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Abstract. Fantasy sports have experienced a surge in popularity in the past decade. One of the4
consequences of this recent rapid growth is increased scrutiny surrounding the legal aspects of the5
game which typically hinge on the relative roles of skill and chance in the outcome of a competition.6
While there are many ethical and legal arguments that enter into the debate, the answer to the skill7
versus chance question is grounded in mathematics. Motivated by this ongoing dialogue we analyze8
data from daily fantasy competitions played on FanDuel during the 2013 and 2014 seasons and9
propose a new metric to quantify the relative roles of skill and chance in games and other activities.10
This metric is applied to FanDuel data and to simulated seasons that are generated using Monte11
Carlo methods; results from real and simulated data are compared to an analytic approximation12
which estimates the impact of skill in contests in which players participate in a large number of13
games. We then apply this metric to professional sports, fantasy sports, cyclocross racing, coin14
flipping, and mutual fund data to determine the relative placement of all of these activities on a15
skill-luck spectrum.16
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1. Introduction. In his 1897 essay, Supreme Court Justice Oliver Wendell19

Holmes famously wrote: “For the rational study of the law the blackletter man may20

be the man of the present, but the man of the future is the man of statistics ...”21

[11]. This view has proven to be prescient as recent trends show that legal arguments22

grounded in data analysis are becoming increasingly common [7]. In light of this shift23

– although historical and ethical arguments remain the purview of legal professionals24

– physicists, mathematicians, and others well versed in data science have an obliga-25

tion to provide rigorous mathematical foundations to ground these statistical legal26

debates.27

One such debate that is currently being argued in the courts involves fantasy28

sports, a game in which participants assemble virtual teams of athletes and com-29

pete based on the athletes’ real-world statistical performance. Fantasy sports have30

experienced a surge in popularity in the past decade. The Fantasy Sports Trade As-31

sociation [2] estimates that 56.8 million people played fantasy sports in 2015 (up from32

41.5 million in 2014) and that the concomitant economic impact of the industry is33

on the order of billions of dollars per year. One of the consequences of the recent34

rapid growth in activity is an increased scrutiny regarding the legal aspects of the35

game. In particular, contests that involve online exchange of funds are now subject to36

the Unlawful Internet Gambling Enforcement Act of 2006 (UIGEA) which regulates37

online financial transactions associated with betting or wagering [3]. Currently, the38
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UIGEA excludes fantasy sports stating that the definition of a “bet or wager” does39

not include “participation in any fantasy or simulation sports game” [3]. However, at40

the time of this writing eight states do not allow fantasy sports competitions for cash.41

In general, legal questions surrounding classification of games as “bets” or “wa-42

gers” hinge on whether the outcome of the game is determined predominantly by skill43

or by chance. Typically “skill” is defined as the extent to which the outcome of a game44

is influenced by the actions or traits of individual players, compared to the extent to45

which the outcome depends on random elements. Note that here we are considering46

the role of skill in the game framework, i.e. our goal is to quantify the utility of a47

players’ abilities in general, rather than to measure the skill of individual players.48

In a fantasy sports contest, players manage teams that accrue points based on the49

statistics of real athletes. For example, a fantasy football player with receiver X on50

their roster earns points every time X makes a catch in a professional football game.51

Rules for constructing a fantasy team roster – and hence strategies for assembling52

optimal line-ups – vary by league. In this study, we analyze data from salary cap53

games in which each player has a fictional dollar amount they can spend, and athlete54

“salary” values are set by the game provider.155

While there have been relatively few empirically-based investigations on the roles56

of skill and chance in fantasy sports, studies exist to determine whether skill is a57

distinguishing factor among NFL kickers [19], whether the outcome of shootouts in58

hockey are primarily determined by luck [12], and whether perceived “streaks” in59

basketball should be attributed to chance or to “the hot hand” [25, 27, 28]. In60

addition, many authors have explored whether scoring patterns in basketball [4, 9, 24],61

baseball [17, 24], cricket [23], soccer [10], tennis [13, 22] and Australian rules football62

[14] display statistical signatures of random processes. Perhaps the most relevant,63

extensive (and hotly debated) body of work is the analysis of the relative roles of64

skill and chance in poker [6, 5, 26, and references therein]. Unfortunately, most of65

these analyses cannot be applied directly to fantasy sports which differ from card66

games in at least one critical aspect: in card games, it is a relatively straightforward67

combinatorial exercise to estimate the probability of every possible outcome (e.g. how68

likely is a flush). This is not the case for fantasy sports in which performance on any69

given day is coupled to a host of factors such as weather, skill of opponent, injury,70

home versus away games, etc. Owing to this added layer of complexity, it is unclear71

whether the bulk of previous poker analyses can be adapted to fantasy games.72

Instead, we take a data-driven approach analogous to the one proposed by Levitt73

et al. [16, 15]. Their study was performed in the context of poker but, unlike the74

combinatorial approaches of e.g. [6], it does not require prior knowledge of outcome75

probabilities and hence can be easily adapted to other activities that combine skill and76

chance. Our strategy will be to examine data from the online fantasy sports platform77

FanDuel, and test whether statistical outcomes are consistent with expected outcomes78

associated with games of chance. If the measured outcomes deviate significantly from79

those we expect in a contest of pure chance, we can quantify the extent of the deviation80

to place fantasy sports and other activities on a skill-luck spectrum.81

Levitt et al. [16] note that there are at least four tests that can be applied to82

distinguish games of pure chance from those involving skill. The authors propose83

that tests can be framed as the following four questions:84

1. Do players have different expected payoffs when playing the game?85

1Here, and throughout this paper, we use the term player to refer to a person participating in a
fantasy sports competition whereas athlete refers to professional athletes.
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MLB P C 1B 2B 3B SS OF OF OF
NBA PG PG SG SG SF SF PF PF C
NFL QB RB RB WR WR WR TE K D
NHL LW LW RW RW C C D D G

Table 1
FanDuel 2013/2014 roster rules. MLB: P = pitcher, C = catcher, 1B = 1st baseman, 2B =

2nd baseman, 3B = 3rd baseman, SS = shortstop, OF = outfielder. NBA: PG = point guard, SG
= shooting guard, SF = small forward, PF = power forward, C = center. NFL: QB = quarterback,
RB = runningback, WR = wide receiver, TE = tight end, K = kicker, D = defense. NHL: LW =
left wing, RW = right wing, C = center, D = defenseman, G = goalie.

2. Do there exist predetermined observable characteristics about the player that86

help one to predict payoffs across players?87

3. Do actions that a player takes in the game have statistically significant im-88

pacts on the payoffs that are achieved?89

4. Are player returns correlated over time, implying persistence in skill?90

If the answer to all four questions is “no,” then we can conclude that the game under91

consideration is a game of chance. One of the many appealing aspects of this test is92

that the analysis can be framed in terms of inputs (player actions) and outputs (win-93

loss records), hence the game itself can be treated as a black box and the relative94

roles of skill and luck can be quantified irrespective of the detailed rules of the game.95

96

2. Empirical tests of skill applied to fantasy sports data. To estimate97

the relative roles of skill and chance in these contests, we analyze data from FanDuel,98

currently one of the largest providers of daily fantasy sports. We consider two types99

of daily fantasy games – head-to-head (H2H) and 50/50 competitions – associated100

with four sports leagues – Major League Baseball (MLB), the National Basketball101

Association (NBA), the National Football League (NFL), and the National Hockey102

League (NHL). In H2H competitions, the player pits his team against a single oppo-103

nent; both players pay the same amount to play and the winner takes all (minus the104

overhead to the host site). In a 50/50 league a pool of players each pay the same105

entry fee to enter the competition; the top half of scorers in the fantasy league each106

receive the same payout (roughly double what they put in), while the bottom half107

receives nothing. When a player elects to play in a game (e.g. a particular 50/50108

competition), they may pay to submit multiple entries. Hence each player has a win109

fraction associated with each game defined as their fraction of winning entries. These110

entries are typically not independent and players may submit multiple copies of the111

same entry.112

FanDuel provided us with 12 sets of data [1]. The first four were anonymized113

results from H2H competitions for MLB, NBA, NFL, and NHL. Each entry in the114

data set represented the performance of one user in one game (Gi) and contained: a115

user ID (UID), number of entries submitted by UID in Gi, number of winning entries116

for UID in Gi, average score (averaged across all UID’s entries in Gi), and the top117

score for UID in Gi. The next four data sets contained similar information for 50/50118

competitions. The final four datasets contained athlete performance data. Each entry119

in the dataset included: athlete name, date of competition, team, FanDuel “salary”120

on the date of that particular competition, position (summarized in Table 1), and121

number of FanDuel points scored by that athlete in that particular competition.122

This manuscript is for review purposes only.
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MLB NBA NFL NHL

# plr (H2H) 89,338 107,796 190,562 20,802
# plr (50/50) 130,515 158,532 312,263 30,607
Max games/plr 686 383 155 271
Max entries/plr 60,200 64,287 49,657 21,209
Salary cap 35,000 60,000 60,000 55,000
# athletes 1,261 501 584 891

Table 2
Overview of the FanDuel dataset. Note that players (plrs) may have multiple entries for each

game.

We considered two full seasons (2013/14 and 2014/15) of all FanDuel H2H and123

50/50 contests for NBA, NHL, NFL, and MLB. Each fantasy team for all sports124

contains nine athletes (see Table 1). The salary caps, number of fantasy players,125

and number of athletes in our dataset are summarized in Table 2. In the following126

we use this data to test questions 1, 3, and 4 proposed by Levitt et al. In all cases127

we found no significant differences between the H2H and 50/50 data so the results128

presented herein were obtained using the combined datasets unless otherwise noted.129

Since our data is anonymized we do not have information on predetermined player130

characteristics; hence we do not address question 2.131

2.1. Expected payoff. In a game of chance, the expected payoff for all players132

is the same. To test whether this is true of our data, we divide each of our datasets –133

fantasy NBA, MLB, NFL, and NHL – into five subsets according to the number of en-134

tries Ni played by the ith player. The first group contains players who have submitted135

the fewest number of entries and the fifth group contains players who have submitted136

the largest number of entries. In the FanDuel playing population, we observe that the137

number of players, m, who have played ni games decays approximately exponentially138

(i.e. most players play only a few games, see Figure 4), hence ranges were selected to139

reflect a logarithmic distribution such that the first group contains 90% of the play-140

ers, the second group 90-99%, the third 99-99.9%, etc. If the measured win fraction141

distribution varies across these five subsets in a statistically significant manner we142

can conclude that something other than chance played a role in the outcome of the143

contest. Here the win fraction of the ith player is computed as144

(1) wi =
1

ni

ni∑
j=1

xij145

where xij represents the fraction of winning entries in the j-th game: 0 ≤ xij ≤ 1 and146

xij = 1 if all of player i’s entries in the j-th game were winners.147

Some care must be taken in this analysis as it can be argued that players who win148

their initial games (whether by skill or by luck) may be more likely to keep playing;149

conversely, players on a losing streak may be more likely to quit. To determine whether150

this is the case, we computed the average win fraction across the population for the151

nith game (i.e. the last game the player played before they quit), the ni − 1 game,152

(i.e the second-to-last game the player player before they quit), etc. These data are153

summarized in Figure 1 (Left) which shows a “quitting boundary layer” indicating154

that players are indeed more likely to quit after a string of losses. In our dataset,155
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Fig. 1. (Left) Win fraction associated with each player’s last game (game # = 1), second to last
game (game # = 2), etc. averaged across the entire playing population. Grey symbols correspond to
50/50 games, blue symbols to H2H games from the 2013/14 season; shapes correspond to different
sports as summarized in the legend. The blue shaded region on the left corresponds to the “quitting
boundary layer.” (Right) Mean win fraction for fantasy MLB, NBA, NFL, and NHL in which the
boundary layer points have been removed for each player. Group 1 corresponds to players who have
played the fewest number of games; group 5 corresponds to players who have played the largest
number of games. Filled symbols correspond the 2014/15 season; empty symbols correspond to the
2013/14 season. Light blue boxes are a standard IQR box-and-whisker plots.

the boundary layer, nBL, is measured to be approximately five games wide in all four156

sports. This introduces a bias in the calculation since the boundary layer accounts157

for a larger fraction of games in the first group in which the population has played158

the fewest number of games. To correct for this bias, we remove the last five games159

played by every player and compute the win fraction of the remaining games:160

(2) wi,unbiased =
1

ni − nBL

ni−nBL∑
j=1

xij .161

The removal of the boundary layer increases the average win fraction significantly in162

the first group but has only a minor impact on groups 2–5.163

A number of trends are clearly observable in the data summarized in Figure 1164

(Right). First, players who play the fewest games systematically underperform the165

other groups with an average win fraction of 0.48 (averaged over all four sports). In166

contrast, in the cohort that played the most games, the mean win fraction increased167

to 0.61 (averaged over all four sports). Thus these data are not consistent with a168

game of pure chance. (Additional details are available in Table 4 in the Appendix.)169

2.2. Effect of player action. To test the effects of player actions, we compare170

outcomes of real players with those of a league of players who draw randomly from171

all possible line ups. Ideally we would like to compare the distribution of scores172

generated by real fantasy players with the distribution of scores for all possible line-173

ups, however the combinatorics associated with generating all possible line-ups proved174

to be computationally intractable. Instead we estimate the “all possible line-up”175

distribution using a Monte Carlo approach. Two strategies were tested to construct176

the Monte Carlo rosters. In the first, athletes for each roster slot were picked randomly177

from a normal distribution of salaries, centered at one ninth of the salary cap. In the178

second, the center of the salary distributions varied by position; for example, if on179
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average quarterbacks cost twice as much as kickers, then the mean of the normal180

salary distribution for quarterbacks was set to be twice as much as the mean of the181

normal salary distribution for kickers, with the constraint that the sum of the means182

across all positions must be equal to the salary cap.183

One hundred random line-ups that conform to the rules of the game were gen-184

erated for each day of competition. In all cases including football, only daily com-185

petitions were considered which corresponds to a range of 51 (NFL) – 182 (MLB)186

competitive days per year depending on the sport. Each roster is checked to see if187

the total salary is below the salary cap and above a minimum threshold. In the data188

shown here, the threshold is set to 85% of the salary cap which roughly maximizes the189

mean score of the random line-ups using FanDuel data. (If the threshold is too low,190

cheap line-ups can skew the distribution towards low scoring rosters; if the thresh-191

old is too high, the constraint is too rigid and high performing rosters are missed.)192

Randomly generated rosters that satisfy these constraints are accepted, all others are193

rejected. The process is repeated until 100 acceptable rosters per day were generated.194

We found very little difference between the two Monte Carlo strategies, i.e. equal dis-195

tribution versus position-weighted distribution. Results for the weighted distribution196

are shown in Figure 2.197

Fig. 2. Comparison of scores from line-ups constructed by real FanDuel players (light grey)
with line-ups from the Monte Carlo simulation (dark grey). Resulting distributions are fit with a
normal distribution to estimate confidence intervals on user win probabilities.

In all cases FanDuel players beat the Monte Carlo simulation with user win prob-198

abilities ranging from 62% (NHL, equal distribution) to 95% (NBA, weighted distri-199

bution) as summarized in Table 3 suggesting that player actions do indeed influence200

the outcome of the game.201
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MLB NBA NFL NHL

User win prob (weighted) 0.732 0.946 0.864 0.680
95% CI (weighted) ±0.007 ±0.004 ±0.016 ±0.007
User win prob (equal) 0.781 0.898 0.809 0.618
95% CI (equal) ±0.006 ±0.005 ±0.019 ±0.007

Table 3
Summary of win probability of user generated rosters versus Monte Carlo generated rosters.

2.3. Persistence. To address the question of persistence, we begin with the202

hypothesis that skill is an intrinsic quality of a fantasy player and does not change203

significantly over the course of the season. If this is the case we expect to observe a204

distribution of underlying skill across the playing population in which the win fraction205

of each individual player in the first half of the season is correlated with that player’s206

win fraction in the second half. To determine whether this is consistent for FanDuel207

players, we plot the win fraction for the first half of the season versus the win fraction208

for the second half of the season for each player. (Note that here and in all subsequent209

calculations, the quitting boundary layer has been removed.) These data are shown210

in the scatter plots in Figure 4; each circle represents one FanDuel player and the size211

of the point represents the number of games played by that particular player.212

In order to quantify the role of skill in determining the outcomes of the competi-213

tions represented in these plots, we seek a metric with the following properties. Ideally214

the accuracy of the metric should improve as number of contests per player grows,215

ni → ∞, and as the number of players grows, m → ∞. In particular, the metric216

must capture the expected behaviors at the two extremes: competitions of pure luck217

and competition of pure skill. In contests of pure luck, the expected outcome of every218

player is the same. Hence – assuming a zero-sum game in which players are playing219

against one another – as the number of games per player increases, win fractions for220

the first half of the season versus win fractions for the second half of the season for221

all players converge to a single point at (1/2, 1/2). Conversely, in a skill dominated222

competition, we expect to observe a distribution of skill across the playing population;223

in this case we expect the data converge to a line with slope one as the number of224

games per player increases.225

Sketches of expected user win fractions for the first half of the season versus user226

win fractions for the second half of the season for high and low values of ni and m227

are shown in Figure 3. To characterize these distributions, perhaps the most obvious228

metrics to try are the Pearson product-moment correlation coefficient or a standard229

linear regression. However, both of these are problematic. The linear regression fails230

to accurately capture the extreme of pure luck since, in the limit that the number231

of games per player becomes large, all of the data collapses onto a single point. The232

Pearson product-moment correlation coefficient is problematic as it cannot distinguish233

between lines of different slopes. In our case, in the limit of pure skill, we expect a line234

of slope 1, whereas lines with different slopes, no matter how well correlated, are not235

representative of intrinsic skill. Hence we seek an alternate measure. Motivated by236

the expected outcomes shown in Figure 3, we propose to use the ratio of the variance237

along the diagonal in our scatter plots (denoted as S in Figure 3), to the variance238

in the orthogonal direction (denoted as T in Figure 3) as a measure of the relative239

importance of skill and luck in a competition.240
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Fig. 3. (Left) Sketch of expected outcomes for first half win fractions P (horizontal axes) versus
second half win fractions Q (vertical axes) along with rotated coordinate system (S, T ). (Center and
Right) Sketches of expected distributions for games dominated by luck and games dominated by skill
in the limit of small and large numbers of contests per player (ni) and small and large numbers of
players (m). In each sketch, points represent individual FanDuel players in which the size of the
point represents the number of games played by the ith player, ni.

To evaluate this quantity, we characterize each player by two numbers: ni, the241

number of games played by player i, and wi the win fraction of player i as computed242

in Equation (1). Note that in the following analysis we will be computing quantities243

associated with a distribution of m players where the ith player constitutes a distri-244

bution of ni games. Hence quantities with the subscript i refer to individual players245

while quantities with no subscript refer to aggregates over all players. Next, we intro-246

duce random variables Pi and Qi associated with the win fraction of player i in the247

first and second half of the season, respectively. If the game is truly random, then Pi248

and Qi have the same distribution and E[Pi] = E[Qi] = 1/2 (where E[X] indicates249

the expected value of X); however, if the outcome of the game is primarily determined250

by skill, then E[Pi] = E[Qi] = wi, where wi represents the true underlying skill of251

player i.252

Rotating the (P,Q) coordinate system by π/4 and shifting the origin, we introduce253

the transformed random variables as sketched in Figure 3:254

Si =
1√
2

(Pi +Qi − 1)(3)255

Ti =
1√
2

(Qi − Pi).(4)256
257

Here Ti represents the difference in the win fraction distribution between the first and258

second halves of the season, and Si represents the variation of Pi and Qi from the259

nominal value of 1/2. Note that, if the game is truly random, then in the new coor-260

dinate system E[Si] = E[Ti] = 0; however, if the outcome of the game is determined261

by skill, then E[Ti] = 0 and E[Si] = (2wi − 1)/
√

2, where wi varies according to the262

skill level of the individual player. In games that combine skill and chance, we expect263

the measured values to lie somewhere between these two extremes.264

To characterize the role of skill in determining the outcome of the game, we265
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compute a weighted variance in S and T over the aggregate of all players266

A ≡ σ2
S =

1

m

m∑
i=1

(Si − E[S])2θSi(5)267

B ≡ σ2
T =

1

m

m∑
i=1

(Ti − E[T ])2θTi
,(6)268

269

where E[S] = (1/m)
∑m

i Si = 0, E[T ] = (1/m)
∑m

i Ti = 0, and θSi
and θTi

are270

weighting functions that reflect the our confidence in the ith data point. Finally, we271

define the quantity272

(7) R∗ = 1− B

A
273

which provides a single metric to quantify the relative role of skill and chance in274

determining the outcome of the game. For games that are truly random, E[R∗] = 0;275

for games that are purely skill-based, E[R∗] = 1. 2276

To estimate the distribution, expected value, and variance of R∗ from real data,277

we first compute the sample mean estimate for each player associated with the win278

fraction in the first and second half of the season, respectively, using279

(8) p̂i =
1

ni/2

ni/2∑
j=1

xij , q̂i =
1

ni/2

ni∑
j=ni/2+1

xij .280

Next we model the skill of each player, as reflected by the win fraction, by a normal281

distribution. Towards this end, we only consider players that satisfy the condition282

under which the binomial distribution may be well-approximated by a normal distri-283

bution namely284

(9) niwi/2 > 5 and ni(1− wi)/2 > 5.285

In this case, the variance in the half season win fraction of the ith player can be286

approximated by287

(10) σ2
i =

2wi(1− wi)

ni
.288

Note that if skill is a persistent quality that is intrinsic to the player, then the win289

fraction in the first and second half of the season should be equal – namely p̂i and290

q̂i should both approach wi as the number of games per player becomes large – and291

players can be represented by points along the diagonal as sketched in Figure 3 (Left).292

We can now directly compute the R∗ value associated with FanDuel data. At293

this point we are not computing a distribution, rather the particular instance of R∗294

that was observed in the 2013/14 and 2014/15 seasons. Rotating p̂i and q̂i as defined295

above to shift to Ŝi and T̂i coordinates, weighting the ith data point by the variance296

θSi
= θTi

= 1/σ2
i , and using E[S] = E[T ] = 0, we compute297

(11) Â =
1

m

m∑
i=1

Ŝ2
i

σ2
i

B̂ =
1

m

m∑
i=1

T̂ 2
i

σ2
i

298

2Here we choose R∗ = 1 − B/A as opposed to R∗ = B/A as game designers found it more
intuitive to associate games of skill with R∗ = 1.
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Fig. 4. Left: Scatter plot of P versus Q for FanDuel players who have played a minimum
of Gmin games. To improve readability in the plots, Gmin was selected for each sport to display
approximately 5000 data points; Gmin,MLB = 85, Gmin,NBA = 75, Gmin,NFL = 25, Gmin,NHL =
20. Each circle represents a single FanDual player; size of the circle represents the number of games
played. Right: R∗ value calculated from FanDuel data (solid black line), expected value of R∗ from
Monte Carlo simulations (blue filled circles; error bars represent standard deviation across Monte
Carlo trials), computed error (blue shaded region), and number of players in the FanDuel population
(dashed line). Vertical dotted line represents the number of games in the corresponding professional
sports season and the horizontal dotted line represents the R∗ value calculated for the 2010–2015
seasons corresponding to the relevant professional league.

and find R̂∗ = 1−B̂/Â. This observed value of R̂∗ for the 2013/14 and 2014/15 NBA,299

MLB, NFL, and NHL FanDuel players is shown by the solid black lines in Figure 4. In300

each plot we consider a range of playing populations defined by the minimum number301

of games per player represented along the horizontal axis (e.g. if the minimum number302

of games is 100 then we discard players who have played 99 games or less). The dashed303
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line (right vertical axis) represents the number of players in each population which304

is surprisingly well-approximated by an exponential distribution in all four sports305

suggesting that the measured value of R∗ is dominated by players who have played306

the fewest number of games in the sample.307

While this calculation serves as a starting point to estimate the role of skill in308

a particular FanDuel season, ideally we would like to estimate the expected value of309

R∗ (and the variance, etc.) if a large number of seasons were played with the same310

player population. Towards this end, we model the win fraction of each player in the311

first and second half by random variables Pi ∼ N (wi, σ
2
i ) and Qi ∼ N (wi, σ

2
i ) where312

N (µ, σ2) indicates a normal distribution with mean µ and variance σ2. Applying the313

rotated coordinate system transform to obtain the estimated win fractions as before314

we find315

Si =
1√
2

(Pi +Qi − 1) ∼ N (µSi , σ
2
i )(12)316

Ti =
1√
2

(Qi − Pi) ∼ N (µTi
, σ2

i )(13)317
318

where Si and Ti are also normally distributed random variables with means given by319

µSi
= (2wi − 1)/

√
2 and µTi

= 0. The quantities Â and B̂ can now be computed as320

in Equation (11) with Ŝi and T̂i drawn from the specified normal distribution.321

In practice, we may estimate the distribution of R∗ using a Monte Carlo approach.322

For each player we can generate a “season” (i.e. xij ’s) with the constraint that the323

simulated season must have the same ni and wi as the real player’s season. From this324

data we can compute a specific instance of R̂∗. This process is repeated to construct325

a distribution which can then be used to estimate quantities of interest, such as the326

mean, confidence region, etc. Results from the Monte Carlo simulations for NBA,327

MLB, NFL, and NHL FanDuel players are shown in blue filled symbols in Figure 4.328

The blue dots represent the mean value of R∗ computed for 100 Monte Carlo seasons.329

Error bars on the symbols represent the standard deviation across the 100 trials.330

We may also estimate both the expected value and variance of R∗ directly from331

the player data by approximating E[R∗] = E [1−B/A] ≈ 1 − E[B]/E[A]. Because332

Si/σi ∼ N (µSi/σi, 1), the random variable A is distributed as a noncentral chi-333

squared distribution with the parameters m and λS =
∑m

i=1(µSi/σi)
2. Similarly,334

the random variable B is distributed as a noncentral chi-squared distribution with335

the parameters m and λT =
∑m

i=1(µTi
/σi)

2. Hence336

E[A] =
1

m
(m+ λS) = 1 +

1

m

m∑
i=1

(2wi − 1)2ni
2wi(1− wi)

(14)337

E[B] =
1

m
(m+ λT ) = 1,(15)338

339

from which E[R∗] can be computed as340

(16) E[R∗] = 1−

[
1 +

1

m

m∑
i=1

(2wi − 1)2ni
4wi(1− wi)

]−1

.341

The expected value of R∗ computed directly from Equation (16) using FanDuel player342

data is shown in Figure 4 as solid blue lines.343

Similarly, the variance can be estimated directly from player data by propagating344

the uncertainty associated with the fact that each player only plays a finite number345

of games:346
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Fig. 5. (Left) Sample evolution of P (Skill) as more player data are added to update the prior for
players who have played at least 10 fantasy MLB games. (Right) The probability that the outcome
of the contest is determined by skill, P (Skill) as a function of the minimum number of games in
the playing population. Data is shown for all four sports MLB, NBA, NFL, and NHL.

(17) σ2
R ≈

m∑
i=1

(
∂R̂∗

∂ŵi

)2

σ2
i =

m2

8
(m+ λS)

−4
m∑
i=1

ni(2ŵ
2
i − 1)2

ŵ3
i (1− ŵi)3

.347

This estimate is indicated by the shaded light blue regions in Figure 4. In all four348

sports, both the analytic estimate and the Monte Carlo simulation provide a rea-349

sonable approximation to the FanDuel data for players that have played more than350

approximately 100 games. For players with fewer games, Equation (16) and the Monte351

Carlo simulations over-predict the measured value of R∗ suggesting that the assump-352

tion that players are well-represented by a normal distribution with mean wi and353

variance σi breaks down for small ni.354

3. A Bayesian approach. As a final consistency check, we analyze the data355

from a Bayesian perspective. First, we associate with any given competition a random356

variable, which characterizes the probability that the competition is a game of luck or357

a game of skill, with a sample space {Luck,Skill}. Our goal is to infer the probability358

that the competition is a game of luck (or skill) based on observed data. To this end,359

we appeal to Bayes’ theorem:360

(18) P ( Skill |wi) =
P (wi| Skill )P ( Skill )

P (wi)
361

where P ( Skill |wi) is the conditional probability that the competition is a game of skill
given the observed win fraction of the ith player, wi ; P (wi| Skill ) is the probability
of observing wi if the competition is a game of skill (the likelihood); and P (Skill) is the
prior probability that the competition is a game of skill. The denominator P (wi) is
the probability of observing wi regardless of contest type (the evidence) and is given
by

P (wi) = P (wi| Luck )P ( Luck ) + P (wi| Skill )P ( Skill ).

If we take zi to be the number of wins and Ni to be the number of entries of the
ith player (note that Ni, the number of entries, may be greater than ni, the number
of games, since players may submit more than one entry per game), P (wi| Luck ) is
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equivalent to the probability distribution one would observe in a coin flipping compe-
tition and is given by the binomial distribution,

P (wi| Luck ) = Pbin(zi = Niwi) =

(
Ni

zi

)
φzi(1− φ)Ni−zi

where φ = 1/2 and

(
Ni

zi

)
is the binomial coefficient.362

For a game in which the outcome is determined solely by skill, players can, in
theory, be ranked according to their skill level. In any match-up, the higher ranked
player wins the contest. Hence the best player wins all of their games, the next best
wins all but one, etc., and the probability distribution P (wi| Skill ) is uniform:

P (wi| Skill ) = Puni(zi = Niwi) = 1/Ni.

Finally, since there are only two possible outcomes in this formulation (i.e. the sample363

space is {Luck,Skill}), P (Skill) = 1− P (Luck).364

Starting with a uniform prior of P (Luck) = P (Skill) = 1/2, we iteratively evaluate365

P (wi| Skill ) using Equation (18) and the observed data {zi, Ni} for a randomly366

picked player until the probability, P (Skill) converges (see Figure 5, Left) to one or367

zero. As before, we consider different populations defined by the minimum number368

of games per player. For all four sports, we draw 200 random samples from the369

relevant population and iteratively compute P (wi|Skill). We record the outcome of370

this exercise (a one or zero), and repeat the process fifty times. We then average371

over all fifty outcomes to compute a mean P (Skill). This process is repeated 50 times372

which allows us to compute not only the mean of P (Skill) but also the standard373

deviation of our computed mean as represented by the error bars in Figure 5 (Right).374

In all cases we find that P (Skill) converges to one if the minimum number of games375

per player is sufficiently large. Hence for each sport there exists a transition game376

number, NTG above which the outcome of the game is definitively determined by377

skill, i.e. for playing populations in which every player has played more games than378

NTG, P (Skill) converges to one. For all four sports in our FanDuel dataset, P (Skill)379

is always greater than 1/2; furthermore for all NBA populations, NTG ≈ 1 suggesting380

that skill is always the dominant factor in determining the outcome of these contests381

regardless of how many games are played.382

Although one should not necessarily expect a one-to-one mapping between the383

Bayesian approach and the previous analysis, we can check that trends and features384

are consistent across both methods. First, the ordering is as we would expect with385

fantasy basketball being the most skill-based and fantasy-hockey being the closest386

of the four to chance. More quantitatively, we can estimate the minimum number387

of games required to cross over into the skill-dominated region from Figure 4, and388

compare those numbers with NTG from Figure 5 (Right). If we take R∗ = 1/2 as389

the critical cross-over value, we would expect to see NTG,MLB ≈ 20, NTG,NBA ≈ 5,390

NTG,NFL ≈ 25, and NTG,hockey ≈ 40. These numbers for NBA, MLB, and NHL are391

surprisingly close across the two methods; for NFL, the R∗ calculation is slightly more392

conservative, overestimating NTG by approximately 10 games.393

4. Perspectives on the relative role of skill and chance in games and394

other activities. The outcomes of these tests leave no doubt that skill plays a role in395

the outcome in fantasy sports competitions. However, it is useful to add perspective396

to these results by considering the relative role of skill and luck in the context of other397
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Fig. 6. R∗ values computed for fantasy sports, real sports, cyclocross racing, coin flipping, and
mutual funds. Games of pure luck lie on the left and games of pure skill lie on the right. Blue sports
icons represent fantasy sports and black sports icons represent professional sports.

activities. The third test, persistence, can easily be applied to data from a variety398

of activities as shown in Figure 6 which quantifies R∗ values for the four fantasy399

sports discussed in this study; real MLB, NBA, NFL, and NHL athletic competitions;400

cyclocross racing; coin flipping; and mutual funds. The R∗ values for real MLB,401

NBA, NFL, and NHL athletic competitions were computed using publicly available402

data from the past five seasons (2010-2014). Each point in the p̂i versus q̂i plot403

represents the win fraction for the first half versus the win fraction for the second404

half of a single season for a particular professional sports team (hence each team is405

represented by five points on the p-q scatter plot corresponding to the five seasons we406

considered).407

As one might expect, we find basketball at the skill end of the spectrum since408

there are many games in a basketball season and many scoring opportunities per game.409

Hence small differences in skill are amplified over the course of a season and strong410

teams tend to come out on top. At the other end of the sports cluster, we find hockey411

which typically has a small number of goals per game hence one “lucky shot” can412

make a big difference. While the R∗ values for most of the sports and fantasy sports413

are consistent with our expectations, there is one point that is somewhat puzzling.414

Note that each sport and fantasy sport pair are relatively close to one another. The415

exception is professional football. According to the computed R∗ value, professional416

football contests are largely determined by skill. This is somewhat surprising since417

there are only 16 games per team in the NFL season and the number of scoring418

opportunities per game is limited (compared to e.g. basketball). We currently have419

no explanation for this and we leave it as a puzzle for future investigation.420

To compute the R∗ values associated with cyclocross racing, we considered the421

finishing places of the top 30 performers using publicly available data from crossre-422

sults.com for 2015. For each athlete, p̂i and q̂i values were computed using the average423

finishing place for the first and second half of the season i.e. for each race, first place424

corresponds to 1, second place corresponds to 2, etc. Note that each athlete partici-425

pates in a different set of races (although elite performers tend to all participate in a426

subset of key events). These p̂i and q̂i values were again rotated and used to compute427

R∗ – taking care to include E[S] which is not zero in this case – as shown in Figure428

6. The coin flipping data point was computed using a simulation of a population429

of 100 players flipping 100 coins. The average R∗ value over 100 trials – which not430

surprisingly is approximately zero – is shown in Figure 6.431

As we have seen in the fantasy sports data, the measured value of R∗ depends
on the number of games associated with each player, ni. For real sports it is easy to
select a representative value of ni since each team plays the same number of games
in a season. For fantasy sports, the choice is less obvious since each player plays
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in a different number of contests. To estimate the characteristic number of games
per player, we seek an appropriate average. Because the number of players who
have played ni games decays approximately exponentially (as shown in Figure 4),
computing a simple average not ideal since the signal is swamped by players who have
only played a few games. To address this we computed a logarithmically weighted
average:

n =

Gmax∑
j=1

j log(mj)

log(mj)
.

Here Gmax is the maximum number of games played by any player in the playing432

population and mj is the number of players who have played j games. Using this433

weighed average to compute a characteristic number of games played in each sport,434

we find nMLB = 110, nNBA = 82, nNFL = 34, and nNHL = 60. These values were435

used to compute the values of R∗ for the fantasy sports shown in Figure 6.436

Finally, we consider mutual funds. Mutual funds – investment programs con-437

trolled by (perhaps skillful) managers – have long been considered strategies that438

can beat the market while limiting risk. Savvy investors are constantly evaluating439

whether skilled money managers produce sufficient returns to justify their cost. Pre-440

vious studies have found that chance certainly plays a role in manager performance,441

but placement on the skill-luck spectrum ranges from predominantly chance [8] to a442

more balanced skill-chance split [18]. In the context of the current study, a mutual443

fund manager – similar to a player in fantasy sports – must decide how to allocate444

funds to achieve optimal performance by identifying value in an open market. A fan-445

tasy sports player picks athletes who are projected to yield the most points relative446

to their price; a mutual fund manager invests in companies that they project to yield447

returns higher than their trading price. Hence we can compute R∗ for mutual fund448

managers using market-adjusted mutual fund performance data (i.e. the performance449

of each fund was evaluated relative to the performance of the overall market) from450

Wharton Research Data Services (WRDS) from the past ten years (2005-2015). Here451

p̂i and q̂i for each mutual fund were computed for first and second half of the year,452

respectively, for each of the 10 years. We considered 44,938 distinct mutual funds with453

a total of 307,471 “entries.” The results are shown in Figure 6. This estimate yields454

a diplomatic answer that splits the difference between previous chance-dominant cal-455

culations (R∗ ≈ 0) [8] and previous skill-chance balanced results (R∗ ≈ 0.5) [18].456

4.1. Speculations on game design. To some extent – as beautifully articu-457

lated by Clauset et al. – it is the artful balance of skill and chance that makes sports458

so compelling:459

“On one hand, events within each game are unpredictable, suggesting460

that chance plays an important role. On the other hand, the athletes461

are highly skilled and trained, suggesting that differences in ability462

are fundamental. This tension between luck and skill is part of what463

makes these games exciting for spectators ...” [4]464

Striking this balance is essential in the design of any competition. In any type of465

game there are a number of strategies a game designer can adopt to adjust the relative466

importance of luck in the outcome. First let us consider the effect of the distribution467

of skill within the playing population. To illustrate the importance of skill distribution468

consider a professional golfer playing against a novice versus two professionals (or two469

novices) playing each other. In the first case the outcome is a near certainty since470

the skill of the professional will dominate. In the second case, if the ability of the471
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two players is similar, skill is no longer a distinguishing characteristic and the relative472

importance of chance in the outcome increases [20, 21]. Hence tournaments that are473

divided up into classes of different skill levels (e.g. having beginners play in a separate474

pool) are likely to have a larger element of luck than those in which everyone plays in475

the same pool.476

The second game parameter that games designers may choose to adjust is the477

number of contests per player. Calculating the overall win probability in a best of478

seven series given the win probability of an individual game is a common exercise479

assigned in elementary probability courses and it is well-known that the role of skill480

is amplified through multiple contests. In the words of Levitt et al. “Even tiny481

differences in skill manifest themselves in near certain victory if the time horizon is482

long enough” [16]. Hence perhaps the simplest way to increase the role of skill in a483

contest is to increase the number of games per player in the competition.484

Finally, game designers can address the balance of skill and chance head-on by485

addressing the role of chance as reflected in the rules of the game. For example,486

in a fantasy sports salary cap game, one of the parameters that can be tuned by487

game designers is player pricing. It is interesting to note that more accurate pricing488

algorithms push games towards the luck end of the spectrum. Consider the extreme489

case of perfect pricing in which the price of the player exactly mirrors their expected490

payoff. In this case, there is no strategy in assembling a line-up (other than to get as491

close to the salary cap as possible) and the outcome of the fantasy game is determined492

purely by luck. However, as the pricing becomes less accurate (i.e. less reflective of493

the expected payoff), skilled fantasy players can capitalized on undervalued players.494

Hence, to increase the role of skill in a fantasy competition, game designers could495

either add random noise to their pricing algorithms or increase points awarded for496

less-frequent, larger-variance events such that “perfect pricing” is inherently more497

difficult.498
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Appendix A. FanDuel Data, Rules, and Scoring. The number of players504

and the range of entries per player in each group in the expected payoff calculation505

is summarized in Table 4. Roster positions and scoring for the FanDuel 2014 season506

are summarized in Tables 1, 6 and 5 respectively.507
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Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

average wi 0.4741 0.5138 0.5706 0.5991 0.602

MLB # plrs 28,027 2,803 280 28 5

2013/14 range of 6–141 142– 1,553– 6,991– 14,089–
entries 1,552 6,990 14,088 24,390

average wi 0.4626 0.4967 0.5598 0.5853 0.5851

MLB # plrs 66,556 6,656 666 66 9

2014/15 range of 6–132 132– 1,566– 10,513– 28,631–
entries 1,566 10,512 28,632 60,205

average wi 0.4306 0.5096 0.5678 0.5891 0.6312

NBA # plrs 21,635 2,163 216 22 4

2013/14 range of 6–160 160– 1,485– 6,302– 14,280–
entries 1,485 6,301 14,279 64,292

average wi 0.4319 0.4891 0.5764 0.612 0.6141

NBA # plrs 88,435 8,844 884 89 11

2014/15 range of 6–124 124– 1,476– 9,667– 26,636-
entries 1,476 9,666 26,636 41,621

average wi 0.5253 0.54 0.5613 0.5715 0.6336

NFL # plrs 32,633 3,264 326 33 5

2013/14 range of 6–42 42– 249– 1,854– 6,727–
entries 248 1,853 6,726 49,662

average wi 0.5102 0.5429 0.596 0.6414 0.6542

NFL # plrs 117,582 11,758 1,176 117 15

2014/15 range of 6–43 43– 312– 2,869– 13,240–
entries 311 2,868 13,239 26,478

average wi 0.5155 0.526 0.549 0.5642 0.5914

NHL # plrs 4,625 463 46 5 2

2013/14 range of 6–103 103– 611– 1,872– 4,378–
entries 610 1,871 4,377 16,787

average wi 0.5062 0.5319 0.5652 0.5757 0.5757

NHL # plrs 16,577 1,657 166 17 3

2014/15 range of 6–108 108– 919– 5,965– 12,111–
entries 918 5,964 12,110 21,214

Table 4
Summary of average win fraction, number of players, and the range of number of entries per

player in each group as computed in section 2.1.
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MLB NBA NFL NHL
W 4 Sacks 1 Wins 3
ER −1 Fumbles recovered 2 Goals against −1
SO 1 Return touchdowns 6 Saves 0.2
IP 1 Extra point return 2 Shutouts 2

Safeties 2
Blocked punt/kick 2
Interceptions made 2
0 points allowed 10
1-6 points allowed 7
7-13 points allowed 4
14-20 points allowed 1
28-34 points allowed −1
35+ points allowed −4

Table 5
FanDuel 2013 and 2014 scoring (defense).
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MLB NBA NFL NHL
1B 1 3-pt FG 3 Rushing yards made 0.1 Goals 3
2B 2 2-pt FG 2 Rushing touchdowns 6 Assists 2
3B 3 FT 1 Passing yards 0.04 Plus/minus 1
HR 4 Rebound 1.2 Passing touchdowns 4 Penalty minutes 0.25
RBI 1 Assist 1.5 Interceptions −1 Powerplay points 0.5
R 1 Block 2 Receiving yards 0.1 Shots on goal 0.4
BB 1 Steal 2 Receiving touchdowns 6
SB 2 Turnover −1 Receptions 0.5
HBP 1 Kickoff return TDs 6
Out −0.25 Punt return TDs 6

Fumbles lost −2
2-point conversions scored 2
2-point conversion passes 2
FG from 0-39 yds 3
FG from 40-49 yds 4
FG from 50+ yds 5
Extra point conversions 1

Table 6
FanDuel 2013 and 2014 scoring (offense).
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