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Abstract

We introduce a hyperreduced reduced basis element method for model reduction of parametrized, component-
based systems in continuum mechanics governed by nonlinear partial differential equations. In the offline
phase, the method constructs, through a component-wise empirical training, a library of archetype com-
ponents defined by a component-wise reduced basis and hyperreduced quadrature rules with varying hy-
perreduction fidelities. In the online phase, the method applies an online adaptive scheme informed by the
Brezzi–Rappaz–Raviart theorem to select an appropriate hyperreduction fidelity for each component to meet
the user-prescribed error tolerance at the system level. The method accommodates the rapid construction
of hyperreduced models for large-scale component-based nonlinear systems and enables model reduction of
problems with many continuous and topology-varying parameters. The efficacy of the method is demon-
strated on a two-dimensional nonlinear thermal fin system that comprises up to 225 components and 68
independent parameters.

Keywords: model reduction, reduced basis element method, domain decomposition, hyperreduction,
component-wise training, parameterized nonlinear PDEs

1. Introduction

Many-query problems, which necessitate repeatedly solving parameterized partial differential equations
(PDEs), arise commonly in various fields of computational science such as design optimization, uncer-
tainty quantification, and control. For problems where the solution manifold is well approximated in a
low-dimensional linear space, the reduced basis (RB) methods provide an effective approach to rapidly and
reliably approximate the PDE solution for many different parameter values [38, 37, 20, 5]. RB methods
achieve efficiency by separating the computation into offline (training) and online (deployment) phases.
The former typically involves solutions of the high-fidelity problem (e.g., using finite element (FE) meth-
ods) for many training parameter values to generate solution snapshots, the construction of an RB for the
solution space, and, for nonlinear PDEs, hyperreduction [35, 38, 20]. Consequently, the offline phase is
computationally demanding. Nonetheless, this initial high computational cost is warranted by the signif-
icant computational savings realized in the subsequent online phase, where the reduced problem is solved
numerous times in the intended many-query application.

Despite their effectiveness, the applicability of standard (i.e., monodomain or single-domain) parametric
RB methods is limited to the particular problem with continuous parametric variations for which the training
is performed. For instance, even a slight topological change in the domain can render the trained reduced
model inapplicable. In principle, a separate reduced model could be trained for each topological configuration;
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however, in practice, such retraining, at best, diminishes the utility of the reduced model and, at worst, is
computationally intractable, especially for large-scale engineering systems that can take on many different
topological configurations. Even when only parametric (and no topological) variations are considered, the
standard RB methods can be restricted to problems with a small number of parameters due to the high
training cost of exploring a high-dimensional space.

To mitigate the aforementioned challenges, a variant of RB methods, called component-based or multido-
main RB methods, have been developed [22, 6, 28]. The methods exploit the fact that many engineering
structures—such as heat-exchangers, lattice structures, mechanical multi-component assemblies—consist of
a large number of identical or similar components. The key ingredient of component-based RB methods is
component-based training during the offline phase, whereby a library of interoperable archetype components
and their associated local RB is developed. Then, given a particular topological configuration in the online
phase, copies of the archetype components in the library are instantiated, and a global RB model for the
whole system is formed by connecting the preconstructed local reduced models through their respective ports.

Hitherto, several different variants of component-based RB methods have been developed. The reduced
basis element (RBE) method [28, 29, 27] combines the ideas of domain-decomposition and RB methods.
The method uses Lagrange multipliers to couple local, subdomain-wise reduced models in the online phase
to form a global reduced model. The static condensation RBE (SCRBE) method [23, 24] builds on the
component mode synthesis [22, 6] and the RB methods. The method decomposes the degrees of freedom
(DoF) in each component into port and bubble (interior) DoF. It then uses static condensation [45] to form
a Schur complement system with only port DoFs, and applies RB approximation in each component to
reduce the computational cost of static condensation and to account for parametric variations. The port-
reduced SCRBE method [13, 14, 39] uses port-reduction techniques to further reduce the size of the Schur
complement system and hence the computational cost. This is achieved by approximating the solution on
global ports through the application of RB methods to port modes. SCRBE methods bear a close resemblance
to multiscale RB methods [32, 7, 26, 44, 30, 12], which are applicable to structures composed of smaller-scale
components with less heterogeneity relative to those in structures targeted for the SCRBE method.

Component-based RB methods have been initially developed for linear or polynomial nonlinear problems
with affine parameter dependence, which facilitate offline–online computational decomposition (without hy-
perreduction). Recently, these methods have been extended to general nonlinear and nonaffine problems.
Methods for nonlinear problems can be broadly categorized into two groups based on the locality of nonlin-
earity. The first class of methods are designed for problems where the nonlinearity can be localized to small
regions. Beiges et al. [2] decompose the physical domain and use a hybrid full-order/reduced-order model ap-
proach in the online phase to handle parameter configurations absent in the offline phase. Similarly, Ballani
et al. [3] decompose the physical domain into linear and nonlinear regions and apply the SCRBE method in
the former part and high-fidelity model in the latter. Zhang et al. [49] apply the same decomposition idea,
but use Gaussian processes regression in nonlinear regions to construct a surrogate model. By construction,
this class of methods is specialized for localizable nonlinearities and cannot treat globally nonlinear systems.

The second class of methods is designed for problems that exhibit nonlinearity everywhere in the domain.
Hoang et al. [21] develop a domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) method. This
method constructs a separate reduced space for each subdomain and enforces interface continuity between
the subdomains using a set of compatibility constraints in the LSPG method. Iollo et al. [25] develop a
component-based model reduction formulation for parametrized nonlinear elliptic PDEs that uses overlap-
ping subdomains and an optimization-based reformulation. Smetana and Taddei [40] develop a multidomain
RB method that uses the partition-of-unity concept and apply it to a two-dimensional nonlinear diffusion
problem. Diaz et al. [11] integrate nonlinear approximation spaces, created through autoencoders, with
domain-decomposition to facilitate reduced-order modeling of problems with slowly decaying Kolmogorov
n-width. These methods for globally nonlinear problems, however, do not yet match the versatility and
reliability offered by component-based RB methods for linear problems. First, the majority of these works
consider multidomain systems that result from a decomposition of global system into partitions, and not
interchangeable physical components in the sense of those in component-based RB methods for linear prob-
lems. Second, they do not provide a mechanism for quantitatively controlling the hyperreduction error at
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the system level during the online phase.
In this work, we propose a model reduction method that (i) can treat global nonlinearities, (ii) incor-

porates online-interchangeable physical components to provide topological and parametric online flexibility,
and (iii) provides quantitative control of hyperreduction error. The contributions of the present work are
fivefold:

1. We develop a hyperreduced RBE (HRBE) method, which (i) uses a library of archetype components
to provide online topological and parametric flexibility of component-based RB methods and (ii) can
handle general parametrized nonlinear PDEs that exhibit global nonlinearities.

2. We extend the empirical quadrature procedure (EQP) [36, 47] to component-wise offline training to
enable a systematic construction of a library of hyperreduced components, each of which meets the
specified residual tolerance.

3. We appeal to the Brezzi–Rappaz–Raviart (BRR) theory [8] to develop an actionable solution error
estimate for component-based nonlinear systems, which relates component-wise residuals due to hy-
perreduction to system-level solution error.

4. We develop an adaptive procedure, informed by the BRR error estimate, to construct a hyperreduced
system from a library of hyperreduced components, such that the hyperreduction error in the online-
assembled system meets the user-prescribed error tolerance in a solution norm for any topological and
parametric configuration.

5. We demonstrate the efficacy of the proposed HRBE method using a nonlinear thermal fin system that
comprises up to 225 instantiated components and 68 independent parameters.

The remainder of the paper is organized as follows. Section 2 presents the general form of the model
problem considered in this study. Section 3 introduces the HRBE method, providing the bubble–port de-
composition, RB approximation, and hyperreduced RB approximation. Section 4 introduces the component-
based training procedure designed for RB construction and hyperreduction of the archetype components in
the library. Section 5 describes the computational procedures of offline and online phases. Section 6 presents
numerical results that validate and demonstrate the efficacy of the HRBE method. Finally, we conclude
with a summary of the work and potential considerations for future work.

2. Parameterized nonlinear PDE model problem

As a prelude to developing our HRBE method, in this section, we introduce the general form of the
considered parameterized nonlinear PDEs. We present both the physical and reference domain formulations,
the latter of which is crucial to treat parameterized geometries using the HRBE method.

2.1. Exact problem formulation

We first introduce geometric and topological entities associated with archetype components. We define Ĉ
as a library of Narch parameterized archetype components. For each archetype component ĉ ∈ Ĉ, we introduce
Ω̂ĉ ⊂ Rd, D̂ĉ ⊂ Rnĉ , and µ̂ĉ ∈ D̂ĉ as, respectively, its bounded d-dimensional reference spatial domain,
bounded nĉ-dimensional parameter domain, and nĉ-dimensional parameter tuple specifying its reference
parameter values. Each archetype component ĉ has nγĉ disjoint local ports whose domains are γ̂ĉ,p̂ ⊆ ∂Ω̂ĉ,

p̂ ∈ Pĉ ≡ {1, · · · , nγĉ }, where ∂Ω̂ĉ is the boundary of Ω̂ĉ. We assume the boundary of all components are
Lipschitz continuous and all ports of an archetype component are mutually separated by a boundary surface.
Figure 1a shows these definitions for two archetype components.

We next introduce geometric and topological entities associated with an assembled system. We define C as
a set of Ncomp instantiated components composing a system. Each instantiated component is generated from
an archetype component in the library through a (parameterized) geometric mapping. The components
in the system are connected together through their local ports, thereby creating Nport global ports. The
geometric mappings must guarantee compatibility of the ports. We assume a global port can be shared by
at most two instantiated components. A local port residing on the system boundary also forms a global
port, where the essential boundary conditions at the system level are imposed. We introduce Ωc ⊂ Rd
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(a) components (b) assembled system

Figure 1: (a) Top: an archetype component with two local ports and P̂1 = {1, 2}, Bottom: an archetype component with three

local ports and P̂2 = {1, 2, 3}; (b) A system with Ncomp = 3 instantiated components and Nport = 5 global ports. In this system,

M(1) = 1̂, M(2) = 2̂, M(3) = 1̂, and P = {1, · · · , 5}. Also, Ω1 = G1(Ω̂M(1);µ1), Ω2 = G2(Ω̂M(2);µ2), Ω3 = G3(Ω̂M(3);µ3),
Γ1 = G1(γ̂M(1),1;µ1), Γ2 = G1(γ̂M(1),2;µ1) = G2(γ̂M(2),2;µ2), Γ3 = G2(γ̂M(2),3;µ2), Γ4 = G2(γ̂M(2),1;µ2) = G3(γ̂M(3),1;µ3),
and Γ5 = G3(γ̂M(3),2;µ3).

as the physical domain of the instantiated component c ∈ C, and Γp, p ∈ P ≡ {1, · · · , Nport}, as the
physical domain of the p-th global port in the system. We introduce, for each instantiated component c,
the parameter tuple µc ∈ Dc ≡ D̂M(c), where M : C → Ĉ is a map from the instantiated components to
their corresponding archetype components. The parameterized geometric mappings relating the archetype
and instantiated component domains are Gc : Ω̂M(c) ×Dc → Ωc such that Ωc = Gc(Ω̂M(c);µc). The physical
domain of the p-th local port of c ∈ C is given by γc,p ≡ Gc(γ̂M(c),p;µc) ∀p ∈ PM(c). The mapping Gc(·;µc)
depends only on the geometric parameters in µc. Figure 1b shows an example of a three-component system.

We now define function spaces associated with archetype and instantiated components. For the archetype
component ĉ ∈ Ĉ, we introduce a Hilbert space V̂ĉ ⊂ H1(Ω̂ĉ) endowed with an inner product (·, ·)V̂ĉ

and the

associated induced norm ||·||V̂ĉ
≡

√
(·, ·)V̂ĉ

, which is equivalent to the H1(Ω̂ĉ)-norm. For c ∈ C, we introduce

the geometric-parameter-dependent mapped space Vc ≡
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂M(c)

}
and the associated

inner product (·, ·)Vc and induced norm ∥·∥Vc≡
√

(·, ·)Vc .
We now present a domain-decomposed formulation of the system-level model problem in terms of its

components. We introduce the system’s physical domain Ω such that Ω = ∪c∈CΩc. We also define ΓD and ΓN ,
respectively, as the nonempty Dirichlet and Neumann boundaries of Ω such that ∂Ω = ΓD∪ΓN and ΓD∩ΓN =
∅. The Dirichlet boundary is composed of nonshared local ports of the instantiated components in the system.
To simplify the presentation, we assume homogeneous boundary conditions everywhere. We further introduce
the system parameter domain D ≡ ⊕c∈CDc and parameter tuple µ ≡ (µ1, · · · , µNcomp) ∈ D. Additionally, for
each instantiated component c ∈ C, we introduce the physical-domain residual Rc : Vc × Vc ×Dc → R as

Rc(w, v;µ) =

∫
Ωc

rc(w, v;x, µ) dx ∀w, v ∈ Vc, ∀µ ∈ Dc,

where rc : Vc × Vc × Ωc ×Dc → R is the physical-domain integrand, which is linear in its second argument
but is in general nonlinear in its first argument. The exact nonlinear model problem in its weak form is as
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follows: given µ = (µc)c∈C ∈ D, find u(µ) ∈ V such that

R(u(µ), v;µ) ≡
∑
c∈C

Rc

(
u(µ)|Ωc

, v|Ωc
;µc

)
= 0 ∀v ∈ V, (1)

where V =
{
v ∈ H1(Ω)

∣∣∣v|ΓD
= 0

}
. Problems that involve boundary integrals due to nonhomogeneous bound-

ary conditions can be readily treated with minor modifications. We assume the problem is well-posed for
all µ ∈ D. Given the solution field u(µ) ∈ V, we evaluate a scalar output (i.e., quantity of interest)
F (u(µ);µ) ∈ R at the system level, where

F (w;µ) =
∑
c∈C

Fc(w|Ωc
;µc) ∀w ∈ V,∀µ ∈ D;

here, Fc : Vc ×Dc → R is the physical-domain output functional for the instantiated component c ∈ C given
by

Fc(w;µ) =

∫
Ωc

fc(w;x, µ) dx ∀w ∈ Vc, ∀µ ∈ Dc,

where fc : Vc × Ωc ×Dc → R is the physical-domain integrand.
To handle parameterized geometries using the HRBE method presented in the next section, we need to

formulate the system-level residual and output forms in the reference-domain of the components. As such,
for each archetype component ĉ ∈ Ĉ, we introduce reference-domain residual R̂ĉ : V̂ĉ × V̂ĉ × D̂ĉ → R and
output functional F̂ĉ : V̂ĉ × D̂ĉ → R given by

R̂ĉ(w, v;µ) =

∫
Ω̂ĉ

r̂ĉ(w, v; x̂, µ) dx̂ ∀w, v ∈ V̂ĉ, ∀µ ∈ D̂ĉ,

F̂ĉ(w;µ) =

∫
Ω̂ĉ

f̂ĉ(w; x̂, µ) dx̂ ∀w ∈ V̂ĉ, ∀µ ∈ D̂ĉ,

where r̂ĉ : V̂ĉ×V̂ĉ× Ω̂ĉ×D̂ĉ → R and f̂ĉ : V̂ĉ× Ω̂ĉ×D̂ĉ → R are the reference-domain integrands that satisfy

rc(w, v;x, µc) = r̂M(c)(w ◦ Gc(·;µc), v ◦ Gc(·;µc);G−1
c (x;µc), µc)

∣∣∣Jc(G−1
c (x;µc);µc)

∣∣∣−1

,

fc(w;x, µc) = f̂M(c)(w ◦ Gc(·;µc);G−1
c (x;µc), µc)

∣∣∣Jc(G−1
c (x;µc);µc)

∣∣∣−1

for all c ∈ C, w, v ∈ Vc, x ∈ Ωc, and µc ∈ Dc; here, Jc(·;µc) is the Jacobian of Gc(·;µc), and
∣∣∣Jc(·;µc)

∣∣∣ is
its determinant. We can now express the system-level residual and output forms in terms of the archetype
component reference-domain forms as

R(w, v;µ) =
∑
c∈C

R̂M(c)

(
w|Ωc

◦ Gc(·;µc), v|Ωc
◦ Gc(·;µc);µc

)
,

F (w;µ) =
∑
c∈C

F̂M(c)(w|Ωc
◦ Gc(·;µc);µc)

for any w, v ∈ V and µ ∈ D.

2.2. Truth problem formulation

As is often the case, the exact problem (1) cannot be solved analytically. Instead, we appeal to the truth
problem associated with a FE method to approximate the solution. This solution is taken as the computable
ground truth. We present the truth problem formulation in terms of bubble and port functions to facilitate
the development of the HRBE method described in Section 3.
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2.2.1. Bubble–port decomposition of functions

We first define approximation spaces associated with archetype components. For each archetype compo-

nent ĉ ∈ Ĉ, we introduce an Nĉ-dimensional truth FE space V̂h,ĉ ≡
{
v ∈ V̂ĉ

∣∣∣ v|κ∈ Pn(κ) ∀κ ∈ Th,ĉ
}
⊂ V̂ĉ,

where Th,ĉ is a tessellation of Ω̂ĉ formed by a set of nonoverlapping, conforming elements {κ}, and Pn(κ) is the

space of degree-n polynomials over each element κ. We also introduce V̂b
h,ĉ ≡

{
v ∈ V̂h,ĉ

∣∣∣ v|γ̂ĉ,p̂
= 0, ∀p̂ ∈ Pĉ

}
as the N b

ĉ -dimensional bubble FE space of the archetype component ĉ. We additionally introduce N p̂
ĉ -

dimensional port FE space X̂ p̂
h,ĉ of the p̂-th port of the archetype component ĉ as the restriction of V̂h,ĉ to

the port domain γ̂ĉ,p̂; i.e., X̂ p̂
h,ĉ ≡ V̂h,ĉ|γ̂ĉ,p̂

, p̂ ∈ Pĉ. We note that Nĉ = N b
ĉ +

∑
p̂∈Pĉ

N p̂
ĉ .

We now define basis functions for the ports of each archetype component ĉ ∈ Ĉ. We introduce for the

p̂-th local port of ĉ eigenpairs (τ̂ p̂ĉ,i ∈ X̂
p̂
h,ĉ, λ

p̂
ĉ,i ∈ R)N

p̂
ĉ

i=1 such that∫
γ̂ĉ,p̂

∇τ̂ p̂ĉ,i · ∇ŷ ds = λp̂ĉ,i

∫
γ̂ĉ,p̂

τ̂ p̂ĉ,i ŷ ds ∀ŷ ∈ X̂ p̂
h,ĉ,∥∥∥τ̂ p̂ĉ,i∥∥∥

L2(γ̂ĉ,p̂)
= 1.

We note that X̂ p̂
h,ĉ = span{τ̂ p̂ĉ,i}

N p̂
ĉ

i=1. We then elliptically lift these basis functions to the interior of ĉ to find

{ψ̂p̂
ĉ,i ∈ V̂h,ĉ}

N p̂
ĉ

i=1 by solving ∫
Ω̂ĉ

∇ψ̂p̂
ĉ,i · ∇v dx̂ = 0 ∀v ∈ V̂b

h,ĉ,

ψ̂p̂
ĉ,i = τ̂ p̂ĉ,i on γ̂ĉ,p̂,

ψ̂p̂
ĉ,i = 0 on γ̂ĉ,p̂ ′ ∀p̂ ′ ̸= p̂.

We define V̂γ
h,ĉ as the N γ

ĉ -dimensional FE space spanned by {{ψ̂p̂
ĉ,i}

N p̂
ĉ

i=1}p̂∈Pĉ
, where N γ

ĉ =
∑

p̂∈Pĉ
N p̂

ĉ .
We now present the bubble–port decomposition of functions defined on each instantiated component

c ∈ C. We introduce the geometric-parameter-dependent mapped full-component, bubble, port(-trace), and
port-lifted FE spaces:

Vh,c ≡
{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂h,M(c)

}
⊂ Vc,

Vb
h,c ≡

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂b

h,M(c)

}
⊂ Vh,c,

X p
h,c ≡

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ X̂ p

h,M(c)

}
∀p ∈ PM(c),

Vγ
h,c ≡

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂γ

h,M(c)

}
= span

{{
ψp
c,i ≡ ψ̂

p
M(c),i ◦ G

−1
c (·;µc)

}Np
M(c)

i=1

}
p∈PM(c)

.

Subsequently, any vh,c ∈ Vh,c can be decomposed as

vh,c = vbh,c + vγh,c, (2)

where vbh,c ∈ Vb
h,c is the bubble part of vh,c and vγh,c ∈ V

γ
h,c is its port part given by

vγh,c =
∑

p∈PM(c)

vph,c =
∑

p∈PM(c)

Np
M(c)∑
i=1

vp
h,c,iψ

p
c,i,
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in which {vp
h,c,i}

Np
M(c)

i=1 are the generalized coordinates of vph,c ∈ V
p
h,c ≡ span

{
ψp
c,i

}Np
M(c)

i=1
∀c ∈ C and

∀p ∈ PM(c). (Throughout this work, we denote the generalized coordinates of any function y in an N -
dimensional linear space Y with a basis {Φi}Ni=1 by a boldface letter y such that y ≡ [y1, · · · ,yN ]T satisfies

y =
∑N

i=1 yiΦi.)
At the system level, we assume conformity of the local ports connected together. Thus, for the p-th

global port, p ∈ P, shared by l-th port of c ∈ C and l′-th port of c′ ∈ C, we have Γp = γc,l = γc′,l′ ,

Xh,p ≡ X l
h,c = X l′

h,c′ , NΓ
p ≡ N l

M(c) = N
l′

M(c′), and vl
h,c,i = vl′

h,c′,i, i = 1, · · · ,NΓ
p .

2.2.2. Truth problem statement

We now formulate the truth problem in terms of bubble and port functions. As such, we introduce
system’s N b

h -dimensional bubble, NΓ
h -dimensional port(-lifted), and Nh-dimensional FE spaces, respectively,

given by Vb
h ≡ ⊕c∈CVb

h,c, VΓ
h ≡ ⊕c∈CVγ

h,c, and Vh ≡
(
Vb
h ⊕ VΓ

h

)
∩ V, where N b

h =
∑

c∈C N b
M(c), N

Γ
h =∑

p∈P NΓ
p , andNh = N b

h +NΓ
h . Note that the intersection with V enforces essential boundary conditions. We

further define (x̂ĉ,q, ρ̂ĉ,q)
Qĉ

q=1 ∀ĉ ∈ Ĉ as the truth quadrature rule in the reference domain Ω̂ĉ of each archetype

component ĉ ∈ Ĉ. We may now state the truth problem: given µ = (µc)c∈C ∈ D, find {ubh,c(µ) ∈ Vb
h,c}c∈C

and {{uph,c(µ) ∈ V
p
h,c}p∈PM(c)

}c∈C such that, for all {vbh,c ∈ Vb
h,c}c∈C and {{vph,c ∈ V

p
h,c}p∈PM(c)

}c∈C ,

Rh(uh(µ), vh;µ) ≡
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
ubh,c(µ) +

∑
p∈PM(c)

uph,c(µ)
]
◦ Gc(x̂M(c),q;µc),

[
vbh,c +

∑
p∈PM(c)

vph,c

]
◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc

)
= 0,

(3)

where the system-level solution uh(µ) ∈ Vh is given by uh(µ) =
∑

c∈C

[
ubh,c(µ) +

∑
p∈PM(c)

uph,c(µ)
]
. Sim-

ilarly to the exact problem in (1), we assume (3) is well-posed for all µ ∈ D. We then evaluate the truth
output

Fh(uh(µ);µ) ≡
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q f̂M(c)

([
ubh,c(µ) +

∑
p∈PM(c)

uph,c(µ)
]
◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc

)
. (4)

In practice, (3) is solved using Newton’s method. Given the n-th Newton iterate u
(n)
h , the n+1-st iterate

is given by u
(n+1)
h = u

(n)
h − δu(n)h , where δu

(n)
h ∈ Vh is the Newton update that satisfies

R′
h(u

(n)
h , δu

(n)
h , vh;µ) = Rh(u

(n)
h , vh;µ) ∀vh ∈ Vh, (5)

where R′
h(u

(n)
h , δu

(n)
h , vh;µ) is the Gâteaux derivative of Rh(·, vh;µ) at u

(n)
h in the direction of δu

(n)
h . We

may appeal to (3) to obtain, ∀wh, zh, vh ∈ Vh and ∀µ ∈ D,

R′
h(wh, zh, vh;µ) =

∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

h,c +
∑

p∈PM(c)

wp
h,c

]
◦ Gc(·;µc),[

zbh,c +
∑

p∈PM(c)

zph,c

]
◦ Gc(·;µc),[

vbh,c +
∑

p∈PM(c)

vph,c

]
◦ Gc(·;µc); x̂M(c),q, µc

)
,

where r̂ ′
ĉ(wh, zh, vh; x̂ĉ,q, µĉ), ĉ ∈ Ĉ, is the Gâteaux derivative of r̂ĉ(·, vh; x̂ĉ,q, µc) at wh in the direction of zh.
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3. Hyperreduced reduced basis element method

In this section, we present our HRBE method, which uses component-wise RB and hyperreduction (i)
to provide an accurate approximation of the truth problem (3) at a substantially reduced cost and (ii) to
provide topological and parametric flexibility to assemble an arbitrary system in the online phase.

3.1. RB problem formulation

We now introduce an RB approximation of the truth problem (3). We first construct an RB space for the
bubble space of each component. To this end, we assume that, for each c ∈ C, the bubble solution ubh,c(µ)

associated with (3) for any µ ∈ D can be well-approximated in an Nb
M(c) ≪ N

b
M(c)-dimensional linear space.

We then introduce, for each archetype component ĉ ∈ Ĉ, an Nb
ĉ -dimensional space V̂b

rb,ĉ ⊂ V̂b
h,ĉ spanned by

an RB {ξ̂bĉ,i}
Nb

ĉ
i=1. (We defer the discussion of the computational procedure to construct RBs to Section 4;

for now, we assume RBs are given.) We further define the Nĉ-dimensional space V̂rb,ĉ ≡ V̂b
rb,ĉ ⊕ V̂

γ
h,ĉ,

where Nĉ = Nb
ĉ + N γ

ĉ . Analogously, for each instantiated component c ∈ C, we introduce RB spaces

Vb
rb,c ≡

{
v = v̂ ◦ G−1

c (·;µc)
∣∣∣ v̂ ∈ V̂b

rb,M(c)

}
⊂ Vb

h,c and Vrb,c ≡ Vb
rb,c ⊕ V

γ
h,c, so that we can express any

vrb,c ∈ Vrb,c as vrb,c = vbrb,c + vγh,c, where v
b
rb,c ∈ Vb

rb,c and vγh,c ∈ V
γ
h,c.

We next define the system-level (global) RB space. We first introduce the bubble space for the system as
the direct sum of component RB spaces: i.e., Vb

rb ≡ ⊕c∈CVb
rb,c. We then augment the space with the global

port basis and enforce essential boundary conditions to obtain Vrb ≡
(
Vb
rb ⊕ VΓ

h

)
∩ V. The dimensions of

Vb
rb and Vrb are Nb

rb ≡
∑

c∈C N
b
M(c) and Nrb ≡ Nb

rb + NΓ
h , respectively. Since Nb

ĉ ≪ N b
ĉ ∀ĉ ∈ Ĉ, we have

Nrb ≪ Nh. We then appeal to Galerkin projection to obtain the RB problem: given µ = (µc)c∈C ∈ D, find
{ubrb,c(µ) ∈ Vb

rb,c}c∈C and {{uph,c(µ) ∈ V
p
h,c}p∈PM(c)

}c∈C such that, for all {vbrb,c ∈ Vb
rb,c}c∈C and {{vph,c ∈

Vp
h,c}p∈PM(c)

}c∈C ,

Rrb(urb(µ), vrb;µ) =
∑
c∈C

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
ubrb,c(µ) +

∑
p∈PM(c)

uph,c(µ)
]
◦ Gc(x̂M(c),q;µc),

[
vbrb,c +

∑
p∈PM(c)

vph,c

]
◦ Gc(x̂M(c),q;µc); x̂M(c),q, µc

)
= 0,

(6)

where the system-level solution urb(µ) ∈ Vrb is given by urb(µ) =
∑

c∈C

[
ubrb,c(µ) +

∑
p∈PM(c)

uph,c(µ)
]
, and

evaluate the output Frb(urb(µ);µ). Here, Rrb(w, v;µ) = Rh(w, v;µ) and Frb(w;µ) = Fh(w;µ) ∀w, v ∈
Vrb, ∀µ ∈ D, and hence the forms are evaluated using the truth quadrature rule. We again assume the RB
problem (6) is well-posed for all µ ∈ D.

Remark 1. In this work, we do not consider port reduction [13, 14, 39]. Hence, the number of DoF in the
RB system is bounded from below by the number of port DoF in the truth system, which ultimately limits the
dimensionality reduction achieved by the present formulation, especially for systems with many ports and/or
large ports. While recognizing the limitation, we focus on developing component-wise hyperreduction for this
non-port-reduced system in this work and leave port-reduction to future work.

3.2. HRBE problem formulation

The computational cost of solving (6), which uses the truth quadrature rule, depends on the underlying
truth FE discretization, rendering the method not online efficient. To remedy this issue, we appeal to
hyperreduction techniques. Hyperreduction approaches in the RB literature fall into two classes. The first
class of methods approximates integrands first and then integrates them. These methods use a number of
empirically-derived basis functions to approximate the nonlinear terms in the integrands through a sparse
interpolation/regression scheme and then integrate the approximated integrands. Methods in this class
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include the gappy proper orthogonal decomposition (POD) method [15], the empirical interpolation method
(EIM) [4, 18], the discrete EIM [10], the first-order EIM [34, 33], and the Gauss–Newton approximation
tensor method [9]. The second class of hyperreduction methods directly approximates the integrals in the
residual and output forms using a set of empirically-derived sparse element sampling or quadrature rule.
Methods in this class include the optimal cubature method [1], the energy-conserving mesh sampling and
weighting method [16, 17], the empirical cubature method [19], and the EQP [36, 47]. In the present study,
we build on the EQP and its ability to construct quantitative control of the hyperreduction error in the
solution (instead of the residual) and extend this capability to the component-based context.

The EQP constructs a set of empirical and sparse reduced quadrature (RQ) points and weights that
approximate the integrals in the residual and output forms to a prescribed accuracy. The RQ points are
a sparse subset of the truth quadrature points {x̂ĉ,q}Qĉ

q=1, ĉ ∈ Ĉ, with re-weighted quadrature weights. We

introduce (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 ⊂ (x̂ĉ,q, ρ̂ĉ,q)
Qĉ

q=1 as the residual RQ rule for each archetype component ĉ ∈ Ĉ, where

Q̃r
ĉ ≪ Qĉ. We similarly introduce output functional RQ rule, (˜̂xfĉ,q,

˜̂ρfĉ,q)
Q̃f

ĉ
q=1 ⊂ (x̂ĉ,q, ρ̂ĉ,q)

Qĉ

q=1, ĉ ∈ Ĉ, where
Q̃f

ĉ ≪ Qĉ. (We defer the discussion of construction of these RQ rules in the offline phase to Section 4;
for now, we assume the rules are given.) Given the RQ rules, the HRBE problem is stated as follows:
given µ = (µc)c∈C ∈ D, find {ũbrb,c(µ) ∈ Vb

rb,c}c∈C and {{ũph,c(µ) ∈ V
p
h,c}p∈PM(c)

}c∈C such that, for all

{vbrb,c ∈ Vb
rb,c}c∈C and {{vph,c ∈ V

p
h,c}p∈PM(c)

}c∈C ,

R̃rb(ũrb(µ), vrb;µ) ≡
∑
c∈C

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂M(c)

([
ũbrb,c(µ) +

∑
p∈PM(c)

ũph,c(µ)
]
◦ Gc(˜̂xrM(c),q;µc),

[
vbrb,c +

∑
p∈PM(c)

vph,c

]
◦ Gc(˜̂xrM(c),q;µc); ˜̂x

r
M(c),q, µc

)
= 0,

(7)

and evaluate the approximate output

F̃rb(ũrb(µ);µ) ≡
∑
c∈C

Q̃f
M(c)∑
q=1

˜̂ρfM(c),q f̂M(c)

([
ũbrb,c(µ) +

∑
p∈PM(c)

ũph,c(µ)
]
◦ Gc(˜̂xfM(c),q;µc); ˜̂x

f
M(c),q, µc

)
. (8)

Owing to Nrb ≪ Nh, Q̃
r
c ≪ QM(c), and Q̃f

c ≪ QM(c) ∀c ∈ C, solving the hyperreduced RB problem (7)
and approximating the output (8) can be carried out significantly more efficiently than their corresponding
counterparts in the truth problem, (3) and (4), respectively. Sufficient conditions for the well-posedness of
the hyperreduced RB problem (8) will be provided in Proposition 6.

Remark 2. For each archetype component, the bubble RB and RQ rules are calculated and stored in the
library a priori in the offline phase. Therefore, in the online phase, once we determine the connectivity of in-
stantiated components and form a system, we can rapidly assemble the system’s reduced residual and Jacobian
and solve the HRBE system (7) without RB and RQ retraining. In other words, the HRBE system results
from assembling hyperreduced components trained in the offline phase, and not from applying hyperreduction
to an online-assembled RB system, which could not be performed in an online efficient manner.

4. Component-wise RB and RQ training

The two primary ingredients of the HRBE method presented in Section 3 are the RB {ξ̂bĉ,i}
Nb

ĉ
i=1 of the

bubble spaces V̂b
rb,ĉ and the RQ rules (˜̂xrĉ,q,

˜̂ρrĉ,q)
Q̃r

ĉ
q=1 and (˜̂xfĉ,q,

˜̂ρfĉ,q)
Q̃f

ĉ
q=1 for all archetype components ĉ ∈ Ĉ.

In this section, we outline the procedures to construct these essential elements.
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Algorithm 1: Generating training data for RB and RQ construction of archetype components.

Input: Number of sample subsystems Nsample; probability of port connection 0 ≤ β ≤ 1

Output: The set of snapshot solutions U train
h,ĉ ∀ĉ ∈ Ĉ

1 for ĉ ∈ Ĉ do
2 U train

h,ĉ = ∅;
3 for n = 1, · · · , Nsample do

// Assemble subsystem Csub and extract the solution associated with ĉ
4 for p̂ ∈ Pĉ do
5 Connect the archetype component ĉ through its p̂-th port to another component in the

library with a probability of β;

6 end
7 Assign parameter value µc drawn uniform-randomly from Dc to each component c ∈ Csub;
8 Assign uniform-random constant Dirichlet boundary conditions to each nonshared global

port;
9 Solve the truth problem for the composed subsystem Csub;

10 Extract the solution utrainh,ĉ,n on component ĉ;

11 U train
h,ĉ ← U train

h,ĉ ∪ utrainh,ĉ,n;

12 end

13 end

4.1. Generation of archetype-component training solutions

For each archetype component, we use an empirical training procedure to deduce the shape and mag-
nitude of its anticipated solution and boundary conditions. To this end, we introduce for each archetype

component ĉ ∈ Ĉ, a parameter training set Ξtrain
ĉ ≡ {µtrain

ĉ,n ∈ D̂ĉ}
Ntrain

ĉ
n=1 with a size of N train

ĉ . For this

archetype component, we compose Nsample sample subsystems by connecting it through its nγĉ local ports
to other randomly selected components from the library. This component is connected to other components
through its local ports with a probability of β. We then assign random parameter values to each component
in the assembled subsystems from their respective parameter training sets. We next apply random indepen-
dent constant Dirichlet boundary conditions, with uniform density, to all nonshared global ports. We finally
solve the truth problem for each subsystem, extract the truth solutions on the target component to form

a state snapshot set U train
h,ĉ ≡ {utrainh,ĉ,n}

Nsample

n=1 designated for this component. The fundamental assumption
underpinning this process is that the generated set of snapshot solutions sufficiently represents the set of all
potential solutions and boundary conditions the component may experience in an actual system configura-
tion. Algorithm 1 provides an outline of the empirical process to generate snapshot solutions for archetype
components.

4.2. Component-wise RB construction

For each archetype component ĉ ∈ Ĉ, we decompose snapshot solutions in the training set U train
h,ĉ into

their bubble and port solutions as in (2). The bubble solutions are added to a training set U train,b
h,ĉ considered

for this component. We then apply the POD to construct an RB {ξ̂bĉ,i}
Nb

ĉ
i=1 for the bubble space V̂b

rb,ĉ.

4.3. Component-wise hyperreduction: BRR theory

We now present an extension of the original EQP [36, 47] to the component-based context. To this end,
we first introduce the BRR theorem [8] specialized for the Euclidean space.
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Lemma 3 (Brezzi–Rappaz–Raviart theorem). Given an N -dimensional Euclidean space RN , we introduce
a C1 mapping G : RN → RN , v ∈ RN such that the Jacobian DG(v) ∈ RN×N is nonsingular, and constants
ε, δ, and L(α) such that

∥G(v)∥2 ≤ ε,∥∥DG−1(v)
∥∥
2
≤ δ,

sup
w∈B̄(v,α)

∥DG(v)−DG(w)∥2 ≤ L(α),

where B̄(v, α) ≡ {z : ∥z− v∥2 ≤ α}. Assume 2δL(2δε) ≤ 1. Then, for all λ ≥ 2δε such that δL(λ) < 1,
there exists a unique u ∈ RN that satisfies G(u) = 0 in the ball B̄(v, 2δε) and DG(u) ∈ RN×N is invertible
and satisfies ∥∥DG−1(u)

∥∥
2
≤ 2

∥∥DG−1(v)
∥∥
2
≤ 2δ. (9)

Additionally,
∥w − u∥2 ≤ 2

∥∥DG−1(v)
∥∥
2
∥G(w)∥2 ≤ 2δ ∥G(w)∥2 ∀w ∈ B̄(v, 2δε). (10)

Proof. See [8].

Corollary 4 (Effectivity bound). For all w ∈ B̄(v, 2δε), the effectivity of the error bound ∆(w) ≡
2δ ∥G(w)∥2 is bounded by

η(w) ≡ ∆(w)

∥w − u∥2
≤ 2δ

(
L̄(w) + ∥DG(u)∥2

)
, (11)

where
L̄(z) ≡ sup

z∈B̄(w,∥u−w∥2)

∥DG(u)−DG(z)∥2 . (12)

Proof. We first consider the Taylor expansion of G(·) about w ∈ RN ,

G(u) = G(w) +

∫ 1

0

DG(w + t(u−w))(u−w)dt

= G(w) +

∫ 1

0

[
DG(w + t(u−w))−DG(u)

]
(u−w)dt+DG(u)(u−w).

(13)

We next appeal to G(u) = 0 and (12) to obtain ∥G(w)∥2≤
(
L̄(w)+∥DG(u)∥2

)
∥u−w∥2. We then multiply

both sides by 2δ/∥u−w∥2 to obtain (11).

Remark 5. Mathematically, the BRR theorem holds for any nonlinear mapping that satisfies the conditions
in Lemma 3. In the context of numerical approximation of parametrized PDEs, the theorem is applicable
as long as the approximate solution is sufficiently close to the solution and the Jacobian is nonsingular
and Lipschitz continuous. In practice, the BRR theorem can be (and has been) applied to PDEs including
Burgers’ equation [43, 48], (low-Reynolds-number) Navier–Stokes equations [42, 46], hyperelasticity [47],
and heat transfer (as considered in Section 6). However, for certain problems, such as convection-dominated
high-Reynolds-number Navier–Stokes equations, the BRR error bound can be overly conservative and may
offer limited practical utility.

We now specialize this lemma to the component-based context to facilitate the development of our
component-wise hyperreduction scheme. As such, for each instantiated component c ∈ C, we introduce the
algebraic RB residual and Jacobian Rrb,c : RNM(c) ×Dc → RNM(c) and Jrb,c : RNM(c) ×Dc → RNM(c)×NM(c)

as well as the algebraic hyperreduced RB residual and Jacobian R̃rb,c : RNM(c) × Dc → RNM(c) and J̃rb,c :
RNM(c) × Dc → RNM(c)×NM(c) . For conciseness, we omit the explicit expressions of these quantities here
and provide them instead in Appendix A. Additionally, we introduce Prb,c : RNM(c) → RNrb as the linear
extension operator that maps the components’ RB DoF to the assembled system’s DoF.
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At the system level, we introduce Rrb : RNrb×D → RNrb and Jrb : RNrb×D → RNrb×Nrb as, respectively,
the algebraic residual and Jacobian of the (truth-quadrature) RB problem (6). We denote the generalized
coordinates of the solution by urb(µ) ∈ RNrb . We similarly denote the algebraic residual and Jacobian of the

hyperreduced RB problem (7) by R̃rb : RNrb ×D → RNrb and J̃rb : RNrb ×D → RNrb×Nrb , respectively, and
denote the generalized coordinates of the solution by ũrb(µ) ∈ RNrb . The system-level residual and Jacobian
∀wrb ∈ RNrb and ∀µ ∈ D can be obtained through

Rrb(wrb;µ) =
∑
c∈C

Prb,cRrb,c(P
T
rb,cwrb;µc), Jrb(wrb;µ) =

∑
c∈C

Prb,cJrb,c(P
T
rb,cwrb;µc)P

T
rb,c,

R̃rb(wrb;µ) =
∑
c∈C

Prb,cR̃rb,c(P
T
rb,cwrb;µc), J̃rb(wrb;µ) =

∑
c∈C

Prb,cJ̃rb,c(P
T
rb,cwrb;µc)P

T
rb,c.

Proposition 6. For a system C and given µ ∈ D, we introduce ūrb(µ) ∈ Vrb and its associated generalized
coordinates ūrb(µ) ∈ RNrb such that

∥urb(µ)− ūrb(µ)∥2 ≤ ε̄ (14)

for an ε̄ ≥ 0 and Jrb(ūrb(µ);µ) is nonsingular. We further introduce σ ≡ σmin(Jrb (ūrb(µ);µ)), where σmin(·)
denotes the minimum singular value of its argument. We suppose for some δRc

≥ 0 and δJc
≥ 0, c ∈ C, such

that
∑

c∈C NM(c)δJc < σ, the following inequalities hold:∥∥∥R̃rb,c(P
T
rb,cūrb(µ);µc)

∥∥∥
∞
≤ δRc

∀c ∈ C, (15)∥∥∥Jrb,c(P
T
rb,cūrb(µ);µc)− J̃rb,c(P

T
rb,cūrb,c(µ);µc)

∥∥∥
max
≤ δJc

∀c ∈ C, (16)

where for any c ∈ C, ∥A∥max≡ maxi,j∈{1,···,NM(c)} |Ai,j | for A ∈ RNM(c)×NM(c) . We also introduce

L(α) ≡ 2 sup
w∈B̄(ūrb(µ),α)

∥∥∥J−1
rb (ūrb(µ);µ)J̃rb(w;µ)− I

∥∥∥
2

(17)

and assume

L(ᾱ) ≤
σ −

∑
c∈C NM(c)δJc

2σ
, (18)

where ᾱ = 2
√∑

c∈C NM(c)δ
2
Rc
/(σ −

∑
c∈C NM(c)δJc). Then, for all λ ≥ ᾱ, there exists a unique solution

ũrb(µ) ∈ RNrb such that R̃rb(ũrb;µ) = 0 in the ball B̄(ūrb(µ), λ), where L(λ) ≤ (σ −
∑

c∈C NM(c)δJc
)/σ.

Furthermore,
∥urb(µ)− ũrb(µ)∥2 ≤ ᾱ+ ε̄. (19)

Proof. For notational brevity, we suppress µ and µc ∀c ∈ C throughout the proof. Referring to Lemma 3, we
set G(·) ≡ J−1

rb (ūrb)R̃rb(·) and v ≡ ūrb. We observe that

∥G(v)∥2 =
∥∥∥J−1

rb (ūrb)R̃rb(ūrb)
∥∥∥
2
≤

∥∥J−1
rb (ūrb)

∥∥
2

∥∥∥R̃rb(ūrb)
∥∥∥
2
≤

√∑
c∈C

∥∥∥R̃rb,c(PT
rb,cūrb)

∥∥∥2
2

σ

≤

√∑
c∈C NM(c)

∥∥∥R̃rb,c(PT
rb,cūrb)

∥∥∥2
∞

σ
≤

√∑
c∈C NM(c)δ

2
RM(c)

σ
,

where the second inequality follows from the component-wise decomposition of the residual and the matrix
norm relation ∥J−1

rb (ūrb)∥2= σ−1
min(Jrb(ūrb)) = σ−1, the third inequality follows from the relationship between

∥·∥2 and ∥·∥∞, and the last inequality follows from condition (15). Hence, we set ε ≡
√∑

c∈C NM(c)δ
2
RM(c)

/σ
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in Lemma 3. Moreover, we have∥∥∥I− J−1
rb (ūrb)J̃rb(ūrb)

∥∥∥
2
≤

∥∥J−1
rb (ūrb)

∥∥
2

∥∥∥Jrb(ūrb)− J̃rb(ūrb)
∥∥∥
2
=

1

σ

∥∥∥Jrb(ūrb)− J̃rb(ūrb)
∥∥∥
2

=
1

σ

∥∥∥∥∥∑
c∈C

Prb,c

(
Jrb,c(P

T
rb,cūrb)− J̃rb,c(P

T
rb,cūrb)

)
PT

rb,c

∥∥∥∥∥
2

≤ 1

σ

∑
c∈C

∥∥∥Jrb,c(P
T
rb,cūrb)− J̃rb,c(P

T
rb,cūrb)

∥∥∥
2

≤ 1

σ

∑
c∈C

NM(c)

∥∥∥Jrb(P
T
rb,cūrb)− J̃rb(P

T
rb,cūrb)

∥∥∥
max
≤ 1

σ

∑
c∈C

NM(c)δJM(c)
< 1,

(20)
where the first equality follows from the definition ∥J−1

rb (ūrb)∥2= σ−1
min(Jrb(ūrb)) = σ−1, the second equality

follows from the component-wise decomposition of the Jacobian, the second inequality follows from the trian-
gle inequality, the third inequality follows from the relation ∥A∥2≤ Nrb∥A∥max ∀A ∈ RNrb×Nrb , the fourth in-
equality follows from condition (16), and the last inequality follows from the assumption

∑
c∈C NM(c)δJc < σ.

It hence follows that∥∥DG−1(v)
∥∥
2
=

∥∥∥(J−1
rb (ūrb)J̃rb(ūrb))

−1
∥∥∥
2
=

∥∥∥(I+ J−1
rb (ūrb)J̃rb(ūrb)− I)−1

∥∥∥
2

≤ 1

1−
∥∥∥J−1

rb (ūrb)J̃rb(ūrb)− I
∥∥∥
2

≤ σ

σ −
∑

c∈C NM(c)δJc

,

where the first inequality follows from the Banach lemma which states ∀A ∈ RNrb×Nrb with ∥A∥2< 1,
(I +A)−1 exists and satisfies ∥(I +A)−1∥2≤ (1 − ∥A∥2)−1, and the last inequality follows from (20). We
hence set δ ≡ σ/(σ −

∑
c∈C NM(c)δJc

) in Lemma 3. We in addition note that

sup
w∈B̄(v,α)

∥DG(v)−DG(w)∥2 = sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(ūrb)− J−1

rb (ūrb)J̃rb(w)
∥∥∥
2

= sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(ūrb)− I+ I− J−1

rb (ūrb)J̃rb(w)
∥∥∥
2

≤
∥∥∥J−1

rb (ūrb)J̃rb(ūrb)− I
∥∥∥
2
+ sup

w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2

≤ 2 sup
w∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2
,

where the first inequality follows from the triangle inequality, and the last inequality follows from ūrb ∈
B̄(ūrb, α). We hence set L(α) ≡ 2 supw∈B̄(ūrb,α)

∥∥∥J−1
rb (ūrb)J̃rb(w)− I

∥∥∥
2
in (17) in Lemma 3.

Having defined ϵ, δ, and L(α) in the BRR theorem in Lemma 3 for the HRBE method, we now apply
the BRR theorem. If 2δL(2δε) = 2σL(ᾱ)/(σ −

∑
c∈C NM(c)δJc) ≤ 1, we readily deduce, for all λ ≥ 2δε = ᾱ

such that L(λ) < 1/δ = (σ −
∑

c∈C NM(c)δJc
)/σ, the existence of a unique solution z ∈ RNrb that satisfies

G(z) = J−1
rb (ūrb)R̃rb(z) = 0 in the ball B̄(ūrb, λ). Since ũrb satisfies R̃rb(ũrb) = 0, we conclude it is indeed

the unique solution to both G(·) = 0 and R̃rb(·) = 0. Moreover, we set w ≡ ũrb = v in (10) to obtain

∥urb − ũrb∥2 ≤ ∥urb − ūrb∥2 + ∥ūrb − ũrb∥2 ≤ ε̄+ 2δ
∥∥∥J−1

rb (ūrb)R̃rb(ūrb)
∥∥∥
2

≤ ε̄+ 2σ

σ −
∑

c∈C NM(c)δJc

∥∥J−1
rb (ūrb)

∥∥
2

∥∥∥R̃rb(ūrb)
∥∥∥
2

≤ ε̄+ 2

√∑
c∈C NM(c)δ

2
RM(c)

σ −
∑

c∈C NM(c)δJc

= ε̄+ ᾱ,

13



where the first inequality follows from the triangle inequality, the second inequality follows from condition (14)
and the BRR error bound (10), the third inequality follows from the definition of δ in the component-wise
context and the matrix norm inequality, the fourth inequality follows from condition (15), and the last
equality follows from the definition of ᾱ.

We can modify Proposition 6 to obtain an upper bound for the V-norm of the error between the RB and
HRBE solutions. To this end, we define λmin and λmax such that

λmin = inf
v∈V

∥v∥2V
∥v∥22

, λmax = sup
v∈V

∥v∥2V
∥v∥22

, (21)

and introduce the following corollaries.

Corollary 7 (Absolute error bound). If all conditions of Proposition 6 hold, then

∥urb(µ)− ũrb(µ)∥V ≤ (ᾱ+ ε̄)
√
λmax, (22)

with the same ᾱ and ε̄ as in Proposition 6.

Proof. We first appeal to (21) to obtain ∥urb(µ)− ũrb(µ)∥V ≤
√
λmax ∥urb(µ)− ũrb(µ)∥2. We then incorpo-

rate (19) to obtain (22).

Corollary 8 (Relative error bound). If all conditions of Proposition 6 hold and conditions (14), (15), and
(18) are respectively replaced by

∥urb,c(µ)− ūrb,c(µ)∥2 ≤ ε̄∥urb(µ)∥2 ∀c ∈ C,∥∥∥R̃rb,c(P
T
rb,cūrb(µ);µc)

∥∥∥
∞
≤ δRc

∥urb(µ)∥2 ∀c ∈ C,

L
(
2∥urb(µ)∥2

√∑
c∈C NM(c)δ

2
Rc

σ −
∑

c∈C NM(c)δJc

)
≤
σ −

∑
c∈C NM(c)δJc

2σ
,

then
∥urb(µ)− ũrb(µ)∥V
∥urb(µ)∥V

≤ (ᾱ+ ε̄)

√
λmax

λmin
, (23)

with the same ᾱ and ε̄ as in Proposition 6.

Proof. We first observe

∥urb(µ)− ũrb(µ)∥V ≤ ∥urb(µ)− ũrb(µ)∥2
√
λmax ≤ (ᾱ+ ε̄)∥urb(µ)∥2

√
λmax,

where the first inequality follows from (21), and the second equality follows from the application of Propo-
sition 6 with ε̄ and δRc , c ∈ C, replaced by ε̄∥urb(µ)∥2 and δRc∥urb(µ)∥2, respectively. We finally appeal to
(21) to obtain

√
λmin ∥urb(µ)∥2 ≤ ∥urb(µ)∥V , which in turn yields (23).

Remark 9. The values of λmin and λmax are solely functions of the geometrical parameters in the system.
The archetype components considered in this study, which will be introduced in Section 6, admit piece-
wise affine decompositions in their geometric parametrization. Consequently, computing λmin and λmax

can be carried out efficiently in the online phase. Specifically, for each instantiated component c ∈ C, if

{ϕc,i}
NM(c)

i=1 denotes the geometric-parameter-dependent basis for Vh,c and Vc : Dc → RNM(c)×NM(c) denotes
its geometric-parameter-dependent inner-product matrix such that (Vc(µc))i,j = (ϕc,j , ϕc,i)Vc ∀µc ∈ Dc,
i, j = 1, · · · ,NM(c), the systems’s geometric-parameter-dependent inner-product matrix V : D → RNh×Nh is

given by V(µ) =
∑

c∈C PcVc(µc)P
T
c ∀µ ∈ D. Here, Pc : RNM(c) → RNh ∀c ∈ C are linear extension operators

that map the components truth to system’s DoF. Since (we have assumed) Vc(·)∀c ∈ C admit piecewise affine
decompositions, forming Vc(·) and hence V(·) during the online phase does not rely on the components’ truth
FE discretizations and quadrature rules. Additionally, the computation of extreme eigenvalues of V(·) (i.e.,
λmin and λmax) can be performed efficiently using iterative methods such as the Lanczos algorithm [41].
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Algorithm 2: Generating bubble RB snapshots for hyperreduction of archetype components.

Input: The previously generated set of truth snapshot solutions U train
h,ĉ ∀ĉ ∈ Ĉ

Output: The set of RB snapshot solutions U train
rb,ĉ ∀ĉ ∈ Ĉ

1 for ĉ ∈ Ĉ do
2 U train

rb,ĉ = ∅;
3 for n = 1, · · · , Nsample do
4 Decompose utrainh,ĉ,n in the previously constructed training set U train

h,ĉ in Algorithm 1 into bubble

utrain,bh,ĉ,n and port solutions {utrain,p̂h,ĉ,n }p̂∈Pĉ
, as in (2);

5 Compute the restriction of port solutions on the ports (i.e., {utrain,p̂h,ĉ,n

∣∣∣
γĉ,p̂

}p̂∈Pĉ
);

6 Compute utrain,brb,ĉ,n by solving (6) for a system composed of only component ĉ with

{utrain,p̂h,ĉ,n

∣∣∣
γĉ,p̂

}p̂∈Pĉ
as the Dirichlet boundary conditions imposed on its nγĉ ports;

7 Compute utrainrb,ĉ,n = utrain,brb,ĉ,n +
∑

p̂∈Pĉ
utrain,p̂h,ĉ,n ;

8 U train
rb,ĉ ← U train

rb,ĉ ∪ utrainrb,ĉ,n;

9 end

10 end

4.4. Component-wise hyperreduction: formulation

Using Proposition 6 and Corollaries 7 and 8, we now develop a component-wise hyperreduction training
routine for the archetype components in the library. In Section 4.1, we introduced for each archetype com-
ponent ĉ ∈ Ĉ, a training parameter set Ξtrain

ĉ and its corresponding state training set U train
h,ĉ (Algorithm 1).

In Section 4.2, we also described a procedure to construct an RB for its bubble space V̂b
rb,ĉ using its asso-

ciated bubble training set U train,b
h,ĉ . Since hyperreduction is carried out with respect to the RB solutions,

for each archetype component ĉ, we define a state training set U train
rb,ĉ ≡ {utrainrb,ĉ,n}

Nsample

n=1 (or its algebraic

equivalent Utrain
rb,ĉ ≡ {utrain

rb,ĉ,n}
Nsample

n=1 ), where the RB snapshots utrainrb,ĉ,n, n ∈ {1, · · · , Nsample}, are generated
using Algorithm 2.

Additionally, for each archetype component ĉ ∈ Ĉ, we introduce the algebraic RB residual and Jacobian
Rrb,ĉ : RNĉ × D̂ĉ → RNĉ and Jrb,ĉ : RNĉ × D̂ĉ → RNĉ×Nĉ formulated in Appendix A. We further denote the
barred versions of the introduced RB algebraic terms. These barred versions are formulated the same as their
respective RB counterparts, albeit with the truth quadrature weights {ρ̂ĉ,q}Qĉ

q=1 ∀ĉ ∈ Ĉ in (32) replaced by

ρ̄ĉ ≡ {ρ̄ĉ,q}Qĉ

q=1 ∀ĉ ∈ Ĉ, which are the design variables (unknowns) for the hyperreduction problem. Then, we

pose the component-wise hyperreduction problem in the offline phase for ĉ ∈ Ĉ as follows: given a parameter
training set Ξtrain

ĉ , state training set U train
rb,ĉ (or its algebraic equivalent Utrain

rb,ĉ ), domain volume |Ωĉ|, and
hyperparameter δĉ, find ρ̄

∗
ĉ ∈ RQĉ such that

ρ̄∗ĉ = argmin
{ρ̄ĉ,q}

Qĉ
q=1

∥ρ̄ĉ,q∥0 (24)

subject to

ρ̄ĉ,q ≥ 0, q = 1, · · · , Qĉ, (25)∣∣∣|Ωĉ|−
Qĉ∑
q=1

ρ̄ĉ,q

∣∣∣ ≤ δĉ, (26)∥∥R̄rb,ĉ(u
train
rb,ĉ (µ);µ, ρ̄ĉ)

∥∥
∞ ≤ δĉ ∀µ ∈ Ξtrain

ĉ , (27)
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∥∥Jrb,ĉ(u
train
rb,ĉ (µ);µ)− J̄rb,ĉ(u

train
rb,ĉ (µ);µ, ρ̄ĉ)

∥∥
max
≤ δĉ ∀µ ∈ Ξtrain

ĉ . (28)

The ℓ0-minimization problem seeks the sparsest quadrature rule that satisfies the constraints. In prac-
tice, we approximate the ℓ0-minimization problem as an ℓ1-minimization problem (with the objective func-

tion
∑Qĉ

q=1 ρ̄ĉ,q) and solve the problem using a simplex method following [47]. The enforcement of the
constant function constraint (26) enhances the robustness of the hyperreduction training and is a rea-
sonable condition for any quadrature scheme [47]. The RQ rule for each component is determined by

(˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 = ((x̂ĉ,q, ρ̄
∗
ĉ,q)| ρ̄∗ĉ,q > 0)Qĉ

q=1. In this work, we set δRĉ
= δJĉ

= δĉ. To construct the RQ rule

(˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for the output (8), we follow the procedure in [47] and replace the constraints (26)–(28) with

analogous constraints for the output functional F (·;µ) and solve the EQP optimization problem.

5. Offline and online computational procedure

In this section, we develop the offline–online computational procedure for the HRBE method. A key chal-
lenge to offline–online computational decomposition that provides quantitative control of the hyperreduction
error at the system level is this: the hyperreduction training is performed for each archetype component
independently in the offline phase; therefore, unlike in the monodomain setting for which the EQP is orig-
inally designed (e.g., [47]), the minimum singular value of the Jacobian of the ultimate systems created
by assembling the trained archetype components, which is required in (19), (22), and (23) to control the
error, is not available at the training time. To address this challenge, we propose an approach where the
hyperreduction training for any ĉ ∈ Ĉ is conducted in the offline phase with various δĉ values. Subsequently,
in the online phase, the appropriate RQ rule for each component is adaptively chosen and applied to solve
the HRBE problem through an iterative bootstrap process. We now present the offline–online computational
procedure.

5.1. Offline phase

In the offline stage, we prepare the RB {ξ̂bĉ,i}
Nb

ĉ
i=1 of the bubble spaces V̂b

rb,ĉ and the RQ rules (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1

and (˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for each of Narch archetype components ĉ ∈ Ĉ. To construct the RB, we first use Algo-

rithm 1 to generate the training set U train
h,ĉ for each archetype component ĉ. For the n-th sample subsystem,

n ∈ {1, · · · , Nsample}, of the archetype component ĉ, the computation of the solution utrainh,ĉ,n in Line 9 of

Algorithm 1 requires O(Qsub
h,ĉ,n) operations for the assembly of the residual and Jacobian and O((N sub

h,ĉ,n)
l)

operations for the solution of the linear system per Newton iteration, where Qsub
h,ĉ,n is the subsystem’s number

of truth quadrature points, N sub
h,ĉ,n is the subsystem’s number of truth DoF, and the coefficient 1 ≤ l ≤ 2

depends on the solver and the domain dimension. Typical problems that we consider require 5 to 15 Newton
iterations for convergence. The subsequent computational cost of the POD is negligible compared to the
cost to generate the training set.

We now analyze the cost of hyperreduction for each archetype component ĉ ∈ Ĉ. Using Algorithm 2
to generate the RB snapshots requires the solution of a nonlinear system of equations of size Nb

ĉ for each
training sample. This incurs, for each snapshot, a cost of O(N2

ĉQĉ) operations for computing the residual
and Jacobian and a cost of O((Nb

ĉ )
3) operations for solving the linear system in each Newton iteration.

Additionally, computing the outputs needed in output hyperreduction of each component requires O(Qĉ)
operations for each training sample. Moreover, for each archetype component, a simplex method is used
to approximately solve the hyperreduction problem (24)–(28) for different δĉ values. Each problem has Qĉ

unknowns, Qĉ positivity constraints, 1 constant function constraint, NsampleNĉ residual constraints, and
NsampleN

2
ĉ Jacobian constraints. In practice, the absolute value constant function, residual, and Jacobian

constraints are converted into 2(1+NsampleNĉ+NsampleN
2
ĉ ) inequality constraints. Additionally, the output

hyperreduction involves the solution of an optimization problem with Qĉ unknowns and 2(1 + Nsample)
inequality constraints.
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5.2. Online phase: adaptive RQ selection

We now describe a procedure to find the RQ rule of each component in the system in the online phase
such that, for any given topological configuration and µ ∈ D, the HRBE solution ũrb(µ) achieves the target
V-norm error with respect to the RB solution urb(µ). Our formulation builds on Corollaries 7 and 8. We
note that since the error is measured with respect to urb(µ), it is implicitly assumed that ūrb(µ) = urb(µ)
in Proposition 6, and ε̄ = 0 in (19), (22), and (23).

We first discuss an online-efficient procedure to compute σmin(Jrb (urb(µ);µ)) (or more precisely approx-
imate it), required for computing ᾱ in (19), (22), and (23). A direct computation of σmin(Jrb (urb(µ);µ))
poses two computational challenges. Firstly, the computation requires the RB solution urb(µ), which defeats
the purpose of hyperreduction; we wish to use only its HRBE counterpart ũrb(µ). Secondly, it involves
forming the RB Jacobian Jrb(·;µ), which depends on the components’ truth quadrature rules and prevents
efficient online computation.

To address these challenges, we appeal to the BRR theorem. We set G(·) ≡ Rrb(·;µ) and v ≡ ũrb(µ)
in Lemma 3, assume Jrb(ũrb(µ);µ) is nonsingular and the conditions of the theorem hold, and apply (9) to
obtain ∥∥J−1

rb (urb(µ);µ)
∥∥
2
=

1

σmin(Jrb (urb(µ);µ))
≤ 2

∥∥J−1
rb (ũrb(µ);µ)

∥∥
2
=

2

σmin(Jrb (ũrb(µ);µ))
. (29)

Therefore, σmin(Jrb (ũrb(µ);µ)) /2 is a lower bound for σmin(Jrb (urb(µ);µ)). In order to approximate
σmin(Jrb (ũrb(µ);µ)) we appeal to the following lemma.

Lemma 10. For any three matrices A ∈ RN×N , B ∈ RN×N , and C ∈ RN×N such that A = B+C

|σmin(A)− σmin(B)|≤ σmax(C), (30)

where σmin(·) and σmax(·), respectively, correspond to the minimum and maximum singular values of their
argument.

Proof. We first observe that, for A = B+C,

σmin(A) = min
v∈RN

∥(B+C)v∥2
∥v∥2

≥ min
v∈RN

∥Bv∥2 − ∥Cv∥2
∥v∥2

≥ min
v∈RN

∥Bv∥2
∥v∥2

− max
v∈RN

∥Cv∥2
∥v∥2

= σmin(B)− σmax(C)

and hence σmin(B)− σmin(A) ≤ σmax(C), where the first and last equality follow from the definition of the
extreme singular values, and the first inequality follows from the triangle inequality. We apply an analogous
sequence of inequalities to B = A − C to obtain σmin(A) − σmin(B) ≤ σmax(C). The combination of the
two inequalities yields the desired result.

The application of the lemma to Jrb(ũrb(µ);µ) = J̃rb(ũrb(µ);µ)+
(
Jrb(ũrb(µ);µ)− J̃rb(ũrb(µ);µ)

)
yields

|σmin(Jrb(ũrb(µ);µ))− σmin(J̃rb(ũrb(µ);µ))|≤ σmax(Jrb(ũrb(µ);µ)− J̃rb(ũrb(µ);µ)).

In other words, as the disparity between the RB and hyperreduced RB Jacobians decreases, so does the
discrepancy between σmin(Jrb(ũrb(µ);µ)) and σmin(J̃rb(ũrb(µ);µ)). Given that the hyperreduction training

for each archetype component is intended to reduce this very gap, we propose to use σmin(J̃rb(ũrb(µ);µ)) in
place of σmin(Jrb(ũrb(µ);µ)). Finally, we combine this approximation with the lower-bound estimate (29)

to conservatively approximate σmin(Jrb (urb(µ);µ)) by σmin(J̃rb (ũrb(µ);µ)) /2.
We finally propose the adaptive procedure, Algorithm 3, to find the components’ RQ rules and the HRBE

solution in the online phase. For a given µ ∈ D and a desired system-level V-norm error ϵ between the RB
and HRBE solutions, we first compute ᾱ = ϵ/

√
λmax for absolute error control (or ᾱ = ϵ/

√
λmax/λmin for

relative error control). We then use the RQ rules associated with the initial δc values ∀c ∈ C to compute
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Algorithm 3: Adaptive selection of RQ rules and solving the HRBE problem in the online phase.

Input: System-level µ ∈ D and desired V-norm error ϵ ∈ R>0 between RB and HRBE solutions
Output: The HRBE solution and components’ RQ rules

1 Compute λmax (and λmin if ϵ is the relative error) for the system;

2 Set ᾱ = ϵ/
√
λmax (or ᾱ = ϵ/

√
λmax/λmin if ϵ is the relative error);

3 Select the initial hyperreduction tolerances δc ∀c ∈ C;
4 while true do
5 Set the RQ rules associated with the current δc values ∀c ∈ C;
6 Solve the HRBE problem to find ũrb(µ);

7 Find σ ≡ σmin(J̃rb(ũrb(µ);µ))/2;
8 Set δRc

= δJc
= δc for all c ∈ C (or δRc

= δJc
= δc/∥ũrb(µ)∥2 if ϵ is the relative error);

9 if
∑

c∈C NM(c)δJc
≥ σ or 2

√∑
c∈C NM(c)δ

2
Rc
/(σ −

∑
c∈C NM(c)δJc

) > ᾱ then

10 Update δc and subsequently δRc and δJc ∀c ∈ C such that both conditions hold;
11 Go to Step 5;

12 else
13 break;
14 end

15 end

the HRBE solution ũrb(µ) and σ ≡ σmin(J̃rb(ũrb(µ);µ))/2. Then, for all c ∈ C, we set δRc
= δJc

= δc
for absolute error control (or δRc

= δJc
= δc/∥ũrb(µ)∥2 for relative error control). If

∑
c∈C NM(c)δJc

≥ σ

or 2
√∑

c∈C NM(c)δ
2
Rc
/(σ −

∑
c∈C NM(c)δJc

) > ᾱ, the hyperreduction tolerances δc = δRc
= δJc

of each

component c ∈ C is adjusted such that these conditions hold. We then use the RQ rules associated with the
new hyperreduction tolerances to compute the new HRBE solution ũrb(µ) and σ = σmin(J̃rb (ũrb(µ);µ)) /2.
This process is repeated until convergence; for the problems considered in Section 6, the procedure converges
in two iterations.

Remark 11. In this work, we do not consider adaptive selection of the RB for each component to control the
truth vs RB error. Instead, we consider an adaptive selection of hyperreduction tolerance δc, and hence the
RQ rules, for each component to achieve the desired system-level hyperreduction error. Thus, the RB is fixed
independent of the target hyperreduction tolerance for each archetype component. We focus on developing
online-adaptive hyperreduction for component-based systems, and defer the development of online-adaptive
RB selection for component-based systems to future work.

5.3. Online phase: computational cost and memory footprint

We now remark on the computational cost of solving the HRBE problem using Algorithm 3 as opposed
to that for solving the truth problem. For the truth problem, each iteration of Newton’s method necessitates
O(Qh ≡

∑
c∈C QM(c)) operations for evaluating the truth residual and Jacobian. Additionally, the solution

of the linear system (5) in every Newton iteration requires O(Nn
h ) operations, where 1 ≤ n ≤ 2 depends

on the domain dimension and the solver employed. Moreover, computing the truth output involves O(Qh)
operations.

On the other hand, each cycle of the loop in Algorithm 3 (Lines 4–15) involves solving the HRBE problem

and computing σmin(J̃rb(ũrb(µ);µ)). In each Newton iteration, evaluating the HRBE residual R̃rb(·;µ) and
Jacobian J̃rb(·;µ) requires O(

∑
c∈C N

2
rbQ̃

r
M(c)) ≪ O(Qh) operations, where Q̃

r
ĉ is the number of RQ points

of the archetype component ĉ ∈ Ĉ in a given cycle. In addition, finding the Newton update requires solving
a linear system—which is component-block-wise sparse—in O(Nn

rb)≪ O(Nn
h ) operations. Also, computing

the minimum singular value involves O(Nn
rb) operations. Finally, once ũrb(µ) is found, computing the

approximate output F̃rb(·;µ) requires O(
∑

c∈C Q̃
f
M(c))≪ O(Qh) operations.
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We now compare the memory footprint of the truth and HRBE formulations. The storage requirement
for the truth problem, dominated by the truth Jacobian storage, is O (Nn

h ); n = 1 if an iterative solver
is used at each iteration of the Newton method, otherwise n = 4/3 for d ≤ 3 to store factorization. For
the HRBE problem, the entire library must be loaded in the computer memory. To compute the residual
R̃rb(·;µ), Jacobian J̃rb(·;µ), and output functional F̃ (·;µ), we precompute and store the following quantities

for each archetype component ĉ ∈ Ĉ: (i) the RQ rules (˜̂xrĉ,q,
˜̂ρrĉ,q)

Q̃r
ĉ

q=1 and (˜̂xfĉ,q,
˜̂ρfĉ,q)

Q̃f
ĉ

q=1 for different δĉ values,

(ii) the values of the bubble space basis {ξ̂bĉ,i}
Nb

ĉ
i=1 and the port basis {ψ̂p̂

ĉ,i}
N p̂

ĉ
i=1 for all ports p̂ ∈ Pĉ at the RQ

points {˜̂xrĉ,q}
Q̃r

ĉ
q=1 and {˜̂xfĉ,q}

Q̃f
ĉ

q=1 associated with different δĉ values, and (iii) the gradient values of the bubble

space basis {∇ξ̂bĉ,i}
Nb

ĉ
i=1 and the port basis {∇ψ̂p̂

ĉ,i}
N p̂

ĉ
i=1 for all ports p̂ ∈ Pĉ at the RQ points {˜̂xrĉ,q}

Q̃r
ĉ

q=1 and

{˜̂xfĉ,q}
Q̃f

ĉ
q=1 associated with different δĉ values. Therefore, the total online storage for ĉ ∈ Ĉ is

(d+ 1)
∑
ĉ∈Ĉ

Nδĉ

(
Q̃r

ĉ + Q̃f
ĉ

)1 +Nb
ĉ +

∑
p̂∈Pĉ

N p̂
ĉ

 ,

where Nδĉ is the number of hyperreduction tolerances of ĉ ∈ Ĉ for which the state and output hyperreduction

trainings are performed. Therefore, the online storage is independent of N b
ĉ and Qĉ ∀ĉ ∈ Ĉ. Furthermore,

owing to Nb
ĉ ≪ N b

ĉ , Q̃
r
ĉ ≪ Qĉ, and Q̃

f
ĉ ≪ Qĉ ∀ĉ ∈ Ĉ, the online storage requirement for the HRBE problem

is significantly smaller than that of the truth problem, particularly when the truth DoF is large and there
is a significant reuse of archetype components: i.e., Narch is small relative to the size of the system, which
is the case for which the HRBE method is designed. It is important to note that the storage requirement
scales with Narch rather than Ncomp. Therefore, employing the HRBE method ensures that the storage and
computational cost of the online phase are independent of Nh and Qh, as desired.

6. Example: nonlinear thermal fin systems

6.1. Problem description

We now apply the HRBE method to two-dimensional nonlinear thermal fin systems. Systems are
made of an aluminum alloy [31] with a temperature-dependent thermal conductivity k : [1, 300] K →
[4.341, 177.868] W/K that satisfies

log(k(x)) =

7∑
i=0

ki (log(x))
i ∀x ∈ [1, 300] K, (31)

where ki, i = 1, · · · , 7, are given in Table 1. The parameterized continuous residual form for the ultimate
systems is

R(w, v;µ) =

∫
Ω(µ)

(k(w)∇w) · ∇v dx−
∫
Ω(µ)

f(µ) v dx ∀w, v ∈ V,

where V ≡
{
v ∈ H1(Ω(µ))

∣∣∣ vΓD
= 0

}
, and f : D → L2(Ω(µ)) is the volumetric source term, which is

assumed to be constant within each component. The residual form does not admit an affine decomposition,
as the first integral depends nonlinearly on the field variable.

Remark 12. The HRBE method, like the (monodomain) RB-EQP method [47], can also treat other types
of nonlinear solution and parameter dependencies, including those arising from nonlinear geometric trans-
formations from reference to physical domains of the instantiated components.
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Table 1: Coefficients of the aluminum’s thermal conductivity equation (31).

Coefficient k0 k1 k2 k3 k4 k5 k6 k7

Value (W/K) 0.637 -1.144 7.462 -12.691 11.917 -6.187 1.639 -0.173

Figure 2: Archetype components in their reference domains. From left to right: rod, bracket, tee and cross. Local ports are
shown by red dashed lines.

6.2. Archetype component library

Our archetype component library comprises four archetype components as shown in Figure 2. Each
archetype component is characterized by two geometric parameters µ1 and µ2, and one physical parameter
µ3 ∈ [0, 10] W/cm2 associated with volumetric heat source. For all components, µ1 ∈ [0.5, 1] cm and
µ2 ∈ [0.5, 1] cm, with the exception of the rod component where µ1 ∈ [3, 6] cm. The values of geometric
parameters µ1 and µ2 in the reference domain of all archetype components are 1 cm, except for µ1 of the
rod component, which is 4 cm. All components admit piecewise affine geometric transformations from their
reference to physical spatial domains. Therefore, λmin and λmax of the systems instantiated from these
components, required in Algorithm 3, can be computed efficiently during the online phase; cf. Remark 9.
As shown in Figure 2, the rod and bracket components have two local ports, the tee component has three
local ports, and the cross component has four local ports. All ports are mapped from the same 17-DoF
reference port discretized by eight quadratic line elements. Furthermore, all components are discretized
using quadratic triangular elements leading to N b

rod = 691, N b
bracket = 703, N b

tee = 1026, and N b
cross = 1165.

The offline training proceeds in three sequential steps. First, for each archetype component we generate
a set of empirical training data using Algorithm 1. Specifically, for each target component, we create
Nsample = 100 sample subsystems by connecting it with a probability of β = 0.8 to other components in the
library through each of its ports. We then assign uniformly random parameter values to the components in
the subsystems and set uniformly random constant Dirichlet boundary conditions to their nonshared global
ports, ranging from 1 K to 250 K.

Second, we construct an RB for the bubble space of each archetype component using the POD capturing
99.9% of the energy (i.e., the sum of POD eigenvalues) of the correlation matrix associated with its bubble
snapshot matrix. This results in Nb

rod = 3, Nb
bracket = 3, Nb

tee = 6, and Nb
cross = 9. Figure 3 illustrates the

decay of POD eigenvalues for each archetype component, showing a rapid decrease in the POD eigenvalues
for all components.

Third, we follow Algorithm 2 to create a bubble RB snapshot set for each archetype component using the
data generated in the first step and the RB constructed in the second step. Then, we solve the component-wise
hyperreduction problem (24)–(28) for seven different hyperreduction tolerances δĉ = {10−4, 10−3, . . . , 102}
to construct a family of RQ rules. Figure 4 shows components’ RQ points for hyperreduction tolerances
δĉ = 102 and δĉ = 1. Table 2 summarizes the outcome of offline training for all archetype components. For
all components, the number of bubble degrees of freedom is significantly reduced (i.e., Nb

ĉ ≪ N b
ĉ ), and the

number of RQ points increases as the hyperreduction tolerance δĉ tightens.
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Figure 3: Decay of POD eigenvalues in the RB construction for the bubble space of different archetype components.
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(a) Rod component, δĉ = 102 (b) Rod component, δĉ = 1

(c) Bracket component, δĉ = 102 (d) Bracket component, δĉ = 1

(e) Tee component, δĉ = 102 (f) Tee component, δĉ = 1

(g) Cross component, δĉ = 102 (h) Cross component, δĉ = 1

Figure 4: RQ points of the archetype components for δĉ = 102 and δĉ = 1.
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Table 2: Outcome of offline training for all archetype components.

Component Rod Bracket Tee Cross

N b
ĉ 691 703 1026 1165

Qĉ 1968 2016 3024 3456

Nb
ĉ 3 3 6 9

Q̃r
ĉ (δĉ = 102) 147 156 230 296

Q̃r
ĉ (δĉ = 10) 183 198 317 420

Q̃r
ĉ (δĉ = 1) 203 265 391 563

Q̃r
ĉ (δĉ = 10−1) 287 322 516 739

Q̃r
ĉ (δĉ = 10−2) 347 375 637 956

Q̃r
ĉ (δĉ = 10−3) 419 488 846 1233

Q̃r
ĉ (δĉ = 10−4) 482 599 1031 1613

6.3. Thermal fin systems

We now examine the performance of the HRBE method on a family of thermal fin systems made of
instances of rod, bracket, and cross components from the library. An example of a 3× 3 fin system is shown
in Figure 5a. We characterize the topology of the fin systems by their number of rod components along
horizontal and vertical directions. We consider only the cases where the number of horizontal and vertical
rods are identical.

We assume the interior cross components of the fins are subject to a volumetric heat source. Furthermore,
we assume the length of the rods along all directions are identical. Additionally, we assume the horizontal and
vertical thicknesses vary independently. Hence, an Nfin×Nfin fin system has Ncomp = (3Nfin+1)× (Nfin+1)
instantiated components, Nfin+1 thickness variables along the horizontal direction, Nfin+1 thickness variables
along the vertical direction, 1 length variable associated with rod components, and (Nfin − 1)2 physical
variables for volumetric source terms. Therefore, in total, anNfin×Nfin fin system is parameterized byN2

fin+4
variables, making the problem parametrically high-dimensional even for Nfin = 2. Fin systems are subject
to four Dirichlet boundary conditions: uleft = 25 K on Γleft, uright = 125 K on Γright, ubottom = 275 K on
Γbottom, and utop = 100 K on Γtop. Figure 5b shows the truth temperature distribution for one instantiation
of the Nfin ×Nfin fin system for Nfin = 3.

6.4. Numerical results using prescribed hyperreduction tolerances

We first study the behavior of the HRBE method on the 3×3 fin system using prescribed hyperreduction
tolerances δc ∀c ∈ C; i.e., the same δc is prescribed to all components without using the adaptive algorithm
(Algorithm 3). Figure 6a shows the relative H1(Ω)-norm error between the truth and HRBE solutions for
different hyperreduction tolerances. To assess the generality of the formulation, we report the maximum
error over a test configuration set Ξtest ⊂ D, which comprises |Ξtest|= 5 test configurations that results from
parameter values randomly selected from a uniform distribution over their corresponding training range. As
expected, the error decreases as the hyperreduction tolerances are reduced. A maximum error of 1.363×10−1

is observed for δc = 102, which sharply decreases to 2.536 × 10−3 for δc = 1. The HRBE error eventually
plateaus and approaches that of (truth-quadrature) RB without hyperreduction. (We recall that, in this
work, the RB is fixed independent of the hyperreduction tolerance for each component, and hence the
error between the truth and RB solutions (and in turn the HRBE solutions) is not adaptively controlled;
cf. Remark 11.)

Figure 6b shows the maximum relative H1(Ω)-norm error between (truth-quadrature) RB and HRBE
solutions over the |Ξtest|= 5 test cases for different δc values. As anticipated, the error decreases with
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(a) system composition (b) example temperature distribution

Figure 5: A 3× 3 fin system. In (a), red stars mark the components with a volumetric source term.
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Figure 6: Maximum relative H1(Ω)-norm error in the HRBE solution with respect to the truth and RB solutions for different
hyperreduction tolerances for the 3× 3 fin over |Ξtest|= 5 test cases.
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Table 3: Value of σmin

(
J̃rb(urb)

)
≡ σmin

(
J̃rb(urb(µ);µ)

)
for different hyperreduction tolerances for the 3× 3 fin.

Hyperreduction
tolerances

δc = 102 δc = 10 δc = 1 δc = 10−1 δc = 10−2 δc = 10−3 δc = 10−4

σmin

(
J̃rb(urb)

)
2.697 2.927 2.932 2.933 2.933 2.933 2.933

Table 4: Relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) for different hyperreduction tolerances for the
3× 3 fin over |Ξtest|= 5 test cases.

Hyperreduction
tolerances

sup
µ∈Ξtest

|σmin(Jrb (ũrb(µ);µ))− σmin(J̃rb (ũrb(µ);µ)) |
σmin(Jrb (ũrb(µ);µ))

δc = 102 9.009× 10−2

δc = 10 3.017× 10−3

δc = 1 1.507× 10−4

δc = 10−1 1.057× 10−5

δc = 10−2 1.023× 10−6

δc = 10−3 6.818× 10−7

δc = 10−4 4.973× 10−7

hyperreduction tolerances and, hence, when more RQ points are used. More quantitatively, the BRR error
bound (10) suggests that

∥urb(µ)− ũrb(µ)∥V ≤ ∥urb(µ)− ũrb(µ)∥2
√
λmax ≤

2
√
λmax

σmin

(
J̃rb(urb(µ);µ)

) ∥∥∥R̃rb(urb(µ);µ)
∥∥∥
2
.

Then, assuming the residual-tolerance condition (15) holds for ũrb(µ) at the system level, we conclude that

∥urb(µ)− ũrb(µ)∥V ≤
2δc

√
λmax

∑
c∈C NM(c)

σmin

(
J̃rb(urb(µ);µ)

)
since the same δc is applied for all components. Hence, if σmin

(
J̃rb(urb(µ);µ)

)
remains approximately

constant for different δc values, then we expect the error to vary linearly with δc. This is precisely what we

observe in Figure 6b. The values of σmin

(
J̃rb(urb(µ);µ)

)
reported in Table 3 confirm that the minimum

singular value is approximately constant for δc ≤ 10.
We now study the behavior of the minimum singular value σmin(J̃rb (ũrb(µ);µ)), which plays an im-

portant role in the adaptive RQ selection in Algorithm 3. To develop the algorithm, we posited, based
on Lemma 10, that σmin(J̃rb (ũrb(µ);µ)) would provide a reliable approximation for σmin(Jrb (ũrb(µ);µ)).
Table 4 shows the maximum relative error between these two values ∀µ ∈ Ξtest for different hyperreduction
tolerances δc. We note that even for the highest δc the error between the singular values is less than 10% and
the difference quickly decreases as δc is reduced. Consequently, in practice, as Algorithm 3 iterates toward
smaller hyperreduction tolerances, this error becomes increasingly insignificant. Additionally, the applied
factor of 0.5 due to (29) further mitigates the possibility that 0.5σmin(J̃rb (ũrb(µ);µ)) does not provide a
lower bound of σmin(Jrb (urb(µ);µ)) in Algorithm 3.

Figure 7 shows the average speedup in wall-clock time relative to solving the truth problem across the
five test configurations for various hyperreduction tolerances. Specifically, an average speedup of around 70
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Figure 7: Average speedup in wall-clock time relative to solving the truth problem for different hyperreduction tolerances for
the 3× 3 fin across |Ξtest|= 5 test cases.

times is observed for δc = 102, reducing to about 11 times for δc = 10−4. While the difference in speedups
might encourage the use of looser hyperreduction tolerances, it is crucial to consider the trade-off in accuracy.
We recall that Figures 6a and 6b show that the errors for δc = 102 is significantly higher than the errors
for the RQ rules associated with tighter tolerances. Conversely, opting for the strictest tolerance yields the
most accurate HRBE solution, but the speedup is not as substantial compared to using looser tolerances.
(We recall that, in this work, we do not consider port reduction, and hence the speedup achieved by the
HRBE method is O(10)–O(100) and not O(1000) as achieved by port-reduced RBEs for linear problems [14];
cf. Remark 1.)

6.5. Numerical results using the adaptive RQ selection algorithm

To effectively navigate the trade-off between speedup and accuracy and select the RQ rules satisfying
a desired error between RB and HRBE solutions, we now apply Algorithm 3 for the relative error target
ϵ = 0.01. The algorithm finds the RQ rules corresponding to different hyperreduction tolerances for differ-
ent components in the 3 × 3 thermal fin system, although the same tolerance is used for the components
instantiated from the same archetype component. Convergence is reached in merely two iterations in all
parameter test configurations. The maximum relative H1(Ω)-norm errors in the HRBE solutions relative to
the truth and (truth-quadrature) RB solutions are 7.521× 10−3 and 7.226× 10−3, respectively. As desired,
the adaptive RQ selection algorithm meets the target system-level hyperreduction error tolerance of 10−2.
The HRBE method provides an average computational speedup of 42 relative to solving the truth problem.

To further assess the performance of the adaptive RQ selection algorithm across a range of fin system sizes,
we apply Algorithm 3, with the relative error target ϵ = 0.01, to Nfin×Nfin fin systems for Nfin ∈ {2, · · · , 8}.
For each fin system, we form |Ξtest|= 5 test configurations similar to those for the 3× 3 fin system described
earlier. For all fin systems, the algorithm achieves convergence within two iterations. Table 5 shows the
maximum relative H1(Ω)-norm errors across the test configurations between (i) truth and RB solutions, (ii)
truth and HRBE solutions, and (iii) RB and HRBE solutions. The target error between the RB and HRBE
solutions is achieved for all fin systems. The effectivity, defined as ϵ divided by the actual maximum relative
error, ranges from a minimum of 1.315 for Nfin = 2 to a maximum of 33.602 for Nfin = 8. The sharpness of
the error bound between the RB and HRBE solutions deteriorates as Nfin increases. We suspect that this
is due to bounding ∥·∥∞ and ∥·∥max in Proposition 6 by

√
NM(c) ∥·∥2 and NM(c) ∥·∥2 ∀c ∈ C, respectively.

As the number of components in the system increases, ᾱ in Proposition 6 provides a more pessimistic upper
bound for the error at the system level. Table 5 also shows that for all fin systems the error between the
truth and RB solutions is relatively close to the error between the truth and HRBE solutions, underscoring
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Table 5: Relative H1(Ω)-norm error between (i) truth and RB solutions, (ii) truth and HRBE solutions, and (iii) RB and
HRBE solutions for Nfin ×Nfin fins using ϵ = 0.01 in Algorithm 3 over their five test cases.

Nfin supµ∈Ξtest
∥uh(µ)−urb(µ)∥V

∥uh(µ)∥V
supµ∈Ξtest

∥uh(µ)−ũrb(µ)∥V
∥uh(µ)∥V

supµ∈Ξtest
∥urb(µ)−ũrb(µ)∥V

∥urb(µ)∥V

2 4.183× 10−3 7.891× 10−3 7.605× 10−3

3 2.054× 10−3 7.521× 10−3 7.226× 10−3

4 1.557× 10−3 6.134× 10−3 5.921× 10−3

5 1.626× 10−3 4.958× 10−3 4.832× 10−3

6 1.283× 10−3 1.341× 10−3 3.801× 10−4

7 1.001× 10−3 1.057× 10−3 3.377× 10−4

8 8.882× 10−4 9.389× 10−4 2.976× 10−4

Table 6: Relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) for Nfin ×Nfin fins over their five test cases.

Nfin sup
µ∈Ξtest

|σmin(Jrb (ũrb(µ);µ))− σmin(J̃rb (ũrb(µ);µ)) |
σmin(Jrb (ũrb(µ);µ))

2 3.478× 10−3

3 2.395× 10−3

4 2.159× 10−3

5 1.484× 10−3

6 4.221× 10−5

7 4.955× 10−5

8 6.616× 10−5

the effectiveness of the adaptive RQ selection (Algorithm 3) as well as the component-wise hyperreduction
training routine.

Finally, Table 6 presents the relative error between σmin(J̃rb (ũrb(µ);µ)) and σmin(Jrb (ũrb(µ);µ)) across

various fin system sizes, which again supports the validity of using σmin(J̃rb (ũrb(µ);µ)) to approximate
σmin(Jrb (ũrb(µ);µ)) in Algorithm 3.

7. Conclusion

In this work, we have developed an HRBE method for reduced-order modeling of component-based sys-
tems governed by general parameterized nonlinear PDEs. The proposed method is capable of accommodating
global nonlinearities across the entire domain. The method constructs a library of archetype components
during the offline phase through component-wise RB construction and hyperreduction. Then, in the online
phase, these pretrained components are reused to rapidly create a reduced model for any system configuration
instantiated from the archetype components in the library. This divide-and-conquer strategy circumvents the
need for repeated offline training for new system configurations and enables the reduced-order modeling of
problems with numerous parameters. Additionally, it facilitates the model reduction of large-scale problems
by sidestepping the generation of global solution snapshots associated with large assembled systems in the
offline phase.

The proposed HRBE method is characterized by several key features. First, we have formulated a
component-wise extension of the EQP [36, 47] to systematically construct a library of hyperreduced compo-
nents, each of which meets the specified hyperreduction tolerance. Second, we have appealed to the BRR
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theorem to develop an actionable error estimate for component-based systems, which relates component-wise
hyperreduction residual to the system-level error. Third, we have developed an online-efficient estimate of
the minimum singular value of the system-level Jacobian, which plays a crucial role in the BRR theory.
Finally, building on the aforementioned multi-fidelity archetype component library, the actionable error es-
timate, and the minimum singular value estimate, we have developed an adaptive RQ selection procedure,
such that the hyperreduction error in the online-assembled system meets the user-prescribed system-level
error tolerance.

We evaluated the effectiveness of our HRBE method through its application to two-dimensional nonlin-
ear thermal fin systems, which are composed from a library consisting of four distinct types of archetype
components. Across different fin systems, we demonstrated that the HRBE method consistently delivers
accurate results and computational reduction, achieving roughly 45× speedups with errors around 1% or
less. Moreover, the online-efficient minimum singular value estimate for the system’s RB Jacobian proved
accurate in the fin systems studied.

There exist several potential opportunities to extend the current work. First is the development of a
port-reduced version of the HRBE method (cf. Remark 1). In systems with many and/or large global ports,
the final HRBE problem can still be quite large without port reduction. Hence, model reduction of the
ports could lead to additional computational savings in the online phase, a concept already explored for
linear problems (e.g., [13, 14, 39]). Second is the development of an online-efficient system-level a posteriori
error estimates, which is another area that has been explored for linear problems. Third, building on the a
posteriori error estimate, Algorithm 3 may be extended to effect adaptive selection of both RB and RQ in the
online phase (cf. Remark 11). Lastly, the current work could be expanded to accommodate time-dependent
nonlinear PDEs. We aim to explore these potential extensions in our future research.
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Appendix A Explicit expressions of the algebraic RB and hyperreduced RB residuals and
Jacobians of instantiated components

We assume in each archetype component ĉ ∈ Ĉ, the generalized coordinates of any wrb,c ∈ Vrb,c are

arranged in such a way that the DoF associated with V̂b
rb,ĉ are assigned to the first Nb

ĉ indices, followed by

N 1
ĉ indices corresponding to the first local port’s DoF and so forth. As such, for the instantiated component

c ∈ C, we introduce {Ψc,i}
NM(c)

i=1 for any µc ∈ Dc as

Ψc,i =



ξbc,i ≡ ξ̂bM(c),i ◦ G
−1
c (·;µc), i ∈ {1, . . . , Nb

M(c)},

ψ1
c,i, i ∈ Nb

M(c) + {1, . . . ,N
1
M(c)},

...

ψ
nγ
M(c)

c,i , i ∈ Nb
M(c) +

∑nγ
M(c)

−1

p=1 +{1, . . . ,N
nγ
M(c)

M(c) }.

The algebraic RB residual and Jacobian for c ∈ C are then given by

(Rrb,c(wrb,c;µc))i =

QM(c)∑
q=1

ρ̂M(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wp
h,p

]
◦ Gc(·;µc),Ψc,i ◦ Gc(·;µc); x̂M(c),q, µc

)
,

(Jrb,c(wrb,c;µc))i,j =

QM(c)∑
q=1

ρ̂M(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wp
h,c

]
◦ Gc(·;µc),Ψc,j ◦ Gc(·;µc),Ψc,i ◦ Gc(·;µc);

x̂M(c),q, µc

)
,

(32)
for 1 ≤ i, j ≤ NM(c), any wrb,c ∈ Vrb,c and any µc ∈ Dc.

Similarly, the algebraic hyperreduced RB residual and Jacobian for c ∈ C are given by

(
R̃rb,c(wrb,c;µc)

)
i
=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂M(c)

([
wb

rb,c +
∑

p∈PM(c)

wp
h,c

]
◦ Gc(·;µc),Ψc,i ◦ Gc(·;µc); ˜̂x

r
M(c),q, µc

)
,

(
J̃rb,c(wrb,c;µc)

)
i,j

=

Q̃r
M(c)∑
q=1

˜̂ρrM(c),q r̂
′
M(c)

([
wb

rb,c +
∑

p∈PM(c)

wp
h,c

]
◦ Gc(·;µc),Ψc,j ◦ Gc(·;µc),Ψc,i ◦ Gc(·;µc);

˜̂xrM(c),q, µc

)
,

(33)
for 1 ≤ i, j ≤ NM(c), any wrb,c ∈ Vrb,c and any µc ∈ Dc.
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