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Higher-order discretizations have the potential to reduce the computational cost re-
quired to achieve a desired error level. In this study, we consider higher-order discretiza-
tions of the conservation equations suitable for unstructured, triangular grids. In par-
ticular, the methods studied include continuous (SUPG/GLS) and classical discontinuous
Galerkin (DG) finite element methods, the correction procedure via reconstruction (CPR)
formulations of the DG and spectral volume methods, and cell and vertex-centered finite
volume (FV) algorithms. This paper presents subsonic and supersonic, inviscid results for
a canonical set of aerodynamic applications. Error convergence and computational per-
formance of these discretizations are compared, and preliminary results indicate that the
methods perform relatively similarly. When singularities are present in the flow solutions
and uniformly refined meshes are used, all methods fail to achieve optimal convergence
rates, and the performance benefits of the higher-order discretizations are reduced; adap-
tive meshing improves the efficiency of the higher-order method and recovers optimal
convergence rates.

I. Introduction

The potential for improved computational efficiency is of great interest to the CFD community, and the
use of numerical methods based on higher-order discretizations is one potential solution. Like traditional
CFD techniques, there are numerous ways to formulate higher-order methods, each with advantages and
disadvantages. This paper highlights the preliminary results of a study comparing higher-order discretizations
for unstructured grids. The following discretizations are considered in the study: the Galerkin Least Squares
(GLS) method, the classical discontinuous Galerkin (DG) finite element method, a DG formulation using the
correction procedure via reconstruction (CPR-DG), a CPR formulation of the spectral volume (SV) method,
cell-centered finite volume method, and vertex-centered finite volume method with a median dual. Solutions
are approximated with polynomials of degree p = 1, 2, and 3 on identical families of meshes for a number
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of fundamental aerodynamic flows. For problems with singularities, both adapted and non-adapted meshes
are used to quantify the effect of solution irregularities on the error.

Various finite element discretizations can be derived from the weak form of the conservation laws by
choosing different solution and test function spaces. The GLS method1 belongs to a family of stabilized
continuous Galerkin methods, where solution and test basis functions consist of continuous polynomials
with local support. As in other finite element methods, the solution order is increased by simply using
higher-degree polynomials for the basis functions. To overcome the instability of the Galerkin formulation
for convection-dominated problems, the weak form is augmented by a stabilization term. Details on the
stabilization matrix for the GLS method used in this study can be found in the reference.2

Discontinuous Galerkin methods use polynomials with element-wise compact support to construct the
solution and test spaces. This results in solutions that are continuous within each element but discontinuous
across element interfaces. These discontinuities increase the number of degrees of freedom for DG schemes
relative to its continuous counterpart for the same solution order on a given mesh. However, the disconti-
nuities provide a natural means of stabilizing the convection operator by introducing upwinding through a
Riemann solver, e.g. Roe’s approximate Riemann solver.3 Since coupling between the elements are produced
only through inter-elemental fluxes, the method results is an element-wise nearest neighbor stencil.

Wang and Gao have extended the one-dimensional flux reconstruction method to a two-dimensional
correction procedure via reconstruction (CPR).4,5 CPR transforms the weighted residual formulation of the
conservation equation into a differential form. This new structure eliminates the need to calculate integrals
via numerical quadrature, potentially increasing computational efficiency. It produces a general system
that must be uniquely defined by a set of lifting coefficients. The lifting coefficients are a constant set of
numbers for linear triangular and tetrahedral elements, thus they can be analytically calculated and directly
loaded into the solver with minimal memory and computational overhead. By choosing the certain lifting
coefficients, the CPR formulations can recover a number of discretizations. The DG and SV discretizations
based on the CPR formulation are used in this study.

Both the cell-centered and vertex-centered finite volume methods identically apply the conservation law
to each control volume in the domain, but differ in how the control volumes are constructed. The cell-
centered finite volume method uses each cell as a control volume, while the vertex-centered finite volume
method uses a median dual. Higher-order solutions are generated by computing a least-squares fitting on
neighboring control volumes and introducing a flux limiter at the interfaces.6,7

Section II of the paper describes the procedure used to generate the adapted meshes for this study, the
importance of understanding the stability of a discretization and the ability of a given space to approximate
the solution when comparing different higher-order methods, and the cost metrics of interest in the analysis.
Section III presents results for the following flows:

A. Subsonic, inviscid flow over a Gaussian bump

B. Non-lifting, subsonic, inviscid flow over a NACA 0012 airfoil

C. Lifting, subsonic, inviscid flow over a NACA 0012 airfoil

D. Non-lifting, supersonic inviscid flow over a diamond airfoil

Although these flows are simpler than problems typically solved in the industry, they are useful for
comparing different discretizations. Future studies will extend this work to additional viscous and supersonic
problems.

II. Methodology

A. Adaptation

All adapted meshes in Section III are generated using an output-based error estimation and adaptation
strategy. The strategy is based on estimating the error in an output quantity of interest, such as lift or
drag, and refining the regions contributing to large errors. For brevity, we only provide an overview of these
techniques; a thorough review of the framework for aerodynamic applications is provided by Fidkowski and
Darmofal,8 and the particular scheme used in this work is described by Yano et al.9

The adaptation strategy iterates toward the dof-optimal mesh—the mesh that minimizes the output error
for a given degree of freedom. The error estimation is based on the dual-weighted residual (DWR) method of
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Becker and Rannacher,10,11 which provides elemental indicators that quantify the local contribution to the
output error. Based on the error estimate, the size of the elements are controlled to equidistribute the local
errors using a fixed-fraction marking strategy. The shape of elements are selected based on the behavior of
the local Mach number.12,13 Using the size and shape information, high-order anisotropic simplex meshes
are generated using the metric-conforming linear mesh generator BAMG14 and an elasticity-based mesh
curving technique.15 Meshes generated using the strategy provide: 1) the element size distribution suited
for computing the specified output, 2) strong element size grading toward singularities, 3) efficient resolution
of arbitrarily-oriented directional features such as shocks, wakes, and boundary layers, and 4) high-order
geometry information necessary for high-order methods.

B. Discretization Approximability and Stability

Different discretizations have varying ability to handle strongly graded meshes, in particular those that
arise from adaptive mesh refinements. The quality of the solution, and thus the error, is a function of the
approximability—the ability of a given space to represent the solution—and the stability of the discretization.
Ideally, a discretization should be stable in the sense that the discrete solution is close to the best solution
attainable for a given space. Mesh adaptation aims to improve the approximability of the space such that
the true solution can be well approximated using finite degrees of freedom. The error can be reduced by
improving the approximability through mesh refinement assuming the method remains stable; however, if
the stability of the method is compromised on strongly graded meshes, the method cannot benefit from
the improved approximability. A previous comparison of the stability of higher-order methods coupled with
mesh adaptation is included in the work of Venkatakrishnan.16

While all methods considered in this work are high-order accurate, they exhibit different stability prop-
erties. This, in turn, results in the methods having similar convergence rates, but different absolute error
levels, which may be of greater interest to a practitioner. The results of this study are inevitably affected by
the fact that all adaptive meshes are provided based on error estimates from the classical DG discretization.
Further study is necessary to characterize the impact of this bias.

C. Measuring Computational Cost

Computational cost is measured in terms of degrees of freedom and the number of non-zeros in the Jacobian
matrix. Since all problems in this study are two-dimensional, the element size, h, scales with 1/

√
dof , where

dof are the degrees of freedom defined by the solution order and number of elements. As a result, the slope
of error results plotted against 1/

√
dof illustrates the convergence rate with uniform mesh refinement.

Since all the schemes considered in this work use implicit time integration, solving the linear system at
each iteration is a significant fraction of the computational cost, especially for large systems. The number of
non-zero (NNZ) entries in the Jacobian matrix is indicative of the cost of solving the linear system. Assuming
the each node is surrounded by six elements, the NNZ per element per state squared for each discretization
can be approximated by the values in Table 1.

Table 1. Number of non-zero entries in the Jacobian matrix per element per state squared

p DG GLS CPR-DG CPR-SV FV cell FV vertex

1 36 3.5 27 27 19 19

2 144 23.0 90 90 19 39

3 400 76.5 220 220 31 39

Since the solvers used for this study are not production level codes, wall-clock time is not included in
this analysis.

III. Results

A. Subsonic, inviscid flow over a Gaussian bump (M∞ = 0.5)

The study begins by analyzing subsonic, inviscid flow over a Gaussian bump. The absence of viscosity,
subsonic conditions, and infinitely differentiable geometry provide a simple problem that allows for easy
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assessment of how these discretizations solve smooth flows.
The Gaussian bump geometry is defined by

y = He−a2x2

, (1)

where H = 0.0625 and a = 5. The problem is solved on a family of uniformly refined, structured meshes;
the coarsest mesh is shown in Figure 1. Nodes are equally spaced in the y-direction and logarithmically
graded towards the bump peak in the x-direction. The inflow (fixed stagnation pressure and stagnation
temperature) and outflow (fixed static pressure) conditions are consistent with a freestream Mach number
of M∞ = 0.5. The output of interest is the L2 entropy error normalized by the freestream entropy error and
the square root of the domain area:

serr ≡

√

√

√

√

√

∫

Ω

(

p/ργ
−p∞/ργ

∞

p∞/ργ

∞

)2

dV
∫

Ω
dV

, (2)

where ρ and ρ∞ are the density and freestream density, p and p∞ are the static pressure and freestream
static pressure, γ is the ratio of specific heats, and Ω is the computational domain.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

x

y

Figure 1. Gaussian bump coarse mesh (112 elements)

Figure 2a plots the variation of the L2 entropy error with respect 1/
√
dof , and Table 2 provides the

convergence rates for solution orders p = 1, 2, and 3, for each discretization. The rates are computed using
results from the two finest meshes; convergence rates fall between the values p+ 1/2 and p+ 1.

The horizontal dotted line at 10−4 in Figure 2a highlights two important differences between the solutions
obtained by lower- and higher-order methods. Firstly, the variation among methods is greater for lower-order
methods. The degrees of freedom necessary to obtain an entropy error level of 10−4 vary by an order of
magnitude for p = 1, while the spread is much smaller for p = 2 (a factor of 1.5) and p = 3 (a factor of
1.625). This suggests that solutions obtained from different higher-order discretizations are more similar
than those using lower-order approximations for smooth flows.

Secondly, the dotted line shows that for this smooth problem, fewer degrees of freedom are required for
higher-order methods at low error levels. For example, regardless of the discretization, approximately 103

degrees of freedom are necessary to achieve an L2 entropy error of 10−4 when using a solution order of p = 3,
while at least three times as many degrees of freedom are required to achieve the same order of accuracy
for p = 1. On the other hand, for error levels greater than 10−3, no benefit is obtained for any method by
increasing the solution order.
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Figure 2. Gaussian bump L2 entropy error

Table 2. Gaussian bump L2 entropy error convergence rates

p DG GLS CPR-DG CPR-SV FV cell FV vertex

1 2.264 2.176 2.202 1.821 2.110 2.466

2 3.146 2.673 2.853 2.702 2.993 2.980

3 4.169 3.634 3.643 3.515 3.620 4.267

The L2 entropy error is plotted against the NNZ in Figure 2b. A slight advantage of using finite volume
methods is seen for p = 1. For higher order, the GLS method has reduced NNZ compared to the other
methods. The collocation-based formulation of the CPR-DG method results in a cheaper Jacobian than the
more traditional DG method. However, because the classical DG method produces slightly lower error than
the CPR-DG method, the L2 entropy error relative to the cost of the Jacobian are comparable, regardless
of the solution order.

B. Non-lifting, subsonic, inviscid flow over a NACA 0012 airfoil (M∞ = 0.5)

Next we consider non-lifting, subsonic, inviscid flow over a NACA 0012 airfoil with a freestream Mach number
of M∞ = 0.5. The airfoil contour is closed by extending the upper and lower surfaces at the trailing edge
until they meet; the airfoil is then scaled to have unit chord. These conditions allow us to understand how
solution irregularities affect error convergence; the dominant singularity in this problem is geometry-induced
and located at the trailing edge.

The far field boundary is located 500 chords away from the leading edge in order to reduce the effect of
the boundary conditions on the solution. Restricting the problem to a finite domain and imposing freestream
condition along this boundary is not an exact representation of inviscid flow in an infinite domain, introducing
modelling error. Because the effect of the far field conditions is proportional to the inverse of the squared
distance from the airfoil to the far field boundary, increasing the domain size greatly reduces this influence.
Results show that the effect of having the far field boundary at 500 chords is insignificant, and the computed
drag accurately represents the drag error for the error levels considered. The numerical flux at the far field
boundary is computed using a Riemann solver, which combines the freestream conditions with the interior
state.

A family of five meshes was constructed using a meshing technique that produces a set of meshes with
similar refinement distributions as uniform refinement. Element distribution is prescribed by a function that
defines the element size everywhere in the domain based on the total number of elements. These meshes
will be referred to as non-adapted meshes. Since the degrees of freedom of finite volume methods depend
only on the number of elements, and not the approximation order, both finite volume schemes were run on
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two finer meshes in order to compare finite volume results with the other higher-order discretizations that
require more degrees of freedom on a given mesh.

To further investigate the ability of higher-order methods to capture this type of flow, adapted meshes
were also generated. A different mesh is generated for each combination of solution order and number of
elements. Figure 3 shows the non-adapted, p = 1 adapted, and p = 2 adapted meshes near the airfoil
(left) and at the trailing edge (right); all three meshes contain approximately 4800 elements. By design, the
non-adapted mesh refines the leading and trailing edges more than other regions. However, mesh refinement
at the trailing edge is more aggressive in the adapted meshes in order to better control the error near the
singularity. Results show that appropriately refining the mesh reduces the cost necessary to achieve a given
error level.
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(a) Non-adapted mesh (airfoil)
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Figure 3. NACA 0012 meshes for non-lifting conditions (≈ 4800 elements)
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Figure 4. Non-lifting, inviscid NACA 0012 drag coefficient error vs. element size

The output of interest is the drag coefficient of the airfoil; errors with respect to 1/
√
dof are plotted in

Figure 4 for both non-adapted (left) and adapted (right) meshes. If the problem were smooth, as for the
Gaussian bump, the output error convergence rates would be set by the solution order, specifically h2p+1.
However, since the trailing edge is inappropriately refined, the solution irregularity limits the asymptotic
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Figure 5. Non-lifting, inviscid NACA 0012 drag coefficient error vs. NNZ (p = 1, 2, 3)

convergence rate, and there is no benefit of using higher-order methods; for p = 2 and p = 3, no discretization
achieves the optimal convergence rate on non-adapted meshes.

Using the adapted meshes, nearly all discretizations achieve convergence rates of approximately h2p+1.
Unlike the results for the smooth Gaussian bump, the range of error levels for a given degree of freedom is
approximately one to two orders of magnitude. The non-adaptive and adaptive results produce similar error
values, but the degrees of freedom of the adapted meshes are lower than that of the non-adapted meshes
for a given error level. Although there is little consistency as to which method achieves the lowest error for
a given mesh and solution order, GLS is often a more competitive discretization in terms of accuracy per
degree of freedom.

Let us compare the error convergence results for DG and CPR-DG in the context of approximability and
stability. These two schemes have the same approximation spaces on a given mesh, thus the approximability
of the discretizations are identical. Comparing the results obtained on the uniformly refined and adaptive
meshes in Figure 4, we note that the difference in the output error between DG and CPR-DG is considerably
larger for the adapted meshes. This result suggests that the CPR-DG method is less stable than the classical
DG scheme on strongly graded meshes. In fact, the difference is largest for the p = 1 discretization, where
CPR-DG uses the fewest number of the collocation points and its difference to the quadrature-based DG
method is largest. For this particular problem, the quadrature-based formulations (DG and GLS) appear to
be more stable on the highly graded meshes, producing smaller errors than the collocation-based schemes
(CPR-DG and FV).

Figure 5 gives the non-adaptive and adaptive drag coefficient errors against the number of non-zeros in
the Jacobian. Regardless of the solution order or mesh construction, GLS is clearly superior in terms of
error per non-zero entry in the Jacobian.

C. Lifting, subsonic, inviscid flow over a NACA 0012 airfoil (M∞ = 0.5, α = 2◦)

This case looks at the ability to solve lifting, subsonic, inviscid flow over a NACA 0012 airfoil. The freestream
flow has a Mach number of M∞ = 0.5 and an angle of attack of α = 2◦. The effect of the boundary conditions
on the solution is more significant under lifting conditions, and the true drag value must be approximated
in order to compute the error; the drag obtained from the mesh with the highest degrees of freedom (a
combination of the number of elements and solution order) is used as the reference drag value separately for
each discretization.

The problem was solved on both non-adapted and adapted meshes. The non-adapted meshes are the
same non-adapted meshes for the non-lifting case, and new adapted meshes were generated for each solution
order and number of elements under lifting conditions. The non-adaptive (left) and adaptive (right) results
are shown in Figure 6. For the same reasons as under non-lifting conditions, little difference is seen between
the adaptive and non-adaptive results when a lower solution approximation, p = 1, is used. Adapted meshes
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(f) p=3, adapted

Figure 6. Lifting, inviscid NACA 0012 drag coefficient error vs. element size
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Figure 7. Lifting, inviscid NACA 0012 drag coefficient error error vs. NNZ (p = 1, 2, 3)

improve convergence rates and the accuracy per degree of freedom. Although discretizations that require
fewer degrees of freedom on a given mesh (GLS and finite volume methods) often result in higher error
levels, their efficiency is comparable with the other methods, as they have fewer degrees of freedom. The
large spread in error seen in the previous non-lifting case is again seen in these lifting results.

Figure 7 gives the non-adaptive and adaptive drag coefficient errors against the number of non-zeros in
the Jacobian. Higher-order finite volume methods have less expensive Jacobian matrices for the non-adapted
meshes, while GLS is significantly cheaper than most discretizations, regardless of the mesh construction
and solution orders.

D. Non-lifting, supersonic, inviscid flow over a diamond airfoil (M∞ = 2.0)

Finally, results are presented for non-lifting, supersonic, inviscid flow over a diamond airfoil with 5 percent
thickness and a freestream Mach number of M∞ = 2.

Using shock-expansion theory, the exact pressure drag on the airfoil can be computed and used to calculate
the drag error. Figures 8 and 9 give the drag error with respect to element size and NNZ respectively. It is
clear from these results that no method benefits from using a polynomial order greater than one. Although
asymptotic convergence is not yet reached for most supersonic diamond airfoil results, in general, Figure 8
shows how the presence of shocks limits the overall convergence rates to approximately 1 with respect to h.
Because the mesh is inappropriately refined near the shock, the flow features (shocks) are difficult to capture.
If the problem were solved on a mesh where anisotropic elements were aligned with the shock and highly
graded away from the shock, the flow features could be captured with increased efficiency. Adaptive results
for the supersonic diamond airfoil were unable to make it into this study; these results will be included in
future work.

IV. Conclusion

This paper compares the performance of higher-order methods for unstructured grids on a set of fun-
damental aerodynamic applications. The particular methods in the study include: Galerkin Least-Squares,
classical discontinuous Galerkin finite element, CPR formulations of the discontinuous Galerkin finite ele-
ment and spectral volume, cell-centered finite volume, and vertex-centered finite volume methods. These
results focus on the accuracy and efficiency of each method when solving subsonic and supersonic, inviscid
flows.

Flow over a Gaussian bump shows that all methods exhibit comparable levels of accuracy and obtain
optimal convergence rates with mesh refinement for smooth flows. Subsonic flow over a NACA 0012 airfoil
introduces a geometry-induced singularity at the trailing edge. When uniformly refined meshes are used for
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Figure 8. Non-lifting, supersonic, inviscid diamond airfoil drag coefficient error vs. element size

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1/sqrt(dof)

D
ra

g 
C

oe
ffi

ci
en

t E
rr

or

 

 

DG
CPR−DG
FV vertex
FV cell

Figure 9. Non-lifting, supersonic, inviscid diamond airfoil drag coefficient error error vs. NNZ (p = 1, 2, 3)
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a problem with solution irregularities, the error is dominant at the singularities, and convergence rates are
limited, especially for higher-order approximations. Adapted meshes were generated to reduce the error by
increasing mesh resolution near the singularity. In general, all higher-order methods were able to recover
optimal convergence rates using the adapted grids. It is likely that the large range in error between methods
that results from solving on adapted meshes are due to the strong grading near the trailing edge, which
reveals different stability properties of the discretizations.

There are a number of areas that will be addressed as this study continues. Firstly, a more complete
discussion of supersonic flow will be covered; supersonic flow over a diamond airfoil reiterated the idea that
irregularities in the flow limit the convergence rates when using uniformly refined meshes. Secondly, we will
test how well these methods discretize the Navier-Stokes equations by solving viscous flow over a flat plate
and a NACA 0012 airfoil. Future studies will also include a more detailed analysis of the role stability and
approximability on the error produced by different methods on strongly graded meshes. Because the adapted
meshes in this study are generated based on solutions and error estimates from the classical DG method,
it is important to understand how the different discretizations handle certain mesh characteristics that are
requested by one particular adaptive scheme.
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