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Abstract

An adaptive nonlinear synchronization control approach is developed for multiple spacecraft formation flying
with elliptical reference orbits. It can guarantee that both the tracking errors and the synchronization errors of
the relative positions converge to zero globally, even in the presence of uncertain parameters. The generalized
synchronization concept allows to design various synchronization errors so that different synchronization perfor-
mance can be obtained. Simulation results of a leader-follower spacecraft pair and the maneuvering of multiple
spacecraft in formation flying are presented to verify the effectiveness of the proposed control technique.

1 Introduction

NASA and the U.S. Air force have identified Multiple Spacecraft Formation Flying (MSFF) as an enabling technology

for future missions, which has led to a number of studies on MSFF, such as dynamics, control, and navigation. For

control aspect, a lot of controllers have been designed and applied to MSFF, for example LQR [1], decentralized

control [2], intelligent control [3], adaptive control [4, 5], coordination and synchronization control [6, 7].

In this paper, we apply the cross-coupling concept [8, 9] to the MSFF and propose an adaptive synchronization

control strategy for MSFF. This controller can guarantee the convergences of both the relative position tracking

errors and the position tracking synchronization errors, i.e. the relative position tracking errors converge to 0 at

the same rate. This approach can be used in the case where maneuvers of multiple spacecraft in formation are

1



needed to accelerate the maneuver process and reduce the response time. This control approach can also be applied

to the synchronous attitude rotation of multiple spacecraft about single/multiple given axes, which is useful in the

continuous observation of a planetary surface using cameras attached to a number of spacecraft [7].

2 Modeling of Spacecraft Formation Flying

The dynamics of spacecraft formation flying has been studied by many researchers. For the leader spacecraft runs

in an elliptical orbit, the relative motion between the leader and the follower spacecraft is governed by the following

nonlinear equation [4, 5]

mf q̈ + C(ω)q̇ + N(q, ω, ω̇, Rl, ul) + Fd = uf (1)

where mf is the mass of the follower spacecraft, the relative position vector q ∈ R
3, [x(t) y(t) z(t)]

T
, ω

and ω̇ are the orbit angular velocity and acceleration, Rl is the distance from the Earth to the leader space-

craft, uf ∈ R
3, [ufx ufy ufz]

T
and ul ∈ R

3, [ulx uly ulz]
T

are the control vectors for the follower and the

leader spacecraft, Fd ∈ R
3,[Fdx Fdy Fdz]

T is the constant disturbance difference vector, the Coriolis-like matrix

C(ω) ∈ R
3×3 and the nonlinear term N(q, ω, ω̇, Rl, ul) ∈ R

3 are

C(ω) = 2mfω




0 1 0
−1 0 0
0 0 0



 N(·) =




mfµK(x, y, z, Rl)x − mfω2x + mf ω̇y +
mf

ml

ulx

mfµ
[
K(x, y, z, Rl)(y + Rl) − R−2

l

]
− mfω2y − mf ω̇x +

mf

ml

uly

mfµK(x, y, z, Rl)z +
mf

ml

ulz


 (2)

with K(x, y, z, Rl),
[
x2 + (Rl + y)2 + z2

]− 3

2 .

Following a similar procedure as that in [4], the following linear parameterized equation for Eq. (1) can be obtained

mfp + C(ω)q̇ + N(q, ω, ω̇, Rl, ul) + Fd = W(p, q̇, q, ω, ω̇, Rl, ul)Θ = uf (3)

where p ∈ R
3,[px py pz]

T is a dummy variable, W(·) ∈ R
3×5 is the regressor matrix that is composed of known

functions, Θ ∈ R
4, [mf Fdx Fdy Fdz]

T
is the system’s constant parameter vector and Θ̂(t) is defined as its

estimate vector, and W(·) can be explicitly defined as follows:

W(·),




px + 2ωẏ +
[
µK(x, y, z, Rl) − ω2

]
x + ω̇y +

1

ml

ulx 1 0 0

py − 2ωẋ + µ
[
K(x, y, z, Rl)(y + Rl) − R−2

l

]
− ω̇x − ω2y +

1

ml

uly 0 1 0

pz + µK(x, y, z, Rl)z +
1

ml

ulz 0 0 1




(4)
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3 Adaptive Synchronization Controller

The implementation of formation flying depends on accurate relative position control. In this paper, we first consider a

leader-follower formation configuration to develop the controller. Then, we apply the controller to the case of multiple

spacecraft formation flying.

By defining qd(t) ∈ R
3 = [xd(t) yd(t) zd(t)]T as the desired relative position trajectory and assuming its first

two time derivatives are bounded, the position tracking error e(t) ∈ R
3 becomes

e(t),qd(t) − q(t) (5)

3.1 Generalized Synchronization Error

Synchronization error is used to identify the performance of the synchronization controller, i.e. how one trajectory

converges with respect to each other. There are various ways to choose the synchronization error. In this paper, we

propose the following synchronization error Ξ(t), which is a linear combination of position tracking error e(t)

Ξ(t) = Te(t) (6)

where Ξ,[ε1 ε2 · · · εn]T ∈ R
n×1, T ∈ R

n×n is a generalized synchronization transformation matrix.

By choosing different matrix T, we can form different synchronization errors. In our investigation, we choose the

following synchronization transformation matrix

T =




2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2




(7)

From Eqs. (6, 7) we know that, if e(t) → 0 and Ξ(t) → 0 can be realized at the same time, ei(t) (i = 1, 2, 3) will

go to zero at the same rate. Therefore the control objective becomes to achieve e(t) → 0 and Ξ(t) → 0 as t → ∞ in

the presence of unknown parameters.

3.2 Controller Development

For controller design, a coupled position error e∗(t),[e∗1 e∗2 · · · e∗n]T ∈ R
n, which contains both the position

tracking error e(t) and the synchronization error Ξ(t), is further introduced [9]

e∗(t) = e(t) + BTT

∫ t

0

Ξdτ (8)
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where B,diag[β β · · · β] is a positive coupling gain matrix, the corresponding coupled velocity error is ė∗(t) =

ė(t) + BTTΞ(t), and the detailed coupled position error is

e∗1(t) = e1(t) + β

∫ t

0

(2ε1(τ ) − ε2(τ ) − εn(τ ))dτ

e∗2(t) = e2(t) + β

∫ t

0

(2ε2(τ ) − ε3(τ ) − ε1(τ ))dτ

... (9)

e∗n(t) = en(t) + β

∫ t

0

(2εn(τ ) − εn−1(τ ) − ε1(τ ))dτ

It can be seen from Eq. (9) that the synchronization error εi(t) appears in e∗i (t) as 2εi(t) and −εi(t) in e∗i+1(t)

and e∗i+1(t). In this way, the coupled position errors are driven in opposite directions by εi(t), which contributes to

the elimination of the synchronization error εi(t).

The coupled filtered tracking error, r(t) ∈ R
n, is defined as [4, 9]

r(t) = ė∗(t) + Λe∗(t) (10)

with the constant, diagonal, positive-definite, control gain matrix Λ ∈ R
n×n.

Then the controller is designed to contain an adaptation on-line estimation law for unknown parameter Θ and

feedback terms

uf(t) = W(·)Θ̂(t) + Kr(t) + KsT
TΞ(t) (11)

where K ∈ R
n×n, Ks ∈ R

n×n are two constant, diagonal, positive-definite control gain matrices, and the estimated

parameter Θ̂(t) is subject to the following adaptation law

˙̂
Θ = ΓWT (·)r (12)

with the constant, diagonal, positive-definite, adaptation gain matrix Γ ∈ R
4×4.

Therefore, the closed-loop dynamics for the parameter estimation error vector Θ̃(t),Θ− Θ̂(t) is

˙̃
Θ = −ΓWT (·)r (13)

Moreover, the dummy variable p in Eq. (3) has the following expression

p = q̈d + Λė∗ + BTT Ξ̇ (14)

Theorem 1. The proposed adaptive synchronization controller Eqs. (10, 11, 12) guarantees the global asymptotic

convergences to zero of both the position tracking error e(t) and the position synchronization error Ξ(t), i.e.

lim
t→∞

e(t), Ξ(t) = 0 (15)
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Proof. Define the following positive definite Lyapunov function

V (r, Θ̃, Ξ),
1

2
rT mfr +

1

2
Θ̃T Γ−1Θ̃ +

1

2
ΞTKsΞ +

1

2

( ∫ t

0

TTΞdτ
)T

BΛKs

( ∫ t

0

TTΞdτ
)

(16)

and its derivative with respect to time t is

V̇ (r, Θ̃, Ξ) = rT mf ṙ + Θ̃TΓ−1 ˙̃
Θ + ΞTKsΞ̇ +

( ∫ t

0

TTΞdτ
)T

BΛKsT
TΞ (17)

After some mathematical manipulations, we can get

V̇ (r, Θ̃, Ξ) = −rTKr − (TTΞ)TBKs(T
TΞ) −ΞTΛKsΞ ≤ 0 (18)

Following the standard process as that in [10], all signals in the adaptive synchronization controller and system

can be proved to be bounded during the closed-loop operation.

From Eq. (18), we have r(t) ∈ L2, TTΞ(t) ∈ L2 and Ξ(t) ∈ L2. Hence, lim
t→∞

r(t) = 0 and lim
t→∞

Ξ(t) = 0 can be

obtained according to Corollary 1.1 in [10]. Furthermore, we can conclude that lim
t→∞

e∗(t), ė∗(t) = 0 using Lemma

1.6 in [10]. When Ξ(t) = 0, one can get e1(t) = e2(t) = · · · = en(t) = 0 by considering lim
t→∞

e∗(t) = 0 and the form

of the synchronization matrix in Eq. (7). Also from Eq. (18), we know that V̇ (·) = 0 only if e(t) = 0. Therefore,

lim
t→∞

e(t) = 0 can be concluded using LaSalle’s theorem [11]. Thus we finally reach

lim
t→∞

e(t), Ξ(t) = 0

4 Simulation Results

4.1 Leader-Follower Spacecraft Pair

A leader-follower formation flying configuration is considered in this section. The leader spacecraft runs in an

elliptical orbit with orbital elements: semi-major axis a = 42241 km, eccentricity e = 0.2 and mean motion n =

7.2722 × 10−5 rad/s. The masses of the leader and the follower spacecraft are ml = 1550 kg and mf = 410

kg. Fd = [−1.025 6.248 − 2.415]T × 10−5 N. The desired relative position trajectory is chosen to be xd(t) =

100 sin(4ωt)[1.0−exp(−0.05t3)] m, yd(t) = 100 cos(4ωt)[1.0−exp(−0.05t3)] m, zd(t) = 0 m, and the initial conditions

are q(0) = [30 0 − 200]T m, q̇(0) = [0 0 0]T m/s, Θ̂(0) = diag[0.8 0.7 0.7 0.8]Θ. The control and

adaptation gains are K = diag[0.13 0.12 0.09], Ks = diag[0.03 0.03 0.03], Λ = diag[0.04 0.04 0.04], Γ =

diag[900 28 28 9]×10−5, and B = diag[8.0 8.0 8.0]×10−4.

Figure 1 shows the simulation results of adaptive tracking control of formation flying without synchronization

strategy. Figure 2 gives the corresponding simulation results with synchronization strategy. For the purpose of
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comparison, the 2-norms of e(t) and Ξ(t) after 5 hours are calculated for all simulations and listed in Table 1. It

can be seen from the results that although the position tracking error vector e(t) → 0 can be achieved by using the

adaptive controller without synchronization strategy, the differences between the position tracking errors of all axes

are large, i.e. the synchronization errors are large. However, with the proposed adaptive synchronization controller,

the synchronization performance can be observably improved. Take X-axis as an example, the 2-norms of the position

tracking error and the synchronization error are 341.5 m and 1442.8 m, respectively, without synchronization strategy.

With synchronization strategy, the corresponding 2-norms have become 940.8 m and 150.7 m. The synchronization

error has been remarkably reduced. Moreover, Table 1 shows the control efforts needed for performing these control

strategies. The results show that more fuel consumption is needed for using synchronization controller. For example,

to maneuver and maintain the X-axis relative position in 30 hours with the adaptive controller, a fuel consumption

of 382.1 N·s is needed. However, 742.6 N·s is necessary for using the synchronization strategy.

4.2 Multiple Spacecraft in Formation

In this section, we assume four spacecraft are requested to maneuver from their initial relative positions Ri0 (i =

1, 2, 3, 4) to the final positions Rif along the following trajectory and to form a circular formation

Rd
i (t) = Ri0 + (Rif − Ri0) ·

[
1 − exp(Cit

3)
]

(19)

where C1 = −0.01, C2 = −0.02, C3 = −0.03, C4 = −0.04.

For this case, we can apply the synchronization strategy in two ways: internal and external. The internal synchro-

nization error, Ξ(t), is the synchronization error between different axes of one spacecraft. This is the same as that

in the leader-follower configuration. The external synchronization error E(t), however, denotes the synchronization

error between a given axis of all spacecraft. Therefore, the total coupled position error becomes

e∗(t) = e(t) + B
′
Tβ

∫ t

0

Ξ(τ )dτ + A
′
TETα

∫ t

0

E(τ )dτ (20)

where m denotes the spacecraft number, n is the number of axes of one spacecraft, e = [eT
1 eT

2 · · · eT
m]T , e∗ =

[e∗1
T e∗2

T · · · e∗m
T ]T , Ξ = [ΞT

1 ΞT
2 · · · ΞT

m]T , E = [ET
1 ET

2 · · · ET
n ]T ∈ R

mn×1, ei = [ei1 ei2 · · · ein]T ,

ei
∗ = [ei1

∗ ei2
∗ · · · ein

∗]T , Ξi = [εi1 εi2 · · · εin]T ∈ R
n×1, Ei = [ǫ1i ǫ2i · · · ǫmi]

T ∈ R
m×1 , B′ =

diag[BT
1 B

T
2 · · · B

T
m], A

′ = diag[AT
1 A

T
2 · · · A

T
m] ∈ R

mn×mn are two diagonal synchronization gain ma-

trices, Bi = [βi1 βi2 · · · βin]T , Ai = [αi1 αi2 · · · αin]T , Tβ = diag[Tβ1 Tβ2 · · · Tβm] ∈ R
mn×mn is

the internal synchronization transformation matrix with Tβi ∈ R
n×n, Tα = diag[Tα1 Tα2 · · · Tαn] ∈ R

mn×mn

6



is the external synchronization transformation matrix with Tαi ∈ R
m×m, and another transformation matrix TE is

TE =

{
1 for ((i − 1)n + j, (j − 1)m + i); i = 1, 2, · · · , m

0 for others; j = 1, 2, · · · , n

Figure 3 gives the simulation results using internal synchronization strategy only. Figure 4 gives the results with

both internal and external synchronization strategies. Table 2 shows the parameters and control gains for MSFF

simulation. Other gains are kept the same as those in the leader-follower configuration. It can be seen from these

simulation results that the synchronization errors of these four spacecraft about any given axis, X, Y and Z, have

been remarkably reduced by applying the external synchronization strategy.

5 Conclusions

This paper presents the development of an adaptive nonlinear synchronization controller for Multiple Spacecraft

Formation Flying (MSFF). With this controller, both the position tracking errors and the position synchronization

errors can be guaranteed to globally converge to zero even in the presence of uncertain parameters. Different from the

previous adaptive controllers for formation flying, this controller can achieve synchronized motion among multiple

axes of one spacecraft and/or any given axis of multiple spacecraft while realizing the convergences of position

tracking errors. Simulations are conducted on the leader-follower configuration and multiple spacecraft formation

flying to verify the effectiveness of the proposed controller. Future work under consideration includes: 1) adaptive

synchronization control for MSFF with time-varying parameters; 2) adaptive synchronization control for MSFF with

synchronization between translational (orbital) motion and attitude motion.
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Table 1 Performance evaluation wihtout/with synchronization strategy

Error/Control Without With
||ex||2 (m) 78.8 940.8
||ey||2 (m) 341.5 940.8
||ez||2 (m) 1540.1 887.3
||εx||2 (m) 419.2 88.1
||εy||2 (m) 1442.8 150.7
||εz||2 (m) 1576.7 160.3∫
|uxf | (N ·s) 382.1 742.6∫
|uyf | (N ·s) 498.9 527.9∫
|uzf | (N ·s) 115.7 424.0

Table 2 Parameters of multiple spacecraft in formation flying

Parameter Value (i = 1, 2, 3, 4)
mfi (kg) 410, 500, 600, 660
Fdi(×10−5) (N) [-1.025, 6.248, -2.415], [1.9106, -1.960, -1.517]

[-1.925, 4.850, -2.455], [-2.250, 6.850, -3.156]
Ri0 (m) [150, 10, 20], [-10, -130, -20]

[-140, 10, -20], [30, 160, 20]

Ṙi0 (m) [0, 0, 0]
Rif (m) [100, 0, 0], [0, -100, 0], [-100, 0, 0], [0, 100, 0]

Ṙif (m) [0, 0, 0]

Θ̂(0) 0.7Θ, 0.85Θ, 1.15Θ, 1.3Θ
Bi (×10−3) [8.0, 8.0, 8.0]
Ai (×10−3) [8.0, 8.0, 8.0]
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Fig. 1 Simulation results of adaptive tracking control of formation flying without synchronization strategy
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Fig. 2 Simulation results of adaptive tracking control of formation flying with synchronization strategy
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Fig. 3 Simulation results of adaptive control of multiple spacecraft in formation flying with only internal synchro-
nization strategy
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Fig. 4 Simulation results of adaptive control of multiple spacecraft in formation flying with both internal and
external synchronization strategy

10


