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We introduce a tomographic, particle-based velocimetry method termed tomographic par-
ticle flow velocimetry (T-PFV). Like tomographic particle image velocimetry (T-PIV), T-PFV
operates on tomographically reconstructed 3D Mie-scattering data of tracer-particle fields.
However, instead of inferring the velocity field by cross-correlation, T-PFV is based on a
physics-constrained motion estimation framework that is inspired by optical flow estimation.
The motion constraint equation used in the present formulation of T-PFV has the same form as
the linearized intensity conservation equation that is commonly used in optical flow estimation.
However, instead of relying on regularized global variational schemes to address the aperture
problem, T-PFV achieves closure by applying physical constraints. At present, T-PFV is formu-
lated in terms of divergence-free radial basis functions and, thus, is suited to constant-density
flows. In addition, we present a demonstration of the current formulation of T-PFV using the
Johns Hopkins forced-isotropic DNS data as the ground truth, and compare to an idealized
implementation of T-PIV. The results suggest that T-PFV affords a twofold improvement in
spatial resolution and a 12% decrease in the relative error as compared to T-PIV.

Nomenclature

0 = image plane area
2 = construction point index
� = number of spatial dimensions (for tomographic particle flow velocimetry, � = 3)
d(x) = intensity field displacement
d̃(x̃) = optical flow displacment field
4 = error of estimated field relative to DNS field
� = tomographically reconstructed 3D Mie-scattering intensity field
�̃ = planar image intensity field
I� = � × � identity matrix
 (·, y2) = physics-informed matrix-valued radial basis function (� × � matrix)
ℓ = voxel index
r = coordinate relative to the center of a radial basis function
C = time
ΔC = discrete time interval
#p, =p = number of construction points
=v = number of voxels
u(x) = intensity velocity field, fluid velocity field
D, E, F = G-, H-, and I-components of u
ũ(x̃) = optical flow field
x = spatial coordinate within reconstructed volume
x̃ = spatial coordinate within image plane
y2 = the 2th construction point, i.e. the location of the center of the 2th  (·, y2)
U2 = column matrix of weights for the 2th  (·, y2) used in T-PFV estimation (� × 1 column matrix)
U = aggregate column matrix of all U2 (�=p × 1 matrix)
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V = regularization parameter
W2 = column matrix of weights for the 2th  (·, y2) used in global approximation (� × 1 column matrix)
W = aggregate column matrix of all W2 (�#p × 1 matrix)
^ = wavenumber
_a = inner length scale
f = characteristic diameter of the Gaussian radial basis function/divergence-free basis function
q(r) = radial basis function
Ω = reconstructed volume
ΔΩ = volume per voxel
| · | = absolute value operator
m = partial derivative operator
·̂ = estimated either by tomographic particle image velocimetry or tomographic particle flow velocimetry
‖ · ‖ = ℓ2 norm
F {·} = Fourier transform
⊗ = row-wise multiplication
Subscripts/superscripts
CD = central difference discretization
df = divergence-free
DNS = Johns Hopkins University direct numerical simulation data
f = final tomogram
G = Gaussian
i = initial tomogram
PWS = piecewise constant with discontinuities across sub-domain boundaries
sd = sub-domain
TPFV = tomographic particle flow velocimetry
G, H, I = Cartesian directions

I. Introduction
Turbulent flows exhibit complex 3D motion with a large separation of scales. As such, the development of

3D whole-field velocimetry methods has greatly benefited the experimental study of turbulent flows. However, the
development of whole-field velocimetry methods that readily resolve the inner length scales remains an active and
important area of fluid mechanics research.

A. Tomographic Particle Image Velocimetry
The state-of-the-art in three-dimensional, three-component (3D3C) velocimetry is tomographic particle image

velocimetry (T-PIV). With this method, a tracer-particle field is illuminated volumetrically and simultaneously imaged
from multiple viewing angles, and the 3D Mie-scattering field is inferred from the simultaneous particle images via
tomographic reconstruction. The resulting tomogram pairs are divided into interrogation boxes (IBs), and the average
particle displacement is estimated via cross-correlation. In this way, T-PIV yields instantaneous 3D3C measurements of
the fluid velocity field [1, 2].

T-PIV is a proven and robust technique that has been used to measure both instantaneous and time-resolved velocity
fields of a wide variety of flows, including reacting flows [1–8]. Recently, Kazbekov et al. have even demonstrated that
T-PIV is capable of resolving the inner length scales and providing measurements of the Reynolds averaged enstrophy
transport budget in a premixed swirl flame for Karlovitz numbers between 11 and 45 [9].

Nevertheless, T-PIV has a number of shortcomings. In particular, there are three which stem from the cross-
correlational nature of the technique.

1) Spatial resolution: Because cross-correlation yields one velocity estimate per IB, the spatial resolution of T-PIV
is determined by the IB size [1, 10]. In practice, the minimum IB size is limited by three competing factors.
Firstly, each IB must contain a sufficient number of particles such that the computed cross-correlation maps have
readily identifiable peaks [10, 11]. Secondly, each particle must be imaged with an image diameter of at least
two or three pixels so that the particle centroids can be located with sub-voxel precision, thereby preventing peak
locking [10, 12]. Thirdly, the particle seeding density must be sufficiently low such that particle images do not
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overlap. In practice, the optimal number of particles per IB is found to be on the order of ten, and the optimal IB
length is found to be on the order of twenty voxels [9, 10]. Using state-of-the-art optics, Kazbekov et al. have
been able to achieve a spatial resolution of approximately 250 `m [9].

2) Accuracy: The estimate for the average displacement provided by cross-correlation may differ significantly from
the true average displacement, particularly when sub-IB displacement gradients are significant [10]. This error
emerges because cross-correlation is essentially a particle-weighted spatial averaging operation, whereas the
average displacement is uniformly weighted over the IB. In general, the spatial distribution of tracer particles is
non-uniform.

3) Consistency with the flow physics: Cross-correlation does not incorporate knowledge of the physics of the
measured flow. Indeed, strictly speaking, velocity fields measured by T-PIV do not satisfy physical laws. For
example, the velocity field of a constant-density field as measured by T-PIV is piecewise constant and, hence, is
not divergence-free. As such, the T-PIV estimate does not satisfy conservation of mass in this case. Consequently,
missing or spurious velocity estimates typically can only be addressed by heuristic post-processing.

In this paper, we introduce a tomographic, particle-based velocimetry method that aims to address these shortcomings.
Instead of inferring the velocity field via cross-correlation, this method, termed tomographic particle flow velocimetry
(T-PFV), is based on a physics-constrained motion estimation framework which is inspired by optical flow estimation.

B. Brief Overview of Optical Flow Estimation
Optical flow estimation is a well-established computer vision framework [13–16]. In the past two decades, optical

flow estimation has also found application in fluid velocimetry [17–26]. The goal of optical flow estimation is to
determine the apparent motion of features in an image plane, that is, the optical flow field ũ. Optical flow estimation is
based on the premise that the planar image intensity field �̃ may be treated as a transported quantity.

In general, the exact transport of �̃ may be complex. However, it is often assumed that �̃ is conserved [13–16], that is
to say

�̃ (x̃ + d̃, C + ΔC) = �̃ (x̃, C). (1)
Here x̃ is the coordinate in the image plane, C is the time, and d̃ is the optical flow displacement field over time interval
ΔC. Furthermore, it is often assumed that d̃ is small, in which case Eq. 1 may be linearized as

mC �̃ + ∇ �̃ · ũ = 0, (2)

where mC �̃ is the partial derivative of �̃ with respect to time, ∇ �̃ is the gradient of �̃, and ũ = limΔC , ‖d̃‖→0 d̃/ΔC is the
optical flow field [13].

While it is simple, Eq. 2 only constrains the component of ũ that is normal to the level sets of �̃. This closure
problem is a manisfestation of the well-known aperture problem [13, 14, 24]. While there are many schemes that have
been developed to address the aperture problem, for fluid velocimetry purposes, regularized global variational schemes
are most commonly used. Typically, such schemes seek the solutions to either

min
ũ

∫
0

{(
mC �̃ + ∇ �̃ · ũ

)2 + V1‖∇ũ‖2
}
d0, (3)

which is a scheme due to Horn and Schunck [13], or

min
ũ

∫
0

{(
mC �̃ + ∇ �̃ · ũ

)2 + V2‖∇(∇ · ũ)‖2+V3‖∇(∇ × ũ)‖2
}
d0, (4)

which is a similar scheme due to Suter [15]. Here, V1, V2, V3 are user-set regularization parameters, ‖ · ‖ denotes the ℓ2
norm, and 0 denotes the image plane. Both of these schemes enforce smoothness of ũ. The Horn-Schunck scheme does
so by penalizing the gradient of ũ, while the Suter scheme does so by penalizing the gradients of the divergence and curl
of ũ.

II. Description of Tomographic Particle Flow Velocimetry

A. Motion constraint equation
T-PFV is based on motion constraint equations that have the same form as those used in optical flow estimation.

That is to say
� (x + d, C + ΔC) = � (x, C), (5)
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where � is the 3D tomographically reconstructed intensity field, and d is the intensity field displacement over time
interval ΔC. In the present formulation, T-PFV is based on the linearized form of Eq. 5, i.e.

mC � + ∇� · u = 0, (6)

where u = limΔC , ‖d‖→0 d/ΔC is the intensity velocity field. Given an ideal tomographic reconstruction, in the limit of
vanishing Stoke’s drag, u tends to the fluid velocity field. As such, u may be interpreted as a direct estimate of the fluid
velocity field.

While T-PFV is based on motion constraint equations with the same form as those used in optical flow estimation,
there is a key difference between optical flow estimation and T-PFV. In optical flow estimation, the motion constraint
equation relates the planar image intensity �̃ to the apparent motion of features in the image plane, i.e. the optical flow
field ũ. As such, optical flow estimation is inherently a 2D framework. In contrast, in T-PFV, the motion constraint
equation relates the reconstructed 3D intensity field � to the 3D intensity velocity field u. Hence, T-PFV is inherently a
3D method.

B. Aperture problem and Closure
As with Eq. 2, Eq. 6 is subject to the aperture problem. In T-PFV, we address the aperture problem using a global

variational scheme. That is, we seek the solution to

min
u

∫
Ω

(mC � + ∇� · u)2 dΩ, (7)

where Ω is the reconstructed volume. However, T-PFV does not use a regularized global variational scheme. While the
intensity velocity field of a tracer particle field should indeed be smooth, the regularization schemes listed above are
rather heuristic and, hence, have the potential to over-smooth the estimated velocity field, especially in the case of highly
turbulent flows. In T-PFV, closure of the motion estimation problem is instead achieved by applying physical constraints
that are linear in u. This is achieved by decomposing u as a linear combination of =p physics-informed radial basis
functions  (·, y2), viz.

u(x) =
=p∑
2=1

 (x, y2)U2 . (8)

Here,  (·, y2), 2 = 1, . . . , =p are 3×3matrix-valued basis functions, which we leave undefined as of yet; y2 is the center
of the 2th basis function, here termed construction points; and U2 = [U2G U2H U2I ]> is a 3 × 1 column matrix of weights
corresponding to the 2th basis function, with each component corresponding to each spatial direction. Substituting
Eq. 8 into the functional of Problem 7 and approximating the integral by the Riemann sum associated with the voxels of
the reconstructed tomograms, the motion estimation problem may be recast as

Û = argmin
U

=v∑
ℓ=1

[
mC ,ΔC � (xℓ) + ∇ℎ � (xℓ) ·

=p∑
2=1

 (xℓ , y2)U2
]2
ΔΩ. (9)

Here, mC ,ΔC � and ∇ℎ � are finite difference approximations to mC � and ∇ℎ �, respectively, and xℓ is the location of voxel ℓ.
Consequently, the velocity estimation problem reduces to the problem of determining U2 = [U2G U2H U2I ]> ∀2, given a
judiciously chosen set of  (·, y2), each centered about a judiciously chosen distribution of =p construction points y2 .

C. Solution of Velocity Field Estimation Problem
Because the residual of the resulting minimization problem is linear in U2 , the motion estimation problem reduces

to a standard linear least squares problem. The summation that appears within the brackets in Eq. 9 is simply

u(xℓ) =
=p∑
2=1

 (xℓ , y2)U2 . (10)
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Equation 10 can be evaluated at all voxel positions and rearranged into

©«

D1

...

...

D=v

E1

...

...

E=v

F1

...

...

F=v

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬︸   ︷︷   ︸
3=v×1

=



:GG :GH :GI

:HG :HH :HI

:IG :IH :II

︸                     ︷︷                     ︸
3=v×3=p

©«

U1G
...

U
=p
G

U1H
...

U
=p
H

U1I
...

U
=p
I

ª®®®®®®®®®®®®®®®®®®®¬︸   ︷︷   ︸
:= U (3=p×1)

, (11)

where :GG etc. are =v × =p block matrices which are comprised of corresponding elements of  (xℓ , y2) evaluated for
corresponding values of ℓ and 2. Provided that =v ≥ 3=p∗, Eq. 9 reduces to a linear least squares problem. That is,

Û = argmin
U

‖1 − �U‖2, (12)

where

1 = −
©«
mC ,ΔC � (x1)

...

mC ,ΔC (x=v )

ª®®®¬︸            ︷︷            ︸
=v×1

(13)

and

�︸︷︷︸
=v×3=p

=

©«
mG,ℎ � (x1)

...

mG,ℎ � (x=v )

ª®®®¬ ⊗
 :GG :GH :GI


+
©«
mH,ℎ � (x1)

...

mH,ℎ � (x=v )

ª®®®¬ ⊗
 :HG :HH :HI


+
©«
mI,ℎ � (x1)

...

mI,ℎ � (x=v )

ª®®®¬ ⊗
 :IG :IH :II



, (14)

where ⊗ denotes row-wise multiplication. Once the weights Û2 have been found, the estimated velocity field is readily
computed using

ûTPFV (x) =
=p∑
2=1

 (x, y2)Û2 . (15)

∗In practice, we find that =p is less than, but on the order of, the number of particles, while =v is much greater than the number of particles.
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T-PIV T-PFV
Approximation space Piecewise constant functions Piecewise smooth, physics-informed functions
Projection method Cross-correlation Inspired by optical flow estimation

Table 1 Comparison of T-PIV and T-PFV in the language of numerical analysis.

D. Divergence-free Radial Basis Functions
At present, T-PFV has been formulated for constant-density flows, for which conservation of mass stipulates that

∇ · u ≡ 0, (16)

which is a linear constraint in u. In this case, T-PFV aims to solve Problem 9 subject to Eq. 16. This is similar to the
study of Ruhnau et al. [22], in which Problem 3 is solved subject to the time-independent equations governing Stokes
flow. However, in applying the Stokes flow constraint, their formulation invokes yet another regularization scheme. A
distinguishing characteristic of T-PFV is that the divergence-free constraint is applied in a way that avoids the use of
regularization schemes entirely.

There exists a class of matrix-valued radial basis functions whose linear combination is a divergence-free vector
field [27]. These divergence-free radial basis functions (RBF) may be derived from a given scalar RBF, as described in
[28, 29]. In T-PFV, the divergence-free constraint can be applied by simply projecting the unknown velocity field onto
the space spanned by a prescribed set of divergence-free radial basis functions.

E. Comparison with T-PIV
At this point, it is useful to set out a conceptual comparison of T-PIV and T-PFV. Both T-PIV and T-PFV use particles

as flow tracers and tomographic reconstruction of particle tomogram pairs. However, there are key differences between
these methods. T-PIV (i) treats particles as discrete entities, (ii) seeks the velocity that maximizes the cross-correlation
between IB pairs in a piece-wise constant manner, and (iii) does not incorporate knowledge of the flow physics. In
contrast, T-PFV (i) treats the reconstructed intensity as a spatially continuous variable, and (ii) seeks the continuous
velocity field that minimizes the discrepancy between the intensity fields of a given tomogram pair using (iii) a basis
function representation that is informed by known flow physics.

A comparison of T-PIV and T-PFV in the language of numerical analysis is perhaps also illuminating. Firstly, T-PIV
uses an approximation space of piecewise constant basis functions, whereas T-PFV uses a richer approximation space
of smooth, physics-informed basis functions. Secondly, T-PIV uses a projection method based on cross-correlation,
whereas T-PFV uses a projection method inspired by optical flow estimation. This comparison is summarized in Table 1.

III. Demonstration of T-PFV

A. Description of Demonstration
In the remainder of this paper, we discuss a demonstration of T-PFV. This demonstration consists of estimating a

section of the velocity field corresponding to the forced-isotropic DNS data available on the Johns Hopkins Turbulence
Databases (JHTDB) [30, 31]. Specifically, a 256 × 256 × 128 vx section of the DNS velocity field is estimated via
T-PFV and an idealized implementation of T-PIV, and the results are compared.

The T-PFV estimate is computed from noise-free tomograms that are synthesized by (i) convecting particles within
the DNS velocity field according to a four-stage explicit Runge-Kutta scheme coupled with piecewise cubic interpolation
of the DNS velocity field, and (ii) smoothing the particle fields into 256 × 256 × 128 vx intensity fields with a particle
diameter of 16 vx. The tomograms contain 27 particles within each volume of 32 × 32 × 32 vx, and the initial particle
distribution is uniform. In addition, the temporal derivative of � is approximated by

mC ,ΔC � (xℓ) =
�f (xℓ) − �i (xℓ)

ΔCfi
, (17)

and the gradient is approximated by

∇ℎ � (xℓ) =
1
2

[
∇CD�i (xℓ) + ∇CD�f (xℓ)

]
. (18)
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Here, �f and �i are the intensity fields corresponding to the final and initial tomograms, respectively; ΔCfi is the time
interval between the final and initial tomograms; and ∇CD denotes that the gradients are approximated according to a
second-order central difference scheme.

The idealized T-PIV estimate is calculated by simply computing the average of the DNS field over IBs with a
volume of 32 × 32 × 32 vx. We note that the particular value of the IB size is not important here; an IB length of 32 vx
is chosen simply because it is typical in T-PIV. Rather, it is the number of particles per IB that is important. In this
demonstration, there are 27 particles per IB, which allows for a well-conditioned cross-correlation calculation over
each IB. It is worth noting that 27 particles per IB is at or above the maximum of what is possible using tomographic
reconstruction methods.

Finally, the T-PFV estimate is calculated using

 df, G (x, y2;f) =
1
f2
exp

(
−‖x − y2 ‖2
2f2

) [
1
f2
(x − y2) (x − y2)> +

(
� − 1 − ‖x − y2 ‖2

f2

)
I�

]
, (19)

which is a divergence-free RBF derived from the Gaussian scalar RBF [29]

q(r) = qG (r;f) = exp(−‖r‖2/2f2). (20)

Here, � is the number of spatial dimensions (3 in this case), and I� is the � × � identity matrix. Furthermore, f is a
characteristic diameter of the RBF; it is a hyperparamter, which may be tuned. A value of f equal to the IB length was
found to be optimal in this demonstration case. These basis functions are distributed uniformly. It was found that for
every 27 particles, the optimal number of basis functions was 8.

B. Domain Partitioning and Global Approximation in T-PFV Computation
Due to memory limitations, it was necessary to compute the T-PFV estimate piecewise over sub-domains of

the volume considered. As such, the resulting estimated field ûTPFV, PWS was piecewise smooth and discontinuous
across sub-domain boundaries. The 256 × 256 × 128 vx volume was partitioned into sub-domains with a volume of
32 × 32 × 32 vx, which contained 27 particles and corresponded to the IB size used in the idealized T-PIV estimation.
Consequently, the velocity field was estimated piecewise over a total of #sd = 256 sub-domains, with =p, sd = 8
construction points per sub-domain.

The discontinuities between sub-domains were removed by globally approximating the piecewise-smooth field using
the same Gaussian divergence-free RBFs used to perform the local T-PFV estimations. That is, the solution to

Ŵ = argmin
W

∫
Ω

‖ûTPFV, PWS (x) −
#p∑
2=1

 df, G (x, y2)W2 ‖2dΩ (21)

was computed, from which the globally smooth T-PFV estimate was computed by

ûTPFV (x) =
#p∑
2=1

 df, G (x, y2)Ŵ2 . (22)

Here #p denotes the total number of construction points over all sub-domains used in the global approximation.
In a manner similar to the T-PFV estimation problem, Problem 21 reduces to a linear least squares problem when

the integral is discretized. In this demonstration, the integral was approximated as a Riemann sum over a set of regularly
distributed points that were sub-sampled at a rate of one sample point for every 4 voxels in each direction.

In addition, the value of f used in the global approximation was equal to that used in the local T-PFV estimations.
Furthermore, the distribution of construction points used for the global approximation was the same as that used for the
T-PFV estimation. Hence, #p = #sd × =p, sd = 256 × 8 = 2048.

C. Results
Figure 1 shows the magnitude of the velocity field plotted over the slice which cuts through the center of the

volume considered. Figures 1a, 1b, and 1c correspond to the idealized T-PIV estimate, DNS field, and T-PFV estimate,
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(a) Idealized T-PIV estimate. (b) DNS. (c) T-PFV estimate.

Fig. 1 Contour plot of magnitude of velocity over slice through center of volume. Slice is 256×256 vx wide.

10-2 10-1
10-2

100

102

Fig. 2 Turbulent kinetic energy spectra of DNS field, idealized T-PIV estimate, and T-PFV estimate; ^_a is the
wavenumber non-dimensionalized by the inner length scale.

respectively. The T-PFV estimate is noticeably more resolved than the T-PIV estimate. Furthermore, the error relative
to the DNS, defined as

4 =

(∫
Ω
‖û − uDNS‖2dΩ

)1/2
(∫
Ω
‖uDNS‖2dΩ

)1/2 , (23)

is 45% for the idealized T-PIV estimate and 33% for the T-PFV estimate†.
Figure 2 shows the tubulent kinetic energy (TKE) spectra for the DNS field, idealized T-PIV estimate, and T-PFV

estimate. The TKE of the T-PIV estimate was computed after smoothing the T-PIV velocity field via piecewise cubic
interpolation. It is readily seen that T-PFV faithfully captures the TKE spectrum of the DNS field to significantly higher
wavenumbers than idealized T-PIV.

Finally, Fig. 3 shows the spectrum of the error normalized by the spectrum of the DNS field, that is, ( |F {D̂ −
DDNS}|2 + |F {Ê − EDNS}|2 + |F {F̂ − FDNS}|2)/(|F {DDNS}|2 + |F {EDNS}|2 + |F {FDNS}|2) as a function of ^_a . Here,
F denotes the Fourier transform, and ^_a is the wavenumber non-dimensionalized by the inner length scale. For the
sake of argument, if a normalized error threshold of 60% is chosen, the corresponding wavenumber for the T-PFV
estimate is found to be approximately twice that of the idealized T-PIV estimate. That is, in this demonstration case, the
spatial resolution of T-PFV is approximately twice that of idealized T-PIV.

†The integrals were approximated as voxel-wise Riemann sums.
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Fig. 3 Spectrum of the error normalized by the spectrum of the DNS field; ^_a is the wavenumber non-
dimensionalized by the inner length scale

D. Discussion
In particle-based velocimetry, for a given seeding density of tracer particles, any increase in spatial resolution is

ultimately due to more efficient use of the available Mie-scattering data. In this demonstration, it was found that, using
T-PFV, one divergence-free RBF could be placed for approximately every 3 particles. In contrast, cross-correlation
would require O(10) particles for each piecewise constant basis function. Consequently, this demonstration suggests
that T-PFV allows the positioning of one order of magnitude more basis functions per unit volume than T-PIV, or,
equivalently, approximately twice as many basis functions in each direction. Indeed, this corresponds to the observed
twofold improvement in spatial resolution relative to T-PIV.

As for accuracy, the value of the relative error for T-PFV was found to be 12% lower than that for idealized T-PIV.
This increase in accuracy follows from the improvement in spatial resolution.

IV. Conclusion and Future Work
In this paper, we present a first formulation of tomographic particle flow velocimetry (T-PFV), which is a 3D3C,

particle-based velocimetry method that is based on a motion estimation framework inspired by optical flow estimation.
However, unlike optical flow estimation, which is inherently 2D, T-PFV is an inherently 3D method. Furthermore,
whereas optical flow estimation as applied to fluid velocimetry generally uses variational regularization schemes
to address the aperture problem, T-PFV incorporates known flow physics to achieve closure. At present, T-PFV is
formulated for constant-density flows.

In addition, we present a demonstration of the current formulation of T-PFV. The results suggest that T-PFV affords
a twofold improvement in spatial resolution and a 12% decrease in the relative error as compared to T-PIV.

Future work will be focused on improving the efficiency and robustness of T-PFV. One avenue of future work is to
modify the formulation from that based on divergence-free RBFs to one based on divergence-free polynomials. As
noted above, the optimum number of RBFs is determined by the number of particles within a given volume, which in
turn is determined by the limits of tomographic reconstruction methods. The comparatively local support of RBFs
may be limiting the efficient use of available Mie-scattering data. Indeed, we found that the RBF diameter had to be
set to relatively large values in order to achieve acceptable estimates. In contrast, divergence-free polynomials have
comparatively global support and, thus, may be more suitable to T-PFV. In addition, divergence-free polynomials are
known to achieve spectral convergence for sufficiently smooth flows [32]. While the use of divergence-free polynomials
instead of divergence-free RBF would modify the formulation detailed in this paper slightly, our intention is to develop
T-PFV as a framework rather than a particular scheme.

Going forward, the main challenge is to improve the robustness of T-PFV with respect to noise and, moreover,
ghost particles. Currently, T-PFV is based on a differential motion constraint equation (Eq. 6). However, a differential
formulation may not be robust against noise and ghost particles. As such, we are looking into generalizing to an integral
formulation.
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