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Abstract

Building on the principle that many engineering structures consist of identical or similar components, we
introduce a hyperreduced reduced basis element method for model reduction of parametrized, component-
based systems in continuum mechanics governed by nonlinear partial differential equations. The method
treats global, nonlocalized nonlinearities across the entire domain and enables model reduction of large-
scale problems with many continuous and topology-varying parameters. In the offline phase, the method
constructs, through a component-wise empirical training, a library of archetype components defined by a
component-wise reduced basis and hyperreduced quadrature rules with varying hyperreduction fidelities. In
the online phase, the method invokes an online adaptive scheme informed by the Brezzi–Rappaz–Raviart
theorem to select an appropriate hyperreduction fidelity for each component to meet the user-prescribed
error tolerance at the system level. We demonstrate the efficacy of the method using a two-dimensional
nonlinear thermal fin system that comprises up to 225 components and 68 independent parameters.

Keywords: model reduction, reduced basis element method, domain decomposition, hyperreduction,
component-wise training, parameterized nonlinear PDEs

1. Introduction

Many-query problems, which necessitate repeatedly solving parameterized partial differential equations
(PDEs), arise commonly in various fields of computational science such as optimization, uncertainty quantifi-
cation, control, and engineering design. For problems where the solution manifold is well approximated in a
low-dimensional linear space, the reduced basis (RB) methods provide an effective approach to rapidly and re-
liably approximate the PDE solution for many different parameter values [35, 34, 19, 5]. RB methods achieve
efficiency by separating the computation into offline (training) and online (deployment) phases. The former
typically involves solutions of the high-fidelity problem (e.g., using finite element (FE) methods) for many
training parameter values to generate solution snapshots, the construction of an RB for the solution space,
and, for nonlinear PDEs, hyperreduction [32, 35, 19]. Consequently, the offline phase is computationally
demanding. Nonetheless, this initial high computational cost is warranted by the significant computational
savings realized in the subsequent online phase, where the reduced problem is solved numerous times in the
intended many-query application.

Despite their effectiveness, the applicability of standard (i.e., monodomain or single-domain) parametric
RB methods is limited to the particular problem with continuous parametric variations for which the training
is performed; for instance, even a slight topological change in the domain renders the trained reduced model
inapplicable. In principle, a separate reduced model could be trained for each topological configuration;
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however, in practice, such retraining, at best, diminishes the utility of reduced model and, at worst, is
computationally intractable, especially for large-scale engineering systems that can take on many different
topological configurations. Even when only parametric (and no topological) variations are considered, the
standard RB methods can be restricted to problems with a small number of parameters due to the high
training cost of exploring a high-dimensional space.

To mitigate the aforementioned challenges, a variant of RB methods, called component-based or mul-
tidomain RB methods, have been developed [21, 6, 27]. The methods exploit the fact that a vast ma-
jority of engineering structures—such as heat-exchangers, lattice structures, mechanical multi-component
assemblies—consist of a large number of identical or similar components. The key ingredient of component-
based RB methods is component-based training during the offline phase, whereby a library of interoperable
archetype components and the associated local RB is developed. Then, given a particular topological config-
uration in the online phase, copies of the archetype components in the library are instantiated, and a global
RB model for the whole system is formed by connecting the preconstructed local reduced models through
their respective ports.

Hitherto, several different variants of component-based RB methods have been developed. The reduced
basis element (RBE) method [27, 28, 26] combines the ideas of domain-decomposition and RB methods. The
method uses Lagrange multipliers to couple local, subdomain-wise reduced models in the online phase to form
a global reduced model. The static condensation RBE (SCRBE) method [22, 23] builds on the component
mode synthesis [21, 6] and the RB methods. The method decomposes the degrees of freedom (DoF) in each
component into port and bubble (interior) DoF, eliminates the interior DoF using static condensation [39]
to form a Schur complement system with only port DoFs, and uses RB approximation in each component
to reduce the computational cost of static condensation and to account for parametric variations. The
port-reduced SCRBE method [12, 13, 36] uses port-reduction techniques, which approximate the solution
on global ports by applying RB methods to port modes, to further reduce the size of the Schur complement
system and hence the computational cost. SCRBE methods bear a close resemblance to multiscale RB
methods [31, 25, 38, 29, 11], which are applicable to structures composed of smaller-scale components with
less heterogeneity relative to those in structures targeted for the SCRBE method.

Component-based RB methods have been initially developed for linear or polynomial nonlinear problems
with affine parameter dependence, which facilitate offline-online computational decomposition (without hy-
perreduction); however, more recently, the method has been extended to general nonlinear and nonaffine
problems. Methods for nonlinear problems can be broadly categorized into two groups based on the locality
of nonlinearity. The first class of methods are designed for problems where the nonlinearity can be localized
to small regions. Beiges et al. [2] decompose the physical domain and use a hybrid full-order/reduced-order
model approach in the online phase to handle parameter configurations absent in the offline phase. Ballani
et al. [3] similarly decompose the physical domain into linear and nonlinear regions and apply the SCRBE
method in the former part and high-fidelity model in the latter. Zhang et al. [41] use the same decomposition
idea except that, in nonlinear regions, Gaussian processes regression is used to construct a surrogate model.
By construction, this class of methods is specialized for localizable nonlinearities and cannot treat globally
nonlinear systems.

The second class of methods are designed for problems that exhibit nonlinearity everywhere in the do-
main. Hoang et al. [20] develop a domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) method,
which constructs a separate reduced space for each subdomain and enforces interface continuity between
the subdomains using a set of compatibility constraints in the LSPG method. Iollo et al. [24] develop a
component-based model reduction formulation for parametrized nonlinear elliptic PDEs that uses overlap-
ping subdomains and an optimization-based reformulation. Smetana and Taddei [37] develop a multidomain
RB method that uses the partition-of-unity concept and applies it to a two-dimensional nonlinear diffu-
sion problem. Diaz et al. [10] integrate nonlinear approximation spaces, created through applying autoen-
coders, with domain-decomposition to facilitate reduced-order modeling of problems with slowly decaying
Kolmogorov n-width and to improve training costs. These methods for globally nonlinear problems, however,
do not yet provide the same level of versatility and reliability provided by component-based RB methods for
linear problems. First, these works consider multidomain systems that result from a decomposition of global
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system into partitions, and not interchangeable physical components in the sense of those in component-
based RB methods for linear problems. Second, solution error due to hyperreduction of nonlinear PDEs is
not quantitatively controlled at the system level.

In this work, we propose a model reduction method that (i) can treat global (non-localizable) nonlinear-
ities, (ii) incorporates online-interchangeable physical components that provide topological and parametric
online flexibility as achieved by component-based RB methods for linear problems, and (iii) provides quanti-
tative control of hyperreduction error for the online-assembled system. The contribution of the present work
are fivefold:

1. We develop a hyperreduced RBE (HRBE) method, which (i) uses a library of archetype components
to provide online topological and parametric flexibility of component-based RB methods and (ii) can
handle general parametrized nonlinear PDEs that exhibit global (non-localizable) nonlinearities.

2. We extend the empirical quadrature procedure (EQP) [33, 40] to component-wise offline training to
enable a systematic construction of a library of hyperreduced components, each of which meets the
specified residual tolerance.

3. We appeal to the Brezzi-Rappaz-Raviart (BRR) theory [7] to develop an actionable solution error
estimate for component-based nonlinear systems, which relates component-wise residuals due to hy-
perreduction to system-level solution error.

4. We develop an adaptive procedure, informed by the BRR error estimate, to construct a hyperreduced
system from a library of hyperreduced components, such that the hyperreduction error in the online-
assembled system meets the user-prescribed error tolerance in a solution norm for any topological and
parametric configuration.

5. We demonstrate the efficacy of the proposed HRBE method using a nonlinear thermal fin system that
comprises up to 225 instantiated components and 68 independent parameters.

The remainder of the paper is organized as follows. Section 2 introduces terminologies commonly used in
component-based RB approaches and provides the necessary definitions for the development of the HRBE
method. This section also presents the general form of the equations considered in this study. Section 3
introduces the HRBE method, providing the bubble–port decomposition, RB approximation, and hyperre-
duced RB approximation. Section 4 introduces the component-based training procedure designed for RB
construction and hyperreduction of the archetype components in the library. Section 5 describes the com-
putational procedures of offline and online phases. Section 6 presents numerical results that validate and
demonstrate the efficacy of the HRBE method. Finally, we conclude with a summary of the work and
potential considerations for future work.

2. Parameterized nonlinear PDE model problem

As a prelude to developing our HRBE method, in this section, we introduce the general form of the
parameterized nonlinear PDEs considered in this work. We present both the physical and reference domain
formulations, the latter of which is crucial to treat parameterized geometries using the HRBE method.
We begin by defining notations and fundamental concepts common in the context of component-based RB
methods.

2.1. Preliminaries

We first introduce geometric and topological entities associated with archetype components. We define Ĉ
as a library of Narch parameterized archetype components. For each archetype component ĉ ∈ Ĉ, we introduce
Ω̂ĉ ⊂ Rd, D̂ĉ ⊂ Rnĉ , and µ̂ĉ ∈ D̂ĉ as respectively its bounded d-dimensional reference spatial domain,
bounded nĉ-dimensional parameter domain, and nĉ-dimensional parameter tuple specifying its reference
parameter values. Each archetype component ĉ has nγĉ disjoint local ports whose domains are γ̂ĉ,p ⊆ ∂Ω̂ĉ,

p ∈ Pĉ ≡ {1, · · · , nγĉ }, where ∂Ω̂ĉ is the boundary of Ω̂ĉ. We assume the boundary of all components are
Lipschitz continuous and all ports of an archetype component are mutually separated by a boundary surface.
Figure 1a shows these definitions for two archetype components.
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(a) components

(b) assembled system

Figure 1: (a) Top: an archetype component with two local ports, Bottom: an archetype component with three local ports; (b)
A system with three instantiated components and five global ports.

We next introduce geometric and topological entities associated with an assembled system. We define C as
a set of Ncomp instantiated components composing a system. Each instantiated component is generated from
an archetype component in the library through a (parameterized) geometric mapping. The components in
the system are connected together through their local ports, thereby creating Nport global ports. Hence, the
geometric mappings must further guarantee compatibility of the ports. A local port residing on the system
boundary also forms a global port. The essential boundary conditions at the system level are imposed
through this type of ports. We assume a global port can be shared by at most two instantiated components.
We introduce Ωc ⊂ Rd as the physical domain of the instantiated component c ∈ C and Γp, p ∈ P, as the
physical domains of the global ports in the system, where P ≡ {1, · · · , Nport}. Figure 1b shows an example
of a three-component system.

We now define approximation spaces associated with archetype components. For each archetype com-
ponent ĉ ∈ Ĉ, we introduce a Hilbert space V̂ĉ ⊂ H1(Ω̂ĉ) endowed with an inner product (·, ·)V̂ĉ and the

associated induced norm ||·||V̂ĉ≡
√

(·, ·)V̂ĉ , which is equivalent to the H1(Ω̂ĉ)-norm. We also associate with

this component an Nĉ-dimensional truth FE space V̂h,ĉ ≡
{
v ∈ V̂ĉ

∣∣∣ v|κ∈ Pη(κ) ∀κ ∈ Th,ĉ
}
⊂ V̂ĉ, where Th,ĉ

is a tessellation of Ω̂ĉ formed by a set of nonoverlapping, conforming elements {κ}, and Pη(κ) is the space

of degree-η polynomials over each element κ. We introduce {φ̂ĉ,i}Nĉ
i=1 as the nodal FE basis for V̂h,ĉ.

We further define bubble and port spaces associated with archetype components. We introduce the N p
ĉ -

dimensional port FE space X̂ ph,ĉ ≡ V̂h,ĉ|γ̂ĉ,p of the p-th port, p ∈ Pĉ, of the archetype component ĉ ∈ Ĉ as the

restriction of V̂h,ĉ to the port domain γ̂ĉ,p. We also introduce V̂b
h,ĉ ≡

{
v ∈ V̂h,ĉ

∣∣∣ v|γ̂ĉ,p = 0, ∀p ∈ Pĉ
}

as the

N b
ĉ -dimensional bubble FE space of the archetype component ĉ, where N b

ĉ = Nĉ−
∑
p∈Pĉ

N p
ĉ . We assume, in

each ĉ ∈ Ĉ, the firstN b
ĉ indices refer to its bubble space’s DoF and the rest are ordered based on its local ports’

indices in Pĉ. Therefore, indices i ∈ {1, · · · ,N b
ĉ } refer to bubble space’s DoF, i ∈ {N b

ĉ + 1, · · · ,N b
ĉ +N 1

ĉ }
refer to the first port’s DoF and so forth. Accordingly, we introduce {φ̂b

ĉ,i ≡ φ̂ĉ,i}
Nb

ĉ
i=1 as the basis for the
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bubble space of ĉ ∈ Ĉ, and {χ̂pĉ,i ≡ φ̂ĉ,ζ+i
∣∣∣
γ̂ĉ,p
}N

p
ĉ

i=1 and V̂ph,ĉ ≡ {φ̂
p
ĉ,i ≡ φ̂ĉ,ζ+i}

Np
ĉ

i=1 as the basis of the p-th port

of ĉ ∈ Ĉ and its nodal volumetric extension, respectively, where ζ = N b
ĉ +

∑p−1
i=1 N i

ĉ . We finally introduce

the space V̂γh,ĉ ≡ ⊕p∈Pĉ
V̂ph,ĉ; note that V̂h,ĉ = V̂b

h,ĉ+ V̂γh,ĉ, which provides a bubble–port space decomposition.
We now introduce mappings between topological entities of instantiated components and the assembled

system. We introduce M : C → Ĉ as a map from the instantiated components to their corresponding
archetype components and Pc : PM(c) → P as an index map from the local ports of the instantiated
component c ∈ C to their corresponding global ports in the system. The connectivity of the global ports is
given by πp, p ∈ P; if the p-th global port connects the l-th local port of c ∈ C and the l′-th local port of
c′ ∈ C, its connectivity is defined by πp = {(c, l), (c′, l′)}, and Pc(l) = Pc′(l

′) = p. On the other hand, if
p ∈ P belongs only to the l-th local port of c ∈ C, then πp = {(c, l)}.

We next define approximation spaces associated with instantiated components. We introduce, for each
instantiated component c ∈ C, the parameter tuple µc ∈ Dc ≡ D̂M(c). The parameterized geometric

mappings relating the archetype and instantiated component domains are Gc : Ω̂M(c) × Dc → Ωc such that

Ωc = Gc(Ω̂M(c);µc) and γc,p ≡ Gc(γ̂M(c),p;µc) ∀p ∈ PM(c), where the latter is the physical domain of the
p-th local port of c ∈ C. The mapping Gc(·;µc) depends only on the geometric parameters in µc. For c ∈ C,
the mapped spaces Vc, Vh,c, and Vb

h,c are then given by

Vc =
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂M(c)

}
,

Vh,c =
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂h,M(c)

}
= span

{
φc,i ≡ φ̂M(c),i ◦ G−1

c (·;µc)
}NM(c)

i=1
⊂ Vc,

Vb
h,c =

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂b

h,M(c)

}
= span

{
φb
c,i ≡ φ̂b

M(c),i ◦ G
−1
c (·;µc)

}Nb
M(c)

i=1
,

where {φc,i}
NM(c)

i=1 and {φb
c,i}
Nb

M(c)

i=1 are the geometric-parameter-dependent basis for Vh,c and Vb
h,c, respec-

tively. We endow Vc with a parameter-dependent inner product (·, ·)Vc and the associated induced norm
‖·‖Vc≡

√
(·, ·)Vc , which is equivalent to the H1(Ωc)-norm. For this instantiated component, the mapped FE

port spaces X ph,c and their nodal volumetric extensions Vph,c, p ∈ PM(c), are given by

X ph,c = Vh,c|γc,p =
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ X̂ ph,M(c)

}
= span

{
χpc,i ≡ χ̂

p
M(c),i ◦ G

−1
c (·;µc)

}Np
M(c)

i=1
,

Vph,c =
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂ph,M(c)

}
= span

{
φpc,i ≡ φ̂

p
M(c),i ◦ G

−1
c (·;µc)

}Np
M(c)

i=1
,

in which {χpc,i}
Np

M(c)

i=1 and {φpc,i}
Np

M(c)

i=1 are, respectively, the geometric-parameter-dependent basis functions
of X ph,c and Vph,c. We assume conformity of the local ports connected together. Thus, for the p-th global

port, p ∈ P, with a connectivity of πp = {(c, l), (c′, l′)}, we have Γp = γc,l = γc′,l′ and Xh,p ≡ X lh,c = X l′h,c′ .
Denoting by NΓ

p the number of DoF on the p-th global port for p ∈ P, we have NΓ
Pc(l) = NΓ

Pc′ (l
′) = N p

M(c) =

N p′

M(c′) for the given πp. For the p-th global port with πp = {(c, l), (c′, l′)}, we introduce VΓ
h,p ≡ V lh,c ⊕ V l

′

h,c′

and its basis {φΓ
p,i ∈ VΓ

h,p}
NΓ

p

i=1 such that

φΓ
p,i =


φlc,i in Ωc,

φl
′

c′,i in Ωc′ ,

0 elsewhere,

and if πp = {(c, l)}

φΓ
p,i =

{
φlc,i in Ωc,

0 elsewhere,
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where in this case VΓ
h,p = V lh,c.

We finally define approximation spaces associated with the assembled system. We first introduce the
system parameter domain D ≡ ⊕c∈CDc = ⊕c∈CD̂M(c) and parameter tuple µ ≡ (µ1, · · · , µNcomp

) ∈ D.

The system’s N b
h -dimensional bubble and Nh-dimensional FE spaces are given by Vb

h ≡ ⊕c∈CVb
h,c and

Vh ≡
(
Vb
h ⊕ VΓ

h

)
∩ V, respectively, where N b

h =
∑
c∈C N b

M(c), Nh = N b
h +

∑
p∈P NΓ

p , and VΓ
h ≡ ⊕p∈PVΓ

h,p.

Note that the intersection with V, for H1
0 (Ω) ⊂ V ⊂ H1(Ω), enforces essential boundary conditions. For the

system and its parameter-dependent function space V, we define the inner product

(w, v)V ≡
∑
c∈C

(w|Ωc
, v|Ωc

)Vc , (1)

and the associated induced norm ‖v‖V≡
√

(v, v)V for any v, w ∈ V.

2.2. Exact problem formulation

We now formulate the model problem in the physical and reference domains. We introduce the system’s
physical domain Ω and the associated Lipschitz continuous boundary ∂Ω. We also define ΓD and ΓN ,
respectively, as the nonempty Dirichlet and Neumann boundaries of Ω such that ∂Ω = ΓD ∪ ΓN and

ΓD ∩ ΓN = ∅. We further introduce V =
{
v ∈ H1(Ω)

∣∣∣v|ΓD
= 0
}

. To simplify the presentation, we assume

boundary conditions are homogeneous everywhere and express the system-level parameterized continuous
residual form R : V × V ×D → R in the physical domain as

R(w, v;µ) =

∫
Ω

r(w, v;x, µ) dx ∀w, v ∈ V, ∀µ ∈ D,

where r : V × V × Ω × D → R is linear in its second argument but is in general nonlinear in its first
argument. Problems that involve boundary integrals associated with nonhomogeneous boundary conditions
can be readily treated with minor modifications. Then, the weak form of the exact nonlinear problem over
the system’s physical domain from a monodomain perspective is as follows: given µ ∈ D, find u(µ) ∈ V such
that

R(u(µ), v;µ) = 0 ∀v ∈ V. (2)

We assume the problem is well-posed for all µ ∈ D. Given the solution field u(µ) ∈ V, we evaluate a scalar
output (i.e., quantity of interest) F (u(µ);µ) ∈ R, where

F (w;µ) =

∫
Ω

f(w;x, µ) dx ∀w ∈ V, ∀µ ∈ D,

for f : V × Ω × D → R. To simplify the presentation, we again assume that the output does not involve
boundary integrals, but boundary-dependent outputs can be readily treated with minor modifications.

We now introduce a domain-decomposed representation of the system-level problem in terms of its compo-
nents. For each instantiated component c ∈ C, we introduce the physical-domain residual Rc : Vc×Vc×Dc →
R and output functional Fc : Vc ×Dc → R given by

Rc(w, v;µ) =

∫
Ωc

rc(w, v;x, µ) dx ∀w, v ∈ Vc, ∀µ ∈ Dc,

Fc(w;µ) =

∫
Ωc

fc(w;x, µ) dx ∀w ∈ Vc, ∀µ ∈ Dc,

where rc : Vc × Vc × Ωc × Dc → R and fc : Vc × Ωc × Dc → R are the physical-domain integrands that
satisfy rc(w, v;x, µc) = r(w, v;x, µc) and fc(w;x, µ) = f(w;x, µc) for all w, v ∈ Vc, x ∈ Ωc, and µc ∈ Dc,
where the entries of µ associated with the instantiated component c is equal to µc. We further define, for
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each archetype component ĉ ∈ Ĉ, reference-domain residual R̂ĉ : V̂ĉ × V̂ĉ × D̂ĉ → R and output functional
F̂ĉ : V̂ĉ × D̂ĉ → R given by

R̂ĉ(w, v;µ) =

∫
Ω̂ĉ

r̂ĉ(w, v; x̂, µ) dx̂ ∀w, v ∈ V̂ĉ, ∀µ ∈ D̂ĉ,

F̂ĉ(w;µ) =

∫
Ω̂ĉ

f̂ĉ(w; x̂, µ) dx̂ ∀w ∈ V̂ĉ, ∀µ ∈ D̂ĉ,

where r̂ĉ : V̂ĉ×V̂ĉ× Ω̂ĉ×D̂ĉ → R and f̂ĉ : V̂ĉ× Ω̂ĉ×D̂ĉ → R are the reference-domain integrands that satisfy

rc(w, v;x, µc) = r̂M(c)(w ◦ Gc(·;µc), v ◦ Gc(·;µc);G−1
c (x;µc), µc)

∣∣∣Jc(G−1
c (x;µc), µc)

∣∣∣−1

,

fc(w;x, µc) = f̂M(c)(w ◦ Gc(·;µc);G−1
c (x;µc), µc)

∣∣∣Jc(G−1
c (x;µc), µc)

∣∣∣−1

,

for all w, v ∈ Vc, x ∈ Ωc and µc ∈ Dc, where Jc(·, µc) is the Jacobian of Gc(·;µc) and
∣∣∣Jc(·, µc)∣∣∣ is its

determinant. Given the above definitions, we can express the system-level residual and output forms in
terms of the instantiated physical-domain forms and the archetype reference-domain forms as

R(w, v;µ) =
∑
c∈C

Rc
(
w|Ωc

, v|Ωc
;µc
)

=
∑
c∈C

R̂M(c)

(
w|Ωc

◦ Gc(·;µc), v|Ωc
◦ Gc(·;µc);µc

)
,

F (w;µ) =
∑
c∈C

Fc(w|Ωc
;µc) =

∑
c∈C

F̂c(w|Ωc
◦ Gc(·;µc);µc)

for any w, v ∈ V and µ ∈ D.

2.3. Truth problem formulation

As is often the case, the exact problem (2) cannot be solved analytically. Instead, we appeal to the
truth problem associated with a FE method to approximate the solution to an arbitrary high fidelity. This
solution is taken as the computable ground truth. Moreover, in practice, the integrals in the residual and
output forms are approximated numerically using a quadrature rule. We define (x̂ĉ,q, ρ̂ĉ,q)

Qĉ

q=1, as the truth

quadrature rule in the reference domain Ω̂ĉ of each archetype component ĉ ∈ Ĉ. The truth FE problem then
is as follows: for the parameterized truth residual form Rh : Vh×Vh×D → R, given µ ∈ D, find uh(µ) ∈ Vh
such that

Rh(uh(µ), vh;µ) = 0 ∀vh ∈ Vh, (3)

where, for any wh, vh ∈ Vh and µ ∈ D,

Rh(wh, vh;µ) =
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

(
wh|Ωc

◦ Gc(·;µc), vh|Ωc
◦ Gc(·;µc); x̂M(c),q, µc

)
. (4)

We then evaluate the truth output

Fh(uh(µ);µ) ≡
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q f̂M(c)

(
uh(µ)|Ωc

◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc
)
. (5)

Similar to the exact problem in (2), we assume (3) is well-posed for all µ ∈ D.

In practice, (3) is solved using Newton’s method. Given the n-th Newton iterate u
(n)
h , the n+1-st iterate

is given by u
(n+1)
h = u

(n)
h − δu(n)

h , where δu
(n)
h ∈ Vh is the Newton update that satisfies

R′h(u
(n)
h , δu

(n)
h , vh;µ) = Rh(u

(n)
h , vh;µ) ∀vh ∈ Vh,
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where R′h(u
(n)
h , δu

(n)
h , vh;µ) is the Gâteaux derivative of Rh(·, vh;µ) at u

(n)
h in the direction of δu

(n)
h . We

may appeal to (4) to obtain, ∀wh, zh, vh ∈ Vh and ∀µ ∈ D,

R′h(wh, zh, vh;µ) =
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

(
wh|Ωc

◦ Gc(·;µc), zh|Ωc
◦ Gc(·;µc), vh|Ωc

◦ Gc(·;µc); x̂M(c),q, µc

)
,

where r̂ ′ĉ(wh, zh, vh; x̂ĉ,q, µĉ), ĉ ∈ Ĉ, is the Gâteaux derivative of r̂ĉ(·, vh; x̂ĉ,q, µc) at wh in the direction of zh.

2.4. Truth problem: algebraic form

We now introduce the algebraic form of the truth problem. For any function y in an N -dimensional
linear space Y with a basis {Φi}Ni=1, we denote its associated generalized coordinates by a boldface letter y

such that y ≡ [y1, · · · ,yN ]T satisfies y =
∑N
i=1 yiΦi. Accordingly, for each instantiated component c ∈ C,

we introduce Rh,c : RNM(c) × Dc → RNM(c) and Jh,c : RNM(c) × Dc → RNM(c)×NM(c) for all wh,c ∈ Vh,c and
µc ∈ Dc such that

(Rh,c(wh,c;µc))i =

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

(
(

NM(c)∑
k=1

wh,c,kφc,k) ◦ Gc(·;µc), φc,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

(Jh,c(wh,c;µc))i,j =

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

(
(

NM(c)∑
k=1

wh,c,kφc,k) ◦ Gc(·;µc), φc,j ◦ Gc(·;µc), φc,i ◦ Gc(·;µc);

x̂M(c),q, µc

)
,

for i, j = 1, · · · ,NM(c). Then, the algebraic form of the truth problem (3) is as follows: given µ ∈ D, find
uh(µ) ∈ RNh such that

Rh(uh(µ);µ) =
∑
c∈C

Ph,cRh,c(P
T
h,cuh(µ);µc) = 0,

where Ph,c : RNM(c) → RNh is a linear extension operator that maps the DoF of each instantiated component
c ∈ C to global DoF in the system. As before, we obtain the solution using Newton’s method. The n+ 1-st

Newton iterate is given by u
(n+1)
h = u

(n)
h −∆u

(n)
h , where ∆u

(n)
h ∈ RNh is the Newton update that satisfies

Jh(u
(n)
h ;µ) ∆u

(n)
h = Rh(u

(n)
h ;µ), (6)

and the system Jacobian Jh : RNh ×D → RNh×Nh is given by

Jh(uh(µ);µ) =
∑
c∈C

Ph,cJh,c(P
T
h,cuh(µ);µc)P

T
h,c.

3. Hyperreduced reduced basis element method

In this section, we present our HRBE method, which uses component-wise RB and hyperreduction (i) to
provide an accurate approximation of the Nh-dimensional truth problem (3) at a substantially reduced cost
of O(Nrb) � Nh and (ii) to provide topological and parametric flexibility to assemble an arbitrary system
in the online phase.
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3.1. Truth problem decomposition: bubble and port spaces

To facilitate the development of our HRBE method, we first recast the truth problem (3) in terms
of bubble and port basis functions. To this end, we introduce for the p-th local port of each archetype

component ĉ ∈ Ĉ, p ∈ Pĉ, eigenpairs (τ̂pĉ,i ∈ X̂
p
h,ĉ, λ

p
ĉ,i ∈ R)

Np
ĉ

i=1 such that∫
γ̂ĉ,p

∇τ̂pĉ,i · ∇ŷ ds = λpĉ,i

∫
γ̂ĉ,p

τ̂pĉ,i ŷ ds ∀ŷ ∈ X̂ ph,ĉ,∥∥∥τ̂pĉ,i∥∥∥
L2(γ̂ĉ,p)

= 1.

We then elliptically lift these basis functions to the interior of ĉ ∈ Ĉ to find {ψ̂pĉ,i ∈ V̂h,ĉ}
Np

ĉ
i=1, p ∈ Pĉ, by

solving ∫
Ω̂ĉ

∇ψ̂pĉ,i · ∇v dx̂ = 0 ∀v ∈ V̂b
h,ĉ,

ψ̂pĉ,i = τ̂pĉ,i on γ̂ĉ,p,

ψ̂pĉ,i = 0 on γ̂ĉ,p′ ∀p′ 6= p.

The associated instantiated (harmonic extension of) port basis for the instantiated component c ∈ C and the

parameter µc ∈ Dc are {ψpc,i ≡ ψ̂pM(c),i ◦ G
−1
c (·;µc)}

Np
M(c)

i=1 , p ∈ PM(c). Also, for the p-th global port, p ∈ P,

with πp = {(c, l), (c′, l′)}, we define (the harmonic extensions of) a global port basis, {ψΓ
p,i ∈ Vh,c⊕Vh,c′}

NΓ
p

i=1,
such that

ψΓ
p,i =


ψlc,i in Ωc,

ψl
′

c′,i in Ωc′ ,

0 elsewhere;

similarly, if πp = {(c, l)}, we define {ψΓ
p,i ∈ Vh,c}

NΓ
p

i=1 such that

ψΓ
p,i =

{
ψlc,i in Ωc,

0 elsewhere.

Then, for each component c ∈ C, due to compatibility of the ports, any vh,c ∈ Vh,c can be decomposed as

vh,c = vb
h,c +

∑
p∈PM(c)

vΓ
h,Pc(p) =

Nb
M(c)∑
i=1

vb
h,c,i φ

b
c,i +

∑
p∈PM(c)

NΓ
Pc(p)∑
i=1

vΓ
h,Pc(p),iψ

p
c,i, (7)

where vb
h,c ∈ Vb

h,c is the bubble part of vh,c and {vΓ
h,Pc(p) ∈ Vh,c}p∈PM(c)

are its port parts. Similarly at the
system level, any vh ∈ Vh can be decomposed as

vh = vb
h + vΓ

h ,

where vb
h ∈ Vb

h and vΓ
h ∈ Vh, respectively, are the bubble and port parts of vh given by

vb
h =

∑
c∈C

Ecv
b
h,c, vΓ

h =
∑
p∈P

vΓ
h,p;

here, Ec : Vb
h,c → Vb

h is the FE extension operator of the instantiated component c ∈ C such that

Ecv
b
h,c =

{
vb
h,c in Ωc,

0 elsewhere.
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Therefore, the truth problem (3) can be rewritten as follows: given µ ∈ D, find {ub
h,c(µ) ∈ Vb

h,c}c∈C and

{uΓ
h,p(µ) ∈ Vh}p∈P such that, for all {vb

h,c ∈ Vb
h,c}c∈C and {vΓ

h,p ∈ Vh}p∈P ,

Rh(uh(µ), vh;µ) =
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
ub
h,c(µ) +

∑
p∈PM(c)

uΓ
h,Pc(p)(µ)

]
◦ Gc(x̂M(c),q;µc),

[
vb
h,c +

∑
p∈PM(c)

vΓ
h,Pc(p)

]
◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc

)
= 0.

(8)

3.2. RB problem formulation

We now introduce an RB approximation of the truth problem (8). We first construct an RB space for
the bubble space of each component. To this end, we assume that, for each c ∈ C, ub

h,c(µ) for any µ ∈ D
can be well-approximated in an Nb

M(c) � N
b
M(c)-dimensional linear space. We introduce V̂b

rb,ĉ ⊂ V̂b
h,ĉ as

the low-dimensional space for each archetype component ĉ ∈ Ĉ, spanned by a basis {ξ̂b
ĉ,i}

Nb
ĉ

i=1. We defer the

discussion of the computational procedure for constructing V̂b
rb,ĉ, ĉ ∈ Ĉ to Section 4; for now, we assume the

RB spaces are given. The associated RB spaces for instantiated components are

Vb
rb,c ≡

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂b

rb,M(c)

}
= span

{
ξb
c,i ≡ ξ̂b

M(c),i ◦ G
−1
c (·;µc)

}Nb
M(c)

i=1
⊂ Vb

h,c,

Vrb,c ≡
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂rb,M(c)

}
∀c ∈ C, ∀µc ∈ Dc,

where V̂rb,ĉ ≡ V̂b
rb,ĉ ⊕ V̂

γ
h,ĉ, whose dimension is Nĉ ≡ Nb

ĉ +
∑
p∈Pĉ

N p
ĉ .

We next define the system-level (global) RB space. We first introduce the bubble space for the system as
the direct sum of component RB spaces: i.e., Vb

rb ≡ ⊕c∈CVb
rb,c. We then augment the space with the global

port basis and enforce essential boundary conditions to obtain Vrb =
(
Vb

rb ⊕ VΓ
h

)
∩V. The dimensions of Vb

rb

and Vrb are Nb
rb ≡

∑
c∈C N

b
M(c) and Nrb = Nb

rb +
∑
p∈P NΓ

p , respectively. Since Nb
ĉ � N b

ĉ ∀ĉ ∈ Ĉ, we have
Nrb � Nh. For each instantiated component c ∈ C, we express any vrb,c ∈ Vrb,c as

vrb,c = vb
rb,c +

∑
p∈PM(c)

vΓ
h,Pc(p),

where vb
rb,c ∈ Vb

rb,c. The associated global function vrb ∈ Vrb,c can be expressed as

vrb =
∑
c∈C

Ecv
b
rb,c +

∑
p∈P

vΓ
h,p.

Given the (global) RB space, we appeal to Galerkin projection to obtain the RB problem: given µ ∈ D,
find urb(µ) ∈ Vrb such that

Rrb(urb(µ), vrb;µ) = 0 ∀vrb ∈ Vrb, (9)

and approximate the output Frb(urb(µ);µ), where Rrb(w, v;µ) = Rh(w, v;µ) ∀w, v ∈ Vrb, ∀µ ∈ D and
Frb(w;µ) = Fh(w;µ) ∀w ∈ Vrb,∀µ ∈ D. Given the bubble–port space decomposition, the problem may also
be stated more explicitly as follows: given µ ∈ D, find {ub

rb,c(µ) ∈ Vb
rb,c}c∈C and {uΓ

h,p(µ) ∈ Vh}p∈P such

that, for all {vb
rb,c ∈ Vb

rb,c}c∈C and {vΓ
h,p ∈ Vh}p∈P ,

Rrb(urb(µ), vrb;µ) =
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
ub

rb,c(µ) +
∑

p∈PM(c)

uΓ
h,Pc(p)(µ)

]
◦ Gc(x̂M(c),q;µc),

[
vb

rb,c +
∑

p∈PM(c)

vΓ
h,Pc(p)

]
◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc

)
= 0.

(10)
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As in the truth FE problem, the truth quadrature rule is incorporated in evaluating Rrb(·, ·;µ) and Frb(·;µ).
We again assume the RB problem (9) (and equivalently (10)) is well-posed for all µ ∈ D.

Remark 1. In this work, we do not consider port reduction [12, 13, 36]. Hence, the number of DoF in the
RB system is bounded from below by the number of port DoF in the truth system, which ultimately limits the
dimensionality reduction achieved by the present formulation, especially for systems with many ports and/or
large ports. While recognizing the limitation, we focus on developing component-wise hyperreduction for this
non-port-reduced system in this work and leave port-reduction to future work.

3.3. HRBE problem formulation

The computational cost of solving (9) (or equivalently (10)), which uses the truth quadrature rule,
depends on the underlying truth FE discretization, rendering the method not online efficient. To remedy
this issue, we appeal to hyperreduction techniques. There are various hyperreduction approaches in the RB
literature, and they can be categorized into two broad classes. The first class of methods first approximates
integrands and then integrates them: i.e., methods use a number of empirically-derived basis functions to
approximate the nonlinear terms in the integrands through a sparse interpolation/regression scheme and then
integrate the approximated integrand. The gappy proper orthogonal decomposition (POD) method [14], the
empirical interpolation method [4, 17] and its discrete variant [9], and the Gauss-Newton approximation
tensor method [8] belong to this class. The second class of hyperreduction methods directly approximate
the integrals in the residual and output forms using a set of empirically-driven sparse element sampling or
quadrature rule. The optimal cubature method [1], the energy-conserving mesh sampling and weighting
method [15, 16], the empirical cubature method [18], and the EQP [33, 40] belong to this class. In the
present study, we build on the EQP and its ability to construct quantitative control of the hyperreduction
error in the solution (instead of the residual) and extend this capability to the component-based context.

The EQP constructs a set of empirical and sparse reduced quadrature (RQ) points and weights that
approximate the integrals in the residual and output forms to a prescribed accuracy. The RQ points are
a sparse subset of the truth quadrature points {x̂ĉ,q}Qĉ

q=1, ĉ ∈ Ĉ, with re-weighted quadrature weights. In

the present component-based setting, we first introduce residual RQ rule (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 ⊂ (x̂ĉ,q, ρ̂ĉ,q)
Qĉ

q=1

for each archetype component ĉ ∈ Ĉ, where Q̃rĉ � Qĉ. We similarly introduce output functional RQ rule,

(˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 ⊂ (x̂ĉ,q, ρ̂ĉ,q)
Qĉ

q=1, ĉ ∈ Ĉ. (We defer the discussion of construction of these RQ rules in the offline

phase to Section 4; for now, we assume the rules are given.) Given the RQ rules, the HRBE problem is stated
as follows: given µ ∈ D, find {ũb

rb,c(µ) ∈ Vb
rb,c}c∈C and {ũΓ

h,p(µ) ∈ Vh}p∈P such that, for all {vb
rb,c ∈ Vb

rb,c}c∈C
and {vΓ

h,p ∈ Vh}p∈P ,

R̃rb(ũrb(µ), vrb;µ) ≡
∑
c∈C

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂M(c)

([
ũb

rb,c(µ) +
∑

p∈PM(c)

ũΓ
h,Pc(p)(µ)

]
◦ Gc(˜̂xrM(c),q;µc),

[
vb

rb,c +
∑

p∈PM(c)

vΓ
h,Pc(p)

]
◦ Gc(˜̂xrM(c),q;µc);

˜̂xrM(c),q, µc

)
= 0

(11)
and compute the approximate output

F̃rb(ũrb(µ);µ) ≡
∑
c∈C

Q̃f
M(c)∑
q=1

˜̂ρfM(c),q f̂M(c)

([
ũb

rb,c(µ) +
∑

p∈PM(c)

ũΓ
h,Pc(p)(µ)

]
◦ Gc(˜̂xfM(c),q;µc);

˜̂xfM(c),q, µc

)
.

(12)

Owing to Nrb � Nh, Q̃rc � QM(c), and Q̃fc � QM(c) ∀c ∈ C, solving the hyperreduced RB problem (11)
and approximating the output (12) can be carried out significantly more efficiently than their corresponding
counterparts in the truth problem, (3) and (5), respectively. Sufficient conditions for the well-posedness of
the hyperreduced RB problem (12) will be provided in Proposition 4.
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Remark 2. For each archetype component, the bubble RB and RQ rules are calculated and stored in the
library a priori in the offline phrase. Therefore, in the online phase, once we determine the connectivity
of instantiated components and form a system, we can rapidly assemble the system’s reduced residual and
Jacobian and solve the HRBE system (11) without retraining the RB or RQ. In other words, the HRBE
system results from assembling hyperreduced components trained in the offline phrase, and not from apply-
ing hyperreduction to an online-assembled RB system, which could not be performed in an online efficient
manner.

3.4. RB and HRBE problems: algebraic form

To facilitate the discussion of the EQP in Section 4, we now introduce algebraic form of RB and HRBE
problems. We denote the algebraic residual and Jacobian of the (truth-quadrature) RB problem (10) by
Rrb : RNrb×D → RNrb and Jrb : RNrb×D → RNrb×Nrb , respectively, and denote the generalized coordinates
of the solution by urb(µ) ∈ RNrb . We similarly denote the algebraic residual and Jacobian of the hyperreduced

RB problem (11) by R̃rb : RNrb × D → RNrb and J̃rb : RNrb × D → RNrb×Nrb , respectively, and denote the
generalized coordinates of the solution by ũrb(µ) ∈ RNrb .

We now provide algebraic RB residual and Jacobian for the instantiated components in the system.
Without loss of generality, we assume in each archetype component ĉ ∈ Ĉ, the generalized coordinates are
arranged in such a way that the DoF associated with V̂b

rb,ĉ are assigned to the first Nb
ĉ indices, followed

by N 1
ĉ indices corresponding to the first local port’s DoF and so forth. We introduce for each instantiated

component c ∈ C and its local ports, the algebraic RB residuals Rb
rb,c : RNM(c) ×Dc → RN

b
M(c) and Rγ

rb,c,p :

RNM(c)×Dc → RN
p
M(c) ∀p ∈ PM(c), as well as the algebraic RB Jacobians Jb,b

rb,c : RNM(c)×Dc → RN
b
M(c)×N

b
M(c) ,

Jb,γ
rb,c,p : RNM(c) × Dc → RN

b
M(c)×N

p
M(c) , Jγ,brb,c,p : RNM(c) × Dc → RN

p
M(c)

×Nb
M(c) , and Jγ,γrb,c,p,p′ : RNM(c) ×

Dc → RN
p
M(c)

×Np′
M(c) ∀p, p′ ∈ PM(c). For conciseness, we omit the explicit expressions of these quantities

here and provide them instead in Appendix A. We also introduce the algebraic RB residual and Jacobian
Rrb,c : RNM(c) × Dc → RNM(c) and Jrb,c : RNM(c) × Dc → RNM(c)×NM(c) , respectively, formed by properly
concatenating the component’s bubble and port residuals and Jacobians.

Similarly, we provide algebraic hyperreduced RB residual and Jacobian for the instantiated components.
For each instantiated component c ∈ C and its local ports, we introduce the algebraic hyperreduced RB resid-

uals R̃b
rb,c : RNM(c) ×Dc → RN

b
M(c) and R̃γ

rb,c,p : RNM(c) ×Dc → RN
p
M(c) ∀p ∈ PM(c), along with the algebraic

hyperreduced RB Jacobians J̃b,b
rb,c : RNM(c) × Dc → RN

b
M(c)×N

b
M(c) , J̃b,γ

rb,c,p : RNM(c) × Dc → RN
b
M(c)×N

p
M(c) ,

J̃γ,brb,c,p : RNM(c) ×Dc → RN
p
M(c)

×Nb
M(c) , and J̃γ,γrb,c,p,p′ : RNM(c) ×Dc → RN

p
M(c)

×Np′
M(c) ∀p, p′ ∈ PM(c). We pro-

vide the expressions for these terms in Appendix B. Additionally, we introduce the algebraic hyperreduced
RB residual and Jacobian R̃rb,c : RNM(c) ×Dc → RNM(c) and J̃rb,c : RNM(c) ×Dc → RNM(c)×NM(c) , which are
constructed by concatenating the hyperreduced RB bubble and port residuals and Jacobians following the
same DoF ordering introduced in formulating their RB counterparts.

The system-level algebraic hyperreduced RB residual R̃rb(wc;µ) and Jacobian J̃rb(wc;µ) ∀wc ∈ RNrb

and ∀µ ∈ D can be expressed as

R̃rb(wrb;µ) =
∑
c∈C

(
Pb,cR̃

b
rb,c(P

T
rb,cwrb;µc) +

∑
p∈PM(c)

PΓ,Pc(p)R̃
γ
rb,c,p(P

T
rb,cwrb;µc)

)
,

J̃rb(wrb;µ) =
∑
c∈C

(
Pb,cJ̃

b,b
rb,c(P

T
rb,cwrb;µc)P

T
b,c +

∑
p∈PM(c)

(
Pb,cJ̃

b,γ
rb,c(P

T
rb,cwrb;µc)P

T
Γ,Pc(p) (13)

+ PΓ,Pc(p)J̃
γ,b
rb,c(P

T
rb,cwrb;µc)P

T
b,c +

∑
p′∈PM(c)

PΓ,Pc(p)J̃
γ,γ
rb,c,p,p′(P

T
rb,cwrb;µc)P

T
Γ,Pc(p′)

))
,

where Prb,c : RNM(c) → RNrb , Pb,c : RN
b
M(c) → RNrb ∀c ∈ C, and PΓ,p : RN

Γ
p → RNrb ∀p ∈ P are linear

extension operators that map the components’ RB, bubble, and port DoF, respectively, to the assembled
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system’s DoF. Algorithm 4 in Appendix C outlines the assembly procedure for obtaining R̃rb(·;µ) and

J̃rb(·;µ). We may analogously incorporate the corresponding (non-hyperreduced) RB terms in (13) to form
(non-hyperreduced) system-level algebraic RB residual Rrb(·;µ) and Jacobian Jrb(·;µ).

Finally, given the component-wise decomposition, the algebraic form of the RB problem (10) is as follows:

given µ ∈ D, find the bubble RB coefficients ub
rb,c(µ) ∈ RN

b
M(c) ∀c ∈ C and the port basis coefficients

uΓ
h,p(µ) ∈ RN

Γ
p ∀p ∈ P such that

Rrb

(
ub

rb,1(µ), · · · ,ub
rb,Ncomp

(µ),uΓ
h,1(µ), · · · ,uΓ

h,Nport
(µ);µ

)
= 0.

Similarly, the algebraic form of the HRBE problem (11) proceeds as follows: given µ ∈ D, find the bubble

RB coefficients ũb
rb,c(µ) ∈ RN

b
M(c) ∀c ∈ C and the port basis coefficients ũΓ

h,p(µ) ∈ RN
Γ
p ∀p ∈ P such that

R̃rb

(
ũb

rb,1(µ), · · · , ũb
rb,Ncomp

(µ), ũΓ
h,1(µ), · · · , ũΓ

h,Nport
(µ);µ

)
= 0. (14)

4. Component-wise RB and RQ training

The two primary ingredients of the HRBE method presented in Section 3 are the RB {ξ̂b
ĉ,i}

Nb
ĉ

i=1 of the

bubble spaces V̂b
rb,ĉ and the RQ rules (˜̂xrĉ,q,

˜̂ρrĉ,q)
Q̃r

ĉ
q=1 for all archetype components ĉ ∈ Ĉ. In this section, we

outline the procedures to construct these essential elements.

4.1. Generation of archetype-component training solutions

For each archetype component, we use an empirical training procedure to deduce the shape and mag-
nitude of its anticipated solution and boundary conditions. To this end, we introduce for each archetype

component ĉ ∈ Ĉ, a parameter training set Ξtrain
ĉ ≡ {µtrain

ĉ,n ∈ D̂ĉ}
Ntrain

ĉ
n=1 with a size of N train

ĉ . For this

archetype component, we compose Nsample sample subsystems by connecting it through its nγĉ local ports
to other randomly selected components from the library. This component is connected to other components
through its local ports with a probability β. We then assign random parameter values to each component
in the assembled subsystems from their respective parameter training sets. We next apply random indepen-
dent constant Dirichlet boundary conditions, with uniform density, to all nonshared global ports. We finally
solve the truth problem for each subsystem, extract the truth solutions on the target component to form

a state snapshot set U train
h,ĉ ≡ {utrain

h,ĉ,n}
Nsample

n=1 designated for this component. The fundamental assumption
underpinning this process is that the generated set of snapshot solutions sufficiently represents the set of all
potential solutions and boundary conditions the component may experience in an actual system configura-
tion. Algorithm 1 provides an outline of the empirical process to generate snapshot solutions for archetype
components.

4.2. Component-wise RB construction

For each archetype component ĉ ∈ Ĉ, we decompose snapshot solutions in the training set U train
h,ĉ into

their bubble and port solutions as in (7). The bubble solutions are added to a training set U train,b
h,ĉ considered

for this component. We then apply the POD to construct an RB {ξ̂b
ĉ,i}

Nb
ĉ

i=1 for the bubble space V̂b
rb,ĉ.

4.3. Component-wise hyperreduction: BRR theory

We now present an extension of the original EQP [33, 40] to the component-based context. To this end,
we first introduce the BRR theorem [7] specialized for the Euclidean space. We then present Proposition 4,
which plays a crucial role in the development of the proposed component-wise hyperreduction scheme.
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Algorithm 1: Generating training data for RB and RQ construction of archetype components.

Input: Number of sample subsystems Nsample; probability of port connection 0 ≤ β ≤ 1

Output: The set of snapshot solutions U train
h,ĉ ∀ĉ ∈ Ĉ

1 for ĉ ∈ Ĉ do
2 U train

h,ĉ = ∅;
3 for n = 1, · · · , Nsample do

// Assemble subsystem Csub and extract the solution associated with ĉ
4 for p ∈ Pĉ do
5 Connect the archetype component ĉ through its p-th port to another component in the

library with a probability of β;

6 end
7 Assign parameter value µc drawn uniform-randomly from Dc to each component c ∈ Csub;
8 Assign uniform-random constant Dirichlet boundary conditions to each nonshared global

port;
9 Solve the truth problem for the composed subsystem Csub;

10 Extract the solution utrain
h,ĉ,n on component ĉ;

11 U train
h,ĉ ← U train

h,ĉ ∪ utrain
h,ĉ,n;

12 end

13 end

Lemma 3 (Brezzi–Rappaz–Raviart theorem). Given an N -dimensional Euclidean space RN , we introduce
a C1 mapping G : RN → RN , v ∈ RN such that the Jacobian DG(v) ∈ RN×N is nonsingular, and constants
ε, δ, and L(α) such that

‖G(v)‖2 ≤ ε,∥∥DG−1(v)
∥∥

2
≤ δ,

sup
w∈B̄(v,α)

‖DG(v)−DG(w)‖2 ≤ L(α),

where B̄(v, α) ≡ {z : ‖z− v‖2 ≤ α}. Assume 2δL(2δε) ≤ 1. Then, for all ∆ ≥ 2δε such that δL(∆) < 1,
there exists a unique u ∈ RN that satisfies G(u) = 0 in the ball B̄(v, 2δε) and DG(u) ∈ RN×N is invertible
and satisfies ∥∥DG−1(u)

∥∥
2
≤ 2

∥∥DG−1(v)
∥∥

2
≤ 2δ. (15)

Additionally,
‖w − u‖2 ≤ 2

∥∥DG−1(v)
∥∥

2
‖G(w)‖2 ≤ 2δ ‖G(w)‖2 ∀w ∈ B̄(v, 2δε). (16)

Proof. See [7].

Proposition 4. For a system C and given µ ∈ D, we introduce ūrb(µ) ∈ Vrb and its associated generalized
coordinates ūrb(µ) ∈ RNrb such that

‖urb(µ)− ūrb(µ)‖2 ≤ ε̄ (17)

for an ε̄ ≥ 0 and Jrb(ūrb(µ);µ) is nonsingular. Furthermore, for each component c ∈ C, we recall Jrb,c :

RNM(c)×Dc → RNM(c)×NM(c) , R̃rb,c : RNM(c)×Dc → RNM(c) , and J̃rb,c : RNM(c)×Dc → RNM(c)×NM(c) intro-
duced in Section 3.4. We further introduce σ ≡ σmin(Jrb (ūrb(µ);µ)), where σmin(·) denotes the minimum sin-
gular value of its argument. We suppose for some δRc

≥ 0 and δJc ≥ 0, c ∈ C, such that
∑
c∈C NM(c)δJc < σ,

the following inequalities hold: ∥∥∥R̃rb,c(P
T
rb,cūrb(µ);µc)

∥∥∥
∞
≤ δRc

∀c ∈ C, (18)∥∥∥Jrb,c(P
T
rb,cūrb(µ);µc)− J̃rb,c(P

T
rb,cūrb,c(µ);µc)

∥∥∥
max
≤ δJc ∀c ∈ C, (19)
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where for any c ∈ C, ‖A‖max≡ maxi,j∈{1,···,NM(c)} |Ai,j | for A ∈ RNM(c)×NM(c) . We also introduce

L(α) ≡ 2 sup
w∈B̄(ūrb(µ),α)

∥∥∥J−1
rb (ūrb(µ);µ)J̃rb(w;µ)− I

∥∥∥
2

(20)

and assume

L(ᾱ) ≤
σ −

∑
c∈C NM(c)δJc

2σ
, (21)

where ᾱ = 2
√∑

c∈C NM(c)δ
2
Rc
/(σ −

∑
c∈C NM(c)δJc). Then, for all ∆ ≥ ᾱ, there exists a unique solution

ũrb(µ) ∈ RNrb such that R̃rb(ũrb;µ) = 0 in the ball B̄(ūrb(µ),∆), where L(∆) ≤ (σ −
∑
c∈C NM(c)δJc)/σ.

Furthermore,
‖urb(µ)− ũrb(µ)‖2 ≤ ᾱ+ ε̄. (22)

Proof. For notational brevity, we suppress µ and µc ∀c ∈ C throughout the proof. Referring to Lemma 3, we
set G(·) ≡ J−1

rb (ūrb)R̃rb(·) and v ≡ ūrb. We then observe that

‖G(v)‖2 =
∥∥∥J−1

rb (ūrb)R̃rb(ūrb)
∥∥∥

2
≤
∥∥J−1

rb (ūrb)
∥∥

2

∥∥∥R̃rb(ūrb)
∥∥∥

2
≤

√∑
c∈C

∥∥∥R̃rb,c(PT
rb,cūrb)

∥∥∥2

2

σ

≤

√∑
c∈C NM(c)

∥∥∥R̃rb,c(PT
rb,cūrb)

∥∥∥2

∞

σ
≤

√∑
c∈C NM(c)δ

2
RM(c)

σ
,

where the second inequality follows from the component-wise decomposition of the residual and the matrix
norm relation ‖J−1

rb (ūrb)‖2= σ−1
min(Jrb(ūrb)) ≡ σ, the third inequality follows from the relationship between

‖·‖2 and ‖·‖∞, and the last inequality follows from condition (18). Hence, we set ε ≡
√∑

c∈C NM(c)δ
2
RM(c)

/σ

in Lemma 3. Moreover, we have∥∥∥I− J−1
rb (ūrb)J̃rb(ūrb)

∥∥∥
2
≤
∥∥J−1

rb (ūrb)
∥∥

2

∥∥∥Jrb(ūrb)− J̃rb(ūrb)
∥∥∥

2
=

1

σ

∥∥∥Jrb(ūrb)− J̃rb(ūrb)
∥∥∥

2

=
1

σ

∥∥∥∥∥∑
c∈C

Prb,c

(
Jrb,c(P

T
rb,cūrb)− J̃rb,c(P

T
rb,cūrb)

)
PT

rb,c

∥∥∥∥∥
2

≤ 1

σ

∑
c∈C

∥∥∥Jrb,c(P
T
rb,cūrb)− J̃rb,c(P

T
rb,cūrb)

∥∥∥
2

≤ 1

σ

∑
c∈C

NM(c)

∥∥∥Jrb(PT
rb,cūrb)− J̃rb(PT

rb,cūrb)
∥∥∥

max
≤ 1

σ

∑
c∈C

NM(c)δJM(c)
< 1,

(23)
where the first equality follows from the definition ‖J−1

rb (ūrb)‖2= σ−1
min(Jrb(ūrb)) ≡ σ, the second equality fol-

lows from the component-wise decomposition of the Jacobian, the second inequality follows from the triangle
inequality, the third inequality follows from the relation ‖A‖2≤ Nrb‖A‖max ∀A ∈ RNrb×Nrb , the fourth in-
equality follows from condition (19), and the last inequality follows from the assumption

∑
c∈C NM(c)δJc < σ.

It hence follows that∥∥DG−1(v)
∥∥

2
=
∥∥∥(J−1

rb (ūrb)J̃rb(ūrb))−1
∥∥∥

2
=
∥∥∥(I + J−1

rb (ūrb)J̃rb(ūrb)− I)−1
∥∥∥

2

≤ 1

1−
∥∥∥J−1

rb (ūrb)J̃rb(ūrb)− I
∥∥∥

2

≤ σ

σ −
∑
c∈C NM(c)δJc

,

where the first inequality follows from the Banach lemma which states ∀A ∈ RNrb×Nrb with ‖A‖2< 1,
(I + A)−1 exists and satisfies ‖(I + A)−1‖2≤ (1 − ‖A‖2)−1, and the last inequality follows from (23). We
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hence set δ ≡ σ/(σ −
∑
c∈C NM(c)δJc) in Lemma 3. We in addition note that

sup
w∈B̄(v,α)

‖DG(v)−DG(w)‖2 = sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(ūrb)− J−1

rb (ūrb)J̃rb(w)
∥∥∥

2

= sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(ūrb)− I + I− J−1

rb (ūrb)J̃rb(w)
∥∥∥

2

≤
∥∥∥J−1

rb (ūrb)J̃rb(ūrb)− I
∥∥∥

2
+ sup

w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2

≤ 2 sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2
,

where the first inequality follows from the triangle inequality, and the last inequality follows from ūrb ∈
B̄(ūrb, α). We hence set L(α) ≡ 2 supw∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2

in (20) in Lemma 3.

Having defined ε, δ, and L(α) in the BRR theorem in Lemma 3 for the present component-wise RB
context, we now apply the BRR theorem. If 2δL(2δε) = 2σL(ᾱ)/(σ −

∑
c∈C NM(c)δJc) ≤ 1, we readily

deduce, for all ∆ ≥ 2δε = ᾱ such that L(∆) < 1/δ = (σ −
∑
c∈C NM(c)δJc)/σ, the existence of a unique

solution z ∈ RNrb that satisfies G(z) = J−1
rb (ūrb)R̃rb(z) = 0 in the ball B̄(ūrb,∆). Since ũrb satisfies

R̃rb(ũrb) = 0, we conclude it is indeed the unique solution to both G(·) = 0 and R̃rb(·) = 0. Moreover, we
set w ≡ ũrb = v in (16) to obtain

‖urb − ũrb‖2 ≤ ‖urb − ūrb‖2 + ‖ūrb − ũrb‖2 ≤ ε̄+ 2δ
∥∥∥J−1

rb (ūrb)R̃rb(ūrb)
∥∥∥

2

≤ ε̄+
2σ

σ −
∑
c∈C NM(c)δJc

∥∥J−1
rb (ūrb)

∥∥
2

∥∥∥R̃rb(ūrb)
∥∥∥

2

≤ ε̄+ 2

√∑
c∈C NM(c)δ

2
RM(c)

σ −
∑
c∈C NM(c)δJc

= ε̄+ ᾱ,

where the first inequality follows from the triangle inequality, the second inequality follows from condition (17)
and the BRR error bound (16), the third inequality follows from the definition of δ in the component-wise
context and the matrix norm inequality, the fourth inequality follows from condition (18), and the last
equality follows from the definition of ᾱ.

We can modify Proposition 4 to obtain an upper bound for the V-norm of the error between the RB and
HRBE solutions. To this end, we define λmin and λmax such that

λmin = inf
v∈V

‖v‖2V
‖v‖22

, λmax = sup
v∈V

‖v‖2V
‖v‖22

, (24)

and introduce the following corollaries.

Corollary 5 (Absolute error bound). If all conditions of Proposition 4 hold, then

‖urb(µ)− ũrb(µ)‖V ≤ (ᾱ+ ε̄)
√
λmax, (25)

with the same ᾱ and ε̄ as in Proposition 4.

Proof. We first appeal to (24) to obtain ‖urb(µ)− ũrb(µ)‖V ≤
√
λmax ‖urb(µ)− ũrb(µ)‖2. We then incorpo-

rate (22) to obtain (25).
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Corollary 6 (Relative error bound). If all conditions of Proposition 4 hold and conditions (17), (18), and
(21) are respectively replaced by

‖urb,c(µ)− ūrb,c(µ)‖2 ≤ ε̄‖urb(µ)‖2 ∀c ∈ C,∥∥∥R̃rb,c(P
T
rb,cūrb(µ);µc)

∥∥∥
∞
≤ δRc

‖urb(µ)‖2 ∀c ∈ C,

L
(

2‖urb(µ)‖2

√∑
c∈C NM(c)δ

2
Rc

σ −
∑
c∈C NM(c)δJc

)
≤
σ −

∑
c∈C NM(c)δJc

2σ
,

then
‖urb(µ)− ũrb(µ)‖V
‖urb(µ)‖V

≤ (ᾱ+ ε̄)

√
λmax

λmin
, (26)

with the same ᾱ and ε̄ as in Proposition 4.

Proof. We first observe

‖urb(µ)− ũrb(µ)‖V ≤ ‖urb(µ)− ũrb(µ)‖2
√
λmax ≤ (ᾱ+ ε̄)‖urb(µ)‖2

√
λmax,

where the first inequality follows from (24), and the second equality follows from the application of Propo-
sition 4 with ε̄ and δRc , c ∈ C, replaced by ε̄‖urb(µ)‖2 and δRc‖urb(µ)‖2, respectively. We finally appeal to
(24) to obtain

√
λmin ‖urb(µ)‖2 ≤ ‖urb(µ)‖V , which in turn yields (26).

Remark 7. The values of λmin and λmax are functions of only the geometrical parameters in the system.
The archetype components considered in this study, which will be introduced in Section 6, admit piecewise
affine decompositions in their geometric parametrization. Thus, computing λmin and λmax can be carried out
efficiently in the online phase, as it does not rely on the system’s truth problem size and the components’
truth quadrature rules.

4.4. Component-wise hyperreduction: formulation

Using Proposition 4 and Corollaries 5 and 6, we now develop a component-wise hyperreduction training
routine for the archetype components in the library. In Section 4.1, we introduced for each archetype com-
ponent ĉ ∈ Ĉ, a training parameter set Ξtrain

ĉ and its corresponding state training set U train
h,ĉ (Algorithm 1).

In Section 4.2, we also described a procedure to construct an RB for its bubble space V̂b
rb,ĉ using its asso-

ciated bubble training set U train,b
h,ĉ . Since hyperreduction is carried out with respect to the RB solutions,

for each archetype component ĉ, we define a state training set U train
rb,ĉ ≡ {utrain

rb,ĉ,n}
Nsample

n=1 (or its algebraic

equivalent Utrain
rb,ĉ ≡ {utrain

rb,ĉ,n}
Nsample

n=1 ), where the RB snapshots utrain
rb,ĉ,n, n ∈ {1, · · · , Nsample}, are generated

using Algorithm 2.
Additionally, for each archetype component ĉ ∈ Ĉ and its local ports, we recall the algebraic RB residual

and Jacobian Rrb,ĉ : RNĉ × D̂ĉ → RNĉ and Jrb,ĉ : RNĉ × D̂ĉ → RNĉ×Nĉ introduced earlier in Section 3.4
and Appendix A. We further denote the barred versions of the introduced RB algebraic terms. These barred
versions are formulated the same as their respective RB counterparts, albeit with the truth quadrature
weights {ρ̂ĉ,q}Qĉ

q=1 ∀ĉ ∈ Ĉ in (35)–(40) replaced by ρ̄ĉ ≡ {ρ̄ĉ,q}Qĉ

q=1 ∀ĉ ∈ Ĉ, which are the design variables
(unknowns) for the hyperreduction problem. Then, we pose the component-wise hyperreduction problem in

the offline phase for ĉ ∈ Ĉ as follows: given a parameter training set Ξtrain
ĉ , state training set U train

rb,ĉ (or its

algebraic equivalent Utrain
rb,ĉ ), domain volume |Ωĉ| and hyperparameter δĉ, find ρ̄∗ĉ ∈ RQĉ such that

ρ̄∗ĉ = arg min
{ρ̄ĉ,q}

Qĉ
q=1

‖ρ̄ĉ,q‖0 (27)

subject to

ρ̄ĉ,q ≥ 0, q = 1, · · · , Qĉ, (28)
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Algorithm 2: Generating bubble RB snapshots for hyperreduction of archetype components.

Input: The previously generated set of truth snapshot solutions U train
h,ĉ ∀ĉ ∈ Ĉ

Output: The set of RB snapshot solutions U train
rb,ĉ ∀ĉ ∈ Ĉ

1 for ĉ ∈ Ĉ do
2 U train

rb,ĉ = ∅;
3 for n = 1, · · · , Nsample do
4 Decompose utrain

h,ĉ,n in the previously constructed training set U train
h,ĉ in Algorithm 1 into bubble

utrain,b
h,ĉ,n and port solutions {utrain,γ

h,ĉ,n,p}p∈Pĉ
, as in (7);

5 Compute the restriction of port solutions on the ports (i.e., {utrain,γ
h,ĉ,n,p

∣∣∣
γĉ,p
}p∈Pĉ

);

6 Compute utrain,b
rb,ĉ,n by solving (10) for a system composed of only component ĉ with

{utrain,γ
h,ĉ,n,p

∣∣∣
γĉ,p
}p∈Pĉ

, as the Dirichlet boundary conditions imposed on its nγĉ ports;

7 Compute utrain
rb,ĉ,n = utrain,b

rb,ĉ,n +
∑
p∈Pĉ

utrain,γ
h,ĉ,n,p;

8 U train
rb,ĉ ← U train

rb,ĉ ∪ utrain
rb,ĉ,n;

9 end

10 end

∣∣∣|Ωĉ|− Qĉ∑
q=1

ρ̄ĉ,q

∣∣∣ ≤ δĉ, (29)∥∥R̄rb,ĉ(u
train
rb,ĉ (µ);µ, ρ̄ĉ)

∥∥
∞ ≤ δĉ ∀µ ∈ Ξtrain

ĉ , (30)∥∥Jrb,ĉ(u
train
rb,ĉ (µ);µ)− J̄rb,ĉ(u

train
rb,ĉ (µ);µ, ρ̄ĉ)

∥∥
max
≤ δĉ ∀µ ∈ Ξtrain

ĉ . (31)

The `0-minimization problem seeks the sparsest quadrature rule that satisfies the constraints. The enforce-
ment of the constant function constraint (29) enhances the robustness of the hyperreduction training and
is a reasonable condition for any quadrature scheme [40]. The RQ rule for each component is determined

by (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 = ((x̂ĉ,q, ρ̄
∗
ĉ,q)| ρ̄∗ĉ,q > 0)Qĉ

q=1. In this work, we set δRĉ
= δJĉ = δĉ. To construct the RQ

rule (˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for the output (12), we follow the procedure in [40] and replace the constraints (29)–(31)

with analogous constraints for the output functional F (·;µ) and solve the EQP optimization problem. In
practice, we approximate the `0-minimization problem as an `1-minimization problem (with the objective

function
∑Qĉ

q=1 ρ̄ĉ,q) and solve the problem using a simplex method following [40].

5. Offline and online computational procedure

In this section, we develop the offline–online computational procedure for the HRBE approach. A key
challenge to offline–online computational decomposition that provides quantitative control of the hyper-
reduction error at the system level is this: the hyperreduction training is performed for each archetype
component independently in the offline phase; therefore, unlike in the monodomain setting for which the
EQP is originally designed (e.g., [40]), the minimum singular value of the Jacobian of the ultimate systems
created by assembling the trained archetype components, which is required in (22), (25), and (26) to control
the error, is not available at the training time. To address this challenge, we propose an approach where the
hyperreduction training for any ĉ ∈ Ĉ is conducted in the offline phase with various δĉ values. Subsequently,
in the online phase, depending on (i) the other components incorporated in the system, (ii) the smallest
singular value of the system’s Jacobian at the solution, and (iii) the desired error between RB and HRBE
solutions, the appropriate RQ rule for each component is adaptively chosen and applied to solve the HRBE
problem through an iterative bootstrap process. We now present the offline–online computational procedure.
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5.1. Offline phase

In the offline stage, we prepare the RB {ξ̂b
ĉ,i}

Nb
ĉ

i=1 of the bubble spaces V̂b
rb,ĉ and the RQ rules (˜̂xrĉ,q,

˜̂ρrĉ,q)
Q̃r

ĉ
q=1

and (˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for each of Narch archetype components ĉ ∈ Ĉ. To construct the RB, we first use Algo-

rithm 1 to generate the training set U train
h,ĉ for each archetype component ĉ. For each sample subsystem

n ∈ {1, · · · , Nsample} of the archetype component ĉ, the computation of the solution utrain
h,ĉ,n in Line 9 of

Algorithm 1 requires O(Qsub
h,ĉ,n) operations for the assembly of the residual and Jacobian and O((N sub

h,ĉ,n)η)

operations for the solution of the linear system per Newton iteration, where Qsub
h,ĉ,n is the subsystem’s number

of truth quadrature points, N sub
h,ĉ,n is the subsystem’s number of truth DoF, and the coefficient 1 ≤ η ≤ 2

depends on the solver and the domain dimension. Typical problems that we consider require 5 to 15 Newton
iterations for convergence. The subsequent computational cost of the POD is negligible compared to the
cost to generate the training set.

We now analyze the cost of hyperreduction for each archetype component ĉ ∈ Ĉ. Using Algorithm 2
to generate the RB snapshots requires the solution of a nonlinear system of equations of size Nb

ĉ for each
training sample. This incurs, for each snapshot, a cost of O(N2

ĉQĉ) operations for computing the residual
and Jacobian and a cost of O((Nb

ĉ )3) operations for solving the linear system in each Newton iteration.
Additionally, computing the outputs needed in output hyperreduction of each component requires O(Qĉ)
operations for each training sample. Moreover, for each archetype component, a simplex method is used
to approximately solve the hyperreduction problem (27)–(31) for different δĉ values. Each problem has Qĉ
unknowns, Qĉ positivity constraints, 1 constant function constraint, NsampleNĉ residual constraints, and
NsampleN

2
ĉ Jacobian constraints. In practice, the absolute value constant function, residual, and Jacobian

constraints are converted into 2(1 + NsampleNĉ + NsampleN
2
ĉ ) inequality constraints. Similarly, the output

hyperreduction involves the solution of an optimization problem with Qĉ unknowns and 2(1 + Nsample)
inequality constraints.

5.2. Online phase: adaptive RQ selection

We now describe a procedure to find the RQ rule of each component in the system in the online phase
such that, for any given topological configuration and µ ∈ D, the HRBE solution ũrb(µ) achieves the target
V-norm error with respect to the RB solution urb(µ). Our formulation builds on Corollaries 5 and 6.

We first discuss an online-efficient procedure to compute σmin(Jrb (urb(µ);µ)) (or more precisely approxi-
mate it), which is required to invoke Corollaries 5 and 6. A direct computation of σmin(Jrb (urb(µ);µ)) poses
two computational challenges. Firstly, the computation requires the RB solution urb(µ), which defeats the
purpose of hyperreduction; we wish to use only its HRBE counterpart ũrb(µ) associated with (14). Secondly,
it involves forming the RB Jacobian Jrb(·;µ), which depends on the components’ truth quadrature rules and
prevents efficient online computation.

To address these challenges, we appeal to the BRR theorem. We set G(·) ≡ Rrb(·;µ) and v ≡ ũrb(µ) in
Lemma 3, assume Jrb(ũrb(µ);µ) is nonsingular and the conditions of the theorem hold, and apply (15) to
obtain ∥∥J−1

rb (urb(µ);µ)
∥∥

2
=

1

σmin(Jrb (urb(µ);µ))
≤ 2

∥∥J−1
rb (ũrb(µ);µ)

∥∥
2

=
2

σmin(Jrb (ũrb(µ);µ))
. (32)

Thus, σmin(Jrb (ũrb(µ);µ)) /2 is a lower bound for σmin(Jrb (urb(µ);µ)). To approximate σmin(Jrb (ũrb(µ);µ))
we appeal to the following lemma.

Lemma 8. For any three matrices A ∈ RN×N , B ∈ RN×N and C ∈ RN×N such that A = B + C

|σmin(A)− σmin(B)|≤ σmax(C), (33)

where σmin(·) and σmax(·) respectively correspond to the minimum and maximum singular values of their
argument.
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Proof. We first observe that, for A = B + C,

σmin(A) = min
v∈RN

‖(B + C)v‖2
‖v‖2

≥ min
v∈RN

‖Bv‖2 − ‖Cv‖2
‖v‖2

≥ min
v∈RN

‖Bv‖2
‖v‖2

− max
v∈RN

‖Cv‖2
‖v‖2

= σmin(B)− σmax(C)

and hence σmin(B)− σmin(A) ≤ σmax(C), where the first and last equality follow from the definition of the
extreme singular values, and the first inequality follows from the triangle inequality. We apply an analogous
sequence of inequalities to B = A − C to obtain σmin(A) − σmin(B) ≤ σmax(C). The combination of the
two inequalities yields the desired result.

The application of the lemma to Jrb(ũrb(µ);µ) = J̃rb(ũrb(µ);µ)+
(
Jrb(ũrb(µ);µ)− J̃rb(ũrb(µ);µ)

)
yields

|σmin(Jrb(ũrb(µ);µ))− σmin(J̃rb(ũrb(µ);µ))|≤ σmax(Jrb(ũrb(µ);µ)− J̃rb(ũrb(µ);µ)).

In other words, as the disparity between the RB and hyperreduced RB Jacobians decreases, so does the
discrepancy between σmin(Jrb(ũrb(µ);µ)) and σmin(J̃rb(ũrb(µ);µ)). Given that the hyperreduction training

for each archetype component is intended to reduce this very gap, we propose to use σmin(J̃rb(ũrb(µ);µ)) in
place of σmin(Jrb(ũrb(µ);µ)). Finally, we combine this approximation with the lower-bound estimate (32)

to conservatively approximate σmin(Jrb (urb(µ);µ)) with 0.5σmin(J̃rb (ũrb(µ);µ)).
We finally propose the adaptive procedure, Algorithm 3, to find the components’ RQ rules and the HRBE

solution in the online phase. For a given µ ∈ D and a desired system-level V-norm error ε between the RB
and HRBE solutions, we first compute ᾱ = ε/

√
λmax for absolute error control (or ᾱ = ε/

√
λmax/λmin for

relative error control). (Note that ε̄ = 0 in (25) and (26) since the error is measured with respect to urb(µ),
thus implicitly it is assumed that ūrb(µ) = urb(µ) in Proposition 4). We then use the RQ rules associated

with the initial δc values ∀c ∈ C to compute the HRBE solution ũrb(µ) and σ ≡ σmin(J̃rb(ũrb(µ);µ))/2.
Then, for all c ∈ C, we set δRc

= δJc = δc for absolute error control (or δRc
= δJc = δc/‖ũrb(µ)‖2 for relative

error control). If
∑
c∈C NM(c)δJc ≥ σ or 2

√∑
c∈C NM(c)δ

2
Rc
/(σ −

∑
c∈C NM(c)δJc) > ᾱ, the hyperreduction

tolerances δc = δRc
= δJc of each component c ∈ C is adjusted such that these conditions hold. We then use

the RQ rules associated with the new hyperreduction tolerances to compute the new HRBE solution ũrb(µ)

and σ = σmin(J̃rb (ũrb(µ);µ)) /2. This process is repeated until convergence; for the problems considered in
Section 6, the procedure converges in two iterations.

Remark 9. In this work, we consider an adaptive selection of hyperreduction tolerance δc and hence RQ rules
for each component to achieve the desired system-level hyperreduction error. However, we do not consider
adaptive selection of the RB for each component to control the truth vs RB error; i.e., the RB is fixed
independent of the target hyperreduction tolerance for each archetype component. We focus on developing
online-adaptive hyperreduction for component-based systems, and defer the development of online-adaptive
RB selection for component-based systems to future work.

5.3. Online phase: computational cost and memory footprint

We now remark on the computational cost of solving the HRBE problem using Algorithm 3 as opposed
to that for solving the truth problem. For the truth problem, each iteration of Newton’s method necessitates
O(Qh) operations for evaluating the truth residual Rh(·;µ) and Jacobian Jh(·;µ), where Qh =

∑
c∈C QM(c)

is the total number of truth quadrature points. Additionally, the solution of the linear system (6) in every
Newton iteration requires O(N η

h ) operations, where 1 ≤ η ≤ 2 depends on the domain dimension and the
solver employed. Moreover, computing the truth output involves O(Qh) operations.

On the other hand, each cycle of the loop in Algorithm 3 (Lines 4–15) involves solving the HRBE problem

and computing σmin(J̃rb(ũrb(µ);µ)). In each Newton iteration, evaluating the HRBE residual R̃rb(·;µ) and

Jacobian J̃rb(·;µ) requires O(
∑
c∈C N

2
rbQ̃

r
M(c)) � O(Qh) operations, where Q̃rĉ is the number of RQ points

of the archetype component ĉ ∈ Ĉ in a given cycle. In addition, finding the Newton update requires solving
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Algorithm 3: Adaptive selection of RQ rules and solution of the HRBE problem in the online
phase.

Input: System-level µ ∈ D and desired V-norm error ε ∈ R>0 between RB and HRBE solutions
Output: The HRBE solution and components’ RQ rules

1 Compute λmax (and λmin if ε is the relative error) for the system;

2 Set ᾱ = ε/
√
λmax (or ᾱ = ε/

√
λmax/λmin if ε is the relative error);

3 Select the initial hyperreduction tolerances δc ∀c ∈ C;
4 while true do
5 Set the RQ rules associated with the current δc values ∀c ∈ C;
6 Solve the HRBE problem to find ũrb(µ);

7 Find σ ≡ σmin(J̃rb(ũrb(µ);µ))/2;
8 Set δRc

= δJc = δc for all c ∈ C (or δRc
= δJc = δc/‖ũrb(µ)‖2 if ε is the relative error);

9 if
∑
c∈C NM(c)δJc ≥ σ or 2

√∑
c∈C NM(c)δ

2
Rc
/(σ −

∑
c∈C NM(c)δJc) > ᾱ then

10 Update δc and subsequently δRc and δJc ∀c ∈ C such that both conditions hold;
11 Go to Step 5;

12 else
13 break;
14 end

15 end

a linear system—which is component-block-wise sparse—in O(Nη
rb)� O(N η

h ) operations. Also, computing
the minimum singular value involves O(Nη

rb) operations. Finally, once ũrb(µ) is found, computing the

approximate output F̃rb(·;µ) requires O(
∑
c∈C Q̃

f
M(c))� O(Qh) operations.

We now compare the memory footprint of the truth and HRBE formulations. The storage requirement
for the truth problem, dominated by the truth Jacobian storage, is O (N η

h ); η = 1 if an iterative solver is used
at each iteration of the Newton method, otherwise η = 4/3 for d ≤ 3 to store factorization. For the HRBE

problem, the entire library must be loaded in the computer memory. To compute the residual R̃rb(·;µ),

Jacobian J̃rb(·;µ), and output functional F̃ (·;µ), we precompute and store the following quantities for each

archetype component ĉ ∈ Ĉ: (i) the RQ rules (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 and (˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for different δĉ values, (ii) the

values of the bubble space basis {ξ̂b
ĉ,i}

Nb
ĉ

i=1 and the port basis {φ̂pĉ,i}
Np

ĉ
i=1 for all ports p ∈ Pĉ at the RQ points

{˜̂xrĉ,q}
Q̃r

ĉ
q=1 and {˜̂xfĉ,q}

Q̃f
ĉ

q=1 associated with different δĉ values, and (iii) the gradient values of the bubble space

basis {∇ξ̂b
ĉ,i}

Nb
ĉ

i=1 and the port basis {∇φ̂pĉ,i}
Np

ĉ
i=1 for all ports p ∈ Pĉ at the RQ points {˜̂xrĉ,q}

Q̃r
ĉ

q=1 and {˜̂xfĉ,q}
Q̃f

ĉ
q=1

associated with different δĉ values. Therefore, the total online storage for ĉ ∈ Ĉ is

(d+ 1)
∑
ĉ∈Ĉ

Nδĉ

(
Q̃rĉ + Q̃fĉ

)1 +Nb
ĉ +

∑
p∈Pĉ

N p
ĉ

 ,

where Nδĉ is the number of hyperreduction tolerances of ĉ ∈ Ĉ for which the state and output hyperreduction

trainings are performed. Therefore, the online storage is independent of N b
h and Qĉ ∀ĉ ∈ Ĉ. Furthermore,

owing to Nb
ĉ � N b

ĉ , Q̃rĉ � Qĉ, and Q̃fĉ � Qĉ ∀ĉ ∈ Ĉ, the online storage requirement for the HRBE problem
is significantly smaller than that of the truth problem, particularly when the truth DoF is large and there
is a significant reuse of archetype components: i.e., Narch is small relative to the size of the system, which
is the case for which the HRBE method is designed. It is important to note that the storage requirement
scales with Narch rather than Ncomp. Therefore, employing the HRBE method ensures that the storage and
computational cost of the online phase are independent of Nh and Qh, as desired.
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Table 1: Coefficients of the aluminum’s thermal conductivity equation in (34).

Coefficient k0 k1 k2 k3 k4 k5 k6 k7

Value (W/K) 0.637 -1.144 7.462 -12.691 11.917 -6.187 1.639 -0.173

Figure 2: Archetype components in their reference domains. From left to right: rod, bracket, tee and cross. Local ports are
shown by red dashed lines.

6. Example: nonlinear thermal fin systems

We now apply the HRBE method to two-dimensional nonlinear thermal fin systems. Systems are
made of an aluminum alloy [30] with a temperature-dependent thermal conductivity k : [1, 300] K →
[4.341, 177.868] W/K that satisfies

log(k(x)) =

7∑
i=0

ki (log(x))i ∀x ∈ [1, 300] K, (34)

where ki, i = 1, · · · , 7, are given in Table 1. The system-level parameterized continuous residual form for the
ultimate systems is expressed as

R(w, v;µ) =

∫
Ω(µ)

(k(w)∇w) · ∇v dx−
∫

Ω(µ)

f(µ) v dx ∀w, v ∈ V,

where V ≡
{
v ∈ H1(Ω(µ))

∣∣∣ vΓD
= 0
}

, and f : D → L2(Ω(µ)) is the volumetric source term, which is

assumed to be constant within each component.

6.1. Archetype component library

Our archetype component library comprises four archetype components as shown in Figure 2. Each
archetype component is characterized by two geometric parameters µ1 and µ2, and one physical parameter
µ3 ∈ [0, 10] W/cm2 associated with volumetric heat source. For all components, µ1 ∈ [0.5, 1] cm and
µ2 ∈ [0.5, 1] cm, with the exception of the rod component where µ1 ∈ [3, 6] cm. The values of geometric
parameters µ1 and µ2 in the reference domain of all archetype components are 1 cm, except for µ1 of the
rod component, which is 4 cm. As shown in Figure 2, the rod and bracket components have two local
ports, the tee component has three local ports, and the cross component has four local ports. All ports are
mapped from the same 17-DoF reference port discretized by eight quadratic line elements. Furthermore,
all components are discretized using quadratic triangular elements leading to N b

rod = 691, N b
bracket = 703,

N b
tee = 1026, and N b

cross = 1165.
The offline training proceeds in three sequential steps. First, for each archetype component we generate

a set of empirical training data using Algorithm 1. Specifically, for each target component, we create
Nsample = 100 sample subsystems by connecting it with a probability of β = 0.8 to other components in the
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(d) Cross component

Figure 3: Decay of POD eigenvalues in the RB construction for the bubble space of different archetype components.

library through each of its ports. We then assign uniformly random parameter values to the components in
the subsystems and set uniformly random constant Dirichlet boundary conditions to their nonshared global
ports, ranging from 1 K to 250 K.

Second, we construct an RB for the bubble space of each archetype component using the POD capturing
99.9% of the energy (i.e., the sum of POD eigenvalues) of the correlation matrix associated with its bubble
snapshot matrix. This results in Nb

rod = 3, Nb
bracket = 3, Nb

tee = 6, and Nb
cross = 9. Figure 3 illustrates the

decay of POD eigenvalues for each archetype component, showing a rapid decrease in the POD eigenvalues
for all components.

Third, we follow Algorithm 2 to create a bubble RB snapshot set for each archetype component using the
data generated in the first step and the RB constructed in the second step. Then, we solve the component-wise
hyperreduction problem (27)–(31) for seven different hyperreduction tolerances δĉ = {10−4, 10−3, . . . , 102}
to construct a family of RQ rules. Figure 4 shows components’ RQ points for hyperreduction tolerances
δĉ = 102 and δĉ = 1. Table 2 summarizes the outcome of offline training for all archetype components. For
all components, the number of bubble degrees of freedom is significantly reduced (i.e., Nb

ĉ � N b
ĉ ), and the

number of RQ points increases as the hyperreduction tolerance δĉ tightens.
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(a) Rod component, δĉ = 102 (b) Rod component, δĉ = 1

(c) Bracket component, δĉ = 102 (d) Bracket component, δĉ = 1

(e) Tee component, δĉ = 102 (f) Tee component, δĉ = 1

(g) Cross component, δĉ = 102 (h) Cross component, δĉ = 1

Figure 4: RQ points of the archetype components for δĉ = 102 and δĉ = 1.
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Table 2: Outcome of offline training for all archetype components.

Component Rod Bracket Tee Cross

N b
ĉ 691 703 1026 1165

Qĉ 1968 2016 3024 3456

Nb
ĉ 3 3 6 9

Q̃rĉ (δĉ = 102) 147 156 230 296

Q̃rĉ (δĉ = 10) 183 198 317 420

Q̃rĉ (δĉ = 1) 203 265 391 563

Q̃rĉ (δĉ = 10−1) 287 322 516 739

Q̃rĉ (δĉ = 10−2) 347 375 637 956

Q̃rĉ (δĉ = 10−3) 419 488 846 1233

Q̃rĉ (δĉ = 10−4) 482 599 1031 1613

6.2. Thermal fin systems

We now examine the performance of the HRBE method on a family of thermal fin systems made of
instances of rod, bracket, and cross components from the library. An example of a 3× 3 fin system is shown
in Figure 5a. We characterize the topology of the fin systems by their number of rod components along
horizontal and vertical directions. We consider only the cases where the number of horizontal and vertical
rods are identical.

We assume the interior cross components of the fins are subject to a volumetric heat source. Furthermore,
we assume the length of the rods along all directions are identical. Additionally, we assume the horizontal and
vertical thicknesses vary independently. Hence, an Nfin×Nfin fin system has Ncomp = (3Nfin +1)× (Nfin +1)
instantiated components, Nfin+1 thickness variables along the horizontal direction, Nfin+1 thickness variables
along the vertical direction, 1 length variable associated with rod components, and (Nfin − 1)2 physical
variables for volumetric source terms. Therefore, in total, an Nfin×Nfin fin system is parameterized by N2

fin+4
variables, making the problem parametrically high-dimensional even for Nfin = 2. Fin systems are subject
to four Dirichlet boundary conditions: uleft = 25 K on Γleft, uright = 125 K on Γright, ubottom = 275 K on
Γbottom, and utop = 100 K on Γtop. Figure 5b shows the truth temperature distribution for one instantiation
of the Nfin ×Nfin fin system for Nfin = 3.

6.3. Numerical results using prescribed hyperreduction tolerances

We first study the behavior of the HRBE method on the 3×3 fin system using prescribed hyperreduction
tolerances δc ∀c ∈ C; i.e., the same δc is prescribed to all components without using the adaptive algorithm
(Algorithm 3). Figure 6a shows the relative H1(Ω)-norm error between the truth and HRBE solutions for
different hyperreduction tolerances. To assess the generality of the formulation, we report the maximum
error over a test configuration set Ξtest ⊂ D, which comprises |Ξtest|= 5 test configurations that results from
parameter values randomly selected from a uniform distribution over their corresponding training range. As
expected, the error decreases as the hyperreduction tolerances are reduced. A maximum error of 1.363×10−1

is observed for δc = 102, which sharply decreases to 2.536 × 10−3 for δc = 1. The HRBE error eventually
plateaus and approaches that of (truth-quadrature) RB without hyperreduction. (We recall that, in this
work, the RB is fixed independent of the hyperreduction tolerance for each component, and hence the
error between the truth and RB solutions (and in turn the HRBE solutions) is not adaptively controlled;
cf. Remark 9.)

Figure 6b shows the maximum relative H1(Ω)-norm error between (truth-quadrature) RB and HRBE
solutions over the |Ξtest|= 5 test cases for different δc values. As anticipated, the error decreases with
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(a) system composition

(b) example temperature distribution

Figure 5: A 3× 3 fin system. In (a), red stars mark the components with a volumetric source term.
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(a) truth vs HRBE
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(b) truth-quadrature RB vs HRBE

Figure 6: Maximum relative H1(Ω)-norm error in the HRBE solution with respect to the truth and RB solutions for different
hyperreduction tolerances for the 3× 3 fin over |Ξtest|= 5 test cases.
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Table 3: Value of σmin

(
J̃rb(urb)

)
≡ σmin

(
J̃rb(urb(µ);µ)

)
for different hyperreduction tolerances for the 3× 3 fin.

Hyperreduction
tolerances

δc = 102 δc = 10 δc = 1 δc = 10−1 δc = 10−2 δc = 10−3 δc = 10−4

σmin

(
J̃rb(urb)

)
2.697 2.927 2.932 2.933 2.933 2.933 2.933

hyperreduction tolerances and, hence, when more RQ points are used. More quantitatively, the BRR error
bound (16) suggests that

‖urb(µ)− ũrb(µ)‖V ≤ ‖urb(µ)− ũrb(µ)‖2
√
λmax ≤

2
√
λmax

σmin

(
J̃rb(urb(µ);µ)

) ∥∥∥R̃rb(urb(µ);µ)
∥∥∥

2
.

Then, assuming the residual-tolerance condition (18) holds for ũrb(µ) at the system level, we conclude that

‖urb(µ)− ũrb(µ)‖V ≤
2δc
√
λmax

∑
c∈C NM(c)

σmin

(
J̃rb(urb(µ);µ)

)
since the same δc is applied for all components. Hence, if σmin

(
J̃rb(urb(µ);µ)

)
remains approximately

constant for different δc values, then we expect the error to vary linearly with δc. This is precisely what we

observe in Figure 6b. The values of σmin

(
J̃rb(urb(µ);µ)

)
reported in Table 3 confirm that the minimum

singular value is approximately constant for δc ≤ 10.
We now study the behavior of the minimum singular value σmin(J̃rb (ũrb(µ);µ)), which plays an important

role in the adaptive RQ selection algorithm Algorithm 3. To develop the algorithm, we posited, based
on Lemma 8, that σmin(J̃rb (ũrb(µ);µ)) would provide a reliable approximation for σmin(Jrb (ũrb(µ);µ)).
Table 4 shows the maximum relative error between these two values ∀µ ∈ Ξtest for different hyperreduction
tolerances δc. We note that even for the highest δc the error between the singular values is less than 10% and
the difference quickly decreases as δc is reduced. Consequently, in practice, as Algorithm 3 iterates toward
smaller hyperreduction tolerances, this error becomes increasingly insignificant. Additionally, the applied
factor of 0.5 due to (32) further mitigates the possibility that 0.5σmin(J̃rb (ũrb(µ);µ)) does not provide a
lower bound of σmin(Jrb (urb(µ);µ)) in Algorithm 3.

Table 4: Relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) for different hyperreduction tolerances for the
3× 3 fin over |Ξtest|= 5 test cases.

Hyperreduction
tolerances

sup
µ∈Ξtest

|σmin(Jrb (ũrb(µ);µ))− σmin(J̃rb (ũrb(µ);µ)) |
σmin(Jrb (ũrb(µ);µ))

δc = 102 9.009× 10−2

δc = 10 3.017× 10−3

δc = 1 1.507× 10−4

δc = 10−1 1.057× 10−5

δc = 10−2 1.023× 10−6

δc = 10−3 6.818× 10−7

δc = 10−4 4.973× 10−7
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Figure 7: Average speedup in wall-clock time relative to solving the truth problem for different hyperreduction tolerances for
the 3× 3 fin across |Ξtest|= 5 test cases.

Figure 7 shows the average speedup in wall-clock time relative to solving the truth problem across the
five test configurations for various hyperreduction tolerances. Specifically, an average speedup of around 70
times is observed for δc = 102, reducing to about 11 times for δc = 10−4. While the difference in speedups
might encourage the use of looser hyperreduction tolerances, it is crucial to consider the trade-off in accuracy.
We recall that Figures 6a and 6b show that the errors for δc = 102 is significantly higher than the errors
for the RQ rules associated with tighter tolerances. Conversely, opting for the strictest tolerance yields the
most accurate HRBE solution, but the speedup is not as substantial compared to using looser tolerances.
(We recall that, in this work, we do not consider port reduction, and hence the speedup achieved by the
HRBE method is O(10)–O(100) and not O(1000) as achieved by port-reduced RBEs for linear problems [13];
cf. Remark 1.)

6.4. Numerical results using the adaptive RQ selection algorithm

To effectively navigate the trade-off between speedup and accuracy and select the RQ rules satisfying
a desired error between RB and HRBE solutions, we now apply Algorithm 3 for the relative error target
ε = 0.01. The algorithm finds the RQ rules corresponding to different hyperreduction tolerances for differ-
ent components in the 3 × 3 thermal fin system, although the same tolerance is used for the components
instantiated from the same archetype component. Convergence is reached in merely two iterations in all
parameter test configurations. The maximum relative H1(Ω)-norm errors in the HRBE solutions relative to
the truth and (truth-quadrature) RB solutions are 7.521× 10−3 and 7.226× 10−3, respectively. As desired,
the adaptive RQ selection algorithm meets the target system-level hyperreduction error tolerance of 10−2.
The HRBE method provides an average computational speedup of 42 relative to solving the truth problem.

To further assess the performance of the adaptive RQ selection algorithm across a range of fin system sizes,
we apply Algorithm 3, with the relative error target ε = 0.01, to Nfin×Nfin fin systems for Nfin ∈ {2, · · · , 8}.
For each fin system, we form |Ξtest|= 5 test configurations similar to those for the 3× 3 fin system described
earlier. For all fin systems, the algorithm achieves convergence within two iterations. Table 5 shows the
maximum relative H1(Ω)-norm errors across the test configurations between (i) truth and RB solutions, (ii)
truth and HRBE solutions, and (iii) RB and HRBE solutions. The target error between the RB and HRBE
solutions is achieved for all fin systems. We observe that the sharpness of the error bound between the RB
and HRBE solutions given by (26) deteriorates as Nfin increases. We suspect that this is due to bounding
‖·‖∞ and ‖·‖max in Proposition 4 by

√
NM(c) ‖·‖2 and NM(c) ‖·‖2 ∀c ∈ C, respectively. As the number of

components in the system increases, ᾱ in Proposition 4 provides a more pessimistic upper bound for the error
at the system level. Table 5 also shows that for all fin systems the error between the truth and RB solutions
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Table 5: Relative H1(Ω)-norm error between (i) truth and RB solutions, (ii) truth and HRBE solutions, and (iii) RB and
HRBE solutions for Nfin ×Nfin fins using ε = 0.01 in Algorithm 3 over their five test cases.

Nfin supµ∈Ξtest
‖uh(µ)−urb(µ)‖V
‖uh(µ)‖V supµ∈Ξtest

‖uh(µ)−ũrb(µ)‖V
‖uh(µ)‖V supµ∈Ξtest

‖urb(µ)−ũrb(µ)‖V
‖urb(µ)‖V

2 4.183× 10−3 7.891× 10−3 7.605× 10−3

3 2.054× 10−3 7.521× 10−3 7.226× 10−3

4 1.557× 10−3 6.134× 10−3 5.921× 10−3

5 1.626× 10−3 4.958× 10−3 4.832× 10−3

6 1.283× 10−3 1.341× 10−3 3.801× 10−4

7 1.001× 10−3 1.057× 10−3 3.377× 10−4

8 8.882× 10−4 9.389× 10−4 2.976× 10−4

Table 6: Relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) for Nfin ×Nfin fins over their five test cases.

Nfin sup
µ∈Ξtest

|σmin(Jrb (ũrb(µ);µ))− σmin(J̃rb (ũrb(µ);µ)) |
σmin(Jrb (ũrb(µ);µ))

2 3.478× 10−3

3 2.395× 10−3

4 2.159× 10−3

5 1.484× 10−3

6 4.221× 10−5

7 4.955× 10−5

8 6.616× 10−5

is relatively close to the error between the truth and HRBE solutions, underscoring the effectiveness of the
adaptive RQ selection (Algorithm 3) as well as the component-wise hyperreduction training routine.

Finally, Table 6 presents the relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) across

various fin system sizes, which again supports the validity of using σmin(J̃rb (ũrb(µ);µ)) to approximate
σmin(Jrb (ũrb(µ);µ)) in the development of Algorithm 3.

7. Conclusion

In this work, we have developed an HRBE method for reduced-order modeling of component-based
systems governed by general parameterized nonlinear PDEs. Our proposal is capable of accommodating
global nonlinearities across the entire domain. The method constructs a library of archetype components
during the offline phase through component-wise RB construction and hyperreduction. Then, in the online
phase, these pretrained components are reused to rapidly create a reduced model for any system configuration
instantiated from the archetype components in the library. This divide-and-conquer strategy circumvents the
need for repeated offline training for new system configurations and enables the reduced-order modeling of
problems with numerous parameters. Additionally, it facilitates the model reduction of large-scale problems
by sidestepping the generation of global solution snapshots associated with large assembled systems in the
offline phase.

The proposed HRBE method is characterized by several key features. First, we have formulated a
component-wise extension of the EQP [33, 40] to systematically construct a library of hyperreduced compo-
nents, each of which meets the specified hyperreduction tolerance. Second, we have appealed to the BRR
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theorem to develop an actionable error estimate for component-based systems, which relates component-wise
hyperreduction residual to the system-level error. Third, we have developed an online-efficient estimate of
the minimum singular value of the system-level Jacobian, which plays a crucial role in the BRR theory.
Finally, building on the aforementioned multi-fidelity archetype component library, the actionable error esti-
mate, and the minimum singular value, we have developed an adaptive RQ selection procedure, such that the
hyperreduction error in the online-assembled system meets the user-prescribed system-level error tolerance.

We evaluated the effectiveness of our HRBE method through its application to two-dimensional nonlin-
ear thermal fin systems, which are composed from a library consisting of four distinct types of archetype
components. Across different fin systems, we demonstrated that the HRBE method consistently delivers
accurate results and computational reduction, achieving roughly 45× speedups with errors around 1% or
less. Moreover, the online-efficient minimum singular value estimate for the system’s RB Jacobian proved
accurate in the fin systems studied.

There exist several potential opportunities to extend the current work. First is the development of a
port-reduced version of the HRBE method (cf. Remark 1). In systems with many and/or large global ports,
the final HRBE problem can still be quite large without port reduction. Hence, model reduction of the
ports could lead to additional computational savings in the online phase, a concept already explored for
linear problems (e.g., [12, 13, 36]). Second is the development of an online-efficient system-level a posteriori
error estimates, which is another area that has been explored for linear problems. Third, building on the a
posteriori error estimate, Algorithm 3 may be extended to effect adaptive selection of both RB and RQ in the
online phase (cf. Remark 9). Lastly, the current work could be expanded to accommodate time-dependent
nonlinear PDEs. We aim to explore these potential extensions in our future research.
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Appendix A Explicit expressions of the algebraic RB residuals and Jacobians of instantiated
components

For the instantiated component c ∈ C and for all its ports p ∈ PM(c), the algebraic RB residuals Rb
rb,c

and Rγ
rb,c,p are given by

(
Rb

rb,c(wrb,c;µc)
)
i

=

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc), ξb

c,i ◦ Gc(·;µc);x̂M(c),q, µc

)
,

1 ≤ i ≤ Nb
M(c),

(35)(
Rγ

rb,c,p(wrb,c;µc)
)
i

=

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc), ψpc,i ◦ Gc(·;µc);x̂M(c),q, µc

)
,

1 ≤ i ≤ N p
M(c),

(36)

for any wrb,c ∈ Vrb,c and any µc ∈ Dc. Moreover, the algebraic RB Jacobians Jb,b
rb,c, Jb,γ

rb,c,p, Jγ,brb,c,p, and

Jγ,γrb,c,p,p′ ∀p, p′ ∈ PM(c) are given by

(
Jb,b

rb,c(wrb,c;µc)
)
i,j

=

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ξb
c,j ◦ Gc(·;µc), ξb

c,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

1 ≤ i, j ≤ Nb
M(c),

(37)

(
Jb,γ

rb,c,p(wrb,c;µc)
)
i,j

=

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ψpc,j ◦ Gc(·;µc), ξ
b
c,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

1 ≤ i ≤ Nb
M(c), 1 ≤ j ≤ N p

M(c),

(38)

(
Jγ,brb,c,p(wrb,c;µc)

)
i,j

=

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ξb
c,j ◦ Gc(·;µc), ψ

p
c,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

1 ≤ i ≤ N p
M(c), 1 ≤ j ≤ Nb

M(c),

(39)

(
Jγ,γrb,c,p,p′(wrb,c;µc)

)
i,j

=

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ψp
′

c,j ◦ Gc, ψ
p
c,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

1 ≤ i ≤ N p
M(c), 1 ≤ j ≤ N p′

M(c),

(40)

for any wrb,c ∈ Vrb,c and any µc ∈ Dc.
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Appendix B Explicit expressions of the algebraic hyperreduced RB residuals and Jacobians
of instantiated components

For the instantiated component c ∈ C and for all its ports p ∈ PM(c), the algebraic hyperreduced RB

residuals R̃b
rb,c and R̃γ

rb,c,p are given by

(
R̃b

rb,c(wrb,c;µc)
)
i

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc), ξb

c,i ◦ Gc(·;µc);˜̂xrM(c),q, µc

)
,

1 ≤ i ≤ Nb
M(c),

(41)(
R̃γ

rb,c,p(wrb,c;µc)
)
i

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc), ψpc,i ◦ Gc(·;µc);˜̂x

r
M(c),q, µc

)
,

1 ≤ i ≤ N p
M(c),

(42)

for any wrb,c ∈ Vrb,c and any µc ∈ Dc. Moreover, the algebraic hyperreduced RB Jacobians J̃b,b
rb,c, J̃b,γ

rb,c,p,

J̃γ,brb,c,p, and J̃γ,γrb,c,p,p′ ∀p, p′ ∈ PM(c) are given by

(
J̃b,b

rb,c(wrb,c;µc)
)
i,j

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ξb
c,j ◦ Gc(·;µc), ξb

c,i ◦ Gc(·;µc); ˜̂xrM(c),q, µc

)
,

1 ≤ i, j ≤ Nb
M(c),

(43)

(
J̃b,γ

rb,c,p(wrb,c;µc)
)
i,j

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ψpc,j ◦ Gc(·;µc), ξ
b
c,i ◦ Gc(·;µc); ˜̂xrM(c),q, µc

)
,

1 ≤ i ≤ Nb
M(c), 1 ≤ j ≤ N p

M(c),

(44)

(
J̃γ,brb,c,p(wrb,c;µc)

)
i,j

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ξb
c,j ◦ Gc(·;µc), ψ

p
c,i ◦ Gc(·;µc); ˜̂xrM(c),q, µc

)
,

1 ≤ i ≤ N p
M(c), 1 ≤ j ≤ Nb

M(c),

(45)

(
J̃γ,γrb,c,p,p′(wrb,c;µc)

)
i,j

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂
′
M(c)

([
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rb,c +
∑

p∈PM(c)

wΓ
h,Pc(p)

]
◦ Gc(·;µc),

ψp
′

c,j ◦ Gc, ψ
p
c,i ◦ Gc(·;µc); ˜̂xrM(c),q, µc

)
,

1 ≤ i ≤ N p
M(c), 1 ≤ j ≤ N p′

M(c),

(46)

for any wrb,c ∈ Vrb,c and any µc ∈ Dc.
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Appendix C Assembly procedure for the residual and Jacobian of the HRBE problem

Algorithm 4: Assembling the algebraic residual and Jacobian in the HRBE problem.

Input: The connectivity between components and system-level µ ∈ D
Output: System’s residual R̃rb(·;µ) and Jacobian J̃rb(·;µ)

1 Initialize R̃rb(·;µ) and J̃rb(·;µ) by zeros;
2 for c ∈ C do

3 for i = 1, · · · , Nb
M(c) do Compute

(
R̃b

rb,c(·;µc)
)
i

using (41);

4 R̃rb(·;µ)← R̃rb(·;µ) + Pb,cR̃
b
rb,c(·;µ);

5 for i = 1, · · · , Nb
M(c) and j = 1, · · · , Nb

M(c) do Compute
(
J̃b,b

rb,c(·;µc)
)
i,j

using (43);

6 J̃rb(·;µ)← J̃rb(·;µ) + Pb,cJ̃
b,b
rb,c(·;µ)PT

b,c;

7 for p ∈ PM(c) do
8 for i = 1, · · · ,N p

M(c) do

9 Compute
(
R̃γ

rb,c,p(·;µc)
)
i

using (42);

10 end

11 R̃rb(·;µ)← R̃rb(·;µ) + PΓ,Pc(p)R̃
γ
rb,c,p(·;µ);

12 for i = 1, · · · , Nb
M(c) and j = 1, · · · ,N p

M(c) do

13 Compute
(
J̃b,γ

rb,c,p(·;µc)
)
i,j

using (44);

14 end

15 J̃rb(·;µ)← J̃rb(·;µ) + Pb,cJ̃
b,γ
rb,c(·;µ)PT

Γ,Pc(p);

16 for i = 1, · · · ,N p
M(c) and j = 1, · · · , Nb

M(c) do

17 Compute
(
J̃γ,brb,c,p(·;µc)

)
i,j

using (45);

18 end

19 J̃rb(·;µ)← J̃rb(·;µ) + PΓ,Pc(p)J̃
γ,b
rb,c(·;µ)PT

b,c;

20 for p′ ∈ PM(c) do

21 for i = 1, · · · ,N p
M(c) and j = 1, · · · ,N p′

M(c) do

22 Compute
(
J̃γ,γrb,c,p,p′(·;µc)

)
i,j

using (46);

23 end

24 J̃rb(·;µ)← J̃rb(·;µ) + PΓ,Pc(p)J̃
γ,γ
rb,c,p,p′(·;µ)PT

Γ,Pc(p′);

25 end

26 end

27 end
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