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Abstract

We present an efficient data assimilation framework for nonlinear dynamical systems that uses
multi-fidelity statistical estimates based on a full-order model and a projection-based hyperreduced
order model (ROM) that is trained on-the-fly. This framework is particularly applicable to conser-
vation laws in aerodynamics that yield expensive forward models. The formulation comprises the
following technical components: (i) an ensemble Kalman filter to tractably handle high-dimensional,
strongly nonlinear dynamical models; (ii) multi-fidelity forecast models, where ROM-based coarse
fidelities are constructed on-the-fly; and (iii) hyperreduction for the ROM, based on proper orthog-
onal decomposition and the empirical quadrature procedure, constructed using the ensemble of full
order model trajectories. We show that the multi-fidelity statistical estimates based on efficient,
on-the-fly construction of the ROM enables rapid and reliable state estimation for practical non-
linear dynamical systems. We demonstrate the effectiveness of our framework to estimate the state
of a separated flow around an airfoil by (i) showing that the ROM-based multi-fidelity method is
more accurate than the single-fidelity method for comparable computational cost and (ii) showing
that multi-fidelity statistics enable the use of a less accurate surrogate when compared against
ROM-only filters, at negligible cost.

Keywords: ensemble filtering, nonlinear hyperreduction, multi-fidelity Monte Carlo, data
assimilation, uncertainty quantification, aerodynamics

1. Introduction

The goal of data assimilation is to combine an (imperfect) computational model with (sparse and
noisy) real-world data to estimate the state of a dynamical system. A common data assimilation
method for complex problems is the ensemble Kalman filter (EnKF), which uses an ensemble-
based representation of the uncertain state to extend the classical Kalman filter to large-scale,
nonlinear dynamical systems [13, 14, 31]. The EnKF has been successfully applied in meteorology,
where atmospheric models and weather-station data are combined to forecast weather; however,
the application of the EnKF to engineering systems faces several challenges. First, accurate data
assimilation of complicated, nonlinear, and large-scale dynamical systems may require a large state
ensemble (O(100)) and the associated high computational cost may require a dedicated computing
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facility [26]; the EnKF may be intractable in typical engineering settings with limited comput-
ing resources and rapid turnaround time requirements. Second, standard ensemble-size reduction
techniques, such as inflation and localization, rely on the prior physical knowledge of the specific
dynamical system; inflation methods spread samples about the mean, typically by a heuristic fac-
tor based on a priori modeling error, while localization methods suppress spurious long-distance
correlations by imposing some correlation length on the covariance. While there exist methods to
estimate an optimal inflation factor, choosing a correlation length requires a priori knowledge of
the system [2, 3, 14, 21], which may not be available for novel engineering systems. To apply the
EnKF to engineering systems, we need to significantly reduce the computational cost without rely-
ing on prior knowledge. In this work, we leverage recent developments in multi-fidelity estimation
and model reduction to achieve this goal.

Multi-fidelity (and multi-level) estimation techniques seek to reduce the number of expensive
high-fidelity model evaluations for ensemble-based (i.e., Monte-Carlo) estimators by leveraging a
correlated and inexpensive low-fidelity model to reduce the variance of the estimator [17, 18, 34].
To this end, we introduce (a family of) lower-fidelity models to accompany the original high-
fidelity model, then construct a multi-fidelity estimate by using (i) a small number of high-fidelity
model evaluations, (ii) a large number of lower-fidelity model evaluations, and (iii) a control variate
formulation [19] that appeals to the correlation between the high-fidelity and lower-fidelity models.
To the best of the authors’ knowledge, Hoel et al. [24] were the first to apply this idea to the EnKF,
whereby multi-level Monte-Carlo estimates of the mean and covariance are used to obtain more
accurate state estimates at a reduced cost. Their work was subsequently extended to introduce
stronger coupling between fidelity estimates to provide more rapid convergence [25, 10] and also to
other ensemble-based data assimilation methods, such as the particle filter [28, 20]. While laying
formulational and theoretical foundations for multi-fidelity data assimilation, these works focus on
simple scalar dynamical systems. Arguably, the true potential of multi-fidelity data assimilation,
as applied to large-scale, nonlinear dynamical systems—where the high-fidelity model evaluation is
expensive—is yet to be exploited.

As multi-fidelity estimation techniques rely on many evaluations of a lower-fidelity model that
is well-correlated with the high-fidelity model, a rapid and accurate lower-fidelity model can signif-
icantly improve the performance of the multi-fidelity data assimilation. To this end, we consider
projection-based reduce-order models (ROMs) [38, 7]. Outside of the multi-fidelity context, ROMs
have been used to enable rapid (real-time) data assimilation using the (standard) Kalman filter [12],
3d and 4d variational data assimilation [4, 29], and the (single-fidelity) EnKF [32, 30, 35, 11, 23, 43].
For each of these methods, the high-fidelity model (i.e., full-order model (FOM)) is used to construct
a ROM in the offline stage. Then, in the online stage, a standard single-fidelity data assimilation
technique is used with the ROM as the dynamical model to significantly reduce the computational
cost. In these ROM-accelerated (but single-level) approaches, the FOM is not directly invoked in
the data assimilation stage. Hence, the approach assumes that we can construct a ROM a priori
in the offline stage that is capable of accurately approximate all possible states that will be en-
countered in the data assimilation stage; however, training such a ROM may be computationally
intractable for large-scale computational models.

An alternative approach to accelerate data assimilation is to use ROMs as the lower-fidelity
model(s) in the aforementioned multi-fidelity estimation techniques. The idea of using a ROM-
based multi-fidelity estimator has been explored for forward problems by Vidal-Codina et al. [42]
and for the EnKF by Popov et al. [37]. Unlike the single-level ROM-based EnKF [32, 30, 11, 43],
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multi-fidelity EnKF of Popov et al. use a (small) ensemble of FOM states to construct a ROM in
the offline stage, then use the FOM ensemble and a (large) ensemble of ROM states to compute
the multi-fidelity mean and covariance estimates used in the EnKF. Popov et al. formally derive
the multi-fidelity EnKF based on the theory of linear control variates [19] both to find an optimal
mapping between the two fidelities and to avoid the issue of non-positive multi-fidelity covariance
estimates, which are present in Hoel’s formulation [24, 25]. The modification greatly improves the
stability of the EnKF and is arguably requisite for practical engineering problems.

In this work, we extend the multi-fidelity EnKF formulation of Popov et al. [37] in two regards.
First is the extension to dynamical models that exhibit general (non-polynomial) nonlinearities,
which necessitates so-called hyperreduction to construct a ROM. Pagani et al. [35] employed a
hyperreduced ROM in the EnKF, but did not use a multi-level estimation technique, thereby ig-
noring already computed information from the FOM that could improve the ROM-based statistical
estimates. While there exist many hyperreduction methods [5, 9, 8, 15], in this work we use the
empirical quadrature procedure (EQP) [45]. Our second point of departure from Popov et al. is the
use of on-the-fly model reduction and conditional ROM retraining, which leverages the ensemble of
FOM states generated by the EnKF to train ROMs. Namely, we (i) solve for a (small) ensemble of
FOM states to be used in the multi-fidelity EnKF; (ii) build a hyperreduced ROM on-the-fly using
the FOM state ensemble, conditional on the value of an a posteriori error estimate; (iii) solve for a
(large) ensemble of ROM solutions; and (iv) combine the FOM and ROM ensembles to compute the
multi-fidelity mean and covariance estimates for the EnKF. The on-the-fly construction eliminates
the need to anticipate all possible states that might be encountered in the data assimilation process
and construct a ROM a priori in the offline stage that works for all possible cases. We can instead
build and update ROMs that are required for the particular data assimilation problem on-the-fly,
only when the ROM quality is estimated to be below some tolerance, reducing the ROM construc-
tion costs significantly. Moreover, the FOM solves in the multi-fidelity EnKF naturally yield the
training data with which (hyperreduced) ROM is constructed; since this data must be computed to
train the ROM the multi-fidelity statistical estimates are hence “free” for the on-the-fly approach.
On-the-fly model reduction has been exploited in optimization (e.g., [46, 47]) but, to the best of
the authors’ knowledge, not in data assimilation.

We summarize the three-fold contributions of this paper: (i) we extend the multi-fidelity EnKF
method of [37] to incorporate hyperreduced ROMs to treat general nonlinear dynamical models;
(ii) we develop a conditional, on-the-fly ROM training procedure that both ensures the accuracy of
the ROM and reduces unnecessary training cost; and (iii) we assess the effectiveness of the method
using a separated compressible Navier-Stokes flow past a NACA0012 airfoil. We demonstrate that
(a) even with a small FOM ensemble that would result in a significant statistical error, an accurate
ROM can be constructed on-the-fly; (b) even if a ROM is not accurate enough to be used in a
single-level EnKF by itself, the ROM can improve the state estimate in the multi-fidelity EnKF;
and (c) ROMs can be efficiently constructed on-the-fly from the existing FOM states and an efficient
hyperreduction method.

2. Multi-fidelity ensemble Kalman filter based on hyperreduced ROMs

2.1. Problem statement

We first provide a mathematical description of a “true” dynamical system whose state we wish
to estimate. To this end, we introduce a time interval I ≡ (0, T ] and an (infinite-dimensional)
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Hilbert space U , in which the true state utrue : I → U lies at any time t ∈ I. We assume that the
“true” state utrue is governed by

Mtrue∂u
true

∂t
(t) + rtrue(utrue(t)) = 0, t ∈ I,

utrue(t = 0) = utrue,0 ∈ U ,
(1)

where Mtrue : U → U ′ is the “true” mass operator (which maps the state variables to the conserva-
tive variables), rtrue : U → U ′ is a “true” steady residual operator, utrue,0 ∈ U is the “true” initial
condition, and U ′ denotes the dual space of U . In general, we have neither the complete knowledge
of Mtrue, rtrue(·), and utrue,0, nor the computational resources to solve the infinite-dimensional
problem, and hence it is impossible to solve for utrue.

Our goal in data assimilation is to estimate utrue based on (imperfect) computational model and
experimental/real-world observation data. A computational model incorporates our best knowl-
edge of the (unknowable and uncomputable) “true” dynamical system. We focus on the case where
the dynamics are approximated by unsteady nonlinear partial differential equations (PDEs). For
instance, if we wish to estimate the state of a fluid dynamics system, then our (continuous) dynami-
cal model may be based on the Navier-Stokes equations with appropriate boundary conditions. We
then discretize this continuous model to obtain a computational model. Specifically, we introduce
some n-dimensional approximation space Un and then seek an approximation to utrue as follows:
find (model) state un : I → Un such that

Mn
dun
dt

(t) + rn(un(t)) = 0 ∀ t ∈ I, (2)

where Mn : Un → U ′
n is the mass matrix, and rn : Un → U ′

n is a discretized steady residual
operator. The dimension n is of order 105 to 108 for fluid dynamics systems of engineering interest.
As discussed in the Introduction, we refer to this model as the full-order model (FOM).

To facilitate the presentation of the data assimilation algorithm, we also introduce a forecast
operator associated with the FOM (2). To this end, we assume that observations are made at
K time instances {tk}Kk=0 such that 0 = t0 < t1 < · · · < tK ≤ T . We then introduce a FOM
propagation operator Gk

n : Un → Un such that

ukn = Gk
n(u

k−1
n ) ∈ U , k = 1, . . . ,K, (3)

where uk−1
n ≡ un(t

k−1) and ukn ≡ un(t
k) satisfy (2) for t ∈ [tk−1, tk]. In practice, the application of

Gk
n requires the application of a suitable time-marching scheme from tk−1 to tk.
We next introduce observations (or measurements) and an associated observation model. We

first introduce an observation space Y; in many cases, an observation is associated with a set of no

discrete sensor measurements and hence Y ⊂ Rno . We next introduce a “true” observation operator
Htrue : U → Y, which yields a set of measurements associated with a given (instantaneous) “true”
state. The observed data associated with time instances {tk}Kk=1 are

yobs,k = Htrue(utrue,k) + ϵ, k = 1, . . . ,K, (4)

where ϵ ∼ N (0,Γ) is the observation noise with a covariance Γ : Y ′ → Y. (Note: while we could
absorb the noise ϵ in Htrue(·), we treat it separately following standard conventions.) The set
{yobs,k ∈ Y}Kk=1 forms the observation data. The “true” observation operator Htrue(·) depends on
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the precise specification of the observation system used and, just like the “true” dynamical model
rtrue(·), is unknowable. We hence introduce a (computable) observation model Hn : Un → Y, which
incorporates our best knowledge of the observation system, so that Hn(u

k
n) ≈ Htrue(utrue,k) when

ukn approximates utrue,k well.
The goal of data assimilation, or more precisely filtering, is to optimally combine the dynamical

model (2) (or equivalently (3)) with the observation data (4) up to a given time tk to obtain estimate
the state utrue,k. We approach the filtering problem using EnKFs [13, 14, 26], a data assimilation
method designed for large-scale filtering problems.

2.2. Single-fidelity ensemble Kalman filter

We now present the (standard) single-fidelity ensemble Kalman filter. By way of preliminaries,
we introduce notations for a sample, the sample mean, and the sample covariance used throughout
this work. To begin, we introduce a random sample ω ≡ {ωj}Mj=1 ⊂ Ω of size M , where Ω is

some sample space from which each ωj is drawn. Given a random function v ∈ L2(Ω;V) whose
realizations belong to space V (e.g., V = Un or V = Y), the sample mean Eω

M [v] ∈ V based on the
ensemble {v(ωj)}Mj=1 is given by

Eω
M [v] :=

1

M

M∑
j=1

v(ωj),

where the superscript ω and the subscript M signify that the sample mean is computed from the
ensemble ω, which is of size M . Similarly, given random functions v ∈ L2(Ω;V) and w ∈ L2(Ω;W)
associated with spaces V and W, the sample covariance Cω

M [v, w] : W ′ → V based on the ensembles
{v(ωj)}Mj=1 and {w(ωj)}Mj=1 is given by

Cω
M [v, w] :=

1

M − 1

M∑
j=1

(v(ωj)− Eω
M [v])⊗ (w(ωj)− Eω

M [w]);

here ⊗ is an operator such that (v ⊗ w)z = ⟨w, z⟩v ∈ V for all v ∈ V, w ∈ W, and z ∈ W ′,
where ⟨·, ·⟩ denotes the duality pairing. For notational brevity, we use the common abbreviation
Cω
M [v] := Cω

M [v, v].
We now present the (stochastic) EnKF; it comprises an initialization step, which constructs the

state ensemble at tk=0, followed by repeated applications of the forecast and analysis steps, which
advance the ensemble from tk−1 to tk for k = 1, . . . ,K, and update the estimate at the end of each
observation time step, respectively.

Initialization. We first introduce a random sample ω ≡ {ωj}Mj=1 and initialize the associated
state ensemble

{uk=0
n (ωj) ∈ Un}Mj=1.

Forecast step. In the forecast step, we advance the state ensemble by one observation time
step from tk−1 to tk:

ukn(ωj) = Gk
n(u

k−1
n (ωj)), j = 1, . . . ,M, (5)

where Gk
n : Un → Un is the FOM propagation operator (3). The overline on ukn(ωj) denotes that

this is the state estimate at time tk before incorporating the observation yobs,k.
Analysis step. In the analysis step, we first compute the Kalman gain Kn : Y → Un given by

Kk
n := Cω

M [ukn, Hn(u
k
n)](Cω

M [Hn(u
k
n)] + Γ)−1, (6)
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where we recall Γ : Y ′ → Y is the observation covariance. We next introduce perturbed observations
{yk(ωj) ≡ yobs,k + η(ωj)}Mj=1 for η(ωj) ∼ N (0,Γ) and update the state ensemble according to

ukn(ωj) = ukn(ωj) +Kk
n(y

k(ωj)−Hn(u
k
n(ωj)), j = 1, . . . ,M. (7)

In the analysis step, the ensemble statistics are used to yield a (single) Kalman gain (6), and each
member is updated based on its discrepancy with the observed data.

The accuracy and cost of the EnKF depend on the ensemble size M . On one hand, the ac-
curacy and the stability of the filter improves with M as the quality of the sample covariances
CM [ukn, Hn(u

k
n)] and CM [ukn, Hn(u

k
n)] in the Kalman gain improve, reaching the so-called ideal

mean-field limit as M → ∞. On the other hand, in a typical data assimilation problem, the fore-
cast step (5) dominates the overall computational cost, and hence the cost of the filter increases
linearly with M . Since the sample covariance converges rather slowly (i.e., as M−1/2), a large
ensemble size may be required to achieve a desired accuracy, which may render the filter unsuit-
able for engineering settings with a stringent computational resource limit or a limited turnaround
time requirement, as discussed in the Introduction. To overcome the limitations posed by the slow
convergence and the expensive forward model, we will consider a multi-fidelity EnKF (MFEnKF).

Multi-fidelity methods, as developed herein, reduce the computational cost required to obtain
accurate statistics by using a ROM that can be evaluated much more rapidly than the original
model, while also improving the accuracy of these ROM statistical estimators by correcting the
ROM-computed statistical estimates with samples collected from the FOM.

2.3. Reduced-order model

We now introduce a projection-based ROM. Our ROM for nonlinear PDEs builds on two ingredi-
ents: (i) a reduced basis (RB) and (ii) hyperreduction. An RB {ϕi ∈ Un}ri=1 spans an r-dimensional
subspace of Un for r ≪ n and is designed to provide a rapidly convergent approximation of the
solution un : I → Un as r increases. We will discuss the construction of an RB in the context of
MFEnKF in Section 2.5 and for now assume that {ϕi}ri=1 is given. We also introduce an associated
linear RB operator Φ : Rr → Un such that Φvr =

∑r
i=1 ϕivr,i for all vr ∈ Rr.

The Galerkin projection of the FOM (2) onto the RB space yields the following (nonhyperre-
duced) ROM problem: find ûr : [0, T ] → Rr such that

Mr
dûr
dt

(t) + Φ∗rn(Φûr(t)) = 0 ∀t ∈ I,

where Mr := Φ∗MnΦ ∈ Rr×r is the ROM mass matrix, and Φ∗ : U ′ → Rr denotes the formal
adjoint of Φ. Note that while we have reduced the dimension of the approximation space from n
to r ≪ n, the evaluation of this ROM is still computationally expensive because the evaluation of
the residual Φ∗rn(Φ · ) : Rr → Rr requires the evaluation of the FOM residual rn : Un → U ′

n, which
requires O(n) operations.

To accelerate the evaluation of the ROM—particularly for nonlinear problems—we introduce
the second ingredient: hyperreduction. We again defer the detailed discussion of the hyperreduction
procedure to Section 2.5. For now, we assume that we can construct a hyperreduced ROM operator
rr : Rr → Rr such that rr(vr) ≈ Φ∗rn(Φvr) for all relevant vr ∈ Rr. Our hyperreduced ROM
problem is as follows: find ur : [0, T ] → Rr such that

Mr
dur
dt

(t) + rr(ur(t)) = 0 ∀t ∈ I. (8)
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To facilitate the discussion of the MFEnKF, we also introduce the associated ROM forecast operator
Gk

r : Rr → Rr from tk−1 to tk:
ukr = Gk

r (u
k−1
r ), (9)

where uk−1
r = ur(t

k−1) and ukr = ur(t
k) are the solutions of (8) evaluated at times tk−1 and tk,

respectively. We also introduce the reduced observation operator Hr : Rr → Y such that

Hr(vr) = Hn(Φvr) ∀vr ∈ Rr.

2.4. Multi-fidelity ensemble Kalman filter

We now present the MFEnKF introduced by Popov et al. [37]. The goal of the MFEnKF is
to reduce the (FOM) ensemble size required to achieve a given accuracy relative to the standard
EnKF by using a linear control variate to reduce the variance of the statistical estimates. Namely,
we introduce a new random function called the total variate

zkn = ukn − S(ukr − E[ukr ]), (10)

where the FOM state ukn ∈ L2(Ω;Un) is the principle variate, the ROM state ukr ∈ L2(Ω;Rr) is
the control variate, and S : Rr → Un is the gain operator to be optimized. (Terminology follows
Popov et al. [37].) The total variate zkn has the same mean as the principle variate ukn; however,
assuming the control variate ukr is well correlated with ukn and the gain S is appropriately chosen,
the total variate zkn has a smaller variance than the principle variate ukn, and thus will converge
more rapidly with the ensemble size than the original estimator. The main idea of the MFEnKF
is to apply the EnKF to the total variate zkn instead of the principle variate ukn to reduce the
FOM ensemble size required to achieve a given accuracy. In practice, as E[ukr ] is unknown, we
approximate it using the ancillary variate, which is another ROM state ũkr ∈ L2(Ω;Rr) that is
independent of both the principle and control variate. For brevity, we refer to [37] for detailed
derivation and present here (only) the formulation.

Similarly to the (single-level) EnKF, the MFEnKF comprises an initialization step, which col-
lects a set of state ensembles at tk=0, followed by repeated applications of the forecast and analysis
steps, which advance the set of ensembles from tk−1 to tk for k = 1, . . . ,K, updating each ensemble
member after each observation time step.

Initialization. We first introduce ensembles ω ≡ {ωj}Mn
j=1 and ω̃ ≡ {ω̃j}Mr

j=1 for Mr > Mn and
the associated state ensembles

{uk=0
n (ωj) ∈ Un}Mn

j=1, {uk=0
r (ωj) ∈ Rn}Mn

j=1, {uk=0
r (ω̃j) ∈ Rn}Mr

j=1,

where uk=0
r (ωj) = M−1

r Φ∗Mnu
k=0
n (ωj). The first two ensembles are “paired” in the sense that they

are associated with the same point in the sample space ωj , j = 1, . . . ,Mn, while the last ensemble
is associated with a different set of samples ω̃ of size Mr > Mn.

Forecast step. In the forecast step, we advance all the state ensembles by one observation
time step from tk−1 to tk:

ukn(ωj) = Gk
n(u

k−1
n (ωj)), j = 1, . . . ,Mn,

ukr (ωj) = Gk
r (u

k−1
r (ωj)), j = 1, . . . ,Mn,

ukr (ω̃j) = Gk
r (u

k−1
r (ω̃j)), j = 1, . . . ,Mr,
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where Gk
n : Un → Un and Gk

r : Rr → Rr are the FOM and ROM propagation operators (3) and (9),
respectively. The overlines on the states again denote that they are the state estimates at tk before
incorporating the observation.

Remark 1. As the ROM approximates the dynamics in a reduced space, the ROM propagated
state is in general different from the FOM propagated state projected to the ROM space: i.e.,
Gk

r (Φ
∗uk−1) ̸= Φ∗Gk

n(u
k−1). As a result, the control variate ukr (ωj) can “drift” from the prin-

cipal variate ukn(ωj), reducing the correlation between the variates. To alleviate the issue, we
follow [37] and reinitialize the ROM state at the beginning of each forecast step: uk−1

r (ωj) =
M−1

r Φ∗Mnu
k−1
n (ωj).

Analysis step. To describe the multi-fidelity analysis procedure, we first introduce the multi-
fidelity counterparts of the standard single-fidelity covariance estimates. The multi-fidelity mea-
surement covariance—the covariance of the total variate of the measurement prediction—is given
by

Cω,ω̃
Mn,Mr

[H(uk)] :=Cω
Mn

[Hn(u
k
n)] +

1

4
Cω
Mn

[Hr(u
k
r )]−

1

2
Cω
Mn

[Hn(u
k
n), Hr(u

k
r )]

− 1

2
Cω
Mn

[Hn(u
k
r ), Hr(u

k
n)] +

1

4
Cω̃
Mr

[Hr(u
k
r )],

the multi-fidelity state-measurement covariance is similarly given by

Cω,ω̃
Mn,Mr

[uk, H(uk)] :=Cω
Mn

[ukn, Hn(u
k
n)] +

1

4
Cω
Mn

[Φukr , Hr(u
k
r )]−

1

2
Cω
Mn

[ukn, Hr(u
k
r )]

− 1

2
Cω
Mn

[Φukr , Hr(u
k
n)] +

1

4
Cω̃
Mr

[Φukr , Hr(u
k
r )],

we refer to Popov et al. [37] for the derivation of these statistics. We replace the standard, single-
level covariance estimates with their multi-fidelity counterparts to obtain the associated multi-
fidelity Kalman gain:

Kk
MF := Cω,ω̃

Mn,Mr
[uk, H(uk)](Cω,ω̃

Mn,Mr
[H(uk)] + 1

2Γ)
−1.

We then introduce sets of perturbed observations {yk(ωj) ≡ yobs,k + η(ωj)}Mn
j=1 for η(ωj) ∼ N (0,Γ)

and {yk(ω̃j) ≡ yobs,k + η(ω̃j)}Mr
j=1 for η(ω̃j) ∼ N (0,Γ). Finally, we update the state ensembles:

ukn(ωj) = ukn +Kk
MF(y

k(ωj)−Hn(u
k
n(ωj))), j = 1, . . . ,Mn, (11)

ukr (ωj) = ukr +Kk
MF(y

k(ωj)−Hn(u
k
r (ωj))), j = 1, . . . ,Mn, (12)

ukr (ω̃j) = ukr +Kk
MF(y

k(ω̃j)−Hn(u
k
r (ω̃j))), j = 1, . . . ,Mr. (13)

While not strictly required in the forecast or analysis steps, we may also compute the multi-
fidelity estimate of the mean as

Eω,ω̃
Mn,Mr

[u] = Eω
Mn

[un]−
1

2
ΦEω

Mn
[ur] +

1

2
ΦEω̃

Mr
[ur] (14)

at any time t ∈ I, which serves as our estimate of utrue.
The accuracy of the MFEnKF depends on the FOM ensemble size Mn, the ROM ensemble

size Mr, and how accurately the ROM Gk
r approximates the FOM Gk

n. The cost of the MFEnKF
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depends on Mn, Mr, the FOM evaluation cost, the ROM evaluation cost, and the ROM training
cost, which itself depends on Mn. We will numerically study how these parameters affect the
performance of the MFEnKF in Section 3.

Before we conclude the discussion of MFEnKF, we note a difference between our formulation
and that of Popov et al. [37] in the treatment of multi-fidelity noise terms:

Remark 2. When considering a multi-fidelity implementation of the noise terms, Popov et al. pro-
pose two different methods for constructing with multi-fidelity noise terms: (i) “total variate uncer-
tainty consistency”, which assumes the noise represents the uncertainty in the total variate, yielding
a noise covariance in the ancillary variate that is triple the noise covariance of the principal and
control variates; and (ii) “control space uncertainty consistency”, which assumes the operator for
the measurement of the control and ancillary variates are the same and therefore have the same
noise covariance, yielding a measurement covariance that is scaled by a factor of 1/2 compared to
the standard EnKF. Popov et al. use method (i); we have tried both approaches and found a slight
performance increase using method (ii) for our model problems, and hence we use method (ii).

Having discussed the MFEnKF based on a ROM, we now discuss on-the-fly and conditional
training of the ROM in Sections 2.5 and 2.6, respectively.

2.5. On-the-fly ROM training in the MFEnKF

In this work we construct the ROM on-the-fly instead of using a more traditional offline-online
computational decomposition. As discussed in the Introduction, on-the-fly training provides two
distinct advantages compared to the “standard” offline-online computational decomposition in the
context of the MFEnKF. First, it eliminates the need to construct a general ROM that works
for all potential states and enables the generation of a more specialized ROM that is tailored for
the specific solution trajectories that are relevant to the particular instance of the MFEnKF; we
expect the more specialized, and hence lower-dimensional, ROM to require a smaller training set
and also enable more rapid evaluation. Second, the FOM solves in the MFEnKF naturally yield
the training states, which we can use to construct the (hyperreduced) ROM; the cost associated
with computing the multi-fidelity statistics in the offline stage the offline-online approach is hence
practically negligible for the on-the-fly approach.

As discussed in Section 2.3, our (hyperreduced) ROM builds on two ingredients: a RB space
and hyperreduction. We now describe our approach to construct these two ingredients on-the-fly
in the MFEnKF. Suppose we wish to construct a ROM at time tk. We first collect all Mn FOM
trajectories generated by the MFEnKF up to that time to form a training set:

Uk
train ≡ {{un(ωj ; t)}t∈τ}Mn

j=1, (15)

where τ = [t⋆, tk] for t⋆ ∈ [0, tk−1] is a set of time instances used by the underlying time inte-
grator. (In general, a single observation time interval [tk, tk−1] comprises multiple time integrator
steps.) We then apply proper orthogonal decomposition (POD) to the training set to obtain the
r-dimensional RB:

Φ = PODr(Utrain).

In other words, the RB is constructed from all trajectories obtained by the FOM ensemble of size
Mn since time t⋆. Longer trajectories and larger ensemble sizes typically improve the ROM quality,
but increase the training costs. We further control this ROM accuracy/cost tradeoff by finding
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only r reduced basis functions such that the eigenvalue corresponding to the r-th RB function is
a factor δRB smaller than the largest eigenvalue. We will show in Section 3 that even with a very
loose δRB the MFEnKF can provide an accurate state estimate.

We now describe our hyperreduction procedure. In this work, we use an approach based on
a reduced quadrature (RQ) constructed using the empirical quadrature procedure (EQP) [45].
To this end, we assume that the FOM residual rn(·) is associated with a variational (or weak)
formulation, such as the finite element method. These methods require the evaluation of integrals
over the spatial domain and potentially element facets, which are approximated using appropriate
quadrature rules in practice. Quadrature rules yield a natural decomposition of the residual rn(·)
in terms of individual quadrature-point-wise residuals rn,q(·):

rn(·) =
Qn∑
q=1

ρqrn,q(·),

where {ρq}Qn
q=1 is the set of quadrature weights, and Qn is the number of quadrature points, which

is O(n). The main idea of EQP is to replace the original quadrature weights {ρq}Qn
q=1 with a sparse

set of quadrature weights {ρ⋆q}
Qn
q=1, which are mostly zero, with ∥ρ⋆q∥0 = Qr, and to construct a

hyperreduced ROM residual operator

rr(·) =
Qn∑
q=1

ρ⋆qΦ
∗rn,q(Φ · ) ≈ Φ∗rn(Φ · ).

The choice of the sparse quadrature weights {ρ⋆q}
Qn
q=1 is crucial to ensure the ROM is inexpensive

yet accurate.
We find the sparse quadrature weights {ρ⋆q}

Qn
q=1 using the EQP. The EQP finds an RQ rule

that meets a set of accuracy (or “residual matching”) conditions at a set of training states. In
the context of the MFEnKF, we use the Uk

train given by (15) as the training set, and obtain the
following: find ρ⋆ ∈ RQ such that

ρ⋆ = argmin
ρ̂∈RQn

∥ρ̂∥0

subject to the non-negativity constraint

ρ̂q ≥ 0, q = 1, . . . , Qn,

the constant accuracy constraint ∣∣∣∣∣∣
Qn∑
q=1

ρq −
Qn∑
q=1

ρ̂q

∣∣∣∣∣∣ ≤ δRQ,

and the manifold accuracy constraint (i.e., “residual matching condition”)

|ur,ieTi Φ∗rn(Φur)−
Qn∑
q=1

ρ̂qur,ie
T
i Φ

∗rn,q(Φur)| ≤ δRQ/r, i = 1, . . . , r, (16)

for all ROM training states ur ∈ Uk
train,r; here, δRQ ∈ R>0 is the EQP tolerance, ur,i denotes

the i-th component of ur ∈ Rr, ei ∈ Rr is the canonical unit vector, and the ROM training
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set is the projection of the FOM training set (15) onto the RB space (i.e., Uk
train,r = {ur =

M−1
r Φ∗Mnun | un ∈ Uk

train,r}). Just as the POD tolerance δRB ∈ R>0 controls the size of the RB
and hence the accuracy of the ROM approximation space, the EQP tolerance δRQ ∈ R>0 controls
the number of the RQ points and hence the accuracy of the RQ residual.

Remark 3. The EQP is a flexible method to construct a hyperreduced ROM based on an RQ, and
the hyperreduction error controlled by the EQP depends on the choice of the manifold accuracy
constraints (16). The EQP has been designed to control the H1-norm of the (steady) solution
error [45] and quantity of interest in steady [44] and unsteady [40] problems. In this work, we
introduce a different accuracy constraint that is intended to produce a hyperreduced model that is
“globally accurate” in the sense that it provides an accurate estimate of the state as well as all of
the observed quantities. If the dynamical model is given by a conservation law, one way to approach
this problem is to control the (mathematical) entropy, whose control has been shown to result in a
global error control in the context of adaptive mesh refinement [16]. For an appropriate variational
formulation of a system of conservation laws expressed in entropy variables, the (mathematical)
entropy field associated with the state vn ∈ Un is given by vTn rn(vn) [22, 27, 6]. In the context of
the ROM approximation, the mathematical entropy integrated over the domain associated with the
ROM state vector vr is given by vTr rr(vr). The EQP accuracy constraint (16) is designed to control
the error in the mathematical entropy due to hyperreduction so that vTr rr(vr) ≈ vTr Φ

∗rn(Φvr) for
relevant ROM states.

2.6. Conditional ROM training

The goal of on-the-fly ROM training is to minimize the total training time while simultaneously
maintaining an accurate ROM surrogate. Following each observation time interval [tk−1, tk], k =
1, . . . ,K, we decide whether the ROM should be recomputed. If the principal (FOM) and control
(ROM) variates are well correlated, then we need not reconstruct our RB and RQ. Conversely, if
the ROM is inaccurate, we must reconstruct the ROM despite the training costs. To estimate the
ROM accuracy, we compute an error indicator

θ ≡
√

Eω
Mn

[
∥ukn − Φukr∥

2
L2(D)

]
(17)

at the end of each control variate forecast ukr (ωj) = Gk
r (u

k−1
r (ωj)), where ∥ · ∥L2(D) denotes the

L2 norm over the spatial domain. Whenever θ is above some user defined value δu ∈ R≥0, we
reconstruct the ROM and rerun the control forecast; otherwise, we keep the previously constructed
ROM and run the ancillary forecast ukr (ω̃j) = Gk

r (u
k−1
r (ω̃j)).

Algorithm 1 summarizes the MFEnKF, and Figure 1 illustrates the algorithm. The illus-
tration begins on the far left with three ensembles of samples drawn from the initial condi-
tion: {uk=0

n (ωj)}Mn
j=1, which is represented by large squares; and ensembles {uk=0

r (ωj)}Mn
j=1 and

{uk=0
r (ω̃j)}Mr

j=1, which are represented together as small circles. In the first forecast step, we first

use the FOM operator Gk=1
n (·) to propagate the FOM ensemble to t1, where the first set of ob-

servational data yobs,k is collected. We use the ensemble of the FOM solution trajectories from
this forward solve to construct the ROM operator Gk=1

r (·). We then invoke the ROM to rapidly
propagate ROM ensembles to t1. We then perform the first analysis step: we compute the multi-
fidelity statistics using both the ROM and FOM states, compute the multi-fidelity Kalman gain,
and incorporate the observations to update all three ensembles. In the subsequent forecast steps,

11



Algorithm 1 MFEnKF based on hyperreduced ROM

1: Generate initial states {uk=0
n (ωj)}Mn

j=1, {uk=0
r (ωj)}Mn

j=1, and {uk=0
r (ω̃j)}Mr

j=1 for Mr ≫ Mn

2: for k = 1, 2, . . . ,K do
3: Forecast step:
4: for j = 1, 2, . . . ,Mn do
5: FOM forecast: uk(ωj) = Gk

n(u
k−1(ωj))

6: if k = 1 then
7: ROM construction: use POD and EQP on {{u(ωj , t)}t∈[0,tk]}Mn

j=1 to build Gk
r (·)

8: for j = 1, 2, . . . ,Mn do
9: Control variate ROM forecast: ukr (ωj) = Gk

r (u
k−1
r (ωj))

10: if k ̸= 1 and θ > δu then
11: ROM reconstruction: use POD and EQP on {{u(ωj , t)}t∈[0,tk]}Mn

j=1 to build Gk
r (·)

12: for j = 1, 2, . . . ,Mn do
13: Control variate ROM forecast: ukr (ωj) = Gk

r (u
k−1
r (ωj))

14: for j = 1, 2, . . . ,Mr do
15: Ancillary variate ROM forecast: ukr (ω̃j) = Gk

r (u
k−1
r (ω̃j))

16: Analysis step:
17: Compute Eω,ω̃

Mn,Mr
[u],Cω,ω̃

Mn,Mr
[H(uk)],Cω,ω̃

Mn,Mr
[uk, H(uk)]

18: ML update: compute ML Kalman gain and update using yobs,k

we check the accuracy of the ROM using the error indicator θ and, as necessary, reconstruct the
ROM before we propagate the ancillary variates (and update the control variates).

We highlight the benefits of the conditional and on-the-fly ROM retraining. As stated previ-
ously, on-the-fly training offers two distinct benefits relative to offline-trained ROMs: (i) it avoids
the need to anticipate all potential states that the ROM might encounter and the associated expen-
sive pre-training of a globally accurate ROM in the offline stage; and (ii) by running in conjunction
with the FOM, the ROM training data is enriched, so the ROM can become more accurate while
data assimilation proceeds. Offline training often necessitates collecting and training over more
data than is necessary, as it is difficult to know a priori the required amount of training to achieve
a minimally viable surrogate. In addition, conditional training (iii) avoids excessive ROM training
by ensuring the RB and RQ are only recomputed when it is deemed necessary to do so. If our
algorithm decides that we only need to train over, say, the first two assimilation windows, then the
training costs would be significantly smaller than updating the ROM after each assimilation step.

Remark 4. The effectiveness of the conditional ROM training strongly depends on the nature of
the problem. Specifically, if the dominant features are largely unchanged over time, then a ROM
trained using the snapshots from an earlier time window can be reused over many time windows.
However, if the problem is convection-dominated and the dominant features translate over time,
then a frequent ROM update would be required.

Remark 5. We refer to the costs of the MFEnKF relative to the (single-level) EnKF that uses
ROM as being “free” or practically negligible because (i) the majority of the cost for a multi-
fidelity estimator is borne by computing the FOM solutions comprising the finest fidelity in the
estimator and (ii) these FOM solutions must be computed anyway in order to train the ROM.
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Figure 1: Illustration of the MFEnKF algorithm. Squares denote FOM states, and circles denote ROM states. Each
state is propagated from one observation time to the next and then updated by assimilating observational data
yobs,k according to (13). The ROM is conditionally trained based on all previous FOM ensemble-temporal solution
snapshots since t⋆.

Hence, one can replace the single-level Monte Carlo estimator in a single-level ROM-based EnKF
with a faster-converging multi-fidelity estimator. Doing so requires only the construction of the
multi-fidelity covariance estimator, the cost of which is negligible compared to computing the FOM
solutions and training the ROM. Arguably, using a single-fidelity estimator when the training data
is available is tantamount to throwing away valuable information that can improve the convergence
of the statistical estimator.

Remark 6. The proposed framework contains several hyperparameters—the ensemble sizes (Mn

and Mr), the RB and EQP tolerances (δRB and δEQP), the start time for the training data interval
(t⋆), and the ROM retraining threshold (δu)—that are chosen manually. Some existing EnKF
algorithms include estimates the optimal size of ensemble [33, 41], and adjust the size according.
However, the automated and adaptive selection of optimal values for these hyperparameters is beyond
the scope of this paper. We will numerically study the effect of varying the hyperparameters in
Section 3.

3. Numerical example

3.1. Problem description

We assess the effectiveness of the MFEnKF using a synthetic data assimilation problem associ-
ated with a separated flow past a NACA 0012 airfoil. We first introduce our “true” dynamics that
govern the “true” state utrue. The flow is modeled by the (unsteady) compressible Navier-Stokes
equations in entropy variables [6]. Namely, we seek the entropy variables

u :=

(
− s

γ − 1
+

γ + 1

γ − 1
− ρe

p
,
ρv

p
,−ρ

p

)
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(a) “true” entropy field for utrue,0 (b) “true” drag coefficient history

Figure 2: Dynamics of the model problem, showing entropy field at initial time for the “true” solution including
velocity probe locations, and “true” drag coefficient as a function of time.

that satisfy the compressible Navier-Stokes equations

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ · (ρv ⊗ v + pI − τ) = 0,

∂ρe

∂t
+∇ · ((ρe+ p)v)− τv − κ∇T ) = 0,

where ρ is the density, v is the velocity, e is the specific internal energy, s is the thermodynamic
entropy, p is the pressure, T is the temperature, τ is the stress tensor, and γ is the ratio of specific
heats. We use a chord-based Reynolds number of Rec = 700, a free stream Mach number of
M∞ = 0.2, and an angle of attack of α = 20◦. We consider a time interval of 60 non-dimesionalized
time units; i.e., I = (0, T = 60]. A long-time integration of this problem yields a periodic response
with a period of about 9.1 time units, and we take our initial condition utrue,0 to be one randomly
chosen state from this periodic response; i.e., utrue,0 is randomly chosen from the set U init :=
{utrue(t) | t > t⊙ for t⊙ sufficiently large}. Figure 2 shows a snapshot of the entropy field as well
as the drag history of the solution.

We collect x- and y-velocity measurements at each point in a 2 × 2 grid located in the airfoil
wake, as shown in Figure 2a. Each “point” probe is modeled as a Gaussian with the standard
deviation of 0.1c, where c is the chord of the airfoil, which is here taken to be 1. Note that the
two-component measurements at 2 × 2 locations yield the observations yobs,k ∈ Y = Rno=8. We
make observations at (non-dimesionalized) times of {12, 24, 36, 48}; i.e., tk = 12k, k = 1, . . . , 4. We
assume that the observation noise is uncorrelated and the covariance is Γ = 10−5I, where I ∈ R8×8

is the identity matrix.
To generate a “true” solution and the associated observations, we discretize the problem using an

adaptive discontinuous Galerkin (DG) finite element method in space and the diagonally implicit
Runge-Kutta (DIRK) method in time. Specifically, we discretize in space using an adaptively
generated piecewise quadratic (p = 2) DG space with n = 73,440 degrees of freedom, which may
be formally expressed as

Un := {v ∈ L2(D)m≡4 | v|κ ∈ Pp≡2(κ)m≡4, ∀κ ∈ Th},

where m is the number of components in the state, D is the spatial domain, Pp(κ) is the space
of polynomials of degree at most p over element κ, and Th is a tesselation of D. We discretize in
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time using a third-order DIRK method [1] with a time step of 0.25 (non-dimensional) time units.
We solve the nonlinear problem using a parallel Newton-GMRES solver [39, 36]. In our synthetic
example, this (computable) reference model provides the “true” dynamics (i.e., Mtrue and rtrue)
and observations (i.e., Htrue, and {yobs,k}5k=1).

We take our FOM to be the same as the “true” dynamical model. In other words, Un = U
is the aforementioned n = 73,440-dimensional DG approximation space, and our FOM operators
are given by Mn = Mtrue, rn(·) = rtrue(·), and Hn(·) = Htrue(·). Hence, the only imperfection in
our FOM model comes from the unknown initial condition utrue,0. Specifically, we assume that the
initial condition is known to belong to the initial-condition set U init, but we do not know which
member of U init is utrue,0.

3.2. Illustration of the EnKF and the MFEnKF

We first illustrate the behavior of the (single-fidelity) EnKF and MFEnKF by comparing five
different schemes:

(i) EnKF with Mn = 4.

(ii) EnKF with Mn = 8.

(iii) EnKF with Mn = 64. This filter simulates the EnKF in the mean-field (Mn → ∞) limit.

(iv) MFEnKF with Mn = 4, Mr = 128, and δRB = δRQ = 10−2. This filter uses a “lower-fidelity”
ROM that is cheap enough to construct and evaluate so that the overall computational cost
is comparable to that of case (i).

(v) MFEnKF with Mn = 4, Mr = 128, δRB = 10−4, and δRQ = 2 × 10−3. This filter uses the
same small FOM ensemble size as (i) but is augmented by an accurate “higher-fidelity” ROM
ensemble.

For each method, we construct the initial ensemble by randomly drawing Mn or Mn+Mr members,
for EnKF and MFEnKF respectively, from the initial-condition set U init. (Algorithm parameters
are summarized in Table 1.) As the behavior of the EnKF and MFEnKF depend on the choice
of the random initial ensemble and the observation noise, we consider nine different random seed
initializations of each filter with different random seeds to assess the statistical behavior of the
filters.

Before we discuss the results, we review the MFEnKF algorithm (Algorithm 1) as it applies
to the present problem. The MFEnKF begins with Mn = 4 FOM evaluations over first forecast
window (t0 = 0, t1 = 12]. Next, the Mn = 4 FOM solution trajectories are used to construct a
hyperreduced ROM (i.e., the RB and RQ). We then invoke the ROM to rapidly propagate the
ROM ensemble of the size Mn+Mr = 4+128 over the first forecast window (t0, t1 = 12]. Following
this, we combine the FOM and ROM ensembles to compute the multi-fidelity Kalman gain at
t1 = 12 and incorporate the observation data yobs,1 to update the state estimates. The process
repeats for time windows [t1, t2], [t2, t3], etc. However, in the subsequent time windows, the ROM
reconstruction step is skipped if the ROM error metric (17) satisfies θ < δu, thereby reducing the
total ROM training cost. For case (iv) we use δu = 0.90 and t⋆ = tk−2 implying that the training
set will contain data from at most the previous two assimilation windows; for case (v) we use we
use δu = 0.55 and t⋆ = tk−1 implying that the training set will contain data from only the directly
previous assimilation window. The value of θ can vary with the random seed initialization, thereby
varying the number of times the ROM is recomputed. For case (iv), it was most common to train
the ROM after the first interval only, with this occurring for four of nine random seed initializations.
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(a) Ensemble drag values with multi-fidelity estimates (b) Ensemble drag values with single-fidelity estimates

Figure 3: The time history of the “true” drag and the drag estimated by members of the FOM and ROM ensembles
in the MFEnKF with Mn = 4, Mr = 128, and δRB = δRQ = 10−2, with and without the multi-fidelity contributions
from the ROM ensemble, taken for the same random seed initialization.

For case (v), it was most common to train the ROM the first and second assimilation windows,
with this being the case for four seeds.

We now qualitatively discuss the behavior of the MFEnKF. Figure 3a shows the time history
of the drag estimates obtained by the MFEnKF scheme (iv) based on “lower-fidelity” ROMs. We
observe that the drag estimate improves as we incorporate measurements at t ∈ {12, 24, 36, 48} and
the FOM ensemble members converge to the “true” drag history. Interestingly, the inexpensive
ROM (δRB = δRQ = 10−2) cannot capture the detailed dynamics of the flow and thus only poorly
tracks the “true” drag; this however does not preclude the ROM from effectively reducing the error
in the multi-fidelity estimate. The conditional ROM training retrains the (hyperreduced) ROM over
only the first two time windows, (0, 12] and [12, 24]; in other words, the set of eight trajectories
associated with the Mn = 4 FOM ensemble over the two (observation) time intervals are sufficient
to construct a ROM that is accurate over the entire time interval (0, 60]. This can be compared to
the single-fidelity case, without the multi-fidelity estimate yielded by including the ROM, shown
in Figure 3b; the two figures use the same random seed initialization, but the seemingly inaccurate
ROM estimates greatly improve the quality of the updates and therefore the state estimate.

We now compare the five schemes (i)–(v) more quantitatively. To this end, we study the
temporal variation of the L2 spatial error. Namely, for the EnKFs ((i), (ii), and (iii)), we evaluate
the L2 error in the ensemble mean Eω

Mn
[un(t)] with respect to the “true” state utrue(t), E(t) :=

∥utrue(t)− Eω
Mn

[un(t)]∥L2(D), where D is the spatial domain. For the MFEnKFs ((iv) and (v)), we

evaluate the L2 error in the multi-fidelity ensemble mean, E(t) := ∥utrue(t)− Eω,ω̃
Mn,Mr

[u(t)]∥L2(D).

Figures 4a–4e show the time history of the L2 error with nine separate random seed initial-
izations for each of the five EnKF and MFEnKF schemes. Figure 4a shows that the EnKF with
Mn = 4 (scheme (i)) is unstable and inaccurate, as the ensemble size is too small to compute an
accurate Kalman gain. The EnKF scheme (ii) with Mn = 8 is shown in Figure 4b; it performs
better than the Mn = 4 EnKF, but is twice as expensive, and still unreliable. Figure 4d shows
results for the MFEnKF scheme (iv), which uses Mn = 4 along with Mr = 128 ROM samples
trained with tolerances δRB = δRQ = 10−2. Here, despite using the same number of FOM samples
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algorithm parameters mean wall-clock time error E(t = T )
Mn Mr δRB, δRQ ROM training total mean mean+2std

(i) 4 - - - 20tfom 0.137 0.276
(ii) 8 - - - 40tfom 0.083 0.216
(iii) 64 - - - 320tfom 0.037 0.059
(iv) 4 128 10−2 2tfom 22tfom 0.057 0.096
(v) 4 128 10−4, 2× 10−3 14tfom 37tfom 0.043 0.060

Table 1: Summary of the computational cost and accuracy of the EnKF and MFEnKF schemes. The time unit tfom

is time required to march a single FE sample over one assimilation window.

as the EnKF scheme (i), the MFEnKF scheme (iv) obtains more accurate and reliable results; as
we will see shortly, the construction and evaluation of the ROM increases the computational cost
by only ≈10%. Similarly results for the MFEnKF scheme (v) are shown in Figure 4e, where the
tolerances have been tightened to δRB = 10−4 and δRQ = 2×10−3 as compared to scheme (iv). The
MFEnKF scheme (v) not only yields more accurate and reliable results than the EnKF scheme (ii)
but, as we will see shortly, also reduces the computational cost by ≈10%. Lastly, the “reference”
EnKF scheme (iii) with Mn = 64 is shown in Figure 4c; it produces the most reliable and accurate
state estimates, but, as we will see shortly, the computational costs are significantly higher than
all other schemes. Figure 4f summarizes the results using the min-max envelopes for a few selected
schemes.

We now summarize the properties of the ROMs constructed by the MFEnKFs. For both
MFEnKF cases (iv) and (v), each time window consists of 48 time steps, each with four DIRK stages,
and Mn = 4 FOM ensembles, yielding a total of 772 temporal-ensemble training state snapshots
after each time window. For scheme (v) with “higher-fidelity” ROMs, POD with δRB = 10−4 and
t⋆ = tk−1 compresses the snapshots to yield a RB of the size r ∈ [26, 57]; this is a significant
reduction from the FOM dimension of n = 73,440. (Since the sizes of the RB and RQ depend
on the random initial ensembles and observation noises, we report the range observed over nine
different random seed initializations.) Similarly, EQP with δRQ = 2 × 10−3 reduces the number
of quadrature points from Qn = 108,050 for the FOM to Qr ∈ [361, 820]. For scheme (iv) with
“lower-fidelity” ROMs, with δRB = 10−2 and t⋆ = tk−2, the corresponding values are a RB of size
r = 3 in all cases and a RQ of Qr ∈ [20, 27]. Relative to the FOM, the computational time for a
single ROM evaluation is reduced by ≈ 150× and ≈ 350× for the higher- and lower-fidelity ROMs,
respectively.

Lastly, we summarize in Table 1 the algorithm parameters, the computational cost, and the
error for the five cases in Figure 4. The table reports the total average wall-clock time—normalized
by the time it takes to propagate FOM states over a single time window [tk−1, tk]—and the mean
error with and without two added standard deviations, which represents some likely “worst case”
for each scheme at the terminal time, T . We see that the cheapest option also produces the least
reliable estimate and the most expensive option provides the best estimate, as expected. We note
the main takeaway for this work: the MFEnKF can produce a state estimate that is more accurate
and reliable than the standard EnKF, but at a cost that is comparable to taking only a few extra
samples of a standard EnKF. We further note that the MFEnKF scheme (iv) outperforms the
EnKF scheme (ii) in all metrics.
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(a) EnKF: Mn = 4 (b) EnKF: Mn = 8

(c) EnKF: Mn = 64 (d) MFEnKF: Mn = 4, Mr = 128, δRB = δRQ = 10−2

(e) MFEnKF: Mn = 4, Mr = 128, δRB = 10−4, δRQ = 2 ×
10−3 (f) Mean and min-max envelopes for selected schemes.

Figure 4: Time history of the L2 error for EnKFs and MFEnKFs. Each solid line represents a single random seed
initialization while the dashed line represents the mean-field limit.
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(a) Error versus FOM ensemble size (b) Error versus normalized runtime

Figure 5: MFEnKF error as a function of FOM ensemble size Mn and ROM tolerances (δRB and δRQ)

3.3. Effect of ROM fidelity and ROM ensemble size

We now study the effects of varying both the ROM tolerance (δRB, δRQ) and the FOM ensemble
size Mn in the MFEnKF. In this study we fix the ROM ensemble size to Mr = 64; we can
generally use a large ROM ensemble size at minimal costs thanks to the ≈150–350× speedup. The
error metric used is the time averaged mean plus two standard deviations L2 error—a probable
worst-case scenario for each filter configuration—over the latter half of the entire time interval:
i.e., mean(Ē) + 2std(Ē) for Ē ≡

∫ 60
t=30E(t)dt with the mean and standard deviation over the nine

random seed initializations. We exclude t ∈ [0, 30] from the error metric because the errors strongly
depend on the random initial ensemble rather than the filter performance.

Figure 5a shows the error metric decreases as either the ROM tolerance or FOM ensemble size
increases, as expected. For a loose ROM tolerance, increasing the FOM ensemble size (which is
used to train the ROM) more rapidly decreases the error as compared with a tight ROM tolerance.
Since both tightening ROM tolerance and increasing FOM ensemble size can improve the filter
performance, there exists a cost/effectiveness trade-off. If the ROM construction cost increases
slowly with tighter ROM tolerance, then a small FOM ensemble with a tight ROM tolerance
should be used; the converse holds if the ROM construction cost increases rapidly with tighter
ROM tolerance. Figure 5b illustrates this trade-off by showing the error-versus-runtime Pareto
front. For our aerodynamics problem, we observe that (a) (Mn = 4, δRB = δRQ = 10−2) is most
efficient at the 0.21 error level, (b) (Mn = 8, δRB = δRQ = 10−2) and (Mn = 4, δRB = δRQ = 10−3)
are equally efficient at the ∼ 0.13 error level, and (c) (Mn = 4, δRB = δRQ = 10−4) is most efficient
at the ∼ 0.09 error level. In general, the accuracy benefit of increasing the FOM sample size and/or
tightening the ROM tolerance saturates as we approach the mean-field limit for the filter.

3.4. Comparison of FOM-ROM MFEnKF and ROM-only EnKF

Given the effectiveness of the MFEnKF, we might ask about the role of the multi-fidelity
correction from the difference of the principal and control variates compared to a single-fidelity
ROM-based EnKF, which would be akin to using the ancillary variate only. To this end, we
can compare (a) a single-fidelity ROM-based EnKF and (b) the MFEnKF. Both methods use
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(a) Mn = 8, varying ROM tol. for Mr = 12, 64 (b) Mn = 8,Mr = 64, δRB = δRQ = 10−2

Figure 6: Comparison of single-level EnKF based on a ROM (only) and MFEnKF based on both a FOM and ROM,
showing effects of multi-fidelity correction.

Mn = 8 FOM ensemble to train the ROM. The ROM-based EnKF then uses Mr = 12 or Mr = 64
ROM ensemble to compute the (single-fidelity) Kalman gain in the EnKF; the MFEnKF uses
Mr +Mn = 12 or Mr +Mn = 64 ROM ensemble and the Mn = 8 FOM ensemble to compute the
multi-fidelity Kalman gain. We emphasize that the difference between these methods is whether or
not the FOM is being used to correct the ROM statistical estimates themselves. Again, our goal is
to assess the role of the multi-fidelity correction (for the same FOM and ROM ensemble sizes and
hence computational cost).

Figure 6a shows the results. We can draw two important conclusions. First, with a tight ROM
tolerance, the surrogate is accurate enough that the multi-fidelity correction has a negligible effect.
As expected, a good enough ROM accurately approximates the FOM and the correction term is
small. Secondly, when the ROM is inaccurate the multi-fidelity correction can reduce the error
by a factor of approximately 1/2. We emphasize that (i) the cost of this multi-fidelity correction
is negligible, as the FOM states must be computed anyway to train the ROM; and (ii) using a
single-fidelity ROM-based EnKF requires an accurate ROM, but using a MFEnKF is effective even
when the construction of an accurate ROM is prohibitive due to complex dynamics or unfavorable
due to high training cost.

4. Summary and perspectives

This work develops and assesses a MFEnKF, a data assimilation method for nonlinear dynamical
systems which uses multi-fidelity statistical estimates based on a FOM and hyperreduced ROMs.
The MFEnKF effectively reduces the cost of state estimation for an aerodynamics problem by
exploiting both hyperreduced ROMs constructed on-the-fly along with multi-fidelity Monte Carlo
methods to achieve more rapid convergence than the standard single-fidelity EnKF. The method
however has some limitations: several hyperparameters must be tuned for each problem; and
constructing an effective ROM for more complicated problems is challenging, e.g. turbulent flows.
Future work for this framework include the development of an adaptive method which automatically
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select each of the aforementioned hyperparameters and exploring nonlinear model reduction schemes
to deal with more complicated flow features.
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