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Abstract

We provide theoretical analyses and numerical comparisons of boundary-based and volumetric shape deriva-

tive expressions of linear objective functionals encountered in topology optimization of linear elastic struc-

tures. The two expressions yield identical results if the domain is smooth and the governing equation is

solved exactly; however, the finite element approximation of the expressions for less regular domains yield

different results. We first review the two expressions to show that the volumetric shape derivative places

weaker regularity requirements, which, unlike the requirements for boundary-based shape derivatives, are

satisfied in most finite element approximations. We then analyze the error in the degree-k polynomial fi-

nite element approximations of the two expressions; we show that, for sufficiently regular problems, the

boundary-based and volumetric shape derivatives provide k-th and 2k-th order accurate approximations,

respectively, of the true shape derivative. We finally assess, through numerical examples, the practical impli-

cations of using the volumetric vs boundary-based shape derivatives in topology optimization problems; we

demonstrate that methods based on the volumetric shape derivative yield more robust solutions to topology

optimization problems.

1. Introduction

Topology optimization has been an active area of mathematics and engineering research since the seminal

paper on the homogenization method by Bendsøe and Kikuchi [2]. In the past few decades, a number of

different topology optimization methods have been proposed and applied to various engineering problems [24,

7, 26]. Topology optimization methods can be classified into two groups by the way they represent the

structural domain Ω ⊂ Rd: density-based methods and level-set-based methods. In the present work, we

focus on level-set methods, which represent the domain Ω implicitly using the level-set function φ defined over

the entire working domain and provides crisp boundary representation of structures undergoing topology

changes [26].
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One of the key ingredients of level-set-based topology optimization is the shape derivative, which char-

acterizes the change in the objective function J(Ω) with respect to the change in the geometry Ω. In the

present work we formally denote the shape derivative as a directional derivative dJ(Ω; ·), where the second

argument specifies the direction about which the derivative is evaluated. There are two distinct approaches

to evaluate the shape derivative dJ(Ω; ·): a boundary-based shape derivative dJBdry(Ω; ·) and a volumetric

shape derivative dJVol(Ω; ·).

The majority of level-set topology optimization methods use boundary-based shape derivative expres-

sions [26] to compute the descent direction. This method to obtain a boundary-based shape derivative was

first proposed by Hadamard [15]. This method was formalized for shape optimization by Delfour and Zole-

sio [9] and was later used for level-set topology optimization by Wang et al. [28] and Allaire et al. [1]. While

popular, the expression for dJBdry(Ω; ·) formally assumes that both the domain shape and the associated

solution are sufficiently regular in the sense that ∂Ω is twice continuously differentiable and the solution is

in H2(Ω)d 1; neither of these requirements are strictly satisfied for standard finite element implementations.

In addition, for scalar elliptic equations with Dirichlet boundary conditions, Hiptmair et al. [16] have shown

that the piecewise linear finite element approximation of dJBdry(Ω; ·) is only first-order accurate in the finite

element mesh spacing parameter h.

An alternative to boundary-based shape derivative is volumetric (or distributed) shape derivative. Early

works on volumetric shape derivative include [8] [17, Section 3.3.7], as discussed in [9, Chapter 1, Section

5]. More recently, following the analysis of volumetric and boundary-based shape derivatives by Hiptmair

et. al [16], volumetric shape derivatives have been developed for various optimization problems, including

Stokes equation [30], electric motors [13], linear elasticity [11], fluid–structure interaction [12], and eigenvalue

problems [29, 31]. The averaged adjoint method was developed as a framework to develop the shape

derivatives in distributed/weak form for general PDE constrained optimization problems. The method was

originally introduced by Sturm [25], further developed in Laurain and Sturm [21], and later extended to linear

elasticity problems by Laurain [18]. Since the distributed shape derivative yields volumetric (as opposed to

boundary-based) expressions for objective functions of our interest, we refer to them as volumetric shape

derivatives throughout this work. The two shape derivative expressions dJBdry(Ω; ·) and dJVol(Ω; ·) yield

identical results if ∂Ω is smooth and the linear elasticity equation is solved exactly. However, the expression

for dJVol(Ω; ·) places weaker regularity requirements than boundary-based derivatives; it only assumes ∂Ω

is Lipschitz continuous and the solution is in H1(Ω)d, both of which are satisfied for typical finite element

analysis. In addition, for scalar elliptic equations, Hiptmair et al. [16] have shown that the piecewise linear

finite element approximation of dJVol(Ω; ·) is second-order accurate in h under regularity assumptions that

1Throughout this work, Hq(Ω) denotes the Sobolev space of functions with weak derivatives up to order q that are square

integrable.
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are often satisfied.

The twofold contributions of this work are the theoretical analyses and numerical comparisons of the two

shape derivative expressions for linear objective functionals arising in linear elasticity problems. We first

develop a pair of theorems that show that, for sufficiently regular problems, the finite element approximations

of the boundary-based and volumetric shape derivatives are k-th and 2k-th order accurate, where k is

the polynomial degree of the elements, respectively; the result is an extension of [16] for piecewise linear

finite element approximation of scalar elliptic equations to degree-k finite element approximation of linear

elasticity equations. In addition to the analysis of the shape derivatives, we also develop theorems that

show the finite element approximations for descent directions with common velocity extension/smoothing

formulations. The descent direction based on the boundary-based shape derivative is k-th order accurate

in both H1 and L2 norms, whereas that based on the volumetric shape derivative is k-th and k + 1 order

accurate in the H1 and L2 norm, respectively. We next assess, using numerical examples, the performance

of the topology optimization methods based on the two shape derivative expressions for practical topology

optimization problems; we demonstrate that the weaker regularity requirement and higher-order accuracy

of the volumetric shape derivative expression provide practical benefits.

This paper is organized as follows. In Section 2, we introduce the topology optimization problem con-

sidered throughout this work and highlight the role of the shape derivative. In Section 3, we introduce

the boundary-based and volumetric shape derivative expressions. In Section 4, we analyze the error in the

finite element approximations of the shape derivative expressions. In Section 5, we first verify the a priori

error bounds using a simple numerical example; we then assess the implications of the choice of the shape

derivatives in a practical topology optimization test problem.

2. Problem statement

In this section, we define the level-set-based approach to topology optimization that we consider through-

out this work. To this end, we introduce a d-dimensional working domain D ⊂ Rd that contains all possible

structural domains for d ∈ {2, 3}. We next introduce a level-set function φ : D → R defined over the entire

working domain D. The structural domain Ω ⊂ D is then implicitly defined by the level-set function:

Ω := {x ∈ D | φ(x) < 0}.

We next introduce the linear elasticity problem. The isotropic linear elasticity problem over the (level-

set-represented) domain Ω ⊂ Rd is given by

−div(Ke(u)) = f in Ω,

u = 0 on ΓD,

(Ke(u)) · n = g on ΓN ,

(1)
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where ∂Ω = ΓN ∪ ΓD, ΓN ⊂ ∂Ω is the Neumann boundary, ΓD ⊂ ∂Ω is the Dirichlet boundary, n is the

outward pointing normal on ∂Ω, g : ΓN → Rd is the traction force, f : D → Rd is the body force, u : Ω→ Rd

is the displacement, e(u) = 1
2 (Du + DuT ) is the strain tensor field, D is the gradient operator on a vector

field, and K is the stiffness tensor such that KX = 2µ̃X + λ̃Tr(X)I for any X ∈ Rd×d, where λ̃ and µ̃ are

the Lamé coefficients, which satisfy µ̃ ≥ µ̃min > 0 and λ̃ ≥ 0. (Note: while we do not explicitly indicate the

dependence of u on Ω, throughout this paper it should be understood that u is associated with a particular

Ω.)

We next introduce the weak form of (1). To this end, we introduce a Hilbert space

U(Ω) := {u ∈ H1(Ω)d | u|ΓD = 0}. The weak statement is as follows: find u ∈ U(Ω) such that

a(u, v) = `(v) ∀v ∈ U(Ω), (2)

where

a(w, v) :=

∫
Ω

Ke(w) : e(v)dx ∀w, v ∈ U(Ω),

`(v) :=

∫
Ω

f · vdx+

∫
ΓN

g · vds ∀v ∈ U(Ω),

where A : B denotes the Frobenius inner product of tensors A and B. We assume that ΓD 6= ∅, f ∈ H−1(D)d,

g ∈ L2(ΓN )d, λ̃ ∈ L∞(Ω), and µ̃ ∈ L∞(Ω), so that the bilinear form a : U(Ω) × U(Ω) → R is coercive and

continuous and the linear form ` ∈ U(Ω)′ is continuous. The weak problem is hence well-posed by the Lax-

Milgram theorem [3]. In practice we approximate the solution in a finite-dimensional subspace Uh(Ω) ⊂ U(Ω)

using a finite element method.

We now introduce objective functions that are of interest in structural topology optimization problems.

In the present work, we consider linear functionals of the form

J(Ω) :=

∫
Ω

jv · udx+

∫
ΓN

jb · uds+ λV (Ω), (3)

where jv : D → Rd is defined over the volume, jb : ΓN → Rd is defined over the Neumann boundary, V (Ω)

is the volume of the structure Ω, and λ ∈ R>0 is the volume penalization constant. (Again, u should be

understood to be associated with the particular Ω.) This general form of linear functional encapsulates many

functionals of practical interest. One commonly studied objective function is volume penalized compliance

Jcomp(Ω) :=

∫
Ω

f · udx+

∫
ΓN

g · uds+ λV (Ω) =

∫
Ω

Ke(u) : e(u)dx+ λV (Ω),

which is a measure of the internal energy of the structure under load and is useful for rigidity maximization.

Another functional of potential interest is the average displacement in the direction c ∈ Rd over a select

region ω ⊂ Ω,

Jdisp(Ω) :=

∫
Ω

χωc · udx+ λV (Ω),
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where χω : Ω→ R≥0 is the characteristic function associated with the region of interest ω. (We assume that

the direction c ∈ Rd is chosen such that the integral is positive for the given load.) While we embed the

volume penalty in the objective function in the present work, this term could be treated as an explicit con-

straint and incorporated in the “objective function” using, for example, an augmented Lagrangian method

[1, 4, 27].

Before we introduce our optimization problem, we state our key assumption:

Assumption 1. Throughout this work, we assume that the following surfaces are part of ∂D and

are fixed: (i) the Dirichlet boundary ΓD, (ii) the part of the Neumann boundary with finite traction

{x ∈ ΓN | g(x) 6= 0}, and (iii) the part of Neumann boundary with finite output {x ∈ ΓN | jb(x) 6= 0}.

In other words, these three parts of the boundary are always included in the structure boundary ∂Ω.

Many practical topology optimization problems satisfy Assumption 1 because the support and loading

surfaces of the structures are typically prescribed.

We now state the topology optimization problem: find Ω? such that

Ω? ≡ arg min
Ω⊂D

J(Ω). (4)

This optimization problem is solved using a gradient-based method. Specifically, we evolve the geometry Ω

based on the gradient of J(Ω) with respect to Ω: i.e., the shape derivative dJ(Ω, ·). The successful solution of

the topology optimization problem (4) relies on an accurate evaluation of the shape derivative dJ(Ω, ·), which

informs a descent direction. In the following sections, we (i) introduce formulations to evaluate the shape

derivative dJ(Ω, ·), (ii) provide a priori error analyses of the accuracy of the finite element approximation

of dJ(Ω, ·), and (iii) demonstrate their impact in practical topology optimization problems.

3. Shape derivatives: formulation

3.1. Preliminary

In this section, we present two different approaches to evaluate shape derivatives. To begin, we formalize

the concept of shape derivative following [21, 18]. We first introduce a vector space of all admissible

deformations

Θ(D) := {θ ∈W 1,∞(D)d | θ · n = 0 on ∂D}

on the working domain D ⊂ Rd.2 We next consider a vector field θ ∈ Θ(D) and the associated flow

Φθt : D → Rd, t ∈ [0, τ ], that maps each x0 ∈ D to x(t) := Φθt (x
0), where x(t) is the solution to ẋ(t) = θ(x(t))

2Throughout this work, Wk,p(D) denotes the space of functions whose weak derivatives up to order k are in Lp(D).
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with the initial condition x(t = 0) = x0. The associated family of deformed domains is given by Ωt := Φθt (Ω),

t ∈ [0, τ ]. The shape derivative of J at Ω is the linear continuous operator dJ(Ω; · ) : Θ(D)→ R such that

dJ(Ω; θ) = lim
t↘0

1

t
(J(Ωt)− J(Ω)) ∀θ ∈ Θ(D).

We now review two distinct expressions for the shape derivative: the boundary-based shape derivative and

the volumetric shape derivative.

3.2. Boundary-based shape derivative

We present the boundary-based shape derivative in [1], which, as discussed in the introduction, is used

in the majority of level-set topology optimization methods. For completeness, the derivation is included in

Appendix A. To begin, we introduce the adjoint problem: find p ∈ U(Ω) such that∫
Ω

Ke(p) : e(ϕ̂)dx = −
∫

Ω

jv · ϕ̂dx−
∫

ΓN

jb · ϕ̂ds ∀ϕ̂ ∈ U(Ω). (5)

We assume the linear elasticity problem (2) and the adjoint problem (5) satisfy the following regularity con-

ditions: ∂Ω ∈ C2, f ∈ L2(Ω)d, g ∈ H2(D)d, jv ∈ L2(Ω)d, jb ∈ H2(D)d, u ∈ H2(Ω)d, and p ∈ H2(Ω)d. Under

these conditions, the boundary-based shape derivative for the first part of the linear objective functional (3)

is given by

dJBdry(Ω; θ) :=

∫
ΓN

θ · n
[
jv · u+Ke(u) : e(p)− p · f − ∂(g · p)

∂n
−Mg · p

]
ds

+

∫
ΓD

θ · n [jv · u−Ke(u) : e(p)] ds+

∫
∂Ω

θ · n
[
∂(jb · u)

∂n
+Mjb · u

]
ds,

where M is the curvature of ∂Ω, which may be expressed as M = div n for n = ∇φ/‖∇φ‖. Under

Assumption 1, the shape derivative simplifies to

dJBdry(Ω; θ) :=

∫
ΓN

θ · n [jv · u+Ke(u) : e(p)− p · f ] ds. (6)

The boundary-based shape derivative of the volume penalty, V (Ω) :=
∫

Ω
dx, is given by

dV Bdry(Ω; θ) :=

∫
∂Ω

θ · nds.

Remark 1. For (6) to be a valid formulation, we require that ∂Ω ∈ C2. While the condition may hold

for a continuous representation of the structure Ω, the condition in general does not hold for the discrete

approximation of Ω associated with piecewise polynomial level sets.

Remark 2. Suppose (i) there is no body force (i.e., f = 0) and (ii) the objective function is the compliance

(i.e., jb = g and jv = f = 0). Then the problem is self-adjoint, the adjoint state is p = −u, and the

boundary-based shape derivative simplifies to

dJBdry(Ω; θ) =

∫
ΓN

[−Ke(u) : e(u)] θ · nds. (7)
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3.3. Volumetric shape derivative

We next present the volumetric shape derivative expressions in [18]. For completeness, the derivation

is included in Appendix B. Under Assumption 1, the volumetric shape derivative for the first part of the

linear objective functional (3) is given by

dJVol(Ω; θ) :=−
∫

Ω

(DuTKe(p) +DpTKe(u)) : Dθdx+

∫
Ω

Ke(u) : e(p) div θdx (8)

+

∫
Ω

(∂xjv · u) · θdx+

∫
Ω

jv · udiv θdx−
∫

Ω

(∂xf · p) · θdx−
∫

Ω

f · p div θdx,

where ∂xjv and ∂xf are the spatial gradients of jv and f , respectively, and u ∈ U(Ω) and p ∈ U(Ω) are the

solutions to (2) and (5), respectively. The volumetric shape derivative of the volume penalty is given by

dV Vol(Ω; θ) :=

∫
Ω

div θdx.

Remark 3. Suppose (i) there is no body force (i.e., f = 0) and (ii) the objective function is the compliance

output (i.e., jb = g and jv = f = 0). Then the problem is self-adjoint, the adjoint state is p = −u, and the

volumetric shape derivative simplifies to

dJVol(Ω; θ) =

∫
Ω

2DuTKe(u) : Dθ −Ke(u) : e(u) div θdx. (9)

Remark 4. If ∂Ω ∈ C1, the divergence theorem yields

dV Vol(Ω; θ) :=

∫
Ω

div θdx =

∫
∂Ω

θ · nds =: dV Bdry(Ω; θ);

i.e., we recover the boundary-based shape derivative for the volume penalty term. However, this equivalence

does not hold for ∂Ω 6∈ C1.

3.4. Shape derivatives in topology optimization: practical aspects

We have introduced two different shape derivative expressions. These expressions in principle allow us

to define the steepest descent direction θ? = arg minθ dJ(Ω; θ). However, the steepest descent direction

defined in this manner would not be unique because the shape derivatives depend on θ over only a part of

the working domain D and not the whole D. Namely, the boundary-based shape derivative depends only

on (θ · n)|∂Ω and the volumetric shape derivative depends only on θ|Ω. To update our level-set function, we

need the descent direction θ to be defined over the entire working domain D.

While there are a number of approaches to extend the descent direction, a smooth extension has been

shown to improve convergence of the optimization process [18, 4, 6]. One way to construct such an ex-

tension is to solve a smoothing PDE [21, 18, 6], which may be interpreted as finding a Riesz represen-

tation of the shape derivative dJ(Ω; ·) in an appropriate space [23]. Namely, we first introduce a space

V(D) ≡ {θ ∈ H1(D)d | θ · n|∂D = 0} endowed with an inner product (·, ·)V : V(D)× V(D)→ R such that

(w, v)V :=

∫
D

(Dw : Dv + αw · v)dx ∀w, v ∈ V(D)
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for some α ∈ R>0, and the associated induced norm ‖v‖V :=
√

(v, v)V . We then solve for the Riesz

representation: find θ? ∈ V(D) such that

(θ?, ξ)V = −dJ(Ω; ξ) ∀ξ ∈ V(D). (10)

This extension and regularization method has been shown to provide improved convergence for an eigenvalue

topology optimization problem with a boundary based shape derivative by de Gournay [6] and has been

applied in conjunction with volumetric shape derivatives by Laurain [18]. Laurain [18] considers parameter

of α = 1/10. The smooth extension mitigates oscillating or irregular boundaries that might arise from less

smooth extensions.

Given the smoothed descent direction θ? : D → Rd, we evolve the level-set function φ : D → R using a

linear advection equation [18]
∂φ

∂t
+ θ? · ∇φ = 0. (11)

In practice, at each optimization iteration, the level-set function is advected in the descent direction for

a given time interval ∆t, which may be found through a line search procedure [1, 18]. The line search

procedure involves checking the objective function J(Ω) after every iteration to ensure it decreases. If J(Ω)

has increased after Ω has been updated through the linear advection equation (11), the time step ∆t is

reduced, and Ω is recalculated. This procedure is repeated until the objective function decreases, or the

maximum number of linesearch steps have been attempted, at which point the structure Ω is accepted for

the next iteration, and the optimization process proceeds.

In principle the above approach to compute descent directions works for both volumetric and boundary-

based shape derivative expressions. In fact, based on [20, Propositions 1], under suitable regularity as-

sumptions, we may express the boundary-based derivative (7) in a volumetric form dJBdry(Ω; θ) =
∫

Ω
(S :

Dθ + div(S) · θ)dx with S = −Ke(u) : e(u)I. Furthermore, [20, Proposition 2] states that there are numer-

ous such expressions; we may replace S with any Ŝ such that Ŝn = Sn on ∂Ω. However, many practical

implementations based on the boundary-based shape derivative uses a different formulation to compute the

descent direction [26, 1, 4]. For compliance minimization problems under Assumption 1, we recall that the

boundary-based shape derivative is dJBdry(Ω; θ) =
∫

ΓN
θ · n [−Ke(u) : e(u)] ds. Many practical implemen-

tations “naturally extend”, without a mathematical justification, the integrand of boundary integral as a

volumetric integrand to introduce

d̃J
Bdry

(Ω; v) =

∫
Ω

[−Ke(u) : e(u)] vdx, (12)

for v ∈ H1(Ω). This “natural extension” provides two main benefits: first, it removes the need for finite

elements that conform to the boundary of the structure, ∂Ω. This enables the use of fixed grid approaches.

Second, it reduces the regularity requirements on the finite element approximation space, from uh ∈ H2(Ω)

for (7) to uh ∈ H1(Ω) for (12). The reduction in regularity required for uh is of particular importance for
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practical topology optimization, as the regularity requirements for (7) are not strictly satisfied by linear

finite elements.

To find the descent direction, we then compute the Riesz representation of this “naturally extended”

functional d̃J
Bdry

(Ω; ·): find ζ? ∈ H1(Ω) such that∫
D

(∇ζ? · ∇v + αζ?v)dx = d̃J
Bdry

(Ω; v) ∀v ∈ H1(Ω) (13)

for some α ∈ R>0. Given the smoothed scalar descent direction ζ? : D → H1(D), we evolve the level-set

function φ : D → R using the Hamilton-Jacobi equation [1, 22]

∂φ

∂t
+ ζ?|∇φ| = 0. (14)

In this work, we consider the above to be the “practical implementation” of topology optimization methods

based on boundary-based shape derivatives.

The level set evolution by (11) or (14) in general does not maintain the signed-distance property, |∇φ| =

1, and can become too flat or too steep. To address the problem, it is standard practice to perform a

“reinitialization step” every few iterations [1, 18, 4]. Namely, starting with the initial level φ0, we reinitialize

by solving the time-relaxed Eikonal equation

∂φ

∂t
+ sign(φ0)(|∇φ| − 1) = 0 in D × R>0, (15)

φ(t = 0, x) = φ0(x) on D

to steady state. Note that the steady state solution satisfies |∇φ| = 1 and hence is a signed-distance function.

We summarize the level-set topology optimization algorithm that incorporates the above ingredients

in Algorithm 1. We will study the impact of the choice of three algorithmic parameters—the smoothing

parameter α, the advection time interval ∆t, and whether to reinitialize—in Section 5.2.

3.5. Topology optimization with ersatz material

In practice, level-set topology optimization algorithms commonly use ersatz material [26, 1, 18]. The

idea is (i) to place weak material with the stiffness tensor Kε := εK, ε � 1, in the region outside of the

structure D \Ω; (ii) to restate the the linear elasticity problem (1) over the working domain D; and (iii) to

obtain the solution uε, which approximates u in Ω. Dambrine et al. [5] have shown that uε converges to u,

as ‖u− uε‖H1(Ω) ≤ C(Ω,D, f, g)ε for scalar elliptic problems.

Laurain [19]3 analyzes the effect of ersatz materials on the shape derivatives for linear elasticity problems.

The volumetric shape derivative (8), with integrals defined over the working domain D instead of Ω, is valid

3The manuscript [19] is the version of [18] on arXiv, which includes Section 3.7 that is removed in the final published work.
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Algorithm 1: Level-set topology optimization algorithm.

inputs : initial level set: φ0

outputs: final level set: φNmax

1 for N = 1, . . . , Nmax do

2 Solve the linear elasticity problem (2) on Ω implied by φN .

3 Evaluate the shape derivative dJVol/Bdry(Ω; ·) using (6) or (8).

4 Compute the descent direction extension θ? or ζ? using (10) or (13).

5 for Nline = 1, . . . , Nline,max do

6 Evolve the level set function from φN to φN+1 using the advection equation (11) or (14) with

timestep ∆t.

7 if J(φN+1) < J(φN ) then

8 break.

9 else

10 Reduce the timestep to ∆t← β∆t for a prescribed β ∈ (0, 1).

11 end

12 end

13 if mod(N,Nreinit) = 0 then

14 Reinitialize the level set φN+1 using the time-relaxed Eikonal equation (15).

15 end

16 end
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for linear objective functionals (including compliance) regardless of the value of ε [19]. On the other hand,

the boundary-based shape derivative for a compliance objective takes on the form

dJBdryε(Ω; θ) =

∫
∂Ω

(
2Kεe

(
u−ε
)
n · JDuεKn

)
θ · nds−

∫
∂Ω

JKe(uε) : e(uε)Kθ · nds, (16)

where (·)− denotes the restriction to the void region D \ Ω, and J·K denotes the jump in a function across

the boundary ∂Ω. The differences in the original boundary-based shape derivative (7) and the shape deriva-

tive (16) are (i) the addition of the first integral
∫
∂Ω

(2Kεe (u−ε )n · JDuεKn) ds and (ii) the subtraction of

Kεe(u
−
ε ) : e(u−ε ) from the second integral effected by the jump operator. In practice, due to the ease of

implementation, the original shape derivative (7) is often used even when the ersatz approximation is used to

yield the displacement field uε. In addition, while the ersatz material method introduces additional errors to

the approximations of the true displacement field u, in practice they provide (arguably favorable) smoothing

of the descent direction when performing topology optimization.

4. Shape derivatives: a priori error analysis

4.1. Preliminaries

We now analyze the accuracy of the finite element approximation of the two shape derivatives: the

volumetric shape derivative (8) and the boundary-based shape derivative (6). Hiptmair et al. [16] provides,

to the best of our knowledge, the first analysis of the piecewise linear finite element approximation errors on

the shape derivatives for scalar elliptic PDEs with linear objective functionals. We present here an extension

of the analysis to degree-k finite element approximations of linear elasticity problems with linear objective

functionals.

By way of preliminaries, we provide a few assumptions that we consider throughout the analysis.

Assumption 2 (finite element space and approximation). Let

Uh(Ω) :=
{
v ∈ U(Ω) | v|K ∈ Pk(K)d,∀K ∈ Th

}
, (17)

where Th is the triangulation of Ω that comprises elements {K} such that maxK∈Th diam(K) = h, and Pk(K)

is the space of degree k ≥ 1 polynomials on K. The finite element approximation of the linear elasticity

problem (2) is uh ∈ Uh(Ω) such that

a(uh, v) = `(v) ∀v ∈ Uh(Ω).

The finite element approximation of the adjoint problem (5) is ph ∈ Uh(Ω) such that

a(w, ph) = −
∫

Ω

jv · wdx−
∫

ΓN

jb · wds ∀w ∈ Uh(Ω).

Both finite element problems are well-posed by the Lax-Milgram theorem.
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Assumption 3 (elliptic regularity estimate). Consider the linear elasticity problem (2). Let w ∈ U(Ω)

satisfy ∫
Ω

Ke(w) : e(v)dx =

∫
Ω

ρ · vds ∀v ∈ U(Ω)

for ρ ∈ Hk−1(Ω)d. Then w ∈ Hk+1(Ω)d and there exists a constant Cr that depends only on Ω such that

‖w‖Hk+1(Ω) ≤ Cr‖ρ‖Hk−1(Ω).

Assumption 4 (regularity of solution and adjoint). In the linear elasticity problem (2), we assume that Ω,

f and g are sufficiently regular such that u is in Hk+1(Ω)d. In the adjoint problem (5), we assume Ω, jv,

and jb are sufficiently regular such that p is in Hk+1(Ω)d.

Remark 5. Assumption 4 assumes that domain Ω is sufficient regular so that the state u and adjoint p

are in Hk+1(Ω)d. In practice, domains encountered in topology optimization are only piecewise smooth, and

these assumptions may be violated. A complete analysis of the regularity of the domain on the accuracy of the

volumetric and boundary-based derivative is beyond the scope of this work. However, we numerically observe

in Section 5 that, at least for some piecewise smooth domains, the optimal convergence rate is achieved. We

also refer to [20] for a recent analysis of shape derivatives in nonsmooth domains.

We now state a few standard finite element approximation results. We omit proofs here for brevity and

refer to standard finite element textbooks such as [3] and [10].

Lemma 6 (interpolation error). For the finite element space (17), there exists a nodal interpolation operator

Ih : Hk+1(Ω)d ∩ U(Ω)→ Uh(Ω) such that

‖w − Ihw‖H1(Ω) ≤ Ch
k|w|Hk+1(Ω) ∀w ∈ Hk+1(Ω) ∩ U(Ω) ∀h, (18)

where C is a constant independent of w and h.

Proof. See, for example, [10, Corollary 1.110].

Lemma 7 (finite element error). Under the regularity Assumption 4, the finite element solution uh ∈ Uh(Ω)

and adjoint ph ∈ Uh(Ω) given in Assumption 2 satisfy

‖u− uh‖H1(Ω) ≤ Chk|u|Hk+1(Ω),

‖p− ph‖H1(Ω) ≤ Chk|p|Hk+1(Ω)

for some constant C independent of u, p, and h.

Proof. The result follows from Céa’s lemma and polynomial interpolation error bounds (e.g., [10, Corollary

1.109]) under the regularity Assumption 4.
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4.2. Volumetric shape derivative

We now state the main result of the section: the a priori error analysis of the finite element approximation

of the volumetric shape derivative. Our analysis for linear elasticity problems follows closely the analysis

for piecewise linear finite element approximations of Poisson’s equation by Hiptmair et al. [16].

Theorem 8. Let u ∈ U(Ω) and p ∈ U(Ω) be the solutions to (1) and (5), respectively, and uh ∈ Uh(Ω)

and ph ∈ Uh(Ω) be the associated finite element approximations defined in Assumption 2. Then under

Assumptions 2–4 and assuming θ ∈W k+1,4(Ω), f ∈W k,4(Ω), and jv ∈W k,4(Ω),

|dJ(Ω; θ)− dJVol
h (Ω; θ)| ≤ C‖θ‖Wk+1,4(Ω)h

2k,

where dJVol
h (Ω; ·) is the finite element approximation of the volumetric shape derivative (8), and C is a

constant independent of h.

Proof. We first appeal to the definition of the volumetric shape derivative (8) and invoke the triangle

inequality to split the error into seven parts:

|dJ(Ω; θ)− dJVol(Ω, uh, ph; θ)|

≤
∣∣∣∣∫

Ω

(DuTKe(p)−DuThKe(ph)) : Dθdx

∣∣∣∣+

∣∣∣∣∫
Ω

(DpTKe(u)−DpThKe(uh)) : Dθdx

∣∣∣∣
+

∣∣∣∣∫
Ω

(Ke(u) : e(p)−Ke(uh) : e(ph)) div θdx

∣∣∣∣+

∣∣∣∣∫
Ω

(jv · u− jv · uh) div θdx

∣∣∣∣
+

∣∣∣∣∫
Ω

((∂xjv) · u− (∂xjv) · uh) · θdx
∣∣∣∣+

∣∣∣∣∫
Ω

(f · p− f · ph) div θdx

∣∣∣∣
+

∣∣∣∣∫
Ω

((∂xf) · p− (∂xf) · ph) · θdx
∣∣∣∣

:= (I) + (II) + (III) + (IV) + (V) + (VI) + (VII). (19)

We will bound the seven terms in order.

We first bound (I). To begin, we further split (I) into three terms:

(I) ≤
∣∣∣∣∫

Ω

D(u− uh)TKe(p) : Dθdx

∣∣∣∣+

∣∣∣∣∫
Ω

DuTKe(p− ph) : Dθdx

∣∣∣∣
+

∣∣∣∣∫
Ω

D(u− uh)TKe(p− ph) : Dθdx

∣∣∣∣ := (I.1) + (I.2) + (I.3).

To bound (I.1), we use a duality trick. To this end, we appeal to the symmetry of Ke(p) to obtain

(I.1) =

∫
Ω

Ke(p)Dθ : D(u− uh)dx.

We next introduce w ∈ U(Ω) such that∫
Ω

e(w) : Ke(v)dx =

∫
Ω

Ke(p)Dθ : Dvdx ∀v ∈ U(Ω).
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The strong form of the problem is

−div(Ke(w)) = −div(Ke(p) : Dθ) in Ω,

with homogeneous Dirichlet and Neumann boundary conditions on ΓD and ΓN . The successive application

of the Hölder’s inequality, along with the Sobolev embedding theorem, shows that the forcing function can

be bounded as

‖div(Ke(p) : Dθ)‖Wk−1,2(Ω) ≤ C(‖θ‖Wk+1,4(Ω)‖p‖Wk,4(Ω) + ‖θ‖W 1,∞(Ω)‖p‖Hk+1(Ω))

≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω).

Since the forcing term is in W k−1,2(Ω)d, by the elliptic regularity estimate (Assumption 3), w ∈ Hk+1(Ω)d

and ‖w‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω). We next observe that

(I.1) =

∣∣∣∣∫
Ω

Ke(p)Dθ : D(u− uh)dx

∣∣∣∣ =

∣∣∣∣∫
Ω

e(w) : Ke(u− uh)dx

∣∣∣∣
=

∣∣∣∣∫
Ω

e(w − Ihw) : Ke(u− uh)dx

∣∣∣∣ ≤ C ‖u− uh‖H1(Ω) ‖w − Ihw‖H1(Ω) ,

where the second equality follows from the definition of w and the fact u − uh ∈ U(Ω), the third equality

follows from Galerkin orthogonality, and the inequality follows from the continuity of a(·, ·). We now

invoke the finite element error bound (Lemma 7) and the interpolation error bound (Lemma 6 under

‖w‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω)) to obtain

(I.1) ≤ Ch2k‖u‖Hk+1(Ω)‖p‖Hk+1(Ω)‖θ‖Wk+1,4(Ω).

To bound (I.2), we follow a similar argument using a duality trick. To this end, we rearrange the

expression to obtain

(I.2) :=

∫
Ω

DuTKe(p− ph) : Dθdx =

∫
Ω

(Du)(Dθ) : (Ke(p− ph))dx.

We next introduce z ∈ U(Ω) such that∫
Ω

e(z) : Ke(v)dx =

∫
Ω

(Du)(Dθ) : Ke(v)dx ∀v ∈ U(Ω).

The strong form of the problem is

−div(Ke(z)) = −1

2
div(K((Du)(Dθ) + (Dθ)T (Du)T )) in Ω

with homogeneous boundary conditions on ΓD and ΓN ; here, we have invoked

(Du)(Dθ) : (Ke(v)) = 1
2K((Du)(Dθ) + (Dθ)T (Du)T ) : Dv. The forcing function is bounded by

‖ div(K((Du)(Dθ) + (Dθ)T (Du)T ))‖Wk−1,2(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω). Since the forcing
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term is in W k−1,2(Ω)d, by the elliptic regularity estimate (Assumption 3), z ∈ Hk+1(Ω)d and

‖z‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω). We next observe that

(I.2) =

∣∣∣∣∫
Ω

(Du)(Dθ) : (Ke(p− ph))dx

∣∣∣∣ =

∣∣∣∣∫
Ω

e(z) : Ke(p− ph)dx

∣∣∣∣
=

∣∣∣∣∫
Ω

e(z − Ihz) : Ke(p− ph)dx

∣∣∣∣ ≤ C‖p− ph‖H1(Ω)‖z − Ihz‖H1(Ω)

≤ C ′h2k‖u‖Hk+1(Ω)‖p‖Hk+1(Ω)‖θ‖Wk+1,4(Ω),

where the second equality follows from the definition of z and the fact p−ph ∈ U(Ω), the third equality follows

from Galerkin orthogonality, the first inequality follows from the continuity of a(·, ·), and the last inequality

follows from the finite element error bound (Lemma 7) and the interpolation error bound (Lemma 6 under

‖z‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω)).

To bound (I.3), we observe

(I.3) :=

∣∣∣∣∫
Ω

D(u− uh)TKe(p− ph) : Dθdx

∣∣∣∣ ≤ ‖θ‖W 1,∞

∣∣∣∣∫
Ω

D(u− uh)TKe(p− ph)dx

∣∣∣∣
≤ C‖θ‖W 1,∞(Ω)‖u− uh‖H1(Ω)‖p− ph‖H1(Ω) ≤ C ′h2k‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω)‖p‖Hk+1(Ω),

where the first equality follows from Hölder’s inequality, the second inequality follows from the continuity

of a(·, ·), and the the last inequality follows from the finite element error bound (Lemma 7) and the Sobolev

embedding W k+1,4(Ω) ⊂W 1,∞(Ω).

We combine the bounds for (I.1), (I.2), and (I.3) to obtain

(I) ≤ Ch2k‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω)‖p‖Hk+1(Ω),

which is the desired O(h2k) bound.

The procedure used to bound (II) is identical to (I) with the exchange in the roles of u and p. We hence

obtain a bound

(II) ≤ Ch2k‖θ‖Wk+1,4(Ω)‖u‖Hk+1(Ω)‖p‖Hk+1(Ω),

which again is the desired O(h2k) bound.

We now analyze (III). To begin, we split the term into three parts:

(III) =

∫
Ω

(Ke(u− uh) : e(p)) div θdx+

∫
Ω

(Ke(u) : e(p− ph)) div θdx

−
∫

Ω

(Ke(u− uh) : e(p− ph)) div θdx := (III.1) + (III.2) + (III.3).

To bound (III.1), we again use a duality trick. To this end, we introduce y ∈ U(Ω) such that∫
Ω

e(y) : Ke(v)dx =

∫
Ω

Ke(v) : e(p) div θdx ∀v ∈ U(Ω). (20)

15



The strong form of the problem is

−div(Ke(y)) = − div(Ke(p) div θ) in Ω,

with homogeneous boundary conditions on ΓD and ΓN . The forcing function is bounded by

‖ div(Ke(p) div θ)‖Wk−1,2(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω). Since the forcing term is in W k−1,2(Ω), by the

elliptic regularity estimate (Assumption 3), y ∈ Hk+1(Ω)d and ‖y‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω). It

hence follows that

(III.1) =

∣∣∣∣∫
Ω

(Ke(u− uh) : e(p)) div θdx

∣∣∣∣ =

∣∣∣∣∫
Ω

e(y) : Ke(u− uh)dx

∣∣∣∣
=

∣∣∣∣∫
Ω

e(y − Ihy) : Ke(u− uh)dx

∣∣∣∣ ≤ C ‖u− uh‖H1(Ω) ‖y − Ihy‖H1(Ω)

≤ C ′h2k ‖θ‖Wk+1,4(Ω) ‖p‖Hk+1(Ω) ‖u‖Hk+1(Ω) ,

where the second equality follows from the definition of y and the fact u−uh ∈ U(Ω), the third equality follows

from Galerkin orthogonality, the first inequality follows from the continuity of a(·, ·), and the last inequality

follows from the finite element error bound (Lemma 7) and the interpolation error bound (Lemma 6 under

‖y‖Hk+1(Ω) ≤ C‖θ‖Wk+1,4(Ω)‖p‖Hk+1(Ω)).

The procedure used to bound (III.2) is identical to (III.1) with the exchange in the roles of u and p. We

hence obtain (III.2) ≤ Ch2k ‖θ‖Wk+1,4(Ω) ‖p‖Hk+1(Ω) ‖u‖Hk+1(Ω).

To bound (III.3), we observe

(III.3) =

∣∣∣∣∫
Ω

(Ke(u− uh) : e(p− ph)) div θdx

∣∣∣∣ ≤ ‖θ‖W 1,∞(Ω)

∣∣∣∣∫
Ω

(Ke(u− uh) : e(p− ph)) div θdx

∣∣∣∣
≤ C ‖θ‖W 1,∞(Ω) ‖u− uh‖H1(Ω) ‖p− ph‖H1(Ω) ≤ C

′h2k ‖θ‖Wk+1,4(Ω) ‖u‖Hk+1(Ω) ‖p‖Hk+1(Ω) ,

where the first equality follows from Hölder’s inequality, the second inequality follows from the continuity

of a(·, ·), and the last inequality follows from the finite element error bound (Lemma 7) and the Sobolev

embedding W k+1,4(Ω) ⊂W 1,∞(Ω).

We combine the bounds for (III.1), (III.2), and (III.3) to obtain

(III) ≤ Ch2k ‖θ‖Wk+1,4(Ω) ‖p‖Hk+1(Ω) ‖u‖Hk+1(Ω) ,

which is the desired O(h2k) bound.

We next analyze (IV) and (V), again using a duality trick. We introduce q ∈ U(Ω) such that∫
Ω

e(q) : Ke(v)dx =

∫
Ω

jv · v div θdx ∀v ∈ U(Ω).

The strong form of the problem is

−div(Ke(q)) = jv div θ in Ω
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with homogeneous boundary conditions on ΓD and ΓN . The forcing function is bounded by

‖jv div θ‖Wk−1,2(Ω) ≤ C‖jv‖Wk−1,4(Ω)‖θ‖Wk,4(Ω). Since the forcing term is in W k−1,2(Ω), by the elliptic

regularity estimate (Assumption 3), q ∈ Hk+1(Ω)d and ‖q‖Hk+1(Ω) ≤ C‖θ‖Wk,4(Ω)‖jv‖Wk−1,4(Ω). We ob-

serve that

(IV) =

∣∣∣∣∫
Ω

(jv · (u− uh)) div θdx

∣∣∣∣ =

∣∣∣∣∫
Ω

e(q) : Ke(u− uh)dx

∣∣∣∣
=

∣∣∣∣∫
Ω

e(q − Ihq) : Ke(u− uh)dx

∣∣∣∣ ≤ C‖u− uh‖H1(Ω)‖q − Ihq‖H1(Ω)

≤ C ′h2k‖jv‖Wk−1,4(Ω)‖θ‖Wk,4(Ω)‖u‖Hk+1(Ω),

where the second equality follows from the definition of q and the fact u−uh ∈ U(Ω), the third equality follows

from Galerkin orthogonality, the first inequality follows from the continuity of a(·, ·), and the last inequality

follows from the finite element error bound (Lemma 7) and the interpolation error bound (Lemma 6 under

‖q‖Hk+1(Ω) ≤ C‖θ‖Wk,4(Ω)‖jv‖Wk−1,4(Ω)).

The procedure used to bound (V) is identical to (IV) with jv and div θ replaced by ∂xjv and θ, re-

spectively. We hence obtain (V) ≤ Ch2k‖jv‖Wk,4(Ω)‖θ‖Wk−1,4(Ω)‖u‖Hk+1(Ω). The procedure used to bound

(VI) and (VII) are identical to (IV) and (V), respectively, with jv, ∂xjv, and u replaced by f , ∂xf , and p,

respectively.

We combine the bounds for (I)–(VII) to obtain the desired O(h2k) bound.

4.3. Boundary-based shape derivative

We now present an a priori error analysis of the finite element approximation of the boundary-based

shape derivative. Our analysis for the degree-k finite element approximation of linear elasticity problems

again follows closely the analysis for the piecewise linear finite element approximation of Poisson’s equation

by Hiptmair et al. [16].

In order to provide a bound for the boundary-based shape derivative, we first make an additional as-

sumption:

Assumption 5. In the linear elasticity problem (2), we assume that Ω, f , g, jv, and jb are sufficiently

regular such that the finite element approximations of the solution u and the adjoint p satisfy, for any

q ∈ (1,∞],

‖u− uh‖W 1,q(Ω) < Chk|u|Wk+1,q(Ω),

‖p− ph‖W 1,q(Ω) < Chk|p|Wk+1,q(Ω),

where C is a constant, independent of u, p, and h. Moreover, we assume that there exists a constant C ′ <∞

such that ‖uh‖W 1,q(Ω) ≤ C ′‖u‖W 1,q(Ω) and ‖ph‖W 1,q(Ω) ≤ C ′‖p‖W 1,q(Ω).
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Remark 9. Assumption 5 holds for sufficiently regular elliptic problems. See for example [10, Corollary

3.23].

We now state the main result:

Theorem 10. Let u ∈ U(Ω) and p ∈ U(Ω) be the solutions to (1) and (5), respectively, and uh ∈ Uh(Ω)

and ph ∈ Uh(Ω) be the associated finite element approximations defined in Assumption 2. Then under

Assumptions 2–5,

|dJ(Ω; θ)− dJBdry
h (Ω; θ)| ≤ Chk‖θ · n‖L∞(∂Ω),

where dJBdry
h (Ω; ·) is the finite element approximation of the boundary-based shape derivative (6), and C is

a constant independent of h.

Proof. We first appeal to the definition of the boundary-based shape derivative (6), invoke Hölder’s inequal-

ity, and use the triangle inequality to split the error as

|dJ(Ω; θ)− dJBdry
h (Ω; θ)|

≤
∣∣∣∣∫

ΓN

(jv · u− jv · uh)θ · nds

∣∣∣∣+

∣∣∣∣∫
ΓN

(−p · f + ph · f)θ · nds

∣∣∣∣+

∣∣∣∣∫
ΓN

(Ke(u) : e(p)−Ke(uh) : e(ph))θ · nds

∣∣∣∣
:= (I) + (II) + (III) (21)

We bound (I) by noting that

(I) =

∣∣∣∣∫
ΓN

(jv · (u− uh))θ · nds

∣∣∣∣ ≤ ‖θ · n‖L∞(ΓN )‖jv‖L1(ΓN )‖u− uh‖L∞(ΓN )

≤ Chk‖θ · n‖L∞(ΓN )‖jv‖L1(ΓN )|u|Wk,∞(Ω),

where the first inequality follows from Hölder’s inequality, and the second inequality follows from Assump-

tion 5. The procedure to bound (II) is identical to (I) with jv and u replaced by f and p, respectively.

A bound for (III) is given by

(III) =

∣∣∣∣∫
ΓN

(Ke(uh) : e(p− ph) +Ke(p) : e(u− uh))θ · nds
∣∣∣∣

≤ C‖θ · n‖L∞(ΓN )(‖uh‖W 1,1(ΓN )‖p− ph‖W 1,∞(ΓN ) + ‖p‖W 1,1(ΓN )‖u− uh‖W 1,∞(ΓN ))

≤ C ′hk‖θ · n‖L∞(ΓN )(‖u‖W 1,1(ΓN )|p|Wk+1,∞(Ω) + ‖p‖W 1,1(ΓN )|u|Wk+1,∞(Ω)),

where the first inequality follows from Hölder’s inequality, and the second inequality follows from Assump-

tion 5. The combination of the bounds for (I)–(III) yields the desired O(hk) error bound.

Remark 11. Recent work by Gong and Zhu [14] shows that, for scalar elliptic problems in a sufficiently

regular domain, correction terms can be added to the boundary-based shape derivative to achieve 2k-th order

accuracy. However, the formulation requires domain regularity that may not be observed in practical linear

elasticity optimization problems.
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4.4. Error analysis of the Riesz representation θ ∈ V(D)

Having analyzed the errors in the finite element approximation of the shape derivatives dJVol
h (Ω; ·) and

dJBdry
h (Ω; ·), we now analyze the error in their Riesz representation θ? ∈ V(D) given by (10). The finite

element approximation of the Riesz representation is given by θh ∈ Vh(D) such that

(θ?h, ξh)V = −dJVol/Bdry
h (Ω; ξh) ∀ξh ∈ Vh(D), (22)

where Vh(D) is the piecewise degree-k polynomial approximation of V(D). Our analysis for linear elasticity

problems follows closely the analysis for piecewise linear finite element approximations of Poisson’s equation

by Paganini and Hiptmair [23].

The following lemma provides a decomposition of the error ‖θ? − θ?h‖V .

Lemma 12. Let θ? ∈ V(D) and θ?h ∈ Vh(D) be the solutions to (10) and (22), respectively. Then

‖θ? − θ?h‖V ≡ 2 inf
θh∈Vh(D)

‖θ? − θh‖V + sup
θh∈Vh(D)

|dJ(Ω; θh)− dJVol/Bdry
h (Ω; θh)|

‖θh‖V
(23)

Proof. The result follows from Strang’s first lemma [10, Lemma 2.27].

The first term of (23) is the best-fit error, which can be bounded using standard polynomial approxima-

tion theory. To bound the second term, we provide error bounds for dJVol
h and dJBdry

h when θ ∈ H1(Ω)d

(which is equivalent to V(Ω)) in the next two lemmas.

Lemma 13. Let u ∈ U(Ω) and p ∈ U(Ω) be the solutions to (1) and (5), respectively, and uh ∈ Uh(Ω)

and ph ∈ Uh(Ω) be the associated finite element approximations defined in Assumption 2. Then under

Assumptions 2–5 and assuming θ ∈ H1(Ω)d, f ∈W 1,4(Ω), and jv ∈W 1,4(Ω),

|dJ(Ω; θ)− dJVol
h (Ω; θ)| ≤ Chk‖θ‖H1(Ω).

Proof. To begin, we decompose |dJ(Ω; θ) − dJVol
h (Ω; θ)| into terms (I)–(VII) identified in (19) in the proof

of Theorem 8. We will bound the seven terms in order.

To bound (I), we note that

(I) :=

∣∣∣∣∫
Ω

(DuTKe(p)−DuThKe(ph)) : Dθdx

∣∣∣∣
=

∣∣∣∣∫
Ω

((D(u− uh))TKe(p) +DuThKe(p− ph)) : Dθdx

∣∣∣∣
≤ C(‖u− uh‖W 1,4(Ω)‖p‖W 1,4(Ω) + ‖uh‖W 1,4(Ω)‖p− ph‖W 1,4(Ω))|θ|H1(Ω)

≤ Chk(|u|Wk+1,4(Ω)‖p‖W 1,4(Ω) + ‖u‖W 1,4(Ω)|p|Wk+1,4(Ω))|θ|H1(Ω),

where the first inequality follows from Hölder’s inequality, and the last inequality follows from Assumption 5.

We use the same procedure to bound (II) and (III); we find both terms are bounded by the same expression.
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To bound (IV), we note that

(IV) :=

∣∣∣∣∫
Ω

(jv · (u− uh))div(θ)dx

∣∣∣∣ ≤ ‖jv‖L4(Ω)‖u− uh‖L4(Ω)|θ|H1(Ω)

≤ Chk+1‖jv‖L4(Ω)|u|Wk+1,4(Ω)|θ|H1(Ω),

where the first inequality follows from Hölder’s inequality, and the last inequality follows from Assump-

tion 5. We bound (VI) using the same procedure, with f and p replacing jv and u, respectively, to find

(VI) ≤ Chk+1‖f‖L4(Ω)|p|Wk+1,4(Ω)|θ|H1(Ω).

To bound (V), we note that

(V) :=

∣∣∣∣∫
Ω

((∂xjv) · (u− uh)) · θdx
∣∣∣∣ ≤ |jv|W 1,4(Ω)‖u− uh‖L4(Ω)‖θ‖L2(Ω)

≤ Chk+1|jv|W 1,4(Ω)|u|Wk,4(Ω)|θ|H1(Ω),

where the first inequality follows from Hölder’s inequality, and the last inequality follows from Assumption 5

and the Poincaré-Friedrichs inequality. We bound (VII) using the same procedure, with f and p replacing

jv and u, respectively, to find (VII) ≤ Chk+1|f |W 1,4(Ω)|p|Wk,4(Ω)|θ|H1(Ω). The combination of the bounds

for (I)–(VII) yields the desired result.

Lemma 14. Let u ∈ U(Ω) and p ∈ U(Ω) be the solutions to (1) and (5), and uh ∈ Uh(Ω) and ph ∈ Uh(Ω)

be the associated finite element approximations defined in Assumption 2. Then under Assumptions 2–5 and

assuming θ ∈ H1(Ω)d, f ∈W 1,4(Ω), and jv ∈W 1,4(Ω),

|dJ(Ω; θ)− dJBdry
h (Ω; θ)| ≤ Chk‖θ‖H1(Ω).

Proof. To begin, we decompose |dJ(Ω; θ)− dJBdry
h (Ω; θ)| into terms (I)–(III) identified in (21) in the proof

of Theorem 10. We will bound the three terms in order.

To bound (I), we observe

(I) =

∣∣∣∣∫
ΓN

(jv · (u− uh))θ · nds

∣∣∣∣ ≤ ‖θ · n‖L2(ΓN )‖jv‖L2(ΓN )‖u− uh‖L∞(ΓN )

≤ Chk‖θ‖H1(Ω)‖jv‖L2(ΓN )|u|Wk,∞(Ω),

where the first inequality follows from Hölder’s inequality, and the second inequality follows from Assump-

tion 5 and the trace inequality. We bound (II) using the same procedure with jv and u replaced by f and

p, respectively. To bound (III), we observe

(III) =

∣∣∣∣∫
ΓN

(Ke(uh) : e(p− ph) +Ke(p) : e(u− uh))θ · nds
∣∣∣∣

≤ C‖θ · n‖L2(ΓN )(‖uh‖W 1,2(ΓN )‖p− ph‖W 1,∞(ΓN ) + ‖p‖W 1,2(ΓN )‖u− uh‖W 1,∞(ΓN ))

≤ C ′hk‖θ‖H1(Ω)(‖u‖W 1,2(ΓN )|p|Wk+1,∞(Ω) + ‖p‖W 1,2(ΓN )|u|Wk+1,∞(Ω)),
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where the first inequality follows from Hölder’s inequality, and the second inequality follows from Assump-

tion 5 and the trace inequality. The combination of the bounds for (I)–(III) yields the desired bound.

The combination of Lemmas 12, 13, and 14 yield the following error bound for θ?h.

Theorem 15. Let θ? ∈ V(D) and θ?h ∈ Vh(D) be the solutions to (10) and (22), respectively, for the

volumetric shape derivative dJVol(·, ·). If θ ∈ Hk+1(D) and the assumptions of Lemma 13 hold, the error is

bounded by

‖θ? − θ?h‖V ≤ Chk.

The same result holds for the boundary-based shape derivative dJBdry(·, ·) if the assumptions of Lemma 14

hold.

Proof. We begin with Lemma 12,

‖θ? − θ?h‖V ≡ 2 inf
θh∈Vh(D)

‖θ? − θh‖V + sup
θh∈Vh(D)

|dJ(Ω; θh)− dJh(Ω; θh)|
‖θh‖V

:= (I) + (II).

The term (I) is bounded by

(I) ≤ C inf
θh∈Vh(D)

‖θ? − θh‖H1(Ω) ≤ C|θ?|Hk+1(Ω),

where the first inequality follows from the equivalence of ‖ · ‖V and ‖ · ‖H1(Ω), and the second inequality

follows from the polynomial approximation result for θ? ∈ Hk+1(Ω). To bound (II), we appeal to Lemmas 13

and 14 for dJVol
h (·; ·) and JBdry

h (·; ·), respectively, to obtain (II) ≤ Chk.

Theorem 15 shows that the descent direction θ?h associated with both the volumetric and boundary-based

shape derivatives converge as hk in the V norm. However, Zhu et al. [31] has shown that, for scalar eigenvalue

problems, the L2(Ω) norm of the error in the volumetric descent direction converges as hk+1. We present

an extension of the analysis in [31] to linear elasticity problems. To begin, we assume that the following Lq

error estimates hold for the state and adjoint:

Assumption 6. In the linear elasticity problem (2), we assume that Ω, f , g, jv, and jb are sufficiently

regular such that the finite element approximations of the solution u and the adjoint p satisfy, for any

q ∈ (1,∞],

‖u− uh‖Lq(Ω) < Chk+1|u|Wk+1,q(Ω),

‖p− ph‖Lq(Ω) < Chk+1|p|Wk+1,q(Ω),

where C is a constant, independent of u, p, and h.

Remark 16. Assumption 6 holds for sufficiently regular elliptic problems. See for example [10, Proposition

3.24].
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We next introduce the following lemma:

Lemma 17. Let u ∈ U(Ω) and p ∈ U(Ω) be the solutions to (1) and (5), respectively, and uh ∈ Uh(Ω)

and ph ∈ Uh(Ω) be the associated finite element approximations defined in Assumption 2. Then under

Assumptions 2–6 and assuming θ ∈ H2(Ω)d, f ∈W 1,4(Ω), and jv ∈W 1,4(Ω),

|dJ(Ω; θ)− dJh(Ω; θ)| ≤ Chk+1‖θ‖H2(Ω).

Proof. The proof closely follows the proof of Lemma 13, under the additional assumption (Assumption 6).

To begin, we split (I) in the proof of Lemma 13 into two terms:

(I) :=

∣∣∣∣∫
Ω

(DuTKe(p)−DuThKe(ph)) : Dθdx

∣∣∣∣ =

∣∣∣∣∫
Ω

((D(u− uh))TKe(p) +DuThKe(p− ph)) : Dθdx

∣∣∣∣
≤
∣∣∣∣∫

Ω

((D(u− uh))TKe(p)) : Dθdx

∣∣∣∣+

∣∣∣∣∫
Ω

(DuThKe(p− ph)) : Dθdx

∣∣∣∣ := (I.1) + (I.2).

To bound (I.1), we observe

(I.1) =

∣∣∣∣∫
∂Ω

(u− uh)TK(e(p))D(θ · n)ds−
∫

Ω

(u− uh)c(Da(Ke(p))cb)(Dθ)abdx

−
∫

Ω

(u− uh)TKe(p)D(div(θ))dx

∣∣∣∣
≤ C‖u− uh‖L∞(Ω)(‖p‖H1(∂Ω) + ‖p‖W 2,2(Ω))‖θ‖H2(Ω),

where the first equality follows from integration by parts, and the inequality follows from the successive

application of the Hölder’s inequality and the application of the trace theorem to the boundary term.

Note that we express the contraction of a third-order tensor using the index notation. We then invoke

Assumption 6 to obtain

(I.1) ≤ Chk+1|u|Wk+1,∞(Ω)(‖p‖H1(∂Ω) + ‖p‖W 2,2(Ω))‖θ‖H2(Ω).

We use an analogous procedure to bound (I.2) to obtain (I) ≤ Chk+1‖θ‖H2(Ω).

We repeat the procedure for (II) and (III) in Lemma 13 to obtain (II) ≤ Chk+1‖θ‖H2(Ω) and (III) ≤

Chk+1‖θ‖H2(Ω). To bound (IV)–(VII) in Lemma 13 by Chk+1, we simply note that |θ|H1(Ω) ≤ ‖θ‖H2(Ω).

Theorem 18. Under the assumptions of Theorem 15 and Lemma 17, the error in θ?h ∈ Vh(D) is bounded

by

‖θ? − θ?h‖L2 ≤ Chk+1.

Proof. To begin, we introduce θ̃ ∈ V(D) such that

(θ̃, ξ)V = −dJh(Ω; ξ) ∀ξ ∈ V(D).
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We then invoke the triangle inequality to decompose the error as

‖θ? − θ?h‖L2(D) ≤ ‖θ? − θ̃‖L2(D) + ‖θ̃ − θ?h‖L2(D) := (I) + (II).

To bound (I), we appeal to the Aubin-Nitsche trick [3] and Lemma 17. To begin, we introduce y ∈ V(D)

such that

(y, ξ)V = (θ? − θ̃, ξ)L2(D) ∀ξ ∈ V(D).

We then observe that

‖θ? − θ̃‖2L2(D) = (y, θ? − θ̃)V = |dJ(Ω; y)− dJh(Ω; y)| ≤ Chk+1‖y‖H2(D),

where the first equality follows from the definition of y, the second equality follows from the definition of

θ? and θ̃, and the inequality follows from Lemma 17. We invoke the elliptic regularity estimate ‖y‖H2(D) ≤

C‖θ? − θ̃‖L2(D) to obtain

(I) = ‖θ? − θ̃‖L2(D) ≤ Chk+1,

which is the desired bound for (I).

To bound (II), we again appeal to the Aubin-Nitsche trick. To begin, we introduce z ∈ V(D) such that

(z, ξ)V = (θ̃ − θ?h, ξ)L2(D) ∀ξ ∈ V(D).

We then observe

‖θ̃ − θ?h‖2L2(D) = (z, θ̃ − θ?h)V = (z − Ihz, θ̃ − θ?h)V ≤ ‖z − Ihz‖V‖θ̃ − θ?h‖V ≤ Ch‖z‖H2(D)‖θ̃ − θ?h‖V ,

where the first equality follows from the definition of z, the second equality follows from Galerkin orthog-

onality, the third equality follows from Cauchy-Schwarz, and the inequality follows from the interpolation

error bound. We again invoke elliptic regularity estimate ‖z‖H2(Ω) ≤ C‖θ̃ − θ?h‖L2(D) to obtain

(II) = ‖θ̃ − θ?h‖L2(D) ≤ Ch‖θ̃ − θ?h‖V ≤ Ch‖θ? − θ?h‖V + Ch‖θ? − θ̃‖V := (II.1) + (II.2).

To bound (II.1), we appeal to Theorem 15 to obtain ‖θ? − θ?h‖V ≤ Chk. To bound (II.2), we note that

‖θ? − θ̃‖2V = (θ? − θ̃, θ? − θ̃)V = |dJ(Ω; θ? − θ̃)− dJh(Ω; θ? − θ̃)| ≤ Chk‖θ? − θ̃‖H1(Ω),

where the second equality follows from the definition of θ? and θ̃, and the inequality follows from Lemma 13.

Since ‖ · ‖V and ‖ · ‖H1(Ω) are equivalent, ‖θ? − θ̃‖V ≤ Chk. We combine the bounds for (II.1) and (II.2) to

obtain (II) ≤ Chk+1, which is the desired result.

Theorem 18 shows that, under suitable regularity assumptions, the descent direction associated with

the volumetric shape derivative converges as hk+1 in the L2(D) norm. We are unable to obtain a similar

result for the boundary-based derivative; we will numerically validate the lower convergence rate of the

boundary-based shape derivative in Section 5.1.
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4.5. Remarks

Theorems 8 and 10 provide a priori error estimates for the linear finite element approximation of the

volumetric shape derivative (8) and boundary-based shape derivative (7), respectively. We first observe

that, for a sufficiently regular problem, the volumetric shape derivative is 2k-th order accurate, while the

boundary-based shape derivative is only k-th order accurate. In practice, the higher-order accuracy of the

volumetric shape derivative implies that a coarser finite element mesh may be used to provide a shape

derivative of a similar quality, which leads to a reduction in the computational cost. We also note that

the level-set representation and the linear (k = 1) finite element approximation used in typical topology

optimization are both second-order accurate in ‖ · ‖L2(Ω), and hence the error in the linear finite element

approximation of the volumetric shape derivative converges at the same rate as the level-set representation.

Lemma 12 shows the error in the shape gradient θ consists of two terms: the best-fit error and consistency

error. The choice of the shape derivative affects the latter. Theorem 15 shows that, in terms of the asymptotic

convergence rate in ‖ · ‖V (which is equivalent to ‖ · ‖H1(D)), both the volumetric and boundary-based shape

gradients are k-th order accurate. However, Lemma 18 shows that the volumetric shape gradient converges

as hk+1 in ‖ · ‖L2(D). A numerical example in Section 5.1 will confirm that the volumetric shape gradient

converges more rapidly than the boundary-based shape gradient in ‖ · ‖L2(D) for some problems.

Comparing the expressions for the volumetric shape derivative (8) and boundary-based shape deriva-

tives (6), we also note that the former requires the finite element approximations uh and ph to be in H1(Ω)

whereas the latter requires the approximations to be in H2(Ω). In addition to the finite element approx-

imations of the solution fields, the boundary of the structure Ω only requires Lipschitz continuity for the

volumetric shape derivative (8), whereas the boundary-based shape derivative (6) requires the boundary of

Ω be C2 regular. These regularity requirements for the boundary-based shape derivatives are not strictly

satisfied by the approximations based on linear finite elements and, as noted in [9, Chapter 1, Section 5],

could “lead to serious computational errors.”

5. Numerical results

5.1. Verification of shape derivative convergence rate

We first verify the convergence behavior predicted by Theorems 8 and 10 using two numerical examples.

The first example assesses the convergence of various polynomial degree finite element approximations for

idealized, smooth solutions. The second example assesses the convergence for less regular solutions, which

typically arise in topology optimization.

For the first example, we generate a smooth solution using the method of manufactured solutions. We
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Figure 1: Convergence of shape derivatives for k = 1, 2, 3 finite element approximations for the smooth manufactured problem.

consider the unit square domain Ω ≡ (0, 1)2 and the manufactured solution

uexact(x ≡ (x1, x2)) =

ex1x2 sin(πx1) sin(πx2)

0

 , (24)

which results from choosing f = −div(Ke(uexact)) and setting the homogeneous Dirichlet boundary condi-

tions on all boundaries, i.e. ΓD = ∂Ω and ΓN = ∅. The compliance objective function is J(Ω) :=
∫

Ω
f · udx.

As the evaluation of the true worst-case convergence rate of the shape derivative over all possible direc-

tions θ ∈W 1,∞(Ω)2 is challenging, we follow the methods used by Hiptmair et al. [16] and restrict θ to the

(vector-valued) cubic polynomial space P3(Ω)2. Specifically, we measure the convergence in the approximate

dual norm

E
Vol/Bdry
h :=

(
max

θ∈P3(Ω)2

1

‖θ‖2H1(Ω)

∣∣∣dJ(Ω; θ)− dJVol/Bdry
h (Ω; θ)

∣∣∣2)1/2

. (25)

The “true” value of dJ(Ω; θ) is obtained on a sufficiently refined mesh. This error-evaluation problem

can be cast as an eigenproblem through a Rayleigh-quotient-like interpretation [16]. Namely, we first

introduce a basis {θr}m:=20
r=1 for the (vector-valued) cubic polynomial space P3(Ω)2. We then solve the

eigenproblem vAv = λMv, where A := zzT for a vector z =
(
dJ (Ω; θr)− dJVol/Bdry

h (Ω; θr)
)m
r=1

, and

M = ((θi, θj)H1(Ω))
m
i,j=1. The square root of the largest eigenvalue is the error given by the expression (25).

Figure 1 shows the error convergence behavior for the volumetric and boundary-based shape derivatives

for this problem with smooth manufactured solution. We consider finite element polynomial degrees of

k = 1, 2, 3. As predicted by Theorems 8 and 10, the errors in volumetric and boundary-shape derivatives

are O(h2k) and O(hk), respectively.

For the second example, we consider a cantilever beam problem, shown in Figure 2a; the cantilever is a

unit square Ω ≡ (0, 1)2. The beam is fixed on the left end, and is uniformly loaded on the right end over
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Figure 2: Cantilever problem: problem description and convergence for linear finite element approximation.

the interval (0.45, 0.55). We consider the compliance objective function J(Ω) :=
∫
∂Ω
g · uds. Compliance

minimization of a cantilever beam subjected to traction loading is chosen as it is a standard test case within

topology optimization literature.

Figure 2b shows the error convergence behavior for the volumetric and boundary-based shape derivatives

for the cantilever problem using linear finite elements. The volumetric and boundary-based shape derivatives

numerically observed convergence rates are in agreement with our theoretical analysis, stated in Theorems 8

and 10. In addition, the volumetric shape derivative is significantly more accurate than the boundary-based

derivative even on a coarse mesh.

In addition to validating the convergence rates of the shape derivative θ, we also verify the effects of

the extension and smoothing step on the descent direction, θ?, predicted by Theorems 15 and 18. To

demonstrate the convergence rates of the descent directions associated with the volumetric and boundary-

based shape derivatives, we again consider the example problem with the manufactured solution (24). The

convergence of the descent direction error is measured in the H1 norm and L2 norm: i.e., ‖θ? − θ?h‖H1(Ω)

and ‖θ?−θ?h‖L2(Ω). The “true” value of θ? is obtained on a sufficiently refined mesh, for both the volumetric

and boundary-based descent directions.

Figure 3 shows the H1 error for the volumetric and boundary-based descent directions for this problem

with a smooth manufactured solution. We consider finite element polynomial degrees of k = 1, 2, 3. The

error in the smooth descent direction is O(hk) in the H1 norm, which is in agreement with Theorem 15.

Similarly, Figure 4 shows the L2 error for the volumetric and boundary-based descent directions. We observe

that the L2 error is O(hk+1) for the volumetric descent direction, which is consistent with Theorem 18. On

the other hand, the L2 error is O(hk) for the boundary-based descent direction. Volumetric descent direction

achieves higher convergence rates and is more accurate for the same mesh resolution in practice. It should
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Figure 3: Convergence of the H1 error of the descent direction, θ?, for k = 1, 2, 3 finite element approximations for the smooth

manufactured problem.

be noted that the boundary-based and volumetric descent directions converge toward different values, due

to the insufficient regularity of the domain Ω.

5.2. Topology optimization comparison

We now assess the practical impact of the choice of the shape derivative expressions on topology optimiza-

tion. The volumetric shape derivative implementation uses the shape derivative (9), the descent direction

extension (10), and the advection equation update step (11). The boundary-based shape derivative imple-

mentation uses the shape derivative (12), the descent direction extension (13), and the Hamilton-Jacobi

equation update step (14). Our goal is to assess the robustness of the topology optimization procedure with

respect to three different algorithm parameters that appear in Algorithm 1 described in Section 3.4:

1. Descent direction extension. We vary the behavior of the descent direction extension (10) and (13) by

changing the parameter α from 10−2 to 102. A lower value of α results in a smoother extension, but

may result in the loss of fine-scale features.

2. Level-set evolution time step. We vary the time step ∆t used to evolve the level set function using (11)

and (14) from 1 to 16 CFL unit. The design evolves more rapidly for a larger ∆t, but may result in

oscillatory convergence due to overshoot.

3. Level-set reinitialization interval. We consider algorithms with and without level set initialization

by (15). As discussed in Section 3.4, the level-set loses the signed-distance property and may become

too flat or steep without reinitialization.

We will refer to the numerical studies associated with the impact of the above three parameters as Case

Study 1, 2, and 3, respectively. Ideally, the topology optimization algorithm should be robust with respect
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Figure 4: Convergence of the L2 error of the descent direction, θ?, for k = 1, 2, 3 finite element approximations for the smooth

manufactured problem.

to changes in these algorithm parameters that are often defined by the user in an ad-hoc manner.

All of the Case Studies are conducted using an implementation based on the FEniCS topology optimiza-

tion code by Laurain [18]. A finite element approximation with linear elements is used for the linear elasticity

equations, the shape derivative, and the descent direction. The default parameters are those implemented

in the original FEniCS code: a smoothing parameter of α = 0.1; the nominal evolution step time step of

∆t = 10 CFL; and the level-set reinitialization interval of 5 iterations. The ersatz material method is used,

with a ersatz material value of ε = 10−3. In Case Studies 1 and 3, we use a simple line search algorithm to

adjust the nominal time step: in each level-set update step, the algorithm starts with the nominal ∆t of 10

CFL, checks if the value of the objective function J(Ω) has decreased, and, if not, reduces the timestep by a

factor of 0.8 until J(Ω) decreases (i.e., tries ∆t, 0.8∆t, 0.82∆t, and 0.83∆t). If the objective function J(Ω)

does not decrease for the update associated with 0.83∆t, it still accepts the update, reduces the nominal

timestep by 0.8 for the next iteration, and continues with the optimization procedure. In Case Study 2, we

use a fixed ∆t without a line search.

Throughout this section, we consider a variant of the cantilever problem shown in Figures 2a extended

to Ω ≡ (0, 2)× (0, 1) with a volume-penalized compliance function

J(Ω) =

∫
Ω

g · udx+ λV (Ω) (26)

for λ = 50. The finite element mesh contains 150× 75 nodes. The initial design and final optimized design

for the cantilever beam problem are shown in Figure 5; the volumetric and boundary-based shape derivatives

yield visually indistinguishable structures.

Remark 19. The boundary-based shape derivative implementation uses ersatz material and the “natural
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Figure 5: Initial and final optimized structure for cantilever optimization problem.
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Figure 6: Case Study 1: the effect of descent direction smoothing parameter α on topology optimization.

extension” descent direction (12). As discussed in Section 3.5, these techniques introduce error in the

numerical approximation of the solution u and the shape derivative dJBdry; however, in practice, they

provide (arguably favorable) smoothing of the descent direction when performing topology optimization.

Case Study 1. We vary the behavior of the descent-direction extension (10) by changing α from 10−2

to 102. Figure 6 shows the result of the study. We observe that the algorithm based on the volumetric

shape derivative is robust across a wide range of smoothing parameter values, producing similar results for

each α. The boundary-based shape derivative is more sensitive to the choice of the smoothing parameter α,

resulting in suboptimal results for all except α = 0.1.

Case Study 2. We vary the fixed time step ∆t used to evolve the level set function using (11) from 1 to

16 CFL unit. (Recall that, unlike the other case studies, we do not use line search in this case.) Figure 7

shows the result of the study. The algorithm based on the volumetric shape derivative converges to the same

design, with exception of the ∆t = 16 CFL case for which the solution oscillates around the optimal design.

The main difference in the ∆t ∈ [1, 8] CFL cases is the rate of convergence to the optimal solution. The

29



0 25 50 75 100 125 150
Iteration Number

100

110

120

130

140

150

J(
)

T = 1 CFL
T = 2 CFL
T = 4 CFL
T = 8 CFL
T = 16 CFL

(a) Volumetric shape derivative

0 25 50 75 100 125 150
Iteration Number

100

110

120

130

140

150

J(
)

(b) Boundary-based shape derivative

Figure 7: Case Study 2: the effect of level-set evolution time step ∆t on topology optimization.

cases with a higher ∆t exhibit more rapid convergence in the beginning but is more prone to oscillations.

The algorithm based on the boundary-based shape derivative exhibits very different behaviors. For

∆t ∈ [1, 2] CFL, the objective function decreases steadily but takes many iterations to reach the optimal

design; the ∆t = 1 CFL is not fully converged even after 150 iterations. For a larger ∆t, the algorithm fails

to converge and the objective function oscillates significantly.

Case Study 3. We consider the optimization algorithm with and without level-set reinitialization us-

ing (15). Figure 8 shows the result of the study. We observe that the algorithm based on the volumetric

shape derivatives converges to the same solution regardless of whether we reinitialize or not; however, the

algorithm with reinitialization exhibits a more stable convergence behavior. On the other hand, the algo-

rithm based on the boundary-based shape derivative does not converge without reinitialization; in fact the

objective function starts to increase after 30 iterations.

In summary, Case Studies 1–3 show that algorithms based on the volumetric shape derivative are more

robust than the boundary-based shape derivative, with less sensitivity to user defined optimization param-

eters, more often converging to optimal designs, and with faster convergence. Hence, the volumetric shape

derivative exhibits not only theoretical advantages as discussed in Section 4 but also practical advantages

in topology optimization.

6. Conclusion

In this work, we studied the theoretical and practical impact of using boundary-based shape derivative

and volumetric shape derivative in level-set-based topology optimization of linear elasticity systems. The

analyses in Section 4 show that, for sufficiently regular problems, degree-k polynomial finite element ap-

proximations of the boundary-based and volumetric shape derivatives converge as hk and h2k, respectively.
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Figure 8: Case Study 3: the effect of level-set reinitialization on topology optimization.

Moreover, the decent directions based on the boundary-based shape derivative converge as hk in both H1

and L2 norms, whereas those based on the volumetric shape derivatives converge as hk and hk+1 in the H1

and L2 norm, respectively. The numerical verification cases in Section 5 confirmed the predicted convergence

rates of the shape derivatives and the descent directions. In a series of more practical numerical studies,

topology optimization algorithms based on volumetric shape derivative exhibited faster convergence and

less sensitivity to user-defined parameters. Both the theoretical analyses and numerical results suggest that,

while currently not as widely used, volumetric shape derivative has the potential to significantly improve the

efficiency and robustness of topology optimization algorithms, and it must be considered as a competitive

alternative to boundary-based derivative.

Appendix A. Derivation of the boundary-based shape derivatives

We follow [1] to derive the boundary-based shape derivative for the first part of the linear objective

functional (3) under the regularity assumptions stated in Section 3.2. To begin, we define the Lagrangian

L(Ω, ·, ·) : H2(Ω)d ×H2(Ω)d → R such that

L(Ω, v, q) :=

∫
Ω

jv · vdx+

∫
ΓN

jb · vds+

∫
Ω

Ke(v) : e(q)dx−
∫

Ω

q · fds

−
∫

ΓN

q · gds−
∫

ΓD

(q ·Ke(v)n+ v ·Ke(q)n)ds ∀v, q ∈ H2(Ω)d.
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We next seek the stationary point of the Lagrangian: find (u, p) ∈ H2(Ω)d ×H2(Ω)d such that

〈∂qL(Ω, u, p), φ〉 =−
∫

Ω

φ · (div(Ke(u)) + f)dx+

∫
ΓN

φ · ((Ke(u))n− g)ds

−
∫

ΓD

u ·Ke(φ)nds = 0 ∀φ ∈ H2(Ω)d,

〈∂vL(Ω, u, p), φ〉 =

∫
Ω

(jv − div(Ke(p))) · φdx+

∫
ΓN

φ · (Ke(p)n+ jb) ds

−
∫

ΓD

p ·Ke(φ)nds ∀φ ∈ H2(Ω)d,

where 〈·, ·〉 is the duality pairing in H2(Ω)d, u is the solution to the linear elasticity problem (2) and p is

the solution to the adjoint problem (5). Given the stationary point (u, p), the shape derivative is given by

dJ(Ω; θ) = 〈∂ΩL(Ω, u, p), θ〉 (A.1)

=

∫
∂Ω

θ · n(jv · u+Ke(u) : e(p)− p · f)ds

+

∫
∂Ω

θ · n
(
∂(jb · u)

∂n
+Mjb · u

)
ds

−
∫

ΓN

θ · n
(
∂(g · p)
∂n

+Mg · p
)

ds−
∫

ΓD

θ · n
(
∂h

∂n
+Mh

)
ds,

where h := u ·Ke(p)n + p ·Ke(u)n. We recall that M is the curvature of ∂Ω, which may be expressed as

M = div n for n = ∇φ/‖∇φ‖. We appeal to u = p = 0 on ΓD to obtain (6).

Appendix B. Derivation of the volumetric shape derivatives

We derive the volumetric shape derivative expressions using the averaged adjoint method following [21,

18]. We first derive the volumetric shape derivative of the volume penalty V (Ω) :=
∫

Ω
dx. We define the

pseudo-time-parametrized volume and use change of variables to obtain

V (Ωt) :=

∫
Ωt

1dx =

∫
Ω

ξ(t)dx,

where ξ(t) := det(DΦθt ), and we recall that Ωt = Φθt (Ω). Since ξ′(0) = d
dtdet(DΦθt )|t=0 = div θ, the shape

derivative simplifies to

dV Vol(Ω; θ) =

∫
Ω

div θdx.

We next derive a volumetric shape derivative expression for the compliance functional. To this end, we

first introduce the PDE-constrained optimization problem on the transformed domain Ωt:

min
Ωt⊂D

J(Ωt) =

∫
Ωt

jv · ut dx+

∫
ΓN,t≡ΓN

jb · utds+ λV (Ωt), (B.1)

subject to

∫
Ωt

Ke(ut) : e(v)dx =

∫
Ωt

f · vdx+

∫
ΓN,t≡ΓN

g · vds ∀v ∈ U(Ωt),
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where ut : Ωt → Rd is the solution in the transformed domain Ωt. Note that we have ΓN,t ≡ ΓN on the

traction boundary and output boundary because by Assumption 1 these boundaries are fixed; i.e., Φθt = I

on ΓN .

We now recast the problem on Ω. To this end, we introduce ut : Ω → Rd given by ut := ut ◦ Φθt . The

transformed problem is given by

min
Ωt⊂D

J(Ωt) =

∫
Ω

(jv ◦ Φθt ) · utξ(t)dx+

∫
ΓN

jb · utds+ λV (Ωt),

subject to

∫
Ω

KE(t, ut) : E(t, v)ξ(t)dx =

∫
Ω

(f ◦ Φθt ) · vξ(t)dx+

∫
ΓN

g · vds ∀v ∈ U(Ωt),

where E(t, ut) := e(ut) ◦Φθt = ((Dut)(DΦθt )
−1 + (DΦθt )

−T (Dut)T )/2 is the strain tensor in Ωt expressed in

Ω. We define the associated Lagrangian G : [0, τ ]× U(Ω)× U(Ω)→ R such that

G(t, ϕ, ψ) :=

∫
Ω

(jv ◦ Φθt ) · ϕξ(t)dx+

∫
ΓN

jb · ϕds+

∫
Ω

KE(t, ϕ) : E(t, ψ)ξ(t)dx

−
∫

Ω

(f ◦ Φθt ) · ψξ(t)dx−
∫

ΓN

g · ψds ∀ϕ,ψ ∈ U(Ω).

Since ut by definition satisfies the linear elasticity equation recast on Ω, we have J(Ωt) = G(t, ut, ψ) for all

ψ ∈ H1
d(Ω)d. Hence the shape derivative may be expressed as

dJ(Ω; θ) =
d

dt
(G(t, ut, ψ))|t=0 = ∂tG(0, u0, p0), (B.2)

where p0 ∈ U(Ω) is the adjoint

〈∂ϕG(0, u, p), ϕ̂〉 =

∫
Ω

Ke(p0) : e(ϕ̂)dx+

∫
Ω

jv · ϕ̂dx+

∫
ΓN

jb · ϕ̂ds = 0 ∀ϕ̂ ∈ U(Ω);

note that the transformed equation at t = 0 simplifies because Φ0 = I, E(0, v) = e(v), and ξ(0) = 1, and

hence the equation is the same as the adjoint equation (5) introduced earlier. More explicitly (B.2) evaluates

to

dJ(Ω; θ) =

∫
Ω

(∂jv · u) · θdx+

∫
Ω

jv · udiv θdx−
∫

Ω

(∂f · p) · θdx−
∫

Ω

f · p div θdx

+

∫
Ω

(K∂tE(0, u) : E(0, p) +KE(0, u) : ∂tE(0, p)) dx+

∫
Ω

KE(0, u) : E(0, p) div θdx

= −1

2

∫
Ω

DuT (Ke(p) + (Ke(p))T ) : Dθdx− 1

2

∫
Ω

DpT (Ke(u) + (Ke(u))T ) : Dθdx

+

∫
Ω

Ke(u) : e(p) div θdx+

∫
Ω

(∂xjv · u) · θdx+

∫
Ω

jv · udiv θdx

−
∫

Ω

(∂xf · p) · θdx−
∫

Ω

f · p div θdx,

where the second equality follows from ∂tE(0, v) = (−(Dv)(Dθ)− (Dθ)T (Dv)T )/2 and E(0, v) = e(v), and

we recall ∂xjv and ∂xf are the spatial gradients of jv and f , respectively. We finally appeal to the symmetry

of K to obtain the volumetric shape derivative (8).
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