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The need for integrated systems development arises from complexity of a

system. This paper presents an interactive design and simulation platform

for flight vehicle systems development. Its “connect-and-play” capability

and adaptability enable “on-line” interaction between design and simulation

during the integrated development. As a case study, the implementation

of the proposed platform and an aircraft flight control system development

example are demonstrated on an experimental test bed including a real-

time systems simulator and a flight training device.

I. Introduction

The engineering systems development process typically has a waterfall view as if the

different development stages were performed chronologically and independent to each other,

when in reality they are extensively interrelated and interconnected. Moreover, a system

often consists of multiple subsystems and components that are also interacting or even have

conflicting characteristic features. Therefore, the entire development relies on iterative cy-

cles between design modifications and integration and testing verifications, until the final

design “converges”. Unfortunately, this also makes the design process time-consuming and

fragile: A slight change may require a completely new cycle of redesign. The need for an in-

tegrated development process arises from complexity, such as in many engineering intensive
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applications from automotive and aerospace industry. A research program entitled Soft-

ware Enabled Control (SEC) is initiated to integrate multi-modal, coordinated operation of

subsystems, and enable large-scale distribution of control.1 Under this program, an open

control platform (OCP) is being developed to integrate control technologies and resources.2, 3

The emerging field of multi-paradigm modeling addresses the directions of research in model

abstraction, transformation, multi-formalism modeling, and meta-modeling.4

One of the key requirements for an integrated development process is the “plug-and-play”

capability. It enables decoupled component (subsystem) design and integrated testing based

on the same model. Therefore, design decisions are gradually finalized through iterations

between component-level and system-level development. From complex control systems de-

velopment point of view,5 advocate the computer automated multi-paradigm modeling.6

propose an actor oriented control system design approach, where the design acknowledges

the variety of interaction models among components, and express these interaction styles

independently from the functionality of components. In,7 Müller-Glaser et al categorize the

existing strategies for integration into a number of approaches, including co-simulation, code

integration, model encapsulation, and model translation. The author of this paper extends to

propose a two-way integration strategy.8 Generally speaking, these strategies have their own

challenges, such as the synchronization of the simulation processes, auto code generation,

and so on.

In this paper, we present an interactive design and simulation platform for flight vehicle

systems development. The proposed platform adopts the co-simulation integration concept

and avoids code generation challenges faced by other integration approaches. It enables the

component design “plug-and-play” in a systems simulation environment, therefore, to bring

the “systems simulation” into the “control design” for integrated development. Moreover,

the smooth interactive design and simulation is achieved by an adaptive “connect-and-play”

capability. As a case study, this paper demonstrates an interactive development between an

aircraft pitch tracking control design and flight simulation on a generic jet flight training

device (FTD).

The rest of this paper is organized as follows. In Section 2, we describe the interactive

design and simulating platform in details. In Section 3, we present the experimental test bed

for the integrated flight vehicle systems development, followed by implementation (Section 4)

and an interactive flight control design and simulation example (Section 5). Finally, Section

6 offers the concluding remarks.
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II. Interactive Design and Simulation Platform

Modern aircraft include a variety of automatic control systems that aid the flight in nav-

igation, flight management, and augmenting the stability characteristics of the airplane.9

The aim of flight control systems (FCS) development is to find a solution, given the inputs

and desired outputs or tolerable errors, and to integrate design into a functional system

that performs its assigned tasks satisfactorily. The FCS development process is typically

broken down into several chronological stages that are extensively interrelated and inter-

connected,10 including the following critical ones: 1) Establishment of System Purpose and

Overall System Requirements; 2) Detailed Component Design and Selection; and 3) Integra-

tion, Testing, and Validation. Due to its complexity, a much more integrated design process

may be a natural choice of solution, where interactions among subsystems and components,

interactions at different levels of systems complexity, and interactions across different phases

can be accounted for, to reduce design iterations and become more robust and reliable. On

the one hand, the design of different control channels are independent activities, with cus-

tomized flight equations that capture the characteristic dynamic behavior associated with

that specific channel, and with simplified interacting component models to minimize the

coupling effects in control. On the other hand, the final designed controllers need to be

implemented and evaluated under a realistic simulation environment, consisting of high-

fidelity nonlinear aircraft systems models. The design is often tested by a series of systems

simulations, including those performed on a flight simulator. In this paper, we propose an

interactive design and simulation platform for flight vehicle systems development, especially

for flight control systems design and verification.

The integrated development process is illustrated in Figure 1. “Controller Design” refers

to iterations of design and design modifications, including multi-paradigm models. The

“systems simulation” part implies various levels of simulations as verification and validation

methods, including heterogeneous platforms.

There are several integration strategies.7 The popular approach in flight control systems

development follows the concept of code encapsulation in principle. As shown in Figure

2(a), the controller is designed and validated in isolation by desktop off-line simulation. The

controller algorithm codes are generated (in C code as one example). Then, encapsulated

as a monolithic submodel, it is integrated into the model of enclosing system for systems

validation and verification. Such process presents the part from “Controller Design” to

“Systems Simulation” of the integrated process in Figure 1. In our paper,8 we extended

the approach by further suggesting a two-way integration strategy, as shown in Figure 2(b).

This approach differs from the one-way code encapsulation approach (Figure 2(a)) in that

it includes the hardware-in-the-loop, heterogeneous simulations, and it enables “Systems
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Figure 1. Integrated (FCS) Development Process

Simulation” → “Controller Design” capability in the integrated process (Figure 1).

(a) one way code encapsulation (b) two way code encapsulation

Figure 2. Code-Generation Based Integration Approaches

The challenges of the code-generation based integration approaches include the level of

automation, compatibility and synchronization of the models and simulations. Since design

codes are used as the media, one needs to make sure that the generated codes can work on

heterogeneous simulation platforms, with proper interfaces. If so, it is expected that the

code generation can be processed automatically, to avoid tedious manual labour and errors.

These challenges are still open research topics. In this paper, instead, we adopt a different

integration strategy that is similar to co-simulation in principle. As shown in Figure 3, this

proposed interactive platform allows the component model to be simulated (plug-and-play)

in a different, system-level environment. Moreover, the platform is adaptable such that the

systems simulator can “connect” to the design model directly. We believe that this “connect-

and-play” capability is one significant improvement over the “plug-and-play” capability.

Since there is only one physical design model that takes residence at the component level,
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one can work with this model to make modifications and perform testing “on-line” without

the intermediate code-generation process. Obviously, the “connect-and-play” property and

adaptability make the design and simulation platform truly interactive and integrated in

development.

Under the proposed platform (Figure 4), the integrated flight control system results in

a multi-paradigm control framework. It represents a standard flight control system block

diagram with some special features.

• The blocks with a drop-down shadow represent “swapping” features. The guidance/command

block represents the flight path generation (guidance) or command inputs (for con-

troller design). The actuation and sensor blocks can be replaced by software modules

with different levels of fidelity, or even hardware equipments. The vehicle dynamics

module can also be replaced by different software modules for different simulation pur-

poses. A simplified linearized dynamics model is used for control system design, while

full-scale nonlinear flight equations will be used for high-fidelity simulations, such as

flight simulations.

• The blocks inside HIL can be replaced by hardware equipments for hardware-in-the-

loop (HIL) experimentation.

• The whole flight control system structure, when interacting with other flight systems,

can be integrated into a flight simulator for flight simulation, or pilot-in-the-loop (PIL)

simulation, to validate the design.

• In order to emulate the reality that different flight systems components are physi-

cally installed in different locations and their interactions are communicated through

mechanical links or electrical bus, the proposed framework allows for a distributed

modeling structure. Each block can be individually modeled, as one software module

in different processors. Therefore, it is possible to distribute different parts of a com-

puting task across individual processors operating at the same time, or “in parallel”,

and thus reduce the overall time to complete the task. Further, the distributed model-

ing structure makes it feasible to “swap” different modules of the same block, including

the hardware-in-the-loop simulation.

• Due to the distributed modeling and “swapping” feature, it is possible to replace

block modules developed under different platforms, and even to run simulations on

machines from different manufacturers. Therefore, the proposed framework supports

heterogeneous simulations.

• The framework not only allows for distributed modeling, but also enables real-time

simulation, where interactions and synchronizations among subsystems or components

act and react in clock time, as it happens in a real flight environment.
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Figure 3. Interactive Design and Simulation Platform

Figure 4. Multiparadigm FCS Block Diagram
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In order to demonstrate the proposed FCS framework and the interactive design and

simulation platform, an experimental test bed is set up. A real-time systems simulator and

a flight training device (RTSS-FTD) are equipped to provide a suitable proof-of-concept

facility, and illustrated by a pitch tracking control example of a generic jet airplane in its

cruise condition.

III. RTSS-FTD Test Bed

A. The Real-Time Systems Simulator (RTSS)

The real-time systems simulator (RTSS) facility is a networked cluster of high-end commer-

cial off the shelf (COTS) computers as shown in Figure 5(a). Its core computing features

include: three (3) host computers each has dual-Pentium-processors running Windows 2000

OS; four (4) real-time computers each has dual-Pentium-processors running QNX real-time

operating system; the real-time nodes are directly connected by 400Mbit/sec FireWire and

communicate with hosts over a dedicated 100 Mbit/s Ethernet network. Further, the sys-

tem consists of 108 multiple channels IO system for hardware-in-the-loop simulation. The

RTSS is also connected through a 1.25Gb/sec Giganet to a similar facility to share data

and sources, and it is connected to a 56-alpha-processor high power computer for off-line

computing and simulation, as well as data storage. This configuration provides the following

key capabilities to support our proposed framework:

• Flexibility. The models are distributed and executed over a network of high-end

computers interconnected with a fast real-time communication system; the data is real-

time acquired, logged, and stored; the model parameter values are allowed to modify at

runtime from a graphical interface; the interconnection with the commercial I/O board

is located inside one host computer, allowing for hardware-in-the-loop simulation.

• Development. Matlab/Simulinka provides a full integration with visual simulation

and C code generation; the model separation is automatic in several interconnected

subsystems; the automatic code generation and object code loading take into account

of all necessary processors and I/O synchronizations; a library of Simulink icons can

easily connect commercial I/O boards to the dynamic models; an application pro-

gramming interface (API) provides a user-friendly interface to allow for the control

of the simulator, the on-line parameter control and results display; it also generates

the source codes and typical I/O drivers and real-time modules allowing the user’s

addition, specialization, and customization.

awww.mathworks.com
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• Scalability. The system takes advantage of COTS hardware and components to fit

the application requirements, and to expand the computing power if necessary.

• Performance. Fire Wire 400-Mbits/second real-time serial bus offers a very low

latency for models with loop time as low as 200 ms. The scheduler overhead is less than

10 ms on a Pentium 233MHz processor. The minimum loop time on a distributed CPU

system is about 80 ms to account for data synchronization and TCP/IP communication

with the host computer. The use of QNX proves a 2 ms interrupt respond time and a

6 ms context switching time.

B. The Generic Jet Flight Training Device (G-FTD)

A separate flight training device (FTD) is also set up for flight simulation, as shown in Figure

5(b). This state-of-the-art research simulator simulates the operation of a generic jet air-

craft within the tolerances and conditions set out by the Transport Canada Authority. The

block diagram of Figure A is a general overview of the system layout. The major aircraft

subsystems include the automatic controls, the auxiliary power unit (APU), doors, the en-

gine indication and crew alerting system (EICAS), the electrical systems, the environmental

control systems, flight controls and flight instruments, the fuel, pneumatic and hydraulic

systems, the landing gear, the lighting, and the navigation and communications systems.

The design of the FTD is such that all the simulated functionality is concentrated in the

software model running on the host computer. This software model contains all the mathe-

matical and logic modeling to make the FTD behave likes the Generic Jet aircraft. All the

other computers and hardware are input/output (I/O) interfaces between the pilot/copilot

and the model software running on the host computer. The control loading is handled by

a PC on the network. It communicates with the host on the Ethernet switch. This com-

puter has digital wiring running to the primary flight controls in the cockpit. The computer

systems are networked through a 100Mbaud Ethernet switch. All the simulated aircraft

panels are intelligent; they each contain an embedded CPU which manages their local IO

and communicates with the host computer through a CAN bus network. The aircraft flight

and subsystem models are developed using C language. The visual database is developed

using the MultiGen paradigm. The control system is developed under the Matlab/Simulink

platform.

C. The RTSS-FTD Connection

In summary, the RTSS is able to simulate the aircraft systems and flight maneuvers. The

features of reconfigurability, modeling and customization of cockpit displays are critical to

our systems integration research. Matlab/Simulink is the software development platform.
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(a) (b)

Figure 5. RTSS-FTD Facilities

Figure 6. G-FTD Architecture
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The G-FTD presents a more complete and realistic aircraft model, which includes factors

not taken into account in the RTSS development. It offers a different perspective as the

flight mission may be observed from a cockpit with out-the-window visual and instrument

displays. The RTSS and FTD facilities are connected through Ethernet cables to form a

networked RTSS-FTD test bed for integrated modeling and simulation activities.

IV. Implementation of Interactive Platform

The FTD consist of a number of computers with highly specialized tasks. The core of

the system is formed by the Model computer, which is responsible for the overall aircraft

model, and the Control Loading computer. Three Visual Instruments Aid (VIA) computers

are in control of the avionics instrument panels. Three Visual computers are in charge of

evaluating the visual databases, each one creating an image of the current view outside the

cockpit. Those images undergo blending and geometric correction algorithms in the Univer-

sal Transverse Mercator (UTM) correction computer and are finally projected onto a single

curved screen. The simulator can be controlled from the Instructor Operation Station (IOS)

computer. The Model and Control Loading computers, subjected to hard real-time con-

straints, run the real time operating system QNX, while all other computers have Windows

2000 installed. This system architecture forms a separated local area network. The IOS

computer, however, has two network cards installed, allowing for the possibility to connect

the FTD to another network. Figure 7 gives an overview of this layout.

network

Curved ScreenUTM

Visual Slave 2 Computer

Visual Slave 1 Computer

Visual  Master Computer

VIA−3 Computer

VIA−2 Computer

VIA−1 Computer

Model Computer

Control Loading Computer

IOS Computer

Projector 2

Projector 1

Projector 3

Ethernet Switch

Figure 7. FTD network layout

In order to use the FTD as a test bed for interactive controller design and simulation, a

network connection is established for “connect-and-play”. The idea is to let an S-function for

Matlab/Simulink work as a network I/O-layer, which outputs the current state vector of the

FTD and takes control commands as inputs, as it is commonly done with hardware-in-the-
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loop approaches (Figures 8 and 9). Note that the control input can carry additional payload,

if necessary. In particular, the S-function allows for three values of wind components, which,

if given, will be used to overwrite the built-in wind model.

The communication link between a Matlab/Simulink environment and the FTD hard-

/software has to fulfill a number of requirements. Mainly, the interface should be

• easy to use no compilation should be required when switching between the

built-in and a remotely controlled autopilot

• robust the communication should not break down on minor network prob-

lems

• fast the packets should have low overhead to improve network speed

• capable of real time maximum response times should be guaranteed

• extensible it should be easy to integrate additional payload

• portable the packet format should not depend on operating system pecu-

liarities

It is then decided that only a TCP/IP connection offers the robustness needed for con-

troller operation. The packet format used for the network connection is simple, yet extensible.

A fixed-length integer specifying the total packet length is followed by an arbitrary number

of triples specifying an identifier, a value and a delimiter. The S-function is written in the

programming language C, and can be further customized at compile time using preprocessor

macros. This way, among other preferences, maximum allowable packet length and floating

point data formats can be adjusted.

In order to guarantee maximum response times of the network connection, network time-

outs have been implemented, also settable with C preprocessor macros. If a timeout occurred,

predefined hard coded default values are assumed. In this case, the user is provided with a

warning.

One of the demands for the connection is that it should be possible to switch between

the built-in and a remote controlled autopilot “on the fly”. This required the logic depicted

in Figure 10. In practice, a custom autopilot takes over as soon as a Simulink simulation

containing the network S-function is started, while in general, the built-in autopilot is in

place while the simulation is not running.

V. A Pitch Tracking Example

In this section, a pitch tracker for a jet airplane at its cruise condition is considered,

with elevator deflections being used as the control input. In early design stages for aircraft
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Matlab/Simulink S−function representing the FTD

(two network cards)

IOS

IOS acts as a Gateway for
the model computer

Router forIOS acts as a 
the FSC network, forwarding
selected incomming packets
to the model computer

Controls
(wind)

State

Model computer

Built−in autopilot commands are overwritten with
Runs simulator software "GenJet".

Controller, implemented in Matlab/Simulink, running on
any computer inside the FSC network.
Uses information about current state to calculate

received control commands.

appropriate control commands.

Figure 8. Network communication

Controller

S−function
connecting to FTD

statecontrols

Figure 9. Integration in Matlab/Simulink
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Former end of A/P output function

Have communication socket open?

Open listening socket

Have listening socket open?

Client tries to connect?

Open communication socket.
Close listening socket.

Send states out.
Receive controls.

Timeout or remote end
closed connection?

Overwrite A/P controls with
received commands.

Close communication socket.

Overwrite A/P controls with
received commands.

End of A/P output function

NoYes

NoYes

Yes No

Yes

No

Figure 10. Connection logic
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Figure 11. Off-line Simulink simulation, no actuator dynamics

0 10 20 30 40 50 60 70 80 90
−15

−10

−5

0

5

10

15
Pitch Angle

[d
eg

]

time [sec]
0 10 20 30 40 50 60 70 80 90

−20

−15

−10

−5

0

5

10

15

20

25
Elevator Deflection

[d
eg

]

time [sec]

δe
c

δe

Figure 12. FTD in the loop simulation, no actuator dynamics
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Figure 13. Off-line Simulink simulation, re-designed controller

0 10 20 30 40 50 60 70 80 90
−15

−10

−5

0

5

10

15
Pitch Angle

[d
eg

]

time [sec]
0 10 20 30 40 50 60 70 80 90

−8

−6

−4

−2

0

2

4

6

8
Elevator Deflection

[d
eg

]

time [sec]

δe
c

δe

Figure 14. FTD in the loop simulation, re-designed controller
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controllers, the influence of actuator dynamics is oftentimes neglected. In this case, however,

this turns out to be an unjustifiable simplification. Figure 11 shows the simulation results

of a LQR based pitch tracker, acting on a linear aircraft model with unmodeled actuator

dynamics. On the left side, the pitch angle (solid line) follows the trajectory (dashdot line)

nicely, while the control effort, depicted on the right, is rather small. When this controller

is tested with the FTD in the loop, it becomes unstable; the simulation shown in Figure 12

has to be aborted after 30 seconds. On the right side, the commanded elevator position

δec is plotted as a dashdot line against the current elevator position δe. This leads to the

assumption that the instability is caused by the time-delay introduced by actuator motion.

Therefore, the actuator was modeled as a first-order lag filter, and included in the linear

aircraft model during controller re-design. Simulation results with the linear model and the

FTD in the loop are shown in Figures 13 and 14. Although Figure 14 still shows a slight

overshoot, the improvement over Figure 12 is obvious.

In this example, we demonstrate that the flight control design and its verification achieve

the expectation by using our proposed interactive (control) design and (flight) simulation

platform. Design modifications or even redesigns are quick to perform since the simulation

directly “call” the component that still takes residence at the local control system develop-

ment environment (Matlab/Simulink). The design impact on overall system performance is

also easy to obtain by the interactive platform due to its “connect-and-play” capability. One

doesn’t need to go through the code generation and interfacing process.

VI. Conclusions

In this paper, an interactive design and simulation platform was presented. Its “connect-

and-play” capability and adaptability enabled “on-line” interaction between design and sim-

ulation during the integrated development. The implementation of the proposed platform

was addressed in details, and an aircraft flight control system development example was given

as a demonstration on an experimental RTSS-FTD test bed. Multi-paradigm models and

heterogeneous simulations were integrated through a TCP/IP network of I/O. This platform

is deemed to attract interests in development due to its simple strategy. The interaction and

integration can be achieved without “re-inventing” machine or architecture.
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