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Abstract We analyze the sources of error in differen-

tial optical flow methods using techniques for the anal-

ysis of partial differential equations. We first derive an

a priori error bound for the estimated optical flow field.

We then systematically interpret this error bound and

show that the estimation error is primarily bounded by

the best-fit approximation error — which quantifies the

fidelity with which one can represent the true optical

flow field by a chosen or learned set of basis functions

— divided by a stability constant — which quantifies

one’s ability to infer the optical flow field given the in-

formation content of the acquired data. We also show

that the estimation error is bounded by effects asso-

ciated with the finite temporal and spatial resolution

of the acquired data. In particular, we show that the

main finite resolution effects are related to the finite
differencing and time-averaging of the measured inten-

sity fields. Finally, we demonstrate the error bound nu-

merically using synthetic three-dimensional data sets

based on direct numerical simulations of homogeneous

isotropic turbulence and transitional boundary layer

flow provided by Johns Hopkins University (Li Y. et

al. (2008) J. Turbulence 9:31, Zaki T.A. (2013) Flow

Turbul. Combust.).
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1 Introduction

Optical flow (OF) is a concept introduced by the psy-

chologist Gibson (1950) that is qualitatively defined as

the apparent motion of brightness patterns within an

image plane. OF motion estimation (OFME) is a com-

puter vision framework dating back to the early 1980s

(Horn and Schunck, 1981; Lucas and Kanade, 1981;

Lucas, 1984) that systematically quantifies this notion.

Tersely stated, the goal of OFME is to determine the

OF field in a region of interest. Historically, OFME

has been used most extensively for rigid and quasi-rigid

body motion estimation (Horn and Schunck, 1981; Lu-

cas and Kanade, 1981; Lucas, 1984; Enkelmann, 1988;

Bergen et al, 1992; Barron et al, 1994; Beauchemin and

Barron, 1995; Mémin and Pérez, 1998; Cohen and Her-

lin, 1999; Wu et al, 2000; Fleet and Weiss, 2005). De-

spite this origin, OFME has also found increasing adop-

tion in fluid velocimetry (Corpetti et al, 2002; Heitz

et al, 2009; Zhong et al, 2017; Ruhnau et al, 2004;

Ruhnau and Schnörr, 2007; Schmidt and Sutton, 2019,

2020; Ruhnau et al, 2007; Corpetti et al, 2006; Yuan

et al, 2007; Heitz et al, 2008; Quénot et al, 1998).

The interest in OFME methods for fluid velocime-

try is due to their potential as alternatives or supple-

ments to particle image velocimetry (PIV). A motion

estimation framework based on the cross-correlation of

successive particle image pairs, PIV is capable of pro-

viding robust velocity field estimates of particle-laden

flows with low to medium seeding densities (Raffel et al,

2018; Elsinga et al, 2006; Scarano, 2012). However, PIV

has constitutional limitations in terms of both spatial

resolution and accuracy (Raffel et al, 2018), the latter

being especially compromised when velocity gradients

within PIV interrogation regions (IR) are significant. In

contrast, OFME is non-correlational and, hence, lim-
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ited in spatial resolution and accuracy solely by the

information contained within the acquired data.

However, compared to PIV, the underlying sources

of uncertainty in OFME fluid velocimetry are less un-

derstood. Indeed, results from OFME fluid velocimetry

often are presented with vectors at every pixel in the

domain — even though this greatly exceeds the infor-

mation present in the underlying data — and without

uncertainty quantification (UQ). This paper presents a

rigorous a priori error analysis of the OFME fluid ve-

locimetry estimation problem using error analysis tech-

niques for the approximation of partial differential equa-

tions (PDEs), yielding an error bound that articulates

the influence of various physical and numerical factors

on the ultimate velocity uncertainty.

Fundamentally, OFME methods estimate the OF

field by invoking some condition of photometric invari-

ance (Barron et al, 1994; Fleet and Weiss, 2005; Cor-

petti et al, 2002; Heitz et al, 2009; Zhong et al, 2017).

Within the context of rigid and quasi-rigid body motion

estimation, OFME methods are almost invariably pred-

icated on the brightness constancy constraint (Barron

et al, 1994; Beauchemin and Barron, 1995; Weickert

and Schnörr, 2001a), which is the condition in which

the registered image intensity is neither generated nor

destroyed in the measurement region. Instead, it is sim-

ply transported according to the underlying motion of

objects within the region.

Provided that the image intensity field is sufficiently

smooth, we may formalize the brightness constancy con-

straint as (Horn and Schunck, 1981)

∂tI(x, t) +∇I(x, t) · u(x, t) = 0 ∀x ∈ Ω, ∀t ∈ T, (1)

whereΩ ⊂ Rnd is the measurement region; T := [t0, t0+

∆t] is the measurement time domain; I : Ω × T → R
is the image intensity field; u : Ω × T → Rnd is the OF

field; and nd is the number of spatial dimensions under

consideration. Equation (1) is a differential statement

of the transport of the (approximately) known image

intensity I due to the unknown OF field u. It is one of

the prototypical constraint equations of OFME and is

known as the gradient constraint equation (GCE) (Bar-

ron et al, 1994) or the OF constraint equation (Heitz

et al, 2009; Weickert and Schnörr, 2001a). Indeed, a

myriad of OF techniques are based on the GCE, or

variations thereof (Barron et al, 1994; Corpetti et al,

2002; Heitz et al, 2009; Ruhnau et al, 2004; Ruhnau

and Schnörr, 2007; Schmidt and Sutton, 2019, 2020).

In the literature, such techniques are broadly classified

as differential methods (Barron et al, 1994; Heitz et al,

2009; Weickert and Schnörr, 2001a).

Strictly speaking, OF is a two-dimensional (2D) con-

cept. Therefore, OFME is technically a 2D framework.

However, we may also envision a setting in which (1)

is applied to a three-dimensional (3D) intensity field,

such as one inferred by tomographic reconstruction. In

this paper, we treat both 2D and 3D cases. As such, we

allow the number of dimensions nd under consideration

to equal either two or three, albeit at the expense of an

abuse of terminology.

While the design of an OFME method requires a

choice of which photometric invariance condition to in-

voke, it is also true that a single photometric invariance

condition cannot fully constrain the OFME problem.

For example, the GCE only constrains the component

of u that is normal to the level sets of I (Horn and

Schunck, 1981; Lucas and Kanade, 1981; Bergen et al,

1992; Barron et al, 1994; Beauchemin and Barron, 1995;

Heitz et al, 2009). In order to resolve this closure prob-

lem — known in the literature as the aperture problem

(Barron et al, 1994; Heitz et al, 2009) — additional

prior information must be invoked.

With respect to differential methods, these addi-

tional prior constraints are generally divided into two

categories: (i) localized or region-based schemes and (ii)

global variational schemes (Barron et al, 1994; Heitz

et al, 2009). The prototype of the former category is

the Lucas-Kanade (1981; 1984) method, which stipu-

lates that the OF field u is comprised of patches, within

each of which the value of u is constant. Once Ω is par-

titioned into a prescribed grid of patches, the value of

u in a given patch can then be computed by a weighted

linear least squares fit of the GCE over the patch (Lu-

cas and Kanade, 1981; Lucas, 1984; Barron et al, 1994;

Beauchemin and Barron, 1995). The presumption of a

piecewise constant u is particularly well-suited to rigid

and quasi-rigid body motion estimation. As a result, the
Lucas-Kanade method and its derivatives are widely

used in computer vision (Barron et al, 1994; Beau-

chemin and Barron, 1995).

On the other hand, the prototypical global varia-

tional scheme is the Horn-Schunck (1981) method, which

stipulates that u is the minimizer of a cost function J

defined by

J(w) :=

∫
Ω

(
(∂tI +∇I · w)2 + λr

nd∑
i=1

∥∇wi∥22
)
dx, (2)

where λr is a regularization constant. The cost function

J consists of (i) a data term, which in this case quan-

tifies the consistency of the photometric information

and the OF field estimate w with the GCE, and (ii) a

first-order regularization term, which imposes a global

smoothness condition on u. The regularization param-

eter λr simply sets the effect of the regularization term

relative to the data term. In general, global variational
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methods are predicated on cost functions of the same

or similar form as (2) (Heitz et al, 2009).

As Heitz et al (2009) indicate in their review pa-

per, most OFME methods developed and used for fluid

velocimetry can be classified as variational. A notable

exception is the first documented study of OFME fluid

velocimetry (Quénot et al, 1998), which presents and

demonstrates a method based on image matching and

dynamic programming. Heitz et al (2009) assert that

variational methods are favored in fluid velocimetry be-

cause they are amenable to supplementation by addi-

tional structural or physical constraints.

Indeed, much of the research in this area has been

devoted towards the refinement of variational OFME

methods in order to achieve improvements in the accu-

racy and spatial resolution of fluid flow estimates (Heitz

et al, 2009). Moreover, most of this refinement occurs in

variations of either the data term (Béréziat et al, 2000;

Haußecker and Fleet, 2001; Brox et al, 2004; Papenberg

et al, 2006; Brox and Malik, 2010), regularization term

(Weickert and Schnörr, 2001a; Ruhnau and Schnörr,

2007; Ruhnau et al, 2007; Suter, 1994) or both (Cor-

petti et al, 2002; Zhong et al, 2017; Corpetti et al, 2006;

Yuan et al, 2007). For instance, Corpetti et al (2002,

2006) propose a method that features (i) the Suter

(1994) regularizer, which enforces smoothness of the

divergence and curl of the OF field, and (ii) a physics-

based variant of the GCE that they call the integrated

continuity equation (ICE). Combining the more conser-

vative second-order Suter regularizer with the physics-

based ICE, Corpetti et al (2002, 2006) demonstrate a

method that is particularly well suited to meteorolog-

ical fluid velocimetry (Heitz et al, 2009; Cuzol et al,

2007; Héas et al, 2007). Other notable examples of vari-

ational OFME methods include those that incorporate

physical constraints explicitly. These include methods

that directly incorporate governing equations, such as

mass conservation for constant density flows (Ruhnau

and Schnörr, 2007; Álvarez et al, 2009) or the Stokes

equations (Ruhnau and Schnörr, 2007), and methods

that incorporate physical constraints within their regu-

larization schemes (Schmidt and Sutton, 2019; Ruhnau

et al, 2007; Cuzol et al, 2007; Papadakis et al, 2007;

Weickert and Schnörr, 2001b).

Despite this body of work, comparatively little re-

search has been done in terms of the UQ and error

analysis of OFME methods, especially within the con-

text of fluid velocimetry. To be sure, there are sev-

eral important papers on the mathematical analysis of

OFME methods in the literature (Aubert and Korn-

probst, 1999; Aubert et al, 1999; Wang et al, 2015).

However, these studies focus on fundamental analyti-

cal problems such as well-posedness and convergence,

as opposed to the more applied problems of UQ and

error analysis.

Within the UQ and error analysis literature itself,

most studies focus on the estimation of confidence in

OF measurements in order to identify unreliable vec-

tors for weighting or pruning prior to subsequent pro-

cessing (Barron et al, 1994; Haußecker and Spies, 2000;

Kondermann et al, 2007, 2008; Kybic and Nieuwenhuis,

2011; Gehrig and Scharwächter, 2011; Mac Aodha et al,

2012; Brumm et al, 2015; Wannenwetsch et al, 2017).

While many confidence measures — from photomet-

ric proxy metrics such as the image intensity gradient

(Barron et al, 1994) or the Horn-Schunck cost function

(2) (Brumm et al, 2015), to statistical and probabilis-

tic metrics (Kondermann et al, 2008; Wannenwetsch

et al, 2017), to metrics computed with machine learning

methods (Gehrig and Scharwächter, 2011; Mac Aodha

et al, 2012) — have been developed, these measures are

post hoc and empirical. Moreover, these measures are

designed for rigid and quasi-rigid body motion estima-

tion; they are primarily used to improve the accuracy

of OF estimates by rejecting spurious vectors (Kybic

and Nieuwenhuis, 2011).

In addition to these studies on confidence measures,

there are a few papers on UQ and perturbation analysis

of OFME. For example, Sun et al (2018) break from

the convention of treating OFME deterministically and,

instead, treat OFME in terms of a statistical inverse

problem. The result is a Bayesian OFME framework

that yields not only “point” estimates of the OF field,

but also statistical estimates, such as the uncertainty

of the measured field. However, this framework does

not enable the prediction of uncertainty prior to the

computation of the OF estimate itself. We also note

that Sun et al (2018) demonstrate their framework for

rigid body motion only.

Cai et al (2017) also propose a stochastic framework

for 2D OF estimation in turbulent fluid flows. Unlike

the method of Sun et al (2018), which is founded on

a Bayesian interpretation of the OFME problem, this

framework relies on a stochastic decomposition of the

fluid flow into a large scale “motion” component and

a small scale “uncertainty” component. The resulting

framework naturally incorporates a notion of uncer-

tainty in the OF measurement. However, as with the

method of Sun et al (2018), this framework does not

provide a means of a priori error analysis.

Liu et al (2008; 2015) also address uncertainty in

OFME fluid velocimetry; the 2008 paper is mainly con-

cerned with the relationship between the OF field and

fluid velocity field, whereas the 2015 paper addresses

differences between OF and PIV. Both papers present a

perturbation analysis for a physics-based OFME scheme
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designed for fluid motion estimation. Specifically, their

analysis yields an error-propagation equation that re-

lates the noise in the images to the error in the esti-

mated velocity field.

In this paper, we focus on identifying and quanti-

fying the sources of error in differential OFME meth-

ods. In particular, we propound an a priori error analy-

sis of the GCE for double-frame, single-exposure prob-

lems. In addition to being the prototypical photometric

constraint equation of OFME, the GCE is particularly

amenable to mathematical analysis; it is linear in the

unknown OF field u, and the corresponding estimation

problem can be cast in a standard linear least squares

form. This, in turn, opens the estimation problem up to

rigorous study by error analysis techniques for PDEs.

To this end, we derive an a priori error bound for

the estimated OF flow field using these error analysis

techniques. We then interpret this error bound with the

goal of gaining insight into the nature and limitations of

OFME methods more generally. Finally, we present nu-

merical demonstrations of the error bound based on 3D

data sets of homogeneous isotropic turbulence (HIT)

and transitional boundary layer flow (BL) generated

from direct numerical simulations (DNS) conducted by

researchers at Johns Hopkins University (JHU) (Perl-

man et al, 2007; Li et al, 2008; Zaki, 2013).

We note that by limiting our analysis to the GCE,

we do not treat complex physical effects that may arise

in actual fluid velocimetry experiments. These include

non-solenoidal convection, molecular diffusion, chemi-

cal reaction and, in the 2D case, out-of-plane motion of

flow tracers. These effects may be treated by analysing

more sophisticated OF constraint equations, such as

those reviewed by Heitz et al (2009). By focusing on

the GCE, we also limit our analysis to OFME problems

characterized by small intensity displacements. In other

words, we do not treat multi-resolution schemes (Enkel-

mann, 1988; Mémin and Pérez, 1998; Cohen and Her-

lin, 1999; Ruhnau et al, 2004, 2007; Heitz et al, 2008)

or warping operator schemes (Brox et al, 2004; Papen-

berg et al, 2006; Brox and Malik, 2010), even though

such methods are commonplace due to their ability to

handle large intensity displacements (Heitz et al, 2009).

In addition, we do not treat methods that employ ex-

plicit regularization strategies. Finally, we assume that

the flow tracers perfectly track the flow, and we do not

consider noisy intensity fields. By narrowing our scope

to such an extent, it becomes possible to propound in

detail a mathematically rigorous UQ of OFME fluid

velocimetry. Our hope is that this analysis may serve

as an insightful foundation for error analyses of OFME

problems that are encountered in practice.

2 Problem statement

2.1 Mathematical preliminaries

2.1.1 Definitions from functional analysis

To make our analysis precise, we first define some con-

cepts from functional analysis. Here we state these defi-

nitions in their technical forms and provide intuitive in-

terpretations where appropriate. The interested reader

can find these definitions in standard textbooks on vari-

ational and finite element analysis of PDEs (Quarteroni

and Valli, 1997; Brenner and Scott, 2008; Ern and Guer-

mond, 2010).

We begin with two useful function norms and spaces.

The L∞(Ω) norm of a continuous function f : Ω → R
is defined as

∥f∥L∞(Ω) := max
x∈Ω

|f(x)|.

In general, the L∞(Ω) norm of a matrix-valued function

is defined as the maximum over the L∞(Ω) norms of

the individual scalar components of the function. Mean-

while, the function space L∞(Ω) corresponding to this

norm is defined as

L∞(Ω) := {f | ∥f∥L∞(Ω) < ∞}.

That is, L∞(Ω) is the space of all functions f : Ω → R
that are bounded almost everywhere. Later, we also

refer to the L∞(Ω × T ) norm and space, which are

defined analogously over the space-time domain Ω×T .

The L2(Ω) norm of a function g : Ω → Rm is defined

as

∥g∥L2(Ω) :=

(∫
Ω

∥g∥22dx
)1/2

,

where ∥ · ∥2 denotes the Euclidean norm. Meanwhile,

the function space L2(Ω)m is defined as

L2(Ω)m := {g | ∥g∥L2(Ω) < ∞}.

That is, L2(Ω)m is the set of all functions g : Ω → Rm

that are square-integrable. In this work, m = 1 or m =

nd depending on whether g is scalar- or vector-valued.

For convenience, we also define the qth-order nd-

dimensional (weak) derivative Dqf of f : Ω → R as

follows. First, we let Df : Ω → Rnd be the nd × 1

matrix whose components are given by

(Df)i :=
∂f

∂xi
, i = 1, . . . , nd.

Second, we letD2f : Ω → Rnd×nd be the nd×nd matrix

whose components are given by

(D2f)ij :=
∂2f

∂xixj
, i, j = 1, . . . , nd.
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Finally, we let Dqf be the q-dimensional matrix of the

qth derivatives of f .

2.1.2 Definitions of discrete operators

We conclude our discussion of mathematical preliminar-

ies by laying out our formalism for the finite resolution

of the measured intensity fields. To begin, we consider

a uniform tessellation Th := {Kk}NK

k=1 of Ω. In 2D, Th
consists of NK square pixels K of side length h, and in

3D, Th consists of NK cubic voxels K of side length h.

We now define the discrete operators that we use in

our analysis. Firstly, we define the discretized integra-

tion operator
∫
Ω,h

· dx : L∞(Ω) → R as∫
Ω,h

I(x, t)dx :=
∑

K∈Th

hndI(x(K)
c , t),

where x
(K)
c ∈ Ω is the centroid of K ∈ Th. This is

precisely the midpoint rule of numerical integration.

Secondly, we define the nd-dimensional rectangular

filter Πh∗ : L∞(Ω) → L∞(Ω) as

(Πh ∗ I)(x, t) :=
∫
Ω

I(y, t)Πh(x− y)dy ∀x ∈ Ω,

where Πh : Rnd → R is the nd-dimensional rectangular

function that satisfies

Πh(x) =

{
1/hnd x ∈ (−h/2, h/2)nd ,

0 otherwise.

We adopt this definition because we choose to model

the measured intensity fields as the true intensity field

I : Ω × T → R spatially averaged over square or cu-

bic regions of side length h. Specifically, we model the

measured intensity field pair Ih ∈ L∞(Ω)2 according to

Ih := {Ih,i : Ω → R, Ih,f : Ω → R}
:= {Πh ∗ I(·, t0), Πh ∗ I(·, t0 +∆t)},

where the subscripts i and f signify the initial and final

image frames, respectively.

Thirdly, we define the sliding finite difference oper-

ator ∇h : L∞(Ω) → L∞(Ω)nd according to

(∇hI)(x, t)i :=
1

2h
(I(x+ hei, t)− I(x− hei, t))

∀x ∈ Ω, i = 1, . . . , nd. Here {ei}
nd
i=1 is the standard

basis of an nd-dimensional coordinate space, and t is

an arbitrary instant of time in T . We note that this

operator provides a central difference approximation of

gradients with second-order accuracy in space.

Fourthly, we define the time-averaged sliding finite

difference operator ∇h : L∞(Ω)2 → L∞(Ω)nd as

∇hIh :=
1

2
(∇hIh,i +∇hIh,f).

In addition to being second-order accurate in space,

this time-averaged finite difference operator is second-

order accurate in time at t∗ := t0 + ∆t/2. This is im-

portant because, in this paper, we limit ourselves to

double-frame, single exposure problems, for which we

can achieve a maximum of second-order accuracy in

time.

Finally, we define the temporal finite difference op-

erator ∂t,∆tIh : L∞(Ω)2 → L∞(Ω) as

∂t,∆tIh := (Ih,f − Ih,i)/∆t.

As with the ∇h operator, the ∂t,∆t operator is second-

order accurate in time at the midpoint time t∗.

2.2 Motion estimation problem

We can now formalize our motion estimation problem.

We assume that we are given a smooth, time-dependent

intensity field I that satisfies (1). In addition, we limit

our focus to OFME schemes without explicit regular-

ization. As such, we express the solution of our OFME

problem as

u(·, t) = argmin
w

∫
Ω

(
∂tI(x, t)+∇I(x, t)·w(x)

)2

dx (3)

for a given time t ∈ T .

Strictly speaking, (3) is not well-posed; we need to

specify the approximation space within which to search

for the minimizer of the functional in (3). To this end,

we introduce a basis {ϕ(j) : Ω → Rnd}nj=1 and define

an arbitrary approximation wn : Ω → Rnd of u(·, t) by

wn(x) :=

n∑
j=1

cjϕ
(j)(x) ∀x ∈ Ω, (4)

where cj ∈ R, j = 1, 2, . . . , n, are arbitrary coefficients.

For a prescribed value of n, we may then define the

n-dimensional approximation space Wn as

Wn := span{ϕ(j)}nj=1. (5)

Of course in practice, one needs to choose or learn

a basis for wn. Possible basis functions include radial

basis functions (Lowitzsch, 2004; Macêdo and Castro,

2008), wavelets (Wu et al, 2000; Schmidt and Sutton,

2019, 2020; Kadri-Harouna et al, 2013) and Legendre

polynomials. In fact, the Lucas-Kanade (1981; 1984)

method of OFME can be viewed as a special case of
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the framework defined by (3) and (4) with piecewise

constant basis functions.

With definitions (4) and (5), we may more precisely

pose the motion estimation problem as

un(·, t) = argmin
wn∈Wn

∫
Ω

(
∂tI(x, t) +∇I(x, t) · wn(x)

)2

dx

(6)

for a given time t ∈ T . Of course, in reality, we do not

know I, ∂tI or ∇I. Instead, we can only measure Ih,i
and Ih,f and evaluate ∂t,∆tIh, and ∇hIh. As such, we

approximate the continuous operators in (6) with the

discrete operators defined in section 2.1.2 and obtain

uδ = argmin
wδ∈Wn

∫
Ω,h

(∂t,∆tIh +∇hIh · wδ)
2dx, (7)

where uδ : Ω → Rnd is the computable estimate of

u(·, t∗). For notational convenience, we have introduced
a set δ := {n, h,∆t} that collects the three hyperparam-

eters associated with (7). We add δ as a subscript to the

minimizer of (7) to indicate that the solution to this dis-

cretized minimization problem is parameterized by n,

h, and ∆t. We note that while n and ∆t can readily be

varied in practice, h cannot be adjusted once a camera

sensor and desired field-of-view have been selected.

We conclude this section by noting that, given an

explicit basis {ϕ(j)}nj=1 for Wn, (7) reduces to a stan-

dard linear least squares problem for the coefficients

{cj}nj=1 of the given basis functions.

3 A priori error analysis

The fact that (7) is reducible to a linear least squares

problem is salient because the linear least squares prob-

lem is equivalent to the Petrov-Galerkin problem (Quar-

teroni and Valli, 1997). A key topic in the analysis of

PDEs, the Petrov-Galerkin problem features in the the-

ory that underpins a major class of finite element meth-

ods (Quarteroni and Valli, 1997; Brenner and Scott,

2008). The main contribution of this paper is the appli-

cation of Petrov-Galerkin analysis techniques to differ-

ential OFME to derive an error bound for the estimated

OF field uδ. In this section, we present and interpret the

error bound resulting from such an analysis.

3.1 Statement of a priori error bound

Let Ω ⊂ Rnd be a Lipschitz domain,

W := {w ∈ L2(Ω)nd | ∇ · w ∈ L2(Ω)}

be the trial space, and

V := L2(Ω)

be the test space. Given a smooth, time-dependent in-

tensity field I : Ω × T → R, assume that the exact OF

field u satisfies (1). Furthermore, let the estimated OF

field uδ be given by (7), and the approximation space

Wn corresponding to the trial space W be given by

(5). Then, the error of uδ in the L2(Ω) norm at time

t∗ := t0 +∆t/2 is bounded by

∥u(·, t∗)− uδ∥L2(Ω)

≤
(
1 +

γ

αδ

)
inf

wn∈Wn

∥u(·, t∗)− wn∥L2(Ω)

+
1

αδ

(
Ah2 +B∆t2 +O(h4) +O(h2∆t2)

)
, (8)

where the continuity constant γ is defined by

γ := sup
wn∈W

∥∇I · wn∥L2(Ω)

∥wn∥W
,

the stability constant αδ is bounded from the below

according to

αδ ≥ inf
wn∈Wn

∥∇hIh · wn∥L2(Ω)

∥wn∥W
−O(h2),

the expressions A and B are defined by

A :=
(
cfdx∥D3I∥L∞(Ω×T ) + cf∥D3I(·, t∗)∥L∞(Ω)

+ cq,1 max
0≤q≤3

∥DqI(·, t∗)∥L∞(Ω)

)
∥u(·, t∗)∥L2(Ω)

+ cf∥D3I(·, t∗)∥L∞(Ω)

+ cq,2 max
0≤q≤2

∥Dq∂tI(·, t∗)∥L∞(Ω)

B :=ct∥∂2
t I∥L∞(Ω×T ) + cfdt∥∂3

t I∥L∞(Ω×T ),

and cfdx, ct, cf , cfdt, cq,1 and cq,2 are coefficients that

are independent of h and ∆t. We prove this error bound

in the appendix.

Figure 1 is a graphical summary of error bound (8).

In the remainder of this section, we present a system-

atic interpretation of the error bound. We note that the

inset graphics in figure 1 are derived from the numerical

demonstrations of the error bound, the details of which

we present in section 4.

3.2 Interpretation of error bound

We now make sense of the a priori error bound. We do

so by interpreting each term in the bound individually,

starting with

∥u(·, t∗)− uδ∥L2(Ω).
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Fig. 1 Graphical overview of error bound (8). Terms and coefficients in the error bound are color-coded along with their
associated graphics. The construction and meaning of these graphics is detailed in section 4. The best-fit approximation error
(peach) always decreases as the dimension n of the approximation space increases. This causes the overall error (gray) to
initially decrease precipitously. At the same time however, the stability constant (blue) decreases as n increases, eventually
causing overall error to increase with increasing n. Meanwhile, finite-resolution effects are accounted by the leading-order
terms Ah2 (green) and B∆t2 (yellow). In the case of particle-based velocimetry, these effects are minimized by choosing a
large particle-image diameter — which results in smoother images — and, in the absence of noise, minimizing the time interval
between particle-image frames.

This quantity is the L2(Ω) error of the estimate uδ

relative to the exact OF field u(·, t∗). We call this the

estimation error.

The quantity

inf
wn∈Wn

∥u(·, t∗)− wn∥L2(Ω)

is the best-fit error, which quantifies the fidelity with

which we can represent the true OF field u(·, t∗) in a

given approximation space Wn. This error quantifies

the ability of the n basis functions that span the space

to approximate u(·, t∗). In other words, the best-fit error

reflects the “richness” of Wn. We can view the best-fit

error as a mathematical characterization of the spatial

resolution of a given OFME method.

In general, as the value of n increases, the space

Wn becomes more “enriched”, and the best-fit error de-

creases. In practice however, the information content of

the acquired data limits the extent to which we can en-

richWn (e.g. by increasing n). The stability constant αδ

quantifies this limitation. Also known in the analysis of

PDEs as the inf-sup constant, αδ quantifies our ability

to infer an estimate uδ in the approximation space Wn

based on ∇hIh. The stability constant is a mathemat-

ical characterization of the accuracy of a given OFME

method.

The stability constant should be bounded away from

zero; a stability constant of zero implies that the mea-

sured intensity field pair Ih contains insufficient infor-

mation to infer the coefficients associated with some or

all of the basis functions. In other words, a stability

constant of zero implies that the estimation problem is

ill-posed. We note that the stability constant is a non-

increasing function of n. That is, it decreases as the

approximation space becomes more enriched. (On the

other hand, the continuity constant γ is dictated solely

by the information content of the acquired data; it does

not depend on the particular OFME method used and

only serves to rescale the parameter-dependent stability

constant.) In the context of particle-based velocimetry,

we note two possible scenarios in which the stability

constant becomes too small: (i) There are insufficient

particles in support of one or more basis functions, or

(ii) the chosen value of n is too high for the number of

particles present.

With expressions Ah2 and B∆t2, error bound (8)

also accounts for the finite resolution of the measured

intensity field pair Ih. Specifically, the terms

cq,1h
2 max
0≤q≤3

∥DqI(·, t∗)∥L∞(Ω)

and

cq,2h
2 max
0≤q≤2

∥Dq∂tI(·, t∗)∥L∞(Ω),

as well as the O(h2) correction term appearing in the

bound for αδ account for the quadrature error. This

is simply the error associated with the midpoint-rule

approximation (7) of the integral appearing in (6). The

coefficients cq,1 and cq,2 are associated with this type

of error. In addition, the quantity

cfh
2∥D3I(·, t∗)∥L∞(Ω)
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is the error associated with the spatial filtering inherent

in Ih. Furthermore, the quantity

ct∆t2∥∂2
t I∥L∞(Ω×T )

is the error associated with the time averaging of Ih
over the time interval ∆t between frames.

The remaining terms in expressions Ah2 and B∆t2

account for the finite difference approximations of the

temporal and spatial derivatives in (6). We start with

the temporal finite difference error term

cfdt∆t2∥∂3
t I∥L∞(Ω×T ).

Because we use a second-order finite difference scheme

in time, this error scales with the third temporal deriva-

tive of I and quadratically with ∆t. In the absence of

noise, this error decreases as ∆t decreases. We note

that Liu and Shen (2008; 2015) find a commensurate

relationship for a first-order temporal finite difference

scheme.

This scaling reveals why differential OFME meth-

ods are regarded as being ill-suited to particle-based

velocimetry experiments exhibiting large particle dis-

placements. As Sugii et al (2000) summarize, differen-

tial OFME methods “cannot measure large displace-

ments because of [their] small dynamic range”. Indeed,

this scaling has served as an impetus for the develop-

ment of numerous variations of differential OFME, such

as multi-resolution schemes (Enkelmann, 1988; Mémin

and Pérez, 1998; Cohen and Herlin, 1999; Ruhnau et al,

2004, 2007; Heitz et al, 2008), warping schemes (Brox

et al, 2004; Papenberg et al, 2006; Brox and Malik,

2010), hybrid PIV-OFME schemes (Sugii et al, 2000;

Yang and Johnson, 2017), and wavelet-based schemes

(Wu et al, 2000; Schmidt and Sutton, 2019, 2020).

On the other hand, the quantity

cfdxh
2∥D3I∥L∞(Ω×T )

is the spatial finite difference error. Because we use a

second-order centered difference scheme in space, this

error scales with the third spatial derivative of I and

quadratically with h.

This scaling has interesting practical ramifications

in the context of particle-based velocimetry. If we define

the particle image diameter dpi in terms of h (e.g. dpi =

Rh for a fixed constant R ∼ O(1)), this error decreases

as R increases. This is because ∥D3I∥L∞(Ω×T ) ∝ d−3
pi .

This means that while we cannot adjust h once a cam-

era sensor and desired field-of-view have been selected,

we can still minimize the spatial finite difference error

by maximizing the particle image diameter, either by

optical or numerical filtering.

The remaining terms in error bound (8) are fourth

order in spacetime. The interested reader can consult

Total domain Ωtot [0, 2π]3

Grid 10243 nodes
Viscosity ν 0.000185
Simulation time-step 0.0002
Time interval of simulation [0, 10.056]
Total kinetic energy Etot = 1

2
uiui 0.705

RMS velocity u′ = (2
3
Etot)1/2 0.686

Average dissipation ε̄ = 2νsijsij 0.103
Taylor length scale λ = (15ν(u′)2/ε̄)1/2 0.113
Reλ = u′λ/ν 418
Kolmogorov time scale τη = (ν/ε̄)1/2 0.0424
Kolmogorov length scale η = (ν3/ε̄)1/4 0.00280
Integral length scale 1.364

Table 1 Parameters and statistics of JHU forced isotropic
DNS data (Perlman et al, 2007; Li et al, 2008). Turbulence
statistics are time averaged over time interval [0, 10.056].

the appendix for the exact forms of these higher order

terms.

4 Numerical demonstrations of error bound

We now present numerical demonstrations of the de-

rived error bound. All demonstrations are based on so-

lutions of the discretized motion estimation problem

(7) using piecewise continuous Legendre polynomials

and divergence-free (DF) polynomials. For the sake of

brevity, we do not describe the implementation of this

method here; the interested reader can find these details

in (Kumashiro, 2019). Instead, we focus on the results

of this method as they pertain to the error analysis

presented in this paper.

4.1 Description of reference data set

The reference data set for these demonstrations is de-

rived from the DF forced isotropic DNS data provided

by JHU (Perlman et al, 2007; Li et al, 2008). In par-

ticular, we use a single snapshot of the forced isotropic

turbulence DNS solution originally computed on a large

grid with 10243 nodes. Table 1 summarizes the param-

eters and statistics of this data set. In addition, figure 2

shows a 3D vector plot of the velocity solution over a

553-node subsection at the center of the total domain,

and figure 3 shows the velocity magnitude over a slice

cutting through the center of this smaller domain. In

the remainder of this paper, we use Ω to denote the

aforementioned subsection and Ωtot to denote the total

domain.

As stated in table 1, Ωtot = [0, 2π]3, and there are

originally 10243 nodes in Ωtot. As such, Ω is a cubic do-

main with length (55− 1)/(1024− 1)× 2π ≈ 0.332. As-

suming that the correlation of Buch and Dahm (1996)
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Fig. 2 Three-dimensional quiver plot of the JHU forced
isotropic DNS data. This figure shows a 55 × 55 × 55-node
subsection Ω at center of Ωtot.

Fig. 3 Velocity magnitude of the JHU forced isotropic DNS
data plotted over a central slice of the domain Ω shown in
figure 2.

applies, we find that the viscous length scale for the

reference velocity field is

λν ≈ 6η = 0.0168.

As such, the volume of Ω is approximately (20λν)
3.

4.2 Preprocessing of reference data set

The raw DNS velocity field over Ω has 55 nodes in

each direction. This corresponds to approximately three

computational cells per viscous length, which is too low

for an informative evaluation of the proposed method.

Instead, we first supersample the DNS velocity field so

that we have 16 voxels (vx) per viscous length, which

is representative of PIV experiments that attempt to

capture the majority of the turbulent kinetic energy

(Lavoie et al, 2007). The resulting velocity field has

301 vx in each direction. We supersample the original

data set by tri-cubic spline interpolation with not-a-

knot end conditions, one of the methods recommended

by JHU (Perlman et al, 2007; Li et al, 2008). We hence-

forth refer to this supersampled velocity field as the

reference velocity field uref .

4.3 Synthesis of 3D particle image intensity fields

We synthesize our 3D particle image pairs as follows.

First, we seed uref with a prescribed number N of point

particles according to a uniform random distribution.

Then, we numerically convect these point particles ac-

cording to a four-stage explicit Runge-Kutta scheme

coupled with piecewise tri-cubic interpolation of uref .

In formulating the equations of motion for each parti-

cle, we assume that (i) the velocity field is static over

the time between frames ∆t, and (ii) the Stokes drag

is negligible. Lastly, we position Gaussian intensity dis-

tributions about the positions of each point particle in

both the initial and final frames. Following the recom-

mendation of Raffel et al (2018), these particle image

intensity distributions have the form

Ipi(r) = exp
(
−8∥r∥22/d2pi

)
,

where r is the position relative to the particle image

center, and dpi is the particle image diameter. For ease

of analysis, we assume here that dpi is the same for

each particle. (We later treat the case of a normally

distributed dpi in section 4.6.) We also assume that the
particle image intensity distributions of different par-

ticles are additive, and we do not corrupt the inten-

sity field with noise. These assumptions are intended

to minimize the number of salient parameters in our

demonstration. As such, they serve to simplify the in-

terpretation of the demonstration without affecting the

underlying takeaways.

4.4 Best-fit error results

Before we present the results from the estimation tests

(that is, tests where uref is inferred from the synthe-

sized particle image intensity fields), we verify that the

piecewise continuous Legendre and DF polynomials are

capable of approximating the JHU DNS data in a best-

fit error sense. For this demonstration, we divide Ω into

nIB = 1000 interrogation boxes (IB), each with a vol-

ume of 313 vx, and solve the best-fit approximation

problem using Legendre and DF polynomials that are
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Fig. 4 Best-fit error relative to uref as a function of n. The
best-fit error computations are performed on the domain Ω
using both Legendre and DF polynomials.

continuous within each IB. Specifically, we vary the lo-

cal polynomial degree p of these piecewise continuous

polynomials from zero to six and compute the best-fit

error with respect to uref .

The results of these computations are shown in fig-

ure 4. These results are presented in terms of (i) the

relative L2(Ω) error, which is defined as

∥ubf − uref∥L2(Ω)/∥uref∥L2(Ω),

where ubf is the best-fit approximation of the velocity

field, and (ii) the number of basis functions n, which is

related to the local polynomial degree p by

n = nIB
(p+ 1)(p+ 2)(p+ 3)

2
(9)

for Legendre polynomials, and

n = nIB

[
(p+ 1)(p+ 2)(p+ 3)

2
− p(p+ 1)(p+ 2)

6

]
(10)

for DF polynomials. We approximate the L2(Ω) norms

by voxel-wise Riemann sums.

We make two observations based on the results in

figure 4. First, we see that the best-fit error decreases

with increasing n for both classes of basis functions, as

expected. In terms of polynomial basis functions, we

can interpret this result as follows. The complexity of

a polynomial increases with its degree. As such, the

higher the degree of the polynomial, the more features

it is capable of resolving.

The second observation is that the best-fit error of

the DF-polynomial approximation is less than or equal

to that of the Legendre-polynomial approximation for

a given value of n. That is, the DF polynomials provide

a more “efficient” basis than the Legendre polynomi-

als for this data set. This is simply because our data

set is divergence free (up to numerical precision), and

the DF constraint affords a reduction in the number of

basis functions required to span a given DF function

space. As shown in (9) and (10), this dimensionality re-

duction is borne out transparently for polynomial basis

functions. We thus note that, in addition to the dimen-

sion of the chosen approximation space, the class of ap-

proximation space can yield substantial improvements

in the performance of a given OFME method.

We may gain further insights into the significance of

approximation spaces by comparing our OFME scheme

with PIV. Because each PIV interrogation region is as-

signed one independent vector, PIV intrinsically makes

use of an approximation space of piecewise constant

functions (i.e. zeroth degree polynomials). While this

enables the application of robust cross-correlation al-

gorithms to determine the values of these vectors (or

equivalently, the coefficients of the zeroth degree poly-

nomials), the low dimensionality of the approximation

space amounts to a major limitation of PIV, partic-

ularly with respect to spatial resolution. In contrast,

OFME methods can naturally accommodate complex

approximation spaces and, hence, have an inherent ad-

vantage in terms of spatial resolution.

4.5 Parametric study: variation of dpi and ∆t

In the remainder of this section, we present and dis-

cuss results from estimation tests. The first such set

of results is from a parametric study with respect to

dpi and ∆t. For this study, we focus on a single IB Ω′

located about the center of Ω. In particular, we seed

uref with N = 20 particles inside Ω′ according to a uni-

form random distribution. This corresponds to a typical

seeding density used in tomographic PIV experiments

(Raffel et al, 2018; Elsinga et al, 2006; Scarano, 2012).

We then convect these particles over a variable ∆t and

position Gaussian particle image distributions with a

uniform but variable dpi.

Figure 5 shows the results of this parametric study

as a filled contour plot of the decimal logarithm of the

relative L2(Ω′) estimation error as a function of ∆t

and dpi. For each sampled pair of dpi and ∆t, we es-

timate uref using DF polynomials of degrees zero to

four and retain the estimate with the lowest relative

L2(Ω′) error. For nearly all sampled pairs of dpi and

∆t, we find that piecewise cubic DF polynomials yield

the lowest relative L2(Ω′) error. We also note that we

non-dimensionalize dpi as dpi/λν and ∆t as ∆tumaxλν ,

where umax is the maximum velocity magnitude of uref

in Ω′.

The estimation error decreases with decreasing ∆t.

This is especially the case for small dpi. In addition, the
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Fig. 5 The decimal logarithm of the estimation error relative
to uref as a function of ∆t and dpi. The estimation error
computations are performed on a single IB Ω′ located about
the the center of Ω.

estimation error decreases with increasing dpi. These

two trends are consistent with the a priori error anal-

ysis, which predicts that the temporal finite difference

error decreases with decreasing ∆t, and the spatial fi-

nite difference error decreases with increasing dpi.

However, the estimation error is not strictly mono-

tonic with respect to dpi; there is a global, albeit shal-

low, minimum in the estimation error. We hypothesize

that this non-monotonicity is due to the error intro-

duced in the motion constraint equation by the filter-

ing that is inherent in the particle image intensity field.

We note that we start the a priori error analysis with

a “true” intensity field I that satisfies (1). Here the

true intensity field is induced by particles and therefore

does not exactly satisfy (1). This is because the parti-

cles are imaged with a finite diameter, and the motion

of a given particle image is governed solely by that of its

center. That is, even when the particles themselves are

convected in accordance with (1), the induced intensity

field is altered by a filter that introduces a residual in

the motion constraint equation.

4.6 Full-scale estimation results

We now present results from estimation tests over the

whole of Ω. As with the best-fit error tests, we divide

Ω into nIB = 1000 IBs, each with a volume of 313 vx.

Similar to the parametric study shown above, we seed

uref with 20 particles per IB. In addition, we choose a

non-dimensionalized ∆t of ∆tumax/λν = 1.25 × 10−2

and a non-dimensionalized dpi of dpi/λν = 1. We note

that these values of ∆t and dpi are located inside the

“valley” of the filled contour plot shown in figure 5.
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Fig. 6 Overall estimation error relative to uref as a function
of n and p. For the uniform dpi case dpi is fixed to dpi = λν ,
and for the variable dpi case dpi is drawn from a normal
distribution with mean dpi,µ = λν and standard deviation
σ = dpi,µ/3. In both cases, ∆tumax/λν = 1.25× 10−2.

Figure 6a shows the relative L2(Ω) error as a func-

tion of n for both Legendre and DF polynomials, while

figure 6b shows the same error figures as a function of

the local polynomial degree p. We see that the estima-

tion error first decreases with increasing n (or equiva-

lently p) but then increases once n becomes too high

relative to the number of particles N . In particular, the

relative L2(Ω) error reaches a minimum when p = 3 for

both Legendre and DF polynomials. We note that this

corresponds to an n to N ratio of n/N ≈ 0.5.

This is precisely a manifestation of the central in-

sight of error bound (8): the competition between the

best-fit error term, which decreases with increasing n,

and the inverse stability constant, which increases with

increasing n. That is, for n/N < 0.5, the effect of the

best-fit error term dominates, and we attain accuracy

and resolution improvements by enriching the approxi-

mation space. However, for n/N > 0.5, the effect of the
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stability constant dominates, and the estimate worsens

as we enrich the approximation space.

Of course in practice, dpi is not uniform but instead

varies according to some distribution. However, we can

show that the effect of variable dpi on the error anal-

ysis is of secondary importance to the competition be-

tween the best-fit error term and the inverse stability

constant. Figures 6a and 6b show the estimation er-

ror for a corresponding set of tests where dpi is drawn

from a normal distribution with a mean of dpi,µ = λν

and a standard deviation of σ = dpi,µ/3. We readily

see that the variable dpi curves are similar to the uni-

form dpi curves. That is, while the estimation error at

a given value of n or p is higher for the variable dpi case

compared to the uniform dpi case, the behavior of the

estimation error with respect to n and p is the same

regardless.

4.7 Robustness with respect to flow configuration

Finally, we show that these estimation error results are

not unique to the HIT data set. To this end, we perform

comparable estimation tests with the transitional BL

data set provided by JHU (Zaki, 2013). Specifically, we

extract from the data set a 3013 vx subsection ΩBL at

the end opposite the leading edge of the BL-inducing

plate; divide ΩBL into nIB = 1000 IBs, each with a

volume of 313 vx; and seed the flow with an average of

20 particles per IB. All particles are assigned the same

dpi as that used in the uniform dpi HIT tests. The non-

dimensionalized ∆t is also the same as that used in the

HIT tests. Figure 7 shows the velocity magnitude of

the BL flow plotted over the central slice of ΩBL that
is normal to the free stream velocity.

Figure 8 shows the relative L2(ΩBL) error as a func-

tion of p for both Legendre and DF polynomials. As in

figure 6b, the estimation error first decreases with in-

creasing p but increases with increasing p once the cor-

responding n becomes too high relative to the number

of particles N . Unlike the HIT cases however, Legendre

polynomials perform better than DF polynomials, par-

ticularly for p = 2. This is likely because the reference

velocity in this case is not DF; it contains appreciable

non-solenoidal components that, by definition, cannot

be resolved by DF polynomials.

5 Conclusion

We have analyzed the error of a prototypical linear OF

model using error analysis techniques for PDEs. In par-

ticular, we have shown, through both rigorous math-

ematical analysis and numerical demonstrations, that

Fig. 7 Velocity magnitude of the JHU transitional BL flow
plotted over a central slice of the domain ΩBL. The free
stream velocity is directed into the page. The BL-inducing
plate lies just below the bottom of the figure.
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Fig. 8 Overall estimation error relative to the reference ve-
locity inside ΩBF as a function of p. The parameter values
used in these tests are the same as those of the uniform dpi

HIT tests.

the estimation error is bounded primarily by the best-

fit approximation error — which quantifies the fidelity

with which one can represent the true OF field in a

chosen approximation space — divided by the stabil-

ity constant — which quantifies one’s ability to infer

the estimated OF field given the information content of

the acquired data. We have also shown that the esti-

mation error is bounded secondarily by effects related

to the finite resolution, both in space and time, of the

acquired data. These are the quadrature and filtering

error terms — which nominally do not manifest them-

selves — and the finite difference and time-averaging er-

ror terms — which can significantly affect the accuracy

and resolution of the estimated OF field. We reiterate

that the scope of our analysis is limited to linear OFME
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methods with implicit regularization (enforced through

the explicit choice of approximation spaces). While this

scope is admittedly narrow, it yields an OFME prob-

lem that is particularly amenable to systematic error

analysis via techniques originally developed for the nu-

merical approximation of PDEs. Our hope is that this

analysis may serve as a rigorous foundation for more

widely applicable error analyses of OFME methods.
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A Proof of a priori error bound

A.1 Key lemmas

Before we prove error bound (8), we state four key lemmas
required for the proof.

Lemma 1 (midpoint rule error bound) For all twice
differentiable f : Ω → R,∣∣∣∣∫

Ω

fdx−
∫
Ω,h

fdx

∣∣∣∣ ≤ cqh
2∥D2f∥L∞(Ω),

for some cq independent of h.

Proof See Theorem 8.5 of (Ern and Guermond, 2010).

Lemma 2 (filter error bound) For any twice differen-
tiable I(·, t) : Ω → R,

∥I(·, t)−Πh ∗ I(·, t)∥L∞(Ω) ≤ cfh
2∥D2I(·, t)∥L∞(Ω)

for some cf independent of h.

Proof We first introduce an nd-cube centered about x, ω(x) :=
x+(−h/2, h/2)nd . We then note that by the definition of the
rectangular filter, for any x ∈ Ω and t ∈ T ,∣∣∣∣I(x, t)− 1

µ(ω(x))

∫
ω(x)

I(y, t)dy

∣∣∣∣
=

1

µ(ω(x))

∣∣∣∣ ∫
ω(x)

I(y, t)dy − µ(ω(x))I(x, t)

∣∣∣∣
≤

1

µ(ω(x))
cfh

2µ(ω(x))∥D2I(·, t)∥L∞(ω(x))

= cfh
2∥D2I(·, t)∥L∞(ω(x)),

where µ(ω(x)) denotes the measure of ω(x), and the inequal-
ity follows from Lemma 8.4 of (Ern and Guermond, 2010).

Lemma 3 (time-averaged finite difference error bound)
Let t⋆ := t0+∆t/2 be the midpoint time in T . For any three-
times differentiable I : Ω × T → R,

∥∇I(·, t∗)−∇hI∥L∞(Ω)

≤ ct∆t2∥∂2
t∇I∥L∞(Ω×T ) + cfdxh

2∥D3I∥L∞(Ω×T )

for some constants ct and cfdx independent of h and ∆t.

Proof We first decompose the error as

∥∇I(·, t⋆)−∇hI∥L∞(Ω)

≤ ∥∇I(·, t⋆)−∇I∥L∞(Ω) + ∥∇I −∇hI∥L∞(Ω),

where ∇I := (∇I(·, t0)+∇I(·, t0+∆t))/2 is the time-averaged
gradient. To bound the first term, we note that the time-
averaging is equivalent to evaluating the linear interpolant at
the midpoint time t⋆. Hence,

∥∇I(·, t⋆)−∇I∥L∞(Ω) ≤ ct∆t2∥∂2
t∇I∥L∞(Ω×T ).

To bound the second term, we note that the error in the cen-
tered finite difference is bounded by

∥∇I −∇hI∥L∞(Ω) ≤ cfdxh
2∥D3I∥L∞(Ω×T ).

The application of the time-averaging and finite difference
bounds to the error decomposition yields the desired result.

Lemma 4 (temporal finite difference error bound) Let
t⋆ := t0 + ∆t/2 be the midpoint time in T . For any I :
Ω × T → R that is three-times differentiable in time,

∥∂tI(·, t∗)− ∂t,∆tI∥L∞(Ω) ≤ cfdt∆t2∥∂3
t I∥L∞(Ω×T ),

for some cfdt independent of ∆t.

Proof This is a standard centered difference error bound.

A.2 Problem statement

As stated in section 2.2, the estimated OF field uδ ∈ Wn is
given by

uδ = argmin
wδ∈Wn

∫
Ω,h

(∂t,∆tIh +∇hIh · wδ)
2dx.

We note that uδ is the solution to the following Petrov-
Galerkin problem: Find uδ ∈ Wn such that

aδ(uδ, vδ) = ℓδ(vδ) ∀vδ ∈ Vδ,

where Vδ := {v | v = ∇hIh · wn, ∀wn ∈ Wn} and

aδ(w, v) :=

∫
Ω,h

v∇hIh · wdx ∀w ∈ W, ∀v ∈ V,

ℓδ(v) :=

∫
Ω,h

v∂t,∆tIhdx ∀v ∈ V.

We now assume that the true OF field u ∈ W := H(div;Ω)
satisfies

a(u, v) = ℓ(v) ∀v ∈ V := L2(Ω),

where

a(w, v) :=

∫
Ω

v∇I(x, t∗) · wdx ∀w ∈ W,∀v ∈ V,

ℓ(v) :=

∫
Ω

v∂tI(x, t
∗)dx ∀v ∈ V,

and t⋆ := t0 +∆t/2.
We wish to bound the estimation error ∥u− uδ∥W .



14 K. Kumashiro, A.M. Steinberg, M. Yano

A.3 A priori error estimate

To bound the estimation error, we first recall the Petrov-
Galerkin error bound (e.g. Ern and Guermond, 2010):

∥u− uδ∥W ≤ inf
wδ∈Wn

[
(1 +

γ

αδ

)∥u− wδ∥W︸ ︷︷ ︸
(I)

+
1

αδ

sup
vδ∈Vn

|a(wδ, vδ)− aδ(wδ, vδ)|
∥vδ∥V︸ ︷︷ ︸
(II)

]

+
1

αδ

sup
vδ∈Vn

|ℓ(vδ)− ℓδ(vδ)|
∥vδ∥V︸ ︷︷ ︸
(III)

. (11)

We now analyze terms (I)–(III) individually.
Let us begin with (I). Here we seek a bound for the sta-

bility constant αδ defined as (e.g. Ern and Guermond, 2010)

αδ := inf
w∈Wn

sup
v∈Vn

aδ(w, v)

∥w∥W∥v∥V
,

We note that the continuity constant γ is defined as (e.g. Ern
and Guermond, 2010)

γ := sup
wn∈W

∥∇I · wn∥L2(Ω)

∥wn∥W

and, as such, is dictated by the information content of the
acquired data; it does not depend on the particular OFME
method used and serves only to rescale the parameter-depen-
dent stability constant.

Before we continue with our analysis, we clarify three
points regarding the notation that we use in the remainder of
this proof. First, for the sake of notational convenience, we let
D̂Qf be the collection of functions f,Df, . . . , DQf satisfying
the identity

∥D̂Qf∥L∞(Ω) ≡ max
0≤q≤Q

∥Dqf∥L∞(Ω).

Second, we introduce the simplifying notation I⋆ := I(·, t∗).
Third, the bounding coefficients cq and C are generic and,
hence, reused in multiple inequalities.

We now return to our analysis. By the definition of aδ(·, ·)
and the fact that ∥ · ∥V ≡ ∥ · ∥L2(Ω), αδ specializes to

αδ = inf
w∈Wn

sup
v∈Vn

∫
Ω,h

v∇hIh · wdx

∥w∥W∥v∥L2(Ω)

.

Because term (III) is divided by αδ, we wish to bound αδ

from below so that 1/αδ is bounded from above.
We note that the error due to the quadrature is bounded

by∣∣∣∣∫
Ω

v∇hIh · wdx−
∫
Ω,h

v∇hIh · wdx

∣∣∣∣
≤ cqh

2∥D2(v∇hIh · w)∥L2(Ω)

≤ Ch2
2∑

q=0

∥Dq∇hIh∥L∞(Ω)∥D2−q(wv)∥L2(Ω)

≤ Ch2∥D̂2∇hIh∥L∞(Ω)∥D̂2w∥L4(Ω)∥D̂2v∥L4(Ω)

≤ cq,0h
2∥D̂2∇hIh∥L∞(Ω)∥w∥W∥v∥L2(Ω). (12)

Here the first inequality follows from the quadrature error
bound (Lemma 1); the second inequality follows from Hölder’s
inequality; the third inequality follows from Schwarz inequal-
ity; and the last inequality follows from the equivalence of
norms of functions in polynomial spaces Wn and Vδ. It hence
follows that

αδ = inf
w∈Wn

sup
v∈Vn

(∫
Ω

v∇hIh · wdx

∥w∥W∥v∥L2(Ω)

−

∫
Ω

v∇hIh · wdx−
∫
Ω,h

v∇hIh · wdx

∥w∥W∥v∥L2(Ω)

)

≥ inf
w∈Wn

sup
v∈Vn

∫
Ω

v∇hIh · wdx

∥w∥W∥v∥L2(Ω)

− cq,0h
2∥D̂2∇hIh∥L∞(Ω)

= inf
w∈Wn

∥∇hIh · w∥L2(Ω)

∥w∥W
− cq,0h

2∥D̂2∇hIh∥L∞(Ω)

= inf
w∈Wn

∥∇hIh · w∥L2(Ω)

∥w∥W
−O(h2).

Here the first inequality follows from the substitution of (12)
to the second term, and the second to last equality follows
from choosing v = ∇hIh · w.

We next analyze (II). We first decompose the term as

(II) =
1

∥v∥L2(Ω)

(∫
Ω

v∇I⋆ · wdx−
∫
Ω,h

v∇hIh · wdx

)
=

1

∥v∥L2(Ω)

(∫
Ω

v∇I⋆ · wdx−
∫
Ω,h

v∇I⋆ · wdx

)
︸ ︷︷ ︸

(II.1)

+
1

∥v∥L2(Ω)

(∫
Ω,h

v∇I⋆ · wdx−
∫
Ω,h

v∇hIh · wdx

)
︸ ︷︷ ︸

(II.2)

.

Term (II.1) is the error due to the quadrature and is bounded
by

(II.1) ≤ cqh
2∥D2(v∇I⋆ · w)∥L2(Ω)

≤ Ch2
2∑

q=0

∥Dq+1I⋆∥L∞(Ω)∥D2−q(wv)∥L2(Ω)

≤ Ch2∥D̂3I⋆∥L∞(Ω)∥D̂2w∥L4(Ω)∥D̂2v∥L4(Ω)

≤ cq,1h
2∥D̂3I⋆∥L∞(Ω)∥w∥L2(Ω)∥v∥L2(Ω).

Here the first inequality follows from the quadrature error
bound (Lemma 1); the second inequality follows from Hölder’s
inequality; the third inequality follows from Schwarz inequal-
ity; and the last inequality follows from the equivalence of
norms of functions in polynomial spaces Wn and Vδ.

To bound (II.2), we first note that

∥∇I⋆ −∇hIh∥L∞(Ω) = ∥∇I⋆ −∇h(Πh ∗ I)∥L∞(Ω)

= ∥∇I⋆ −Πh ∗ (∇hI)∥L∞(Ω)

≤ ∥∇I⋆ −Πh ∗ ∇I⋆∥L∞(Ω) + ∥Πh ∗ (∇I⋆ −∇hI)∥L∞(Ω)

≤ ∥∇I⋆ −Πh ∗ ∇I⋆∥L∞(Ω) + ∥∇I⋆ −∇hI∥L∞(Ω)

≤ cfh
2∥D3I⋆∥L∞(Ω) + ct∆t2∥∂2

t∇I∥L∞(Ω×T )

+ cfdxh
2∥D3I∥L∞(Ω×T ) := F,

where the first equality follows from the definition of the fil-
ter; the second equality follows from the commutativity of
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the filter Πh∗ with the time-averaged finite difference op-
erator ∇h; the first inequality is the triangle inequality; the
second inequality follows from the property ∥Πh∗f∥L∞(Ω) ≤
∥f∥L∞(Ω) ∀f ; and the last inequality follows from the filter
error bound (Lemma 2) and the time-averaged finite differ-
ence error bound (Lemma 3). It follows that

(II.2) ≤F∥
∫
Ω,h

|vw|dx∥ℓ1(Rd)

≤F (1 + cqh
2)∥w∥L2(Ω)∥v∥L2(Ω),

where the second inequality follows from the quadrature error
bound.

Combining our results for (II.1) and (II.2), we thus find
that (II) is bounded by

(II) ≤
(
cq,1h

2∥D̂3I⋆∥L∞(Ω) + cf(1 + cqh
2)h2∥D3I⋆∥L∞(Ω)

+ cfdx(1 + cqh
2)h2∥D3I∥L∞(Ω×T )

+ ct(1 + cqh
2)∆t2∥∂2

t I∥L∞(Ω×T )

)
∥w∥L2(Ω)∥v∥L2(Ω)

=
(
cq,1h

2∥D̂3I⋆∥L∞(Ω) + cfh
2∥D3I⋆∥L∞(Ω)

+ cfdxh
2∥D3I∥L∞(Ω×T ) + ct∆t2∥∂2

t I∥L∞(Ω×T )

+O(h4) +O(h2∆t2)
)
∥w∥L2(Ω)∥v∥L2(Ω). (13)

This bound identifies four sources of error that are second
order in h or ∆t: quadrature, filtering, spatial time difference
and time averaging.

Finally, we analyze (III). We first note that

(III) =
1

∥v∥L2(Ω)

(∫
Ω

v∂tI
⋆dx−

∫
Ω,h

v∂t,∆tIhdx

)
=

1

∥v∥L2(Ω)

(∫
Ω

v∂tI
⋆dx−

∫
Ω,h

v∂tI
⋆dx

)
︸ ︷︷ ︸

(III.1)

+
1

∥v∥L2(Ω)

(∫
Ω,h

v∂tI
⋆dx−

∫
Ω,h

v∂t,∆tIhdx

)
︸ ︷︷ ︸

(III.2)

.

Term (III.1) is the error due to the quadrature and is bounded
by

(III.1) ≤ cqh
2∥D2(v∂tI

⋆)∥L2(Ω)

≤ Ch2
2∑

q=0

∥Dq∂tI
⋆∥L∞(Ω)∥D2−qv∥L2(Ω)

≤ Ch2∥D̂2∂tI
⋆∥L∞(Ω)∥D̂2v∥L2(Ω)

≤ cq,2h
2∥D̂2∂tI

⋆∥L∞(Ω)∥v∥L2(Ω).

Here the first inequality follows from the quadrature error
bound (Lemma 1); the second inequality follows from Hölder’s
inequality; the third inequality follows from the definition of
the norms; and the last inequality follows from the equiv-
alence of norms of functions in polynomial spaces Wn and
Vδ.

To bound (III.2), we first note that

∥∂tI⋆ − ∂t,∆tIh∥L∞(Ω) = ∥∂tI⋆ − ∂t,∆t(Πh ∗ I)∥L∞(Ω)

= ∥∂tI⋆ −Πh ∗ (∂t,∆tI)∥L∞(Ω)

≤ ∥∂tI⋆ −Πh ∗ ∂tI
⋆∥L∞(Ω)

+ ∥Πh ∗ (∂tI
⋆ − ∂t,∆tI)∥L∞(Ω)

≤ ∥∂tI⋆ −Πh ∗ ∂tI
⋆∥L∞(Ω) + ∥∂tI⋆ − ∂t,∆tI∥L∞(Ω)

≤ cfh
2∥D2∂tI

⋆∥L∞(Ω) + cfdt∆t2∥∂2
t I∥L∞(Ω×T ) := G,

where the first equality follows from the definition of the fil-
ter; the second equality follows from the commutativity of
the filter Πh∗ with the temporal finite difference operator
∂t,∆t; the first inequality is the triangle inequality; the sec-
ond inequality follows from the property ∥Πh ∗ f∥L∞(Ω) ≤
∥f∥L∞(Ω) ∀f ; and the last inequality follows from the filter
error bound (Lemma 2) and the temporal finite difference
error bound (Lemma 4). It follows that

(III.2) ≤G

∫
Ω,h

|v|dx ≤ G(1 + cqh
2)∥v∥L2(Ω),

where the second inequality follows from the quadrature error
bound.

Combining our results for (III.1) and (III.2), we thus find
that (III) is bounded by,

(III) ≤
(
cq,2h

2∥D̂2∂tI
⋆∥L∞(Ω)

+ cf(1 + cqh
2)h2∥D2∂tI

⋆∥L∞(Ω)

+ cfdt(1 + cqh
2)∆t2∥∂3

t I∥L∞(Ω×T )

)
∥v∥L2(Ω)

=
(
cq,2h

2∥D̂2∂tI
⋆∥L∞(Ω)

+ cfh
2∥D2∂tI

⋆∥L∞(Ω)

+ cfdt∆t2∥∂3
t I∥L∞(Ω×T )

+O(h4) +O(h2∆t2)
)
∥v∥L2(Ω) (14)

This bound identifies three sources of error that are second
order in either h or ∆t: quadrature, filtering and temporal
time difference.

Substituting (13) and (14) into (11) and evaluating the
suprema, we obtain the desired bound. ⊓⊔
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