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We present a projection-based model reduction method for efficient solution of compu-
tational fluid dynamics problems in many-query scenarios, which require the evaluation of
quantities of interest for many different flow-condition, geometry, or model parameters. Our
goal is to construct reduced models that provide rapid and accurate output predictions and
the associated a posteriori error estimates. To achieve this goal, our framework builds on the
following key ingredients of adaptive high-order methods: the discontinous Galerkin method,
which provides stability for conservation laws; the dual-weighted residual method, which
provides effective output a posteriori error estimates. In addition, we incorporate two model re-
duction ingredients: reduced bases, which provide low-dimensional empirical approximation
spaces tailored for the specific parametrized problem; reduced quadrature rules, which are
the tailored quadrature rules for the reduced bases constructed using an empirical quadrature
procedure. Both reduced bases and reduced quadrature rules are identified through an effi-
cient and automatic offline training procedure that is informed by the behavior of a posteriori
error estimates. We demonstrate the efficacy and versatility of the model reduction approach
in four aerodynamics problems: Reynolds-averaged Navier-Stokes (RANS) flow over the ON-
ERAM6 wing with the Mach number and the angle of attack as the parameters; laminar flow
over shape-parametrized airfoils; uncertainty quantification of RANS flow with variabilities
in the empirical parameters of the Spalart-Allmaras turbulence model; and unsteady flow
past NACA0012 with the Reynolds number as the parameter. The reduced models achieve
∼300–20000 speedup at less than 1% drag error level relative to an adaptive DG method and
provide effective error estimates.

I. Introduction
Many engineering scenarios require the evaluation of quantities of interest (i.e., output) — such as lift and drag— for

different configurations (i.e., input) — such as flow conditions and geometries. Our interest is in many-query scenarios,
which require the input-output evaluation for a large number of parameter values. Examples of many-query scenarios in
aerodynamics include flight parameter sweep, design optimization, and uncertainty quantification. One approach to
address many-query scenarios is to consider model reduction based on offline-online computational decomposition. In
the offline stage, we train a reduced model through the exploration of the parameter space; the offline stage is expensive
but is performed once. In the online stage, we invoke the reduced model to rapidly evaluate the output for many different
configurations. Our emphasis in this work is the application of such a model reduction framework to computational
fluid dynamics (CFD) problems in aerodynamics.

Over the past two decades, significant progress has been made in the area of projection-based model reduction for
parametrized partial differential equations (PDEs) [1–3]. (We note there are non-projection-based approaches to model
reduction [4, 5]; however, the present work focuses on projection-based model reduction.) For simple “textbook” linear
elliptic PDEs, the technique is mature and can routinely reduce the computational cost by several orders of magnitude
while ensuring the accuracy using reliable error bounds [1, 3]. However, there still remains a number of challenges
to enable systematic model reduction of aerodynamic CFD problems, which exhibit strong nonlinearity, convection
dominance, limited regularity, and a wide range of scales [2, 6].

To address these challenges, our work appeals to two of the key ingredients of adaptive high-order CFD methods.
The first is the discontinuous Galerkin (DG) method [7–9], which provides stability for conservation laws and flexibility
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for ℎ? refinement. The second is the dual weighted residual (DWR) method [10, 11], which provides a posteriori error
estimates for quantities of interest. These two methods have been successfully combined to provide efficient and reliable
solution of many complex CFD problems [12]. However, while suited for single- or few-query analysis, these methods
are not specifically tailored for many-query scenarios, which require CFD analysis for hundreds or thousands of different
configurations.

To enable efficientmany-query analysis, we introduce two additional ingredients of projection-based model reduction:
reduced bases and reduced quadrature. A reduced basis is a set of empirical functions that is specifically tailored to
approximate the parametric manifold, the set of solutions encountered as the input parameters are varied. Unlike the
piecewise polynomials used in standard DG methods, the reduced basis have a global support, are specifically designed
for the parametric manifold, and are constructed by solving the DG problem for a few judiciously chosen parameter
values in the offline training stage [2, 3, 13]. Because the basis are tailored for the parametric manifold, we can typically
provide an accurate approximation (e.g., 1% error) using much fewer reduced basis functions (∼10–100) than DG basis
functions (∼104–107).

Reduced quadrature rules are quadrature rules tailored for reduced bases. The key observation is that, because
there are much fewer reduced basis functions, it should be possible to significantly reduce the number of quadrature
points in the DG method without compromising the accuracy of the residual evaluation. There exists a number
of model reduction approaches for nonlinear PDEs that appeal to this observation, including the optimal cubature
procedure [14] and energy conserving sampling and weighting (ECSW) [15, 16]. In this work, we construct these
reduced quadrature rules using the empirical quadrature procedure (EQP) which has been devised for (continuous)
finite element methods [17, 18] and for element-wise interpretation of DG methods [19, 20]. The present work extends
the procedure to quadrature-point-wise interpretation of DG methods. Unlike Gauss-like quadrature rules used in
standard DG methods, the empirical quadrature rules are sparse, are specifically designed for the reduced basis, and
are constructed by solving accuracy-constrained sparse quadrature optimization problems in the offline training stage.
Because the rule is tailored for the reduced basis, we can typically provide accurate integration with much fewer
quadrature points (∼10–1000) than DG quadrature points (∼104–107).

In our reduced-basis reduced-quadrature (RB-RQ) model reduction framework, both reduced bases and reduced
quadrature rules are identified in the offline training stage. We specifically identify appropriate bases and quadrature
rules for both the flow problem and the adjoint problem that arise in the DWR error estimate, so that we can provide not
only rapid output predictions but also a posteriori error estimates. As the number of basis functions and quadrature
points are reduced by several orders of magnitude, the reduced models reduce the computational cost for output
predictions and error estimates by several orders of magnitude.

The previous works on projection-based model reduction of parametrized (nonlinear) aerodynamics problems
include the works by LeGresley and Alonso [21–23], Washabaugh et al [24], and Zimmermann and Görtz [25, 26];
see also review papers [27, 28]. We also refer to [4] for earlier works on linearized aerodynamics problems. The
key differentiator of the current work is that our reduced models are equipped with online efficient a posteriori error
estimates, which allows us to construct reduced models that meet the user-prescribed output error tolerance over the
parameter range by judiciously controlling various sources of error in the model reduction process in an automated
manner.

The contributions of this work are twofold. First, we develop a quadrature-point-based DG empirical quadrature
procedure; the formulation provides considerable speedup relative to the element-based DG RB-EQP formulation
developed in [19]. Second, we demonstrate the efficacy and versatility of the framework in four aerodynamics problems:
Reynolds-averaged Navier-Stokes (RANS) flow over the ONERA M6 wing with the Mach number and the angle of
attack as the parameters; laminar flow over shape-parametrized airfoils; uncertainty quantification of RANS flow with
variabilities in the empirical parameters of the Spalart-Allmaras turbulence model; and unsteady flow past NACA0012
with the Reynolds number as the parameter. In the offline stage, a reduced model is trained in a fully automated manner
for each problem. In the online stage, the reduced models achieve ∼300–20000 speedup at 1% drag error level relative
to adaptive DG method and provide effective error estimates.

II. Formulation

A. Problem statement
We introduce a mathematical form of the parametrized CFD problems considered throughout this work. We first

introduce a %-dimensional parameter domain D ⊂ R% and a 3-dimensional spatial domain Ω ⊂ R3 . The system of <
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conservation laws that we consider throughout this work is of the form

mC�0 (D; `) + ∇ · � (D,∇D; `) = ((D,∇D; `) in Ω,

where �0 : R<×D → R< is the temporal flux, � : R<×R3×<×D → R3×< is the spatial flux, and ( : R<×R3×<×D →
R< is the (in general gradient-dependent) source function. Each of these terms may depend on the parameter ` ∈ D.
The conservation law is augmented with appropriate (parametrized) boundary conditions to yield a boundary value
problem. Given the solution, we evaluate the associated functional output

B(`) = � (D(`); `),

where � is some output functional. Our goal is to construct projection-based reduced models which provide efficient
approximation of the input-output map D 3 ` ↦→ B(`) ∈ R and equip the output with an a posteriori error estimate.

B. Discontinuous Galerkin method
We now review the elements of DG methods that are necessary to describe our model-reduction approach. In

particular, as the approach can be illustrated more concisely without loss of generality for steady hyperbolic systems
(i.e., without the unsteady, viscous, or source terms), we restrict our presentation to steady hyperbolic systems for the
rest of Section II. The extensions of the framework to other classes of problems is discussed in Section III. For a more
complete presentation of DG methods, we refer to [7, 9, 29].

To begin, we introduce a triangulation Tℎ of the domain Ω. We denote the set of interior and boundary facets
of Tℎ by Γ� and Γ�, respectively; i.e., Γ� ≡ ⋃

^∈Tℎ m^ \ mΩ and Γ� ≡ ⋃
^∈Tℎ (m^ ∩ mΩ). We then introduce a DG

approximation space
Vℎ ≡ {Eℎ ∈ !2 (Ω)< | Eℎ |^ ∈ P? (^), ∀^ ∈ Tℎ},

where !2 (Ω) is the space of square integrable functions over Ω, and P? (^) is the space of polynomials of degree at
most ? over ^. The functions in the space Vℎ are in general discontinuous. We denote the dimension of the DG
approximation space by #ℎ ≡ dim(Vℎ).

We next introduce the (parametrized) DG residual form Aexact
ℎ

: Vℎ ×Vℎ × D → R such that

Aexact
ℎ (Fℎ , Eℎ; `) ≡ −

∫
Ω

∇Eℎ : � (Fℎ; `)3G +
∫
Γ�

(E+ℎ − E
−
ℎ) · �̂ (F

+
ℎ , F

−
ℎ , =̂; `)3B +

∫
Γ�

E+ℎ · �̂� (F
+
ℎ , =̂; `)3B, (1)

where � : R< × D → R3×< is the spatial flux, �̂ : R< × R< × R3 × D → R< is the interior numerical flux, and
�̂� : R< ×R3 ×D → R< is the boundary numerical flux that incorporates appropriate boundary conditions. Following
the convention in DG literature, the notation E+

ℎ
and E−

ℎ
in the facet integrals denote the evaluation of the function

Eℎ ∈ Vℎ on the + and − sides of the facet, respectively. In this work, we use Roe’s approximate Riemann solver [30] for
the numerical flux. Similarly, the DG output functional �exact

ℎ
: Vℎ × D → R is given by

�exact
ℎ (Fℎ; `) ≡

∫
Ω

9Ω (Fℎ; `)3G +
∫
Γ�

9Γ� (F+ℎ ,∇F
+
ℎ; `)3G, (2)

where 9Ω : R< × D → R is the domain output function, and 9Γ� : R< × R3×< × D → R is the boundary output
function.

In practice, we approximate the semi-linear form (1) using a quadrature rule. To this end, we introduce (Gauss-like)
quadrature rules (GΩ@ , dΩ@ )

&Ω
@=1, (G

Γ�
@ , d

Γ�
@ )

&Γ�
@=1 , and (G

Γ�
@ , d

Γ�
@ )

&Γ�
@=1 for the domain, interior facet, and boundary facet

integration, respectively. The application of the quadrature rules to the semi-linear form (1) yields

Aℎ (Fℎ , Eℎ; `) ≡
&Ω∑
@=1

dΩ@ [−∇Eℎ : � (Fℎ)]GΩ@ +
&Γ�∑
@=1

dΓ�@ [(E+ℎ − E
−
ℎ) · �̂ (D

+
ℎ , D
−
ℎ; =̂)]

G
Γ�
@
+
&Γ�∑
@=1

dΓ�@ [E+ℎ · �̂� (D
+
ℎ; =̂)]

G
Γ�
@
. (3)

Similarly, the approximation of the quadrature rules to the output functional (2) yields

�ℎ (Fℎ; `) ≡
&Ω∑
@=1

dΩ@ [ 9Ω (Fℎ; `)]GΩ@ +
&Γ�∑
@=1

dΓ�@ [ 9Γ� (F+ℎ ,∇F
+
ℎ; `)]

G
Γ�
@
. (4)
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In this work, we choose the domain and facet quadrature rules that exactly integrates polynomials of degree of at least
4?.

The DG approximation of the conservation laws is as follows: given ` ∈ D, find Dℎ (`) ∈ Vℎ such that

Aℎ (Dℎ (`), Eℎ; `) = 0 ∀Eℎ ∈ Vℎ , (5)

and then evaluate the output
Bℎ (`) ≡ �ℎ (Dℎ (`); `).

Because dim(Vℎ) = #ℎ , the weak statement (5) yields a system of #ℎ nonlinear equations with #ℎ unknowns. In this
work we solve the system (5) using Newton’s method with pseudo-time continuation and line search [31], where the
linear system is solved using GMRES [32] preconditioned with an block-ILU(0) factorization with minimum discarded
fill ordering [33]. The computational cost of DG approximation depends on two factors:

1) The first is the dimension of the approximation space #ℎ = dim(Vℎ). The solution of the DG system using a
Newton-like method requires multiple solutions of linear systems of the size #ℎ. The computational cost is
hence O(#•

ℎ
), for some exponent greater than or equal to 1.

2) The second is the number of quadrature points &ℎ ≡ &Ω +&Γ� +&Γ� . The evaluation of the DG residual (3)
and the associated Jacobian requires the evaluation of the fluxes and basis functions at all quadrature points. The
residual evaluation cost is hence O(&ℎ).

In the next two sections, we present a projection-based model reduction technique to significantly reduce #ℎ and &ℎ .

C. Reduction of approximation space: reduced basis (RB) spaces
We now discuss the construction of reduced approximation spaces for parametrized problems. In particular, we

construct a #-dimensional reduced basis spaceV# ⊂ Vℎ that is specifically tailored to approximate the parametric
manifold {D# (`)}`∈D for # � #ℎ . To this end, we introduce a RB training parameter set Ξrb ≡ {`1, . . . , `# } ⊂ D,
which comprises # judiciously chosen training parameters for the reduced basis; we detail the systematic construction
of Ξrb in Section II.F, and assume it is given for now. The associated RB space is

V# = span{Dℎ (`)}`∈Ξrb .

By constructionV# ⊂ Vℎ and dim(V# ) = # . For convenience, we also introduce the reduced basis {q8 ∈ Vℎ}#8=1 such
that span({q8}#8=1) = V# . The reduced basis allows us associate any function E# ∈ V# with a generalized coordinate
v# ∈ R# such that E# =

∑#
8=1 v# ,8q8 . An example of a reduced basis (for the problem considered in Section IV.B) is

shown in Figure 1. The hierarchical basis captures the dominant features that the parametrized problem exhibit as the
parameter is varied.

Given a RB spaceV# , we now define the associated RB problem: given ` ∈ D, find the RB solution D# (`) ∈ V#
such that

Aℎ (D# (`), E# ; `) = 0 ∀E# ∈ V# , (6)

and evaluate the RB output
B# (`) = �ℎ (D# (`); `).

Because dim(V# ) = # , the RB problem (6) is a system of # nonlinear equations with # unknowns, where # � #ℎ.
The system is solved using a Newton-like method. While the dimensionality of the problem has been reduced, the
solution of RB problem (6) is still expensive because the evaluation of the residual (3) (and the Jacobian for a Newton-like
method) scales with the number of quadrature points &ℎ = O(#ℎ) (and not O(#)).

D. Reduction of quadrature rule: reduced quadrature (RQ) using empirical quadrature procedure (EQP)
We now discuss the construction of RQ rules, which allow us to approximate the residual (3) and Jacobian in O(#)

operations, using the empirical quadrature procedure [17, 18]. Specifically, our goal is to identify a sparse quadrature
rule (G̃Ω@ , d̃Ω@ )

&̃Ω
@=1, (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , and (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 for the domain, interior facet, and boundary facet integration so

that &̃Ω � &Ω, &̃Γ� � &Γ� , and &̃Γ� � &Γ� , and then to construct a RQ semi-linear form

Ãℎ (Fℎ , Eℎ; `) ≡
&̃Ω∑
@=1

d̃Ω@ [−∇Eℎ : � (Fℎ)] G̃Ω@ +
&̃Γ�∑
@=1

d̃Γ�@ [(E+ℎ − E
−
ℎ) · �̂ (D

+
ℎ , D
−
ℎ; =̂)]

G̃
Γ�
@
+
&̃Γ�∑
@=1

d̃Γ�@ [E+ℎ · �̂� (D
+
ℎ; =̂)]

G̃
Γ�
@
. (7)
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(a) first RB function: q1 (b) second RB function: q2

(c) third RB function: q3 (d) fourth RB function: q4

Fig. 1 An example of a reduced basis: the first four basis functions for the parametrized shape transformation
problem considered in Section IV.B.

The total number of quadrature points is &̃ ≡ &̃Ω + &̃Γ� + &̃Γ� .
We wish the RQ rules to satisfy two properties. First, we wish the rules to be sparse so that &̃ � &ℎ; this condition

ensures rapid evaluation of the residual. Second, we wish the rules to be accurate so that Ãℎ (·, ·; `) ≈ Aℎ (·, ·; `); this
condition ensures that the solution associated with the RQ rule is accurate. Specifically, we wish the error in the output
(i.e., the quantity of interest) due to the use of the RQ rule to be less than some user-prescribed tolerance Xeqp. We cast
this problem of finding a sparse quadrature rule that satisfies the output accuracy constraint as a constrained optimization
problem.

We now deduce appropriate accuracy constraints for the optimization problem. To this end, we denote by
D̃# (`) ∈ V# the RB-RQ solution associated with the RQ rules; i.e., D̃# (`) ∈ V# satisfies Ãℎ (D̃# (`), E# ; `) = 0
∀E# ∈ V# . We appeal to the dual-weighted residual error relationship [10, 20] to obtain

|�ℎ (D# (`); `) − �ℎ (D̃# (`); `) | ≈ |Aℎ (D# (`), I# (`); `) − Ãℎ (D# (`), I# (`); `) |, (8)

where the dual solution I# (`) ∈ V# satisfies

A ′ℎ (D# (`);F# (`), I# (`)) = �
′
ℎ (D# (`);F# (`)) ∀I# ∈ V# .

Hence, in order to control the error in the output due to the use of the reduced quadrature, we must control the error in
the dual-weighted residual (8).

We now solve the RQ optimization problem using the EQP [17, 18]. We first introduce a training parameter set
Ξeqp ≡ { ˆ̀1, . . . , ˆ̀#eqp } ⊂ D. We denote the associate training state set by*eqp ≡ {D̂1

#
, . . . , D̂

#eqp
#
} and the training dual

state set by /eqp ≡ {Î1
#
, . . . , Î

#eqp
#
}. Our constrained problem optimization is as follows: find sparse and non-negative

quadrature weights

( d̂Ω,★, d̂Γ� ,★, d̂Γ� ,★) = arg min
(d̂Ω ,d̂Γ� ,d̂Γ� ) ∈R&Ω≥0 ×R

&Γ�
≥0 ×R

&Γ�
≥0

(‖ d̂Ω‖0 + ‖ d̂Γ� ‖0 + ‖ d̂Γ� ‖0) (9)
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(a) empirical quadrature points for {qpr
8
}3
8=1 (b) empirical quadrature points for {qpr

8
}13
8=1

Fig. 2 Examples of empirical quadrature points: empirical quadrature points associated with two different
reduced bases of the parametrized shape transformation problem considered in Section IV.B.

such that the accuracy constraints (8) are satisfied at all #eqp training points in the sense that������
&Ω∑
@=1

d̂Ω@ [−∇Î
9

#
: � (D̂ 9

#
; ˆ̀ 9 )]GΩ@ +

&Γ�∑
@=1

d̂Γ�@ [( Î
9 ,+
#
− Î 9 ,−

#
) · �̂ (D̂ 9 ,+

#
, D̂
9 ,−
#
, =̂; ˆ̀ 9 )]

G
Γ�
@

+
&Γ�∑
@=1

d̂Γ�@ [Î
9 ,+
#
· �̂� (D̂ 9 ,+# , =̂; ˆ̀ 9 )]

G
Γ�
@
− Aℎ (D̂ 9# , Î

9

#
; ˆ̀ 9 )

������ ≤ Xeqp, 9 = 1, . . . , #eqp. (10)

Here ‖ · ‖0 denotes the 0-norm, which counts the number of nonzero entries. The sum of the first three terms of the
constraints yields the “approximated” residual Aℎ (D̂ 9 , Î 9 ; ˆ̀ 9 ) evaluated using the quadrature weights d̂Ω, d̂Γ� , and d̂Γ�
to be optimized, and the last term of the constraint is the “truth” residual Aℎ (D̂ 9# , Î

9

#
; ˆ̀ 9 ); the constraint hence enforces

the difference between the “approximated” residual and the “truth” residual to be smaller than the user-prescribed
tolerance Xeqp for all #eqp parameter values in the EQP training set Ξeqp. In addition, the constraints are linear in the
quadrature weights d̂Ω, d̂Γ� , and d̂Γ� , which simplifies the solution of the optimization problem. Detailed discussions
and theoretical analyses of the EQP is provided in [18–20].

We solve the optimization problem (9) approximately as a non-negative least-squares (NNLS) problem using a
parallel NNLS algorithm developed for the ECSWmethod [15, 16]. We then set the RQ rules (G̃Ω@ , d̃Ω@ )

&̃Ω
@=1, (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 ,

and (G̃Γ�@ , d̃
Γ�
@ )

&̃Γ�
@=1 in (7) by collecting nonzero entries of the sparse weights d̂Ω,★, d̂Γ� ,★, and d̂Γ� ,★, respectively.

Figure 2 shows examples of RQ rules (for the problem considered in Section IV.B). We observe that the quadrature
points are sparse; as we will see in Section IV.B, the reduced quadrature rule contains ≈ 1.5% of the original “truth”
quadrature points, yet achieves less than 1% drag error for all parameter values considered.

We reduce the quadrature rule associated with the output functional (4) in a similar manner. Namely, we consider
the constrained optimization problem (9), but replace the residual constraints (10) with the output-functional constraints������

&Ω∑
@=1

d̂Ω@ [ 9Ω (D̂
9

ℎ
; ˆ̀ 9 )]GΩ@ +

&Γ�∑
@=1

d̂Γ�@ [ 9Γ� (D̂
9

ℎ
+,∇D̂ 9

ℎ
+; ˆ̀ 9 )]

G
Γ�
@
− �ℎ (D̂ 9ℎ; ˆ̀ 9 )

������ ≤ Xeqp, 9 = 1, . . . , #eqp. (11)

The constraint is again linear in the quadrature weights d̂Ω and d̂Γ� , and the optimization problem is solved using the
parallel NNLS algorithm in [16].

Having found the RQ rules, our RB-RQ problem is as follows: given ` ∈ D, find the RB-RQ solution D̃# (`) ∈ V#
such that

Ãℎ (D̃# (`), E# ; `) = 0 ∀E# ∈ V# , (12)

and then evaluate the RB-RQ output
B̃# (`) = �ℎ (D̃# (`); `). (13)

Give that the number of degrees of freedom is dim(+# ) = # � #ℎ and the number of quadrature points is &̃ � &ℎ (and
in particular of &̃ = O(#)), this RB-RQ problem can be solved for any parameter value ` ∈ D in O(#•) computational
cost.
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E. A posteriori error estimation
We now wish to equip our RB-RQ output given by (12) and (13) with an a posteriori error estimate. To this end, we

note that there are two distinct sources of error in our RB-RQ output: the first is the error between the true PDE solution
and the underlying DG-FEM solution; the second is the error between the DG-FEM solution and the RB-RQ solution.
Mathematically, we can decompose the error as

|B(`) − B̃# (`) | ≤ |B(`) − Bℎ (`) |︸            ︷︷            ︸
FE error

+ |Bℎ (`) − B̃# (`) |︸               ︷︷               ︸
RB-RQ error

.

We estimate and control the output error as follows. First, in the offline stage, we estimate and adaptively refine the
snapshots (and hence the reduced basis) so that the FE error is less than the user-prescribed tolerance for all snapshot
parameter values in Ξrb. (This in general does not guarantee the FE error meets the tolerance for all parameter values in
D, but to our knowledge there does not exist a method to estimate the FE error for all parameter values in D.) Second,
we estimate the RB-RQ error in an online-efficient manner (i.e., in O(#) operations).

To estimate the FE error, we use the standard dual-weighted residual (DWR) method for FE discretizations [10, 12].
To this end, we first introduce an enriched DG space by increasing the polynomial degree by one: Vℎ̂ ≡ {Eℎ ∈
!2 (Ω)< | Eℎ |^ ∈ P?+1 (^), ∀^ ∈ Tℎ}. We then compute the dual (or adjoint) solution in the enrich space: given ` ∈ D
and Dℎ (`) ∈ Vℎ , find Iℎ̂ (`) ∈ Vℎ̂ such that

A ′ℎ (Dℎ (`);F ℎ̂ , Iℎ̂ (`); `) = �
′
ℎ (Dℎ (`);F ℎ̂; `) ∀Fℎ ∈ Vℎ̂ .

We then evaluate the error estimate

|B(`) − Bℎ (`) | ≈ [fe
ℎ (`) ≡ |Aℎ (Dℎ (`), Iℎ̂ (`); `) |.

The efficacy of this error estimate for CFD problems is discussed in [10]. The error estimate can also be localized to
drive output-based adaptive mesh refinement, which is important to realize the full potential of high-order DG methods
in aerodynamics problems; see, e.g., [29, 34].

To estimate the RB-RQ error in an online-efficient manner, we construct an RB-RQ approximation of the DWR
error estimate. To this end, we first introduce an RB approximation space tailored for dual solutions:

Vdu
# = span{Iℎ (`)}`∈Ξrb .

In generalV# ≠ Vdu
#

as we expect the primal and dual solutions to exhibit different behaviors, particularly for hyperbolic
and advection-dominated PDEs in aerodynamics. The RB approximation of the dual problem is as follows: given
` ∈ D and D̃# (`) ∈ V# , find Idu

#
(`) ∈ Vdu

#
such that

A ′ℎ (D̃# (`);F# , I
du
# (`); `) = �

′
ℎ (D̃# (`);F# ; `) ∀F# ∈ Vdu

# . (14)

We then evaluate the error estimate

|B(`) − B̃# (`) | ≈ [rb
# (`) ≡ |Aℎ (D̃# (`), I

du
# (`); `) |. (15)

This error estimate, however, is not online efficient because the evaluation of the Jacobian in (14) and the residual in (15)
requires the evaluation of the DG form (3) which uses &ℎ � # “truth” quadrature points.

To enable online efficient evaluation of the error estimate, we again apply the EQP procedure to (14) and (15)
to find their RQ approximations. To this end, we introduce an empirical quadrature rule (G̃Ω@ , d̃Ω@ )

&̃Ω
@=1, (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 ,

and (G̃Γ�@ , d̃
Γ�
@ )

&̃Γ�
@=1 associated with the domain, interior facet, and boundary facet for &̃Ω � &Ω, &̃Γ� � &Γ� , and

&̃Γ� � &Γ� . We then construct an RQ approximated residual of the form (7). We tailor these constrains to the solution
of the dual problem (14) and the evaluation of the DWR (15) (instead of the solution of the primal problem (12)). To
this end, we first introduce the solution to the dual of the dual problem (i.e., the tangent problem): find H# (`) ∈ Vdu

#

such that
A ′ℎ (D̃# (`); H# (`), E# ; `) = Aℎ (D̃# (`); E# ; `) ∀E# ∈ Vdu

# .
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We then introduce a training parameter set Ξeqp = { ˆ̀1, . . . , ˆ̀#eqp } and the associated training state set *eqp =

{D̂ 9 ≡ D̃( ˆ̀ 9 )}#eqp
9=1 , training dual state set /eqp,du ≡ {Î 9 ≡ Idu

#
( ˆ̀ 9 )}#eqp

9=1 and training tangent state set . eqp,du ≡ {Ĥ 9 ≡
Hdu
#
( ˆ̀ 9 )}#eqp

9=1 . The appropriate constraints for the dual problem (14) is

| (A ′ℎ (D̂
9

#
; Ĥ 9
#
, Î
9

#
; ˆ̀ 9 ) − � ′ℎ (D̂

9

#
; Ĥ 9
#

; ˆ̀ 9 )) − (Ã ′ℎ (D̂
9

#
; Ĥ 9
#
, Î
9

#
; ˆ̀ 9 ) − �̃ ′ℎ (D̂

9

#
; Ĥ 9
#

; ˆ̀ 9 )) | ≤ Xeqp, 9 = 1, . . . , #eqp,

(16)

and for the DWR evaluation (15) is

|Aℎ (D̂ 9# , Î
9

#
; ˆ̀ 9 ) − Ãℎ (D̂ 9# , Î

9

#
; ˆ̀ 9 ) | ≤ Xeqp, 9 = 1, . . . , #eqp. (17)

As before, we consider the constrained optimization problem (9), but replace the residual constraints (10) with the
above two constraints. Note that the terms A ′

ℎ
(D̂ 9
#

; Ĥ 9
#
, Î
9

#
; ˆ̀ 9 ), @̃′

ℎ
(D̂ 9
#

; Ĥ 9
#

; ˆ̀ 9 ), and Ãℎ (D̂ 9# , Î
9

#
; ˆ̀ 9 ) are expanded in

terms of quadrature weights d̂Ω, d̂Γ� , and d̂Γ� , as it was done in (10) and (11). The resulting constraints are linear in
the quadrature weights, and the optimization problem is solved using the parallel NNLS algorithm in [16]. Detailed
discussions and theoretical analyses of the RB-RQ approximation of the DWR error estimates is provided in [20].

Given the reduced basis and empirical quadrature rule for the DWR error estimates, our online-efficient error
estimate is given by the following: given ` ∈ D and D̃# (`) ∈ V# , find the RB-RQ dual solution Ĩ# (`) ∈ Vdu

#
such

that
Ã ′ℎ (D̃# (`), F# , Ĩ# (`); `) = �̃

′
ℎ (D̃# (`), F# ; `) ∀F# ∈ Vdu

# , (18)

and then evaluate the RB-RQ DWR error estimate

|B(`) − B̃# (`) | ≈ [̃rb
# (`) ≡ |Ãℎ (D̃# (`), Ĩ# (`); `) |. (19)

The cost to evaluate the error estimate is O(#• � #•
ℎ
) and O(&̃ � &ℎ), and hence it can be evaluated in an

online-efficient manner.

F. Offline training: simultaneous adaptive FE, RB, and RQ training
We now describe a greedy algorithm [1, 3], which constructs the RB-RQ reduced model in an efficient manner.

The particular algorithm we use is the adaptive algorithm that simultaneously constructs the FE space, RB spaces,
and RQ rules based on the behavior of the online-efficient a posteriori error estimate [20]. We present the algorithm
in Algorithm 1 for completeness, but refer to [20] for details. The algorithm takes as its input a greedy training set
Ξtrain ⊂ D and an EQP training set Ξeqp ⊂ D as well as the user-prescribed tolerances for FE space, RB space, and RQ
rule. Its goal is to identify appropriate primal and dual reduced bases {q8}#max

8=1 and {qdu
8
}#max
8=1 , respectively, and the

associated RQ rules for the residual, output, and DWR that meet the user-prescribed tolerance.
To begin, the algorithm evaluates the RB-RQ solution and the associated a posteriori error estimate [̃rb

#−1 (`) for
all parameters ` ∈ Ξtrain and then choose the parameter that maximizes the error estimate (i.e., the parameter that is
least-well approximated by the current RB-RQ discretization) as the next sampling point `# (line 3). It next use the
adaptive DG method to solve for the primal solution Dℎ (`# ) and dual solution Iℎ (`# ) that meets the user-prescribed
FE error tolerance (line 5). It then augments the parameter set Ξrb (line 6) and the reduced bases (line 7); the reduced
bases are orthogonalized using the Gram-Schmidt method for numerical stability. We then update the RQ rules for the
residual, output, and DWR by solving the quadrature optimization problems (9) with constraints (10), (11), as well as
(16) and (17), respectively (line 8). This greedy iteration is repeated until the user prescribed RB tolerance is met.

Once the reduced bases {q8}#max
8=1 and {qdu

8
}#max
8=1 and quadrature rules

(
(G̃Ω@ , d̃Ω@ )

&̃Ω

@=1, (G̃
Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1

)
res

for the residual (12),
(
(G̃Ω@ , d̃Ω@ )

&̃Ω

@=1, (G̃
Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1

)
out

for the output functional (13),

and
(
(G̃Ω@ , d̃Ω@ )

&̃Ω

@=1, (G̃
Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1

)
dwr

for the DWR error estimate (18) and (19) are identified, we evaluate
and store the reduced bases at the quadrature points, so that they can be used to evaluate the RB-RQ residual, output
functional, and DWR estimates. For instance, the residual (and Jacobian) evaluation in (12) requires the values of
the basis functions at the quadrature points (i.e., {{q8 (G̃Ω@ )}

&Ω
@=1}

#max̃
8=1 , {{q8 (G̃Γ�@ )}

&Γ�
@=1 }

#max
8=1 , {{q8 (G̃Γ�@ )}

&Γ�
@=1 }

#max
8=1 ) and

the gradients at the quadrature points (i.e., {{∇q8 (G̃Ω@ )}
&Ω
@=1}

#max
8=1 , {{∇q8 (G̃Γ�@ )}

&Γ�
@=1 }

#max
8=1 , {{∇q8 (G̃Γ�@ )}

&Γ�
@=1 }

#max
8=1 ). Our

RB-RQ model stores these basis function values and the quadrature weights (i.e., d̃Ω, d̃Γ� , d̃Γ� ) so that it can solve the
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Algorithm 1 Greedy algorithm for offline training.
Input:

training sets: Ξtrain
#train
⊂ D, Ξeqp

#eqp
⊂ D.

FE, RB, and EQP tolerances: Xfe ∈ R>0, Xrb ∈ R>0, Xeqp ∈ R≥0
Output:

reduced bases: {q8}#max
8=1 , {qdu

8
}#max
8=1

RQ rules: three sets of rules
(
(G̃Ω@ , d̃Ω@ )

&̃Ω

@=1, G̃
Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1

)
for residual, output, and DWR.

1: Set Ξrb
#=0 = ∅, {q

pr
8
}0
8=1 = {q

du
8
}0
8=1 = ∅.

2: for # = 1, . . . , #max do
3: Set `# = arg sup`∈Ξtrain

#train
[̃rb
#−1 (`).

4: If [̃rb
#
(`# ) < Xrb, terminate.

5: Find DG solutions Dℎ (`# ) ∈ Vℎ and Iℎ (`# ) ∈ Vℎ; adapt as necessary such that [fe
ℎ
(`# ) ≤ Xfe.

6: Update parameter set: Ξrb
#
= Ξrb

#−1 ∪ `
# .

7: Update RB: {qpr
8
}#
8=1 = GSV {{qpr

8
}#−1
8=1 , Dℎ (`# )}; {qdu

8
}#
8=1 = GSV {{qdu

8
}#−1
8=1 , Iℎ (`# )}.

8: Update RQ rules: solve (9) for residual, output, and DWR with appropriate accuracy constraints.
9: end for

RB-RQ problem (12) efficiently in the online stage. We similarly store (i) the primal basis evaluated at the output RQ
points to provide online-efficient evaluation of the RB-RQ output (13) and (ii) the primal and dual bases evaluated at the
DWR RQ points to provide online-efficient evaluation of the DWR error estimate (18) and (19).

III. Extensions
In Section II, we limited our presentation of the RB-RQ framework to steady hyperbolic equations for simplicity. We

now provide an overview of extensions to the framework to treat (A) viscous and source terms, (B) unsteady problems,
(C) parametrized shapes, and (D) high-dimensional problems.

A. Viscous and source terms
To extend the formulation to viscous flows, we incorporate the symmetric interior penalty (IP) discretization [29, 35].

We use the IP discretization because the facet penalty terms takes a simple form that is amenable to our RQ approximation.
Other viscous discretizations, such as BR2 and CDG, require the computation of element-dependent lifting operators,
which do not permit an efficient RQ approximation. The use of the IP method differs from the earlier RB-RQ method
which used an element-wise (instead of the quadrature-point-wise) decomposition and the BR2 discretization [19, 20].

Similarly, in the presence of gradient-dependent source functions (e.g., in the RANS equations), we use the so-called
dual-inconsistent discretization which avoids evaluation of the lifting operators [36]. We have not observed the negative
impact of the dual-inconsistent treatment of the source term for RANS problems we have studied. The use of the
dual-inconsistent source discretization differs from the earlier RB-RQ method that used an element-wise decomposition
and an asymptotically dual-consistent source discretization [20].

B. Unsteady problems
We now discuss the extension of the RB-RQ method for unsteady problems. To extend the formulation to unsteady

problems, we modify the construction of both reduced bases and reduced quadrature rules. We refer to [37, 38] for
details and provide an overview of the extension.

To construct a reduced basis, we apply the so-called POD-Greedy procedure [39], which we briefly describe.
Suppose we have a reduced basis spaceV# at a given iteration of the greedy algorithm (Algorithm 1). We first identify
the parameter value `′ ∈ Ξtrain that maximizes the a posteriori error estimate. We next solve the problem at `′ using the
DG method and collect snapshots {Dℎ (C: ; `′)} :=1 for all  time instances. We then remove the components of the
snapshots that lies inV# to construct {Π⊥V# Dℎ (C

: ; `′)} 
:=1. We finally apply proper orthogonal decomposition (POD)

and augment the current spaceV# with the new POD basis to obtainV#+X# . The procedure can be concisely written
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as

V#+X# = V# + PODX# {ΠV⊥
#
Dℎ (C: ; `′)} :=1.

This procedure is repeated in the greedy algorithm.
To construct a RQ rule, we again solve the constrained optimization problem (9). However, we replace the accuracy

constraints for the steady residual (8) (or more explicitly (10)) with the unsteady residual that arises in a given step of a
multi-step or multi-stage method. For example, if the backward Euler method is used, the constraint is of the form

|Aunsteady
ℎ

(D̂ 9
#
, Î
9

#
; ˆ̀ 9 ) − Ãunsteady

ℎ
(D̂ 9
#
, Î
9

#
; ˆ̀ 9 ) | ≤ Xeqp,

where the unsteady residual for the backward Euler method and the mass forms are given by

A
unsteady
ℎ

(F# , E# ; `) ≡ <(F# (C: ), E# (C: ); ˆ̀) − <(F# (C:−1), E# (C:−1); ˆ̀) + ΔCAℎ (F# (C: ), E# (C: ); ˆ̀ 9 ),

<(F# , E# ; `) ≡
"Ω∑
@=1

dΩ@ [E# · �0 (F# ; `)]GΩ@ ≈
∫
Ω

E# · �0 (F# ; `)3G,

and Ãunsteady
ℎ

(·, ·; ·, ·) and <̃ℎ (·, ·; ·) are their RQ approximations based on (G̃Ω@ , d̃Ω@ )
&̃Ω
@=1, (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 , and (G̃

Γ�
@ , d̃

Γ�
@ )

&̃Γ�
@=1 .

In other words, we ensure that the RQ approximation yields an accurate unsteady residual.
This procedure readily extends to any multi-step or multi-stage method; in Section IV.D we apply the method to a

three-stage diagonally implicit Runge-Kutta (DIRK) method [40]. In addition, the a posteriori error estimation procedure
discussed in Section II.E readily extends to unsteady problems by solving the unsteady dual problem, constructing the
dual reduced basisVdu

#
using Gappy-POD, and identifying RQ rules using the EQP for the unsteady dual problem and

the DWR. We again refer to [37, 38] for details.

C. Parametrized shapes
We now discuss the extension of the RB-RQ method for problems with parametrized shapes (i.e., geometries).

We refer to [41] for details and provide an overview of the treatment. To begin, we introduce a diffeomorphism
) (`) : Ω0 → Ω(`) from the reference domain Ω0 to the transformed domain Ω(`), where the map is parametrized
by ` ∈ D. We then introduce an approximation spaceVΩ(`) on the transformed (physical) domain and consider the
semi-linear form A

Ω(`)
ℎ

: VΩ(`) ×VΩ(`) × D → R such that

A
Ω(`)
ℎ
(Fℎ , Eℎ; `) ≡ −

∫
Ω(`)
∇Eℎ : � (Fℎ; `)3G +

∫
Γ� (`)
(E+ℎ − E

−
ℎ) · �̂ (F

+
ℎ , F

−
ℎ , =̂; `)3B +

∫
Γ� (`)

E+ℎ · �̂� (F
+
ℎ , =̂; `)3B.

This problem can be recast in the reference domain. Namely, we introduce an approximation spaceV on the reference
domain Ω0 and consider the semi-linear form Aℎ : V ×V × D → R such that

Aℎ (Fℎ , Eℎ; `) ≡ −
∫
Ω(`)
(� (`)−) ∇Eℎ) : � (Fℎ; `) |� (`) |3G +

∫
Γ� (`)
(E+ℎ − E

−
ℎ) · �̂ (F

+
ℎ , F

−
ℎ , � (`)

−) =̂; `) |� (`) |‖�−) =̂‖3B

+
∫
Γ� (`)

E+ℎ · �̂� (F
+
ℎ , � (`)

−) =̂; `) |� (`) |‖�−) =̂‖3B,

where � (`) : Ω0 → R3×3 is the derivative of the transformation ) (`) : Ω0 → Ω(`), and |� (`) | is its determinant. In
words, we recast the problem on parametrized domains as a problem on a (fixed) reference domain with appropriate
modifications to the gradients, volumes, and normals. This problem on the (fixed) reference domain fits the form (1),
and hence is amenable to approximations by the RB-RQ method. We refer to [41] for details.

D. Problems with moderate- to high-dimensional parameter spaces
We now discuss the extension of the RB-RQ method for high-dimensional problem. High-dimensional problems

are challenging because the greedy training set Ξtrain and the EQP training set Ξeqp in Algorithm 1 must be chosen
sufficiently large to yield a good coverage of the high-dimensional parameter space D and to ensure the accuracy of
the RB-RQ model, yet small enough so that the offline training is tractable. To address this challenge, we rely on the
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(a) primal solution (pressure) (b) adjoint (continuity equation)

Fig. 3 Example of the primal and adjoint solutions to the ONERA M6 problem.

online-efficient error estimate introduced in Section II.E and in addition introduce adaptive procedures to control the
greedy training set Ξtrain and the EQP training set Ξeqp. Our approach is motivated by a high-dimensional sampling
approach in [42]. We refer to [41] for details and provide an overview of the extension.

To adaptively construct the greedy training set Ξtrain, we update the training set at each greedy iteration so that Ξtrain

contains parameters for which the RB-RQ model yields largest errors (i.e., the model works poorly). Specifically, we
retain  < ! ≡ |Ξtrain | with largest errors from the previous greedy iterations and augment the training set with ! −  
new random points, where ! ≡ |Ξtrain | is the cardinality of Ξtrain. In other words, the training set in the 8-th greedy
iteration, Ξtrain,8 , is

Ξtrain,8 = Ξtrain,8−1
 

∪ Ξrand
!− ,

where Ξtrain,8−1
 

is the  points with the largest error estimate [̃rb
#−1, and Ξ

rand
!− is a set of ! − points randomly sampled

fromD. The procedure yields a sequence of greedy training sets Ξtrain,8 , 8 = 1, 2, 3, . . . , that focus on high-error regions,
which must be sampled to reduce the RB-RQ error.

To adaptively construct the EQP training set Ξeqp, we consider an hierarchical enrichment of the set. Namely, in
each greedy iteration, we first initialize Ξeqp ≡ Ξrb so that |Ξeqp | = # regardless of the size of the greedy training set.
We next solve the quadrature optimization problem (9) for the current set Ξeqp and an enriched set Ξeqp ′ ⊃ Ξeqp to
construct two RB-RQ models associated with the two training sets. We then evaluate the RB-RQ output for all training
points in Ξtrain using the two models. We compare the difference in the RB-RQ outputs evaluated by the two models to
check if the difference is less than the user-prescribed EQP tolerance. If not, we repeat the procedure using the (new)
current set Ξeqp ′ and a new enriched set Ξeqp ′′ ⊃ Ξeqp ′, which is enriched with the parameter points that yield large RQ
errors. We refer to [41] for details.

IV. Examples
We now demonstrate the construction and evaluation of RB-RQ models using several aerodynamics problems.

A. Reynolds-averaged Navier-Stokes flow over ONERA M6
We first consider turbulent flow over the ONERA M6 wing. The governing equation is the Reynolds-averaged

Navier-Stokes (RANS) equations with the Spalart-Allmaras (SA) turbulence model [43] and the SA-neg correction [44].
The two parameters are the freestreamMach number "∞ ∈ [0.3, 0.4] and the angle of attack U ∈ [0◦, 2◦]. The Reynolds
number is fixed at '42 = 106. The quantity of interest is the drag on the wing. Figure 3 shows the primal and adjoint
solutions for the centroid parameter values of "∞ = 0.35 and U = 1◦. We wish to construct a RB-RQ model with both
the FE and RB-RQ error of less than 0.5%, so that the combined error is less than 1%.

We now invoke Algorithm 1 to construct a RB-RQ model that meets the user-specified error tolerance. The initial
P2 DG discretization has 178560 degrees of freedom, counting degrees of freedom associated with the continuity,
momentum, energy, and SA equations separately. An output-based adaptive DG solver is used to reduce the FE output
error to less than 0.5%; the resulting DG discretization has #ℎ = 1122420 degrees of freedom and &ℎ = 6307992
quadrature points. Figure 4 shows the initial and final meshes. Figure 5(a) summarizes the FE error convergence
behavior; all of the mesh adaptation is performed for the first parameter value, and the subsequent parameter values do
not require additional refinements.
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(a) initial mesh (b) adapted mesh

Fig. 4 Initial mesh and adapted mesh for the ONERA M6 problem.

(a) FE error (b) RB error

Fig. 5 Convergence of the FE and RB-RQ errors for the ONERA M6 problem.

Figure 5(b) shows the RB-RQ error convergence behavior during offline training. The RB-RQ discretization is
trained using a (static) training set of the size |Ξtrain | = 5×5, which is equidistributed over the Mach number and angle of
attack range. In the greedy training, the maximum DWR error estimate over the training set Ξtrain, max`∈Ξtrain |[̃rb

#
(`) |,

converges to within 0.5% error for # = 9 snapshots (i.e., using the information from nine adaptive DG solves). We
also test the RB-RQ discretization against a test set Ξtest of five random parameter values not in the training set
Ξtrain. Figure 5(b) shows that the maximum output error over the test set, max`∈Ξtest |Bℎ (`) − B̃# (`) |, is less than
0.5% for # ≥ 8. We also observe that the maximum DWR error estimate for the test set, max`∈Ξtest |[̃rb

#
(`) |, closely

follows the true error and hence the error estimate is effective. Table 1 summarizes the properties of the RB-RQ
discretization. Relative to the DG discretization, the RB-RQ discretization reduces the number of degrees of freedom
from #ℎ = 1122420 to # = 9 and the number of residual, output, and DWR quadrature points from &ℎ = 6307992 to
&̃res = 153, &̃out = 12, and &̃dwr = 177, respectively.

degrees of freedom quadrature points wall-clock speedup
# &res &out &dwr soln. only w/ err. est.

DG-FEM 1122420 6307992 139680 6307992 - -
RB-RQ 9 153 12 177 22377 21267

Table 1 Summary of computational reduction for the ONERA M6 problem. The RB-RQ discretization
achieves less than 0.5% output error for all training and test parameter values.
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Fig. 6 Examples of solutions (Mach number) to the shape-parametrized airfoil problem for two different
geometries.

We finally report the computational time. We use the wall-clock time required to solve the DG-FEM problem
on the final adapted mesh on a 80-core cluster as the time unit and denote it by Cfe. The wall-clock computational
time for the entire offline stage is ≈ 59Cfe. The majority (53%) of the offline computational time is spent on the initial
adaptive mesh refinement and the computation of the solution and the associated error estimates for the nine snapshots.
The next dominant cost (46%) is the computation of the RQ rules using EQP, which requires multiple evaluation of
the DG residual for training parameter values in Ξtrain. In the online stage, the RB-RQ model provides a significant
computational speedup; the online computational time is 1/22377 × Cfe for the output only and 1/21267 × Cfe for both
the output and the DWR a posteriori error estimate. We note that the computational speedup is relative to the adaptive
high-order DG method, which is significantly more efficient than the lower-order and/or non-adaptive method. In
addition, this wall-clock speedup is conservative, as the small RB-RQ model is incapable of fully leveraging the 80-core
cluster; the speedup in CPU time would be more significant than the wall-clock speedup reported.

B. Laminar flow over shape-parametrized airfoils
We next consider laminar flow over a family of shape-parametrized airfoils based on NACA0012. The governing

equation is the (laminar) Navier-Stokes equations in entropy variables [7]. We fix the Mach number and Reynolds
number to '42 = 5000 and "∞ = 0.4, respectively. The airfoil is transformed using cubic spline interpolation with
4 × 2 control points over the 1.62 × 0.162 rectangular region centered about the airfoil, as shown in Figure 6. We allow
each of the eight control points to vary in the G2 direction by a distance of ΔG2 ∈ [−0.022, 0.022], where 2 is the chord.
We in addition parametrize the angle of attack so that U ∈ [1◦, 2◦]. We hence have eight geometry degrees of freedom
and one angle of attack degree of freedom, which yields the parameter space D ≡ [−0.02, 0.02]8 × [1◦, 2◦] ⊂ R9. The
quantity of interest is the drag on the airfoil. Examples of shape transformations are shown in Figure 6.

We now construct a RB-RQ discretization using Algorithm 1, with the extensions to geometry-parametrized and
high-dimensional problems summarized in Sections III.C and III.D, respectively. The initial P2 DG discretization has
9600 degrees of freedom, counting degrees of freedom associated with the continuity, momentum, and energy equations
separately. An output-based adaptive DG solver is used to reduce the FE output error to less than 0.1%; the resulting
DG discretization has #ℎ = 15840 degrees of freedom and &ℎ = 32322 quadrature points.

Figure 7 shows the RB-RQ error convergence behavior during offline training. The RB-RQ discretization is trained
using an adaptively enriched greedy training set of the size |Ξtrain | = 2000. We use a much larger training set than the
ONERA M6 case considered in Section IV.A to treat the higher-dimensional parameter space. In the greedy training,
the maximum DWR error estimate over the training set Ξtrain, max`∈Ξtrain |[̃rb

#
(`) |, converges to within 1% error for

# = 16 snapshots (i.e., using the information from 16 DG solves). The average size of the adaptively selected EQP
training set is |ΞEQP | ≈ 29, which is significantly smaller than the greedy training set of the size |Ξtrain | = 2000. The
smaller EQP training set enables efficient construction of the RQ rules.

We also test the RB-RQ discretization against a test set Ξtest of 10 random parameter values not in the training set
Ξtrain. Figure 7 shows that the maximum output error over the test set, max`∈Ξtest |Bℎ (`) − B̃# (`) |, is less than 1% for
# ≥ 13. We also observe that the maximum DWR error estimate for the test set, max`∈Ξtest |[̃rb

#
(`) |, closely follows the

true error and hence the error estimate is effective. The online-efficient a posteriori error estimate enables the use of the
large adaptively enriched greedy training set of the size |Ξtrain | = 2000, which provides a sufficient coverage of the
nine-dimensional parameter space.

Table 2 summarizes the properties of the RB-RQ discretization. Relative to the DG discretization, the RB-RQ
discretization reduces the number of degrees of freedom from #ℎ = 15840 to # = 16 and the number of residual,
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Fig. 7 Convergence of the RB-RQ error for the shape-parametrized airfoil problem.

degrees of freedom quadrature points wall-clock speedup
# &res &out &dwr soln. only w/ err. est.

DG-FEM 15840 32322 606 32322 - -
RB-RQ 16 423 24 456 416 386

Table 2 Summary of computational reduction for the shape-parametrized airfoil problem. The RB-RQ
discretization achieves less than 1% output error for all training and test parameter values.

output, and DWR quadrature points from &ℎ = 32322 to &̃res = 423, &̃out = 24, and &̃dwr = 456, respectively.
We finally report the computational time. We use the wall-clock time required to solve the DG-FEM problem on the

final adapted mesh on a 6-core workstation as the time unit and denote it by Cfe. The wall-clock computational time for
the entire offline stage is 167Cfe. The majority of the offline computational time is spent on the construction of the RQ
rule using the adaptive EQP algorithm for high-dimensional parameter spaces; we are currently working on improving
the efficiency of the algorithm to reduce the offline computational cost. In the online stage, the RB-RQ model provides
a significant computational speedup; the online computational time is 1/416 × Cfe for the output only and 1/386 × Cfe for
both the output and the DWR a posteriori error estimate.

C. Uncertainty quantification (UQ) of RANS flow with the Spalart-Allmaras turbulence model
We next consider turbulent flow over the RAE2822 airfoil. The governing equation is the RANS equations with the

Spalart-Allmaras (SA) turbulence model [43] and the SA-neg correction [44]. The Mach number, the Reynolds number,
and the angle of attack are fixed at "∞ = 0.3, '42 = 6.5 × 106, and U = 2◦, respectively. We wish to quantify the effect
of the parametric uncertainty in the SA model. Based on the UQ study of [45], we consider the following seven uncertain
parameters and the associated intervals for the fully turbulent RANS-SA equations: f ∈ [0.6, 1.0], ^ ∈ [0.38, 0.42],
2E2 ∈ [6.9, 7.3], 2F2 ∈ [0.055, 0.3525], 2F3 ∈ [1.75, 2.5], 211 ∈ [0.12893, 0.137], and 212 ∈ [0.60983, 0.6875]. We
assume the seven parameters are independent and uniformly distributed. We wish to quantify the uncertainty in the drag
due to the variabilities in these input parameters. Figure 8 shows representative flow solutions; the figure illustrates the
UQ process using the Monte-Carlo method.

Before we apply the RB-RQ discretization to the problem, we make a few cautionary remarks. First, this problem
can be solved using, for example, sparse grid and (non-reduced) CFD analysis, as done in [45, 46]. Second, [45] notes
that there exist implicit relationships between SA model parameters, which make 211 , 212 , 2F2 and 2E1 functions of
f and ^, and reduce the parametric dimension of the problem from seven to three. As our goal in this example is to
illustrate how model reduction enables reliable UQ of problems with a moderate number of input parameters, we treat
all seven parameters as independent variables.

We now construct a RB-RQ discretization using Algorithm 1, with the extension for high-dimensional problems
summarized in Section III.D. The initial P2 DG discretization has 15180 degrees of freedom, counting degrees of
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Fig. 8 Illustration of uncertainty quantification of RANS-SA flow over RAE2822.

(a) initial mesh (b) adapted mesh

Fig. 9 Initial mesh and adapted mesh for uncertainty quantification of RANS-SA flow over RAE2822.

freedom associated with the continuity, momentum, energy, and SA equations separately. An output-based adaptive DG
solver is used to reduce the FE output error to less than 0.25%; the resulting DG discretization has #ℎ = 64530 degrees
of freedom and &ℎ = 104274 quadrature points. Figure 9 show the initial and final meshes. Figure 10(a) summarizes
the FE convergence behavior; the majority of the mesh refinement is performed for the first parameter value, but one
additional mesh refinement is performed for the second parameter value to meet the user-prescribed FE drag error
tolerance of 0.25%.

Figure 10(b) shows theRB-RQerror convergence behavior during offline training. TheRB-RQdiscretization is trained
using a greedy training set of the size |Ξtrain | = 400, which are randomly sampled from the seven-dimensional parameter
space D. In the greedy training, the maximum DWR error estimate over the training set Ξtrain, max`∈Ξtrain |[̃rb

#
(`) |,

converges to within 0.5% drag error using # = 12 snapshots (i.e., using the information from 12 DG solves). We
note that the size of the RB is # = 24 because we split each snapshot into components associated with the mean-flow
equations and the SA equation, and hence each snapshot yields two basis functions.

We also test the RB-RQ discretization against a test set Ξtest of 10 random parameters not in the training set Ξtrain.
Figure 10(b) shows the maximum output error over the test set, max`∈Ξtest |Bℎ (`) − B̃# (`) |, is less than 0.5% for # > 22.
We also observe that the maximum DWR error estimate for the test set, max`∈Ξtest |[̃rb

#
(`) |, closely follows the true

error and hence the error estimate is effective.
Table 3 summarizes the properties of the RB-RQ model. Relative to the DG discretization, the RB-RQ discretization

reduces the number of degrees of freedom from #ℎ = 64530 to # = 24 and the number of residual, output, and DWR
quadrature points from &ℎ = 105432 to &̃res = 522, &̃out = 6, and &̃dwr = 214, respectively.

We finally report the computational time. We use the wall-clock time required to solve the DG-FEM problem on the
final adapted mesh on a 6-core workstation as the time unit and denote it by Cfe. The wall-clock computational time
for the entire offline stage is 215Cfe. Similarly to the shape-parametrized airfoil case in Section IV.B, the majority of
the offline computational time is spent on the construction of the RQ rules using the adaptive EQP algorithm for the
high-dimensional parameter space; we are currently working on improving the efficiency of the algorithm to reduce
the offline computational cost. In the online stage, the RB-RQ model provides a significant computational speedup;
the online computational time is 1/303 × Cfe for the output only and 1/294 × Cfe for both the output and the DWR a
posteriori error estimate.
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(a) FE error (b) RB-RQ error

Fig. 10 Convergence of the FE and RB-RQ errors for uncertainty quantification of RANS-SA flow over
RAE2822.

degrees of freedom quadrature points speedup
# &res &out &dwr soln. only w/ err. est.

DG-FEM 64530 105432 756 105432 - -
RB-RQ 24 522 6 214 303 294

Table 3 Summary of computational reduction for the uncertainty quantification of RANS-SA flow over
RAE2822. The RB-RQ discretization achieves less than 0.5% drag count error for all training and test pa-
rameter values.

In the context of UQ, the speed up factor of 300 implies that we can perform 300 “brute force” Monte Carlo
solves using the RB-RQ model in the time it takes to perform a single DG solve, once the RB-RQ discretization is
constructed. In addition, the RB-RQ model meets the tight error tolerance and provides an a posteriori error estimate in
the predictive setting, which ensures that the use of the reduced model does not negatively impact the accuracy of the
UQ process. We refer to [46, 47] for discussions of the importance of controlling the discretization error for a reliable
UQ of aerodynamics problems, which exhibit a wide range of scales.

D. Unsteady flow over NACA0012
We now consider unsteady laminar flow past NACA0012. The governing equation is the laminar Navier-Stokes

equation in entropy variables [7]. The angle of attack is fixed at U = 20◦ and the Reynolds number is '42 ∈ [300, 600].
The initial condition for the case is a snapshot of a (nearly) periodic solution for '42 = 450. The quantity of interest is
the time-averaged drag over a window of 20 nondimesionalized time units, which corresponds to approximate 2 periods
of the (nearly) periodic solution. Figure 11 shows snapshots of the primal and adjoint solutions.

We now invoke Algorithm 1, with the extension to unsteady problems summarized in Section III.B. The initial
P2 DG discretization has 31104 degrees of freedom, counting degrees of freedom associated with the continuity,
momentum, and energy equations separately. The time integration is performed using a three-stage DIRK method [40].
An output-based adaptive DG solver is used to solve for the initial transient and then time-window of interest such that
the error in the FE output is less than 0.05%; the resulting DG discretization has #ℎ = 155904 degrees of freedom
and &ℎ = 318036 quadrature points. Figure 12 show the initial and final meshes. Figure 13(a) summarizes the FE
convergence behavior; adaptive mesh refinement is performed for the initial transient, the first parameter value, and the
second parameter value.

Figure 13(b) shows the RB-RQ error convergence behavior during the offline training. The RB-RQ discretization is
trained using a greedy training set of the size |Ξtrain | = 30, which are equidistributed over the Reynolds number range. In
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(a) primal solution (entropy) (b) adjoint (continuity equation)

Fig. 11 Snapshots of the primal and adjoint solutions to the unsteady flow past NACA0012.

(a) initial mesh (b) adapted mesh

Fig. 12 Initial mesh and adapted mesh for the unsteady flow past NACA0012.

the greedy training, the greedy algorithm evaluates the unsteady DG solution for three different parameter values. The
POD-Greedy updates of these solutions yield a reduced basis of the size # = 42. The maximum DWR error estimate
over the training set Ξtrain, max`∈Ξtrain |[̃rb

#
(`) |, converges to less than 0.5%.

We also test the RB-RQ discretization against a test set Ξtest of five random parameters not in the training set Ξtrain.
Figure 13(b) shows that the maximum output error over the test set, max`∈Ξtest |Bℎ (`) − B̃# (`) |, is less than 0.5%. We
also observe that the maximum DWR error estimate for the test set, max`∈Ξtest |[̃rb

#
(`) |, closely follows the true error

and hence the error estimate is effective for this unsteady problem (though not as effective as for the steady problems
considered in this work).

Table 4 summarizes the performance of the RB-RQ model. Relative to the DG discretization, the RB-RQ
discretization reduces the number of primal and dual degrees of freedom from #ℎ = 155904 to # = 42 and #du = 24,
respectively, and the number of residual, output, and DWR quadrature points from &ℎ = 318036 to &̃res = 1267,
&̃out = 35, and &̃dwr = 799, respectively.

We finally report the computational time. We use the wall-clock time required to solve the FE problem on the final
adapted mesh on a 40-core cluster as the time unit and denote it by Cfe. The wall-clock computational time for the entire
offline stage is 69Cfe. In the online stage, the RB-RQ model provides a significant computational speedup; the online
computational time is 1/328 × Cfe for the output only and 1/248 × Cfe for both the output and the DWR a posteriori
error estimate. The computation of the online-efficient a posteriori error estimate is relatively more expensive for the
unsteady problem than for steady problems, as the former requires the solution of the unsteady dual solution.

degrees of freedom quadrature points speedup
# #du &res &out &dwr soln. only w/ err. est.

DG-FEM 155904 155904 318036 2202 318036 - -
RB-RQ 42 24 1267 35 799 328 248

Table 4 Summary of computational reduction for the unsteadyflowpastNACA0012. TheRB-RQdiscretization
achieves less than 0.5% output error for all training and test parameter values.
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(a) FE error (b) RB-RQ error

Fig. 13 Convergence of the FE and RB-RQ errors for the unsteady flow past NACA0012.

V. Summary and conclusions
This work presents an approach to reliable and efficient projection-based model reduction for many-query/real-time

parametrized (nonlinear) aerodynamics problems. In the offline stage, a RB-RQ model that meets the user-prescribed
output error tolerance is constructed using the simultaneous FE, RB, and RQ training algorithm (Algorithm 1). The
algorithm controls the FE error using adaptive high-order DG method, the RB error through the successive enrichment
of the RB space using the greedy algorithm, and the RQ error using the EQP. Through this adaptive control of the various
discretization errors, the accurate RB-RQ model is constructed without any user interventions. In the online stage, the
RB-RQ model provides rapid solution for many different parameter values. The RB-RQ model in addition equips each
output prediction with an online-efficient DWR a posteriori error estimate, so that the model can be used confidently
even for parameter values for which the model was not trained (i.e., in the “predictive” setting). We demonstrated the
efficacy and versatility of the framework using four aerodynamics problems: RANS flow over the ONERA M6 wing
with the Mach number and the angle of attack as the parameters; laminar flow over shape-parametrized airfoils; UQ of
RANS flow with variabilities in the empirical parameters of the SA turbulence mode; and unsteady separated flow past
NACA0012 with the Reynolds number as the parameter. We observed typical wall-clock speedup of ∼300–20000 and
accurate a posteriori error estimate in predictive settings.

While the examples have shown some promising results, there remains a number of challenges to model reduction of
complex aerodynamics flows. The first challenge is the treatment of shock waves andmore generally parameter-dependent
irregular features. It is provably impossible to construct a low-dimensional linear (RB) space that can approximate
solutions containing parameter-dependent irregular features [6]. One way to overcome the challenge is to consider
nonlinear approximation spaces, as considered for simple problems in for example [48, 49], but further progress is
necessary to use the technique in complex aerodynamics problems. The second challenge is the further reduction of the
offline training cost. In this work the offline training cost was reduced by employing adaptive algorithms, including
adaptive mesh refinement to compute the snapshots and the greedy algorithm to judiciously chose the training parameter
values, but the training cost is still 50 to 200 times the cost of a single DG-FEM flow solve on the final adapted mesh. A
further reduction in the offline training cost is required to apply the method to industrial-scale problems with a large
number of parameters in practical engineering settings.
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