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Abstract. We present a non-intrusive approach to robust structural topology optimization.
Specifically, we consider optimization of mean- and variance-based robustness metrics of a linear
functional output associated with the linear elasticity equation in the presence of probabilistic un-
certainties in the loading and material properties. To provide an efficient approximation of higher-
dimensional problems, we approximate the solution to the governing stochastic partial differential
equations using the anchored ANOVA Petrov-Galerkin (AAPG) projection scheme. We then develop
a non-intrusive quadrature-based formulation to evaluate the robustness metric and the associated
shape derivative. The formulation is non-intrusive in the sense that it works with any level-set-based
topology optimization code that can provide deterministic displacements, outputs, and shape deriva-
tives for selected stochastic parameter values. We demonstrate the effectiveness of the proposed
approach on various problems under loading and material uncertainties.
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1. Introduction. Topology optimization (TO) is a powerful design tool that
enables the discovery of unconventional high-performance structures [42, 13]. Unlike
size and shape optimization approaches that work with finite-dimensional geome-
try parametrizations, TO algorithms can, in principle, find an optimal design in an
infinite-dimensional space of possible geometries. However, most TO formulations
optimize the design under ideal deterministic conditions: i.e., under the assumption
that we have precise knowledge of loading conditions and material properties and the
fabrication process do not introduce any material or geometric imperfections. The
structure optimized under the implicit assumption of determinism may not perform
well in the presence of (arguably inevitable) real-world uncertainties [54]. In this
work, we develop an approach to robust structural TO that accounts for loading and
material uncertainties, is computationally efficient, and is non-intrusive.

Uncertainties encountered in structural TO can be broadly categorized as (i) load-
ing uncertainty, (ii) material uncertainty, (iii) geometric uncertainty, and (iv) model-
structure uncertainty. Uncertainties in loading conditions arise from either incomplete
knowledge or random fluctuations in the in-service operating environment. Uncer-
tainties in material properties and geometry can be attributed to the manufacturing
process used to fabricate the optimal design; e.g., additive manufacturing processes
produce stochastic variability in the material due to random spatial fluctuations in
the grain size, distributions, and defects. Model-structure uncertainty arises from
the use of an idealized mathematical model to predict the performance of candidate
designs; e.g., the use of a linear elasticity model even though real strains are never
infinitesimal and real stress-strain relationships are never truly linear. The precise
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mathematical modeling/characterization of these real-world uncertainties is a chal-
lenge in itself [44]; however, this is not in the scope of the present work, and we
assume that we are given a probabilistic model of input uncertainties. We do how-
ever recognize that a large number of random variables are required to characterize
real-world uncertainties, which demands the development of computationally efficient
and scalable robust TO algorithms.

Over the last two decades, robust TO problems have been studied by various
researchers. We first review works based on the density-based solid isotropic material
with penalization (SIMP) method. Many of the early studies [15, 21, 23, 24, 37, 5]
adopted a reliability-based design view point; however, reliability-based methods can
be highly sensitive to uncertainty modeling assumptions, and hence the methods may
be ill-suited for scenarios with limited experimental/real-world data. More recently,
several works have adopted probabilistic metrics to solve robust TO problems using
various techniques. Problems considered include robust TO under uncertain load-
ing conditions and locations [19], compliance minimization under multiple uncertain
loads [56], compliance minimization under geometric uncertainties [20], and problems
where both the objective function and the distribution of the random parameters de-
pend on the design variables [27]. Techniques developed include stochastic Galerkin
projection scheme [47], stochastic collocation [30], non-intrusive polynomial chaos
(PC) expansions based on sparse grids [22], and a combination of Monte Carlo and
stochastic gradient descent [11].

There also exist works on robust TO using boundary variation (or more specif-
ically level-set) methods, which in principle provide a more precise description of
geometries than density-based methods. Early work of Conti et al. [10] proposes
a two-stage stochastic programming algorithm for TO under loading uncertainties.
Dunning et al. [14] similarly consider loading uncertainty and appeal to linearity to
recast the robust TO problem as a multi-load TO problem.

Most relevant to the present work are the works based on level-set methods and
that consider probabilistic loading and material uncertainties, with a moderate to
large number of random variables. As is well known, computationally tractable solu-
tions of such problems require algorithms that mitigate the so-called curse of dimen-
sionality. Chen et al. develop an approach based on univariate dimension-reduction
(UDR) combined with numerical quadrature to carry out robust TO under loading and
material uncertainties [9] and geometric uncertainties [8]. The UDR approach, unlike
multi-variate PC, scales well with the number of random variables. The approach is
also non-intrusive and leverages existing (deterministic) analysis and sensitivity anal-
ysis codes. However, the UDR approach is limited to a class of problems where the
objective function can be well approximated by a sum of one-dimensional functions.
Allaire et al. [2] develop an approach based on perturbation methods to approximate
robust TO problems under loading, material, and geometric uncertainties. The per-
turbation method based on Taylor series scales well to high dimensions; however, the
approach is limited to small parametric variations. Mart́ınez-Frutos et al. [35] develop
an approach based on dimension-adaptive sparse grid to solve robust TO problems
under loading and material uncertainties. They also prove the existence of solutions
for a class of robust TO problems. However, sparse grids have limited scalability and
restrict the applicability of this approach to problems with moderate dimensionality.
While the above works have advanced the state-of-the-art in robust TO under real-
istic loading and material uncertainties that necessitates high-dimensional and large
parametric variabilities, further progress is required.
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In this work, we present a scalable robust TO algorithm for robustness metrics of
linear functional outputs under probabilistic loading and material uncertainties. The
contributions of this work are threefold. First, we develop a robust TO framework
based on the AAPG projection scheme [4] to efficiently tackle problems with a large
number of random variables and large parametric variabilities. Second, we develop a
quadrature-based formulation to evaluate the robustness metric and associated shape
derivatives; the formulation is non-intrusive in the sense that it can be implemented
with any level-set TO codebase that provides deterministic displacements, outputs,
and shape derivatives for a given set of loading conditions and materials properties.
Third, we demonstrate the effectiveness of the proposed approach by means of nu-
merical studies on TO problems under loading and material uncertainties.

The remainder of this paper is organized as follows. In Section 2, we introduce
the robust level-set optimization problem. In Section 3, we formulate the AAPG
scheme for the governing linear elasticity SPDEs. In Section 4, we present a mini-
mally intrusive approach for computing the shape derivatives, which leverages existing
deterministic TO implementations. In Section 5, we assess the formulation developed
using robust optimization problems under loading and material uncertainties.

2. Notations and problem statement. Let D ∈ Rd be a bounded working
domain (d ∈ {2, 3}) which contains all the admissible shapes Ω ⊂ D. In TO based
on level-set methods, the boundary of Ω denoted by ∂Ω is defined implicitly with a
level-set function ψ : D → R such that Ω = {x ∈ D | ψ(x) < 0}. In this work, we
consider randomly parametrized objective functionals of the form

J(u(·, ξ),Ω, ξ) =
∫
Ω

jv(x, ξ) · u(x, ξ)dx+

∫
∂ΩN

js(s, ξ) · u(s, ξ)ds, (2.1)

where x ∈ Ω denotes spatial coordinates and ξ = (ξ1, . . . , ξM ) is a M -dimensional
vector of independent and identically distributed random variables with known joint
probability density function ρ(ξ) =

∏M
i=1 ρi(ξi) and joint image Γ = Γ1 × · · · × ΓM ⊂

RM . We assume the output functions jv and js are linear in the random variables;
we will specify the functions in Section 4. The displacement field u : Ω × Γ → Rd is
the solution of the random elasticity problem −div

(
A(x, ξ)e(u(x, ξ))

)
= f(x, ξ) ∀(x, ξ) ∈ Ω× Γ,

u(x, ξ) = 0 ∀(x, ξ) ∈ ∂ΩD × Γ,
A(x, ξ)e(u(x, ξ))n = g(x, ξ) ∀(x, ξ) ∈ ∂ΩN × Γ,

(2.2)

where f : Ω × Γ → Rd is the body force, g : ∂ΩN × Γ → Rd is the traction force,
e(u) = 1

2 (∇u+∇uT ) : Ω×Γ → Rd×d is the strain tensor field, Ae(u) : Ω×Γ → Rd×d
is the stress tensor field, n is the outward pointing normal on ∂Ω, and ∂ΩD ̸= ∅.
We assume that material constitutive properties are described by a random tensor
A(x, ξ) : Rd×d → Rd×d. Hence, randomness in (2.2) arises from uncertainties in the
material properties and/or the loading conditions. In this work, we consider general
(possibly nonlinear) material parametrizations with respect to the random variables.
To illustrate, an example of parametrization of material properties based on the KL
decomposition scheme [32] is provided in Appendix A. Finally, we note that u depends
on Ω, even if this dependency is not explicitly indicated.

We next focus on the weak formulation of the random elasticity model. Let
H1
E(Ω)

d =
{
v ∈ H1(Ω)d | v = 0 on ∂ΩD

}
, where H1(Ω) is the space of functions over

Ω whose weak first derivative is square integrable. The stochastic weak form of (2.2)
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is as follows: find u ∈ U = H1
E(Ω)

d ⊗ L2(Γ)d such that

A(u, v) = B(v) ∀v ∈ U, (2.3)

where

A(u, v) =

∫
Γ

∫
Ω

A(x, ξ)e(u(x, ξ)) : e(v(x, ξ))ρ(ξ) dxdξ, (2.4)

B(v) =
∫
Γ

∫
Ω

f(x, ξ) · v(x, ξ) ρ(ξ) dxdξ +
∫
Γ

∫
∂ΩN

g(s, ξ) · v(s, ξ) ρ(ξ) dsdξ, (2.5)

where A : B denotes the Frobenius inner product of tensors A and B, and L2(Γ) is the
space of square integral functions over Γ. If the randomness arises exclusively from
the loading conditions, the well-posedness of the weak problem can be proved using
the Lax-Milgram theorem [6] since the bilinear form A : U × U → R is continuous
and coercive and the linear form B : U → R is continuous. In the presence of material
uncertainties, additional assumptions are required (e.g. see [35] in the case of isotropic
materials).

Remark 1. An example of output functional widely used in TO is the compliance,
which we obtain by setting jv = f and js = g so that

J(u(·, ξ),Ω, ξ) =

∫
Ω

f(x, ξ) · u(x, ξ)dx+

∫
∂ΩN

g(s, ξ) · u(s, ξ)ds. (2.6)

In this paper, we consider TO problems of the form

Ω∗ =arg min
Ω⊂D

J R(u,Ω)

subject to V (Ω) ≤ Vreq
(2.7)

where J R is a robustness metric, V (Ω) =
∫
Ω
dx is the volume of Ω, and Vreq is a fixed

volume parameter. We consider robustness metrics of the form

J R(u,Ω) := µJ(u,Ω) + β σJ(u,Ω), (2.8)

where µJ(u,Ω) and σJ(u,Ω) are the mean and standard deviation of J defined by

µJ(u,Ω) = ⟨J(u,Ω, ·)⟩Γ =

∫
Γ

J(u(·, ξ),Ω, ξ)ρ(ξ)dξ, (2.9)

σJ(u,Ω) = ⟨
(
J(u,Ω, ·)− µJ(u,Ω)

)2⟩1/2Γ , (2.10)

and β ≥ 0 is a user-defined weighting parameter. In addition to the notation
⟨·⟩Γ, we will sometimes use one-dimensional average operators defined as ⟨w⟩Γi

:=∫
Γi
w ρi(ξi)dξi, i = 1, . . . ,M .

In order to satisfy the volume constraint in the optimization problem (2.7) in
practice, we use an augmented Lagrangian method, where we enforce the volume
constraint by augmenting the objective function as

J (u,Ω) := µJ(u,Ω) + β σJ(u,Ω) + ℓ
(
V (Ω)− Vreq

)
+

1

2Λ

(
V (Ω)− Vreq

)2
. (2.11)

The parameters ℓ and Λ are updated at every iteration to ensure that the volume
constraint V (Ω) ≤ Vreq is satisfied at the end of the optimization process. We note
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that the objective function shares the same structure as the objective function aug-
mented by a fixed volume penalty parameter, which is often used in level-set topology
optimization.

We solve the optimization problem (2.7) using a gradient descent algorithm. In
level-set methods, the boundary of Ω is evolved using an advection equation ∂ψ

∂t +
θ∗ · ∇ψ = 0 for the level-set function ψ : D → R, where θ∗ : D → Rd is a descent
direction that depends on the so-called shape derivative DΩ(J R)(u, ·). There are
essentially two types of shape derivatives used in TO, namely boundary-based and
distributed, that we briefly introduce in the classical deterministic case. For a given
output functional F and any deformation field θ ∈W 1,∞(Rd,Rd), classical boundary-
based shape derivatives [3] write as DΩF (u,Ω)(θ) =

∫
∂Ω
V θ · nds, where the normal

velocity V depends on the state solution u (and possibly of an adjoint solution).
The descent direction is thus taken as θ∗ = −V extn, where V ext is an extension
of V (defined on Ω) to the whole domain D obtained by using the ersatz material
method [3] or any other velocity extension technique (e.g. [1, 48]). On the other
hand, distributed shape derivatives introduced more recently by Laurain [28] take
the form DΩF (u,Ω)(θ) =

∫
Ω

(
S1 : Dθ + S0 · θ

)
dx. A smoothed descent direction

θ∗ ∈ V(D) =
{
θ ∈ H1(D)d | θ ·n = 0 on ∂D

}
is then obtained by solving the equation∫

D
(
α1Dθ

∗ : Dw + α2θ
∗ ·w

)
dx = −DΩF (u,Ω)(w), ∀w ∈ V(D) [12, 28]. We also refer

to [43, 46, 29, 25] for more details about theoretical aspects of shape derivatives.

Before providing our robust TO formulation, we make a key assumption motivated
by practical considerations according to which a deterministic level-set TO framework
is available to the user.

Assumption 1. For any given parameter ξ ∈ Γ, the quantities required to perform
a deterministic TO — the stiffness matrix and load vectors for the finite element
analysis, the shape derivatives, and a level-set propagation scheme — are provided.

Based on this, our goal is to derive a non-intrusive robust TO formulation that
leverages any deterministic TO implementation and applies to any randomly parametrized
TO problem. We describe in Section 3 a non-intrusive numerical method for solving
random elasticity equations with an arbitrary parameterization. A non-intrusive ro-
bust TO approach will be presented subsequently in Section 4.

3. AAPG scheme for random elasticity equations. In real-world appli-
cations, the existence of various sources of uncertainties often necessitates random
elasticity equations (2.2) with a large number of parameters. For instance, an ac-
curate description of random fields with a small correlation length can require KL
expansions [32] with large numbers of random variables. A classical approach to solve
randomly parametrized PDEs is stochastic projection (or gPC) schemes based on PC
expansions; see, e.g., [17, 26, 31, 51, 33, 36, 50]. The gPC schemes have been applied
successfully to a wide range of stochastic models, including fluid flow or heat trans-
fer problems. The error analysis of gPC approximations of stochastic PDEs are also
well established. However, the main limitation of gPC schemes is its computational
cost, which becomes prohibitive for problems with large numbers of random variables.
Indeed, the number of coupled deterministic PDEs arising from stochastic Galerkin
projection increases exponentially with the number of random variables and the PC
order. One objective of the present work is to address this limitation (often referred
to as the curse of dimensionality) by means of an efficient numerical scheme described
below.
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3.1. Description of the algorithm. We propose to solve the random elastic-
ity equations (2.2) using the AAPG scheme [4], which was originally developed to
efficiently solve high-dimensional elliptic and parabolic SPDEs. In short, the AAPG
scheme decouples high-dimensional stochastic weak forms (such as (2.3)) into low-
dimensional stochastic subproblems that can be solved independently of each other.
Other approaches based on functional ANOVA decompositions have been studied by
several researchers; see [40, 52, 53].

More specifically, consider an anchored ANOVA decomposition for the random
elasticity solution

u(x, ξ) ≃ ûL(x, ξ) = u0(x) +

L∑
s=1

∑
j1<···<js

uj1...js(x, ξj1 , . . . , ξjs), (3.1)

where 1 ≤ L ≤M . To ensure the uniqueness of the above decomposition, we impose
the following null integral contraints on the component functions [40, 18]∫

Γk

uj1...js(x, ξj1 , . . . , ξjs) dµk(ξk) = 0 ∀k ∈ {j1, . . . , js} (3.2)

with respect to the Dirac product measure dµ(ξ) =
∏M
j=1 δ(ξj− ξaj )dξj , where ξa ∈ Γ

is a so-called anchor point∗. The zero-order component function u0 captures the so-
lution at the anchor point ξa, the first-order component function uj1 represents the
contribution to the solution by the variable ξj1 acting alone, the second-order com-
ponent function uj1j2 represents the contribution to the solution by the two variables
ξj1 and ξj2 , and so on. By considering a L-th order ANOVA decomposition (3.1) with
null integral constraints (3.2) with respect to the Dirac product measure along with
specially designed test-functions in the high-dimensional weak form (2.3), it can be
shown [4] that u0 is the solution of the deterministic elasticity problem −div

(
A(x, ξa)e(u0(x))

)
= f(x, ξa) ∀x ∈ Ω,

u0(x) = 0 ∀x ∈ ∂ΩD,
A(x, ξa)e(u0(x))n = g(x, ξa) ∀x ∈ ∂ΩN .

(3.3)

In addition, each auxiliary function

ũj1(x, ξj1) = uj1(x, ξj1) + u0(x) (3.4)

is the solution of the random elasticity equation (with one random variable)
−div

(
A(x, ξa\j1)e(ũ

j1(x, ξj1))
)

= f(x, ξa\j1) ∀(x, ξj1) ∈ Ω× Γj1 ,

ũj1(x, ξj1) = 0 ∀(x, ξj1) ∈ ∂ΩD × Γj1 ,
A(x, ξa\j1)e(ũ

j1(x, ξj1))n = g(x, ξa\j1) ∀(x, ξj1) ∈ ∂ΩN × Γj1 ,
(3.5)

where ξa\j1 = (ξa1 , . . . , ξ
a
j1−1, ξj1 , ξ

a
j1+1, . . . , ξ

a
M ). Similarly, each auxiliary function

ũj1j2(x, ξj1 , ξj2) = u0(x) + uj1(x, ξj1) + uj2(x, ξj2) + uj1j2(x, ξj1 , ξj2) (3.6)

is the solution of the random elasticity equation (with two random variables)
−div

(
A(x, ξa\j1j2)e(ũ

j1j2(x, ξj1 , ξj2))
)

= f(x, ξa\j1j2) ∀(x, ξj1 , ξj2) ∈ Ω× Γj1j2 ,

ũj1j2(x, ξj1 , ξj2) = 0 ∀(x, ξj1 , ξj2) ∈ ∂ΩD × Γj1j2 ,
A(x, ξa\j1j2)e(ũ

j1j2(x, ξj1 , ξj2))n = g(x, ξa\j1j2) ∀(x, ξj1 , ξj2) ∈ ∂ΩN × Γj1j2 ,

(3.7)

∗A common choice is to take ξa as the centroid of Γ.
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where Γj1j2 = Γj1 ×Γj2 , ξ
a
\j1j2 = (ξa1 , . . . , ξ

a
j1−1, ξj1 , ξ

a
j1+1, . . . , ξ

a
j2−1, ξj2 , ξ

a
j2+1, . . . ξ

a
M ),

and so on for higher-order component functions. See [4] for the derivation.

3.2. Computational advantages. We now discuss the computational advan-
tages provided by the AAPG formulation. As a reminder, consider the classical full
gPC scheme [17, 51] applied to the original SPDE (2.2). The solution is approxi-

mated by û(x, ξ) =
∑Nξ

k=1 uk(x)ψk(ξ), where uk(x) are undetermined spatial func-

tions, {ψk(ξ)}
Nξ

k=1 is an orthonormal PC basis, and Nξ =
(M+pξ)!
M !pξ!

is the dimension of

the PC basis. Stochastic Galerkin projection yields Nξ coupled deterministic PDEs

−
∑Nξ

k=1 div
(
⟨ψkψlA(x, ·)⟩Γ e(uk(x))

)
= ⟨f(x, ·)ψl⟩Γ ∀x ∈ Ω, l = 1, . . . , Nξ,

ul(x) = 0 ∀x ∈ ∂ΩD, l = 1, . . . , Nξ,∑Nξ

k=1⟨ψkψlA(x, ·)⟩Γ e(uk(x))n = ⟨g(x, ·)ψl⟩Γ ∀x ∈ ∂ΩN , l = 1, . . . , Nξ.
(3.8)

By contrast, the AAPG scheme requires solving a deterministic elasticity equation for
the zeroth-order ANOVA component function u0 and stochastic elasticity problems
with s random variables for the higher-order ANOVA component functions ũj1...js ,
s = 1, . . . , L. For SPDEs whose solution has a low effective dimension, it is well
known that truncated ANOVA decompositions with small truncation orders L are
able to represent high-dimensional problems for a wide range of applications while
considering low-order interactions†. Hence, the stochastic AAPG subproblems are
low-dimensional and can be solved efficiently using classical gPC schemes [17, 51]. To
be more specific, a second-order AAPG scheme (i.e. with L = 2) requires solving one

deterministic PDE (3.3),M SPDEs (3.5) each with one random variable, and M(M−1)
2

SPDEs (3.7) each with two random variables. If the stochastic AAPG subproblems

are solved with gPC schemes, 1+MN
(1)
ξ +M(M−1)

2 N
(2)
ξ deterministic PDEs need to be

solved in the end, where N
(1)
ξ = pξ+1 and N

(2)
ξ = 1

2 (pξ+2)(pξ+1) are dimensions of
PC bases with one and two random variables, pξ denoting the PC order. In summary,
first- and second-order AAPG schemes scales linearly and quadratically, respectively,
with M , while a full gPC scheme scales exponentially with M .

A major practical advantage of the AAPG formulation is that it is straightforward
to parallelize since the AAPG subproblems are independent of each other. In addition,
combining AAPG with adaptivity strategies based on Sobol sensitivities (e.g. [53])
allows us to discard random variables that do not contribute much to the solution
and consequently it is possible to tackle higher-dimensional stochastic problems. For
instance, the combination of AAPG with adaptivity techniques has been shown to
efficiently solve large-scale stochastic diffusion problems with aroundM = 700 random
variables [38], which would be intractable using a full gPC scheme.

Finally, the AAPG formulation is supported by an a priori error analysis. Error
estimates that depend on the spatial and stochastic discretization parameters as well
as the ANOVA truncation order are provided for time-dependent SPDEs in [4]. The
error estimate also informs the choice of an anchor point ξa ∈ Γ, as we summarize in
the following remark.

Remark 2. The AAPG error depends on the choice of the anchor point ξa ∈ Γ,
which affects the accuracy of anchored ANOVA decompositions [16, 55]. As discussed
in [4], there is an optimal anchor point that minimizes the error ∥u− ûL∥H1(Ω)⊗L2(Γ)

†For example, it is sufficient to consider L = 2 in many statistical applications, L ≤ 4 in molecular
dynamics, or 5 ≤ L ≤ 7 in data mining (for more details see [18]).
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for each L. For the L = 0 AAPG approximation, the optimal anchor point is the
point that satisfies u(x, ξa) ≈ ⟨u(x, ξ)⟩Γ, and such a point, in principle, may be ap-
proximated using a Monte Carlo estimate of ⟨u(x, ξ)⟩Γ. However, for L ≥ 1 AAPG
approximations, optimizing the anchor point ξa requires the construction of many
AAPG estimates ûL for various ξa, which, to the best of our knowledge, cannot be
efficiently performed. Hence, we in practice forgo the direct minimization of the error
∥u− ûL∥H1(Ω)⊗L2(Γ) and instead minimize an a priori error bound in [4]. The error
bound, which is based on Taylor series expansion, is minimized when ξa is the centroid
of Γ; i.e., ξa = ⟨ξ⟩Γ.

3.3. Solving the AAPG subproblems non-intrusively. In this section, we
focus on the practical resolution of AAPG subproblems based on a semi-discrete
spatial finite element (FE) formulation. For a FE discretization of Ω with a to-
tal of Nx spatial dofs, the elasticity equations write as a random linear system
K(ξ)U(ξ) = F (ξ), where K(ξ) ∈ RNx×Nx , F (ξ) ∈ RNx and U(ξ) ∈ RNx denote
the global stiffness matrix, force vector, and displacement vector, respectively. Next,
we focus on the semi-discrete form of the AAPG subproblems. Since the zero-
order AAPG subproblem depends on the material property tensor A(x, ξa), the semi-
discrete form of (3.3) is the deterministic Nx × Nx linear system K(ξa)U0 = F (ξa).
Similarly, the semi-discrete forms of the first- and second-order AAPG subproblems
(3.5) and (3.7) write as Nx ×Nx random linear systems

K(ξa\j1)Ũ
j1(ξj1) = F (ξa\j1), ∀ξj1 ∈ Γj1 , j1 = 1, . . . ,M, (3.9)

K(ξa\j1j2)Ũ
j1j2(ξj1 , ξj2) = F (ξa\j1j2), ∀(ξj1 , ξj1) ∈ Γj1 × Γj2 , 1 ≤ j1 < j2 ≤M.

(3.10)

The above low-dimensional random matrix equations are solved using gPC schemes.
Consider the PC approximation

Ũ j1(ξj1) ≃ Ũ j1pξ (ξj1) =

N
(1)
ξ∑
l=1

αj1l ψl(ξj1), (3.11)

where {ψl}
N

(1)
ξ

l=1 is a one-dimensional orthonormal PC basis of total degree pξ, α
j1
l ∈

RNx , and N
(1)
ξ = pξ +1. In this section, for simplicity, we assume that pξ is the same

in each stochastic dimension. Enforcing stochastic Galerkin conditions leads to a set

of NxN
(1)
ξ ×NxN

(1)
ξ linear systems

Aj1αj1 = F j1 , j1 = 1, . . . ,M (3.12)

with block matrices

Aj1 =


B11 . . . B

1,N
(1)
ξ

...
...

B
N

(1)
ξ ,1

. . . B
N

(1)
ξ ,N

(1)
ξ

 , Bkl = ⟨ψkψlK(ξa\j1)⟩Γj1
, (3.13)

solution vector αj1 = (αj11 , α
j1
2 , . . . , α

j1

N
(1)
ξ

)T , and right-hand side F j1 = (F j11 , . . . , F j1
N

(1)
ξ

),

F j1k = ⟨ψkF (ξa\j1)⟩Γj1
. Similarly, using PC representations

Ũ j1j2pξ
(ξj1 , ξj2) =

N
(2)
ξ∑
l=1

αj1j2l ψl(ξj1 , ξj2) (3.14)
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with N
(2)
ξ = 1

2 (pξ + 2)(pξ + 1) and applying stochastic Galerkin conditions leads to

NxN
(2)
ξ ×NxN

(2)
ξ linear systems

Aj1j2αj1j2 = F j1j2 , 1 ≤ j1 < j2 ≤M (3.15)

with block matrices Bkl = ⟨ψkψlK(ξa\j1j2)⟩Γj1
×Γj2

, and right-hand side components

F j1j2k = ⟨ψkF (ξa\j1j2)⟩Γj1
×Γj2

.

We now discuss the strategy for solving the set of linear systems (3.12) and
(3.15) in practice. The main point to address is an efficient assembly of the block
matrices Bkl as they depend on K(ξ) which is a general (possibly nonlinear) func-
tion of ξ. One possible way could be to expand the random stiffness matrix as

K(ξ) ≃
∑Nξ

m=1Kmφm(ξ), where φm(ξ) denote M -dimensional orthonormal PC basis
functions, so that the matrices in (3.12) and (3.15) admit a convenient Kronecker

product structure; e.g., Aj1 =
∑Nξ

m=1Gm ⊗Km with
Gm(k, l) =

∫
Γj1

ψk(ξj1)ψl(ξj1)φm(ξa\j1)ρj1(ξj1)dξj1 . However, this approach would be

computationally expensive since the evaluation of the PC terms Km = ⟨K(ξ)φm(ξ)⟩Γ
requires the integration of high-dimensional nonlinear functions in the parameter
space. Instead, we propose an alternate approach based on a direct computation
of the block matrices Bkl. Since these blocks require only low-dimensional integrals
in the parameter space, they can be directly approximated using quadrature rules.
For example, the block matrices of Aj1 in (3.12) can be computed as

Bkl ≃
NQ∑
i=1

ω
(i)
j1
ρj1(ξ

(i)
j1

)ψk(ξ
(i)
j1

)ψl(ξ
(i)
j1

)K(ξa1 , . . . , ξ
a
j1−1, ξ

(i)
j1
, ξaj1+1, . . . , ξ

a
M ), (3.16)

where (ξ
(i)
j1
, ω

(i)
j1
) denote quadrature nodes and weights in Γj1 .

Example 1. Consider a PC basis of degree pξ and assume that K(ξ) is given
by a KL expansion [32]. Then the integrands ψkψlK(ξa\j1) are polynomials of degree
2pξ + 1 in ξj1 , meaning that a Gauss quadrature with NQ = pξ + 1 nodes is exact.

The advantages in using the proposed direct integration approach are two-fold.
First, the computational cost is limited since only one- and two-dimensional integrals
in the parameter space need to be computed. Second, this technique offers generality
as it only requires evaluations of the global stiffness matrix at the parameter points

(ξa1 , . . . , ξ
a
j1−1, ξ

(i)
j1
, ξaj1+1, . . . , ξ

a
M ) and (ξa1 , . . . , ξ

a
j1−1, ξ

(i)
j1
, ξaj1+1, . . . , ξ

a
j2−1, ξ

(j)
j2
,

ξaj2+1, . . . , ξ
a
M ). As a result, this non-intrusive approach can treat any type of parametriza-

tion for the material properties provided that a black-box uncertainty model is given
by the user (i.e., through a function generating evaluations of the global stiffness
matrix K(ξ)).

4. Non-intrusive stochastic optimization algorithm. In this section, we
focus on computing shape sensitivities of robustness metrics J R defined by (2.8). We
assume that jv and js are random functions to address the general case where J R

explicitly depends on ξ.

4.1. Assumptions and notations. Before deriving suitable expressions for the
shape derivatives of J R, we state some useful assumptions.

Assumption 2. The randomness of the loading conditions are described by ML

random variables (ξ1, . . . , ξML
), and the uncertainties on the material properties are

modeled with M −ML random variables (ξML+1, . . . , ξM ). In addition, ⟨ξi⟩Γi
= 0,

i = 1, . . . ,ML.
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Next, we introduce the primal and output linear forms L(w,Ω, ξ) = (f(·, ξ), w)Ω+
(g(·, ξ), w)∂ΩN

and Lo(w,Ω, ξ) = (jv(·, ξ), w)Ω + (js(·, ξ), w)∂ΩN
, where (·, ·)Ω and

(·, ·)∂ΩN
denote spatial L2 inner products, and the following assumption:

Assumption 3. The loading terms are parametrized linearly in the random vari-
ables as f(x, ξ) = ϕ(x) +

∑M
i=1 ξiϕi(x) and g(x, ξ) = ψ(x) +

∑M
i=1 ξiψi(x), where

ϕi ≡ 0 and ψi ≡ 0 for i ≥ML + 1.
This form of parametrization for the loading terms accommodates many scenar-

ios of interest in engineering applications. For instance, distributed loading terms
can be discretized using truncated KL expansions [32] which are commonly used for
modeling random fields. The L2(Ω)-orthogonal functions ϕi are defined as ϕi(x) =

σf
√
λf,iϕ̃i(x), where σf denotes the standard deviation of the random load f and

{λf,i, ϕ̃i} are the eigenpairs of a given two-point correlation function Cf used for

modeling f . Similar definitions are used for g using σg and {λg,i, ψ̃i} for the standard
deviation and the eigenpairs of Cg, respectively. Furthermore, pointwise loading con-
ditions applied at particular points of the boundary can also be taken into account. For
example, two-dimensional parametrizations can be defined by ψ(x) =

∑ML

i=1 aiδ(x−xi)
and ψi(x) = σia

⊥
i δ(x−xi), where xi ∈ ∂ΩN and ai ∈ Rd are nominal loading vectors.

Under Assumption 3, the primal linear form is given by

L(w,Ω, ξ) = L(w,Ω) +
M∑
i=1

ξiLi(w,Ω), (4.1)

with

L(w,Ω) = (ϕ,w)Ω + (ψ,w)∂ΩN
,

Li(w,Ω) = (ϕi, w)Ω + (ψi, w)∂ΩN
.

We also note that a case with separate decompositions of f and g, f(x, η) = f(x) +∑Mf

j=1 ηjfj(x) and g(x, ζ) = g(x) +
∑Mg

k=1 ζkgk(x), can be cast in the form in As-

sumption 3 as follows: M = Mf +Mg; ϕ(x) = f(x), ξi = ηi, ϕi(x) = fi(x), and
ψi(x) = 0 for i = 1, . . . ,Mf ; and ψ(x) = g(x), ϕi(x) = 0, and ψi(x) = gi−Mf

(x) for
i =Mf + 1, . . . ,Mf +Mg. Multiple independent random fields may be treated using
a similar direct decomposition.

Similarly, we make the following assumption on the output form:
Assumption 4. The output functions are parametrized linearly in the random

variables as jv(x, ξ) = jv(x) +
∑M
i=1 ξijv,i(x) ∀(x, ξ) ∈ Ω× Γ, and js(x, ξ) = js(x) +∑M

i=1 ξijs,i(x) ∀(x, ξ) ∈ ∂ΩN × Γ, where jv,i ≡ 0 and js,i ≡ 0 for i ≥ML + 1.
As a result, the output linear form is given by

Lo(w,Ω, ξ) = Lo(w,Ω) +
M∑
i=1

ξiLio(w,Ω), (4.2)

with

Lo(w,Ω) = (jv, w)Ω + (js, w)∂ΩN
,

Lio(w,Ω) = (jv,i, w)Ω + (js,i, w)∂ΩN
.

For compliance minimization problems (jv = f and js = g), we consider the fol-
lowing additional assumption on the anchor point, which usefulness will be explained
in the next section. (See also Remark 2 about the choice of anchor point.)

Assumption 5. The anchor point is given by ξa = ⟨ξ⟩Γ, where ⟨ξi⟩Γi
= 0,

i = 1, . . . ,ML.
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4.2. Shape derivative of statistical moments. We now derive shape deriva-
tives of statistical moments associated with random elasticity problems with uncer-
tainties in loading conditions and material properties, i.e. with 1 ≤ML ≤M − 1.

4.2.1. Shape derivative of the mean. We first consider the case of general
linear output functionals.

Proposition 4.1. Under Assumptions 2 and 4, the shape derivative of the mean
output functional associated with the first-order AAPG approximation of the random
elasticity problem (2.2) is given by

DΩ

(
µJ(u,Ω)

)
≃ (1−M)DΩ

(
Lo(u0,Ω)

)
+

M∑
j1=1

⟨DΩ

(
Lo(ũj1 ,Ω) + ξj1Lj1o (ũj1 ,Ω)

)
⟩Γj1

.

(4.3)

If a second-order AAPG scheme is used, then

DΩ

(
µJ(u,Ω)

)
≃ αMDΩ

(
L(u0,Ω)

)
+ (2−M)

M∑
j1=1

⟨DΩ

(
Lo(ũj1 ,Ω) + ξj1Lj1o (ũj1 ,Ω)

)
⟩Γj1

+

M∑
j1<j2

⟨DΩ

(
Lo(ũj1j2 ,Ω) + ξj1Lj1o (ũj1j2 ,Ω) + ξj2Lj2o (ũj1j2 ,Ω)

)
⟩Γj1

×Γj2
, (4.4)

where αM = 1−M + 1
2M(M − 1) and

∑M
j1<j2

stands for
∑M−1
j1=1

∑M
j2=j1+1.

Proof. Using (3.1) with L = 1 and (3.4), the AAPG elasticity solution can be

rewritten in terms of the auxiliary functions as û1(x, ξ) = (1−M)u0(x)+
∑M
j1=1 ũ

j1(x, ξj1),
from which we obtain

µJ(u,Ω) ≃ ⟨J(û1,Ω, ·)⟩Γ = (1−M)Lo(u0,Ω) +
M∑
j1=1

⟨
(
Lo(ũj1 ,Ω) + ξj1Lj1o (ũj1 ,Ω)

)
⟩Γj1

,

from which we deduce (4.3). The expression (4.4) is obtained by rewriting the AAPG
elasticity solution as

û2(x, ξ) = αMu
0(x) + (2−M)

M∑
j1=1

ũj1(x, ξj1) +

M∑
j1<j2

ũj1j2(x, ξj1 , ξj2)

using (3.1) with L = 2, (3.4), and (3.6).
In practice, µJ and DΩ(µJ) are approximated further using PC expansions of

total degree pξ for the AAPG component functions; i.e. ũj1 ≃ ũj1pξ and ũj1j2 ≃ ũj1j2pξ
.

(See PC representations (3.11) and (3.14) in a semi-discrete form.) For instance,
we estimate the mean of J using one-dimensional quadrature rules in the parameter
spaces Γj1 :

µJ(u,Ω) ≃ (1−M)Lo(u0,Ω)

+

M∑
j1=1

NQ∑
i=1

ω
(i)
j1
ρj1(ξ

(i)
j1

)
(
Lo(ũj1(·, ξ(i)j1 ),Ω) + ξ

(i)
j1

Lj1o (ũj1(·, ξ(i)j1 ),Ω)
)
. (4.5)

To ensure consistency between the approximations of µJ and its shape derivative, we
use the same quadrature rules to estimate (4.3) and (4.4). It is worth mentioning that



12 C. AUDOUZE, A. KLEIN, A. BUTSCHER, N. MORRIS, P. B. NAIR AND M. YANO

deterministic shape gradients DΩ(·) can be evaluated using any method, including
the boundary-based [3] and distributed [28] formulations. When approximating (4.3)
and (4.4) with quadrature rules, the shape derivatives of the output linear forms Lo
and Lj1o can be estimated using the classical Céa’s optimization method [7, 3]. For
example, DΩ

(
Lo(u0,Ω)

)
= DΩ

(
L(u0, p0,Ω)

)
, where L is the Lagrangian defined as

L(v, q,Ω) :=
∫
Ω
jv · v +

∫
∂ΩN

js · v +
∫
Ω
A(x, ξa)e(v) : e(q)−

∫
Ω
f(x, ξa) · q

−
∫
∂ΩN

g(x, ξa) · q −
∫
∂ΩD

(
A(s, ξa)e(v)n · q +A(s, ξa)e(q)n · v

)
and p0 is the adjoint state solution of −div

(
A(x, ξa)e(p0(x))

)
= −jv(x) ∀x ∈ Ω,

p0(x) = 0 ∀x ∈ ∂ΩD,
A(x, ξa)e(p0(x))n = −js(x) ∀x ∈ ∂ΩN .

The shape gradient DΩ

(
Lo(u0,Ω)

)
is then obtained by using any type of deterministic

shape derivative DΩ

(
L(u0, p0,Ω)

)
. Overall, estimating DΩ(·) in (4.3) requires solving

1 +MNQ deterministic adjoint problems; i.e., 1 +MNQ deterministic linear systems

that depend on the stiffness matrices K(ξa) and K(ξa1 , . . . , ξ
a
j1−1, ξ

(i)
j1
, ξaj1+1, . . . , ξ

a
M ).

Similarly, 1 + MNQ + M(M − 1)N2
Q/2 deterministic adjoint equations need to be

solved to carry out all the shape derivatives in (4.4).

Remark 3. By using the same quadrature rule for assembling the block matrices
Bkl (see (3.16)) and for approximating the integrals in DΩ(µJ), the stiffness matrices
evaluated at the quadrature points in the adjoint problems are the same as those used
for assembling the matrices in the primal problems.

We now focus on the shape derivative of the mean compliance (i.e., jv = f and
js = g).

Proposition 4.2. Under Assumptions 2, 3 and 5, the shape derivative of the
mean compliance associated with the first-order AAPG approximation of the random
elasticity problem (2.2) is given by

DΩ

(
µJ(u,Ω)

)
≃ (1−M)DΩ

(
J(u0,Ω)

)
+

M∑
j1=1

⟨DΩ

(
J(ũj1 ,Ω, ξj1)

)
⟩Γj1

. (4.6)

If a second-order AAPG scheme is used, then

DΩ

(
µJ(u,Ω)

)
≃ αMDΩ

(
J(u0,Ω)

)
+ (2−M)

M∑
j1=1

⟨DΩ

(
J(ũj1 ,Ω, ξj1)

)
⟩Γj1

+

M∑
j1<j2

⟨DΩ

(
J(ũj1j2 ,Ω, ξj1 , ξj2)

)
⟩Γj1

×Γj2
. (4.7)

Proof. For a first-order AAPG scheme, the random compliance is given by
J(u,Ω, ξ) ≃ L(û1,Ω, ξ) = (1−M)L(u0,Ω, ξ) +

∑M
j1=1 L(ũj1 ,Ω, ξ), which yields

µJ(u,Ω) ≃ (1−M)⟨L(u0,Ω, ·)⟩Γ +

M∑
j1=1

⟨L(ũj1 ,Ω, ·)⟩Γ. (4.8)
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By definition of the anchor point (see Assumption 5), it holds J(u0,Ω) = (f(·, ξa), u0)Ω+
(g(·, ξa), u0)∂ΩN

= (ϕ, u0)Ω + (ψ, u0)∂ΩN
= L(u0,Ω). Since the ML first random vari-

ables are centered, it follows that

⟨L(u0,Ω, ·)⟩Γ = L(u0,Ω) = J(u0,Ω). (4.9)

Next, the first-order AAPG terms can be expressed as

⟨L(ũj1 ,Ω, ·)⟩Γ = ⟨L(ũj1 ,Ω)⟩Γ +

M∑
i=1

⟨ξiLi(ũj1 ,Ω)⟩Γ

=

{
⟨(ϕ+ ξj1ϕj1 , ũ

j1)Ω + (ψ + ξj1ψj1 , ũ
j1)∂ΩN

⟩Γj1
, j1 = 1, . . .ML

⟨(ϕ, ũj1)Ω + (ψ, ũj1)∂ΩN
⟩Γj1

, j1 ≥ML + 1

= ⟨(f(·, ξa\j1), ũ
j1)Ω + (g(·, ξa\j1), ũ

j1)∂ΩN
⟩Γj1

= ⟨J(ũj1 ,Ω, ·)⟩Γj1
. (4.10)

We deduce (4.6) by combining (4.8), (4.9), and (4.10) and applying the shape deriva-
tive. The same arguments are used to obtain (4.7).

In practice, as before, the shape sensitivities of the mean compliance are approx-
imated further using quadrature rules in one- and two-dimensional parameter spaces
and PC approximations of AAPG component functions; e.g.,

DΩ

(
µJ(u,Ω)

)
≃ (1−M)DΩ

(
J(u0,Ω)

)
+

M∑
j1=1

NQ∑
i=1

ω
(i)
j1
ρj1(ξ

(i)
j1

)DΩ

(
J(ũj1pξ ,Ω, ξ

(i)
j1

)
)
.

(4.11)

Remark 4. As previously mentioned, the proposed approach is minimally in-
trusive from an implementation point of view. Indeed, the computation of DΩ(µJ)
depends on shape sensitivities of Lagrangian terms in the non-compliant case and on
shape sensitivities of J in the compliant case, each of them depending on AAPG com-
ponent functions evaluated at quadrature points in the parameter space. Any available
boundary-based [3] or distributed [28] shape gradient implementation within a deter-
ministic TO library can then be used as a black-box solver to perform all the required
deterministic shape gradients for (4.3), (4.4), or (4.11).

4.2.2. Shape derivative of the standard deviation. We now consider shape
derivatives of the standard deviation. Since the shape derivative of the standard
deviation of J can be expressed as DΩ

(
σJ(u,Ω)

)
= 1

2 (σ
2
J(u,Ω))

−1/2DΩ

(
σ2
J(u,Ω)

)
, we

derive an expression for the variance σ2
J(u,Ω) in what follows.

Proposition 4.3. Under Assumptions 2 and 4, the variance of the output func-
tional associated with the first-order AAPG approximation of the random elasticity
problem (2.2) is given by

σ2
J(u,Ω) ≃ (1−M)2

ML∑
i=1

⟨ξ2i ⟩ΓiLio(u0,Ω)2 + 2(1−M)

M∑
j1=1

Aj1(u
0, ũj1 ,Ω)

+

M∑
j1=1

M∑
k1=1

(
Bj1(ũ

j1 ,Ω)δj1,k1 + Cj1,k1(ũ
j1 , ũk1 ,Ω)(1− δj1,k1)

)
, (4.12)
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where

Aj1(u
0, ũj1 ,Ω) = Lj1o (u0,Ω) ⟨ξj1

(
Lo(ũj1 ,Ω) + ξj1Lj1o (ũj1 ,Ω)

)
⟩Γj1

+

M∑
i̸=j1

⟨ξ2i ⟩Γi
Lio(u0,Ω)⟨Lio(ũj1 ,Ω)⟩Γj1

,

Bj1(ũ
j1 ,Ω) = ⟨Lo(ũj1 ,Ω)2⟩Γj1

− ⟨Lo(ũj1 ,Ω)⟩2Γj1
+ 2⟨ξj1Lo(ũj1 ,Ω)Lj1o (ũj1 ,Ω)⟩Γj1

− 2⟨Lo(ũj1 ,Ω)⟩Γj1
⟨ξj1Lj1o (ũj1 ,Ω)⟩Γj1

+

M∑
i ̸=j1

⟨ξ2i ⟩Γi
⟨Lio(ũj1 ,Ω)2⟩Γj1

+ ⟨ξ2j1L
j1
o (ũj1 ,Ω)2⟩Γj1

− ⟨ξj1Lj1o (ũj1 ,Ω)⟩2Γj1
,

Cj1,k1(ũ
j1 , ũk1 ,Ω) = ⟨Lk1o (ũj1 ,Ω)⟩Γj1

⟨ξk1
(
Lo(ũk1 ,Ω) + ξk1Lk1o (ũk1 ,Ω)

)
⟩Γk1

+ ⟨ξj1
(
Lo(ũj1 ,Ω) + ξj1Lj1o (ũj1 ,Ω)

)
⟩Γj1

⟨Lj1o (ũk1 ,Ω)⟩Γk1

+

M∑
i̸=(j1,k1)

⟨ξ2i ⟩Γi
⟨Lio(ũj1 ,Ω)⟩Γj1

⟨Lio(ũk1 ,Ω)⟩Γk1

+ ⟨ξj1Lk1o (ũj1 ,Ω)⟩Γj1
⟨ξk1Lj1o (ũk1 ,Ω)⟩Γk1

,

and δij denotes the Kronecker delta.
Proof. The variance of J is approximated as

σ2
J(u,Ω) ≃ ⟨J(û1,Ω, ·)2⟩Γ − µJ(û

1,Ω)2 = (1−M)2
(
⟨Lo(u0,Ω)2⟩Γ − L0(u

0,Ω)2
)

+ 2(1−M)

M∑
j1=1

(
⟨Lo(u0,Ω)Lo(ũj1 ,Ω)⟩Γ − L0(u

0,Ω)⟨Lo(ũj1 ,Ω)⟩Γ
)

+

M∑
j1=1

M∑
k1=1

(
⟨Lo(ũj1 ,Ω)Lo(ũk1 ,Ω)⟩Γ − ⟨Lo(ũj1 ,Ω)⟩Γ⟨Lo(ũk1 ,Ω)⟩Γ

)
(4.13)

since ⟨ξi⟩Γi
= 0, i = 1, . . . ,ML. We obtain (4.12) by expanding each term in (4.13),

using the fact that Lio ≡ 0 for i ≥ML+1 and that the ML first random variables are
centered.

As a result, the calculation of the shape derivative DΩ

(
σ2
J(û

1,Ω)
)
requires com-

puting the terms (DΩ(Lj1o (u0,Ω)))j1=1,...,ML
, (DΩ

(
Lo(ũj1(·, ξ(i)j1 ),Ω)

)
)j1=1,...,M , and

(DΩ

(
Lj1o (ũk1(·, ),Ω)

)
)j1=1,...,ML,k1=1,...,M , where (ξ

(i)
j1

)i=1,...,NQ
denote quadrature no-

des used to approximate one-dimensional integrals in Γj1 . Hence, computingDΩ

(
σ2
J(û

1,Ω)
)

requires solving ML + (1 +ML)MNQ (deterministic) adjoint problems.
We refer to Appendix B for the shape derivative of the variance for compliance

minimization problems. In particular, we focus on simplified cases where the random-
ness is coming exclusively from uncertainties on the material properties (ML = 0) or
from the loading conditions (ML =M).

4.3. Comparison with existing approaches. We conclude the section with
a discussion of the comparison between the proposed approach and existing ap-
proaches. In [9] the shape derivatives of statistical moments of a random func-
tional are computed using an univariate dimension reduction (UDR) approach; i.e.,
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a first-order anchored ANOVA decomposition with anchor point ξa = ⟨ξ⟩, where

J(u,Ω, ξ) ≃ (1−M)J(u,Ω, ξa) +
∑M
j1=1 J(u,Ω, ξ

a
\j1). For example, the shape deriva-

tive of the mean of J is computed as

DΩ

(
µJ(u,Ω)

)
≃ (1−M)DΩ

(
J(u,Ω, ξa)

)
+

M∑
j1=1

mj1∑
k=1

ω
(k)
j1
DΩ

(
J(u,Ω, ξa1 , . . . , ξ

a
j1−1, ξ

(k)
j1
, ξaj1+1, . . . , ξ

a
M )

)
using one-dimensional quadrature rules in the parameter space. This technique is
fully non-intrusive since it requires only shape gradients of deterministic state so-
lutions evaluated at the quadrature points. By contrast, the proposed approach
is semi-intrusive since it involves shape derivatives of AAPG component functions;
see, e.g., (4.3). Even if the UDR approach allows us to handle any type of random
functional, its fully non-intrusive feature might be less accurate than the proposed
AAPG-based approach. In terms of computational cost, the UDR approach requires
O
(
(1 + m1 + · · · + mM )Nx

)
operations since each deterministic elasticity problem

scales in O(Nx). If sparse grids with level l are used in each dimension, the overall
cost is O

(
(1 +M2l)Nx

)
. On the other hand, the proposed approach (based on first-

order AAPG) requires O
(
(1+M(pξ+1))Nx

)
operations for the primal problems since

one deterministic elasticity equation and M stochastic elasticity problems with one
random variables need to be solved. In the case of non-compliant problems, an addi-
tional cost of O

(
(1 +MNQ)Nx

)
operations is required to solve the adjoint problems

to compute DΩ(µJ). As such, both approaches have a similar abstract computational
cost (with the coefficient 2l growing faster than pξ + 1 or pξ + 1 +NQ). In compari-
son to the first-order AAPG and UDR, the second-order AAPG formulation requires

O((1 +M(pξ + 1) + M(M−1)
2

(pξ+2)(pξ+1)
2 )Nx) operations for the primal problem and

O((1 +MNQ + M(M−1)
2 N2

Q)Nx) operations for the adjoint problems.
The proposed formulation can also be compared with the approach fromMart́ınez-

Frutos et al. [35], wherein the shape derivatives of robustness metrics are expressed
in terms of integrals over the original parameter space Γ, and these integrals are
subsequently approximated using adaptive sparse quadrature rules. However, this
technique can scale poorly for high-dimensional problems. Using sparse grids with
level l in the M -dimensional parameter space, this approach requires O

(
2llM−1Nx

)
operations at each optimization iteration. By contrast, the proposed AAPG-based
formulation breaks down the complexity since shape derivatives of robustness met-
rics are expressed in terms of low-dimensional integrals in the parameter space. For
example, in the compliance case, the cost for the first-order AAPG formulation is
O
(
M(pξ +MLNQ)Nx

)
per optimization iteration (O

(
MpξNx

)
for primal problems

and O
(
MMLNQNx

)
for adjoint problems), which allows to tackle problems with

larger number of random parameters.

5. Numerical results. We now present numerical illustrations of the proposed
formulation for two-dimensional TO problems under different sources of uncertainties.

5.1. Loading uncertainties. In this section we focus on cases where the ran-
domness arises from loading conditions (ML = M). For all examples, we consider
isotropic materials with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3. We
assume there is no body force (f ≡ 0) and that the traction force g admits an affine
decomposition of the form discussed in Section 4.1. We minimize the mean compliance
(2.9) subject to volume constraints, using an augmented Lagrangian method (2.11).
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Fig. 5.1. Vertical column under loading uncertainties: Ωdet,opt (left) and Ωstoch,opt (right).

We assume the Dirichlet boundary ∂ΩD is fixed and that the Neumann boundary is
partitioned into two parts: ∂ΩN,g, over which g ̸= 0 and is fixed (i.e., non-designable);
∂ΩN,0, over which g = 0 and is optimized.

We use the superposition principle described in Appendix B.2, where each com-
ponent of the displacement field (u0 and ui) and their shape derivatives are computed
using an in-house TO solver that builds on the FEniCS library and TO code devel-
oped by Laurain [28]. The working domains are discretized using triangular finite
elements with linear shape functions.

Starting from the same initial shape we generate two types of optimal designs.
The deterministic design Ωdet,opt is obtained by applying a classical TO solver for min-
imizing the compliance (i.e., ignoring uncertainties); the stochastic design Ωstoch,opt

is generated using the mean compliance minimization (i.e., (2.8) with β = 0). For
each optimal design, we compute two performance metrics: the nominal compliance
Jnom := J(u(·, ξ = 0),Ω, ξ = 0) and the mean compliance µJ , which we compute
directly and exactly using the AAPG decomposition.

5.1.1. Pointwise loading. We first consider a vertical column problem, initial-
ized with a solid domain with holes removed in a 2×7 checkerboard pattern. We apply
a point random load g(x, ξ) =

(
(0,−1)T + ξ(1, 0)T

)
δ(x− x), where x = (0.5, 1) is the

middle of the top boundary, and ξ ∼ U [−1, 1]. We discretize the square working do-
main D = [0, 1]2 using 360,000 elements and set the volume fraction to Vreq/|D| = 0.2.

Fig. 5.1 shows the optimized designs. The nominal-optimized design Ωdet,opt

yields a nominal compliance of Jnom = 6.67 and a mean compliance of µJ = 128.9.
The mean-optimized design Ωstoch,opt yields a nominal compliance of Jnom = 8.70
and a mean compliance of µJ = 18.99. The mean-optimized design slightly sacrifices
nominal (i.e., on-design) performance to obtain a substantially better off-design per-
formance, resulting in a better mean compliance. The nominal-optimized design is a
single vertical beam, which is ideal for supporting vertical load but not any horizontal
loads. The mean-optimized design is triangular to better support horizontal loads.

We next consider a half-wheel problem, initialized with a solid domain with holes
removed in a 4 × 7 checkerboard pattern. We apply a point random load g(x, ξ) =(
(0,−1)T + ξ(1, 0)T

)
δ(x− x), where x = (1, 0) is the middle of the bottom boundary,

and ξ ∼ U [−1, 1]. We discretize the rectangular domain D = [0, 2]× [0, 1] using 80,000
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Fig. 5.2. Half-wheel under loading uncertainties: Ωdet,opt (left) and Ωstoch,opt (right).

elements and set the volume fraction to Vreq/|D| = 0.3.
Optimized designs are depicted on Fig. 5.2. The nominal-optimized design Ωdet,opt

yields a nominal compliance of Jnom = 19.83 and a mean compliance of µJ = 30.37.
The mean-optimized design Ωstoch,opt yields a nominal compliance of Jnom = 20.80
and a mean compliance of µJ = 27.60. Again, the mean-optimized design slightly sac-
rifices the on-design performance to improve the off-design performance. The nominal-
optimized design has essentially no horizontal members as the nominal load is purely
vertical; the mean-optimized design has a thicker horizontal member to better support
horizontal random loads.

5.1.2. Distributed loading: moderate-dimensional case. We next consider
a carrier plate problem, initialized with a solid domain with holes removed in a 4× 5
checkerboard pattern. We represent the random distributed load on the top boundary
using a KL expansion,

g(x, ξ) =

(
0
g

)
+

M∑
m=1

ξm

(
gm(x)

0

)
, (5.1)

where g = −1 is a nominal vertical load amplitude, ξm ∼ U [−1, 1], gm(x) = σg
√
λmϕm(x),

and {λm, ϕm} are the eigenpairs of a two-point correlation function Cg(x, y) = σ2
g e

− ||x−y||
l

with σg = 1 and l = 5. We choose M = 4, which captures 99% of the energy. We
discretize the squared domain D = [0, 1]2 using 250,000 elements and set the volume
fraction to Vreq/|D| = 0.5.

Fig. 5.3 shows the optimized designs. The nominal-optimized design Ωdet,opt

yields a nominal compliance of Jnom = 1.9 and the mean compliance of µJ = 39.4.
The mean-optimized design yields a nominal compliance of Jnom = 2.6 and the mean
compliance of µJ = 7.23. The mean-optimized design again sacrifices the nominal
performance to obtain a better off-design performance. The mean-optimized design
incorporates more diagonal members to better support horizontal loads.

5.1.3. Distributed loading: higher-dimensional case. To demonstrate the
ability of the AAPG method to handle problems with a larger number of random
variables, we again consider the carrier plate problem with the distributed load of

the form (5.1) and a two-point correlation function Cg(x, y) = σ2
g e

− ||x−y||
l . However,

in this case, we consider a shorter correlation length of l = 2 and choose M = 52
to capture 99.9% of the energy (instead of l = 5, M = 4, and 99% of captured
energy in Section 5.1.2). Fig. 5.4 shows the mean-optimized design, which yields a
nominal and mean compliance of Jnom = 2.6 and µJ = 7.07, respectively; the nominal-
optimized design yields a nominal and mean compliance of Jnom = 1.9 and µJ = 37.8,
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Fig. 5.3. Carrier plate under moderate-dimensional loading uncertainties with M = 4 random
variables: Ωdet,opt (left) and Ωstoch,opt (right).

Fig. 5.4. Carrier plate under higher-dimensional loading uncertainties with M = 52 random
variables: mean-optimized design Ωstoch,opt.

respectively. (As the nominal load is the same as the moderate-dimensional case
considered in Section 5.1.2, the nominal-optimized design Ωdet,opt is the same as that
reported in Section 5.1.2; however, µJ for the nominal-optimized design is different
because the random load is different.) The evaluation of the robustness metric for this
higher-dimensional problem requires the solution of M = 52 linear systems, but this
can be performed efficiently as the systems share the same stiffness matrix. For our
current (sequential) implementation, the computational time for this M = 52 case is
≈ 2.2 times the computational time for the M = 4 case.

5.2. Uncertainties in material properties. We now consider TO under ma-
terial uncertainties. In all examples, we consider isotropic materials with random
Young’s modulus field; Poisson’s ratio is fixed to ν = 0.3. We assume there is no
body force (f ≡ 0) and that the traction force g is deterministic (ML = 0). We
minimize a weighted sum of the mean and standard deviation of the compliance (2.6)
subject to volume constraints, using an augmented Lagrangian method. We assume
the Dirichlet boundary ∂ΩD is fixed and that the Neumann boundary is partitioned
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Fig. 5.5. Bridge problem under material uncertainty: initial design (top left), optimal designs
Ωdet,opt (top right), Ωβ=0,opt (bottom left) and Ωβ=1,opt(bottom right).

into ∂ΩN,g, over which g ̸= 0 and is fixed (i.e., non-designable) and ∂ΩN,0, over which
g = 0 and is optimized.

Starting with the same initial shape, we generate two types of optimal designs:
Ωdet,opt, which optimizes the nominal compliance (i.e., for ξ = 0); and Ωstoch,opt,
which optimizes a weighted sum of the mean and standard deviation (2.8). For each
optimal design, we compute the nominal compliance Jnom (corresponding to ξ = 0),
the mean µJ , and a weighted sum of the mean and the standard deviation µJ + βσJ
for β > 0. The mean µJ and standard deviation σJ are estimated using a Monte
Carlo estimate with a sample size of 20,000.

5.2.1. One-dimensional material uncertainty. We first consider a bridge
problem shown in Fig. 5.5. The working domain is D = [0, 2] × [0, 1], the volume
fraction is Vreq/|D| = 0.25, and the deterministic load g = (0,−1)T is applied to the
middle of the bottom boundary. The spatially varying random Young’s modulus is
given by E(x, ξ) = E0(1 + 0.95x2ξ), where E0 = 1 is the nominal Young’s modulus,
and ξ ∼ U [−1, 1]. We consider three objective functions: (i) the nominal compliance
Jnom (ii) the mean compliance µJ (i.e. (2.8) with β = 0), and (iii) the sum of the
mean and standard deviation of the compliance µJ + σJ (i.e., (2.8) with β = 1).

Fig. 5.5 shows the three optimized designs associated with the three objective
functions. The three compliance objective functions, Jnom, µJ , and µJ + σJ , for each
optimized design are shown in Table 5.1. As expected, each optimized design performs
best for the associated optimized metric. The design optimized for µJ+σJ also yields
the best worst-case compliance.

5.2.2. Random-field material uncertainty: moderate-dimensional case.
We consider a half-wheel problem over a working domain D = [0, 2] × [0, 1.5] with a
point load at the midpoint of the bottom boundary and a random materials model
studied in [35]. The volume fraction Vreq/|D| is set to 0.3. The random Young’s modu-

lus field is given by E(x, ξ) = exp(c0(x)+c1(x)U(x, ξ)), where c0(x) = log
(

1
(1+Var(x))1/2

)
,
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Jnom µJ µJ + σJ maxξ J(ξ)
Jnom-optimized design 15.41 16.49 19.98 26.01
µJ -optimized design 15.49 16.38 19.89 25.49

µJ + σJ -optimized design 15.90 16.70 19.74 24.51
Table 5.1

Comparison of nominal (Jnom), robust (µJ and µJ + σJ ), and worst (maxξ J(ξ)) case compli-
ance values for bridge problem under material uncertainties.

Jnom µJ σJ
Jnom-optimized design 14.45 14.86 2.60
µJ -optimized design 14.47 14.69 2.57

µJ + 2σJ -optimized design 14.52 14.71 2.54
µJ + 10σJ -optimized design 14.80 15.08 2.50

Table 5.2
Comparison of nominal, mean, and standard deviation of compliance for various optimized

designs for the half-wheel problem under moderate-dimensional material uncertainties with M = 8
random variables.

c1(x) = (log(1 + Var(x)))1/2, Var(x) =
(
3.456x2 − 0.6856x

)2
. The zero-mean Gaus-

sian random field U(x, ξ) associated with the covariance kernel C(x, y) = e−
||x−y||2

l2

with the correlation length l = 8 is approximated using a KL expansion truncated
with M = 8 terms, which captures 99% of the energy. Note that c0(x) and c1(x)
controls the mean and variance of the log-normal random field.

We optimize the design for (i) the nominal compliance Jnom (associated with
ξ = 0) as well as (ii) the robustness metric µJ + βσJ for β ∈ {0, 2, 10} using the
first-order AAPG method. Fig. 5.6 shows the optimized structures. We observe that
the number of load paths increases with the standard deviation weighting β. This
provides structural redundancy, leading to less variation in the compliance when sub-
ject to material uncertainty, at the cost of nominal (and mean) compliance. Table 5.2
provides a quantitative comparison of the nominal compliance Jnom, the mean com-
pliance µJ , and the standard deviation σJ for the four designs. As expected, Jnom-
and µJ -optimized designs perform best in the respective metrics; µJ+10σJ -optimized
design, with the highest penalty β on the standard deviation, yields the smallest σJ .

5.2.3. Random-field material uncertainty: higher-dimensional case. To
demonstrate the ability of the AAPG method to handle problems with a larger num-
ber of random variables, we again consider the half-wheel problem with the same form
of a random Young’s modulus field. However, in this case, we shorten the correlation
length to l = 6 and choose M = 31-term KL expansion to capture 99.99% of the
energy. We optimize the design for (i) the nominal compliance Jnom (associated with
ξ = 0) as well as (ii) the robustness metric µJ + βσJ for β = 1 using the first-order
AAPG method. Fig. 5.7 shows the robust-optimized structure, with a nominal compli-
ance of 14.51 and a robust compliance, with β = 1, of 17.08. The nominal-optimized
design Ωdet,opt yields a nominal compliance of 14.45 and a robustness metric, with
β = 1, of 17.24. (The nominal optimized design Ωdet,opt is the same as that reported
in Section 5.2.2; however, the associated robustness metric is different because the
random material is different.) We recall that the computational cost of the first-order
AAPG method scales linearly with M (compared to other methods that scale less
favorably), which enables the solution of this higher-dimensional problem. For our
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Fig. 5.6. Half-wheel problem under moderate-dimensional material uncertainties with M = 8
random variables: initial design (top left), optimal designs Ωdet,opt (top right), Ωβ=0,opt (bottom
left) and Ωβ=10,opt (bottom right).

Fig. 5.7. Half-wheel problem under higher-dimensional material uncertainties with M = 31
random variables: robust-optimal design Ωβ=1,opt.

current (sequential) implementation, the computational time for this M = 31 case
is ≈ 2.3 times the computational time for the M = 8 case; the favorable sublinear
scaling is due to a fewer number of quadrature points required for higher modes with
smaller influences.

5.2.4. Assessment of the computational costs. In order to assess the com-
putational cost and accuracy of the AAPG method, we revisit the half-wheel problem
under material uncertainty withM = 8 considered in Section 5.2.2. We solve the prob-
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µJ σJ approximate cost (solves)
quasi-Monte Carlo 14.88275 2.58944 8192
first-order AAPG ℓ = 8 14.88136 2.55287 42
first-order AAPG ℓ = 5 14.87332 2.52687 28
first-order AAPG ℓ = 2 14.83000 2.37719 17

sparse PC ℓ = 2 14.87778 2.55282 161
sparse PC ℓ = 1 14.81387 2.26970 17

Table 5.3
The mean (µJ ) and standard deviation (σJ ) computed using the “reference” quasi-Monte Carlo

method, first-order AAPG, and PC.

lem using three methods: (i) a quasi-Monte Carlo method; (ii) a first-order AAPG
method; and (iii) PC with anisotropic sparse grid.

Our anisotropic sampling approach follows the method used in [35] based on an
adaptive anisotropic sparse grid collocation method from [39]. Namely, as the material
uncertainty is defined by a KL expansion, we assume the random variables associated
with the terms involving the larger eigenvalues are more important and adjust the
polynomial degrees accordingly. Specifically, we construct the anisotropic Smolyak
sparse grid as follows. Given a sparse grid level ℓ ∈ N+, we first introduce the

index set Xζ(ℓ,N) =
{
i = (i1, . . . , iN ) ∈ NN+ , i ≥ 1 :

∑N
n=1 (in − 1) ζn ≤ ℓζ

}
, where

ζ = (ζ1, ζ2, . . . , ζN ) is a set of weights for the different stochastic dimensions, and
ζ := min1≤n≤N ζn. Here, given a KL expansion with Gaussian random variables, we

choose ζn = 1
2
√
2
√
λn∥ϕn∥L∞(D)

, where {λn, ϕn(x)} is the eigenpair in the KL expansion.

We then set the PC degree associated with the j-th random variable to pξj = (ij −
1)ζj ≤ ℓζ. For consistency, we also use this approach to determine an appropriate PC
degree for each subproblem of the first-order AAPG approximation.

We compare the cost and accuracy of the first-order AAPG and the PC method on
a fixed design. Table 5.3 shows the mean and standard derivation computed using (a)
quasi-Monte Carlo with a sample size of 8192, which serves as the reference solution;
(b) first-order AAPG with the sparse grid levels ℓ ∈ {2, 5, 8}; and (c) the PC method
with the sparse grid levels ℓ ∈ {1, 2}. The cost estimate for the AAPG and sparse
PC methods are based on the assumption that the cost to solve a PC system scales
linearly with the number of terms in the PC expansion; e.g., the cost to solve a PC
system with Nξ terms is Nξ times the cost of a single deterministic solve. The results
show that, for the materials UQ problem with M = 8 random variables, the ℓ = 2
AAPG provides more accurate mean and standard deviation than the ℓ = 1 PC at
the same cost. Similarly, the ℓ = 8 AAPG provides more accurate mean and standard
derivation than the ℓ = 2 PC at ∼ 1/4 of the cost. Specifically, the ℓ = 8 AAPG
method achieves the relative mean error of ∼ 10−5 and the relative standard deviation
error of ∼ 10−2. The efficiency of the first-order AAPG method allows us to perform
robust TO on a single commodity desktop computer for this problem.

5.2.5. Sensitivity to the choice of anchor point. We finally assess the sen-
sitivity of the AAPG approximation to the choice of the anchor point ξa. In general,
finding the optimal anchor point is impractical due to high computational cost [4].
We hence compare two different choices of anchor points, which are practically com-
putable and we hope are effective: the anchor point ξa0 at the centroid of Γ, which
has been used throughout this work; an alternate anchor point ξa∗ that yields the
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solution close to the mean in the sense that

ξa∗ = argmin
i∈{1,...,M}

A(u(·, ξ(i))− ⟨u⟩Γ, u(·, ξ(i))− ⟨u⟩Γ), (5.2)

where {ξ(i)}Mi=1 ⊂ Γ is a set of M candidate points (chosen randomly) [34, 41, 45, 49].

For the same fixed design used in Section 5.2.4, we compute the mean and vari-
ance of the compliance for the L = 1, ℓ = 8 AAPG approximations associated with
anchor points ξa0 and ξa∗ found for M = 1000. As shown in Table 5.3, the reference
quasi-Monte Carlo method yields the mean and variance of 14.88275 and 2.58944,
respectively. For the anchor point ξa0, the mean and variance are 14.88136 and
2.55287, respectively. For the alternative anchor point ξa∗, the mean and variance are
14.88171 and 2.56115, respectively. The alternative anchor point ξa∗ yields a slightly
more accurate mean and variance than ξa0; however the difference is arguably negligi-
ble. In addition, in topology optimization, we would have to solve (5.2) to find ξa∗ for
each new geometry, which would render the approach computationally uncompetitive.
Hence, we have used the centroid anchor point ξa0 throughout this work.

6. Conclusion. In this paper, we presented an approach for robust structural
topology optimization, for mean- and variance-based robustness metrics of a linear
functional output in the presence of uncertainties in the loading and material prop-
erties. We employed the AAPG projection scheme for the governing linear elasticity
SPDEs to provide an efficient approximation of higher-dimensional problems. We
then developed formulations to efficiently evaluate the robustness metric and the as-
sociated shape derivative that are non-intrusive and semi-intrusive for loading and
materials uncertainty, respectively. We finally assessed the accuracy and computa-
tional efficiency of the proposed AAPG-based approach using a series of numerical
examples. Comparisons with gPC approaches show that the AAPG approach can
provide accuracy similar to gPC methods at significantly lower computational costs.
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Appendix A. Parametrization of material properties. Consider isotropic
materials whose elasticity properties are described by the Hooke’s law AX = 2µX +
λTr(X)I, for any X ∈ Rd×d. The Lamé coefficients satisfy the conditions µ > 0
and λ + 2µ/d > 0 and can be written as µ = E

2(1+ν) and λ = Eν
(1+ν)(1−2ν) , where

E is the Young’s modulus and ν is the Poisson ratio. We assume that the Young’s
modulus is discretized using a KL expansion [32] E(x, ξ) = E(x) +

∑M
i=1 ξiEi(x),

where (ξi)i are independent and identically distributed random variables. The spatial
modes are defined as Ei(x) = σE

√
λiϕi(x), where ϕi is the solution of the eigenprob-

lem
∫
Ω
CE(x, y)ϕi(y)dy = λiϕi(x), ||ϕi||L2(Ω) = 1 where CE denotes the two-point

correlation function used for modeling the Young’s modulus. By linearity of Lamé
coefficients in E, the KL expansion translates to the Hooke’s law as A(x, ξ)X :=

2µ(x)X + λ(x)Tr(X) +
∑M
i=1 ξi

(
2µi(x)X + λi(x)Tr(X)I

)
with λ(x) = νE(x)

(1+ν)(1−2ν) ,

µ(x) = E(x)
2(1+ν) , λi(x) =

νEi(x)
(1+ν)(1−2ν) and µi(x) =

Ei(x)
2(1+ν) .

Appendix B. Shape derivative of the variance for compliant problems.
We first consider the case of uncertainties arising from both material properties and
loading conditions; i.e., 1 ≤ML ≤M − 1.
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Proposition B.1. Under Assumptions 2, 3 and 5, the variance of the compliance
associated with the first-order AAPG approximation of the random elasticity problem
(2.2) is given by

σ2
J(u,Ω) ≃

M∑
j1=1

(
⟨J(ũj1 ,Ω, ·)2⟩Γj1

− ⟨J(ũj1 ,Ω, ·)⟩2Γj1

)
+ (1−M)2

ML∑
i=1

⟨ξ2i ⟩ΓiLi(u0,Ω)2

+2(1−M)

M∑
j1=1

(ML∑
i ̸=j1

⟨ξ2i ⟩Γi
Li(u0,Ω)⟨Li(ũj1 ,Ω)⟩Γj1

+ ⟨ξj1J(ũj1 ,Ω, ·)⟩Γj1
Lj1(u0,Ω)

)

+2

M∑
j1 ̸=k1

⟨ξj1J(ũj1 ,Ω, ·)⟩Γj1
⟨Lj1(ũk1 ,Ω)⟩Γk1

+

M∑
j1=1

M∑
k1=1

(
Dj1(ũ

j1 ,Ω)δj1,k1 + Ej1,k1(ũ
j1 , ũk1 ,Ω)(1− δj1,k1)

)
, (B.1)

where Dj1(ũ
j1 ,Ω) =

∑ML

i ̸=j1⟨ξ
2
i ⟩Γi

⟨Li(ũj1 ,Ω)2⟩Γj1
, and

Ej1,k1(ũ
j1 , ũk1 ,Ω) =

ML∑
i ̸=(j1,k1)

⟨ξ2i ⟩Γi⟨Li(ũj1 ,Ω)⟩Γj1
⟨Li(ũk1 ,Ω)⟩Γk1

+⟨ξj1Lk1(ũj1 ,Ω)⟩Γj1
⟨ξk1Lj1(ũk1 ,Ω)⟩Γk1

.

Proof. Under Assumption 5, Lo(u0,Ω) = J(u0,Ω) and L(ũj1 ,Ω)+ξj1Lj1(ũj1 ,Ω) =
J(ũj1 ,Ω, ξj1). Then it follows

J(û1,Ω, ξ) = (1−M)J(u0,Ω) +

M∑
j1=1

J(ũj1 ,Ω, ξj1)

+(1−M)

ML∑
i=1

ξiLi(u0,Ω) +
M∑
j1=1

ML∑
i ̸=j1

ξiLi(ũj1 ,Ω) (B.2)

and µJ(û
1,Ω) = (1−M)J(u0,Ω)+

∑M
j1=1⟨J(ũj1 ,Ω, ·)⟩Γj1

from which we deduce (B.1)

after reorganizing terms in σ2
J(u,Ω) = ⟨J(û1,Ω, ·)2⟩Γ − µJ(û

1,Ω)2.
Hence, estimating the shape derivative DΩ

(
σ2
J(û

1,Ω)
)
requires computing the

terms (DΩ

(
J(ũj1 ,Ω, ξ

(i)
j1

)
)
)j1=1,...,M and the shape derivatives of the output functions

(DΩ

(
Lj1(u0,Ω)

)
)j1=1,...,ML

and (DΩ

(
Lj1(ũk1(·, ξ(i)k1 ),Ω)

)
)k1=1,...,M,j1 ̸=k1 at the quadra-

ture points (ξ
(i)
k1

)i=1,...,NQ
, which requires the solution of ML + (M − 1)MLNQ deter-

ministic adjoint problems.
We next examine cases where the randomness arises exclusively from uncertainties

on the material properties or from the loading conditions. In such cases, we obtain
simpler and fully non-intrusive expressions for the shape sensitivities of σ2

J , without
adjoint solutions. As a reminder, the shape derivative of the mean compliance is fully
non-intrusive even in the case of mixed uncertainties (see Proposition 4.2).

B.1. Uncertainties in the material properties. We assume the load-
ing terms f and g are both deterministic; i.e., the randomness arise exclusively
from material uncertainties (ML = 0). Using a first-order AAPG approxima-
tion, the random compliance can be expanded as J(u,Ω, ξ) ≃ (1 − M)J(u0,Ω) +
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j1=1 J(ũ

j1 ,Ω, ξj1) which is a simplified version of (B.2). Consequently, it holds

σ2
J(u,Ω) ≃

∑M
j1=1

(
⟨J(ũj1 ,Ω, ·)2⟩j1 − ⟨J(ũj1 ,Ω, ·)⟩2j1

)
and

DΩ

(
σ2
J(u,Ω)

)
≃ 2

M∑
j1=1

(
⟨J(ũj1 ,Ω, ·)DΩ

(
J(ũj1 ,Ω, ·)

)
⟩j1

−⟨J(ũj1 ,Ω, ·)⟩j1⟨DΩ

(
J(ũj1 ,Ω, ·)

)
⟩j1

)
, (B.3)

which can be approximated using one-dimensional quadrature rules.

B.2. Uncertainties in the loading conditions. The randomness originates
here from uncertainties on the loading conditions only (ML =M). By linearity of the
operator in (2.2) and using Assumption 3, the random elasticity solution is given by

u(x, ξ) = u0(x) +
∑M
i=1 ξiu

i(x), where u0 (resp. ui) is the solution of a deterministic
elasticity problem with loading terms ϕ and ψ (resp. ϕi and ψi). In this setting, exact
and fully non-intrusive expressions for the shape derivatives of the statistical moments
of J are given by DΩ

(
µJ(u,Ω)

)
= DΩ

(
J(u0,Ω)

)
+

∑M
i=1⟨ξ2i ⟩Γi

DΩ

(
J(ui,Ω)

)
and

DΩ

(
σ2
J(u,Ω)

)
= 2

M∑
i=1

⟨ξ2i ⟩Γi

(
J(ui,Ω) + J(u0,Ω)− J(u0 − ui,Ω)

)
× DΩ

(
J(ui,Ω) + J(u0,Ω)− J(u0 − ui,Ω)

)
+ 2

M∑
i=1

⟨ξ4i ⟩ΓiJ(u
i,Ω)DΩ

(
J(ui,Ω)

)
− 2

M∑
i,j=1

⟨ξ2i ⟩Γi⟨ξ2j ⟩ΓjJ(u
i,Ω)DΩ

(
J(uj ,Ω)

)
,

(B.4)

using the fact that the random variables are centered.
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