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ABSTRACT
We present and assess a method to reduce the computational cost of performing
ensemble-based data assimilation (DA) for reacting flows in multiple-query scenar-
ios, i.e. scenarios where multiple simulations are performed on systems with similar
underlying dynamics. The accuracy of the DA, which depends on the accuracy of the
sample covariance, improves with the ensemble size, but so does its computational
cost. To reduce the ensemble size while maintaining accurate covariance, we propose
a data-driven approach to augment the covariance based on the statistical behavior
learned from previous model evaluations. We assess our augmentation method us-
ing one-dimensional model problems and a two-dimensional synthetic reacting flow
problem. We show in all these cases that ensemble size, and thus computational
cost, may be reduced by a factor of three to four while maintaining accuracy.

KEYWORDS
Data assimilation; ensemble Kalman filter; data-driven modeling; reacting flow;
multiple-query scenario.

1. Introduction

With few exceptions, e.g. [1, 2], the interface between combustion experiments and simu-
lations typically has occurred either through design of ‘clean’ experimental apparatuses
that are suitable for simulation validation, alignment of boundary conditions, and a
posteriori comparison of statistical quantities. Although such interactions continue to
be invaluable, the availability of dynamical (time-resolved) simulation and experimental
data have the potential to enable new forms of interaction through data assimilation
(DA). For example, data from high-fidelity time-resolved laser diagnostics may be used
in a DA framework to adjust the evolution of large eddy simulations (LES) in order
to better replicate an experiment and identify modeling challenges [1]. On the other
hand, one may envision reduced order models of a combustor — perhaps even real-time
digital twins [3] — that are meant to rapidly predict short-horizon behaviors being in-
formed from relatively low fidelity sensors. This paper presents a method to reduce the
computational cost of ensemble-based DA in the context of multiple-query scenarios —
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when multiple (or long duration) simulations of a particular system are performed —
through improved estimation of model covariance with low ensemble size.

Data assimilation seeks to incorporate experimental data into a mathematical model
of the system of interest (in this case, a reacting flow) to estimate the system state or
model parameters. DA solves for the estimate by weighing the uncertainty associated
with the model and experimental data, finding a compromise that minimizes error in
the estimate and is therefore most consistent with reality. In DA, we model the state
estimate at a particular time t as a random field. This state random field is propagated
forward in time in a two-step process. The first step is the forecast step, which utilizes
a process model to produce a model-based prediction of the state random field at a
future time t + ∆t, where ∆t is the observation period. The second step is the analysis
step, which applies a correction to this state estimate based on experimental observation
data. To recognize when a state estimate is discrepant with observation data, we use
an observation model which estimates the observation data that would be produced by
a given state. Now that we have a state estimate at time t + ∆t based on observation
data up to time t+∆t, we move forward another increment ∆t and repeat this two-step
process.

DA is commonly used in meteorology, in particular numerical weather prediction
(NWP), where sophisticated atmospheric models benefit from correction by sparse
weather station data. The variational methods of 3dVar and 4dVar were commonly
used historically [4, 5]; however, ensemble-based DA has seen increasing use over the
past decade [6, 7]. This newer approach to DA [6–9] leverages increases in computational
power to model the state random field in a Monte-Carlo fashion, i.e., with an ensem-
ble of states that are propagated forward in time together. The prototypical example
of this approach is the ensemble Kalman filter (EnKF) [10], which uses the ensemble
representation to generalize the classical Kalman filter, allowing it to be applied to
large-scale, nonlinear problems. In the forecast step, the EnKF propagates an ensem-
ble of states forward in time by applying the process model to each ensemble member.
In the analysis step, the EnKF weighs the uncertainties associated with the forecast
estimate and observation data, and then applies an appropriate correction to the fore-
cast estimate, obtaining the analysis estimate. The uncertainty is quantified using the
sample covariance of the forecast ensemble and the known a priori covariance of noise
in the observation data. Nevertheless, for complicated dynamical systems, as in atmo-
spheric models, the ensemble size required to accurately represent the state mean and
covariance can easily exceed 100 [6]. This proportionally increases computational cost,
as each additional ensemble member requires another evaluation of the process model.

There exist two broad categories of methods that aid in resolving the state covariance,
especially for a small ensemble size: inflation [9, 11] and localization [9, 12]. For a small
ensemble size, the EnKF has a tendency to underestimate uncertainty in the estimate,
leading the ensemble to converge towards the mean. Inflation increases the variance
directly by spreading samples about the mean by a factor, making it more likely that
the true state is within the confidence region. Localization is an alternative approach
that suppresses spurious long-distance correlations by imposing a correlation length.
There exist common practices to estimate the inflation factor [9]; however, estimating
the correlation length requires some prior knowledge of the system. This is feasible in
NWP where extensive literature is available [13–16], however not all systems are as
well-characterized.

Though the application of DA to NWP is long-established, its application to reacting
flow is still a recent development. Edwards et al. [17, 18] applied variational methods
to an LES for two scenarios: a 2D hydrogen-air reaction and a 3D scramjet combustor.
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Gao et al. [19] applied an EnKF, modified to preserve conservation and nonnegativity in
the state estimate, to several test problems including a simple combustion simulation.
Gray et al. [20] applied variational techniques to assess a shock-focusing geometry for a
pulse detonation combustor for gas turbines, obtaining a refined numerical model that
provided more detailed information than experimental data alone. Labahn et al. [1]
applied the EnKF to a turbulent jet exhausting into a stationary fluid. Another study
by Labahn et al. [21] applied the EnKF to a non-premixed turbulent flame, serving as
a proof of concept for turbulent combustion as a whole. Yu et al. [22] applied the EnKF
to a reduced-order model of a premixed flame to not only correct the state estimate, but
to also correct model parameters, making the reduced-order model more accurate even
without observation data. Yu et al. [23] used similar techniques to develop a reduced-
order model for a ducted premixed flame.

All of the above works focus on DA for a single configuration; however, in prac-
tice, we often encounter multiple-query scenarios, in which we wish to solve a family
of closely-related problems. This family may contain many different but closely re-
lated configurations [24], or it may contain a single configuration undergoing relatively
slow changes in operating conditions, as in the digital twin configuration [3]. Whereas
multiple-query problems are, by definition, more expensive than single-query problems,
they also present an opportunity to reduce the marginal computational cost of each
additional analysis by reusing the information gathered in previous analyses. To our
knowledge, no published research has specifically considered strategies to improve the
computational efficiency of DA in multiple-query scenarios.

The objective of this work is to reduce the cost of ensemble-based DA with an empha-
sis on multiple-query scenarios and on applications to reacting flows. We achieve this
with a data-driven method for estimating the covariance, which we term augmenta-
tion, where information from statistically-resolved ‘training’ runs is retained and drawn
upon in subsequent under-resolved runs. This statistical information characterizes the
system and reduces the required ensemble size and hence the computational cost, while
maintaining a desired level of accuracy in multiple-query scenarios. Moreover, unlike
the aforementioned covariance modification techniques of inflation and localization, our
data-driven approach does not rely on the user’s prior knowledge of the system. This
makes it suitable for reacting flow applications where prior knowledge may be limited.

We assess our augmentation method using two model problems based on the Lorenz
96 (L96) model – a simplified atmospheric model commonly used as a DA test prob-
lem [25] – and the Kuramoto-Sivashinsky (KS) equation, which models instabilities in
laminar flame fronts and exhibits oscillatory and chaotic solutions [26–28]. The KS equa-
tion is derived from the species diffusion equation and the heat conduction equation in
the limit of a large activation energy (i.e., the reaction rate strongly depends on tem-
perature) and the Lewis number of near unity. We also assess our method with a case
of simulated reacting flow, which we perform with an LES model with simplified chem-
istry. These are observing-systems simulation experiments (OSSEs), meaning that the
‘ground truth’ reference solution and the pseudo-observation data are both produced
artificially [29]. Although the use of OSSEs admittedly masks some challenges associ-
ated with DA using real-world data, it allows us to quantitatively assess the accuracy
of DA techniques against the known ground truth. We finally assess augmentation’s
ability to reduce the necessary ensemble size, and hence computational cost.

In Section 2, we discuss our OSSE methodology, in particular the ensemble DA tech-
nique and covariance estimation techniques considered. In Section 3, we discuss our
proposed framework for covariance augmentation. In Section 4, we apply all covariance
estimation techniques discussed to two model problems and assess the error and uncer-
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tainty estimates. In Section 5, we apply augmentation to a reacting flow problem and
assess the error and uncertainty estimates. Finally, in Section 6, we summarize our work
and discuss its limitations.

2. Methodology

2.1. Problem Definition

We first introduce a ‘ground truth’ (or reference) solution {u1, . . . , unt} associated with
the observation time instances {t1, . . . , tnt}, where nt is the number of observation time
instances. To this end, we start with an initial state vector u0. We then propagate the
initial state forward from one observation time to the next using the process model,
which takes the form

uk = G (uk−1) (1)

for a nonlinear operator G (·). In practice, a single application of the operator G (·)
represents many successive time steps of a numerical time integrator. The process model
may include a noise term to represent model inadequacy; however, in this work, we
assume that the process model is exact.

Given the ground truth solution, we generate the associated observation data
{yobs

1 , . . . , yobs
nt
}. We do this by applying the observation model to the ground truth,

which takes the form

yobs
k = H (uk) + rk, (2)

for a nonlinear operator H (·) and Gaussian noise rk ∼ N (0, R) with the covariance
R. The operator H (·) models, for instance, the acquisition of PIV data associated with
the ground-truth LES state. The noise term models uncertainties in the measurements.

2.2. Ensemble DA

Ensemble DA techniques represent the state estimate and associated uncertainty in a
Monte-Carlo fashion using an ensemble of states {uj}nen

j=1. However, unlike a particle
filter [30], the EnKF assumes that the state distribution is Gaussian. The Gaussian
probability distribution is represented fully with the mean and covariance, which en-
semble DA estimates with the sample mean and sample covariance of the ensemble. In
general, the ensemble is initialized based on prior knowledge of the state distribution.
For our OSSEs, the initial ensemble members are drawn randomly from the history of
the ground truth

{uk1 , uk2 , . . . , uknen}, k1, . . . , knen ∼ U{1, . . . , nt} (3)

where U{·} is the discrete uniform distribution. This ensures that the ensemble members
are both physically plausible and, assuming the solution is unsteady, poorly converged.
It is important for the initial condition to be physically plausible because some process
models, especially for complex problems like the reacting flow in Section 5, may be
very sensitive to whether the initial condition is nonphysical. If it is, then the forecast
step may fail to propagate the state forward in time. Drawing the initial ensemble from
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the ground truth ensures that the first forecast step is always successful, allowing a
more straightforward comparison of error and uncertainty estimates between runs. The
task of the filter therefore is to converge the ensemble around the ground truth and
subsequently ‘track’ the ground truth, preventing error growth.

The ensemble DA technique used in this work is the ensemble transform Kalman
filter (ETKF) from Bishop et al. [31]. Like the original ensemble Kalman filter (EnKF)
from Evensen [10], and indeed all recursive DA techniques, the ETKF propagates a
state forward in time via a two-step process, which we briefly summarize here.

To begin, suppose we are given an ensemble uj
k−1|k−1, j = 1, . . . , nen. The notation

uj
k−1|k−1 indicates that the j-th ensemble member is associated with the state estimate

at time step k−1 given observation data up to time step k−1. In the k-th forecast step, we
apply the process model (1) to each ensemble member to produce the forecast estimate
of the state uj

k|k−1 = G
(
uj

k−1|k−1

)
, j = 1, . . . , nen. The notation uj

k|k−1 indicates that
the j-th forecast estimate ensemble member is associated with the state estimate at
time step k given observation data up to time step k − 1. We estimate the forecast
covariance Ck|k−1 using the sample covariance of the ensemble,

Ck|k−1 = 1
nen − 1

nen∑
j=1

(uj
k|k−1 − uk|k−1)(uj

k|k−1 − uk|k−1)T , (4)

where uk|k−1 denotes the forecast ensemble mean. To rewrite (4) without the summation,
we define the ensemble matrix Uk|k−1 =

[
u1

k|k−1, . . . , unen
k|k−1

]
and obtain

Ck|k−1 = 1
nen − 1Ũk|k−1ŨT

k|k−1, (5)

where Ũk|k−1 = Uk|k−1 −Uk|k−1 and Uk|k−1 =
[

uk|k−1, . . . , uk|k−1
]
.

In the analysis step, we incorporate the pseudo-observation data yobs
k to refine

our forecast estimate. We apply a linear update to the ensemble mean uk|k =
uk|k−1 + Kk

(
yobs

k −H
(
uk|k−1

))
and transform the ensemble deviation matrix Ũk|k =

Ũk|k−1T1/2
k to produce the analysis estimate of the state. The Kalman gain Kk is given

by

Kk = Ck|k−1HT
(
HCk|k−1HT + R

)−1
, (6)

where H is the linearized observation model. The Kalman gain Kk depends on the
uncertainty associated with each source of information, i.e., the forecast covariance
Ck|k−1 and the observation covariance R, and it can be shown that the gain minimizes
the mean square error in the analysis estimate if both the process model and observation
model are linear. There is some approximation in this formulation of the Kalman gain
for nonlinear models, but it can still be computed.

2.3. Impact of the Ensemble Size on Covariance Estimation

Because the forecast covariance Ck|k−1 is used to calculate the Kalman gain Kk, ac-
curately resolving the covariance is critical to the filter’s performance. The ensemble
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(a) Ensemble size 6, under-resolved (b) Ensemble size 64, well-resolved

Figure 1.: Examples of sample covariance matrices from ETKF applied to the KS equa-
tion. This colour map is a visualization of the values in the covariance.

size required to accurately estimate the covariance depends on the number of dominant
modes in the system, or, more precisely, the rate of decay of the eigenvalues of the
underlying ‘true’ covariance; a ‘true’ covariance with many significant eigenmodes will
require a larger ensemble size.

Figure 1 shows examples of a well-resolved and an under-resolved sample covariance.
These are obtained from applying the ETKF to the KS equation, one of the model prob-
lems considered in Section 4. The 64 × 64 sample covariance matrices in this example
are obtained from the forecast ensemble at the final DA time step. The rank-limited
approximation in Figure 1a contains spurious cross-correlation terms and underesti-
mates the magnitude of most variance terms along the diagonal. In practice, this leads
to an underestimated covariance; i.e., the spread of the ensemble is much smaller than
the error in the state estimate. The underestimated covariance causes two problems:
it can mislead the user to trust incorrect state estimates, and the state becomes resis-
tant to correction in the analysis step of the filter. Section 4.3 provides a more detailed
discussion of how ensemble size impacts ETKF performance for this example problem.

One should note that the linear correction applied by the analysis step lies in the
subspace formed by the forecast ensemble. An extreme case of undersized ensemble
is where the covariance is zero in most directions, increasing the likelihood that the
desired update cannot be applied. When an ETKF is applied to a problem with complex
dynamics and the ensemble size is several orders of magnitude smaller than the state
dimension, this is a plausible occurrence.

2.4. Techniques to Improve Covariance Estimation

To avoid the consequences of an under-resolved sample covariance, there exist three
broad categories of techniques to improve covariance estimation: adaptive ensemble
sizing, covariance inflation, and covariance localization.

Adaptive ensemble sizing methods estimate the ensemble size required to sufficiently
capture the system dynamics. If it determines the ensemble is not appropriately sized, it
adds or removes members as necessary. Uzunoglu et al. [32] present an example of such
a technique, which uses the decay of Shannon entropy in the eigenmodes of the ensemble
covariance to determine whether the ensemble is undersized, oversized, or appropriately
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sized.
Covariance inflation seeks to prevent false convergence of the ensemble members by

spreading the ensemble members from the mean, increasing the covariance. Inflation
requires an ‘inflation factor’ by which to spread the distribution, which may be fixed or
estimated adaptively [9, 33]. An example adaptive inflation method by Anderson [11]
maintains the ensemble spread before and after the analysis update.

Covariance localization seeks to suppress spurious correlation terms in the sample
covariance by imposing a limiting correlation length appropriate to the system. Using
this correlation length, apparent long-distance correlations may be suppressed. Local-
ization may be performed by applying an elementwise mask to the forecast covariance,
thus diminishing cross-correlation terms corresponding to spatially-distant nodes [12].

Inflation and localization utilize prior understanding about the system under con-
sideration and are limited in their ability to artificially resolve the forecast covariance.
Inflation requires one to estimate the degree to which the covariance is underestimated,
and, because it is a rank-preserving operation on the forecast covariance, unrepresented
eigenmodes are not accounted for. In the absence of prior understanding, there are com-
mon practices to estimate the inflation factor [9]; however, localization requires one to
estimate the correlation length, which depends on the dynamics of the system. For the
atmospheric models used in meteorology, this has been studied extensively in existing
literature [13, 14]. For other problems, however, prior understanding of the system is
more limited, making it more difficult to estimate a reasonable correlation length and
apply localization.

3. Covariance Augmentation

The novel method proposed in this work is covariance augmentation, which takes a
data-driven approach to improve forecast covariance estimation in a two-phase process.

(1) A generating run performs the DA with an ensemble of the size nen that is large
enough to resolve the sample covariance. Information from this generating run is
retained in a library of distributions, each of which is represented by an ensemble.

(2) Subsequent augmented runs perform the DA using a combination of two ensem-
bles: an (undersized) ‘natural ensemble’ of the size nen

′ < nen, which is used in
both forecast and analysis steps; an ‘artificial ensemble’, which augments the ‘nat-
ural ensemble’ in the analysis step (only) to improve the quality of the sample
covariance and is drawn from an appropriate distribution selected from the library
produced in the generating run.

Covariance augmentation is designed for multiple-query scenarios. Under normal cir-
cumstances, the computational cost scales linearly with nf , the number of scenarios
considered. If we assume that the evaluation of the process model in the forecast step
is much more costly than the state update in the analysis step, then the runtime com-
plexity is O (nennf ) for nf EnKF runs of a fixed nen.

When we apply our filter to many similar scenarios, each generating run further
‘trains’ our statistical model of the system. This statistical model aims to capture all
forecast covariances that the dynamical system may exhibit, informing the selection of
artificial members. The more accurate this statistical model, the more that augmented
runs may rely on the artificial members and reduce the natural ensemble size nen. For
a given level of accuracy, the complexity of a multiple-query problem is now O(nen

′nf ),
where nen

′ < nen is the size of the natural ensemble.
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Augmentation is a general framework for training an ensemble filter with model-
specific data, allowing it to reduce its natural ensemble size, and thus computational
cost, while retaining accurate performance. Ours is only one potential realization of this
framework. If we are given a library of all possible distributions of model state and a
procedure to choose the most appropriate distribution from the library, then the ideal
augmented ensemble would almost perfectly mimic a well-resolved ensemble, leading to
very little difference between well-informed augmentation and a large natural ensemble.
In practice, augmentation’s performance is determined by

(1) The classification scheme that matches a natural forecast ensemble to the appro-
priate distribution from the library, and

(2) The training strategy that produces the library of distributions using generating
runs.

3.1. Generating Runs

The generating run is an unaugmented evaluation of the EnKF that produces a library
of nB background covariance matrices B = {B1, B2, . . . , BnB

}. This background
library is used in later evaluations to augment the natural ensemble, improving forecast
covariance estimation. The ensemble size in a generating run must therefore be large
enough to ensure that the sample covariance is statistically converged.

To introduce the idea of background library in the simplest setting, consider the case
of a background library with a single covariance matrix B. From each time step, we
retain the ensemble deviation matrix Ũk|k−1, forming the background ensemble

W̃ =
[

Ũ1|0 . . . Ũk|k−1 . . . Ũnt|nt−1

]
, (7)

which is then used to estimate the background covariance

B = 1
nenB − 1W̃W̃T , (8)

for nenB = ntnen background ensemble members. This produces a ‘long-exposure’ back-
ground distribution which retains and emphasizes (statistically) steady behaviour.

In many physical systems however, the statistical behaviour can be highly unsteady.
So rather than only one background, our augmentation method generates and draws
from the library of nB backgrounds. The structure of a generating run with nB = 3
backgrounds is illustrated in Figure 2. For each time step, the natural ensemble is classi-
fied into one of the backgrounds in the library. It is then appended to the corresponding
background ensemble

W̃ℓ ←
[

W̃ℓ Ũk|k−1

]
, (9)

which leads to an updated background covariance Bℓ = 1
nenB−1W̃ℓW̃T

ℓ . As the number of
forecast ensembles in each background increases, the backgrounds yield a comprehensive
library of nB statistical regimes for the system. The classification scheme we use is
detailed in Section 3.3.

Once all ensemble states from the generating run are clustered into nB backgrounds,
we refine the background clustering by applying a naive k-means clustering algorithm to
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Forecast

Analysis

Uk|k−1

Uk|k

k → k + 1

Classify Add
to B2

Add
to B1

Add
to B3

Figure 2.: A background-generating run

the background library. The ensembles are clustered into Voronoi cells, which minimizes
variance between forecast ensembles within each background, providing a statistical
regime classification given the forecast ensembles from the generating run.

3.2. Augmented Runs

The augmented run is an evaluation of the EnKF where the forecast ensemble is aug-
mented with artificial members Uartk

drawn from a steady distribution

Uartk
∼ N

(
uk|k−1, Bℓ

)
, (10)

where the background covariance Bℓ is selected from a library B = {Bℓ}nB

ℓ=1 using a
classification scheme as discussed in Section 3.3. We then form an augmented forecast
ensemble matrix from the natural and artificial members,

Uk|k−1 ←
[

Uk|k−1 Uartk

]
. (11)

This augmented ensemble is used in place of the natural ensemble to calculate the
Kalman gain in the analysis step. Assuming the artificial ensemble Uartk

is appropriately
chosen, the augmentation allows the natural ensemble Uk|k−1 to be smaller than that
required to statistically resolve the forecast covariance, reducing computational cost.
The structure of an augmented run with nB = 3 backgrounds is illustrated in Figure 3.

Although the ability to update the background distribution library using forecast
ensembles from an augmented run on-the-fly would be attractive in practice, we do not
consider this here. Because the background distributions are used to form the augmented
forecast ensemble and this, in turn, affects the convergence of natural ensemble members,
any new training data that may be obtained from an augmented run is not independent
of the information already present in the background library. This would introduce
a potential source of bias in our library of background covariances. For our current
implementation, generating runs and augmented runs are therefore mutually exclusive.
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Classify
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Figure 3.: An augmented run

3.3. Background Classification

The classification scheme takes a deviation forecast ensemble Ũk|k−1, which has covari-
ance Ck|k−1, and finds its best match from a library of backgrounds B. A classification
scheme is required in two scenarios. In the generating run, each forecast ensemble must
be sorted among a library of backgrounds. The ensemble is then appended to the match-
ing background ensemble. In augmented runs, the (statistically under-resolved) forecast
ensemble must be matched to the appropriate statistically-resolved background. Artifi-
cial members are then sampled from this background.

This poses a statistical regime classification problem, which depends on two aspects
of the generating or augmented run. The first is the particular trajectory of the ground
truth, which determines the actual underlying flow regimes. The second is the uncer-
tainty in the forecast ensemble, which depends on the initial conditions and the ob-
servation model. Because of this, two forecast ensembles that correspond to the same
underlying ground truth may still have very different distributions.

We use the Wasserstein metric as the measure of distance between distributions. The
Wasserstein metric is chosen for two reasons: (i) its stability with low-rank distributions,
unlike e.g. the popular Kullback-Leibler divergence; (ii) it can be computed efficiently
when the covariances admit low-rank decompositions. The metric has also been used
successfully in the past in reacting flow regime classification [34]. When applied to two
zero-mean Gaussian distributions with covariances Bℓ and Ck|k−1, the (square of the)
Wasserstein distance is

d2
ℓ = tr

(
Ck|k−1 + Bℓ − 2

(
C1/2

k|k−1BℓC1/2
k|k−1

)1/2
)

. (12)

In practice, we do not explicitly form the matrices and instead leverage the low-rank
decompositions of Ck|k−1 and Bℓ to efficiently evaluate the distance. We classify Ck|k−1
by matching it to the background Bℓ with the smallest Wasserstein distance. This is
illustrated in Figure 4 for an example library of nB = 3 backgrounds.
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B2

B1

B3

d2
2 = 6.8

d2
1 = 2.1

d2
3 = 10.1

Figure 4.: Finding the Wasserstein distance d2
ℓ to each background covariance in B

3.4. Training Strategy

The training strategy is how we design the generating run or runs such that the re-
sulting background library captures the relevant statistical behaviour for subsequent
augmented runs. We wish to choose the generating runs such that they produce all
forecast covariances necessary for the planned augmented runs.

As discussed in Section 3.3, the background ensemble and the forecast ensemble must
match in two characteristics: the physical state (i.e., mean) and the uncertainty (i.e.,
covariance). A generating run whose state estimate is converged about the true solution
for most of its simulation time mostly captures only the low-uncertainty statistical
regimes. For an augmented run whose time domain is wholly contained within the
generating run’s time domain, the large-uncertainty augmentation needed early in the
filter run is unlikely to be well-matched by any background in the library. A preferable
training strategy may be to perform many shorter generating runs, capturing a range
of uncertainties for each time instance.

Covariance augmentation is a machine learning technique, and therefore the training
strategy is critical to the method’s performance. Computational cost is high for training,
so we require an intelligent sampling method that minimizes the up-front cost and makes
augmentation more useful for smaller multiple-query problems. We however have not
performed a detailed study of training strategy in this work, but recommend it as a
focus for future research. The strategies that we use are discussed in Sections 4 and 5.

4. Model Test Problems

In this section we apply our DA techniques to two model OSSEs. We follow the proce-
dure detailed in Section 2.1:

(1) Evaluate the process model (1) for the full time interval under consideration to
generate the ground truth reference solution uk, k ∈ {1, . . . , nt}, against which
we compare the ETKF estimate.

(2) Apply the observation model (2) to the ground truth to obtain the pseudo-
observations yobs

k , k ∈ {1, . . . , nt}.
(3) Generate an initial ensemble as per (3) in Section 2.2.
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(a) t = 0 (b) t = 1 (c) t = 2

Figure 5.: Reference solution for L96 problem

(4) Apply the ETKF with any covariance modification techniques of interest.
(5) Assess the error and uncertainty in the ETKF state estimate.

Because the process and observation models, which are used to generate the reference
solution and observation data, are also used in the forecast and analysis steps of the
filter, there is no inherent model deficiency. The error and uncertainty in the state
estimate is solely due to the uncertainty in the initial condition.

4.1. Problem Definitions

The two model problems, L96 and KS, are used to assess the overall statistical behaviour
of different methods. The problems are chosen because they are computationally inex-
pensive while still exhibiting behaviour of interest, including chaotic behaviour (for
both) and either weak (for L96) or strong (for KS) correlation over long distances. As
discussed in Section 1, the KS equation is derived from a simplification of reacting-flow
equations [26–28], serving as a stepping stone between simple model problems and full
reacting flow simulation.

4.1.1. Lorenz 96 Model
The L96 model is a system of first-order nonlinear ODEs

dui

dt
= (ui+1 − ui−2) ui−1 − ui + F, i = 1, . . . , nu, (13)

which is a (significantly) simplified atmospheric model [25] that is commonly used to
assess DA methods [33]. The three terms on the right hand side of (13) model advection,
dissipation, and external forcing respectively. Following Lorenz [25], we use the model
parameters nu = 36 and F = 8, which is known to produce chaotic behaviour. The time
interval is [0, 2]. We enforce a periodic boundary condition and the initial condition of
ui,k=0 = F for all i except nu/2, where ui=nu/2,k=0 = F +0.01. We solve the ODEs using
an adaptive-order backward differentiation formula (BDF) method with a relative error
tolerance of 0.1%. The reference solution to this problem is shown in Figure 5.

We use a linear observation model H which consists of ny = 12 observation nodes
clustered into four evenly spaced groups of three; i.e., the observed elements of the state
vector are at indices i ∈ {1, 2, 3, 10, 11, 12, 19, 20, 21, 28, 29, 30}. The analysis update
therefore relies on local cross-correlation terms to correct the state estimate in the
regions between observation nodes. We use a short observation period of ∆t = 0.003.

The state in L96 is only weakly correlated over long distances, but strongly correlated
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(a) t = 0 (b) t = 30 (c) t = 60

Figure 6.: Reference solution for KS problem

locally. This implies that the forecast covariance will likely be diagonally-dominant, and
the eigenvalues decay slowly. A covariance estimate based on a small ensemble size is
therefore missing significant eigenmodes.

4.1.2. KS Equation
The KS equation is a fourth-order nonlinear PDE

∂u

∂t
= −∂4u

∂x4 −
∂2u

∂x2 − u
∂u

∂x
, (14)

which, as discussed in Section 1, models instabilities in laminar flame fronts and ex-
hibits chaotic behaviour [26–28]. The fourth-derivative term provides damping in small
scales, the second-derivative term destabilizes large scales, and the nonlinear transport
term transfers energy between the two scales. We consider the time interval [0, 60] and
the spatial domain [0, 16π]. We enforce a periodic boundary condition and the initial
condition is

u(x, t = 0) = 5 cos
(

x

8

) (
1 + sin

(
x

8

))
. (15)

We discretize the KS equation in space using second-order centered difference ap-
proximations on the grid with nu = 128 nodes, so that ∆x = π/8. The semi-discrete
solution is given by ui(t), i = 1, . . . , 128. We then solve the semi-discrete equation using
an adaptive-order BDF method, with a relative error tolerance of 0.1%.

As with L96, a linear observation model is used with ny = 12 observation nodes
clustered into four evenly spaced groups of three; i.e., the observed elements of the state
vector are at indices i ∈ {1, 2, 3, 33, 34, 35, 65, 66, 67, 97, 98, 99}. The observation period
is ∆t = 0.3.

The ground truth reference solution is presented in Figure 6. After an initial transient
period, the solution settles into a (statistically) steady behaviour with ‘source’ and ‘sink’
terms roughly at x = 12π (i.e., i = 96) and at x = 4π (i.e., i = 32), respectively. The
waves have a mostly uniform wavelength and velocity. This leads to significant long-
distance correlation over the state.

4.2. Assessment Procedure

We use two metrics to assess the filter performance: error and uncertainty. In problems
with a state that is a discinuous function over a domain Ω, the error over time ϵk, k ∈
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[1, nt], is calculated by taking the L2 norm over the domain Ω of the error between the
ensemble mean and the ground truth solution,

ϵk =

√√√√√∫
Ω

(
uk − uk|k

)2
dx∫

Ω u2
kdx

, (16)

and the uncertainty σk, k ∈ [1, nt], is defined analogously in terms of the variance in
the distribution,

σk =

√√√√∫
Ω var

(
uk|k

)
dx∫

Ω u2
kdx

. (17)

In practice, given finite state vector u at grid points, we approximate the integrals with a
quadrature rule. We take the error and uncertainty values at the final time step, ϵnt and
σnt respectively, to assess the DA performance. When the ensemble size is sufficiently
large, we can consider an ensemble filter to be ‘well-resolved.’ We identify this as the
ensemble size where the error and uncertainty have reached their respective asymptotic
limits.

4.3. Baseline Performance

To assess the baseline performance of an unaugmented ETKF, we apply the ETKF to
each of the model problems described in Section 4.1. We use a wide range of ensemble
sizes appropriate to each model problem to characterize the ETKF performance and to
find the required ensemble size to reach the asymptotic limits for error and uncertainty.

We take a moment now to discuss the figures used to present the results. An example is
Figure 7, which shows the probability distributions p(ϵ|nen) and p(σ|nen) over ensemble
size nen. These are empirical distributions constructed from repeated evaluations of
the ETKF. The trace in each plot represents the mean of the distribution at a given
ensemble size. The shaded colourbars represent the probability density function, as
found by kernel density estimation. The x-axis of these plots is scaled quadratically;
this is because estimating the mean of a normal distribution using the sample mean has
a standard error that scales as nen

−1/2.
The baseline results for L96 are shown in Figures 7a and 7b. A large ensemble size

relative to the state size is required to attain the asymptotic behaviour, which suggests
that the eigenvalues of the covariance decay slowly. The uncertainty is underestimated
only at the very small ensemble size of 4, and the mean uncertainty very quickly reaches
the asymptotic value of 10−3.4 around ensemble size 9. At this ensemble size the error
only begins to decrease, discinuing until it reaches the same limiting value of 10−3.4

around ensemble size 36. This shows that resolving the distribution requires much more
than spreading the ensemble members, suggesting that inflation is not appropriate. For
L96, we consider the ETKF ‘well-resolved’ at ensemble size 64.

The baseline results for the KS equation are shown in Figures 7c and 7d. Uncer-
tainty in this case maintains a relatively consistent mean of around 10−3.25, though
the spread converges with larger ensemble size. As with L96, the error mean decreases
with increasing ensemble size; however, unlike L96, the distribution is almost exclusively
bimodal. The same bimodal distribution is not present in the uncertainty, suggesting
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(a) L96 Error (b) L96 Uncertainty

(c) KS Error (d) KS Uncertainty

Figure 7.: Distributions of error and uncertainty for the ETKF applied to model prob-
lems

that the ensemble (falsely) converges about its mean regardless of whether it is track-
ing the true solution. A larger ensemble size allows it to more reliably track the true
solution; this shift is mostly made between ensemble size 25 and 36. The performance
discinues to improve with larger ensemble size, and the spread in the converged mode
narrows as tracking becomes more reliable. The error approaches an asymptotic value of
10−2 around ensemble size 64, which is the ensemble size where we consider the ETKF
‘well-resolved’ for KS.

4.4. Inflation

The results for adaptive covariance inflation of Anderson [11] are presented in Fig-
ure 8. We saw in the baseline results in Figure 7 that the uncertainty approaches its
large-ensemble limit very quickly in both model problems, therefore inflation can only
overestimate the forecast covariance, which we see in Figures 8b and 8d. Consequently,
the effect of inflation on error in L96 and KS is limited. It is clear from the uncertainty
plots that underestimated covariance (i.e., underestimated mode strength) is not a sig-
nificant concern for most ensemble sizes in these model problems, therefore inflation is
not an effective method to improve performance.

We however note that inflation can be an effective technique for L96 in some scenarios.
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(a) L96 Error (b) L96 Uncertainty

(c) KS Error (d) KS Uncertainty

Figure 8.: Distributions of error and uncertainty for the ETKF with inflation applied
to model problems

An example is Ahmed et al. [35], who use a denser observation model of ny = 18 evenly-
spaced nodes and a fixed, modest inflation factor of 1.04. With this observation model,
each state element is either an observed node or adjacent to an observed node. This
means that for each state element, the analysis update uses local observations, reducing
the dependence on potentially under-resolved cross-correlation terms in the covariance.
An inflated forecast covariance is therefore less likely to cause the state estimate to
diverge due to spurious correlations, and this is reflected in the improved performance.

4.5. Localization

The results for observation localization of Greybush et al. [12] are presented in Figure 9.
For each model problem, we consider a set of candidate localization length scales and
report the results for the best case. The candidate length scales for L96 and the KS
equation are {4, 5, . . . , 16} (in discrete node count) {2π, 4π, 8π, 16π, 32π}, respectively.

For L96, we use a length scale of 7 nodes. Localization provides a clear improvement
over the unaugmented filter for small ensemble sizes. This is consistent with the known
localized EnKF results for L96 [36]. Figure 9a shows that the greatest improvement to
error happens around ensemble size 16, where localization decreases the error spread
from four orders of magnitude to one. This makes the filter perform more reliably in
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(a) L96 Error (b) L96 Uncertainty

(c) KS Error (d) KS Uncertainty

Figure 9.: Distributions of error and uncertainty for the ETKF with localization applied
to model problems

cases where ensemble is only moderately undersized.
For the KS equation, we observe no improvements for all length scales considered.

We recall from Figure 1 and the discussion in Section 4.1.2 that there are significant
cross-correlation terms, which must be accurately resolved for effective analysis update
because the observation data from KS is extremely sparse. However, localization sup-
presses these long-distance cross correlations, compromises performance for any effective
length scale, and underestimates uncertainty. The results in Figures 9c and 9d use a
large correlation length of L = 16π to minimize localization’s effect on performance. All
smaller correlation lengths lead to larger error.

4.6. Augmentation

We consider three different use cases for covariance augmentation. First is the repro-
duction scenario, where the model trajectory in the generating run is the same as that
in the augmented run. The second is a scenario where these trajectories differ, testing
the generalizability of the background library outside of the training data. The third is
a scenario where the model parameters have changed between the generating and aug-
mented runs, testing the generalizability of the background library to slightly different
governing equations. For all three model problems, we produce nB = 50 backgrounds
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(a) L96 Error (b) L96 Uncertainty

(c) KS Error (d) KS Uncertainty

Figure 10.: Distributions of error and uncertainty for the ETKF with augmentation
applied to model problems in the reproduction scenario

from two generating runs, each at the respective well-resolved ensemble size.
Note that in all augmentation results figures, the x-axis refers only to the natural

ensemble size. All augmented runs use an augmented ensemble size of 64, as this is
where both model problems were shown to be well-resolved in Section 4.3. The number
of artificial members drawn from the background distributions therefore varies with the
natural ensemble size, ensuring that the total remains 64.

4.6.1. Reproduction Scenario
The reproduction scenario represents the best-case scenario for covariance augmenta-
tion, as the training data and test data match as closely as possible. However, it does
not reflect a practical use case, as it is necessarily more costly than simply using a well-
resolved ETKF. Nonetheless, it is useful to quantify the best-case performance. The
results are shown in Figure 10.

Because we know that there exist backgrounds in the library B that correspond al-
most perfectly with this trajectory, the test is ultimately of the classification scheme
and the level of clustering, i.e., the background library size nB relative to the number of
forecast ensembles produced by generating runs. As expected, the error and uncertainty
rapidly approach their respective asymptotic limits. The limiting factor determining
ensemble size is no longer whether the covariance is well-resolved, but whether the clas-
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(a) L96 Error (b) L96 Uncertainty

(c) KS Error (d) KS Uncertainty

Figure 11.: Distributions of error and uncertainty for the ETKF with augmentation
applied to model problems in the different trajectory scenario

sification scheme can select the appropriate background covariance from the library B.
For both model problems, the error mean and spread achieved with 9 natural ensemble
members using the covariance-augmented ETKF is similar to that achieved with 36
members using the unaugmented ETKF, a fourfold reduction in natural ensemble size.
If the cost to evaluate the Wasserstein distances (12) for nB backgrounds to classify
the covariance is negligible compared to the cost to evaluate process models, then this
implies a fourfold reduction in computational cost. However, since we chose our model
problems for their ease of computation, the cost to evaluate the process models is not
so overwhelming.

4.6.2. Different Trajectory
A more practical test of augmentation is where the training data and the test data
correspond to different model trajectories. The process model remains the same, but
the generating run and the augmented run have different initial conditions. By observing
the improvement obtained from backgrounds generated using a different trajectory, this
test examines the level of steady statistical information present in the backgrounds. The
results are shown in Figure 11.

Augmentation can lead to improved performance if there is steady, persistent statis-
tical information in the background library that is relevant to most statistical regimes.
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Whereas an underlying true covariance may have dynamic elements not present in the
backgrounds, the overall covariance estimate may still be improved by steady-state char-
acteristics that are present. A stronger condition for improved performance is whether
the background library is comprehensive: i.e., any possible natural forecast ensemble
has an appropriate corresponding background. In most cases, the construction of a
comprehensive library requires a well-chosen training strategy.

This particular test uses background libraries of size nB = 50 generated from the
respective model time domains specified in Section 4.1. The augmented runs then start
with an offset of half a simulation period from where the generating runs start, and
then proceed for the same length of time. For example, with L96 the time domain is
[0, 2] for the generating run and [1, 3] for the augmented run.

Using different simulation time windows results in the generating and augmented
runs exhibiting different behaviors. Most notably, Figures 5 and 6 show that the state
goes through the initial transient, where the state develops from initial conditions to
its statistically steady behaviour, for a significant portion of the simulation period. In
this different trajectory scenario, the generating run and consequently the background
library include this initial transient, while the augmented run does not. Many back-
grounds in the library are therefore superfluous to this augmented run. Note that, due
to the difference in the initial time, the unaugmented performance in Figure 11 differs
from the original baseline results in Figure 7.

For L96, there is significant difference between the backgrounds collected from t ∈
[0, 2] and necessary for t ∈ [1, 3]. Error in Figure 11a is highly bimodal at the smallest
ensemble size, but the bimodality diminishes quickly as the ensemble size increases. The
error spread remains wide for the unaugmented filter across all ensemble sizes, whereas
the augmented filter is much more consistent, even for the ensemble sizes for which the
mean performance is comparable. The clearest example is at natural ensemble size 16
with the augmented filter and 36 with the unaugmented filter; the augmented filter’s
error stays within an order of magnitude and the unaugmented filter’s error spreads
across almost three orders of magnitude.

For KS, the unaugmented performance over t ∈ [30, 90] is significantly better than
over t ∈ [0, 60]. Augmentation however still demonstrates improvement. Though both
mean errors in Figure 11c are similar, the error spread in the unaugmented filter is
much wider than in the augmented one. The augmented filter converges tightly on the
asymptotic error limit by natural ensemble size 9, whereas the unaugmented filter does
not until ensemble size 25–36, representing a 3–4× reduction in natural ensemble size.
In Figure 11d, we see that the unaugmented filter underestimates uncertainty at most
ensemble sizes, whereas the augmented filter again converges quickly to the asymptotic
limit.

4.6.3. Parameter Variation
We finally assess the performance of an augmented ETKF when the model parameters
differ between the generating runs and augmented runs. For L96, the parameter most
readily modified is the forcing term F , which drives the chaotic motion. We set the
forcing term to F = 8 for generating runs and F = 10 for augmented runs, which
allows us to test the generalizability of augmentation when the process model is more
chaotic than was anticipated when generating the backgrounds. The results are shown
in Figure 12.

Figure 12 shows that the background library is robust to changes in the forcing term.
Except for very small ensemble sizes, the augmented filter consistently converges to the
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(a) Error (b) Uncertainty

Figure 12.: Distributions of error and uncertainty for the ETKF with augmentation
applied to L96 in the parameter variation scenario

true solution, suggesting that, at least for this case, the background library is sufficiently
generalizable such that it remains effective for different values of F . The augmented filter
with L96 achieves stable, converged performance at natural ensemble size 9 that the
unaugmented filter does not achieve until an ensemble size of approximately 20.

5. Reacting Flow Simulation

In this section we apply our DA techniques to a reacting flow problem using the same
procedure detailed in Section 4. Again, the use of a noiseless process model and pseudo-
observation data implies no inherent deficiency in the process or observation models.

5.1. Problem Definition

We consider data assimilation of two-dimensional non-premixed propane-oxygen diffu-
sion flame at low Reynolds number using simultaneous PIV (velocity) and temperature
measurements. We first discuss the process model, which consists of an LES model, and
then discuss the observation model, which consists of simulated PIV and temperature
measurements.

5.1.1. Process Model
The reacting flow is modelled with Raptor, a finite-volume solver developed by Oe-
felein [37]. The reacting flow model considers six chemical species: propane (C3H8),
oxygen gas (O2), carbon dioxide (CO2), water (H2O), carbon monoxide (CO), and ni-
trogen gas (N2). The model considers the simplified process 2C3H8+3O2 → 6CO+8H2O
and 2CO + O2 → 2CO2 to simulate the combustion chemistry. The model hence works
with nine flow variables: four fluid dynamic variables (pressure, two velocity compo-
nents, and temperature) and five explicitly stored chemical mass species fractions (the
last, N2, is stored implicitly as 1 minus all other species). The Reynolds number is
12000, using the width of the domain as the length scale and the inflow speed as the
velocity scale. The flow is unsteady but not turbulent, as it is not at a sufficiently high
Reynolds number to have a well-established inertial range. The inflow Mach number is
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(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 13.: Diffusion flame simulation. The plot is of non-dimensionalized temperature.
The direction of flow is from bottom to top.

negligibly small at 0.003, implying incompressible flow. We impose a constant pressure
boundary condition at the top, slip conditions on the sides, and a uniform inflow ve-
locity boundary condition with a narrow propane inlet in the centre, one tenth of the
domain width, at the bottom. The time interval is [0, 0.5]. Unlike the model problems
in Section 4, there is no initial transient; the initial condition is a fully-developed flow.
Snapshots of the ground-truth solution are shown in Figure 13.

5.1.2. Observation Model
For the observation model, we choose to replicate the effects of a PIV-type 2D velocity
measurement and 2D temperature measurement. Although 2D temperature measure-
ments are challenging in practice, they can potentially be accessed by, for example,
Rayleigh scattering [38] or PLIF thermometry [39]. The pressure and chemical species
mass fractions are not measured. The velocity measurements are obtained by averaging
the ground-truth velocity field in each of 26× 6 grid of PIV interrogation windows and
then adding zero-mean Gaussian noise. Adjacent PIV interrogation windows have 50%
overlap. The temperature measurements are obtained by sampling the ground-truth
temperature field at each of 51 × 11 grid points and then adding zero-mean Gaussian
noise. Figure 14 shows representative observed data, which are spatially under-resolved.
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(a) Tempera-
ture field

(b) Tempera-
ture obs.

(c) X velocity
field

(d) X velocity
obs.

Figure 14.: Spatial resolution of observation data in velocity and temperature

Figure 15.: Time history of nondimensionalized velocity and temperature over one ob-
servation period at a point on the edge of the flame

For non-dimensionalized flow variables of order 1, the PIV and temperature noise yield
signal-to-noise ratios of roughly 16 and 8, respectively. That is, the Gaussian noise term
has a standard deviation of 0.06 for PIV measurements and 0.12 for temperature mea-
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(a) Error (b) Uncertainty

Figure 16.: Distributions of error and uncertainty for the ETKF applied to reacting flow

surements. We choose this limited, sparse, and noisy set of observations to assess DA’s
ability (i) to correct unobserved flow variables exclusively through cross-correlation
terms in the forecast covariance, (ii) to estimate the small-scale flow structures not
captured by the data, and (iii) to accommodate noisy measurements.

We choose an observation period of ∆t = 0.05 in non-dimensionalized time. This
provides observation data that temporally resolves the temperature field but not the
velocity field. This is shown in Figure 15, where we plot the velocity and temperature
over time for a point on the edge of the flame. The figure considers only one observation
period, showing that the observation model leaves the velocity field temporally under-
resolved. Much like our choice to use a spatially sparse observation model, this allows
us to assess DA’s ability to estimate velocity field behaviour not captured by the data.

5.2. Baseline Performance

We define two baseline scenarios: a large-ensemble case with ensemble size 48, which
provides the best-case performance, and a small-ensemble case with ensemble size 12,
which underresolves the covariance and leads to poor performance. To characterize the
typical performance of the ETKF in the small-ensemble case, we consider five different
randomly chosen initial ensembles.1 The large-ensemble case yields much more consis-
tent performance, so only one initial ensemble is used.

Figure 16 shows the error and uncertainty over ensemble size as a scatter plot. In
the large-ensemble case (i.e., nen = 48), the ETKF achieves an error of roughly 10−0.8

and uncertainty of roughly 10−1.4; for nondimensionalized flow variables of order 1,
this corresponds to approximately 16% error. This is lower than the level of velocity
fluctuation shown in Figure 15, supporting that the ETKF achieves super-temporal
resolution. This is also lower than the error in our low-resolution observations, which
we observed to be roughly 30% to 40%, supporting that the ETKF also achieves super-
spatial resolution. This error is achieved despite the pressure and species fractions being
unobserved, relying on correlation with the observed velocity and temperature in order
to apply the analysis updates. In the small-ensemble case (i.e., nen = 12), there is a

1Due to the much higher computational cost of the reacting-flow simulation, we are unable to perform the
same detailed statistical analysis performed for model problems in Section 4; nevertheless, we assess the method
using five cases with different random ensembles to characterize the typical performance.
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(a) Error (b) Uncertainty

Figure 17.: Distributions of error and uncertainty for the ETKF with augmentation
applied to reacting flow in the reproduction scenario

wide variation in the error; the best-case error of 10−0.8 is comparable to the large-
ensemble case, whereas the worse-case error is roughly 100.4. A typical error is large and
is between 100 and 100.5. Uncertainty is consistently underestimated compared to the
large-ensemble case, even in the atypical small-error result. As with the model problems,
the underestimated uncertainty (relative to the error) causes the filter to incorrectly
trust the state estimates and to resist updating the states based on observations; as a
result, the filter fails to reduce the error.

5.3. Augmentation

We consider two augmentation scenarios. We start with the reproduction scenario, where
the model trajectory in the generating run is the same as that in the augmented run. We
then consider a scenario where these trajectories differ, which tests the generalizability
of the background library outside of the training data. For both the reproduction and
the different trajectory scenarios, we produce nB = 50 backgrounds from one generating
run. The large-ensemble case in Section 5.2 serves as our generating run. We use the
small-ensemble case as our augmented run, using the same five initial ensembles.

As in the augmentation results figures in Section 4, the x-axis refers only to the
natural ensemble size. All augmented runs use an augmented ensemble size of 48 cor-
responding to the large-ensemble case. In an augmented small-ensemble run, there are
therefore 36 artificial members and 12 natural members.

5.3.1. Reproduction Scenario
We first consider the reproduction scenario to illustrate the best-case scenario for co-
variance augmentation. Figure 17 shows the error and uncertainty for the augmented
small-ensemble ETKF compared to the baseline results from Figure 16. The augmented
results appear to strongly resemble the large-ensemble results. The mean error is de-
creased by an order of magnitude compared to the unaugmented small-ensemble results
and the mean uncertainty raised by half an order of magnitude, bringing performance
almost perfectly in line with the unaugmented large-ensemble case. With a natural
ensemble size of 12 instead of 48, the augmented small-ensemble ETKF achieved this
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(a) Error (b) Uncertainty

Figure 18.: Distributions of error and uncertainty for the ETKF with augmentation
applied to reacting flow in the different trajectory scenario

error performance with a quarter of the large-ensemble ETKF’s computational cost.
Even with the more complicated test problem of a simulated diffusion flame, augmen-
tation is robust enough to improve performance just as it did with the model problems
in Section 4.

5.3.2. Different Trajectory
For the different trajectory scenario, we consider the same background library as the
reproduction scenario, corresponding to the time interval [0, 0.5]. We perform an aug-
mented run that is offset forward in time by two observation periods, i.e., the time
interval [0.1, 0.6]. We recall from Figure 15 that this shift induces a significant change
in the velocity field. Figure 18 shows the error and uncertainty for the augmented small-
ensemble ETKF compared to new baseline results for this offset time interval. Again
the augmented results strongly resemble the unaugmented large-ensemble results; the
error is significantly reduced compared to the unaugmented small-ensemble ETKF and
is only slightly higher than the reproduction scenario and large-ensemble results. The
uncertainty has also increased toward the large-ensemble level. This matches our expec-
tations for a slightly mismatched background library: although it does not reproduce
the large-ensemble performance, the background library still contains relevant statistical
information that improves performance. The result indicates that the proposed training
strategy and classification schemes are effective in this more practical case with different
trajectories.

6. Summary and Conclusions

In this work, we have developed and assessed a covariance augmentation technique for
ensemble DA in multiple-query scenarios. In our proposed method, we first construct a
library of background covariances from a number of generating runs. We subsequently in-
voke an augmented ETKF, which uses a small ‘natural’ ensemble of states augmented by
the ‘artificial’ states drawn from the library. The key ingredients of the covariance aug-
mentation technique are (i) a training strategy that identifies a comprehensive library
of background covariances from which to construct the library and (ii) a classification
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scheme that clusters closely related background covariances and identifies the appropri-
ate cluster from which to draw the artificial states. We have assessed the approach using
model problems and a reacting-flow problem. We have observed that the ensemble size
required to classify an ensemble among statistical flow regimes is much smaller than the
ensemble size required for an ensemble to resolve the covariance by itself, which allows
us to use a much smaller natural ensemble size in the augmented ETKF. We have also
observed that the covariance library is generalizable in the sense that it can be used
when the system trajectory or the governing equations are different from those used in
the generating runs; even if the library is not perfect, the classification scheme is robust
enough to choose the most appropriate background among imperfect options, and that
background contains enough relevant information to improve performance significantly.
In practice, we have observed that an augmented ETKF can use a natural ensemble
size that is three to four times smaller than that of an unaugmented ETKF, resulting
in a commensurate reduction in the computational cost.

The first major limitation to the current work is the lack of consideration given to
training strategies. Though we tested our augmentation scheme using reacting flow in
the reproduction and different trajectory scenarios, there are more cases of practical
interest that warrant examination. The reacting flow case in Section 5 provides an ex-
ample of statistically stationary behaviour, which would be an appropriate test problem
if one wants to quantify ‘comprehensiveness’ of statistical models and assess training
strategies for producing them; however, that was beyond the scope of the current work.

The second major limitation is the chosen OSSE setup. Because our process and
observation models were consistent with the ground-truth models, we likely achieved
better performance than we would achieve in real-world applications of DA. The lack of
an error term in the process model led to lower error and uncertainty than would have
been obtained in a setup that included one. Additionally, it meant that the only initial
uncertainty in the state estimate came from the initial ensemble, which was in turn
drawn from ground truth. As discussed in Section 2.2, some process models may fail
to propagate the state forward in time if the initial condition is nonphysical. Our DA
performance was therefore more stable than it otherwise may have been; however, the
focus was on a straightforward comparison of error and uncertainty estimates for large-
ensemble and small-ensemble filters. Although the effect of ensemble size on stability was
not discussed, in a practical application of DA it may be significant. Finally, the fact that
all initial ensembles were drawn from the ground truth means that, for augmentation
in the reproduction scenario, the initial ensemble would likely be well-matched to at
least one background. It is clear however that augmentation’s performance does not
rely on this convenience, as the different trajectory and parameter variation scenarios
both show significant reductions in error. Future assessments of augmentation as an
approach ought to relax the assumptions that limit the realism of our OSSEs; however,
it is not readily apparent that augmentation relies on any of these simplifications to
perform. We speculate therefore that even with flawed models in real-world scenarios,
if an (unaugmented) large-ensemble DA performs well, then covariance augmentation
should still provide similar performance using a reduced ensemble size.

A minor third limitation is the relative simplicity of our reacting flow case; it is pos-
sible that for more complicated flows of practical interest (e.g. large, turbulent flows),
constructing a comprehensive background library is prohibitively expensive, negating
any possible benefits of covariance augmentation. However, at least for the model prob-
lems and the reacting flow case considered, augmentation was not compromised by the
relative size and complexity of the test problems.
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