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Abstract

We introduce a goal-oriented, adaptive framework for the uncertainty quantification of systems
modeled by stochastically parametrized nonlinear hyperbolic and convection-dominated partial
differential equations. Of particular interest are conservation laws in aerodynamics that may have
a small number of stochastic parameters but exhibit strong nonlinearity and a wide range of scales.
Our framework exploits localized structure in the spatio-parameter space to enable rapid, reliable
uncertainty quantification for output quantities of interest. Our formulation comprises the following
technical components: (i) a discontinuous Galerkin finite element method, which provides stability
for convection-dominated problems; (ii) element-wise polynomial chaos expansions, which capture
the parametric dependence of the solution in a way amenable to adaptation; (iii) the dual-weighted
residual method, which provides global and element-wise error estimates for quantities of interest;
and (iv) a projection-based anisotropic error indicator along with the associated adaptation me-
chanics that can detect and refine strongly directional features in the physical and/or parameter
spaces simultaneously in an efficient manner. Both the spatial and stochastic discretization errors
are controlled through the adaptive refinement of the spatial mesh or polynomial chaos expansion
degree based on these anisotropic error indicators. We analyze stability, approximation properties,
and a priori error bounds of the spatio-stochastic adaptive method. We finally demonstrate the
effectiveness of our formulation for engineering-relevant transonic turbulent aerodynamics problems
with uncertainties in flow conditions and turbulence parameters.

Keywords: uncertainty quantification, discontinuous Galerkin methods, sparse polynomial chaos,
error estimation, anisotropic adaptivity, aerodynamics

1. Introduction

A complete characterization of complex engineering systems by numerical simulation requires
both the accurate prediction of output quantities of interest as well as the quantification of the
associated uncertainties in these predictions. Broadly, two distinct sources of error emerge when
making numerical predictions [41]. The first is the discretization error, which lies at the inter-
face of the mathematical model (i.e., the partial differential equations (PDEs)) and the computer
model; it is a consequence of the finite-dimensional approximation of the PDEs. The quantification
and efficient control of the discretization error using limited computational resources is the goal
of error estimation and adaptation [2, 12, 24]. The second is the modeling error, which lies at
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the interface of physical truth and the mathematical model (i.e., the PDEs); it is a consequence
of various uncertainties that may include the operating conditions, geometry, model parameters,
and simplifying assumptions made to the governing equations. The quantification of the model
error is the goal of the field of uncertainty quantification (UQ) [38, 40, 1, 19, 37], which can be
further classified into parametric and non-parametric approaches [60]. The former is restricted to
uncertainties inherit in empirical coefficients, operating conditions, or other input parameters; the
latter treats more general forms of uncertainties such that those arising from the use of simplified
models and equations. This work will focus on the former class of UQ. A prominent approach
to parametric UQ is to model the inputs using probability distributions and solve the associated
stochastically parameterized partial differential equations (SPDEs). To provide reliable simulation
of complex engineering systems in the presence of parametric uncertainties, we must quantify and
control the numerical discretization error in both the spatial and parametric approximation spaces.
The development and analysis of such a method is the goal of this work. For a discussion of error
estimation and adaptive/hierarchical modeling for non-parametric uncertainty quantification, we
refer to [44, 54, 43, 14].

From a mathematical point of view, the method we develop and analyze herein can be sum-
marized as an output error estimation and goal-oriented adaptation technique for SPDEs. We
here focus on SPDEs that (i) exhibit a wide range of spatial scales, (ii) exhibit strong and general
nonlinearity, (iii) are hyperbolic or advection-dominated, and (iv) have a low to moderate number
of stochastic parameters. We focus on SPDEs that exhibit these properties because our applica-
tion interest is in aerodynamics, where the engineering need for a reliable UQ is well recognized
but further algorithm development is required to address UQ challenges in practical engineering
settings [51, 60, 10, 50]. Within the broad context of uncertainty quantification this work presents
a forward method for the rapid quantification of parametric uncertainty. In addition, the focus on
low-dimensional parameter spaces precludes the application of this algorithm to non-parametric
uncertainties which are perforce infinite-dimensional [60, 20].

Even in the deterministic setting, the reliable and efficient solution of complex PDEs that exhibit
features (i)–(iii) is challenging due to the long-range and nonlinear interaction of various features,
which in turn engenders high computational cost. SPDEs that exhibit features (i)–(iv) demand the
resolution of these features in the presence of uncertainties. One way to overcome this challenge,
which has been shown to be effective for deterministic PDEs, is goal-oriented error estimation and
adaptation based on the dual-weighted residual (DWR) method [12, 42, 48]; in fact adaptivity is
arguably a necessity for the accurate simulation of complex aerodynamics problems [24, 51, 63].
We refer to [2, 24] for reviews of adaptive methods for (deterministic) PDEs and here focus on the
review of error estimation and adaptation techniques for SPDEs.

Some existing adaptive methods for SPDEs perform adaptation in the stochastic space only.
An early approach—introduced by Wan and Karniadakis—is multi-element generalized PC [56, 57],
which tessellates the parameter space and uses polynomial chaos (PC) expansions [59, 28] in each
subdomain. This approach is also known as the h-version of stochastic Galerkin method [7]. A
posteriori error estimation and adaptation strategies are developed in, e.g., [55, 16]. These works
focus on the estimation and control of the discretization error in the stochastic space only; they do
not provide a complete picture of the total numerical error in both stochastic and physical spaces.
While the physical space error may be assumed to be small for simple PDEs, such an assumption
rarely holds for complex PDEs that exhibit features (i)–(iii) as discussed above [24].

The idea of spatio-stochastic error estimation and adaptivity, which aims to estimate and control
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the errors due to discretization in both the physical and stochastic spaces, has emerged more
recently. Almeida and Oden [4] propose goal-oriented adaptive methods that provide both finite
element mesh refinement and anisotropic refinement of a stochastic collocation grid. In a series of
papers, Eigel et al. consider adaptive solutions of linear elliptic problems using a residual-based error
estimator [21, 22] and with a tensor-product decomposition to construct a low-rank approximation
of high(er)-dimensional problems [23]. Guignard et al. [32] derive a posteriori error estimates for
perturbation methods for SPDEs that can be used to drive adaptivity. Guignard and Nobile [31] also
consider a residual-based spatio-stochastic adaptive method for stochastic collocation methods [6,
61]. Bespalov et al. [13] similarly consider spatio-stochastic adaptivity for linear elliptic problems,
but with goal-oriented adaptation based on the DWR method [12]. Mathelin and Le Mâıtre [39]
also consider the DWR-based error estimation and adaptivity with applications in one-dimensional
Burgers’ equation. These works are however limited to linear elliptic problems or simple one-
dimensional nonlinear PDEs.

More recently, spatio-stochastic error estimation and adaptivity has been applied to more com-
plex problems in fluid dynamics. Bryant et al. [15] consider adaptive solutions of the stochastic
incompressible Navier-Stokes equations based on the DWR error estimate, h-adaptivity in the phys-
ical space, and p-adaptivity in the stochastic space. Barth [10] considers the adaptive solution of
aerodynamic flows governed by the compressible Navier-Stokes equations using the DWR error es-
timate and h-adaptivity in the physical space, as well as non-intrusive adaptive sparse quadrature
in the stochastic space. Van Langenhove et al. [53] also consider goal-oriented spatio-stochastic
error control for aerodynamic flows using the DWR error estimate and a continuous metric-based
mesh framework in the physical space and a simplex stochastic collocation method in the stochastic
space.

The above works [15, 10, 53], like our current work, are motivated by the need to estimate
and control the errors due to the physical and stochastic discretizations for practical engineering
problems. However, unlike our work, they separate the discretization of the physical and stochastic
spaces, and hence do not exploit the spatially dependent stochastic structure of the problem. To
the best of the authors’ knowledge, there has not been published work that explores anisotropic
combined error control for nonlinear SPDEs with aforementioned features (i)–(iv). The development
and analysis of such a method is the overarching goal of this work.

Our spatio-stochastic adaptive solver is based on the discontinuous Galerkin (DG) method [18,
9, 5], which provides stability for advection-dominated PDEs and hp-flexibility for adaptation.
We extend the DG method to include element-wise PC expansions; the DG method permits a
rapidly changing PC expansion degree between elements and enables the sparse representation
of non-constant PC expansion fields. Given a DG solution to the SPDE, both the spatial and
stochastic errors are estimated using the DWR method [12, 42, 48] like many of the aforementioned
works [13, 39, 15, 10, 53]. Using the error indicators from the DWR method, the elements with
the highest combined spatio-stochastic error are marked for refinement. To determine how to best
refine these elements from a number of anisotropic spatio-stochastic refinement options, we employ
a local solver, inspired by those used in anisotropic adaptive DG methods [25, 34, 17, 62]; given
several anisotropic refinement options, we deduce the most efficient refinement option based on
error reduction per degree of freedom incurred. The resulting algorithm fully exploits the localized
anisotropic spatio-stochastic structure in the SPDE. As we will later demonstrate, this automatic
computation of sparse PC expansion fields enables both rapid convergence in the output quantity
of interest and significant runtime speedup.
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We summarize the threefold contributions of this work. The first contribution is the devel-
opment of the aforementioned goal-oriented anisotropic spatio-stochastic adaptive DG method for
SPDEs. The formulation employs an element-wise discontinuous PC expansion and a local solver
to exploit spatio-stochastic anisotropy and sparsity. The second contribution is the analysis of the
stability and quasi-optimality of the stochastic DG method and the approximation properties of
the associated spatio-stochastic polynomial spaces. The analysis shows the need for combined error
estimation as well as anisotropic spatio-stochastic adaptivity to efficiently solve SPDEs and inform
the design of the adaptation strategy. The third contribution is the demonstration of the method
for a two-dimensional advection-diffusion equation and transonic Reynolds-averaged Navier-Stokes
flows past an airfoil. Through the judicious construction and refinement of our spatio-stochastic ap-
proximation spaces, the method achieves significant computational complexity reduction compared
to non-adaptive stochastic Galerkin methods. The threefold contributions provide steps towards
reliable uncertainty quantification of complex engineering problems.

Before we conclude the introduction, we note a limitation of the present work. Our adaptive
stochastic DG method is designed for problems that exhibit a wide range of spatial scales and
nonlinearity but only a few stochastic parameters. The method in particular suffers from the curse
of dimensionality. The method is unsuitable for high- or infinite-dimensional problems that often
arise from SPDEs with random fields. In such problems, the Monte-Carlo method, and its variants
such as multi-level Monte-Carlo [30], remains a more effective choice.

The remainder of this paper is organized as follows. In Section 2, we introduce a DG method
for SPDEs that supports spatially varying, element-wise PC expansions. In Section 3, we provide
a spatio-stochastic a priori error analysis of the DG method for stochastic advection-diffusion-
reaction equations; the analysis extends the anisotropic hp error analysis for deterministic DG
methods by Georgoulis, Hall, Hartmann, and Houston in a series of papers [36, 25, 26, 27, 34] to
SPDEs. In Section 4, we introduce an anisotropic spatio-stochastic adaptive DG method informed
by the DWR error estimate and local solves. Section 5 demonstrates spatio-stochastic adaptation
for the advection-diffusion equation and transonic aerodynamic flows.

2. Stochastic discontinuous Galerkin method

In this section, we present a DG method for SPDEs that supports spatially varying, element-wise
PC expansions. Specifically, we introduce the spatio-stochastic approximation space, the associated
DG method, and its efficient implementation.

2.1. Problem statement

We present an abstract form of the stochastically parametrized PDEs associated with systems
of nonlinear conservation laws. We first introduce a d-dimensional physical domain Ω ⊂ Rd with
a Lipschitz boundary. We next introduce a probability space (Ξ,B(Ξ),Pξ), where Ξ ⊂ RP is the
P -dimensional sample space, B(Ξ) is the Borel σ-algebra generated by Ξ, and Pξ is the probability
measure. Throughout this work, our sample space Ξ is taken to be a product space (implying
the assumption of statistically independent input parameters) and hence can be expressed as Ξ =∏P
n=1 Ξn for Ξn ⊂ R, n = 1, . . . , P . We then seek an m-component real-valued random field

u : Ω× Ξ→ Rm that satisfies a system of m SPDEs,

∇ · (Fc(u, x; ξ)−Fv(u,∇u, x; ξ)) = S(u,∇u, x; ξ) a.e. in Ω× Ξ,
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along with appropriate boundary conditions; here Fc : Rm × Ω × Ξ → Rm is the convective flux,
Fv : Rm × Rm×d × Ω × Ξ → Rm×d is the viscous flux, and S : Rm × Rm×d × Ω × Ξ → Rm is
the source term. Given the solution u : Ω × Ξ → Rm to the SPDE, we wish to evaluate statistics
associated with some quantity of interest:

J (u) ≡
∫

Ξ
g(J (u(·; ξ); ξ))dPξ, (1)

where J (u(·; ξ); ξ) is the quantity of interest evaluated for the particular value of the parameter
ξ ∈ Ξ, and g : R× Ξ→ R is the transformation required to evaluate the particular statistics; e.g.,
g(J (u(·; ξ))) ≡ J (u(·; ξ)) for the mean. The goal of work is to approximate J (u) as efficiently as
possible (i.e., for a minimal computational cost at a given accuracy) and to equip the approximation
with an a posteriori error estimate.

2.2. Element-wise adaptive spatio-stochastic polynomial space

We now describe the spatio-stochastic polynomial space used in our DG method for SPDEs.
To this end, we first introduce a triangulation Th that comprises the set {κi} of non-overlapping
polygonal elements that tessellate the physical domain Ω; the triangulation may contain hanging
nodes. We next introduce a set of element-wise physical polynomial degrees {pκ ∈ Z≥0}κ∈Th . Using
this notation, the (physical) hp space suitable for DG approximation can be written as

Vh,p ≡ {v ∈ L2(Ω)m | v|κ ∈ Pp
κ
(κ)m, ∀κ ∈ Th}, (2)

where L2(Ω) denotes the standard Lebesgue space of square integrable functions, and Ppκ(κ) de-
notes the space of degree pκ polynomials over element κ ⊂ Ω. Similarly, we introduce a set of
multi-indices {sκ ∈ ZP≥0}κ∈Th that describe the element-wise stochastic polynomial degrees. Note
that we describe the stochastic polynomial space on each element κ using the P -component multi-
index sκ ≡ (sκ1 , . . . , s

κ
P ) as we consider PC expansions of differing degrees in each of the P stochastic

dimensions. The spatio-stochastic space in which we seek the solution is given by

Vh,p,s ≡ {v ∈ L2(Ω× Ξ)m | v|κ ∈ (Ppκ(κ)⊗ Psκ(Ξ))m, ∀κ ∈ Th}, (3)

where, following the standard multi-index convention,

Psκ≡(sκ1 ,...,s
κ
P )(Ξ) = Psκ1 (Ξ1)⊗ · · · ⊗ PsκP (ΞP )

is the space of tensor-product multi-variate polynomials on the product space Ξ ≡
∏P
n=1 Ξn. The

space Vh,p,s can be more compactly expressed as Vh,p,s =
⊕

κ∈Th(Ppκ(κ)⊗Psκ(Ξ))m. We emphasize

that, for a given element κ ∈ Th, the variation in the solution in the physical space κ ⊂ Ω ⊂ Rd
is sought in Ppκ(κ) and the variation in the solution in the stochastic space Ξ ⊂ RP is sought
in Psκ(Ξ). Because we consider a discontinuous approximation space as in the DG method, we
can readily support elementally varying physical polynomial degrees pκ and stochastic polynomial
degree sκ; we will leverage this property to support adaptive s-refinement (but we will not exploit
adaptive p-refinement in this work).

For clarity, we now present more explicit representations of functions in Vh,p,s in terms of its

basis. To this end, we first introduce a basis {φκi : κ → R}Npκi=1 for the physical polynomial space

Ppκ(κ) of dimension Npκ . We next introduce a basis {ψj : Ξn → R}s
κ
n
j=0 for the n-th stochastic
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dimension for all n = 1, . . . , P . Because of its tensor-product structure, the basis for Psκ(Ξ) can be
constructed from the product ψj≡(j1,...,jP )(ξ ≡ (ξ1, . . . , ξP )) = ψj1(ξ1) · · ·ψjP (ξP ) for j ≤ sκ, where
j ≤ sκ denotes multi-index j that satisfies jn ≤ sκn, for all n = 1, . . . , P . We denote the stochastic
basis for element κ ∈ Th by {ψj : Ξ → R}j≤sκ and its cardinality by Nsκ ≡

∏P
n=1(sκn + 1). Any

function vh,p,s ∈ Vh,p,s restricted to element κ ∈ Th belongs to the space (Ppκ(κ) ⊗ Psκ(Ξ))m; the
k-th component of such a function evaluated at (x, ξ) ∈ κ× Ξ can be expressed using the basis as

vh,p,s|κ(x, ξ)k =
∑
j≤sκ

Npκ∑
i=1

v̂κi,j,kφ
κ
i (x)ψj(ξ) =

sκ1∑
j1=1

· · ·
sκP∑
jP=1

Npκ∑
i=1

v̂κi,(j1,...,jP ),kφ
κ
i (x)ψi1(ξ1) · · ·ψiP (ξP )

for coefficients {{{v̂κi,j,k}
Npκ
i=1 }j≤sκ}mk=1 of cardinality mNsκNpκ .

Combining the expressions for all elements in Th, the k-th component of the function evaluated
at (x, ξ) ∈ Ω× Ξ can be expressed as

vh,p,s(x, ξ)k =
⊕
κ∈Th

∑
j≤sκ

Npκ∑
i=1

v̂κi,j,kφ
κ
i (x)ψj(ξ),

for coefficients {{{{v̂κi,j,k}
Npκ
i=1 }j≤sκ}mk=1}κ∈Th of cardinality NN ≡

∑
κ∈ThmNsκNpκ . Again, due to

the use of the discontinuous approximation space, the coefficients for each element can be varied
independently of one another without any inter-elemental constraints.

Remark 1. A spatio-stochastic function vh,p,s ∈ Vh,p,s with spatially varying stochastic polynomial
degrees can also be interpreted as (global) PC expansion with sparse “mode strengths.” To this end,
let the P -tuple smax be a multi-index such that smax

n ≥ maxκ∈Th s
κ
n, n = 1, . . . , P ; i.e., smax

n is the
maximum polynomial degree for the n-th stochastic dimension used anywhere in the domain. Then,
we may express vh,p,s ∈ Vh,p,s as

vh,p,s =
∑

j≤smax

v
(j)
h,p(x)ψj(ξ) ≡

∑
j≤smax

⊕
κ∈Th

(Eκv̂κ)κi,jφ
κ
i (x)

ψj(ξ),
where v

(j)
h,p ∈ Vh,p is the mode strength given by the expression in the brackets, and Eκ : RmNsκNpκ →

RmNsmaxNpκ is the prolongation operator such that (Eκv̂)i,j = v̂i,j for j ≤ sκ and (Eκv̂)i,j = 0
otherwise. In other words, Eκ simply “pads” the coefficients v̂κ with 0 such that the dimension
is compatible with the maximum degree of the stochastic polynomial used over the domain smax.
The resulting mode strengths are sparse in the sense that the mode strength for the multi-index j
vanishes for elements whose stochastic polynomial degree sκ yields j 6≤ sκ.

2.3. Stochastic discontinuous Galerkin method

Having defined the approximation space Vh,p,s, we now introduce the projection method that
we use to find the solution uh,p,s ∈ Vh,p,s. To this end, we first recall that the (non-stochastic) DG
approximation for a parametrized PDE evaluated at a fixed parameter ξ ∈ Ξ can be compactly
expressed as follows: find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p; ξ) = 0 ∀vh,p ∈ Vh,p,
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where Rh,p(·, ·; ξ) : Vh,p × Vh,p → R is the semi-linear form associated with the particular DG
approximation, and Vh,p is the (non-stochastic) DG space (2). Given uh,p ∈ Vh,p for the specific
value of the parameter ξ ∈ Ξ, the associated quantity of interest is given by Jh,p(uh,p; ξ), where
Jh,p(·, ξ) : Vh,p → R is the DG approximation of the output functional. For brevity, we omit a com-
plete presentation of the DG formulation and refer to review papers [18, 5] and textbooks [35, 47];
we merely note that, in this work, we use a “standard” DG method with an upwind numerical flux
for the convection term, the so-called BR2 scheme [11] for the diffusion term, and an asymptotically
dual-consistent discretization of the source term [45].

To obtain a spatio-stochastic DG approximation, we perform Galerkin projection in the stochas-
tic space to obtain the following: find uh,p,s ∈ Vh,p,s such that

Rh,p,s(uh,p,s, vh,p,s) = 0 ∀vh,p,s ∈ Vh,p,s, (4)

where the spatio-stochastic DG residual form is expressed as

Rh,p,s(wh,p,s, vh,p,s) ≡
∫

Ξ
Rh,p(wh,p,s(·, ξ), vh,p,s(·, ξ); ξ)dPξ ∀wh,p,s, vh,p,s ∈ Vh,p,s.

Given uh,p,s ∈ Vh,p,s, the associated quantity of interest is taken to be

Jh,p,s ≡J (uh,p,s),

where the spatio-stochastic output functional is given by

Jh,p,s(wh,p,s) ≡
∫

Ξ
g(Jh,p(wh,p,s(·, ξ); ξ))dPξ ∀wh,p,s ∈ Vh,p,s,

with g : R×Ξ→ R being the transformation associated with the particular statistics, as introduced
in (1).

2.4. Computational implementation

We now present an implementation of the stochastic DG method that builds on an existing DG
method for non-stochastic problems. To begin, we first recall that any function vh,p,s ∈ Vh,p,s is iden-

tified with unique coefficients {{{{v̂κi,j,k}
Npκ
i=1 }j≤sκ}mk=1}κ∈Th of cardinality NN ≡

∑
κ∈ThmNsκNpκ

by

vh,p,s(x, ξ)k =
⊕
κ∈Th

∑
j≤sκ

Npκ∑
i=1

v̂κi,j,kφ
κ
i (x)ψj(ξ).

The coefficients are identified by four indices: the element index κ ∈ Th; the equation component
index k ∈ [1,m]; the stochastic basis index j ≤ sκ, which is a P -tuple; and the spatial basis
index i ∈ [1, Npκ ]. In practice, we store the fourth-order tensor of coefficient as a flattened vector
Vh,p,s ∈ RNN , with κ as the outermost (i.e., slowest changing) index, followed by k, then j, and i

as the innermost (i.e., fastest changing) index; i.e., (Vh,p,s)(κ,k,j,i) = {{{{v̂κi,j,k}
Npκ
i=1 }j≤sκ}mk=1}κ∈Th .

For instance, suppose we discretize a two-component (m = 2) equation in one-dimensional physical
space (d = 1) and one-dimensional stochastic space (P = 1) using the physical and stochastic
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polynomial degree of pκ0 = 2 and sκ0 = (1) for the first element and pκ1 = 1 and sκ1 = (2) for the
second element. The associated flattened vector in Vh,p,s ∈ RNN=24 is organized as

Vh,p,s =

 κ0 κ1 c0 c1[
ψ0 ψ1[

φ0φ1φ2

][
φ0φ1φ2

]][ ψ0 ψ1[
φ0φ1φ2

][
φ0φ1φ2

]]
 c0 c1[

ψ0 ψ1 ψ2[
φ0φ1

][
φ0φ1

][
φ0φ1

]][ ψ0 ψ1 ψ2[
φ0φ1

][
φ0φ1

][
φ0φ1

]]

 .

The particular ordering provides two computational advantages: the Jacobian matrix has a element-
wise block structure, which facilitates both preconditioning and straightforward parallel implemen-
tation and the ordering allows for the potential to use different physical and/or stochastic polyno-
mial degrees for each component of the equation, though we do not exploit this flexibility in this
work.

We next consider the solution of the spatio-stochastic DG problem (4). The problem written in

terms of the aforementioned basis coefficients is as follows: find the coefficients {{{{ûκi,j,k}
Npκ
i=1 }j≤sκ}mk=1}κ∈Th

such that uh,p,s =
⊕

κ∈Th
∑

j≤sκ
∑Npκ

i=1 û
κ
i,jφ

κ
i ψj satisfies

Rh,p,s(uh,p,s, ekφ
κ
i ⊗ ψj) = 0

for all i ∈ {1, . . . , Npκ}, j ≤ sκ, k ∈ {1, . . . ,m}, and κ ∈ Th, where ek ∈ Rm is the k-th standard
unit vector. In practice, we approximate the integral in Rh,p,s(·, ·) over the sample space Ξ ⊂ RP
with an elementally varying Qκ-point quadrature rule so that

Rh,p,s(uh,p,s, ekφ
κ
i ⊗ ψj) ≈

Qκ∑
q=1

ωq [Rh,p(uh,p,s(·, ξq), ek ⊗ φκi ; ξq)]ψj(ξq), (5)

where the elemental stochastic quadrature order is chosen based on the stochastic polynomial degree
of the element and its neighbors to enable efficient residual evaluation. Furthermore, in the view
of Remark 1, the solution evaluated at a quadrature point ξq ∈ Ξ, uh,p,s(·, ξq) ∈ Vh,p, results from
a linear combination of the “sparse” mode strengths

uh,p,s(x, ξq) =
∑

j≤smax

u
(j)
h,p(x)ψj(ξq). (6)

Hence, given a spatio-stochastic function uh,p,s ∈ Vh,p,s, the evaluation of the spatio-stochastic
residual Rh,p,s(uh,p,s, ekφ

κ
i ⊗ ψj) proceeds in three steps: (i) we first evaluate the (non-stochastic)

function uh,p,s(·, ξq) ∈ Vh,p associated with the stochastic quadrature point ξq ∈ Ξ using (6); (ii) we
next evaluate the standard, deterministic DG residual Rh,p(uh,p,s(·, ξq), ek⊗φκi ; ξq) as shown in the
bracket of (5); (iii) we repeat (i) and (ii) for all Qκ stochastic quadrature points to evaluate (5).

Using the aforementioned flattened vector, the residual operator can also be expressed as Rh,p,s :
RNN → RNN whose entries are given by

Rh,p,s(Uh,p,s)(κ,k,i,j) ≡ Rh,p,s(uh,p,s, ekφ
κ
i ⊗ ψj).

Equivalently,

Rh,p,s(Uh,p,s)(κ,k,i,j) =

Qκ∑
q=1

ωqRh,p(Uh,p(ξq); ξq)(κ,k,i)ψj(ξq)
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for Uh,p(ξq) =
∑

j≤smax U
(j)
h,pψj(ξq), where U

(j)
h,p is the vector of coefficients associated with u

(j)
h,p—

that is, the deterministic solution evaluated at the qth quadrature point, and Rh,p(Uh,p(ξq); ξq)(κ,k,i) ≡
Rh,p(u

(j)
h,p, ekφ

κ
i ; ξq) is the deterministic algebraic DG residual evaluated at ξq. In this algebraic form,

the DG problem (4) is equivalent to finding Uh,p,s ∈ RNN such that Rh,p,s(Uh,p,s) = 0 in RNN .
We make two observations about the spatio-stochastic residual evaluation procedure. We first

observe that the number of deterministic DG residual evaluations for a given element κ is equal
to the number of stochastic quadrature points Qκ used to approximate the stochastic integral.
Secondly, we observe that the scheme is “semi-intrusive” in the sense that it requires the access to
the element-wise deterministic DG residual for an efficient implementation that exploits spatially
varying physical and stochastic approximation polynomial degrees.

We will solve the nonlinear algebraic system (4) using a Newton(-like) method which requires
the Jacobian of the residual. Similarly to the residual, the spatio-stochastic Jacobian can be
constructed from the associated (non-stochastic) Jacobian: i.e.,

R′h,p,s(uh,p,s; ek′φ
κ′
i′ ⊗ψj′ , ekφκi ⊗ψj) =

Qκ∑
q=1

ωq

[
R′h,p(uh,p,s(·, ξq); ek′φκ

′
i′ , ekφ

κ
i ; ξq)

]
ψj′(ξq)ψj(ξq), (7)

for i, i′ ∈ {1, . . . , Npκ}, j, j′ ≤ sκ, k, k′ ∈ {1, . . . ,m}, and κ, κ′ ∈ Th. The evaluation of the spatio-
stochastic Jacobian again proceeds in three steps: (i) we first evaluate the (non-stochastic) function
uh,p,s(·, ξq) ∈ Vh,p associated with the stochastic quadrature point ξq ∈ Ξ using (6); (ii) we next
evaluate the standard, deterministic DG Jacobian R′h,p(uh,p,s(·, ξq); ek′φκi′ , ekφκi ; ξq) as shown in the
bracket of (7); (iii) we repeat (i) and (ii) for all Qκ stochastic quadrature points to evaluate (7).
The Jacobian is element-wise block sparse, where each block is of the size mNpκNsκ . We further
note that since the DG residual depends on the inter-elemental jump between neighboring elements,
the Jacobian will also be nonzero when κ and κ′ share an elemental boundary.

Using the aforementioned flattened vector, the Jacobian operator can also be expressed as
∂Rh,p,s : RNN → RNN×NN whose entries are given by

∂Rh,p,s(Uh,p,s)(κ,k,i,j),(κ′,k′,i′,j′) = R′h,p,s(uh,p,s; ek′φ
κ′
i′ ⊗ ψj′ , ekφκi ⊗ ψj),

or, equivalently,

∂Rh,p,s(Uh,p,s)(κ,k,i,j),(κ′,k′,i′,j′) =

Qκ∑
q=1

ωq∂Rh,p(Uh,p(ξq))(κ,k,i),(κ′,k′,i′)ψj(ξq)ψj′(ξq),

where ∂Rh,p(Uh,p(ξq); ξq)(κ,k,i),(κ′,k′,i′) = R′h,p(u
(j)
h,p; ek′φ

κ′
i′ , ekφ

κ
i ; ξq) is the deterministic algebraic

DG residual evaluated at ξq. The evaluation of the residual and Jacobian is summarized in Algo-
rithm 1.

We solve the nonlinear algebraic system (5) using a pseudo-time continuation (PTC) solver.
The (pseudo) time-dependent equation takes on the following form (assuming uh is the conservative
variable): find uptc

h (t) ∈ Vh,p,s such that∫
Ξ

∫
Ω
vh,p,s∂tu

ptc
h,p,s|tdxdPξ +Rh,p,s(uptc

h,p,s(t), vh,p,s) = 0 ∀vh,p,s ∈ Vh,p,s, ∀t ∈ R>0,

with uptc
h,p,s(t = 0) = u0

h,p,s as the initial condition, which is often the freestream condition for
aerodynamic flows. The PTC equation is discretized using the backward Euler method. The
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Algorithm 1 Stochastic residual and Jacobian evaluation

Input:
SDG coefficients: Uh,p,s

Output:
SDG residual: Rh,p,s(Uh,p,s)
SDG Jacobian: ∂Rh,p,s(Uh,p,s)

1: for κ ∈ Th do
2: for ξq = 1, 2, . . . , Qκ do
3: Evaluate state at ξq: Uh,p(ξq) =

∑
j≤smax(Uh,p,s)(κ,i,j,k)ψj(ξq)

4: Evaluate deterministic residual Rh,p(Uh,p(ξq); ξq) and Jacobian ∂Rh,p(Uh,p(ξq); ξq)
5: Update residual and Jacobian:

Rh,p,s(Uh,p,s)(κ,k,j,i) += ωqRh,p(Uh,p(ξq); ξq)(κ,k,i)ψj(ξq)
∂Rh,p,s(Uh,p,s)(κ,k,j,i),(κ′,k′,j′,i′) += ωq∂Rh,p(Uh,p(ξq); ξq)(κ,k,i),(κ′,k′,i′)ψj(ξq)ψj′(ξq)

linearized equation that arises at each (pseudo) time step is solved using the GMRES method [49]
preconditioned with block ILU(0) with minimum-discarded fill reordering [46]. At each (pseudo)
time step, we monitor the change in the density and pressure at all spatial and stochastic quadrature
points to ensure the physicality of the solution. We refer to [63] for details of the PTC method.

Finally, we note that the output is evaluated as

Jh,p,s(uh,p,s) '
∑
κ∈Th

Qκ∑
q=1

ωqg

Jh,p
∑
j≤sκ

u
(j)
h,p|κψj(ξq); ξq

 ,

which also requires a number of deterministic evaluations equal to the number of stochastic quadra-
ture points.

3. Analysis of anisotropic adaptive spatio-stochastic DG method

This section provides a priori error analysis of the spatio-stochastic adaptive DG method. We
focus solely on the analysis of the advection-diffusion-reaction equation for three reasons. First,
the equation exhibits many of the challenges outlined in the introduction, including convection-
dominance and widely ranging scales. Second, the equation is linear and is amenable to analysis.
Third, the equation has been extensively studied for deterministic DG methods by Georgoulis,
Hall, Hartmann, and Houston in a series of papers [36, 25, 26, 27, 34], and much of our analysis
for the spatio-stochastic method builds on existing technical tools in these works. We introduce
the equation in Section 3.1, provide approximation theory for general anisotropic spatio-stochastic
spaces 3.2, and provide a priori error estimates for quantities of interest in Section 3.3.

3.1. Model problem: stochastic advection-diffusion-reaction equation

We first introduce a stochastic version of the advection-diffusion-reaction equation considered
in [36, 25, 34]. First, for simplicity, we assume that the sample space is unit hypercube Ξ ≡ [0, 1]P

and the associated probability measure is uniform. We next introduce an advection-diffusion-
reaction equation of the following form:

−∇ · (a∇u) +∇ · (bu) + cu = f a.e. in Ω× Ξ,

10



where a ∈ L∞(Ξ;L∞(Ω))d×d is a piecewise continuous diffusivity field that is uniformly elliptic in
Ω for each ξ ∈ Ξ, b ∈ L∞(Ξ;L∞(Ω))d is a Lipschitz continuous advection field for each ξ ∈ Ξ,
c ∈ L∞(Ξ;L∞(Ω)) is a reaction field, and f ∈ L∞(Ξ;L2(Ω)) is a source term. We denote the
boundary of Ω by Γ, and partition Γ into non-overlapping Dirichlet boundary ΓD and Neumann
boundary ΓN sections. We assume that all Neumann boundaries are outflow in the sense that
b · n ≥ 0 on ΓN . The boundary conditions are given by u = gD(ξ) on ΓD and n · a∇u = gN (ξ) on
ΓN . We assume that the usual positivity hypothesis c(ξ) + 1

2∇ · b(ξ) ≥ 0 holds a.e. in Ω for each
ξ ∈ Ξ.

The DG approximation of the advection-diffusion-reaction equation for a fixed parameter ξ ∈ Ξ
is as follows: find uh,p ∈ Vh,p such that

Bh,p(uh,p, vh,p; ξ) = Lh,p(vh,p; ξ) ∀vh,p ∈ Vh,p,

where the parametrized bilinear form Bh,p(·, ·; ξ) and linear form Lh,p(·; ξ) are given by [36, 25, 34]

Bh,p(w, v; ξ) ≡
∫

Ω
(a(ξ)∇v · ∇w −∇v · b(ξ)w + c(ξ)wv) dx

+
∑
κ∈Th

(∫
∂+κ

n · b(ξ)v+w+ds+

∫
∂−κ\Γ

n · b(ξ)v+w−ds
)

+

∫
ΓI∪ΓD

(
− {a(ξ)∇v} · JwK− JvK · {a(ξ)∇w}+ ϑ(ξ)JvK · JwK

)
ds

Lh,p(v; ξ) ≡
∫

Ω
f(ξ)vdx−

∑
κ∈Th

∫
∂−κ∩Γ

n · b(ξ)gD(ξ)v+ds

−
∫

ΓD

gD(ξ)(n · a(ξ)∇v+ + ϑv+)ds+

∫
ΓN

gN (ξ)v+ds.

The expression above uses the standard notations from the DG literature, but we here provide a
brief review for completeness; we refer to [5, 36, 34] for more detailed presentation. We denote
by ΓI the union of all interior facets of Th. We denote by κ+ and κ− the two elements on an
interior facet. The averaging operator on an interior facet is given by {v} = (v+ + v−)/2, where v±

are the states evaluated on the boundary of κ± associated with the facet; the averaging operator
simplifies to {v} = v on a boundary of Γ of Ω. The jump operator on an interior facet is given by
JvK = v+nκ+ +v−nκ− , where nκ± the outward-pointing normal on κ±; the jump operator simplifies
to JvK = vn, where n is the outward-pointing normal on Γ, on boundary of Ω. In addition, ∂−κ
and ∂+κ denotes the inflow and outflow part of the element boundary, respectively. Finally, ϑ is
the discontinuity-penalization parameter. We again refer to [36, 34] for more detailed presentation.

The stochastic DG approximation is as follows: find uh,p,s ∈ Vh,p,s such that

Bh,p,s(uh,p,s, vh,p,s) = Lh,p,s(vh,p,s) ∀vh,p,s ∈ Vh,p,s,

where

Bh,p,s(w, v) ≡
∫

Ξ
Bh,p(w(·, ξ), v(·, ξ); ξ)dPξ,

Lh,p,s(v) ≡
∫

Ξ
Lh,p(v(·, ξ); ξ)dPξ.
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We also introduce a linear output functional of the form L o
h,p,s(u) =

∫
Ξ L

o
h,p(u(ξ); ξ)dPξ and the

associated adjoint problem: find z ∈ H2(Th)⊗ L2(Ξ) such that

Bh,p,s(w, z) = L o
h,p,s(w) ∀w ∈ H2(Th)⊗ L2(Ξ),

where H2(Th) ≡ {v ∈ L2(Ω) | v|κ ∈ H2(κ), ∀κ ∈ Th} is the broken Sobolev space. Our analysis
builds on the stability and quasi-optimality of the underlying DG discretization proven by Geor-
goulis, Hall, Hartmann, and Houston in a series of papers [36, 25, 26, 27, 34]; we in particular
leverage the simple relationship between B(·, ·), L (·), and J (·) and B(·, ·; ξ), L(·; ξ), and J (·; ξ),
respectively.

We conclude this section with a few limitations of the study. We first make two assumptions
that are also made in the analysis of (deterministic) DG methods in [36, 34]: (i) the advection
field satisfies b · ∇v ∈ Vh,p,s ∀v ∈ Vh,p,s; (ii) the diffusion field a(ξ) is constant over each element.
In addition, unlike the analysis in [34], we assume that all elements can be determined via affine
transformations.

3.2. Approximation theory in spatio-stochastic spaces

We now analyze the approximation properties of the spatio-stochastic approximation space
Vh,p,s. To begin, we first introduce a few quantities that characterize a given (physical) mesh as
defined in [34]:

Definition 2. Let κ̂ ≡ (0, 1)d be a reference element with the associated coordinate system x̂ =
(x̂1, . . . , x̂d). We denote the Jacobian of the mapping from the reference element κ̂ to the physical
element κ ∈ Th by Jκ : κ̂ → κ; note that (Jκ)i,j = ∂xi

∂x̂j
, i, j = 1, . . . , d. The singular values of the

Jacobian are σκ1 ≥ · · · ≥ σκd .

We now analyze the approximation properties of the spatio-stochastic L2 projection operator
Πh,p,s : H1(Ω)⊗ L2(Ξ)→ Vh,p,s, which satisfies

(w −Πh,p,sw, v)L2(Ω×Ξ) = 0 ∀v ∈ Vh,p,s.

The “best-fit” projection plays an important role in the a priori error analysis of the spatio-
stochastic DG method. In particular, as the DG method involves integration of the functions in
elements as well as on facets, we require projection error bounds for functions evaluated on both
entities. We now state the main result, which is an extension of the result for (deterministic) DG
spaces in [25, 26, 34] to spatio-stochastic DG spaces:

Proposition 3. For a smooth function v : κ × Ξ → R, there exists C < ∞ that depends only on
the physical dimension d, stochastic dimension P , and the physical polynomial degree pκ such that
the L2 and H1 errors on an element κ and a facet f ⊂ ∂κ are bounded by

‖v −Πh,p,sv‖L2(κ×Ξ) ≤ C
(
F κh,p(v) + F κs (v)

)
(8)

‖∇(v −Πh,p,sv)‖L2(κ×Ξ) ≤ C
(
|σκd |−1F κh,p(v) + F κs (∇v)

)
(9)

‖v −Πh,p,sv‖L2(f×Ξ) ≤ C
|f |1/2

|κ|1/2
(
F κh,p(v) + F κs (v) + σκ1F

κ
s (∇v)

)
(10)

‖∇(v −Πh,p,sv)‖L2(f×Ξ) ≤ C
|f |1/2

|κ|1/2
(
|σκd |−1F κh,p(v) + F κs (∇v) + σκ1F

κ
s (∇2v)

)
, (11)
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where |κ| is the measure (i.e., volume) of element κ, |f | is the measure (i.e., d− 1 volume) of facet
f , σκd is the d-th singular value of the Jacobian as defined in Definition 2, and

F κh,p(v) ≡ ‖Dκ,p+1(v)‖L2(κ×Ξ) ≡
∥∥∥ d∑
j1=1

· · ·
d∑

jp+1=1

Jκj1,i1 · · · J
κ
jp+1,ip+1

∂p+1v

∂xj1 · · · ∂xjp+1

∥∥∥
L2(κ×Ξ)

,

F κs (v) ≡

 P∑
j=1

1

(2sκj )!(sκj )222(sκj+1)
‖∂

sκj+1

ξj
v‖2L2(κ×Ξ)

1/2

.

Proof. The result is an extension of Theorem 5.20 in [34] for deterministic DG spaces to spatio-
stochastic DG spaces. The proof is provided in Appendix A.

Remark 4. In the same setting as Proposition 3, we may appeal to Stirling’s formula to obtain a
simplified bound for the stochastic error term F κs (v),

F κs (v) ≈

 P∑
j=1

Csκj s
−2(sκj+1)‖∂

sκj+1

ξj
v‖2L2(κ×Ξ)

1/2

,

where Csκj depends only weakly on sκ compared with the dominant terms in the inequality. This is
the typical spectral convergence result for polynomial-degree refinement.

Remark 5. If the element is nearly isotropic with a diameter h, then σκd ≈ σκ1 ≡ h, and the spatial
error term F κh,p(v) simplifies to

F κh,p(v) ≈ hp+1‖∇p+1v‖L2(κ×Ξ).

We hence obtain the well-known relationships for the physical space error: e.g., ‖v−Πh,p,sv‖L2(κ×Ξ) ≤
Chp+1‖∇p+1v‖L2(κ×Ξ).

In Proposition 3, the error in the spatio-stochastic approximation is decomposed into two pieces:
the first is the spatial error F κh,p(·), which depends on the (anisotropic) element size encoded in the
mesh Jacobian Jκ and the polynomial degree p; the second is the stochastic error F κs (·), which
depends on the anisotropic stochastic expansion degree sκ = (sκ1 , . . . , s

κ
P ). Additionally for the

physical error term, we see that the error converges algebraically with respect to hκ as (hκ)p
κ+1.

This expression once again demonstrates the advantage of high-order discretizations. Likewise for
the stochastic term we see a spectral convergence in the error with respect to the polynomial chaos
expansion order sκ, again assuming the solution is sufficiently regular. Alluding to our previously
mentioned objectives, we see that both the spatial and stochastic error must be controlled in order
to obtain a truly accurate solution. Otherwise, adapting in one space may be futile if the error is
dominated by the opposing term.
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3.3. A priori error analysis of the stochastic DG method

We now provide the stability analysis and a priori error analysis of the spatio-stochastic DG
method. To begin, we define the stochastic DG norm:

‖v‖2Vh,p,s ≡
∑
κ∈Th

(
‖
√
a∇v‖2L2(κ×Ξ) + ‖c0v‖2L2(κ×Ξ)

+
1

2
‖|b · n|v+‖2L2((∂κ∩Γ)×Ξ) +

1

2
‖|b · n|(v+ − v−)‖2L2((∂−κ\Γ)×Ξ)

+ ‖ϑ−1/2{a∇v}‖2L2((∂κ\ΓN )×Ξ) + ‖ϑ1/2JvK‖2L2((∂κ\ΓN )×Ξ)

)
;

this is an extension of the DG norm in [36, 34] to stochastic problems by ‖v‖Vh,p,s ≡
∫

Ξ ‖v(·, ξ)‖Vh,pdPξ.
The following lemma states the stability of the stochastic DG method:

Proposition 6 (stability of stochastic DG method). The stochastic DG method applied to the
stochastic advection-diffusion-reaction equation is stable in the sense that

α‖vh,p,s‖2Vh,p,s ≤ Bh,p,s(vh,p,s, vh,p,s) ∀vh,p,s ∈ Vh,p,s,

where α depends only on the physical dimension d and the polynomial degree p.

Proof. Theorem 5.6 of [34] states that there exists α that depends only on the physical dimension
d and the polynomial degree p such that

α‖vh,p‖2Vh,p ≤ Bh,p(vh,p, vh,p; ξ) ∀vh,p ∈ Vh,p.

The integration of the equation over the stochastic space Ξ yields

α‖v‖2Vh,p,s = α

∫
Ξ
‖v(·, ξ)‖2Vh,pdPξ ≤

∫
Ξ
Bh,p(v(·, ξ), v(·, ξ); ξ)dPξ = Bh,p,s(v, v) ∀v ∈ Vh,p,s,

where we have appealed to the definition of ‖ · ‖Vh,p,s and B(·, ·).

In words, the stochastic DG method is coercive with respect to the stochastic DG norm. We
next state the main theorem of this section: the a priori analysis for the output error.

Proposition 7. The output error in the stochastic DG method applied to the stochastic advection-
diffusion-reaction equation is bounded by

|J (u)−Jh,p,s(uh,p,s)|2 ≤ C
∑
κ∈Th

(ẽκpr)
∑
κ∈Th

(ẽκdu),

where β1 ≡ ‖c+∇·b‖L∞(κ×Ξ), β2 ≡ ‖b‖L∞(κ×Ξ), γ1 ≡ ‖c/c0‖2L∞(κ×Ξ), γ2 ≡ ‖(c+∇·b)/c0‖2L∞(κ×Ξ),
and

ẽκpr ≡
(

a

(σκd )2
+
β2

σκd
+ (β1 + γ1)

)
(Eκh,p(u)2 + Eκs (u)2)

ẽκdu ≡
(

a

(σκd )2
+
β2

σκd
+ (β1 + γ2)

)
(Eκh,p(z)

2 + Eκs (z)2);
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here,

Eκh,p(v) ≡ F κh,p(v),

Eκs (v) ≡ F κs (v)2 + ((σκ1 )2 + (σκd )2)F κs (∇v)2 + (σκ1 )2(σκd )2F κs (∇2v)2,

where F κh,p(·) and F κs (·) are defined in Proposition 3, and σκ1 and σκd are defined in Definition 2.

Proof. The result is an extension of Theorem 5.23 in [34] for deterministic DG methods to our
spatio-stochastic DG methods. The proof is provided in Appendix A.

We summarize interpretations of the proposition in the following remark:

Remark 8. Proposition 7 provides the following interpretations:

(i) The stochastic DG approximation inherits the stability of the underlying DG method for the
advection-diffusion-reaction equation. In words, as long as we provide an approximation space
Vh,p,s in which the primal solution uh,p,s and the adjoint zh,p,s are well approximated in the
sense u−Πh,p,su and z−Πh,p,sz are small, the stochastic DG method will provide an accurate
output prediction.

(ii) We must control both the error in the physical space Eκh,p(·) and the error in the stochastic
space Eκs (·) to provide an accurate output prediction. As discussed in Section 3.2, the former
depends on the choice of the (anisotropic) element size hκ and the polynomial degree p, and
the latter depends on the choice of the (anisotropic) stochastic polynomial degree distribution
sκ.

(iii) The output error depends on the errors in both the primal solution u and the adjoint solution z.
To equidistribute the error, an effective goal-oriented spatio-stochastic adaptive algorithm must
judiciously control the anisotropic element size {hκ}κ∈Th and anisotropic stochastic polynomial
degrees {sκ ≡ (sκ1 , . . . , s

κ
P ))}κ∈Th depending on the local spatio-stochastic behavior of the primal

and dual solutions.

4. Error Estimation and Spatio-Stochastic Adaptation

We now provide an overview of the error estimation and adaptation techniques used in this
work. Our goal is twofold: (i) to estimate the error E ≡ J −Jh,p,s(uh,p,s) in order to gauge
the quality of our overall approximation, while accounting for the error due to both spatial and
stochastic approximations; (ii) to adaptively identify a sequence of spatio-stochastic approximation
spaces Vh,p,s that minimize the estimate of the error E for a given computational cost. Output-based
error estimators based on the dual-weighted residual (DWR) method [12] have been shown to be
effective for deterministic aerodynamics problems [24, 34]; here we will use the DWR method to
estimate the spatio-stochastic error and find an anisotropic spatio-stochastic refinement sequence
to control the error.

4.1. Spatio-stochastic error estimation

As the name implies, the DWR method estimates the error in an output by weighting the
residual by the dual (or adjoint) solution. The dual solution identifies the regions in the domain
where the output is most sensitive to changes in the residual. To this end, we note that the standard
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definition of an adjoint problem [12] can be stated for our problem as: find z ∈ Vh,p,s + (H1(Ω)⊗
L2(Ξ)) such that

R
′
h,p,s[u, uh,p,s](w, z) = J

′
h,p,s[u, uh,p,s](w) ∀w ∈ Vh,p,s + (H1(Ω)⊗ L2(Ξ));

here R
′
h,p,s[u, uh,p,s](w, z) and J

′
h,p,s[u, uh,p,s](w) are the mean-value linearized Fréchet derivative

of the residual and output given by R
′
h,p,s[u, uh,p,s](w, z) =

∫ 1
θ=0 R′h,p,s(θu + (1 − θ)uh,p,s;w, z)dθ

and J
′
h,p,s[u, uh,p,s](w) =

∫ 1
θ=0 J ′

h,p,s(θu+ (1− θ)uh,p,s;w)dθ, where R′h,p,s(θu+ (1− θ)uh,p,s;w, z)
and J ′

h,p,s(θu+(1−θ)uh,p,s;w) are the Fréchet derivative of Rh,p,s(·, z) and Jh,p,s(·), respectively,
about θu + (1 − θ)uh,p,s in the direction w. Using the mean-value linearized adjoint, the output
error can be expressed as

E = J −Jh,p,s(uh,p,s) = −Rh,p,s(uh,p,s, z).

However, the mean-value linearized adjoint is not computable in practice because (i) it requires
the solution in an infinite dimensional space Vh,p,s + (H1(Ω) ⊗ L2(Ξ)) and (ii) it requires exact
mean-value linearization.

To obtain a computable error estimate, we (i) seek a solution and output in an enriched finite
dimensional space Vh,p̂,ŝ ⊃ Vh,p,s and (ii) linearize the adjoint problem about uh,p,s ∈ Vh,p,s. This is a
direct extension of commonly used approximations for the standard deterministic DWR method [12,
24, 34] to spatio-stochastic problems. To this end, we first introduce

Vh,p̂,ŝ ≡ {v ∈ L2(Ω× Ξ)m | v|κ ∈ (P p̂κ(κ)⊗ P ŝκ(Ξ))m, ∀κ ∈ Th}, (12)

where p̂κ = pκ + 1 and ŝκ = (ŝκ1 , . . . , ŝ
κ
P ) = (sκ1 + 1, . . . , ŝκP + 1) = sκ + 1 for all κ ∈ Th. We then

solve the approximate dual problem: find zh,p̂,ŝ ∈ Vh,p̂,ŝ such that

R′h,p,s(uh,p,s;wh,p̂,ŝ, zh,p̂,ŝ) = −J ′
h,p,s(uh,p,s;wh,p̂,ŝ) ∀wh,p̂,ŝ ∈ Vh,p̂,ŝ. (13)

Our spatio-stochastic error estimate is then given by

E ≈ Eh,p,s ≡ Rh,p,s(uh,p,s, zh,p̂,ŝ). (14)

To drive adaptive mesh refinement, we also introduce the element-wise localized error indicator:

ηκ ≡ |Rh,p,s(uh,p,s, zh,p̂,ŝ|κ)| ∀κ ∈ Th; (15)

the error indicator is simply the element-wise restriction of the (global) error estimate (14). Because
Galerkin orthogonality holds element-wise for DG, and by extension SDG, methods, the element-
wise error indicator can also be expressed as ηκ ≡ |Rh,p,s(uh,p,s, zh,p̂,ŝ|κ)| = |Rh,p,s(uh,p,s, (zh,p̂,ŝ −
Πh,p,szh,p̂,ŝ)|κ)|. In other words, thanks to element-wise Galerkin orthogonality, the subtraction of
Πh,p,szh,p̂,ŝ is implicit in DG methods; this is unlike continuous Galerkin methods which require
explicit subtraction to achieve effective error localization.

We emphasize that the formulation is a straightforward extension of the existing DWR error
estimation for deterministic PDEs to SPDEs where the stochastic behavior is approximated using
an enriched PC expansion. Just as the physical polynomial degree is increased for the deterministic
DWR method, so too is the stochastic degree increased in the stochastic framework.
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Figure 1: Possible refinement configurations given a two-dimensional spatial domain with two stochastic parameters.

4.2. Spatio-stochastic anisotropic error estimation and adaptation

We now present our spatio-stochastic anisotropic adaptation strategy. In this work, we consider
anisotropic h refinement in the d-dimensional physical space and anisotropic s refinement in the
P -dimensional stochastic space. To exploit the full potential of the flexible stochastic DG method
presented in Section 2, we must answer the following two questions: (i) which elements should be
refined; (ii) how to best refine these elements.

For (i) we select some fraction of elements with the largest error indicators ηκ given by (15)
for refinement. Since it is generally not possible to know a priori whether a specific refinement
fraction may be too small and induce excessive refinement iterations, or too large and inefficiently
over-refine the domain, a heuristic value between 10% and 20% is often used [24]. For (ii), we must
first decide whether to refine in the physical space by splitting elements into multiple children, to
refine in the stochastic space by increasing the PC expansion degree, or to do both. For physical-
space refinement, we have the option to split our element in any combination of reference coordinate
directions x1, . . . , xd in an anisotropic manner. Likewise, for stochastic-space refinement, we have
the option to increase the PC expansion degree in any combination of the stochastic dimensions
ξ1, . . . , ξP in a similarly anisotropic manner. We note the word “anisotropic” in our context refers
to anisotropy both in deciding physical or stochastic refinement and in exploiting anisotropy within
d-dimensional physical and/or P -dimensional stochastic spaces. A concrete example of refinement
options for a square element in d ≡ 2 spatial dimension and P ≡ 2 stochastic dimension is shown in
Figure 1; there are a total of nconfig = 16 potential spatio-stochastic anisotropic refinement options
in this case, including the option to perform no refinement at all.

While the elemental indicator ηκ given by (15) provides sufficient information for element mark-
ing (i.e., step (i)), it does not provide the directional information required to make spatio-stochastic
anisotropic refinement decision (i.e., step (ii)). In order to select which option will most efficiently
reduce the error on each element, we estimate the error reduction associated with each refinement
option using a local solver, which is a popular strategy for anisotropic adaptation for (deterministic)
DG methods [27, 34, 17, 62]. One approach is to construct anisotropic error estimates based on
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local solutions on each of the candidate refinement spaces

Vκih,p,sκi ≡
⊕
κi

(Ppκ(κi)⊗ Ps
κi (Ξ))m,

where each configuration option is uniquely characterized by each κi and sκi , for each of i =
1, . . . , nconfig options. However, due to the exponential dependence of the number of refinement
configurations on the physical and stochastic dimension of the problem, the use of a local solver
quickly becomes intractable for higher dimensional problems. To mitigate this, we introduce a
projection based replacement, where the adjoint is projected down into the primal space for each
configuration.

To this end, we first introduce a locally refined approximation space

Vκ
h,p̂,ˆ̂s
≡ (P p̂κ(κ)⊗ P ˆ̂sκ(Ξ))m,

where p̂κ = pκ + 1 and ˆ̂sκ = (ˆ̂sκ1 , . . . ,
ˆ̂sκP ) = (sκ1 + 2, . . . , sκP + 2) = sκ + 2. In words, the space is one

degree enriched in the physical space and two degrees enriched in the stochastic space. We then
consider a locally refined dual problem: find zh,p̂,ˆ̂s ∈ V

κ
h,p̂,ˆ̂s

such that

Rκ
h,p̂,ˆ̂s

(uh,p,s;wh,p̂,ˆ̂s, zh,p̂,ˆ̂s) = J κ
h,p̂,ˆ̂s

(uh,p,s;wh,p̂,ˆ̂s) ∀wh,p̂,ˆ̂s ∈ V
κ
h,p̂,ˆ̂s

. (16)

For each element-wise local solve, the states on neighboring elements are held constant and treated
as boundary conditions. We next introduce an approximation space associated with the refinement
option i ∈ {1, . . . , nconfig} :

Vκih,p̂,ŝκi ≡
⊕
κi

(P p̂κ(κi)⊗ P ŝ
κi (Ξ))m,

where {κi} is the set of sub-elements that results from h-refinement in physical space, and ŝκi =
(ŝκi1 , . . . , ŝ

κi
P ) is the multi-index of anisotropic polynomial degrees that results from s-refinement

in stochastic space. We then project the enriched dual solution onto refinement option i ∈
{1, . . . , nconfig}: find zκih,p̂,ŝκi ≡ Πκi

h,p̂,ŝκizh,p̂,ˆ̂s ∈ V
κi
h,p̂,ŝκi such that

(zh,p̂,ˆ̂s − z
κi
h,p,sκi , wh,p,sκi ) = 0 ∀wh,p,sκiVκih,p̂,ŝκi .

Thereby enabling the computation of the element-wise error estimate

ηκi ≡ |Rh,p,s(uh,p,s, z
κi
h,p̂,ŝκi )|, i ∈ {1, . . . , nconfig}. (17)

Based on the localized error estimates {ηκi}
nconfig

i=1 , we determine which refinement configuration
yields the most efficient error reduction. Specifically, we choose the configuration that maximizes
the ratio of error reduction to increase in degrees of freedom, i.e.

i? ≡ max
i=1,...,nconfig

|ηκi |/|ηκ0 |
|dofκi |/|dofκ0 |

. (18)

For a problem with two spatial and stochastic dimensions, nconfig = 16, and the algorithm may
choose between any combination of the configurations shown in Figure 1. The goal-oriented spatio-
stochastic adaptation algorithm described in this section is summarized in Algorithm 2.
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Algorithm 2 Goal-oriented spatio-stochastic adaptation.

Input:
Initial mesh: Th
Physical polynomial degree: {pκ}κ∈Th
Initial stochastic polynomial degree {sκ = (sκ1 , . . . , s

κ
P )}κ∈Th

Error tolerance: Etol

Output:
Sequence of outputs: {Jh,p,s(uh,p,s)}
Sequence of error estimates: {Eh,p,s}

1: while Eh,p,s ≥ Etol do
2: Find state uh,p,s ∈ Vh,p,s that satisfies the primal problem (4).
3: Find adjoint zh,p̂,ŝ ∈ Vh,p̂,ŝ that satisfies the dual problem (13)
4: Evaluate the error estimate Eh,p,s given by (14); terminate if Eh,p,s ≤ Etol

5: Evaluate the error indicator {ηκ}κ∈Th
6: for κ ∈ {κ ∈ Th | ηκ is in top ∼15%} do
7: Find enriched dual solution zh,p̂,ˆ̂s ∈ V

κ
h,p̂,ˆ̂s

that satisfies (16)

8: Evaluate local error estimate {ηκi}nconfig

i=1 using (17) for all refinement options.
9: Choose the optimal refinement index i? according to (18).

Refine mesh Th and update stochastic polynomial degree {sκ}κ∈Th .

5. Numerical Examples

We consider two numerical examples in this section. The first example is the advection-diffusion
equation, which is simple but allows us to study the behavior of the scheme in detail and has
been analyzed in Section 3. The second, more engineering-relevant, example is the uncertainty
quantification for two cases of transonic turbulent aerodynamic flows over an airfoil.

5.1. Advection Diffusion Equation

We consider a stochastic advection-diffusion equation over the d = 2-dimensional rectangular
physical domain Ω ≡ (−1.5, 1.5)× (0, 1) and the P = 2-dimensional stochastic domain Ξ ≡ [1, 50]×
[1, 50] given by

−∇ · (a∇u) +∇ · (bu) = 0 a.e. in Ω× Ξ,

where a ≡ 10−3 is the fixed diffusivity, and b : Ξ × Ω → R2 is the spatially varying stochastic
advection field given by bT = [ξ0 + x1ξ1, 0] for ξ0 ∼ U [1, 50] and ξ1 ∼ U [1, 50]. The bounds on our
stochastic input parameters have been chosen in order to demonstrate anisotropic refinement in
the stochastic domain. The boundary conditions are

−(b · n)u+ a
∂u

∂n
= 0 a.e. on {−1.5} × (0, 1)× Ξ,

a
∂u

∂n
= 0 a.e. on {1.5} × (0, 1)× Ξ,

u = 1 a.e. on (−1.5, 1.5)× {0} × Ξ,

u = 0 a.e. on (−1.5, 1.5)× {1} × Ξ,

19



(a) mean primal: u
(0,0)
h,p mode strength (b) mean adjoint: z

(0,0)
h,p mode strength

Figure 2: The mean primal and adjoint solutions to the advection-diffusion problem.

where n is the outward-pointing unit normal on ∂Ω. The output functional of interest is the mean
of the bottom-boundary diffusion flux,

J (u) ≡
∫

Ξ

∫
Γb

a
∂u

∂n
dsdPξ (19)

for Γb ≡ (−1.5, 1.5)×{0}. We readily obtain the associated adjoint problem following the procedure
described in [29, 33]:

−b · (∇z)−∇ · (a∇z) = 0 a.e. in Ω× Ξ,

with the boundary conditions

a
∂z

∂n
= 0 a.e. on {−1.5} × (0, 1)× Ξ,

(b · n)z + a
∂z

∂n
= 0 a.e. on {1.5} × (0, 1)× Ξ,

z = 1 a.e. on (−1.5, 1.5)× {0} × Ξ,

z = 0 a.e. on (−1.5, 1.5)× {1} × Ξ.

The mean primal and adjoint solutions to the problem are shown in Figure 2. Both the primal and
adjoint problems exhibit a thin boundary layer of thickness O(

√
a/|b(ξ)|); note that this boundary

layer thickness depends on ξ ∈ Ξ, and is chosen to be thin in order to demonstrate spatio-stochastic
localization.

We recall that, in the view of Remark 1, the SDG method yields a set of (sparse) mode strengths;
Figure 3 shows some of these sparse mode strengths of the primal solution that capture the stochas-
tic dependence of the problem. We note that the expansions are essentially zero everywhere except
in the boundary layer. The localized nature of the mode strength permits the efficient, sparse
representation of these fields. We also note that — by construction — higher-order expansion fields
have fewer nonzero elements than their lower-order counterparts.

We consider the solution of the advection-diffusion equation using three different refinement
strategies:

(i) Uniform refinement. In each refinement iteration, we simply refine all elements into four child
elements and increase stochastic polynomial degree by one in all stochastic dimensions.

(ii) Isotropic adaptive hs refinement. In each refinement iteration, we mark top 15% of the
elements with highest error indicator ηκ for refinement. We then refine each of the marked
elements by isotropically splitting it into four child elements and increasing the stochastic

20



(a) u
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h,p mode strength (b) u
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h,p mode strength
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(1,1)
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(4,0)
h,p mode strength

Figure 3: Selected sparse mode strengths of the primal solution to the advection-diffusion problem.

polynomial degree by one in all stochastic dimensions. This refinement exploits the spatio-
stochastic structure of the problem and yields a sequence of spaces with a spatially varying
physical element size hκ and stochastic polynomial degree sκ.

(iii) Anisotropic adaptive hs refinement (Algorithm 2). In each refinement iteration, we mark
the top 15% of the elements with largest error indicator ηκ for refinement. We then refine
each element using the “optimal” refinement strategy from nconfig potential options based on
the anisotropic error indicators {ηκi}nconfig

i=1 . The refinement yields a sequence of spaces with
spatially varying anisotropic hκ and sκ that are chosen “optimally” by Algorithm 2.

Each refinement starts from a mesh consisting of 12 × 12 rectangular elements and an initial
stochastic order of {sκ = (0, 0)}κ∈Th ; i.e. a uniform rectangular mesh with no ability to represent
stochastic variation. To the best of our knowledge, both isotropic and anisotropic adaptive hs
refinement algorithms have not been explored in the past.

Figure 4a shows the output convergence of the three refinement strategies. Uniform refinement
controls both the physical and stochastic errors and yields a sequence of convergent approximations.
The isotropic adaptive hs refinement achieves a higher “efficiency”, which we characterize by the
number of degrees of freedom required to achieve a given error, by localizing the refinement to
the boundary layer region. The anisotropic adaptive hs refinement achieves a further efficiency
improvement over the uniform refinement scheme, requiring two orders of magnitude fewer degrees
of freedom to achieve an output error of less than 10−3. The reference solution used to calculate
the error is computed using a highly refined approximation space resulting from 14 adaptation
iterations of the anisotropic refinement strategy, which yields a relative error estimate of 4× 10−5.
Given the minimum observed effectivity during the final five iterations of ≈ 0.8, we conservatively
estimate the true error to be 6 × 10−5 or 1.5 times the estimated error at the reference solution.
Hence the refined solution should serve as an accurate reference solution at the computed error
levels.

Figure 4a also shows the error estimate Eh,p,s observed during the refinement iterations. We
observe that the error estimate is effective; for nearly every solution evaluation across each refine-
ment method, the error estimate is accurate in comparison with the output error computed against
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(a) output error (b) PDF of output

Figure 4: Left: output error convergence of the stochastic DG algorithms applied to the advection-diffusion problem.
Right: output distribution obtained using the anisotropic spatio-stochastic DG method in the first and final iterations
as well as using Monte-Carlo method.

the heavily refined solution. Hence, our method provides a reliable output error estimate for the
SPDE that accounts for both the physical and stochastic approximation error.

In order to further illustrate the accuracy of our spatio-stochastic adaption framework, we also
consider how the shape of the output probability density function (PDF) changes as approximation
is updated, as well as how it compares against standard Monte Carlo. Figure 4b shows the predicted
PDFs for the initial and final iterations of the anisotropic spatio-stochastic adaptive DG method,
in comparison with a Monte Carlo simulation consisting of twenty-five thousand samples. At the
initial iteration, the prediction is not a PDF but a scalar value, as we have {sκ = (0, 0)}κ∈Th
and we require at least a linear PC expansion to capture parametric variations. We see that the
PDF predicted by the final anisotropic refinement iteration is in good agreement with the PDF
determined by the Monte Carlo method; however, the spatio-stochastic adaptation scheme requires
only O(10) (albeit stochastic) DG solves, compared to the O(10,000) (deterministic) DG solves
required by the Monte Carlo method; we will shortly present a runtime comparison.

Figure 5 shows the mesh and the stochastic polynomial degree field for the final anisotropic
adaptive hs refinement. We see that the algorithm has opted to compute higher-degree mode
strengths only along the bottom boundary as expected. In addition, we observe the algorithm
chooses to use only linear expansions with respect to ξ2 while using up to seventh-order expansions
for ξ1, thereby exploiting the anisotropy in the stochastic domain. We stress the higher-order mode
strengths are activated on a given element only if the adaptive algorithm deems it necessary; this
enables an efficient, sparse representation of the stochastic dependence of the problem, particularly
for cases where this dependence is strongly localized within the spatial domain of the problem.

Table 1 compares the serial runtime breakdown for the anisotropic, isotropic, and Monte Carlo
algorithms, each of which reaches a comparable relative error of approximately 0.030%. For the
Monte Carlo method, we compute each sample using anisotropic spatially adaptive DG method
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(a) stochastic polynomial degree distribution: {sκ1}κ∈Th (b) stochastic polynomial degree distribution: {sκ2}κ∈Th

(c) mesh: Th

Figure 5: The approximation space Vh,p,s generated by the anisotropic spatio-stochastic adaptive DG method for the
advection-diffusion problem.

primal solve adjoint solve local solves cumulative

anisotropic adapt 2.7 6.8 21.7 99.7
isotropic adapt 50.3 122.3 - 265.8
Monte Carlo 0.05 0.04 - 1.4× 106

Table 1: Runtime breakdown, normalized against the runtime for a single Monte Carlo sample, to reach the relative
error of 0.03%, for the advection-diffusion problem. The first three columns shows the runtime for the final adaptation
iteration — i.e., the 7th and 4th iteration for anisotropic and isotropic adaptation respectively — only, while the last
column shows the runtime for the entire adaptation process.

to achieve the spatial error estimate of approximately 0.015%1 and compute 1.4 × 106 samples to
achieve the stochastic error of approximately 0.015% such that the combined error is approximately
0.030%. Table 1 shows that the spatio-stochastic methods require significantly less cumulative time
to reach the target error level compared to standard Monte Carlo for this low-dimensional problem.
We also note that, for this linear problem, the local solves constitutes a significant fraction of the
overall runtime for the anisotropic spatio-stochastic method; however, as we will see in our second
example, this fraction decreases considerably for large-scale nonlinear problems because (i) the
local solve is embarrassingly parallel and perfectly scalable and (ii) the local solve requires a much
smaller number of Newton iterations to converge than the (global) primal solve.

Lastly, we demonstrate the importance of combined error estimation and control through the
lack of convergence if only one of either spatial or stochastic refinement is used. Figure 6 shows the
anisotropic h (only) refinement for a few different values of fixed (and global) s degrees. We see
that in each case the convergence eventually stagnates; in order to truly capture the correct output,
one must estimate and refine with respect to the combined spatio-stochastic error in the solution.
This is to say, that without combined error control, the accuracy of spatial or stochastic refinement

1The error estimate effectivity observed for a randomly chosen subset of 10 parameter values is ≈ 0.95, and hence
we expect the true spatial error to be approximately 0.015% as well.
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Figure 6: Error stagnation of h-only refinement for the advection-diffusion problem.

schemes are necessarily limited by the lack of refinement in the opposite domain, as predicted by
Theorem 7.

5.2. Transonic Reynolds-averaged Navier-Stokes (RANS) flow

For a more practical demonstration of spatio-stochastic adaptivity, we consider a two-dimensional
turbulent flow over a RAE 2822 airfoil modeled by the RANS equations using the Spalart-Allmaras
(SA) turbulence model [52] in the SA-neg form [3], expressed in terms of entropy variables [8].
We will consider two cases of uncertain parameters: uncertain flow conditions (with deterministic
RANS-SA parameters); uncertain SA turbulence model parameters (with deterministic flow con-
ditions). We again consider the three aforementioned refinement strategies: uniform refinement;
isotropic adaptive hs refinement, which exploits spatio-stochastic structure but is suboptimal in
exploiting the anisotropy in physical and stochastic spaces; and anisotropic adaptive hs refinement,
which aims to fully exploit the anisotropic spatio-stochastic structure.

5.2.1. Case I: flow condition uncertainty quantification

We first consider a case with deterministic turbulence parameters and two uncertain flow condi-
tions, namely we take the free stream Mach number M∞ ∼ U [0.685, 0.715], and the angle of attack
α ∼ U [2.20◦, 2.60◦]. The Reynolds number is fixed at Rec = 6.5 × 106. The quantity of interest
is the mean drag on the airfoil. The SA turbulence model parameters are set to the default val-
ues [52]. The initial approximation space is given by the 506-element mesh provided for the AIAA
High-Order Workshop [58], with quadratic polynomials in the physical space (i.e., {pκ = 2}κ∈Th),
and linear polynomials in both stochastic dimensions (i.e., {sκ = (1, 1)}κ∈Th). The first component

(k = 1) of the mean (u
(0,0)
h,p ) and linear-linear (u

(1,1)
h,p ) mode strength are shown in Figure 7. The

u
(1,1)
h,p mode strength shows that the shock will move towards the aft of the airfoil as both the Mach

number and angle of attack are increased.
Figure 8a shows the relative error convergence of the uniform, isotropic adaptive, and anisotropic

adaptive refinement schemes. The initial error is over 20% for the coarse spatio-stochastic space,
which is unacceptable for practical aerodynamics simulations which seek ≤ 1% error. The error
converges more rapidly for the anisotropic adaptation than the isotropic adaptation, which itself
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(a) first component of mean field: (u
(0,0)
h,p )k=1 (b) first component of linear-linear field: (u

(1,1)
h,p )k=1

Figure 7: Examples of mode strengths for the transonic RANS-SA flow with uncertain flow conditions.

(a) output error convergence (b) PDF of output

Figure 8: Left: output error convergence of the stochastic DG algorithms applied to the transonic RANS with
uncertain flow conditions. Right: output distribution obtained using the anisotropic spatio-stochastic DG method in
the first and final iterations as well as using Monte-Carlo method.

converges faster than the uniform refinement, as expected. We also note that the error estimates
perform very well, with an effectivity close to unity for all cases. Figure 8b shows the drag distribu-
tion as computed by the anisotropic refinement scheme as well as the distribution computed with
Monte Carlo with approximately 5000 samples of a deterministic anisotropic h-adaptive solution
with a spatial error tolerance of 10−6. The final distributions are in good agreement. The initial
distribution demonstrates the need for refinement in both the spatial and stochastic approximation
spaces; linear polynomial chaos expansions on a coarse mesh fail to capture the errors resulting
from the approximation of both the solution as well as the statistics of the solution. It is for this
reason that reliable uncertainty quantification necessitates the combined control of both spatial
and stochastic discretization error.

Figure 9 shows the approximation space Vh,p,s obtained in the final anisotropic hs adaptation
iteration. We observe that the adaptive method constructs very sparse fields as a result of the
localized structure of the problem around the shock. The majority of the stochastic polynomial
degrees are the order of the initial linear degree (i.e., {sκ = (1, 1)}κ∈Th), but up to fourth-order
Mach number and fifth-order angle of attack expansions are used inside the shock. We also see the
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(a) Mach number stochastic polynomial degree: {sκ1}κ∈Th (b) Angle of attack stochastic polynomial degree: {sκ2}κ∈Th

(c) Mesh: Th

Figure 9: The approximation space Vh,p,s generated by the anisotropic spatio-stochastic adaptive DG method for the
RANS-SA problem with uncertain flow conditions.

exploitation of anisotropic structure in both the spatial and stochastic spaces: highly anisotropic
elements are employed near the airfoil; quadratic stochastic polynomials are used over a wider
area for the Mach number as compared with a more localized expansion for the angle of attack.
We recall that each local PC mode strength is included only if they are deemed necessary by the
local solver based on the behavior of the localized error estimate {ηκi}

nconfig

i=1 . This computational
reduction is all accomplished in an automated fashion; the user needs to simply specify the flow
condition and input distributions, and then the algorithm efficiently exploits the spatio-stochastic
structure to provide reliable estimates for the quantity of interest without user intervention.

Table 2 shows a runtime breakdown for the spatio-stochastic adaptive DG methods and Monte
Carlo method applied to the RANS problem to achieve an error of approximately 1%. Monte
Carlo cumulative runtime was computed in the same manner as the advection-diffusion problem,
with the equal error budget for the spatial and stochastic errors. The anisotropic and isotropic
adaptation reach the target error level in the runtime equivalent of 8.1 and 28.8 Monte Carlo
samples, respectively. The exploitation of the anisotropic localized spatio-stochastic structure leads
to a runtime reduction of approximately 3.5 times relative to isotropic adaptation, which will
increase further at a tighter error level. In fact the runtime for anisotropic adaptation is less than
the runtime that would be required to collect 9 samples for a bi-quadratic non-intrusive polynomial
chaos. While the uniform refinement algorithm does not reach a comparable error level, the primal
solve for the second iteration takes the runtime equivalent of 19.4 Monte Carlo samples to obtain
an error of approximately 10%. Furthermore, we note that for this more nonlinear and larger-scale
problem, the local solves constitute a much smaller fraction of the overall runtime compared to the
advection-diffusion case.
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primal solve adjoint solve local solves cumulative

anistropic adapt 1.07 0.58 0.20 8.1
isotropic adapt 21.89 6.80 - 28.8
Monte Carlo 0.12 0.01 - 133.2

Table 2: Runtime breakdown, normalized against the compute time for a single Monte Carlo sample, to reach the
error of 1% for the RANS-SA problem with uncertain flow conditions. The first three columns shows the runtime for
the final adaptation iteration — i.e., 4th and 3rd iteration for anisotropic and isotropic adaptation — only, and the
last column shows the cumulative runtime for the entire adaptation process.

Figure 10: The first component of the mean field (u
(0,0,0)
h,p )k=1 for the RANS-SA flow with uncertain turbulence model

parameters.

5.2.2. Case II: Spalart-Allmaras turbulence model uncertainty quantification

We next consider an uncertainty quantification problem associated with the RANS-SA turbu-
lence model. We choose for our uncertain variables the same SA turbulence parameters considered
by Schaefer et al. [50]: σ ∼ U [0.60, 1.00], κ ∼ U [0.38, 0.42], and cw3 ∼ U [1.75, 2.50]. The flow
conditions are fixed: M∞ = 0.729, Re = 6.5 × 106, and α = 2.5478◦. The quantity of interest is
the mean drag on the airfoil. The initial approximation space consists of 506 elements, quadratic
polynomials in physical space (i.e., {pκ = 2}κ∈Th), and constant polynomials in stochastic space
(i.e., {sκ = (0, 0, 0)}κ∈Th). Figure 10 shows the first component (k = 1) of the mean field. This
problem contrasts with the previous case with uncertainty in the flow conditions in that there is a
significantly smaller effect from the input uncertainty with regard to the fact that the effects are
both more localized and more linear.

Figure 11a shows relative error convergence of the isotropic adaptive and anisotropic adaptive
refinement schemes. Uniform refinement is not performed as it is intractable for this d + P = 5
dimensional problem; the number of degrees of freedom after a single step of uniform refinement
is nearly 5 × 105. As the variations in the solution due to uncertainty in SA parameters is highly
localized in the boundary layer and wake, there is ample opportunity to exploit the spatio-stochastic
sparsity of the problem. Specifically, we see that in order to obtain an error of≈0.1%, the anisotropic
adaptation method requires a small fraction of what would be required for uniform refinement.
We further note that exploiting the anisotropic structure in the stochastic parameter expansion
significantly reduces the computational cost as compared with the isotropic case.

Figure 11b shows the drag distribution computed by the anisotropic adaptive stochastic DG
method and the Monte Carlo method. We observe the key feature of our goal-oriented adaptive
refinement; the algorithm recognizes that, in order to provide an accurate prediction of the mean,
we need not provide an accurate estimate of the entire distribution. This focused, goal-oriented
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(a) output error convergence (b) PDF of output

Figure 11: Left: output error convergence of the stochastic DG algorithms applied to the transonic RANS problem
with uncertain turbulence model parameters. Right: output distribution obtained using the anisotropic spatio-
stochastic DG method in the final iterations as well as using Monte-Carlo method.

adaptation allows the scheme to reduce the computational cost associated with the particular
statistics (i.e., in the mean in this case) of the quantities of interest. In addition, the a posteriori
error estimate allows us to be confident in the prediction even after such a focused adaptation that
does not necessarily resolve the global spatio-stochastic behavior.

Figure 12 illustrates the approximation space Vh,p,s resulting from the seventh and final anisotropic
adaptation iteration. We see that in order to reach an error in the mean drag of ≈0.1% we require
only linear PC expansions in the area of the spatial domain very close to the boundary layer of the
airfoil; this is consistent with the fact that SA equation is only active in the boundary layer and
wake. We also see that — just as was found by Schaefer et al. [50] — uncertainty in cw3 contributes
little to the uncertainty in drag. The algorithm in fact has not selected to refine in this stochastic
direction at all at the specified error level.

Appendix A. Proof of output error bound

We now provide proofs for the approximation results presented in Section 3. All of the proofs
are extensions of the results proven in [34] for the (space-only) DG method to the spatio-stochastic
DG method.

Proof of Proposition 3. The result is an extension of Theorem 5.20 in [34] for deterministic DG
spaces to spatio-stochastic DG spaces. We first prove (9). We note that ∇(v − Πh,p,sv) = ∇(v −
Πsv) +∇(Πsv −Πh,p,sv) and hence

‖∇(v −Πh,p,sv)‖L2(κ×Ξ) ≤ ‖∇(v −Πsv)‖L2(κ×Ξ) + ‖∇(Πsv −Πh,p,sv)‖L2(κ×Ξ) ≡ (I) + (II).

The term (I) is bounded by

(I)2 = ‖∇v −Πs(∇v)‖2L2(κ×Ξ) ≤
P∑
j=1

C

(2sκj )!(sκj )222(sκj+1)
‖∂

sκj+1

ξj
∇v‖2L2(κ×Ξ),
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(a) κ stochastic polynomial degree: {sκ1}κ∈Th (b) σ stochastic polynomial degree: {sκ2}κ∈Th

(c) cw3 stochastic polynomial degree: {sκ3}κ∈Th (d) mesh: Th

Figure 12: The approximation space Vh,p,s generated by the anisotropic spatio-stochastic adaptive DG method for
the RANS-SA problem with uncertain turbulence model parameters.

where the equality follows from the commutativity of physical-space derivative ∇ and stochastic-
space projection Πs, and the inequality follows from application of Lemma 6.9 of [34] to the function
∇v in the d + P -dimensional space κ × Ξ. We appeal to the definition of Eκs (·) to obtain (I) ≤
Eκs (∇v).

We next observe that (II) simplifies to

(II) = ‖Πs(∇v −∇(Πh,pv))‖L2(κ×Ξ) ≤ ‖∇v −∇(Πh,pv)‖L2(κ×Ξ),

where the equality follows from Πh,p,s = ΠsΠh,p and the commutativity of ∇ and Πs, and the
inequality follows from the fact Πs is the L2-projection operator with the norm of unity. We hence
obtain

‖∇v −∇(Πh,pv)‖2L2(κ×Ξ) =

∫
Ξ
‖∇v(·, ξ)−∇(Πh,pv(·, ξ))‖2L2(κ)dPξ

≤
∫

Ξ

∫
κ

(
C|σd,κ|−kDκ,p+1(v(·, ξ))

)2
dxdPξ,

where the inequality follows from the first relationship of Theorem 5.20 of [34]. Straightforward
simplification and the summation of (I) and (II) yield (9). The proof of (8) is analogous, except
for the simplification due to the absence of the spatial derivative.

To prove (10), we again split the error into two parts:

‖v −Πh,p,sv‖L2(f×Ξ) = ‖v −Πsv‖L2(f×Ξ) + ‖Πsv −Πh,p,sv‖L2(f×Ξ) ≡ (III) + (IV).
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To bound (III), we again apply Lemma 6.9 of [34] to the function v|f in the (d−1)+P -dimensional
space f × Ξ:

(III)2 = ‖v −Πsv‖2L2(f×Ξ) ≤
P∑
j=1

C

(2sκj )!(sκj )222(sκj+1)
‖∂

sκj+1

ξj
v‖2L2(f×Ξ).

We then bound the term ‖∂
sκj+1

ξj
v‖2L2(f×Ξ) by trace inequality and scaling argument:

‖∂
sκj+1

ξj
v‖2L2(f×Ξ) ≤ C

|f |
|κ|

(
‖∂

sκj+1

ξj
v‖2L2(κ×Ξ) + (σκ1 )2‖∂

sκj+1

ξj
∇v‖2L2(κ×Ξ)

)
.

We appeal to the definition of Eκs (·) to obtain (III)2 ≤ |f |
|κ|(E

κ
s (v)2 + (σκ1 )2Eκ(∇v)2). The bound

of (IV) follows from the same argument as (II), except that we invoke the second relationship of
Theorem 5.20 of [34] in the last step. The proof of (11) is analogous.

Before we prove Proposition 7, we provide the following Lemma:

Lemma 9. The error between the DG solution and best-fit projection ζ ≡ Πh,p,su− uh,p,s and the
best-fit error η ≡ u−Πh,p,s is related by

‖ζ‖2Vh,p,s ≤ C
∑
κ∈Th

(
‖
√
a∇η‖2L2(κ×Ξ) + γ1‖η‖2L2(κ×Ξ) + ‖|b · n|η+‖2L2((∂+κ∩Γ)×Ξ)

+ ‖|b · n|η−‖2L2((∂−κ\Γ)×Ξ) + ‖ϑ−1/2{a∇η}‖2L2((∂κ\ΓN )×Ξ) + ‖ϑ1/2JηK‖2L2((∂κ\ΓN )×Ξ)

)
,

where γ1|κ = ‖c/c0‖2L∞(κ×Ξ), and C depends only on the dimension d and polynomial degree p.

Proof. The proof is a straightforward extension of the proof of Lemma 5.22 in [34] to the stochastic
DG method. We first note that by coercivity and Galerkin orthogonality α‖ζ‖2Vh,p,s ≤ |Bh,p,s(ζ, ζ)| =
|Bh,p,s(η, ζ)|. Tedious but straightforward manipulations under the aforementioned assumption
b · ∇v ∈ Vh,p,s ∀v ∈ Vh,p,s yields the desired result.

Proof of Proposition 7. The proof is an extension of Theorem 5.23 in [34] to the stochastic DG
method. By the definition of the adjoint z and Galerkin orthogonality we obtain

J (u)−Jh,p,s(uh,p,s) = Bh,p,s(u− uh,p,s, z −Πh,p,sz)

= Bh,p,s(u−Πh,p,su, z −Πh,p,sz) + Bh,p,s(Πh,p,su− uh,p,s, z −Πh,p,sz)

= Bh,p,s(η, w) + Bh,p,s(ζ, w) = (I) + (II),

where η ≡ u − Πh,p,su, ζ ≡ Πh,p,su − uh,p,s, and w ≡ z − Πh,p,sz. By a straightforward ex-
tension of the manipulation in [34] to the stochastic DG method that appeals to B(w, v) ≡
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∫
ξ B(w(·, ξ), v(·, ξ); ξ)dPξ, we obtain

(I) ≤ C

( ∑
κ∈Th

(
‖
√
a∇η‖2L2(κ×Ξ) + β1‖η‖2L2(κ×Ξ) + β2ε

−1
κ ‖∇η‖2L2(κ×Ξ) + β2‖JηK‖2L2(∂−κ×Ξ)

+ ‖ϑ−1/2{a∇η}‖L2((∂κ∩\ΓN )×Ξ) + ‖ϑ1/2JηK‖2L2((∂κ\ΓN )×Ξ)

))

×

( ∑
κ∈Th

(
‖
√
a∇w‖2L2(κ×Ξ) + (β1 + β2εκ)‖w‖2L2(κ×Ξ) + β2‖w+‖2L2(∂−κ×Ξ)

+ ‖ϑ−1/2{a∇w}‖L2((∂κ\ΓN )×Ξ) + ‖ϑ1/2JwK‖2L2((∂κ\ΓN )×Ξ)

))
.

A similar extension of the manipulation in [34] yields

(II) = |B(ζ, w)| ≤ ‖ζ‖Vh,p,s
( ∑
κ∈Th

(
‖
√
a∇w‖2L2(κ×Ξ) + γ2‖w‖2L2(κ×Ξ) + β2‖w+‖2L2(∂−κ×Ξ)

+ ‖ϑ1/2JwK‖2L2((∂κ\ΓN )×Ξ) + ‖ϑ−1/2{a∇w}‖2L2((∂κ\ΓN )×Ξ)

))1/2

.

We invoke Lemma 9 on ‖ζ‖Vh,p,s and sum (I) and (II) to obtain

|J (u)−Jh,p,s(uh,p,s)|2 ≤ C
∑
κ∈Th

(ẽκpr)
∑
κ∈Th

(ẽκdu),

where

ẽκprimal = ‖
√
a∇η‖2L2(κ×Ξ) + (β1 + γ1)‖η‖2L2(κ×Ξ) + β2ε

−1
κ ‖∇η‖2L2(κ×Ξ)

+ β2‖η+‖2L2((∂+κ∩Γ)×Ξ) + β2‖η−‖2L2((∂−κ\Γ)×Ξ) + β2‖JηK‖2L2(∂−κ×Ξ)

+ ‖ϑ−1/2{a∇η}‖L2((∂κ\ΓN )×Ξ) + ‖ϑ1/2JηK‖2L2((∂κ\ΓN )×Ξ)

ẽκdual = ‖
√
a∇w‖2L2(κ×Ξ) + (β1 + β2εκ + γ2)‖w‖2L2(κ×Ξ) + β2‖w+‖2L2(∂−κ×Ξ)

+ ‖ϑ−1/2{a∇w}‖L2((∂κ\ΓN )×Ξ) + ‖ϑ1/2JwK‖2L2((∂κ\ΓN )×Ξ).

We now invoke the projection error bounds in Proposition 3, set the stabilization parameter to
ϑ = Ca |f ||κ| , choose ε = (σκd )−1, and note |f ||κ| ≤ (σκd )−1. Tedious but straightforward manipulations
yield the desired result.
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[19] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. L. Maitre.
Numerical challenges in the use of polynomial chaos representations for stochastic processes.
SIAM Journal on Scientific Computing, 26(2):698–719, Jan 2004.

[20] E. Dow and Q. Wang. Uncertainty quantification of structural uncertainties in RANS simula-
tions of complex flows. In 20th AIAA Computational Fluid Dynamics Conference, page 3865,
2011.

[21] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander. Adaptive stochastic Galerkin FEM.
Comput. Methods Appl. Mech. Engrg., 270:247–269, 2013.

[22] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander. A convergent adaptive stochastic galerkin
finite element method with quasi-optimal spatial meshes. ESAIM: Mathematical Modelling and
Numerical Analysis, 49(5):1367–1398, Aug 2015.

[23] M. Eigel, M. Pfeffer, and R. Schneider. Adaptive stochastic Galerkin FEM with hierarchical
tensor representations. Numerische Mathematik, 136(3):765–803, 2017.

[24] K. Fidkowski and D. Darmofal. Review of output-based error estimation and mesh adaptation
in computational fluid dynamics. AIAA Journal, 49(4):673–694, 2011.

[25] E. H. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods for advection-
diffusion-reaction problems on anisotropically refined meshes. SIAM Journal on Scientific
Computing, 30(1):246–271, Jan 2007.

[26] E. H. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods on hp-anisotropic
meshes I: a priori error analysis. International Journal of Computing Science and Mathematics,
1(2-4):221–244, 2007.

[27] E. H. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods on hp-anisotropic
meshes II: a posteriori error analysis and adaptivity. Applied Numerical Mathematics,
59(9):2179–2194, Sep 2009.

33



[28] R. Ghanem and P. D. Spanos. Polynomial chaos in stochastic finite elements. Journal of
Applied Mechanics, 57(1):197–202, 1990.

[29] M. Giles, N. Pierce, M. Giles, and N. Pierce. Adjoint equations in CFD - duality, bound-
ary conditions and solution behaviour. In 13th Computational Fluid Dynamics Conference.
American Institute of Aeronautics and Astronautics, Jun 1997.

[30] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617,
2008.

[31] D. Guignard and F. Nobile. A posteriori error estimation for the stochastic collocation finite
element method. SIAM Journal on Numerical Analysis, 56(5):3121–3143, 2018.

[32] D. Guignard, F. Nobile, and M. Picasso. A posteriori error estimation for elliptic partial
differential equations with small uncertainties. Numerical Methods for Partial Differential
Equations, 32(1):175–212, Aug 2015.

[33] R. Hartmann. Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM
Journal on Numerical Analysis, 45(6):2671–2696, 2007.

[34] R. Hartmann and P. Houston. Error estimation and adaptive mesh refinement for aerodynamic
flows. In H. Deconinck, editor, VKI LS 2010-01: 36th CFD/ADIGMA course on hp-adaptive
and hp-multigrid methods, Oct. 26-30, 2009. Von Karman Institute for Fluid Dynamics, Rhode
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