neumann box.

and leads in the phase. The PBDW estimate again closely tracks the truth frequency response over the entire
frequency range, except at near k̃ = 0.48.

We may explain the discrepancy observed near k̃ = 0.48 through the resonance modes associated with
the acoustic resonator. To simplify the analysis, we consider here a simple box-only configuration with
homogeneous Neumann boundary condition on all six sides of the box. The resonance modes in the frequency
range Dk̃ ≡ [0.3, 0.7] are shown in Figure 7. The inaccuracy of the PBDW estimate for k̃ ≈ 0.48 is due to the
x2-antisymmetric resonance mode shown in Figure 7(a). The physical system is inevitably asymmetric about
the x2-plane; for instance, the speaker is not mounted in the box precisely symmetrically and furthermore
does not vibrate precisely symmetrically. Hence, in the physical system, x2-antisymmetric resonance modes
are excited. In contrast, the best-knowledge model, for all µ ∈ D, is perfectly symmetric about the x2 plane,
and hence only the symmetric resonance modes are excited. Hence, we expect significant (relative) model

error for frequencies k̃ that are close to antisymmetric resonances but are far from symmetric resonances:
k̃ = 0.48 satisfies this requirement.

5.7.3. Convergence: x2-Symmetric Resonance

We now study the convergence behavior of the PBDW estimate for two different configurations: one near
the x2-symmetric resonance at k̃ = 0.557 and the other near the x2-antisymmetric resonance at k̃ = 0.479.
We first study the x2-symmetric resonance at k̃ = 0.557. For this configuration, the x2-asymmetry in the
physical system is unimportant because k̃ is near the (shifted) symmetric resonance depicted in Figure 7(b).
(The shift in the resonance frequency arises due to the difference in the wall boundary conditions: the wall
of the mathematical model is perfectly rigid; the real wall is elastic.) We hence expect utrue[Ck̃] to be close

to the best-knowledge manifold Mbk, and the model error εbk,Dmod (utrue[Ck̃]) to be small.
We show in Figure 8(a) the convergence of the PBDW estimate with the background space dimension N

and the number of observations M . We also show the errors associated with three different estimates: the
error associated with the zero estimate u∗N=0,M=0 = 0 (note that this “error” is in fact just the magnitude

of utrue[Ck̃]); the error associated with the prior prediction ubk,µ
bk

, εbk,µ
bk

mod (utrue[Ck̃]); the error associated with
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Figure 8. The convergence plot and the energy fraction decomposition for the x2-
symmetric resonance at k̃ = 0.557.

the best-fit-over-manifold estimate, εbk,Dmod (utrue[Ck̃]). Here, and in subsequent similar figures, εbk,µ
bk

mod (utrue[Ck̃])

and εbk,Dmod (utrue[Ck̃]) are approximated by (19) but for P ∗N,M replaced by P prior and P best-fit, respectively,

where P prior is as defined in Section 5.7.1 and P best-fit is obtained by the nonlinear least-squares fit of the
parametrized best-knowledge model with respect to all 84 observations. We note that the ratio of the error
associated with any given estimate to the error associated with the zero estimate u∗N=0,M=0 = 0 is in fact
the relative error in the estimate.

We observe that the PBDW estimation error decreases rapidly as N increases for a fixed M(≥ N). Here,

because the model error εbk,Dmod (utrue[Ck̃]) is small, and the discretization error εbk,Ddisc,N tends to zero rapidly with

N by the construction of the background space ZN , the estimation error ‖utrue[Ck̃]− u∗N,M [Ck̃]‖ approaches

εbk,Dmod (utrue[Ck̃]), quite small, rapidly with N . Specifically, the relative model error is approximately 10%.

Note that the model error, εbk,Dmod (utrue[Ck̃]), is small not only due to the Helmholtz equation, which well
represents solution shapes, but also due to the parameter flexibility described in Section 5.4. In this case, the
background space ZN provides approximation, and the observable space UM provides stability; in particular,
the role of UM as the “update space” is limited.

We study the contribution of the background component z∗N,M [Ck̃] ∈ ZN and the update component

η∗N,M [Ck̃] ∈ UM to the estimated state u∗N,M [Ck̃] by computing the energy associated with each component.

The result is shown in Figure 8(b). We observe that essentially all the energy is in the background component
z∗N,M [Ck̃]; the update component η∗N,M [Ck̃] contains an insignificant fraction of energy.

We finally show in Figures 9(a) and 9(b) the background field and update field, respectively, associated
with the N = 7, M = 48 PBDW estimate. The background field captures the symmetric resonance mode;
the update field does not exhibit any identifiable structure.

5.7.4. Convergence: x2-Antisymmetric Resonance

We now study the x2-antisymmetric resonance at k̃ = 0.479. For this configuration, the x2-asymmetry
in the physical system is important because k̃ is near the (shifted) antisymmetric resonance depicted in
Figure 7(a) and is far from the (shifted) symmetric resonance depicted in Figure 7(b). We hence expect that

utrue[Ck̃] will not be close to the best-knowledge manifoldMbk and that the model error εbk,Dmod (utrue[Ck̃]) will
not be small.

We show in Figure 10(a) the convergence of the PBDW estimate with the background space dimension
N and the number of observations M . In contrast to the x2-symmetric resonance case, we observe that
the primary approximation by the background space is insufficient: as N increases, the discretization error

εbk,Ddisc,N rapidly tends to zero, but the estimation error ‖utrue[Ck̃]− u∗N,M [Ck̃]‖ → εbk,Dmod (utrue[Ck̃]) 6= 0 because
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(a) z∗N,M [Ck̃], ‖z∗N,M‖
2 = 46.13 (b) η∗N,M [Ck̃], ‖η∗N,M‖

2 = 0.29

Figure 9. The (a) background and (b) update component of the N = 7, M = 48 PBDW
estimate to the x2-symmetric resonance configuration.
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Figure 10. The convergence plot and the energy fraction decomposition for the x2-
antisymmetric resonance at k̃ = 0.479.

the model error is not small. Specifically, the relative model error is approximately 50%. As a result, the
convergence in N stagnates for N ≥ 2. We must thus rely on the secondary approximation by the update
space UM for convergence: as M increases, we expect ‖utrue[Ck̃]−u∗N,M [Ck̃]‖ to decrease slowly. The space UM
provides approximation of the unmodeled physics. The observed convergence with M for the L2(Ω)-related
error indicator Eavg[Ck̃=0.479] is M−2/3 = (M−1/d)2.

We show in Figure 10(b) the energy fraction of the background component z∗N,M [Ck̃] and the update

component η∗N,M [Ck̃]. Unlike the x2-symmetric resonance case, in the x2-antisymmetric resonance case there

is non-negligible energy in the update component η∗N,M [Ck̃] for a higher M . This is consistent with the fact

that the update component captures the (here non-negligible) unmodeled physics.
We show in Figure 11(a) and 11(b) the background field and update field, respectively, associated with

the N = 7, M = 48 PBDW estimate. Unlike in the x2-symmetric resonance configuration, in the x2-
antisymmetric configuration the update field has a structure similar to the x2-antisymmetric mode depicted
in Figure 7(a). We may conclude that the update field η∗N,M [Ck̃] represents the x2-antisymmetric resonance

not included in the best-knowledge model (for any µ ∈ D).
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(a) z∗N,M [Ck̃] (b) η∗N,M [Ck̃]

Figure 11. The (a) background and (b) update component of the N = 7, M = 48 PBDW
estimate to the x2-antisymmetric resonance configuration.

5.8. Data-Driven Empirical Enrichment of the Background Space

We now devise a strategy to systematically incorporate the unmodeled physics identified by the update
space UM to augment the background space ZN for subsequent data assimilation. The goal is to reduce the
number of observations for future configurations. We consider the following algorithm:

(1) Find the configuration that maximizes the relative error (indicator):

k̃∗ = arg sup
k̃∈[0.3,0.7]

Eavg[Ck̃](uN=Nmax,M=12)

Eavg[Ck̃](uN=0,M=0)
.

(2) Compute the update state associated with the configuration Ck̃∗ ,

η∗N=Nmax=8,M=Mmax=48[Ck̃∗ ].

(3) Construct the “augmented” best-knowledge space

Zaug
Nmax+1 ≡ span{ZNmax , η

∗
N=Nmax=8,M=Mmax=48[Ck̃∗ ]};

note that η∗Nmax,Mmax
[Ck̃∗ ] ∈ Z⊥Nmax

∩ UMmax and hence η∗Nmax,Mmax
[Ck̃∗ ] is orthogonal to ZNmax .

We then construct the PBDW system for Zaug
N , N = 1, . . . , Nmax + 1. We wish to significantly reduce the

background best-fit error through the incorporation of the unmodeled physics,

εbkNmax+1 ≡ inf
z∈Zaug

Nmax+1

‖utrue[Ck̃]− z‖ � inf
z∈ZNmax

‖utrue[Ck̃]− z‖ ≡ εbkNmax
,

for not only the configuration Ck̃∗ but also for other configurations Ck̃ of interest. In this way, we can reduce
the required number of observations for future configurations.

We note that a reasonable approximation of the unmodeled physics, the antisymmetric mode, could re-
quire a large number of observations due to the rather slow convergence with M . Hence Step 2 can be
experimentally expensive; however, we emphasize that the large number of observations is required only
for the single configuration Ck̃∗ with the (presumably) largest modeling error, and not for all the config-
urations of interest. Hence, in the many-query scenario in which we wish to deduce the state for many
different configurations, the large experimental cost associated with the computation of the η∗Nmax,Mmax

[Ck̃∗ ]
can be justified if the augmentation of the background space significantly reduces the best-knowledge error
εbkNmax+1 for other configurations of interest. We note this is in fact the reduced-basis model-reduction phi-
losophy [18]: we accept the large computational/experimental cost associated with select few configurations
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Figure 12. The relative error in the PBDW estimate for the original background space
ZN=8 and the augmented background space Zaug

N=9 both using M = 12 observations.

in the offline stage in order to significantly reduce the marginal cost associated with the solution of the
computational/data-assimilation system for arbitrary configurations in the online stage.

We show in Figure 12 the relative error in the PBDW estimate for the original background space ZN=8 and
the augmented background space Zaug

N=9. For the original background space, the maximum relative error is
observed for the configuration Ck̃∗=0.479 — precisely the configuration associated with the x2-antisymmetric

resonance. We hence augment the background space with the update field for k̃∗ = 0.479 associated with
M = 48 observations. The update field for N = Nmax = 8, M = 48 is similar to the update field for N = 7,
M = 48 shown in Figure 11(b).

We observe in Figure 12 that the error for the PBDW estimate using the augmented background space
Zaug
N is considerably reduced compared to the error for the PBDW estimate using the original background

space ZN , especially near the antisymmetric resonance at k̃∗ = 0.479. Note that the augmentation benefits
not only the particular configuration k̃∗ = 0.479 for which the unmodeled physics is computed, but also
other configurations in the vicinity of k̃∗. Hence, we effectively trade the high experimental cost associated
with the estimation of η∗Nmax,Mmax

[Ck̃∗ ] for the reduction of the experimental cost associated with subsequent

configurations. We show in Figure 13(a) the convergence of the PBDW estimate for k̃∗ = 0.479 as a function
of the background space dimension N and the number of observations M . We observe that, for Zaug

N=9

which includes the (approximation of the) x2-antisymmetric mode, the error is small even for small M(≥ 9).
Figure 13(b) shows that, thanks to the inclusion of the x2-antisymmetric mode in the background space,
essentially all the energy is in the background component z∗N=9,M [Ck̃].

In this particular example, we considered a single-step augmentation of the deficient background space
ZN=8 by the antisymmetric mode. This single-step augmentation performs well for our acoustics problem
because the solution to the Helmholtz problem at any frequency can be well approximated by a limited
number of resonance modes in the vicinity of that frequency. In our particular case, the WeakGreedy algorithm
first constructs the background space ZN=8 that captures essentially all the modes required to well represent
x2-symmetric solutions; the update η∗Nmax,Mmax

[Ck̃∗ ] then adds the one x2-antisymmetric resonance mode
which is absent in the original background space. In general, we would need to iterate the augmentation
procedure in, say, a greedy manner until the desired decrease in the error is obtained.
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