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Abstract

We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG)
discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics.
Our emphasis is on the choice of hyperreduction methods. We analyze computational complexity and
use numerical examples to show that typical hyperreduction methods based on element-wise or index-wise
sampling of the residual vector cannot effectively reduce high-order DG discretizations, with a large number
of degrees of freedom and quadrature points per element and conversely a small number of elements. To
overcome this limitation, we devise a hyperreduction method for high-order DG methods that samples
individual quadrature points, instead of elements, to provide a finer decomposition of the residual. We
compare the formulation, implementation, and computational complexity of the element-wise and point-wise
formulations. We then numerically assess the two formulations using Euler flow over a shape-parametrized
airfoil and laminar and turbulent Navier-Stokes flow over a three-dimensional aerodynamic body. In each
case, we observe that the point-wise hyperreduced model reduces the computational time by several orders of
magnitude relative to the high-order DG method and a few orders of magnitude relative to the element-wise
hyperreduced model. In addition, the computational performance of the point-wise formulation does not
deteriorate with the DG polynomial degree, unlike for the element-wise formulation.

Keywords: discontinuous Galerkin method, adaptive high-order method, model reduction, hyperreduction,
empirical quadrature procedure, aerodynamics

1. Introduction

We consider rapid and reliable solution of parametrized nonlinear partial differential equations (PDEs),
with applications in conservation laws in aerodynamics. Our goal is to evaluate quantities of interest (i.e.,
output), such as lift and drag, for various input parameters, which describe configurations such as the flight
condition and geometry. We consider many-query scenarios, where we wish to rapidly evaluate the output for
many different input parameter values. Our approach to the problem is projection-based model reduction
based on offline-online computational decomposition: in the offline stage, we invoke the full-order model
(FOM) several times to explore the parameter space and to train a reduced-order model (ROM); in the
online stage, we evaluate the ROM for many different parameter values. The focus of this work is the
development and assessment of an efficient model reduction technique for high-order discontinuous Galerkin
(DG) discretizations of parametrized nonlinear PDEs.

To clearly describe the objective of this work, we first introduce an abstract parametrized PDE problem.
To begin, we introduce a P -dimensional parameter space D ⊂ RP and a Nh-dimensional approximation
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space Vh. The FOM problem is as follows: given µ ∈ D, find uh(µ) ∈ Vh such that

R(uh(µ), vh;µ) = 0 ∀vh ∈ Vh, (1)

where R : V × V × D → R is a semi-linear form. To accelerate the solution of the FOM problem (1) using
projection-based model reduction, we introduce two ingredients. The first is a N -dimensional reduced basis
(RB) space VN ⊂ Vh, in which we seek the ROM solution, where N ≪ Nh. We can construct an RB space
using, for instance, proper orthogonal decomposition (POD) or the greedy algorithm [39]. Both methods
require the FOM solution snapshots {uh(µ)}µ∈Ξtrain associated with a training parameter set Ξtrain ⊂ D,
and their computation often constitutes the majority of the offline training cost. The approximation of the
parametrized PDE in the RB space yields the following (non-hyperreduced) Galerkin ROM problem: given
µ ∈ D, find uN (µ) ∈ VN such that

R(uN (µ), vN ;µ) = 0 ∀vN ∈ VN .

This (non-hyperreduced) ROM cannot be evaluated efficiently, as it requires the evaluation of the FOM
residual form R(·, ·; ·). To address the issue, we introduce the second ingredient of projection-based model
reduction of nonlinear PDEs: hyperreduction. The goal of hyperreduction is to approximate the residual
form R(·, ·; ·) by a hyperreduced residual form R̃(·, ·; ·), which can be evaluated in O(N) cost. We then
evaluate the hyperreduced ROM solution ũN (µ) ∈ VN such that

R̃(uN (µ), vN ;µ) = 0 ∀vN ∈ VN

in O(N) operations. The goal of model reduction for parametrized nonlinear PDEs is to construct accurate
and efficient hyperreduced ROMs.

While the computational reduction in the online stage is often the primary focus of model reduction, con-
trolling the offline training cost is also important particularly (i) for complex and large-scale computational
fluid dynamics (CFD) problems and (ii) in practical engineering settings with limited computing resources
and stringent turnaround time requirements. As the computation of the solution snapshots often dominates
the offline training cost, we may reduce the offline cost by using an efficient FOM. In this work, we use an
adaptive high-order DG method. The efficacy of adaptive high-order DG methods to solve complex aerody-
namics problems has been demonstrated in various studies in the past decade [40, 23, 19, 17]. Compared
to second-order methods on meshes constructed following best-practices, adaptive high-order methods often
reduce the computational time to achieve a given solution accuracy by a few orders of magnitude; we will
also observe this in all of our examples in Section 5. In the context of model reduction, the method has the
potential to provide a commensurate reduction in the offline cost and hence is well-suited as the FOM from
which to build a ROM. Previous ROM works that use (non-adaptive) DG methods include [21, 14, 41, 29].

Given a FOM, we construct a ROM using the aforementioned two ingredients: RB and hyperreduction. In
this work, we construct RB using the standard POD procedure and focus on the development and assessment
of efficient hyperreduction methods for high-order DG methods. There are many hyperreduction methods,
including the empirical interpolation method (EIM) [4]; its discrete variant, discrete EIM (DEIM) [11];
its variant for (continuous) finite-element method, unassembled DEIM (UDEIM) [38]; the hyperreduction
method [32]; missing point estimation [3]; the Gauss-Newton approximate tensor (GNAT) method [7, 8]; the
energy-conservative sampling and weighting (ECSW) method [15, 10]; the empirical quadrature procedure
(EQP) [43]; and its variant for DG methods [41]. With the exception of the (non-discrete) EIM and the
(non-DG variant of) EQP, these methods consider sampling subsets of elements or indices of the discrete
residual vector associated with the (semi-)discrete FOM. In this work, using the DG variant of EQP [41] as a
representative example, we will show that these discrete approaches cannot effectively reduce high-order DG
discretizations, both in theory and in practice. As we will study in Section 3, this is because high-order DG
methods have (i) a large number of degrees of freedom and quadrature points per element and (ii) conversely
a small number of elements. The former means that the computation of any entry of the DG residual vector
is expensive, and the latter means that, at least for methods based on element-wise sampling, there are fewer
opportunities for hyperreduction.
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The contributions of this work are the development and assessment of an efficient hyperreduction method
for high-order DG methods. To overcome the aforementioned limitations of discrete hyperreduction methods,
we first develop a hyperreduction method for high-order DG methods that samples individual quadrature
points, instead of elements or discrete indices, to provide a finer decomposition of the DG residual. This is an
extension of the (point-wise) EQP for continuous Galerkin methods developed in [26, 41] to high-order DG
methods. More important contribution of the work is the comparison of the efficacy of the point-wise and
element-wise hyperreduction methods, both in theory and in practice. The theoretical assessment follows
from the analysis of computational operations for the point-wise and element-wise methods; the analysis
shows the limitation of any discrete hyperreduction methods applied to high-order DG methods. The prac-
tical assessment is based on large-scale parametrized aerodynamics problems; the assessment demonstrates
(a) the efficacy of adaptive high-order DG methods applied to aerodynamics problems and (b) the ability of
the point-wise formulation to effectively hyperreduce adaptive high-order DG methods.

We now clarify the scope and limitation of this work. The focus of this work is the assessment of
two hyperreduction methods for aerodynamics problems; however, we limit the scope to subsonic flows.
Transonic and supersonic flows, with parameter-dependent shocks, are not amenable to model reduction
using a standard (linear) RB. While several nonlinear approximation techniques have been recently developed
and applied to transonic flows (e.g., [25, 16]), in this work we consider only subsonic flows to provide a
concrete assessment of hyperreduction methods and to not introduce additional complications associated
with nonlinear approximation spaces.

The remainder of this paper is organized as follows. In Section 2, we present the DG formulation and the
associated point-wise and element-wise hyperreduction formulations. In Section 3, we discuss implementation
of the point-wise and element-wise hyperreduction formulations and analyze the computational cost and
storage requirement. In Section 4, we discuss the extension of the formulations to treat shape-parametrized
problems. In Section 5, we assess the point-wise and element-wise hyperreduction formulations using three
aerodynamics problems: Euler flow over a shape-parameterized airfiol; laminar Navier-Stokes flow over a
three-dimensional aerodynamic body parametrized by the flight condition; and Reynolds-averaged Navier-
Stokes (RANS) flow over a three-dimensional aerodynamic body parametrized by the flight condition.

2. Formulation

2.1. Problem statement

We first introduce the problem that we considered throughout this work. We introduce a P -dimensional
parameter domain D ⊂ RP , and a d-dimensional spatial domain Ω ⊂ Rd. The parametrized system of m
PDEs that we consider is of the form

∇ · F (u(µ);µ)−∇ · (K(u(µ);µ)∇u(µ)) = S(u(µ),∇u(µ);µ) in Ω,

where F : Rm × D → Rm×d is the convective flux, K : Rm × D → Rm×d×m×d is the diffusion tensor, and
S : Rm × Rm×d × D → Rm is the source function. We complement the PDE with appropriate boundary
conditions. Given the solution, we evaluate the functional output

s(µ) := J(u(µ);µ),

where J is the output functional. We will consider a variant of this problem with parametrized domains
Ω(µ) ⊂ Rd in Section 4; however, in this section, we consider the non-parametrized domain Ω to simplify
the presentation.

2.2. Discontinuous Galerkin method

We now review the DG formulation. For brevity, we limit our presentation to the aspects that are
necessary to describe our hyperreduction procedure; we refer to [2, 18, 19] for detail. We first introduce a
triangulation Th of the domain Ω, which may contain hanging nodes. We next introduce the set of interior
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facets Σ := ∪κ∈Th
∂κ \ ∂Ω and boundary facets Γ := ∪κ∈Th

∂κ∩ ∂Ω. We then introduce a DG approximation
space

Vh := {v ∈ L2(Ω)m | v|κ ∈ Pp(κ)m, ∀κ ∈ Th},

where Pp(κ) : κ → R is the space of polynomials of degree at most p. To simplify the presentation, we
assume that the polynomial degree for all elements is the same; this assumption can be readily relaxed.
The dimension of the DG space is Nh := dim(Vh) = mNpNe = NκNe, where Ne := |Th| is the number of
elements, Np is the number of degrees of freedom per element for each component, and Nκ = mNp is the

number of degrees of freedom per element. Note that Np =
∏d

i=1(p + i)/i for complete polynomials and
Np = (p+ 1)d for tensor-product polynomials.

We next introduce the (parametrized) residual form that defines the DG discretization. The symmetric
interior penalty (IP) DG discretization of the system of conservation laws [18, 19] yields the residual semi-
linear form R : Vh × Vh ×D → R such that

R(w, v;µ) =

∫
Ω

rΩ(w, v;µ)dx+

∫
Σ

rΣ(w, v;µ)ds+

∫
Γ

rΓ(w, v;µ)ds, (2)

where the volume integrand rΩ : Vh×Vh×D → L∞(Ω), the interior-facet integrand rΣ : Vh×Vh×D → L∞(Σ),
and the boundary-facet integrand rΓ : Vh × Vh ×D → L∞(Γ) are given by

rΩ(w, v;µ) := −∇v : F (w;µ) +∇v : K(w;µ)∇w − v · S(w,∇w;µ), (3)

rΣ(w, v;µ) := [v]+− · F̂ (w+, w−; n̂, µ)− {K(w;µ)∇v} : JwK− JvK : {K(w;µ)(∇w − σJvK)}, (4)

rΓ(w, v;µ) := v · F̂Γ(w; n̂, µ)−K(w;µ)∇v : ((w − uΓ(w;µ))⊗ n̂)

− (v ⊗ n̂) : G(K(w;µ)(∇w − σ(w − uΓ(w;µ))⊗ n̂); n̂, µ);
(5)

here, F̂ : Rm × Rm × Rd × D → Rm is the interior facet numerical flux, F̂Γ : Rm × Rd × D → Rm is
the boundary facet numerical flux, G : Rm×d × Rd × D → Rm×d is the boundary diffusion flux, J·K is the
so-called jump operator given by JwK = w+ ⊗ n̂+ + w− ⊗ n̂−, {·} is the so-called averaging operator given
by {w} = (w+ + w−)/2, σ ∈ R>0 is the penalty constant for the IP DG method, and ⊗ denotes the tensor
product of two order-1 tensors to yield a order-2 tensor. Throughout this work, we use Roe’s approximate
Riemann solver [30] to compute the numerical fluxes. Similarly, the output functionals that we consider in
this work may be written in terms of its integrands as

J(w;µ) :=

∫
Ω

jΩ(w;µ)dx+

∫
Γ

jΓ(w;µ)ds, (6)

where jΩ : Vh ×D → L∞(Ω) is the volume integrand, and jΓ : Vh ×D → L∞(Γ) is the boundary integrand.
For PDEs with non-polynomial nonlinearities, we cannot exactly evaluate the integrals in (2) or (6). We

hence approximate the terms using element-/facet-wise Gauss-like quadrature rules. We denote the pairs

of quadrature points and weights on Ω, Σ, and Γ by {xΩ,q, ρΩ,q}QΩ

q=1, {xΣ,q, ρΣ,q}QΣ

q=1, and {xΓ,q, ρΓ,q}QΓ

q=1,
respectively. The quadrature approximation of the semilinear form (2) is given by

Rh(w, v;µ) :=

QΩ∑
q=1

ρΩ,qrΩ(w, v;µ)(xΩ,q) +

QΣ∑
q=1

ρΣ,qrΣ(w, v;µ)(xΣ,q) +

QΓ∑
q=1

ρΓ,qrΓ(w, v;µ)(xΓ,q), (7)

and the quadrature approximation of the output functional (6) is given by

Jh(w;µ) :=

QΩ∑
q=1

ρΩ,qjΩ(w;µ)(xΩ,q) +

QΓ∑
q=1

ρΓ,qjΓ(w;µ)(xΓ,q). (8)

The subscript h on Rh(·, ·; ·) and Jh(·; ·) signifies the dependence of the forms on h due to the use of the
mesh-dependent quadrature rules. The total number of quadrature points is Qh := QΩ + QΣ + QΓ, which
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is O(Nh). Throughout this work, we use Gauss-like quadrature rules that exactly integrate polynomials
of degree 3p + pgeom, where pgeom is the polynomial degree of parametric mapping for curved geometries.
While it is impossible to exactly integrate the nonlinear flux and source terms associated with the Euler,
Navier-Stokes, and RANS equations considered in Section 5, we have found the 3p+ pgeom rule balances the
accuracy and computational cost in practice.

We may now state the DG problem: given µ ∈ D, find uh(µ) ∈ Vh such that

Rh(uh(µ), vh;µ) = 0 ∀vh ∈ Vh, (9)

and then evaluate the output
sh(µ) := Jh(uh(µ);µ).

In practice, the (nonlinear) DG problem (9) is solved using a Newton-like method with pseudo-transient
continuation (PTC) [22]. Newton-like methods require the solution of a sequence of linearized problems:
given µ ∈ D and a linearization point yh ∈ Vh, find wh ∈ Vh such that

R′
h(yh;wh, vh;µ) = −Rh(yh(µ), vh;µ) ∀vh ∈ Vh,

where R′
h(yh;wh, vh;µ) is the Gateaux derivative of Rh(·, vh;µ) about yh ∈ Vh in the direction wh ∈ Vh.

More explicitly,

R′
h(y;w, v;µ) =

QΩ∑
q=1

ρΩ,qr
′
Ω(y;w, v;µ)(xΩ,q) +

QΣ∑
q=1

ρΣ,qr
′
Σ(y;w, v;µ)(xΣ,q) +

QΓ∑
q=1

ρΓ,qr
′
Γ(y;w, v;µ)(xΓ,q),

where, for instance, r′Ω(y;w, v;µ) is the Gateaux derivative of rΩ(·, v;µ) about y ∈ Vh in the direction w ∈ Vh
and is given by

r′Ω(y;w, v;µ) :=−∇v : DF (y;µ)w +∇v : K(y;µ)∇w +∇v : DK(y;µ)(w ⊗∇y)
− v ·D1S(y,∇y;µ)w − v ·D2S(y,∇y;µ)∇w,

(10)

where DF (y;µ) ∈ L(Rm,Rm×d) is the Jacobian of F (·;µ) ∈ Rm×d evaluated about y ∈ Rm, DK(y;µ) ∈
L(Rm×m×d,Rm×d) is the Jacobian of K(·;µ) ∈ Rm×d×m×d evaluated about y ∈ Rm, D1S(y,∇y;µ) ∈
L(Rm,Rm) is the Jacobian of S(·,∇y;µ) evaluated about y ∈ Rm, and D2S(y,∇y;µ) ∈ L(Rm×d,Rm) is the
Jacobian of S(y, ·;µ) evaluated about ∇y ∈ Rm×d. The Gateaux derivatives r′Σ(·; ·, ·; ·) and r′Γ(·; ·, ·; ·) are
defined analogously; we omit the explicit presentation for brevity. The solution of the linearized problem
requires the solution of a Nh×Nh sparse linear system. We solve the linear system using GMRES [33] with
a block ILU preconditioner with the minimum discarded fill reordering [28].

We conclude the section with a remark on the choice of the DG method.

Remark 1. Instead of the IP method, we may consider other DG methods to discretize the diffusion
term. However, not all DG methods admit a quadrature-point-wise decomposition of the form (7) and (8).
In particular, any DG method that uses a lifting operator do not admit the decomposition because the
evaluation of the lifting operators requires the solution of element-wise subproblems that depend on the
solution everywhere in the element. Hence, methods such as the Bassi and Rebay’s second method (BR2) [6]
and the compact DG method (CDG) [27] do not provide a quadrature-point-wise decomposition. Of the
nine DG methods reviewed in [2], the IP and nonsymmetric interior penalty Galerkin (NIPG) methods are
the only methods that are consistent, are stable, and admit quadrature-point-wise decomposition. Between
IP and NIPG, only the IP method is dual consistent. We hence use the IP method in this work.

2.3. Reduced-basis approximation

We now introduce a reduced basis (RB) approximation of the DG problem (9). To this end, we first
introduce a reduced basis space VN ⊂ Vh and the associated basis {ϕi}Ni=1 for N ≪ Nh. While we may
construct the basis using various techniques (see, e.g., [20]), in this work we use the POD. Namely, we
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introduce a parameter training set ΞPOD ⊂ D of size |ΞPOD| ≥ N , solve the DG problem (9) to obtain
snapshots {uh(µ)}µ∈ΞPOD , and then apply POD to obtain the RB {ϕi}Ni=1 = PODN ({uh(µ)}µ∈ΞPOD). Given
the RB, we introduce the RB approximation: given µ ∈ D, find uN (µ) ∈ VN such that

Rh(uN (µ), vN ;µ) = 0 ∀vN ∈ VN , (11)

and then evaluate the output
sN (µ) := Jh(uN (µ);µ).

The RB approximation yields a nonlinear algebraic system of dimension N ≪ Nh, which is solved using a
Newton-like method with pseudo-transient continuation (PTC) [22]. However, the evaluation of the residual
form Rh(·, ·; ·) given by (7) requires O(Qh) ≈ O(Nh) operations, which renders the approximation not online
efficient; i.e., the online computational cost depends on Qh, and hence the dimension Nh, of the underlying
DG discretization.

2.4. Point-wise reduced-basis reduced-quadrature formulation

To enable online-efficient (i.e., Nh- and Qh-independent) evaluation of the DG residual form (7) and
the output form (8), we introduce reduced quadrature (RQ) rules. One approach to construct RQ rules

is to replace the Gauss-like quadrature rules on Ω, Σ, and Γ in (7) by RQ rules given by {x̃r
Ω,q, ρ̃

r
Ω,q}

Q̃r
Ω

q=1,

{x̃r
Σ,q, ρ̃

r
Σ,q}

Q̃r
Σ

q=1, and {x̃r
Γ,q, ρ̃

r
Γ,q}

Q̃r
Γ

q=1. Here the superscript “r” signifies that the RQ rules are associated
with the residual form (7). The RQ points are subsets of the FE quadrature points in the sense that

{x̃r
Ω,q}

Q̃r
Ω

q=1 ⊂ {xΩ,q}QΩ

q=1, {x̃r
Σ,q}

Q̃r
Σ

q=1 ⊂ {xΣ,q}QΣ

q=1, and {x̃r
Γ,q}

Q̃r
Γ

q=1 ⊂ {xΓ,q}QΓ

q=1. We discuss the construction of
the RQ rules using the empirical quadrature procedure in Section 2.6; for now we assume the RQ rules are
given. We refer to the RQ rules as “point-wise” RQ rules because the reduction is performed at individual
quadrature point level, as opposed to at the element level.

The point-wise RQ approximation of (7) is given by

R̃(w, v;µ) :=

Q̃r
Ω∑

q=1

ρ̃rΩ,qrΩ(w, v;µ)(x̃
r
Ω,q) +

Q̃r
Σ∑

q=1

ρ̃rΣ,qrΣ(w, v;µ)(x̃
r
Σ,q) +

Q̃r
Γ∑

q=1

ρ̃rΓ,qrΓ(w, v;µ)(x̃
r
Γ,q). (12)

Similarly, in (8), we approximate the FE quadrature on Ω and Γ by RQ rules given by {x̃j
Ω,q, ρ̃

j
Ω,q}

Q̃j
Ω

q=1 and

{x̃j
Γ,q, ρ̃

j
Γ,q}

Q̃j
Γ

q=1, so that its RQ approximation is given by

J̃(w;µ) :=

Q̃j
Ω∑

q=1

ρ̃jΩ,qjΩ(w;µ)(x̃
j
Ω,q) +

Q̃j
Γ∑

q=1

ρ̃jΓ,qjΓ(w;µ)(x̃
j
Γ,q); (13)

the superscript “j” signifies that the RQ rules are associated with the output functional (8). The RQ rules
for R̃(·, ·; ·) and J̃(·; ·) are in general different. We now state the RB-RQ approximation problem: given
µ ∈ D, find uN (µ) ∈ VN such that

R̃(ũN (µ), vN ;µ) = 0 ∀vN ∈ VN , (14)

and then evaluate the output
s̃N (µ) ≡ J̃(ũN (µ);µ).

The point-wise RB-RQ problem (14) is solved using a Newton-like method, which requires the solution of
linearized problems: given µ ∈ D and a linearization point yN ∈ VN , find wN ∈ VN such that

R̃′(yN ;wN , vN ;µ) = −R̃(yN , vN ;µ) ∀vN ∈ VN ,
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where R̃′(yN ;wN , vN ;µ) is the Gateaux derivative of R(·, vN ;µ) about yN ∈ VN in the direction of wN ∈ VN
and is given by

R̃′(y;w, v;µ) =

Q̃r
Ω∑

q=1

ρ̃rΩ,qr
′
Ω(y;w, v;µ)(x̃

r
Ω,q) +

Q̃r
Σ∑

q=1

ρ̃rΣ,qr
′
Σ(y;w, v;µ)(x̃

r
Σ,q) +

Q̃r
Γ∑

q=1

ρ̃rΓ,qr
′
Γ(y;w, v;µ)(x̃

r
Γ,q). (15)

We note that the Gateaux derivative of (14) can be expressed as the RQ-wise sum of the point-wise Gateaux
derivatives r′Ω(·; ·, ·; ·), r′Σ(·; ·, ·; ·), and r′Γ(·; ·, ·; ·). The decomposition plays a crucial role in the implementa-
tion of the point-wise RB-RQ and its computational cost analysis, which we will present in Section 3.

Remark 2. The point-wise RB-RQ forms (12) and (13) rely on the quadrature-point-wise decomposition
of the DG forms (7) and (8), respectively. As noted in Remark 1, some DG methods use a lifting operator
and do not admit a quadrature-point-wise decomposition. Specifically, DG methods such as BR2 and CDG
are not compatible with the point-wise RQ formulation.

2.5. Element-wise reduced-basis reduced-quadrature formulation

An alternative approach to introduce RQ rules is to decompose the DG residual form (7) at the element
level instead of at the quadrature-point level. We now review a element-wise RQ approach to the hyperre-
duction of DG methods introduced in [41]. To this end, we first introduce an element-wise decomposition of
the DG residual (7):

Rh(w, v;µ) =
∑
κ∈Th

rκ(w, v;µ), (16)

where the element-wise residual form rκ : Vh × Vh ×D → R is given by

rκ(w, v;µ) :=
∑

q∈Q(κ)

ρΩ,qrΩ(w, v;µ)(xΩ,q)+
∑

q∈Q(∂κ∩Σ)

ρΣ,qr
mod
Σ (w, v;µ)(xΣ,q)+

∑
q∈Q(∂κ∩Γ)

ρΓ,qrΓ(w, v;µ)(xΓ,q);

(17)
here, Q(κ), Q(∂κ∩Σ), and Q(∂κ∩Γ) are the sets of quadrature points that belong to the element κ, interior
facets ∂κ ∩ Σ, and boundary facets ∂κ ∩ Γ, respectively, and rmod

Σ (·, ·; ·) is a modified version of rΣ(·, ·; ·) in
(4), which at the bare minimum accounts for the fact that the interior facets are shared by two elements and
ideally also enables additional properties such as the energy stability; see, e.g., [41]. We similarly introduce
an element-wise decomposition of the DG output functional (8):

Jh(w;µ) =
∑
κ∈Th

jκ(w;µ), (18)

where jκ : Vh ×D → R is given by

jκ(w;µ) :=
∑

q∈Q(κ)

ρΩ,qjΩ(w;µ)(xΩ,q) +
∑

q∈Q(∂κ∩Γ)

ρΓ,qjΓ(w;µ)(xΓ,q). (19)

To construct an element-wise RQ approximation of the residual, we introduce a set of element-wise
quadrature weights {ωr

κ}κ∈T̃ r
h
, where T̃ r

h ⊂ Th is a sparse set of elements used in RQ. Given the element-wise

RQ weights, the RQ approximation of the residual form (7) is given by

R̃el(w, v;µ) :=
∑
κ∈T̃ r

h

ω̃r
κrκ(w, v;µ). (20)

Similarly, given a set of element-wise RQ weights {ωj
κ}κ∈T̃ j

h⊂Th
for the functional output (8), the element-wise

RQ approximation of (8) is given by

J̃el(w;µ) :=
∑
κ∈T̃ j

h

ω̃j
κjκ(w;µ). (21)
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We now state the element-wise RB-RQ approximation problem: given µ ∈ D, find ũN (µ) ∈ VN such that

R̃el(ũN (µ), vN ) = 0 ∀vN ∈ VN , (22)

and then evaluate the output
s̃N (µ) ≡ J̃el(ũN (µ);µ).

Similarly to the point-wise RB-RQ problem (14), the element-wise RB-RQ problem (22) is solved using a
Newton-like method. The Gateaux derivative of R̃el(·, v;µ) about y ∈ VN in the direction w ∈ VN is given
by

R̃el′(y;w, v;µ) :=
∑
κ∈T̃ r

h

ω̃r
κr

′
κ(y;w, v;µ), (23)

where r′κ(y;w, v;µ) is the Gateaux derivative of rκ(·, v;µ) evaluated about y ∈ VN in the direction w ∈ VN .
We will compare the computational cost of the element-wise and point-wise RB-RQ approximations in
Section 3.

Remark 3. Unlike the point-wise RB-RQ formulation which requires a point-wise decomposition of the DG
form (as discussed in Remark 2), the element-wise RB-RQ formulation requires only element-wise decom-
position of the forms (16) and (18). Hence, the element-wise RB-RQ formulation can accommodate all nine
DG methods reviewed in [2]. The element-wise RB-RQ formulation in [41] is based on the BR2 formulation.

2.6. Empirical quadrature procedure (EQP)

We find the quadrature rules for the point-wise reduced quadrature forms (12) and (13) and the element-
wise reduced quadrature forms (20) and (21) using the EQP [26, 43]. The goal of the EQP is to find
quadrature rules that are (i) sparse and (ii) accurate. The accuracy requirement is enforced by imposing
“residual matching conditions” at a set of training points in the parameter space D. An appropriate choice
of “residual matching conditions” depends on the residual (or output) form that we wish to reduce. To this
end, we first introduce the general form of the EQP for (a) a form • ∈ {“r” ≡ residual, “j” ≡ output} and
(b) a domain Λ ∈ {Ω,Σ,Γ}.

Definition 4 (point-wise EQP for RQ for • ∈ {r, j} on Λ ∈ {Ω,Σ,Γ}). Given a user-prescribed manifold-
accuracy tolerance δ• ∈ R>0 and a constant-accuracy tolerance δΛ ∈ R>0, find a set of non-negative quadra-
ture weights

ρ̂•,⋆Λ = argmin
ρ̂•
Λ∈RQΛ

≥0

∥ρ̂•Λ∥0

that satisfy the constant accuracy constraint

||Λ| −
QΛ∑
q=1

ρ̂•Λ,q| ≤ δΛ,

and K|ΞEQP| manifold accuracy constraints (or “residual matching conditions”)

c•Λ(ρ̂
•
Λ;µ)i ≤ δ•, i = 1, . . . ,K, ∀µ ∈ ΞEQP, (24)

where c•Λ : RQΛ ×D → RK defines the constraints, and ΞEQP ⊂ D is a training parameter set. Once a set of

quadrature weights {ρ̂•,⋆Λ,q}
QΛ

q=1 is found, extract the nonzero weights to construct a RQ rule {x̃•
Λ,q, ρ̃

•
Λ,q}

Q̃•
Λ

q=1.

In this work, we set ΞEQP = ΞPOD for simplicity, though the two sets need not be the same.
Having defined the general form of the EQP, we now define specific manifold accuracy constraints.

We use the EQP introduced in [42], which is designed to control the output error |sN (µ) − s̃N (µ)| due to
hyperreduction (instead of some norm of the error ∥uN (µ)−ũN (µ)∥). By way of preliminaries, we introduce a

8



training state set {ûN (µ)}µ∈ΞEQP associated with the training parameter set ΞEQP. We in addition introduce
the dual solutions {ẑN (µ)}µ∈ΞEQP , where ẑ(µ) ∈ VN satisfies

R′
h(ûN (µ);wN , ẑN (µ);µ) = J ′

h(ûN (µ);wN (µ);µ) ∀wN ∈ VN (µ).

We then express ẑN (µ) ∈ VN in terms of the RB {ϕi}Ni=1 and the associated coefficients ẑN ∈ RN as

ẑN (µ) =

N∑
i=1

ẑN,i(µ)ϕi. (25)

We now introduce manifold accuracy constraints for the residual form (12) and the output form (13).

Definition 5 (point-wise EQP constraints for residual on Λ ∈ {Ω,Σ,Γ}). Given a training parameter set
ΞEQP ⊂ D, the associated training state set {ûN (µ)}µ∈ΞEQP , and the associated training dual state set

{ẑN (µ)}µ∈ΞEQP
, the point-wise RQ rule {ρ̃rΛ,q}

Q̃r
Λ

q=1 for the residual on Λ ∈ {Ω,Σ,Γ} is the solution to the
EQP (Definition 4) with the accuracy constraints (24) given by

crΛ(ρ̂
•
Λ;µ)i := |RΛ(ûN (µ), ϕiẑN,i(µ);µ)−

QΛ∑
q=1

ρ̂rΛ,qrΛ(ûN (µ), ϕiẑN,i(µ);µ)(xΛ,q)| ≤ δr,

for i = 1, . . . , N , ∀µ ∈ ΞEQP, where RΛ(w, v;µ) :=
∑QΛ

q=1 ρΛ,qrΛ(w, v;µ) is the part of the DG residual (7)

associated with the integral over Λ ∈ {Ω,Σ,Γ}, and ẑN (µ) ∈ RN satisfies (25).

Definition 6 (point-wise EQP constraints for output functional on Λ ∈ {Ω,Γ}). Given a training parameter

set ΞEQP ⊂ D and the associated training state set {ûN (µ)}µ∈ΞEQP
, the point-wise RQ rule {ρjΛ,q}

Q̃j
Λ

q=1 for
the output on Λ ∈ {Ω,Γ} is the solution to the EQP (Definition 4) with the accuracy constraints (24) given
by

cjΛ(ρ̂
•
Λ;µ) := |JΛ(ûN (µ);µ)−

QΛ∑
q=1

ρ̂jΛ,qjΛ(ûN (µ);µ)(xΛ,q)| ≤ δj ∀µ ∈ ΞEQP,

where JΛ(w;µ) :=
∑QΛ

q=1 ρΛ,qjΛ(w;µ) is the part of the DG output functional (8) associated with the integral
over Λ ∈ {Ω,Γ}.
Remark 7. The EQP for the element-wise residual form (20) and (21) are defined analogously; see [42] for
a detailed presentation.

Remark 8. The sparse quadrature optimization problem associated with the EQP (Definition 4) can be
solved using many different methods. The original work on the EQP [43] recast the problem as a linear
programming problem and solve it using a simplex method. In the present work, we recast the problem as
a non-negative least square (NNLS) problem. We solve the problem using a QR-based method [24] and in
particular its parallel version developed for ECSW [10]. In Section 5, we will observe that the parallel NNLS
solver can efficiently solve the EQP problem with tens of millions of quadrature points.

Remark 9. Both the point-wise and element-wise RB-RQ formulations readily apply to adaptive p-refined
DG approximation spaces, where elements use different polynomial degrees. This is a direct consequence of
the fact that the DG residual associated with adaptive p-refined spaces admits point-wise decomposition (7)
and element-wise decomposition (16).

Remark 10. While in this work we use the point-wise RB-RQ formulation to hyperreduce the residual
and output forms for parametrized steady nonlinear PDEs, the formulation can be extended to hyperreduce
other forms. For instance, we may follow the formulation in [42] to equip the ROM with an a posteriori
error estimate but use point-wise instead of element-wise decomposition of the residual to further improve
online efficiency, as demonstrated in [13]. Similarly, the method can be readily extended to time-dependent
problems [35]. As noted in the introduction, the primary contribution of the present work is the detailed the-
oretical and practical comparison of the point-wise and element-wise formulations, rather than its application
to various problems.
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data Λ in • in memory requirement

RQ rules {x̃•
Λ,q ∈ Rd, ρ̃•Λ,q ∈ R}Q̃

•
Λ

q=1 {Ω,Σ,Γ} {r, j}
∑

•
∑

Λ(d+ 1)Q̃•
Λ

Normals {n̂•
Λ,q ∈ Rd}Q̃

•
Λ

q=1 {Σ,Γ} {r, j}
∑

•
∑

Λ dQ̃•
Λ

IP penalties {σ•
Λ,q ∈ R}Q̃

•
Λ

q=1 {Σ,Γ} {r, j}
∑

•
∑

Λ Q̃•
Λ

RB
{{ϕi(x̃

•
Λ,q) ∈ Rm}Ni=1}

Q̃•
Λ

q=1 {Ω,Σ,Γ} {r, j}
∑

•
∑

Λ m(d+ 1)NQ̃•
Λ

{{∇ϕi(x̃
•
Λ,q) ∈ Rm×d}Ni=1}

Q̃•
Λ

q=1

Table 1: Summary of the OnlineDataset for the point-wise RB-RQ formulation.

3. Computational cost analysis

3.1. Point-wise RB-RQ formulation

We first analyze the online complexity and memory requirement of the point-wise RB-RQ formulation
discussed in Section 2.4. Throughout this section, we denote by Cr

Λ the cost to evaluate the flux and source
functions in rΛ(w, v;µ) at a quadrature point, for Λ ∈ {Ω,Σ,Γ}; for instance, Cr

Ω corresponds to the cost
to evaluate F (w(x̃Ω,q);µ), K(w(x̃r

Ω,q);µ)∇w(x̃r
Ω,q), and S(w(x̃r

Ω,q),∇w(x̃r
Ω,q);µ) in the volume residual form

rΩ(w, v;µ) given by (3) for a given quadrature point index q. Similarly, we denote by Cr′

Λ the cost to evaluate
the flux and source Jacobians in r′Λ(u;w, v;µ) given by, for instance, (10). We evaluate the point-wise RB-RQ
residual form (12) and the Jacobian form (15) using the following point-wise assembly procedure:

• Residual evaluation. We evaluate the residual
∑

Λ

∑Q̃r
Λ

q=1 ρ̃
r
ΛrΛ(ũN , ϕi;µ), i = 1, . . . , N , given by (12)

in two steps. We first evaluate the flux and source functions at the quadrature points, which requires∑
Λ Cr

ΛQ̃
r
Λ operations. We next multiply the test functions and the flux and source values, which

requires approximately
∑

Λ 2NQ̃r
Λ operations. The total cost is hence

∑
Λ(C

r
ΛQ̃

r
Λ + 2NQ̃r

Λ).

• Jacobian evaluation. We evaluate the Jacobian
∑

Λ

∑Q̃r
Λ

q=1 ρ̃
r
ΛrΛ(ũN ;ϕj , ϕi;µ), i, j = 1, . . . , N , given

by (15) in two steps. We first evaluate the flux and source Jacobians at the quadrature points,
which requires

∑
Λ Cr′

Λ Q̃r
Λ operations. We next multiply the test and trial functions and the flux and

source Jacobian values, which requires approximately
∑

Λ 2N2Q̃r
Λ operations. The total cost is hence∑

Λ(C
r′

Λ Q̃r
Λ + 2N2Q̃r

Λ).

The OnlineDataset required to evaluate the residual form (12) (and the output functional (13)) for the
point-wise RB-RQ formulation using the above procedure is summarized in Table 1. For a practical value
of N , the storage of the RB evaluated at quadrature points dominate the memory requirement.

We make three remarks.

Remark 11. The evaluation of the point-wise RB-RQ residual and Jacobian using the above procedure
is identical to the typical procedure to evaluate the elemental residual and Jacobian in (high-order) DG
methods. In DG methods, we apply the above procedure to a polynomial basis and a Gauss-like quadrature
rule. In the RB-RQ method, we apply the above procedure to an RB and an RQ rule.

Remark 12. The interpretation of the point-wise RB-RQ as a (very) high-order DG method based on
empirical RB and RQ in Remark 11 means that the method is amenable to efficient computational imple-
mentation based on BLAS, just like high-order DG methods. In this context, the OnlineDataset serves the
same role as pre-computed bases and their gradients in the DG formulation.

Remark 13. We can readily partition the OnlineDataset by quadrature points to enable parallel compu-
tation of the RB-RQ approximation.
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3.2. Element-wise RB-RQ formulation

We now analyze the online computational complexity and memory requirement of the element-wise RB-
RQ formulation discussed in Section 2.5. The element-wise RB-RQ formulation is most readily implemented
in a “non-intrusive” manner. Here, “non-intrusive” refers to the use of the existing elemental and facet
residual vector (and Jacobian matrix) evaluation routines of the (high-order) DG code. To describe the
procedure and analyze the associated computational cost, we introduce a few variables. We denote by N (κ)
the set of elements that neighbors κ; analogously, N (T̃h) denotes the set of elements that neighbors elements
in T̃h. In addition, we denote the number of volume, interior-facet, and boundary-facet quadrature points
in/on an element κ by Qκ,Ω = |Q(κ)|, Qκ,Σ = |Q(∂κ∩Σ)|, and Qκ,Γ = |Q(∂κ∩ Γ)|, respectively. We finally

recall that Cr
Λ and Cr′

Λ denote the cost to evaluate the residual rΛ(w, v;µ) and the Jacobian r′Λ(u;w, v;µ) at
a quadrature point on Λ ∈ {Ω,Σ,Γ}, as introduced in Section 3.1.

We evaluate the element-wise RB-RQ residual form (20) and the Jacobian form (23) using the following
“non-intrusive” assembly procedure:

• Residual evaluation. By way of preliminaries, we express the elemental residual associated with the
element κ as

rκ(uN , ϕi;µ) =
[
ΦT

κ rκ(uκ) +
∑

κ′∈N (κ)

ΦT
κ rκ,κ′(uκ,uκ′)

]
i

(26)

for i = 1, . . . , N , where Φκ ∈ RNκ×N is the elemental RB coefficient matrix, uκ = ΦκuN ∈ RNκ is
the elemental DG basis coefficients associated with the RB coefficients uN ∈ RN , rκ : RNκ → RNκ

is the DG volume residual operator associated with the element κ, rκ,κ′ : RNκ × RNκ → RNκ is the
DG facet residual operator associated with the facet shared by κ and κ′. We first evaluate rκ(uκ) and
rκ,κ′(uκ,uκ′), κ′ ∈ N (κ); this step requires the evaluation of the flux and source functions at all of the
element and facet quadrature points, which requires

∑
Λ Cr

ΛQκ,Λ operation, and the multiplication of
the element DG test functions and the flux and source values, which requires

∑
Λ 2NκQκ,Λ operations.

We then multiply the residual vectors with the elemental coefficient RB matrix Φκ, which requires
2NNκ operations. The cost per element is hence

∑
Λ(C

r
ΛQκ,Λ + 2NκQκ,Λ) + 2NNκ. The total cost is

hence (
∑

Λ(C
r
ΛQκ,Λ + 2NκQκ,Λ) + 2NNκ)Ñ

r
e , where Ñr

e = |T̃h|.

• Jacobian evaluation. By way of preliminaries, we express the elemental Jacobian associated with the
element κ as

r′κ(uN ;ϕj , ϕi;µ) =
[
ΦT

κ

∂rκ
∂uκ

∣∣∣∣
uκ

Φκ +
∑

κ′∈N (κ)

Φκ
∂rκ,κ′

∂uκ

∣∣∣∣
uκ,uκ′

Φκ +
∑

κ′∈N (κ)

Φκ
∂rκ,κ′

∂uκ′

∣∣∣∣
uκ,uκ′

Φκ′

]
ij
,

(27)
where ∂rκ

∂uκ
: RNκ → RNκ×Nκ is the DG volume Jacobian operator associated with the element κ,

and
∂rκ,κ′

∂uκ
: RNκ × RNκ → RNκ×Nκ and

∂rκ,κ′

∂uκ′
: RNκ × RNκ → RNκ×Nκ are the DG facet Jacobian

operator associated with the facet shared by κ and κ′. We first evaluate ∂rκ
∂uκ

∣∣∣
uκ

,
∂rκ,κ′

∂uκ

∣∣∣
uκ,uκ′

, and

∂rκ,κ′

∂uκ′

∣∣∣
uκ,uκ′

, κ′ ∈ N (κ); this step requires the evaluation of the flux and source Jacobians at all of

the element and facet quadrature points, which requires
∑

Λ Cr′

Λ Qκ,Λ operation, and the multiplica-
tion of the element DG test functions and the flux and source values, which requires

∑
Λ 2N2

κQκ,Λ

operations. We then multiply the Jacobian matrices with the elemental coefficient RB matrices Φκ

and Φκ′ , κ′ ∈ N (κ), which requires |N (κ)|(2N2Nκ + 2N2Nκ) operations. The cost per element is
hence

∑
Λ(C

r′

Λ Qκ,Λ + 2N2
κQκ,Λ) + |N (κ)|(2N2Nκ + 2N2Nκ). The total cost is hence (

∑
Λ(C

r′

Λ Qκ,Λ +

2N2
κQκ,Λ) + |N (κ)|(2N2Nκ + 2N2Nκ))Ñ

r
e .

The OnlineDataset required to evaluate the residual form (20) (and the output functional (21)) for the
element-wise RB-RQ formulation using the above non-intrusive proecedure is summarized in Table 2. We
also provide in Table 3 the typical number of degrees of freedom and quadrature points per element in two
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data • in memory requirement

RQ rules {κ̃•
q , ω̃

•
q ∈ R}Ñ

•
e

q=1 {r, j}
∑

• 2Ñ
•
e

RB coefficients {Φκ ∈ RNκ×N}κ∈N (T̃ •
h ) {r, j}

∑
• NκN |N (T̃ •

h )|

Table 2: Summary of the OnlineDataset for the element-wise RB-RQ formulation.

dimension p = 1 p = 2 p = 3 p = 4

#dof (Nκ)
2 12 24 40 60
3 20 50 100 175

#quad points (
∑

Λ Qκ,Λ)
2 21 45 77 117
3 81 275 637 1215

Table 3: The number of degrees of freedom and quadrature points per element under the following assumption: (i) complete
polynomial basis; (ii) quadrilateral (d = 2) and hexahedral (d = 3) element; (iii) volume and facet quadrature using the
(tensor-product) Gauss quadrature that integrates the degree 3p + pgeom polynomials exactly; (iv) isoparametric mapping so
that pgeom = p; and (iv) the Euler and Navier-Stokes equations so that m = d+ 2.

and three dimensions using complete polynomials. We use complete (instead of tensor-product) polynomials
for quadrilaterals and hexahedrals, since they require much fewer degrees of freedom for a given order of
accuracy; for instance, the p = 4 approximation in three dimensions require 625 degrees of freedom for
tensor-product polynomials but (only) 175 degrees of freedom for complete polynomials. The storage of the
RB coefficients dominate the memory requirement.

3.3. Comparisons of computational costs of point-wise and element-wise formulations

We now compare the computational complexity and memory requirement of the point-wise and element-
wise RB-RQ formulations. Tables 4a and 4b compare the cost to evaluate the RB-RQ residuals (12) and (20)
and the associated Jacobians. We first note that the number of function evaluations at quadrature points for
the point-wise and element-wise RB-RQ formulations are

∑
Λ Q̃r

Λ and
∑

Λ Qκ,ΛÑ
r
e , respectively. In practice,

as we will see in Section 5,
∑

Λ Q̃r
Λ is greater than Ñr

e but are of the same order (i.e., within a factor of 5).
In addition, as shown in Table 3, the quantity

∑
Λ Qκ,Λ can be large in three dimensions for a high p. As a

result,
∑

Λ Qκ,ΛÑ
r
e is typically a few orders of magnitude greater than

∑
Λ Q̃r

Λ, and the difference increases
with p.

We next compare the cost to multiply the flux and source functions evaluated at quadrature points with
the basis functions to form the residual vector. The cost for this operation for the point-wise and element-
wise RB-RQ formulations are

∑
Λ 2NQ̃r

Λ and
∑

Λ 2NκQκ,ΛÑ
r
e + 2NNκÑ

r
e , respectively. Again, in practice,

flux and source evaluation basis multiplication

point-wise
∑

Λ Cr
ΛQ̃

r
Λ

∑
Λ 2NQ̃r

Λ

element-wise
∑

Λ Cr
ΛQκ,ΛÑ

r
e

∑
Λ 2NκQκ,ΛÑ

r
e + 2NNκÑ

r
e

(a) residual evaluation cost

flux and source evaluation basis multiplication

point-wise
∑

Λ Cr′

Λ Q̃r
Λ

∑
Λ 2N2Q̃r

Λ

element-wise
∑

Λ Cr′

Λ Qκ,ΛÑ
r
e

∑
Λ 2N2

κQκ,ΛÑ
r
e + 2(N2Nκ +NN2

κ)|N (κ)|Ñr
e

(b) Jacobian evaluation cost

memory requirement

point-wise
∑

Λ m(d+ 1)Q̃r
ΛN

element-wise Nκ|N (T̃ r
h )|N

(c) approximate storage requirement

Table 4: Summary of computational cost for the point-wise and element-wise RB-RQ formulations.
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∑
Λ Q̃r

Λ is greater than Ñr
e but within a factor of 5. On the other hand, given typical values of Nκ and∑

Λ Qκ,Λ in Table 3, the quantity (
∑

Λ Qκ,Λ + N)Nκ is a few orders of magnitude greater than N . As a
result, the cost of basis multiplication to form the residual vector for the element-wise RB-RQ formulation,∑

Λ 2NκQκ,ΛÑ
r
e + 2NNκÑ

r
e , is typically a few orders of magnitude greater than that for the point-wise

RB-RQ formulation,
∑

Λ 2NQ̃r
Λ, and the difference again increases with p. The difference in the cost of basis

multiplication to form the Jacobian matrix is even greater due to the appearance of the squared terms.
We finally compare the memory requirement for the point-wise and element-wise RB-RQ formulations,

summarized in Table 4c. In both formulations, the storage of the RB dominates the overall memory re-
quirement, which requires

∑
•
∑

Λ m(d+ 1)Q̃•
ΛN and

∑
• Nκ|N (T̃ •

h )|N for the point-wise and element-wise

RB-RQ formulations, respectively. We first note that |N (T̃ •
h )| is greater than but of the same order as Ñr

e ,

which in turn is comparable to
∑

Λ Q̃r
Λ. On the other hand, given the typical value of Nκ in Table 3, m(d+1)

is substantially smaller than Nκ for a typical p, and the difference increases with p. As a result, the memory
requirement is also a few orders of magnitude smaller for the point-wise RB-RQ formulation than for the
element-wise RB-RQ formulation.

In summary, we conclude that both the computational complexity and memory requirement of the point-
wise RB-RQ formulation is a few orders of magnitude smaller than the element-wise RB-RQ formulation. In
addition, the difference in the efficiencies of the two formulations increases as p increases. In Section 5, we
will observe that the computational time for the point-wise RB-RQ formulation is 70–800× less than that
for the element-wise RB-RQ formulation, and the difference increases with p. We conclude this section with
a few remarks.

Remark 14. This section analyzes and compares the computational cost of point-wise and element-wise RB-
RQ formulations in terms of the number of floating-point operations and memory requirement. The analysis
does not account for differences in computational efficiency that may be achieved on a modern computer
with a deep memory hierarchy. However, both element-wise and point-wise formulations are amenable to an
efficient BLAS-based implementation. The element-wise RB-RQ formulation requires evaluation of the DG
residual and Jacobian on selected RQ elements, where each DG residual can be efficiently evaluated using
BLAS especially for a large p. The point-wise formulation can be interpreted as a (very) high-order DG
method with empirical RB and RQ, which enables efficient BLAS-based implementation; see Remarks 11
and 12.

Remark 15. While the detail of the cost analysis for the element-wise RB-RQ formulation is specific to the
formulation, other “discrete” or “non-intrusive” hyperreduction methods that work with the discrete DG
residual rκ in (26) suffer from the same efficiency loss when they are applied to high-order DG methods.
This is because the evaluation of even just one entry of the discrete DG residual rκ requires the evaluation
of the flux and source functions at all of the quadrature points in the element κ. As high-order DG methods
use a large number of quadrature points per element (as summarized in Table 3), the cost

∑
Λ Cr′

Λ Qκ,ΛÑ
r
e

is significant. The efficiency loss observed for the element-wise RB-RQ is a fundamental limitation shared
with all “discrete” or “non-intrusive” hyperreduction methods that work with the discrete DG residual rκ,
including DEIM [11], UDEIM [38], GNAT [7], and ECSW [15]. Moreover, the limitation applies not just to
high-order DG methods but more generally to high-order finite element methods. The finer decomposition of
the residual into quadrature points (instead of elements) is necessary to overcome this fundamental limitation,
as done in the point-wise RB-RQ formulation.

Remark 16. While the element-wise RB-RQ formulation is more computationally expensive than the point-
wise RB-RQ formulation, the former may provide stability advantages. Namely, with an appropriate choice
of the interface residual rmod

Σ (·, ·; ·) in (17), the ROM can inherit the energy stability of the underlying DG
method for any choice of (non-negative) RQ quadrature weights [41]. This, to our knowledge, cannot be
achieved using the point-wise RB-RQ formulation. However, in practice, we did not observe stability issues
with the point-wise RB-RQ formulation, at least for the problems considered in Section 5. (We also refer
to [9] for the development of a nonlinearly stable (i.e., entropy stable) ROMs for conservation laws.)
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4. Treatment of shape-parameterized problems

In this section we discuss the treatment of problems with parametrized shapes (i.e., geometries). Our
treatment follows the standard “reference domain” or “map-then-discretize” formulation to treat parametrized
geometries in model reduction; see, e.g., [31, 37, 12]. To begin, we introduce a mapping T (·;µ) : Ω0 → Ω(µ)
from the reference domain Ω0 to the transformed domain Ω(µ) parametrized by µ ∈ D. In practice, this
mapping may be defined using, for instance, free-form deformation [34] or, as we consider in Section 5.1,
cubic splines, where the parameter µ is associated with the coordinates of the control points. We then intro-
duce an approximation space VΩ(µ) on Ω(µ) and the associated semi-linear form R : VΩ(µ) ×VΩ(µ) ×D → R
such that

R(wµ, vµ;µ) =

∫
Ω(µ)

rΩ(wµ, vµ;µ)dx+

∫
Σ(µ)

rΣ(wµ, vµ;µ)ds+

∫
Γ(µ)

rΓ(wµ, vµ;µ)ds ∀wµ, vµ ∈ VΩ(µ),

where rΩ(·, ·; ·), rΣ(·, ·; ·), and rΓ(·, ·; ·) are given by (3), (4), and (5), respectively. The solution is uµ(µ) ∈
VΩ(µ) such that

R(uµ(µ), vµ;µ) = 0 ∀vµ ∈ VΩ(µ). (28)

This problem can be recast in the reference domain. Namely, we introduce an approximation space V on
Ω0 and the associated semi-linear form

R0(w, v;µ) =

∫
Ω0

rΩ0
(w, v;µ)dx+

∫
Σ0

rΣ0
(w, v;µ)ds+

∫
Γ0

rΓ0
(w, v;µ)ds ∀w, v,∈ V, (29)

where

rΩ0
(w, v;µ) :=

[
−∇µv : F (w;µ) +∇µv : K(w;µ)∇µw − v · S(w,∇µw;µ)

]
det(J(µ)), (30)

rΣ0
(w, v;µ) :=

[
[v]+− · F̂ (w+, w−; n̂µ, µ)− {K(w;µ)∇µv} : JwKµ

− JvKµ : {K(w;µ)(∇µw − σJvKµ)}
]
det(J(µ))∥J−T (µ)n̂0∥2,

(31)

rΓ0
(w, v;µ) :=

[
v · F̂Γ(w; n̂µ, µ)−K(w;µ)∇µv : ((w − uΓ(w;µ))⊗ n̂µ)

− (v ⊗ n̂µ) : G(K(w;µ)(∇µw − σ(w − uΓ(w;µ))⊗ n̂µ); n̂µ, µ)
]
det(J(µ))∥J−T (µ)n̂0∥2,

(32)

where ∇µv := ∇0vJ
−1(µ) is the transformed gradient, n̂µ := J−T n̂0/∥J−T n̂0∥2 is the transformed unit

normal vector, and J(µ) : Ω0 → Rd×d is the Jacobian of the transformation associated with T (µ) : Ω0 →
Ω(µ). The solution is u(µ) ∈ V such that

R(u(µ), v;µ) = 0 ∀v ∈ V. (33)

The two solutions, uµ(µ) ∈ VΩ(µ) given by (28) and u(µ) ∈ V given by (33), are related by u(µ) = uµ(µ) ◦
T (·;µ) over Ω0.

To solve problems with parametrized shapes, we apply the DG and RB-RQ formulations developed in
Section 2 to the transformed semilinear form (29) instead of (2). In other words, we simply replace the
original integrands (3), (4), and (5) with the transformed integrands (30), (31), and (32), respectively. For
the point-wise RB-RQ formulation, we can accomplish the transformation efficiently by transforming the
OnlineDataset described in Table 1. We summarize the required transformation in Table 5. We apply
the transformation to the OnlineDataset, once, before we solve the nonlinear problem (14) so that the
transformation need not be performed on-the-fly during the Newton iteration.
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data transformation Λ in
RQ points x̃•

Λ,q ← T (x̃•
Λ,q;µ) {Ω,Σ,Γ}

RQ weights
ρ̃•Ω,q ← det(J(x̃•

Λ,q;µ))ρ̃
•
Ω,q

ρ̃•Λ,q ← det(J(x̃•
Λ,q;µ))∥J−T (x̃•

Λ,q;µ)n̂
•
Λ,q∥2ρ̃•Λ,q {Σ,Γ}

Normals n̂•
Λ,q ← J−T (x̃•

Λ,q;µ)n̂
•
Λ,q/∥J−T (x̃•

Λ,q;µ)n̂
•
Λ,q∥2 {Σ,Γ}

RB gradients ∇ϕi(x̃
•
Λ,q)← ∇ϕi(x̃

•
Λ,q)J

−1(x̃•
Λ,q;µ) {Ω,Σ,Γ}

Table 5: Transformation of point-wise RB-RQ OnlineDataset.

(a) snapshot: low lift (b) snapshot: high lift

Figure 1: Example snapshots for the shape-parametrized airfoils. The 4× 2 cage represent the geometry control points.

5. Examples

5.1. Shape-parametrized airfoils: Euler

We first consider inviscid flow over a family of shape-parametrized airfoils based on the NACA0012
airfoil. The governing equation is the two-dimensional compressible Euler equations in entropy variables [5].
We fix the Mach number and the angle of attack to M∞ = 0.3 and α = 3◦, respectively. The airfoil is
transformed using cubic spline interpolation with 4×2 control points over the 1.6c×0.16c rectangular region
centered about the airfoil, where c is the chord. We allow each of the eight control points to move in the x2

direction by a distance of ∆x2 ∈ [−0.02c, 0.02c], which yields an eight-dimensional parameter space D ⊂ R8.
The quantity of interest is the lift coefficient, which takes on a value in [2.67 × 10−1, 5.90 × 10−1] over D.
Example solutions and geometry transformations are shown in Figure 1. We consider this two-dimensional
problem (i) because the element-wise and point-wise RQ rules are easier to visualize in two dimensions than
in three dimensions and (ii) to demonstrate the formulations for a problem with a relatively large number
of parameters.

We construct the element-wise and point-wise RB-RQ models as follows. For each p ∈ {1, 2, 3, 4}, we start
with the initial mesh that contains 150 elements and obtain the solution snapshots for 50 randomly chosen
parameter values in ΞPOD ⊂ D ⊂ R8 using anisotropic-h adaptive DG method, such that that lift error
estimate for each of the snapshots is less than 1.5× 10−3 (∼ 0.3%). We then apply POD to identify N = 18
most dominant modes; as we will see shortly, this results in RB approximations (without hyperreduction)
with the maximum error of ∼ 3×10−3 (∼ 0.5%). We will choose the EQP tolerance so that the combination
of the DG, RB, and RQ errors is less than 1%. We then apply the element-wise and point-wise EQP to
construct the element-wise and point-wise RB-RQ models, respectively. All computations are performed on
a 10-core workstation. Throughout Section 5, all CPU times are reported in core-seconds, which we compute
as the product of the wall-clock time in seconds and the number of cores used.

Table 6a summarizes the error in the RB, element-wise RB-RQ, and point-wise RB-RQ approximations
over a randomly chosen test parameter set Ξtest ̸= ΞPOD of size |Ξtest| = 10. Columns 2–4 report the mean,
standard deviation, and maximum error in the (non-hyperreduced) RB approximation with respect to the
FE approximation (i.e., |sh(µ) − sN (µ)|) over Ξtest. We observe that N = 18 POD modes is sufficient to
achieve the maximum lift error of ∼ 3×10−4 (∼ 0.5%). Columns 5–7 report the statistics of the output error
due to hyperreduction (i.e., |sN (µ)− s̃N (µ)|) for the element-wise RB-RQ approximations; we observe that
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non-hyperreduced RB element-wise RB-RQ point-wise RB-RQ
|sh − sN | × 104 |sN − s̃N | × 104 |sN − s̃N | × 104

p mean std max mean std max mean std max
1 18.14 12.21 34.07 8.37 4.10 17.95 1.36 0.90 2.79
2 9.78 8.04 27.93 1.14 1.42 4.76 1.07 1.00 2.64
3 13.00 7.17 23.88 0.79 0.53 1.96 1.91 2.10 7.38
4 14.96 11.37 35.85 1.45 0.82 2.68 3.00 2.70 9.52

(a) reduced-order model error summary

adaptive DG element-wise RB-RQ point-wise RB-RQ

p Nh Ne Qh time N Ñe time N Q̃ time
1 53,508 4,459 160,200 196 18 503 10.70 18 1,313 0.0883
2 8,808 367 18,198 26 18 258 8.55 18 1,030 0.0820
3 11,640 291 23,960 41 18 213 9.33 18 998 0.0793
4 19,980 333 33,804 72 18 232 14.30 18 951 0.0729

(b) full- and reduced-order model cost summary

constraint optimization EQP/FOM
p evaluation solve solve
1 118.7 325.4 2.27
2 15.0 76.5 3.52
3 15.5 60.7 1.87
4 31.0 85.1 1.62

(c) point-wise EQP training CPU time

Table 6: Summary of the model reduction for the Euler flow over shape-parametrized airfoils. All CPU times are in core-seconds,
which we define as the product of the wall-clock time in seconds and the number of cores used. The error summary in (a) shows
the statistics (i.e., mean, standard deviation, and maximum) of the DG vs (non-hyperreduced) RB output errors (columns
2–4), the RB vs element-wise RB-RQ output errors (columns 5–7), and the RB vs point-wise RB-RQ errors (columns 8–10)
over Ξtest. Note that the errors are scales by 104. The first five columns of (b) summarize the adaptive DG cost and show the
polynomial degree p, the number of degrees of freedom Nh, the number of elements Ne, the number of quadrature points Qh,
and the average CPU time to solve a single DG problem on the final adapted mesh (and not the time for the entire adaptation
procedure) over Ξtest. The next three columns summarize the element-wise RB-RQ cost and show the size of the RB N , the
number of reduced elements Ñe, and the average CPU time. The last three columns summarize the point-wise RB-RQ cost and
show the size of the RB N , the number of RQ points Q̃, and the average CPU time. The point-wise EQP training summary
in (c) shows the polynomial degree p, the CPU time to compute the constraints and solve the optimization problem, and the
ratio of the total EQP time to a single DG solve on the final adapted mesh.

the element-wise EQP provides a tight control of hyperreduction error, with the maximum error of ∼ 0.3%
over Ξtest. Similarly, Columns 8-10 show that the point-wise EQP the maximum error of ∼ 0.15% over Ξtest.

Having verified that the error due to the RB approximation and hyperreduction are well controlled, we
now assess the computational cost. Table 6b summarizes the computational cost of the p = 1, . . . , 4 adaptive
DG, element-wise RB-RQ, and point-wise RB-RQ approximations. Columns 2–5 show that the p > 1 DG
approximations are significantly more efficient than the p = 1 DG approximation both in terms of the number
of degrees of freedom Nh and the CPU time required to meet the target drag tolerance of 2 × 10−4. (The
CPU time is the time required to solve a single DG problem on the final adapted mesh; it is not the time
for the entire adaptation procedure.) We also observe that the p > 1 DG approximations require far fewer
elements than the p = 1 DG approximation; for instance, the p = 1 DG approximation requires Ne = 4459
elements to meet the target lift error tolerance, whereas the p = 3 DG approximation requires only Ne = 291
elements. The final adapted meshes are shown in Figure 2. We note that the p = 4 DG approximation
happens to use a larger number of elements than the p = 3 DG approximation due to the differences in the
sequence of meshes generated in the mesh adaptation process.

Columns 6–8 of Table 6b summarize the cost of the element-wise RB-RQ approximations. We first
observe that the fraction of elements used by RB-RQ varies significantly, from 11.3% (503 elements) for
p = 1 to ∼ 70% for p = 2, 3, 4. As also shown in Figure 2, the fraction increases with p because the number
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(a) p = 1 (11.3%) (b) p = 2 (70.3%)

(c) p = 3 (73.2%) (d) p = 4 (69.7%)

Figure 2: Adaptive DG meshes and the RQ elements (in red) used in the element-wise RB-RQ approximation in the vicinity of
the airfoil. The percentage indicates the fraction of the elements used in the element-wise RB-RQ approximation; i.e., Ñe/Ne.

of DG elements required to meet the target error tolerance is much smaller for the p > 1 approximations
than for the p = 1 approximation (∼ 300 vs 4459), while the number of element-wise RQ elements does not
decrease significantly (∼ 230 vs 503). In other words, as the adaptive high-order methods are efficient and
use a small number of elements, there is less opportunity for element-wise hyperreduction. This results in
a limited reduction in CPU time; the CPU time speedup is 18.3× for the p = 1 approximation, but is only
3.0–5.0× for p > 1 approximations. In fact, as the majority of the DG elements are used by the element-wise
RB-RQ, the residual evaluation time per PTC iteration for DG and RB-RQ are similar; however, we achieve
the moderate speedup as the linear system solved in each PTC iteration is smaller, and the number of PTC
iterations required to converge the nonlinear problem is fewer.

Columns 9–11 of Table 6b summarize the cost of the point-wise RB-RQ approximations. We first observe
that the number of RQ points used by the p = 1, . . . , 4 approximations are all ∼ 1000; the variation in the
number of RQ points is small. Figure 3 shows that the RQ points are clustered in the vicinity of the airfoil.
As the number of RQ points are similar for all p and the cost to evaluate the residual at a point is the
same for all p, the CPU times are also similar for all p. The CPU time speedup varies from 2220× for
p = 1 to 317× for p = 2; the difference is primarily due to the difference in the efficiency of the baseline
DG approximations. With respect to the most efficient DG method (p = 2), the speed up is 294–357× for
p = 1, . . . , 4. We also observe that the point-wise RB-RQ approximation is 104–196× more efficient than
the element-wise RB-RQ approximation.

We finally discuss the offline training cost for point-wise EQP, which is summarized in Table 6c. As
discussed, the EQP comprises two steps: the evaluation of the EQP constraints (24); and the solution of the
optimization problem given by Definition 4. Both steps are computed in parallel, and hence the reported CPU
time is the product of the wall-clock time and the number of cores (i.e., 10); see Remark 8 for a discussion
of the parallel NNLS solver used to solve the EQP problem. This problem with |ΞEQP| = |ΞPOD| = 50 and
N = 18 yields K = 900 manifold accuracy constraints, which is relatively large. As a result, the cost of
the EQP relative to a single FOM solve on the final adapted mesh varies from 1.62 to 3.52, which is higher
than other cases considered in this work. Nevertheless, the EQP time is less than 7% of the time required to
compute |ΞPOD| = 50 FOM snapshots, and hence the computation of the snapshots dominates the overall
offline training time.
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(a) p = 1 (0.82%) (b) p = 2 (5.7%)

(c) p = 3 (4.2%) (d) p = 4 (2.8%)

Figure 3: Adaptive DG meshes and the DG quadrature points (in blue) and the RQ points (in red) used in the point-wise
RB-RQ approximation in the vicinity of the airfoil. The percentage indicates the fraction of quadrature points used in the
point-wise RB-RQ approximation; i.e., Q̃/Qh.

(a) pressure (b) Mach

Figure 4: Laminar Navier-Stokes flow over the BTC0 body at α = 5◦ and M∞ = 0.5.

5.2. ADIGMA BTC0: laminar Navier-Stokes

We next consider a parametrized variant of the laminar BTC0 test case introduced in the ADIGMA
project, a European initiative to develop adaptive higher-order methods for aerospace applications [23].
The case was also a test case in the First International Workshop on High-order CFD Methods [40]. The
governing equation is the three-dimensional compressible Navier-Stokes equations in entropy variables [5].
The parameters are the angle of attack α ∈ [0◦, 5◦] and the freestream Mach number M∞ ∈ [0.3, 0.5];
the Reynolds number is fixed at Re = 5,000. The quantity of interest is drag, which takes on a value in
[6.40× 10−2, 6.92× 10−2] over D. An example solution is shown in Figure 4.

We construct the element-wise and point-wise RB-RQ models as follows. For each p ∈ {1, 2, 3, 4}, we start
with a coarse initial mesh that contains 768 elements and obtain the solution snapshots for 4× 4 parameter
values in ΞPOD ⊂ D ⊂ R2 using an anisotropic-h adaptive DG method, so that that drag error estimate is
less than 2 × 10−4 (∼ 0.3%). We then apply POD to identify N = 10 most dominant modes; as we will
see shortly, this results in the RB approximation with the maximum error of ∼ 2 × 10−4 (∼ 0.3%). We
will choose the EQP tolerance so that the combination of the DG, RB, and RQ errors is less than 1%. We
then apply the element-wise and point-wise EQP procedures to construct the element-wise and point-wise
RB-RQ models. All computations are performed on a 80-core cluster.

Table 7a summarizes the error in the RB, element-wise RB-RQ, and point-wise RB-RQ approximations
over a randomly chosen test parameter set Ξtest ̸= ΞPOD of size |Ξtest| = 10. Columns 2–4 report the drag
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non-hyperreduced RB element-wise RB-RQ point-wise RB-RQ
|sh − sN | × 105 |sN − s̃N | × 105 |sN − s̃N | × 105

p mean std max mean std max mean std max
1 8.22 4.23 14.73 5.84 2.64 9.74 2.84 1.99 7.68
2 7.88 4.43 14.54 1.92 0.94 3.46 0.56 0.43 1.41
3 11.02 6.06 21.42 1.65 1.27 3.93 2.78 3.39 8.94
4 13.35 7.77 25.30 1.11 0.65 2.38 3.39 3.08 11.31

(a) reduced-order model error summary

adaptive DG element-wise RB-RQ point-wise RB-RQ

p Nh Ne Qh time N Ñe time N Q̃ time
1 6,477,280 323,864 37,984,704 104,800 10 42 3.59 10 158 0.0507
2 198,700 3,974 1,356,804 1,808 10 49 11.00 10 149 0.0454
3 142,800 1,428 733,873 1,624 10 40 13.50 10 155 0.0443
4 181,650 1,038 1,046,358 3,224 10 45 36.40 10 160 0.0484

(b) full- and reduced-order model cost summary

constraint optimization EQP/FOM
p evaluation solve solve
1 46,128 1,643.3 0.456
2 1,634 87.0 0.952
3 709 55.0 0.470
4 1,143 72.0 0.377

(c) point-wise EQP training time

Table 7: Summary of the BTC0 laminar Navier-Stokes flow case. See the caption of Table 6 for the description of the entries.

error for the (non-hyperreduced) RB approximations. We observe that the N = 10 RB is sufficient to achieve
the maximum drag error of ∼ 2× 10−4 (∼ 0.3%). Columns 5–7 and 8–10 report the statistics of the output
error due to hyperreduction for the element-wise and point-wise RB-RQ approximations, respectively. We
observe that the maximum hyperreduction error is ∼ 0.15%.

Having verified that the errors due to the RB and RQ approximations are well controlled, we now assess
the computational cost. Table 7b summarizes the cost of the p = 1, . . . , 4 adaptive DG, element-wise RB-RQ,
and point-wise RB-RQ approximations. Columns 2–5 show that the p > 1 approximations are significantly
more efficient than the p = 1 approximation. For this problem, the p = 3 approximation is most efficient;
compared to the p = 1 approximation, the p = 3 approximation requires 45× fewer degrees of freedom
(6,477,280 vs 142,800) and 65× less CPU time (104,800 vs 1,624). In the context of model reduction,
adaptive higher-order methods hence significantly reduces the time required to compute solution snapshots
in the offline stage.

Columns 4–6 of Table 7b summarize the cost of the element-wise RB-RQ approximations. We observe
that the element-wise EQP selects Ñe ≈ 45 RQ elements for all p. This is sufficient to control the output
error due to hyperreduction to 1× 10−4 (∼0.15%) over Ξtest. We also observe that the CPU time increases
with p, as the number of degrees of freedom, quadrature points, and hence operations per element increases
with p; this effect is more pronounced in three-dimensions than in two-dimension, as expected from Table 3
in Section 3. Due to the higher RB-RQ computational cost and the lower adaptive DG computational cost,
the CPU time speedup decreases from 29,000× for p = 1 to merely 89× for p = 4.

Columns 9–11 of Table 7b summarize the cost of the point-wise RB-RQ approximations. We observe
that the point-wise EQP selects Q̃ ≈ 155 RQ points for all p, which is sufficient to control the output error
due to hyperreduction to ∼0.15% over Ξtest. As the number of RQ points are similar for all p and the cost
to evaluate the residual at a point is the same for all p, the CPU time are also similar for all p. The CPU
speedup with respect to the most efficient adaptive DG method (p = 3) is ∼37,000× and the least efficient
adaptive DG method (p = 1) is ∼2,400,000×. We also observe that, compared to the element-wise RB-RQ
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(a) pressure (b) Mach

Figure 5: RANS flow over the BTC0 body at α = 5◦ and M∞ = 0.5.

approximations, the point-wise RB-RQ approximations are 71× (p = 1) to 750× (p = 4) more efficient; the
improvement increases with p as the element-wise RB-RQ becomes increasingly less efficient, as anticipated
from the analyses in Section 3.

We finally discuss the offline training cost for point-wise EQP, which is summarized in Table 7c. As
before, the reported CPU time is the product of the wall-clock time and the number of cores (i.e., 80). This
problem with |ΞEQP| = |ΞPOD| = 16 and N = 10 yields K = 160 manifold accuracy constraints, which is
smaller than that for the shape-parametrized airfoil problem considered in Section 5.1. The time for the
EQP relative to a single FOM solve on the final adapted mesh is hence lower than the earlier case, varying
from 0.37 to 0.95. The EQP time is less than 6% of the time required to compute all |ΞPOD| = 16 FOM
snapshots. It is worth noting that the parallel NNLS solver, discussed in Remark 8, is effective even for the
EQP problem with up to 38 million quadrature points.

5.3. ADIGMA BTC0: Reynolds-averaged Navier-Stokes

We finally consider a parametrized variant of the turbulent ADIGMA BTC0 test case [23], which was also
a test case in the First International Workshop on High-order CFD Methods [40]. The governing equation is
the three-dimensional compressible RANS equations with the Spalart-Allmaras turbulence model with the
so-called SA-neg fix [36, 1]. The parameters are the angle of attack α ∈ [0◦, 5◦], and the freestream Mach
number M∞ ∈ [0.3, 0.5]; the Reynolds number is fixed at Re = 106. The quantity of interest is drag, which
takes on a value in [1.05 × 10−2, 1.26 × 10−2] over D. An example solution is shown in Figure 5; while the
pressure distribution is similar to the laminar case considered in Section 5.2, the boundary layer is noticeably
thinner in this higher Reynolds-number flow.

We construct the element-wise and point-wise RB-RQ models as follows. For each p ∈ {2, 3, 4}, we start
with a coarse initial mesh that contains 832 elements and obtain the solution snapshots for 4× 4 parameter
values in ΞPOD ⊂ D ⊂ R2 using an anisotropic-h adaptive DG method, so that that drag error estimate is
less than 3× 10−5 (∼ 0.3%); for the p = 1 approximation, we use the drag error tolerance of 6× 10−5 as we
are unable to meet the target drag error tolerance of 3 × 10−5 on the 80-core cluster in a reasonable time.
We then apply POD to identify N = 7 most dominant modes; as we will see shortly, this results in the RB
approximation with the maximum error of ∼ 3× 10−5 (∼ 0.3%). We will choose the EQP tolerance so that
the combination of DG, RB, and RQ errors is less than 1%. We then apply the element-wise and point-wise
EQP procedures to construct the element-wise and point-wise RB-RQ models.

Table 8 summarizes the behavior of the adaptive DG approximations and the element-wise and point-wise
RB-RQ approximations. As the observations for this RANS case are similar to the laminar case considered in
Section 5.2, we summarize the key takeaways. Table 8a confirms that the N = 7 RB approximations achieve
the maximum drag error of ∼ 0.3% and the element-wise and point-wise RB-RQ method control the error
due to hyperreduction to ∼ 0.15% over the random test set of size |Ξtest| = 10. Columns 2–5 of Table 8b
show that the p > 1 discretizations are significantly more efficient than the p = 1 discretization. In fact, as
discussed, we were unable to meet the target drag error tolerance of 3× 10−5 using the p = 1 discretization
on the 80-core cluster in a reasonable time and hence resorted to using a looser tolerance of 6×10−5. Despite
achieving the tighter tolerance, the p = 3 discretization compared to the p = 1 discretization requires 21×
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non-hyperreduced RB element-wise RB-RQ point-wise RB-RQ
|sh − sN | × 105 |sN − s̃N | × 105 |sN − s̃N | × 105

p mean std max mean std max mean std max
1∗ 0.66∗ 0.43∗ 1.32∗ 0.28∗ 0.22∗ 0.72∗ 0.58∗ 0.35∗ 1.23∗

2 0.91 0.64 2.10 0.36 0.22 0.82 0.44 0.30 0.82
3 1.32 0.94 2.49 0.34 0.35 1.19 0.70 0.61 1.64
4 1.33 0.71 2.57 0.50 0.34 1.23 0.61 0.79 2.03

(a) reduced-order model error summary

adaptive DG element-wise RB-RQ point-wise RB-RQ

p Nh Ne Qh time N Ñe time N Q̃ time
1∗ 5,660,208∗ 235,842∗ 27,783,392∗ 170,400∗ 7∗ 34∗ 7.43∗ 7∗ 78∗ 0.0737∗

2 389,100 6,485 2,203,776 8,640 7 32 17.20 7 113 0.1020
3 273,000 2,275 1,168,993 6,360 7 34 31.10 7 113 0.1070
4 239,190 1,139 1,147,284 13,200 7 29 65.10 7 126 0.0910

(b) full- and reduced-order model cost summary

constraint optimization EQP/FOM
p evaluation solve solve
1∗ 44,493∗ 259.2∗ 0.263∗

2 4,103 71.8 0.483
3 1,820 51.4 0.294
4 1,541 56.2 0.121

(c) point-wise EQP training time

Table 8: Summary of the BTC0 RANS flow case. See the caption of Table 6 for the description of the entries. ∗The adaptive
DG tolerance is 6× 10−5 for p = 1 instead of 3× 10−5 used for p > 1.

fewer degrees of freedom (5,660,208 vs 273,000) and 27× lower CPU time (170,400 vs 6,360). The element-
wise RB-RQ becomes increasingly less efficient with p, and the CPU time speedup with respect to the most
efficient DG method (p = 3) varies from 860× for p = 1 to merely ∼ 98× for p = 4. On the other hand, the
point-wise RB-RQ achieves CPU time that only weakly varies with p, and its speedup with respect to the
most efficient DG method (p = 3) is ∼ 63,000× and the least efficient DG method (p = 1) is ∼ 1,600,000×.
Finally, Table 8c shows that, despite involving tens of millions of quadrature points, the offline training time
for point-wise EQP is a fraction of a single FOM solve (12%–48%), and is much smaller than the CPU time
required to compute all 16 FOM snapshots (1%–3%).

6. Summary and perspectives

This work develops and assesses hyperreduction methods for high-order DG discretization of nonlinear
PDEs. The two methods considered are based on element-wise and point-wise RQ. Both the theoretical
analysis in Section 3 and the numerical assessment in Section 5 show that the element-wise RB-RQ formula-
tion becomes increasingly less efficient as the underlying DG polynomial degree increases, as the number of
degrees of freedom and quadrature points per element increases. In the view of Remark 15, this limitation
of the element-wise RB-RQ formulation is shared with other discrete hyperreduction methods that works
with discrete high-order DG residual, and more generally high-order finite element residual. On the other
hand, the point-wise RB-RQ formulation achieves p-independent online computational cost; in addition,
the method is a few orders of magnitude more efficient than the element-wise counterpart for any p. We
also demonstrate that, even for point-wise EQP which involves tens of millions of DG quadrature points,
the offline cost for EQP is a small fraction of the FOM snapshot computation cost, thanks to an efficient
parallel EQP solver. The results demonstrate that, while the less intrusive element-wise (or more generally
discrete) hyperreduction methods may be attractive from the implementation point of view, a more intrusive
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point-wise formulation which provides a finer decomposition of the residual may be necessary for an efficient
reduction of high-order DG — and more generally high-order finite element — methods.
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