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Abstract

On the Transition Boundary Between Regular and Mach

Reflections From a Wedge in Inviscid and Polytropic Gases

Maciej K. Hryniewicki

Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering

Institute for Aerospace Studies

University of Toronto

2016

The transition boundary separating the region of regular reflection from the regions of single-,

transitional- and double-Mach reflections for the collision of a planar shock wave moving in

argon and atmospheric air and interacting with an inclined reflecting plane is studied by both

analytical methods and high-resolution computational-fluid-dynamic flow-field simulations. The

analytical solution for regular reflection and the corresponding solutions for the extreme-angle

(or detachment) and mechanical-equilibrium criteria of John von Neumann in 1945 are first

revisited and revised. The boundary between regular and Mach reflections is then determined

numerically by using a parallel anisotropic block-based adaptive mesh refinement finite-volume

scheme for the study of compressible flows associated with unsteady, oblique shock-reflection

processes in two spatial dimensions. This numerical transition boundary is computed by post-

processing closely stationed flow-field simulations, to determine the transition point when the

Mach stem of the Mach-reflection pattern just disappears and this pattern transcends into that

of regular reflection. The new transition boundary agrees well with von Neumann’s sonic and

extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but then

trends unexpectedly upward and above von Neumann’s sonic and extreme-angle boundaries by

a few degrees at stronger incident shock Mach numbers from 1.6 to 4.0. This upward trend for

the new numerical transition boundary at stronger incident shock Mach numbers is noticeable,

significant, occurs in a uniform and systematic manner and is shown to be well outside any

influences of numerical error. Furthermore, the numerically determined boundary is shown to

agree well with the very few available experimental data from past experiments designed to

reflect symmetrical oblique shock waves along a plane without a combined viscous and thermal

boundary layer.
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Chapter 1

Introduction

1.1 Regular and Mach Reflection

The interaction of a moving, constant-velocity, planar shock wave with a rigid, inclined wedge

in a shock tube filled with a gas produces four basic shock-reflection configurations or pat-

terns. These four patterns named regular reflection (RR), single Mach reflection (SMR), tran-

sitional Mach reflection (TMR) and double-Mach reflection (DMR) are illustrated in Fig. 1.1

by computational-fluid-dynamic images for shock-wave interactions with inclined wedges in air.

The type of reflection pattern depends on the strength or Mach number Mi of the incident

shock wave, the inclination angle θw of the wedge relative to the direction of an oncoming flow

field, and the properties of the gas (e.g. with or without high-temperature effects such as dis-

sociation, ionization and chemical reactions). The dependence of the type of reflection pattern

on the incident shock strength Mi and the wedge angle θw is illustrated in Fig. 1.2 for air (with

the specific heat ratio γ = 7/5 for a polytropic gas), by showing the boundaries between the

regions of RR, SMR, TMR and DMR, including the dual region of regular reflection and Mach

reflection (mainly TMR and DMR).

Regular reflection (RR) is composed of the planar incident shock along with the straight

and curved reflected shock which are joined at the wedge surface. As the shocks propagate this

two-shock confluence point moves along the wedge surface. This RR pattern occurs at large

wedge angles for strong shocks and also at small wedge angles for weak shocks. In single Mach

reflection (SMR) the confluence of the incident planar shock and curved reflected shock occurs

above the wedge, and a third shock called the Mach stem extends from the confluence point to

the wedge surface. Also, from the triple-shock confluence point a curved shear layer called the

slip stream trails the moving triple point and shocks. This SMR pattern occurs typically at

small wedge angles. Double Mach reflection (DMR) features two triple shock confluence points,

1
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Figure 1.1: Regular- and Mach-reflection flow-field patterns from the interaction of a moving planar

shock wave with a wedge in air. These four examples were produced by using the

computational-fluid-dynamics algorithm described in Chapter 5.

each with a slip stream, and the latter has a distinct kink (‘k’ in Fig. 1.1). In transitional

Mach reflection (TMR) the second triple point is barely visible and occurs as a slight kink in

the reflected shock, and a second slip stream is not observable. The slight kink in the TMR

patterns is more noticeable near the TMR-DMR boundary and disappears near the SMR-TMR

boundary (see Fig. 1.2). The DMR and TMR patterns occur at intermediate wedge angles.

Note that the labels ‘d’ and ‘k’ in Fig. 1.1 both indicate the locations on the reflected shock of

the front of the disturbance or signal that emanates from the wedge corner and surface.

The basic Mach-reflection (MR) pattern was discovered in double-spark separated discharges

made in 1878 by Ernst Mach [1], from experimental observations of smeared carbon soot pat-

terns on coated glass plates exposed to the flow field. The four patterns of regular, single-Mach,

transitional-Mach and double-Mach reflections were discovered in shock-tube experiments in

the 1940s and 1950s by Smith [2] and White [3]. Two-shock regular-reflection and three-shock

Mach-reflection configurations were studied theoretically in the 1940s by von Neumann [4–6],

Courant and Friedrichs [7] and Bleakney and Taub [8], and in the 1950s by Cabannes [9] and

Kawamura and Saito [10].
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Figure 1.2: Regions of regular and Mach reflection separated by analytical and experimental transition

boundaries in air.

The basic regions and boundaries between regular- and Mach-reflection patterns in air are

illustrated in Fig. 1.2, in a graph of the wedge angle θw versus the incident shock Mach number

Mi. As mentioned earlier, regular reflections occur typically at larger wedge angles and single-

Mach reflections occur typically at smaller wedge angles. The influence of the incident shock

strength is also important, as depicted in the figure. Double- and transitional-Mach reflections

occur in the mid to lower range of wedge angles and at large incident shock Mach numbers. The

two upper transition boundaries are based on the two criteria of mechanical equilibrium and

detachment, and they originate from von Neumann [5]. Von Neumann’s additional transition

boundary based on the sonic criterion is very close to the extreme-angle boundary (within half of

a degree). Note that the analytical solutions for the extreme-angle, mechanical-equilibrium and

sonic boundaries will be fully discussed in Chapter 3 of this thesis. These transition boundaries

establish three regions: one upper region for regular reflection only, one adjacent dual region

for either regular reflection or Mach reflection (TMR and DMR), and one lower region for only

Mach reflection (SMR, TMR and DMR). The two other boundaries that subdivide the region

of Mach reflection (MR) into the regions of SMR, TMR and DMR are the results of research

by Ben-Dor and Glass [11,12]. For additional information on shock waves and Mach reflection,

see the books by Glass and Sislian [13] and Ben-Dor [14]. Ben-Dor includes another weak

Mach-reflection configuration called von Neumann reflection (vNR), which resembles a SMR
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pattern with a band of compression waves near the triple point, a curved Mach stem, and a

barely noticeable slip stream. The region of vNR occurs at the left side of the SMR region,

but no boundary between vNR and SMR is available to illustrate the vNR region in Fig. 1.2.

The paper by Semenov, Berezkina and Krassovskaya [15] provides a more recent and extensive

classification of Mach-reflection configurations and their properties.

All of the transition boundaries shown in Fig. 1.2 between the various shock-reflection

patterns are the result of analytical methods using the theory of shock waves moving in a

polytropic gas (γ = 7/5), where the presence of a combined viscous and thermal boundary

layer on the wedge surface has been ignored. For shock-tube experiments using air as the

working gas and wedges with smoothly machined surfaces, a combined viscous and thermal

boundary layer is produced behind the incident and reflected shocks on the wedge surface.

The experimental data for air presented in Fig. 1.2 come from detailed investigations aimed

specifically at finding the transition boundary between regular and Mach reflections. Shad-

owgraph and schlieren photographs were taken of moving shocks interacting with wedges in

a shock tube for various wedge angles and incident shock Mach numbers near the boundary

between regular and Mach reflections, in order to locate the point at which the Mach-stem

length or triple-point angle with the wedge just diminishes to zero. Various incident and re-

flected shock angles, including that of the triple-shock confluence point, were measured from

these photographs and plotted as a means to determine the experimental transition boundary.

The dark experimental markers for air in Fig. 1.2 that lie below the extreme-angle boundary,

which were obtained with a combined viscous and thermal boundary layer on the wedge surface,

clearly show that the experimental transition boundary between regular and Mach reflection lies

a few degrees below the closely spaced sonic and extreme-angle boundaries. This persistence of

regular reflection into the region of Mach reflection occurs for all experimental cases of incident

shock Mach numbers ranging from 1.05 to 2.68. See the papers of relevance by Smith [2],

Bleakney and Taub [8], Kawamura and Saito [10], Henderson and Lozzi [16], Henderson and

Siegenthaler [17], Walker, Dewey and Scotten [18], Lock and Dewey [19] and Kobayashi, Adachi

and Suzuki [20] for details of their experimental methods and data-processing techniques.

The scarce, white-filled experimental markers for air in Fig. 1.2 that lie on the sonic and/or

extreme-angle boundaries were obtained without the influence of a combined viscous and ther-

mal boundary layer on the wedge surface. The experiments used either bifurcated shock tubes

or angled reflecting duct ends to ensure that no boundary or shear layer was produced along

the reflecting surface behind the moving shock waves. These data illustrate that the sonic and

extreme-angle boundaries are a good transition boundary for incident shock Mach numbers

Mi from 1.0 to 1.4. See the papers of Smith [21], Henderson and Lozzi [16, 22], Barbosa and

Skews [23] and Herron and Skews [24] for details of their experimental methods and data-

processing techniques. Note that the experimental data is also summarized in Chapter 8.
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All sets of data in Fig. 1.2 for the case of air illustrate the importance of the combined viscous

and thermal boundary layer on shifting the transition boundary between regular and Mach re-

flection. This shift occurs from above (inviscid, no boundary layer) to below (viscous, boundary

layer) the closely spaced sonic and extreme-angle boundaries. The resulting persistence of regu-

lar reflection for strong shock waves across von Neumann’s sonic and extreme-angle boundaries

and downward into the Mach-reflection region by a few degrees is normally attributed to the

presence of the boundary layer and on the wedge surface in the experiments and the lack thereof

in analytical predictions of the transition boundaries. Although this explanation is fairly well

accepted, additional supporting evidence is desirable to validate the theoretical transition cri-

teria for shock-wave reflections that are generally agreed upon, but not yet fully understood or

entirely proved. See the reviews and papers on shock-wave reflections by Bleakney and Taub [8],

Pack [25], Griffith [26], Bazhenova, Gvozdeva and Nettleton [27], Hornung [28], Ben-Dor [29],

Henderson, Takayama, Crutchfield and Itabashi [30] and Adachi, Sakurai and Kobayashi [31]

for more information.

1.2 Motivation and Objective

The goal of this doctoral research is to provide more detailed information and understanding

related to the transition boundary separating regular- and Mach-reflection patterns for un-

steady shock-wave interactions with rigid, inclined wedges in inviscid and polytropic gases. In

this study, the transition boundary is sought numerically by using an advanced computational-

fluid-dynamics code in conjunction with sophisticated post-processing techniques to accurately

determine local RR to MR transition points from a collection of closely stationed computational

flow fields at various shock strengths and wedge angles. The simulations greatly facilitate the

controlled exclusion of transport properties that are otherwise intrinsic to the flow field, yield-

ing a highly reproducible setting in which the numerical results are obtained. The transition

boundary is systematically examined and extended herein by means of shock waves striking

wedges without a combined viscous and thermal boundary layer on the wedge surface, in argon

and atmospheric air, over incident shock Mach numbers ranging from 1.0 to 4.0. The find-

ings presented in this thesis address the requirement for precise verification of the theoretical

transition criteria that are generally accepted in oblique shock-wave reflection studies.

1.3 Thesis Organization

The remaining portions of this thesis are organized as follows. In Chapter 2, the governing

continuum-fluid-dynamic equations for the conservation of mass, momentum and energy in

gaseous fluid flows are reviewed and the molecular transport properties for argon, nitrogen

and atmospheric air are provided. In Chapter 3, analytical solutions for regular reflection and
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the transition criteria for the extreme-angle and mechanical-equilibrium conditions of von Neu-

mann [5] are revisited and revised. In Chapter 4, internal structures of shock-front transitions

in argon, nitrogen and atmospheric air are examined based on solutions of the Navier-Stokes

equations of motion. This is followed in Chapter 5 by a description of the computational-

fluid-dynamics (CFD) solution method utilized extensively within this research. Numerical

verification and validation of this computational framework is reported in Chapter 6. Chap-

ter 7 describes the methodology of post-processing the CFD flow-field data to determine the

numerical transition between regular and Mach reflections. In Chapter 8, past experimental

data for the case of no combined viscous or thermal boundary on the wedge surface are col-

lected to verify the numerical transition boundary between regular and Mach reflections. Com-

puted solutions of oblique shock-wave reflections as well as novel results for the new numerical

transition boundary separating regular and Mach reflections in argon and atmospheric air are

presented in Chapter 9. Chapter 10 provides a summary of the observed findings and original

contributions established in this thesis, closing with a discussion regarding recommendations

for future research.



Chapter 2

Navier-Stokes Equations

The gas-dynamic equations governing two-dimensional, laminar, compressible, unsteady,

gaseous fluid flows are used herein to describe the unsteady shock-wave reflection processes

of interest. The generic, multi-dimensional, conservation form of these coupled, non-linear,

partial differential equations (PDEs), with neglected external body forces and source terms,

can be conveniently expressed using vector notation as

∂ρ

∂t
+ ~∇ · (ρ~u) = 0, (2.1)

∂

∂t
(ρ~u) + ~∇ ·

(

ρ~u
⊗

~u + p
~~I
)

= ~∇ · ~~τ , (2.2)

∂

∂t
(ρe) + ~∇ ·

[

ρ~u

(

e+
p

ρ

)]

= ~∇ · (~u · ~~τ )− ~∇ · ~q , (2.3)

as found in Hirsch [32]. These Navier-Stokes equations govern the conservation of mass and

momentum in a viscous, heat-conducting fluid flow, with the addition of a transport equation

for the conservation of energy. The inviscid terms are situated on the left-hand sides of these

equations, whereas the viscous terms are located on the right-hand sides. For inviscid flow

fields, the latter are omitted to yield the classical Euler equations. As the influence of the

unsteady transition to turbulence and turbulent flow on the shock reflection process, which

should occur far from the vicinity of the confluent shocks and slipstreams, is expected to be

minimal at most, the assumption of laminar flow is sufficient for the present research.

The inviscid terms on the left-hand sides of Eqs. (2.1) to (2.3) govern the gas-particle

transport of fluid-dynamic properties by means of the bulk motion of the flow field. These

terms consist of the following physical variables: t is the time, ρ is the fluid density, ~u is the

flow velocity vector, p is the fluid pressure and e = ε+~u2/2 is the specific total energy, where ε

is the specific internal energy and ~u2/2 is the specific kinetic energy. The symbol
⊗

in Eq. (2.2)

denotes the operator for the vector outer product whose result is a dyadic quantity. Moreover, ~∇

7
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is the vector differential operator and
~~I is the identity tensor. The gas is assumed to behave in

a polytropic manner, satisfying the ideal-gas equation of state p = ρRT , where R is the specific

gas constant and T is the fluid temperature. The specific internal energy and specific internal

enthalpy in this case take the forms ε = cvT and h = cpT , respectively, where cv = R/(γ − 1)

and cp = γR/(γ − 1) are the corresponding specific heats at constant volume and at constant

pressure, and γ = cp/cv is their ratio.

The molecular transport of macroscopic flow quantities due to fluid stresses and heat con-

duction is governed by the viscous terms on the right-hand sides of Eqs. (2.2) and (2.3). For

a Newtonian fluid, the viscous stress tensor, ~~τ , appearing in the conservation equations for

momentum and energy, is defined as

~~τ = 2η~~S + λv~∇ · ~u~~I , (2.4)

in which η is the dynamic viscosity,
~~S = 1

2 [
~∇~u + (~∇~u)⊤] is the strain rate tensor, where the

superscript ⊤ denotes the matrix transpose, and λv = ηv − 2
3η is the second coefficient of

viscosity, where ηv is the volume viscosity. Within the equation for the conservation of energy,

the heat flux vector, ~q , is defined as

~q = −κ~∇T, (2.5)

according to Fourier’s law of heat conduction, where κ is the thermal conductivity. In this

research, additional sources of heat transfer with the surrounding environment are ignored.

2.1 Species Properties of Atmospheric Air

Atmospheric air at the Earth’s surface is a mixture of gaseous species whose concentrations are

changing slowly with time. The concentrations and thermodynamic properties of atmospheric

air have been updated to the year 2016 in this research, based on earlier work for the U.S.

standard atmosphere in 1976 [33], by the study of Park, Kim, Lee, Esler, Davis and Wielgosz in

2004 [34] and by the work of Picard, Davis, Gläser and Fujii in 2007 [35]. The mixture species

of air, their molecular weights and related gas physical properties are listed in table 2.1. The

values of cp were calculated at a room temperature of 295 K by using the Chemical Equilibrium

with Applications (CEA) computer program developed at the National Aeronautics and Space

Administration (NASA) by McBride, Zehe and Gordon [36]. The values of γ then follow from

γ = cp/(cp −R). The updated values of the air species concentrations for 2016 are included in

the table as well. The main changes in these concentrations are the result of increased amounts

of carbon dioxide (CO2) released into the atmosphere in recent years and some concentration

changes for trace species like carbon monoxide (CO), ammonia (NH3) and sulfur dioxide (SO2).

The molecular weight of dry air is determined by using the mixture ruleMmix =
∑16

i=1XiMi

to obtain Mair = 28.9655 kg/mol, in which Xi is the mole fraction of species i. The specific gas
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constant for air follows as Rair = R/Mair = 287.048 J/kg·K, in which the universal gas constant

R = 8, 314.472 J/mol·K. The mixture specific heat is given by cpmix =
∑16

i=1Xicpi , yielding

cpair = 1004.59 J/kg at 295 K. The specific heat ratio of air follows as γair = cpair/ (cpair −Rair) =

1.4004, which is frequently rounded to the value 1.40. These properties of dry air are used in

this research, with the value of γ reduced slightly to 7/5 to conform to the specific case of a

diatomic gas.

The variations with temperature of the specific heat at constant pressure and the specific

heat ratio of dry air are illustrated in Fig. 2.1. The assumption of a polytropic gas in this

research with cp and γ both held constant is reasonable only for temperatures ranging from

80 K to about 500–700 K, or for incident shock Mach numbers less than about 2.5.

100 300 500 700 900
3

4

5

T (K)

cp/R

1.2

1.3

1.4
γ

Figure 2.1: Specific heat at constant pressure and specific heat ratio versus temperature for dry air.

2.2 Molecular Transport Properties of Atmospheric Air

The macroscopic transport of bulk fluid-dynamic quantities within the flow field involves the

interaction and collision of molecules and is represented herein using empirical transport coeffi-

cients. Within a viscous, heat-conducting gas, the molecular transport properties that correlate

the viscous stresses to the divergence of the velocity field and also the heat flux to the spatial

temperature gradient are the viscosity and the thermal conductivity, respectively. The viscous

stresses can be further decomposed into two components and their respective transport coeffi-

cients: for shear stresses and shear strain rates, the shear or dynamic viscosity, and for normal

(e.g. tensile or compressive) stresses and volumetric strain rates, the bulk, dilatational or vol-

ume viscosity. Descriptions outlining the techniques used in the evaluation of each of these

three transport coefficients are given in the following subsections and the calculated results for

the molecular transport properties of dry atmospheric air and its constituent components are

also provided.
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Table 2.1: Composition of dry atmospheric air at sea level updated to the year 2016.

i
gas chemical M concentration

cp/R γ
ǫ/kB σo µ Zrot

species formula (g/mol) (ppm) (K) (Å) (debye) (at 295 K)

1 nitrogen N2 28.0134 780850.463 3.50182 1.39971 91.5 3.681 5.85

2 oxygen O2 31.9988 209386.53 3.53455 1.39455 113.0 3.433 4.32

3 argon Ar 39.948 9332.0 2.5 1.66667 124.0 3.418

4 carbon dioxide CO2 44.0095 403.47 4.33638 1.29973 190.0 3.996 29899.80

5 neon Ne 20.1797 18.179 2.5 1.66667 35.7 2.789

6 helium He 4.002602 5.235 2.5 1.66667 10.22 2.576

7 methane CH4 16.04246 1.863 4.33475 1.29987 137.0 3.882 9.57

8 krypton Kr 83.798 1.139 2.5 1.66667 190.0 3.610

9 hydrogen H2 2.01588 0.532 3.57588 1.38822 33.3 2.968 209.69

10 nitrous oxide N2O 44.0128 0.329 4.52555 1.28364 220.0 3.879 0.167 4409.07

11 carbon monoxide CO 28.0101 0.119 3.50351 1.39944 110.0 3.590 0.1172 4.23

12 xenon Xe 131.293 0.087 2.5 1.66667 229.0 4.055

13 ozone O3 47.9982 0.042 4.69976 1.27029 249.0† 3.753† 0.53 4.91

14 nitrogen dioxide NO2 46.0055 0.009 4.42849 1.29167 377.7‡ 3.919‡ 0.316 4.93

15 ammonia NH3 17.03052 0.002 4.27317 1.30551 146.8 3.441 1.437 14.06

16 sulfur dioxide SO2 64.0638 0.001 4.76720 1.26545 252.0 4.290 1.611 5.13

† These parameters have been tuned to ensure agreement of computed dynamic viscosities with past experimental measurements.
‡ This is the mean value of the three similar triatomic molecules of CO2, SO2 and NOCl, as per the work of de Gouw and Lovejoy [37].



Chapter 2. Navier-Stokes Equations 11

2.2.1 Dynamic Viscosity and Thermal Conductivity

The dynamic viscosity η and thermal conductivity κ for the constituents of dry atmospheric

air are calculated according to the formulation adopted in the NASA CEA computer program

developed by McBride and Gordon [38,39]. For individual pure species, least squares curve fits

to empirical data for these two transport properties are of the form

ln (η)

ln (κ)

}

= A ln (T ) +
B

T
+
C

T 2
+D, (2.6)

where A, B, C and D are least-squares coefficients pertaining to a specific gas species. These

coefficients in Eq. (2.6) yield dynamic viscosity in units of micropoise (µP) and thermal conduc-

tivity in units of microwatts per centimeter-kelvin (µW/cm·K), as per the NASA CEA formu-

lation. Detailed tabulations of these coefficients versus temperature are found in the technical

memorandum by Svehla [40] for a wide variety of gases, including most of the constituents of

atmospheric air (including nitrogen and argon) that are listed in table 2.1.

For ozone (O3) in atmospheric air, the curve-fit coefficients A, B, C and D for use in

Eq. (2.6) are not available in the NASA CEA tabulations. Hence, the dynamic viscosity for

ozone is obtained by using the expression of Monchick and Mason [41] for polar gases, given by

η =
5

16

(

mkBT

π

)
1
2 fη

σ2o
〈

Ω(2,2)∗
〉 , (2.7)

whereas the thermal conductivity is obtained from the Prandtl number using a modified ex-

pression of Svehla [42], yielding

κ = η R

[

15

4
+ 1.32

(

cp
R

− c
5

2

)]

. (2.8)

in which η and cp/R in Eq. (2.8) are all temperature dependant and the correction factor

c = 0.72348. In Eq. (2.7), the molecular mass m = M/NA is equal to the species molar

mass, M , divided by Avogadro’s number, NA = 6.0221413 × 1023 mol−1, and the Boltzmann

constant is kB = 1.3806488× 10−23 J/K. The expression fη = 1+ 3
196

[

8〈E∗〉−7
]2

is a correction

term that accounts for higher kinetic-theory approximations. The term σo is the force constant

known as the collision diameter and denotes the location of balanced repulsive and attractive

interactions between two molecules. The values of the collision diameter σo stem from the book

by Hirschfelder, Curtiss and Bird [43] and they are tabulated for each constituent species of dry

atmospheric air in table 2.1. Lastly, the terms 〈E∗〉 and
〈

Ω(2,2)∗
〉

represent various temperature-

dependent collision integrals. See the paper by Monchick and Mason [41] for details.

The coefficients A, B, C and D that are obtained when the least squares curve fit given by

Eq. (2.6) is applied to the resulting calculations of Eqs. (2.7) and (2.8) for ozone are provided in

table 2.2. These coefficients have been calculated according to the temperature ranges that are
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provided in the NASA CEA thermochemical tables [40]. For T = 273 K, the computed transport

properties for ozone using this method yield η = 139.23 µP and κ = 178.888 µW/cm ·K, which

are in agreement with the experimental values reported by the Air Liquide Group [44].

The accuracy of these curve fits is tied closely to the standard deviation of the respective

dynamic viscosity or thermal conductivity data from the fitted curves. An estimate for the

root-mean-square error of the least squares curve fits from the fitted data is given as

σerror =

[

1

n

n
∑

i=1

{

ω(Ti)− ωi

}2

]1/2

, (2.9)

for which n is the number of (ωi, Ti) data pairs, where ω is an arbitrary solution variable that

represents either η or κ. When ω is replaced by η in Eq. (2.9), σerror is given in units of

micropoise (µP), whereas when ω is replaced by κ, the units of σerror are in microwatts per

centimeter-kelvin (µW/cm·K). The standard deviation measures are also listed in table 2.2.

Table 2.2: Curve-fit properties for the dynamic viscosity and thermal conductivity of ozone.

dynamic viscosity, η thermal conductivity, κ

200 K≤T ≤1000 K 1000 K≤T ≤5000 K 200 K≤T ≤1000 K 1000 K≤T ≤5000 K

A 0.56733495×100 0.63541323×100 0.43066226×100 −0.11765607×101

B −0.19278957×103 −0.38873636×102 −0.50818979×103 −0.90982917×104

C 0.10579958×105 −0.29476814×105 0.37944868×105 0.40646348×107

D 0.23179731×101 0.17336996×101 0.41233469×101 0.19801670×102

σerror 2.39720268×10−1 2.84130368×10−1 3.86459933×10−1 8.21715693×101

For multi-component gaseous systems, the calculation of mixture transport properties arises

from the kinetic theory of pure species and their binary molecular interactions. These approx-

imate mixture methods stem from the early work of Sutherland [45] for mixture dynamic

viscosity, ηmix, and Wassiljewa [46] for mixture thermal conductivity, κmix. Their forms of the

mixture equations are

ηmix =
n
∑

i=1

Xiηi

Xi +
n
∑

j=1
j 6=i

Xjφij

(2.10)

and

κmix =
n
∑

i=1

Xiκi

Xi +
n
∑

j=1
j 6=i

Xjψij

, (2.11)

corresponding to a mixture that is comprised of n individual pure species. In Eqs. (2.10) and

(2.11), the coefficients φij and ψij are the respective viscous and thermal interaction parameters
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between species pairs i and j in the gaseous mixture. These terms are given by

φij =
1

4

[

1 +

(

ηi
ηj

)
1
2
(

Mj

Mi

)
1
4

]2
(

2Mj

Mi +Mj

)
1
2

(2.12)

from Wilke [47] and

ψij = φij

[

1 +
2.41 (Mi −Mj) (Mi − 0.142Mj)

(Mi +Mj)
2

]

(2.13)

from Brokaw [48]. Note that the binary molecular interaction parameters are non-commutative,

i.e. φij 6= φji and ψij 6= ψji.

The coefficients A, B, C and D that are obtained when the least squares curve fit given by

Eq. (2.6) is applied to the resulting calculations of Eqs. (2.10) and (2.11) for atmospheric air

are provided in table 2.3. The standard deviations σerror of the respective dynamic viscosity or

Table 2.3: Curve-fit properties for the dynamic viscosity and thermal conductivity of atmospheric air.

dynamic viscosity, η thermal conductivity, κ

200 K≤T ≤1000 K 1000 K≤T ≤5000 K 200 K≤T ≤1000 K 1000 K≤T ≤5000 K

A 0.62157508×100 0.83881847×100 0.83610067×100 0.88927507×100

B −0.36699986×102 0.47164294×103 0.84093416×102 0.16819080×103

C −0.13890933×104 −0.14691171×106 −0.10888893×105 −0.26265034×105

D 0.18154734×101 −0.48010372×10−1 0.63750546×100 0.20146860×100

σerror 3.48664926×10−5 2.13536850×10−3 2.53044864×10−3 4.95296810×10−3

200 1000 2000 3000
0

250

500

1000

T (K)

η 

(µP)

Schlichting (1979)
Daugherty and Franzini (1977)
Holman (1976)
Poferl and Svehla (1974)
CRC Handbook (1974)
Kreith (1973)

(a) Dynamic viscosity, η.

200 1000 2000 3000
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500

1500
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κ  
.

..

(µ
W

/c
m

K
)

Tarzimanov, Salmanov and Teplofiz (1977)
Tsederberg and Ivanova (1971)
Geier and Schafer (1961)
Vines (1960)
Hilsenrath (1955)

(b) Thermal conductivity, κ.

Figure 2.2: Comparisons of least squares curve fits (solid lines) with experimental markers for

molecular transport properties versus temperature in dry air.
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thermal conductivity data from the fitted curves are also listed in the table. Comparisons of

the least squares curve fits for atmospheric air with experimental data [49–58] are illustrated

in Fig. 2.2. The agreement with low-temperature data is good, but the agreement with the

experimental data for temperatures greater than 1200 K is relatively poor. This behaviour

is similar to that of several other thermal transport correlations from NASA, which tend to

disagree with experimental measurements at elevated temperatures.

2.2.2 Volume Viscosity via Rotational Relaxation

The volume viscosity ηv is an indicative measure of the rotational motion of molecules in fluids

and gases, just as the shear viscosity is a representative measure of a collection of fluid parti-

cles’ stochastic translational motion. For fluids consisting purely of molecules with no inherent

rotational modes, such as all stable and inert monatomic gases, the volume viscosity does not

exist. Alternatively, for fluids comprised of polyatomic molecules with innate rotational modes,

the volume viscosity can generally be determined and often has a significant influence upon the

overall physical characteristics of the fluid, such as those associated with the attenuation and

absorption of sound waves propagating through an arbitrary medium. In particular, this molec-

ular transport property is important for compressible flow applications when density gradients

are relatively large, as in the study of shock waves and their internal structures occurring in

high-speed aerothermodynamic and high-temperature gas-dynamic flows. For further reading

into both its practical applications as well as the theoretical and experimental measurement

techniques used in the evaluation of volume viscosity, see the work of Karim and Rosenhead [59],

Prangsma, Alberga and Beenakker [60] and Graves and Argrow [61].

The underlying physical mechanisms governing volume viscosity can be described by con-

sidering the sudden isovolumetric compression of a polyatomic gas—as, for example, by a shock

wave—which consequently results in the departure of this gas from a state of local thermody-

namic equilibrium. In order to satisfy the equipartition of energy, the newly perturbed internal

modes of translation, rotation and vibration of this gas must be re-equilibrated through an

adequate number of molecular collisions. Assuming that the fluid temperatures are sufficiently

low, such that the characteristic temperatures for vibrational modes to become excited are not

reached, the transfer of energy between the remaining translational and rotational modes will

be governed by the rotational relaxation times of the gas molecules [62]. This is due to the

fact that the time scales corresponding to the relaxation of rotational modes are typically on

the same order of, but are slightly larger than, those required for the adjustment of transla-

tional modes [63,64]. Due to this reasoning, the dissipation of rotational energy is incorporated

directly into the dissipative terms in the continuum-fluid-dynamic equations through a multi-

plication of the volume viscosity with the divergence of the velocity field, in a manner analogous

to the dissipation of translational energy of an arbitrary fluid by means of its shear viscosity.
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In this research, explicit expressions for the volume viscosity of multi-component gaseous

mixtures and their constituent individual species have been adopted from the kinetic theory

of dilute polyatomic gases. This specific formulation has been selected as it is well-suited

for relatively low-cost implementation into numerical algorithms, in comparison to traditional

computational methods that require the solution of linear systems to evaluate this particular

molecular transport property at a given temperature (see the book by Ern and Giovangigli [65]).

The procedure utilized herein to compute the volume viscosity ηv for polyatomic gases and

their mixtures stems primarily from the research efforts of Ern and Giovangigli [66] for the

explicit description and incorporates the work of Brau and Jonkman [67], Cramer [68] and

Widom [69] for the evaluation of the rotational relaxation collision numbers of the individual

species. Related gas properties and physical data are also included from several references [43,

70–72] and are tabulated in table 2.1.

For the volume viscosity of an individual ith pure species, Ern and Giovangigli [66] state

that the analytical form of the species volume viscosity, ηv,i, is given explicitly by

ηv,i =
kBπ

4

croti Zrot,i

(cv,i)
2 ηi for i ∈ P. (2.14)

Here, the parameter P designates the set of species within a gaseous mixture that have at least

two different internal energy levels or modes (e.g. non-monatomic gases). For a gaseous mixture

that is composed of n individual pure species components, the mixture volume viscosity, ηv,mix,

also stems from the work of Ern and Giovangigli [66] and is evaluated explicitly as

ηv,mix =
kBπ

4c2v

∑

i∈P

Xic
rot
i Zrot,i

∑

j∈S

Xj/ηij
, (2.15)

where the parameter S = {1, 2, . . . , n} denotes the set of species indices.

In Eqs. (2.14) and (2.15), X is the species mole fraction. The constant volume specific heat

capacity, cv, is given according to

cv = ctrv + crot, (2.16)

in which ctrv = 3
2kB is the translational constant volume specific heat capacity and

crot =
∑

i∈S

Xic
rot
i (2.17)

is the rotational heat capacity, where croti = 0 for monatomic species, croti = kB for species whose

molecules have a linear geometric orientation and croti = 3
2kB otherwise.

The viscous interaction parameter, ηij , in Eq. (2.15) is given by the expression

ηij =
5

8

kBT

Ω
(2,2)
ij

, (2.18)
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where ηii = ηi simplifies to become the dynamic viscosity of the ith species, ηi, when the indices

i and j are equal. The collision integral, Ω
(2,2)
ij , in Eq. (2.18) is described in the book by

Chapman and Cowling [73] and involves the law of force between pairs of molecules. For polar

gases, the temperature-dependent values of Ω
(2,2)
ij are available in the paper by Monchick and

Mason [41]. For non-polar gases, Ω
(2,2)
ij is related to the temperature-dependent function W(2,2)

through the expression

Ω
(2,2)
ij = σ2o

(

2πkBT

m̃ij

)
1
2

W(2,2), (2.19)

where the reduced mass, m̃ij , is given by

m̃ij =
mimj

mi +mj
. (2.20)

The temperature-dependent values for W(2,2) in Eq. (2.19) are available in the paper by

Hirschfelder, Bird and Spotz [74] for non-polar gases.

The deviation of the behaviour of the polar gas molecules from that of a non-polar substance

is based upon the strength of the reduced dipole energy, represented using the parameter δ.

This measure is given by

δ =
µ2

2ǫoσ3o
, (2.21)

where µ is the dipole moment and ǫo is the force constant known as the characteristic energy

that denotes the depth of the potential well when the intermolecular potential is a minimum.

In this research, the strengths of the reduced dipoles for polar molecules are computed as the

maximum allowable values, i.e. δ = δmax. See the paper by Monchick and Mason [41] for

details. The values of the dipole moment µ and the characteristic energy ǫo used herein stem

from Hirschfelder, Curtiss and Bird [43] and Williams, Schwingel and Winning [70]. These are

tabulated for each polar constituent of dry atmospheric air in table 2.1.

Intrinsic to the evaluation of Eq. (2.15) to compute the volume viscosity of a gaseous mixture

is the calculation of the rotational relaxation collision number Zrot for each of the comprising

individual, polyatomic pure species. This parameter represents the number of intermolecular

collisions which are required to establish rotational equilibrium for a given gaseous species.

Within the context of this research for the concentrations of dry atmospheric air, the deter-

mination of Zrot for each constituent polyatomic species listed in table 2.1 is performed using

several different strategies, depending on the species under investigation, which are described

as follows.

For the linear diatomic molecules of nitrogen (N2) and oxygen (O2), Zrot is modelled directly

as a function of the fluid temperature via

Zrot = Z∞

[

1 +
π

3
2

2

√

Tv
T

+

(

2 +
π2

4

)

Tv
T

+ π
3
2

(

Tv
T

)
3
2

]−1

, (2.22)
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which stems from the work of Brau and Jonkman [67]. In Eq. (2.22) the parameter Z∞ is the

reference rotational relaxation collision number and Tv is the characteristic temperature of the

volume viscosity. In this research, Tv = 91.5 K for nitrogen and Tv = 113.0 K for oxygen (see

the book by Hirschfelder, Curtiss and Bird [43]). Using the data of Lordi and Mates [72], the

values for Z∞ and Zrot, with T = 295 K, are 28.65 and 5.85 for nitrogen and 24.86 and 4.32 for

oxygen, respectively. These values for Zrot at T = 295 K are included in table 2.1.

For molecules of carbon dioxide (CO2), methane (CH4), hydrogen (H2), nitrous oxide (N2O)

and carbon monoxide (CO), Zrot is explicitly inferred from the rearrangement of Eq. (2.14),

which reduces appreciably to yield

Zrot =
nz
π

ηv
η
, (2.23)

where the coefficient nz = 25 for species with a geometrically linear molecular structure and

nz = 24 otherwise. In Eq. (2.23), ηv is computed according to the temperature-dependent

empirical expressions for volume viscosity that are found in the work of Cramer [68] for each

of these five gases. Based on Cramer’s equations for ηv and this methodology, the values of

Zrot calculated via Eq. (2.23) for carbon dioxide, methane, hydrogen, nitrous oxide and carbon

monoxide, with T = 295 K, are 29899.80, 9.57, 209.69, 4409.07 and 4.23, respectively. These

values for Zrot at T = 295 K are included in table 2.1. The large Zrot values that have

been computed for carbon dioxide, hydrogen and nitrous oxide are the result of these gases

having large volume viscosities relative to their shear viscosities within this low to moderate

temperature range. See the paper by Cramer [68] for details.

For the polar molecules of ozone (O3), nitrogen dioxide (NO2), ammonia (NH3) and sul-

fur dioxide (SO2), Zrot is calculated according to the work of Widom [69] for the rotational

relaxation of rough spheres. In this form, Zrot for each species is calculated according to

Zrot =
3(1 + b)2

8b
, (2.24)

which is independent of temperature, where the parameter b is given by

b =
I

m̃d2o
. (2.25)

In Eq. (2.25), the reduced mass is m̃ = 1
2m, do is the force constant that represents the

intermolecular distance at zero net potential energy and I is the molecular moment of inertia,

given by

I =

na
∑

i=1

(

mad
2
a

)

i
, (2.26)

where ma and da represent the atomic mass and atomic diameter of each one of the na number

of atoms comprising the polyatomic molecule of interest. Data corresponding to molecular

geometries and related properties used in Eq. (2.26) have been sourced from the book by

Herzberg [71]. Based on Herzberg’s data and this methodology, the values of Zrot calculated



Chapter 2. Navier-Stokes Equations 18

via Eq. (2.24) for ozone, nitrogen dioxide, ammonia and sulfur dioxide are 4.91, 4.93, 14.06 and

5.13, respectively. These values for Zrot at T = 295 K are included in table 2.1.

When the least squares curve fit resembling Eq. (2.6), of the form

ln (ηv) = A ln (T ) +
B

T
+
C

T 2
+D, (2.27)

is applied to the resulting calculations of Eq. (2.15) for the volume viscosity of atmospheric air,

the coefficients A, B, C and D that result are provided in table 2.4. Equation (2.27) yields

volume viscosity in units of micropoise (µP). The standard deviation σerror of the volume

viscosity data from the fitted curve, computed using Eq. (2.9) with ω replaced by ηv, is also

listed in table 2.4 and is in units of micropoise (µP). The results of the least squares curve fit

for the volume viscosity of atmospheric air is illustrated in Fig. 2.3. The ratio of volume to

dynamic viscosities ηv/η is also shown in the figure. The large rise in ηv/η at low temperatures

occurs because the dynamic viscosity decreases rapidly within this temperature range.

Table 2.4: Curve-fit properties for the volume viscosity of atmospheric air.

volume viscosity, ηv

200 K≤T ≤1000 K 1000 K≤ T ≤ 5000 K

A 0.14768577×101 0.88038374×100

B 0.40000756×103 −0.27805256×103

C 0.14840753×105 0.10238810×106

D −0.41488499×101 0.56084032×100

σerror 3.02270240×100 3.00004581×10−1

200 1000 2000 3000 5000
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1000

2000
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ηv
(µP)

1.5

2
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Figure 2.3: Least squares curve fit for volume viscosity versus temperature in dry air.
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Analytical Solutions

Von Neumann [5, 6] was the first to derive the complete solution for regular reflection and

propose several possible transition boundaries separating basic regular- and Mach-reflection

patterns. These transition boundaries include the extreme-angle or detachment boundary, the

mechanical-equilibrium boundary and the sonic boundary, each of which are shown in Fig. 3.1

for the case of air. The work of von Neumann was later studied by Henderson [75], who

provided long and cumbersome analytical expressions for these transition boundaries and their

characteristics (e.g. minima, maxima and cross-over locations). In this chapter, the analytical
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SMR-TMR boundary

sonic
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Figure 3.1: Regions of regular and Mach reflection separated by analytical transition boundaries in air.
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solution for regular reflection and corresponding solutions for the transition boundaries of von

Neumann [5] are revisited and revised into shorter and simpler forms for convenient usage.

3.1 Solution for Regular Reflection

Consider a moving planar shock wave interacting with an inclined wedge with a known angle

θw, as illustrated in Fig. 3.2. The incident shock (Si) moves into a quiescent fluid (gas or liquid)

in region (1) with known pre-shock flow properties (e.g. pressure p1, density ρ1, sound speed

a1, temperature T1, and flow velocity u1 = 0 m/s). Let the strength of this incident shock be

specified by its speed Vi or Mach number Mi = Vi/a1. Based on the given value of Mi, and

knowledge of the fluid properties and its equation of state, all of the flow properties in region

(2) can be determined (i.e. p2, ρ2, a2, T2, u2 = u1+∆ui, in which ∆ui is the flow speed induced

by the incident shock). If the reflected shock Mach number Mr and its angle θr with the wedge

surface were also known, then the knowledge of the fluid properties and its equation of state

could be used to subsequently determine all of the flow properties in region (3) (i.e. p3, ρ3, a3,

T3, u3).

For regular reflection to occur, the reflected shock (Sr) must remain attached to the incident

shock (Si) at the wedge surface. Hence, the speed Vi/ sin(θi) = Vi/ cos(θw) of the incident shock

along the wedge surface must be matched to the speed Vr of the reflected shock up the wedge.

This requirement yields

Vr = Vi
sin (θr)

sin (θi)
+ ∆ui cos (θi + θr) , (3.1)

in which the second term on the right side of the equation results from the interaction of the

reflected shock with the flow field in region (2). The component of the induced flow (u2 =

u1 +∆ui = ∆ui) by the incident shock in region (2) that is directed normal to but toward the

(1)

(2)

(3)

θi

θr

θw

incident shock  Si

reflected shock  Sr

corner
disturbance   

centerline

wedge

θi = 90° – θw
sin(θi) = cos(θw)

∆u i

∆uru3

Figure 3.2: Regular-reflection pattern showing moving shocks, flow-field regions and various shock and

wedge angles.
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wedge surface is given by ∆ui cos (θi). This component must be countered by the component of

the induced flow from the reflected shock that is normal to but away from the wedge surface,

so that no flow enters the nonporous wedge surface. This requirement yields

∆ui cos (θi) = ∆ur cos (θr) . (3.2)

The flow along the wedge surface in region (3) can be determined from

u3 = ∆ui sin (θi) + ∆ur sin (θr) , (3.3)

by considering the components of both shock-induced flows behind the reflected shock in the

direction parallel to the wedge surface.

Equations (3.1) to (3.3) apply to arbitrary gases or fluids, and the physical properties of

a specific fluid enter the problem only through the shock-jump conditions. In the case of a

polytropic gas, the conventional Rankine-Hugoniot equations (see the book by Thompson [76])

for the incident shock are summarized as

p2
p1

= 1 +
2γ

γ + 1

(

M2
i − 1

)

, (3.4)

ρ2
ρ1

=
(γ + 1)M2

i

2 + (γ − 1)M2
i

, (3.5)

a22
a21

=
T2
T1

=
p2/p1
ρ2/ρ1

, (3.6)

∆ui
a1

=
2

γ + 1

M2
i − 1

Mi
, (3.7)

in which γ is the specific heat ratio. Similar equations apply to the reflected shock, with

appropriate subscript changes (i.e. 2 → 3, 1 → 2, i → r).

Several solutions for regular reflection for the three cases of polytropic air, liquid water, and

equilibrium air are illustrated by the three graphs collected in Fig. 3.3. For the first case of

polytropic air, the reflected shock angle θr is varied from 0◦ to 180◦−θi, and the reflected shock

speed Vr is then calculated by means of Eq. (3.1) for the specified incident shock Mach number

Mi = 2, which also yields the value of ∆ui from using Eq. (3.7). The calculations are done

three times for wedge angles θw = 70, 50.59, and 40◦, or shock angles θi = 90◦−θw = 20, 39.41,

and 50◦, giving the three curves shown in the top graph of Fig. 3.3. The value of Vr releases

the value of ∆ur by means of Eq. (3.7) with appropriate subscripts. An error is constructed

from Eq. (3.2) as

E(θr) = 1− ∆ur cos (θr)

∆ui cos (θi)
. (3.8)

When this error equals zero, a solution for regular reflection occurs. For the case of polytropic

air with the incident shock angle θi = 20◦, the weak reflected shock solution (well known from

oblique shock-reflection theory) with the values of Vr and θr corresponds to location (a) in the
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Figure 3.3: Solutions for shock-wave reflections from a wedge in polytropic air, liquid water and

equilibrium air.

figure, the strong reflected shock solution corresponds to location (b), and an aphysical solution

occurs at location (c). For the shock angle θi = 39.41◦, the solutions (a) and (b) merge and

yield the same values for Vr and θr, which corresponds to von Neumann’s extreme angle at

which regular reflection switches to Mach reflection. For the incident shock angle θi = 50◦,

the weak and strong shock solutions are imaginary and aphysical, and regular reflection cannot

occur, replaced instead by Mach reflection.

The three regular-reflection solutions for liquid water shown in the middle graph of Fig. 3.3

feature curves of similar shape to those for polytropic air, but the numerical values differ

substantially. These solutions were obtained by using a simplified version for the shock Hugoniot

and isentrope from Murnaghan [77], also discussed in the book by Poirier [78], taking the revised

form of

p2 = p1 +
ρ1a

2
1

n

[(

ρ2
ρ1

)n

− 1

]

. (3.9)

The other shock-jump relationships

a2 =
∂p2
∂ρ2

= a1

(

ρ2
ρ1

)(n−1)/2

, (3.10)

M2
i =

1

a22

ρ2
ρ1

p2 − p1
ρ2 − ρ1

=
1

n

ρ2/ρ1
ρ2/ρ1 − 1

[(

ρ2
ρ1

)n

− 1

]

, (3.11)

∆u2i =

[

ρ2 − ρ1
ρ2

Vi

]2

=
a21
n

ρ2/ρ1 − 1

ρ2/ρ1

[(

ρ2
ρ1

)n

− 1

]

, (3.12)
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follow for the sound speed, incident shock Mach number and induced flow by the shock. The nor-

mal properties of liquid water at room pressure and temperature are also used. Equations (3.9)

to (3.12) also apply to the reflected shock wave, with appropriate subscript changes.

The three regular-reflection solutions for equilibrium air shown in the bottom graph of

Fig. 3.3 were computed by using the NASA-CEA software from Gordon and McBride [38,39] to

provide the shock-jump conditions for Eqs. (3.1) and (3.2). This software was used to include

the effects of vibration, dissociation, electrical excitation and ionization of molecules and atoms

in air.

A simple analytical solution for regular reflection can be derived for the case of the polytropic

gas. The reflected shock angle θr is eliminated first from Eqs. (3.1) and (3.2). For this solution,

the reflected shock Mach number takes the form of a cubic polynomial (e.g. in V 2
r ). However,

the aphysical solution given by Vr − Vi + ∆ui = 0 or p3 − p1 = 0 can be factored out so that

the solution for the reflected shock speed Vr reduces to a quadratic polynomial in terms of V 2
r .

The derivation is complicated and tedious. The quadratic polynomial, its coefficients, and the

solution for the square of the reflected shock Mach numberM2
r = V 2

r /a
2
2, are given succinctly as

M4
r − 2 bM2

r + c2 = 0 , (3.13)

where

b = 1 +
1 + γd2 cos2(θw)

2− (3− γ) d− (γ − 1) d2
tan2(θw) , (3.14)

c =
1− d cos2(θw)

(1− d) cos (θw)
, (3.15)

d = 1− ρ1
ρ2

=
2

γ + 1

M2
i − 1

M2
i

=
∆ui
Vi

, (3.16)

and

M2
r = b ∓

√

b2 − c2 , (3.17)

p3 = p2

[

1 +
2γ

γ + 1

(

M2
r − 1

)

]

, (3.18)

in terms of the input specification of incident shock Mach number Mi and wedge angle θw. The

weak and strong shock solutions correspond to the negative and positive signs in Eq. (3.17), re-

spectively. The solution for the reflected shock angle follows from Eq. (3.2), and the pressure p3

behind the reflected shock is given by Eq. (3.18). The regular-reflection solution was derived first

by von Neumann [5] and reproduced later by others like Polachek and Seeger [79] and Hender-

son [75]. They adopt the transformed plane of steady flow with a supersonic flow imposed down

the wedge into the incident shock to make the self-similar shock-reflection pattern stationary.

These conventional equations are well illustrated by previous researchers [5,8,10,14,16,22,80].

However, the derivation using Eqs. (3.1) to (3.3) for moving shocks is simpler and less cumber-

some than using the conventional equations in the form employed by previous researchers.
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3.2 Solution for the Extreme-Angle Boundary

The solution for the extreme angle by von Neumann [5] can be obtained from Eq. (3.17) by

setting the discriminant b2 − c2 to zero, for the case when the two roots merge for the weak

and strong reflected shocks in Fig. 3.3. After substantial manipulation, the cubic polynomial

in cos (θw), its coefficients, and the physically realistic solution for the shock and wedge angles

θi and θw, are summarized as

1

cos3 (θw)
− 3a

cos2 (θw)
− b

cos (θw)
+ c = 0, (3.19)

where

a =
1 + (γ − 1) d

3
, (3.20)

b = 2d− d2, (3.21)

c = γd2, (3.22)

d = 1− ρ1
ρ2

=
2

γ + 1

M2
i − 1

M2
i

=
∆ui
Vi

, (3.23)

e =
√

a2 + b/3, (3.24)

f = cos−1

(

ab+ 2a3 − c

2e3

)

, (3.25)

to yield the solution

cos (θw) = sin (θi) =
1

a+ 2e cos (f/3)
, (3.26)

in terms of the input specification of the incident shock Mach number Mi or inverse shock

density ratio in term d. This revision of the extreme-angle boundary derived originally by

von Neumann [5] is given herein as a cubic polynomial in terms of the wedge angle cos (θw)

and incident shock angle sin (θi). In the previous work of von Neumann [5], and others like

Polachek and Seeger [79] and Henderson [75], the solutions were given as a cubic polynomial

in terms of the incident shock angle squared, that is sin2 (θi), with much longer expressions for

the coefficients a, b and c in Eq. (3.19). The extreme-angle boundary shown in Fig. 3.1 was

calculated by means of Eq. (3.26).

The derivative d sin (θw) /dMi is required later in this research. This derivative is obtained

from Eq. (3.19) as
dz

dMi
=

−4

γ + 1

z

M3
i

a

b
, (3.27)

where

z = cos (θw) = sin (θi) , (3.28)

a = γ − 1 + 2 (1− d) z − 2γd z2, (3.29)

b = 1 + (γ − 1) d+ 2d (2− d) z − 3d2z2, (3.30)

d = 1− ρ1
ρ2

=
2

γ + 1

M2
i − 1

M2
i

=
∆ui
Vi

, (3.31)
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which can be manipulated to yield

d sin (θw)

dMi
=

−z√
1− z2

dz

dMi
. (3.32)

The cubic polynomial given by Eq. (3.19) in terms of cos (θw) can be rearranged into a

quadratic polynomial for the density ratio ρ2/ρ1 as a function of the wedge angle θw or cos (θw).

This quadratic polynomial, its coefficients, and the solutions for the density ratio and incident

shock Mach number are summarized as

a

(

cos (θw)
ρ1
ρ2

)2

− b

(

cos (θw)
ρ1
ρ2

)

+ c = 0, (3.33)

where

a = 1 + γ cos (θw) , (3.34)

b = 1− γ + 2γ cos2 (θw) , (3.35)

c = [1− γ cos (θw)] sin
2 (θw) , (3.36)

and
ρ2
ρ1

=
2a cos (θw)

b±
√
b2 − 4ac

, (3.37)

M2
i =

2 (ρ2/ρ1)

γ + 1− (γ − 1) (ρ2/ρ1)
. (3.38)

The input values of the wedge angle lie in the restricted range 0 ≤ cos (θw) ≤
√

(3− γ) /4,

and the physically realistic solutions for the density ratio lie in the range 1 ≤ ρ2/ρ1 ≤
(γ + 1) / (γ − 1), corresponding to the shock Mach number range 1 ≤Mi ≤ ∞.

The upper value of the wedge-angle range corresponds to a maximum in the wedge angle

versus the shock Mach number Mi. Although barely visible, it is marked with the short line

crossing the extreme-angle boundary near Mi ≈ 2.48 in Fig. 3.1 for γ = 7/5. For γ = 5/3,

no local maximum exists in the extreme-angle boundary as it trends continually upward as

Mi → ∞. This maximum wedge angle is obtained by setting the discriminant b2 − 4ac in

Eq. (3.37) equal to zero. The maximum wedge angle and the corresponding density ratio and

shock Mach number are

θw = cos−1

[

√

3− γ

4

]

, (3.39)

ρ2
ρ1

=
2
√
3− γ + γ (3− γ)

(γ + 1) (2− γ)
, (3.40)

M2
i =

2
√
3− γ + γ (3− γ)

1 + 3γ − 2γ2 − (γ − 1)
√
3− γ

, (3.41)

which are all functions of the specific heat ratio only. When γ = 7/5, the three previous

equations yield values for θw, ρ2/ρ1 and Mi of 50.7685
◦, 3.31238 and 2.48239, respectively.
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3.3 Solution for the Sonic Boundary

The criterion for the sonic boundary is that the formation of a Mach stem should occur once

the disturbance or signal (u3 + a3) that is generated by the interaction of the incident shock

with the wedge corner and surface catches up to the speed Vi/ sin(θi) of the reflection point

along the wedge surface. The analytical solution for the boundary based on the sonic criterion

of von Neumann [5] is taken directly from Henderson [75]. This boundary is given by a fifth-

order polynomial in terms of sin2 (θi) versus the inverse incident shock strength p1/p2, and it

is not reproduced or revised here because the coefficients are long and cumbersome. The sonic

boundary lies very close to the extreme-angle boundary, differing by less than a half of a degree

for each given value of the shock strength. When plotted in Fig. 3.1 it is barely distinguishable

from the extreme-angle boundary. The sonic criterion was supported by the additional research

of Hornung, Oertel and Sandeman [81] as well as Lock and Dewey [19].

3.4 Solution for the Mechanical-Equilibrium Boundary

The solution for the mechanical-equilibrium boundary of von Neumann [5] starts with the three-

shock pattern of Mach reflection, as shown in Fig. 3.4. This upper boundary for the dual region

of regular and Mach reflection (see Fig. 3.1) occurs when the triple-point trajectory angle χ

diminishes to zero, the Mach stem diminishes to an infinitesimal height, and the slip stream

collapses onto the wedge surface.

The Mach stem of infinitesimal length moves along the wedge with a speed Vm = Vi/ sin (θi),

produces a post-shock pressure p4 = p3 = p1+p1
2γ
γ+1

(

M2
m − 1

)

, which is set equal to the pressure

p3 on the other side of the slip stream and behind the reflected shock. This results in a reflected

(1)

(2)

(3)

(4)

θi
χ

θr

θw

incident shock  Si

reflected shock  Sr

corner
disturbance  

centerline

wedge

Figure 3.4: Mach-reflection pattern showing moving shocks, slip stream, triple-point trajectory

angle χ, and flow-field regions.
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shock Mach number given by

M2
r = 1 +

ρ2/ρ1

1 + γ+1
2 (ρ2/ρ1 − 1)

1

tan2(θi)
. (3.42)

This equation is substituted into Eq. (3.13) to eliminateMr, so that the remaining equation can

be solved for an expression for the mechanical-equilibrium boundary in terms of the incident

shock angle θi versus the incident shock Mach numberMi. After considerable manipulation, the

resulting quadratic polynomial in terms of cos2 (θw), its coefficients, and the physically realistic

solutions for the angles θw and θi are summarized as

a cos4 (θw)− 2b cos2 (θw) + c = 0, (3.43)

where

a = 4d+ 2 (γ − 1) (γ + 2) d2 −
(

γ2 − 1
)

d3, (3.44)

b = γ + 3− 1

2
(5− γ) (γ + 1) d+ 2γd2, (3.45)

c = 4− 4d, (3.46)

d = 1− ρ1
ρ2

=
2

γ + 1

M2
i − 1

M2
i

=
∆ui
Vi

, (3.47)

to yield the solution

cos2 (θw) = sin2 (θi) =
c

b+
√
b2 − ac

. (3.48)

This revised solution of von Neumann [5] was used to plot the mechanical-equilibrium boundary

in Fig. 3.1.

The mechanical-equilibrium boundary touches the extreme-angle boundary and shares the

same slope at one location in the plane of θw versus Mi, as can be seen in Fig. 3.1. This point

of contact has physical significance as it represents the boundary between weak and strong

incident shock strengths for oblique shock-wave reflections (see the paper by Kawamura and

Saito [10] for more information). It can be obtained by combining Eqs. (3.19) and (3.43) to

eliminate cos (θw). The solution for the incident shock strength ρ2/ρ1 in terms of the variable

z = γ+1
2 (ρ2/ρ1 − 1) is then given by the quartic polynomial

4z4 + 4z3 −
(

γ2 + 3
)

z2 − 2 (γ + 1) z + γ + 1 = 0, (3.49)

followed by the solutions for the density ratio and incident shock Mach number (once z is

determined), as follows
ρ2
ρ1

= 1 +
2

γ + 1
z, (3.50)

M2
i =

γ + 1 + 2z

γ + 1− (γ − 1) z
. (3.51)

The corresponding wedge angle θw is then calculated from either Eq. (3.26) or (3.48). For

a polytropic gas with γ = 7/5, the solutions are given by z = 0.944980, ρ2/ρ1 = 1.78748,

Mi = 1.45658 and θw = 48.5876◦, respectively, whereas for a polytropic gas with γ = 5/3, the

respective solutions are z = 1.036324, ρ2/ρ1 = 1.77724, Mi = 1.54877 and θw = 51.1666◦.
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Shock-Front Transition Solutions

The transition and thickness of the rapidly changing flow properties through planar shock fronts

in monatomic, diatomic and polyatomic gases are examined in this chapter, using solutions of

the Navier-Stokes equations of motion. The study of the internal structure of shock waves

provided a starting point for the research presented in this thesis and the shock-front transition

solutions provided a benchmark for the verification and validation of the numerical solution

method for evaluating shock-reflection flow fields (see Chapter 6). The governing ordinary

differential equations (ODEs) describing steady, one-dimensional, compressible fluid flows with

viscous and thermal heat conduction effects, including volume viscosity, are solved to obtain

the variation of temperature, pressure, density, flow velocity and entropy through shock waves

of varying strength. The effects of volume viscosity on the transition and thickness of shock

fronts are examined for gases including argon (Ar), molecular nitrogen (N2) and atmospheric

air. The predicted shock transition and thickness for solutions including volume viscosity are

compared to past experimental measurements for shock Mach numbers up to 7.0, well into the

range where Navier-Stokes solutions are considered inadequate [82] and kinetic-theory solutions

are deemed necessary [83].

4.1 Governing Equations

For the special case of one-dimensional, compressible, unsteady, gaseous fluid flows that are

aligned parallel to the x-coordinate direction in a laboratory frame of reference and include the

internal effects of viscosity and heat conduction, the Navier-Stokes equations for unsteady gas

28
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flows given by Eqs. (2.1) through (2.3) can be reduced considerably to yield

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (4.1)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
=

∂

∂x

(

4

3
η + ηv

)

∂u

∂x
, (4.2)

ρ
∂e

∂t
+ ρu

∂e

∂x
+ p

∂u

∂x
=

(

4

3
η + ηv

)(

∂u

∂x

)2

+
∂

∂x

(

κ
∂T

∂x

)

. (4.3)

This system of coupled, non-linear, partial differential equations (PDEs), governing the trans-

port of mass, momentum and energy, can be further simplified by using the frame of reference

connected to the shock front. In the shock-wave reference frame, a one-dimensional coordinate

system is attached to the planar, constant-velocity shock front, wherein the direction normal to

the shock wave is aligned parallel with the x-coordinate direction. Consequently, the temporal

partial derivative terms in Eqs. (4.1) through (4.3) for unsteady flows are eliminated to obtain

a system of ODEs in which the solution variables depend only on their spatial derivatives with

respect to the distance x normal to the shock-wave motion. One integration of these ODEs

with respect to x yields

ρu = ρ1u1, (4.4)

p+ ρu2 −
(

4

3
η + ηv

)

du

dx
= p1 + ρ1u

2
1, (4.5)

ρu

(

cpT +
u2

2

)

−
(

4

3
η + ηv

)

u
du

dx
− κ

dT

dx
= ρ1u1

(

cpT1 +
u21
2

)

, (4.6)

in which the specific internal enthalpy h = ε+ p/ρ = cpT . The values on the right-hand sides

of Eqs. (4.4) through (4.6) are specified as the initial flow condition far upstream or ahead of

the shock wave in region (1), when x→ +∞. The flow condition far downstream or behind the

shock-front transition in region (2), when x → −∞, is governed by the strength of the shock

wave. The viscous and thermal conduction terms disappear from Eqs. (4.5) and (4.6) when

x→ ±∞, as the spatial gradients du/dx and dT/dx tend to zero, giving rise to the conventional

Rankine-Hugoniot equations of Eqs. (3.4) through (3.7).

For the study of stationary, planar shock waves, it is convenient to express the Navier-Stokes

equations written in the form of Eqs. (4.4) through (4.6) in an alternative, non-dimensional form.

The various non-dimensional variables and constants, as well as some other useful and related

relationships, used in the subsequent numerical integration of the governing ODEs are defined

in the shock-wave frame of reference according to:

D =
ρ− ρ1
ρ2 − ρ1

, U =
u− u1
u2 − u1

, P =
p− p1
p2 − p1

, T =
T − T1
T2 − T1

,

S =
s− s1
s2 − s1

=

ln

[

(

T
T1

)

(

γ

γ−1

)

(

p1
p

)

]

ln

[

(

T2
T1

)

(

γ

γ−1

)

(

p2
p1

)−1
] , X =

ρ1u1x

η1
, Pr1 =

η1cp
κ1

,
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Ωv =
ηv
η
, Mi =

u1
a1
, a1 =

√

γp1
ρ1

=
√

γRT1. (4.7)

In Eq. (4.7), the variables D, U , P , T , S and X are non-dimensional forms of the density, ve-

locity, pressure, temperature, entropy and distance normal to the shock wave, respectively. The

upstream Prandtl number is Pr1 and the temperature-dependent ratio of volume to dynamic

viscosities at a given point in the flow field is Ωv. The variable Mi is the shock Mach number or

shock-wave strength and a1 is the reference sound speed of the fluid. The respective pressure,

density and temperature ratios p2/p1, ρ2/ρ1 and T2/T1 are calculated using the conventional

Rankine-Hugoniot equations given earlier in Eqs. (3.4) through (3.7).

The resulting conservation equations which govern the transport of mass, momentum, and

energy through a stationary, one-dimensional shock wave can then be written in terms of the

preceding non-dimensional variables and constants of Eq. (4.7) as follows:

D =
U

1 +
(

ρ2
ρ1

− 1
)

(1− U)
, (4.8)

U − P =

(

4

3
+ Ωv

)

η

η1

dU

dX
, (4.9)

T − U =

(

ρ2
ρ1

− 1
)

(

ρ2
ρ1

+ 1
)(1− U)U +

κ

η1cp

dT
dX

−
(

4

3
+ Ωv

)

η

η1

2
(

ρ2
ρ1

+ 1
)

U

D

dU

dX
. (4.10)

The ideal-gas equation of state p = ρRT is written in non-dimensional form as

P =
U + γ−1

2γ

(

ρ2
ρ1

+ 1
)

(T − U)

1 +
(

ρ2
ρ1

− 1
)

(1− U)
(4.11)

after some algebraic re-organization of replacing D by U .

4.2 ODE Solution Method

The numerical solution of the variables U = U(X) and T = T (X) through the shock front in

the physical plane requires the simultaneous integration of the two coupled non-linear ODEs:

dU

dX
=

3

4 + 3Ωv

η1
η





(

ρ2
ρ1

− 1
)

(1− U)U − γ−1
2γ

(

ρ2
ρ1

+ 1
)

(T − U)

1 +
(

ρ2
ρ1

− 1
)

(1− U)



 , (4.12)

dT
dX

=
κ1
κ

Pr1
(

ρ2
ρ1

+ 1
)

[

(

ρ2
ρ1

− 1

)

(1− U)U +
1

γ

(

ρ2
ρ1

+ 1

)

(T − U)

]

. (4.13)

These equations arise from further algebraic manipulation of Eqs. (4.8) through (4.11): Eq. (4.12)

for dU/dX is obtained by substituting Eq. (4.11) into Eq. (4.9) and simplifying, whereas
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Eq. (4.13) for dT /dX is obtained by substituting Eqs. (4.8) and (4.11) into Eq. (4.10) and

simplifying. Alternatively, Eq. (4.12) can be divided by Eq. (4.13) to yield the expression

dU

dT =
3

4 + 3Ωv

η1
η

κ

κ1

(

ρ2
ρ1

+ 1
)

Pr1

D

U





(

ρ2
ρ1

− 1
)

(1− U)U − γ−1
2γ

(

ρ2
ρ1

+ 1
)

(T − U)
(

ρ2
ρ1

− 1
)

(1− U)U + 1
γ

(

ρ2
ρ1

+ 1
)

(T − U)



 , (4.14)

which may be integrated to obtain the solution for U = U(T ) in the state plane, with D

specified using Eq. (4.8). Note that the variable Ωv = ηv/η in Eqs. (4.12) and (4.14) is the

temperature-dependent ratio of volume to dynamic viscosities.

A standard, fourth-order Runge-Kutta (RK4) integration method is used to solve the cou-

pled system of ODEs given by dU/dX = f(X,U, T ) and dT /dX = g(X,U, T ) in Eqs. (4.12)

and (4.13) with the boundary conditions U = 0 and T = 0 for X → +∞ and U = 1 and T = 1

for X → −∞. The RK4 method for one forward step ∆X of fixed size in physical space, that is

Xi+1 = Xi +∆X for the ith step, is given for Ui+1 = U(Xi+1) and Ti+1 = T (Xi+1) as follows:

Ui+1 = Ui +
1

6

(

k1,f + 2k2,f + 2k3,f + k4,f
)

, (4.15)

Ti+1 = Ti +
1

6

(

k1,g + 2k2,g + 2k3,g + k4,g
)

. (4.16)

The variables ki,f and ki,g, with i = 1, 2, 3, 4, are given by the expressions:

k1,f = f
(

Xi, Ui, Ti
)

∆X, (4.17)

k1,g = g
(

Xi, Ui, Ti
)

∆X, (4.18)

k2,f = f
(

Xi +∆X/2, Ui + k1,f/2, Ti + k1,g/2
)

∆X, (4.19)

k2,g = g
(

Xi +∆X/2, Ui + k1,f/2, Ti + k1,g/2
)

∆X, (4.20)

k3,f = f
(

Xi +∆X/2, Ui + k2,f/2, Ti + k2,g/2
)

∆X, (4.21)

k3,g = g
(

Xi +∆X/2, Ui + k2,f/2, Ti + k2,g/2
)

∆X, (4.22)

k4,f = f
(

Xi, Ui + k3,f , Ti + k3,g
)

∆X, (4.23)

k4,g = g
(

Xi, Ui + k3,f , Ti + k3,g
)

∆X, (4.24)

as outlined in the book on numerical methods by Faires and Burden [84].

A shooting technique is combined with the space marching outlined above to obtain numer-

ical solutions for the shock-front transitions satisfying the boundary conditions at X → ±∞.

This method is illustrated in Fig. 4.1. The transition solutions for U and T with X are obtained

by first integrating the two coupled ODEs of Eqs. (4.12) and (4.13) using the RK4 method down-

stream into region (2), starting from the shock-front transition center Uo = U(Xo = 0) with the

initial guess To. A value of To that is too low yields the solution (a) in Fig. 4.1 that diverges to-

wards U → +∞ for X → −∞. Conversely, a value of To that is too high yields the solution (b)

in Fig. 4.1 that diverges towards U → −∞ for X → −∞. The converged solution (c) in Fig. 4.1

is obtained when the convergence criterion |Ui+1−Ui| < ǫ is satisfied in region (2), where ǫ is a
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Figure 4.1: Numerical shooting method for the solution of shock-front transitions.

small convergence tolerance typically in the range of ǫ ≈ 10−7 for the computations presented

in this chapter. The upstream integration of the coupled ODEs of Eqs. (4.12) and (4.13) for the

solution of U and T with X into region (1) ahead of the shock front follows once the solution

for U with X in the downstream region (2) is deemed converged. A similar shooting technique

for shock-front transitions has recently been employed by Elizarova and co-researchers [85].

The shock-front transition profiles for the variables D, P and S with X are computed

following the solution of U and T with X, using the corresponding relations and expressions

presented within Eqs. (4.7), (4.8) and (4.11) for each of these non-dimensional variables. The

dimensional forms of the primitive solution variables ρ, u, p, T , s and x through the shock-front

transition may then deduced from Eq. (4.7) by re-arranging the respective equations for D, U ,

P , T , S and X. This requires an evaluation of the conventional Rankine-Hugoniot equations

for p2/p1, ρ2/ρ1, T2/T1 and ∆ui/a1 using Eqs. (3.4) through (3.7) to get the flow properties in

region (2) downstream of the shock front, given the initial flow condition in region (1) upstream

of the shock front as well as a measure of the shock-wave strength or shock Mach number Mi.

The ODE solutions for the transition of flow properties through an argon shock wave with

p2/p1 = 4.0 (or Mi ≈ 1.84) are illustrated in Fig. 4.2 using both physical- and state-plane rep-

resentations. These computational results are shown using the non-dimensional flow variables

of T , P,D,U and S, as they each transition smoothly from an upstream value of 0 towards a

downstream value of 1.

Through the shock-front transition, D varies monotonically from 0 to 1, as does U from

0 to 1. The entire transition profiles of D and U tend to the same shape when ρ2/ρ1 → 1 as

Mi → 1, i.e. for the case of very weak shock waves approaching the sonic limit. Otherwise,

D ≈ ρ1U/ρ2 when U ≈ 0 at the beginning of the shock-front transition profile, D ≈ U when

U ≈ 1 at the end, and the central regions differ.

The behaviour of P increases monotonically from 0 to 1 while dU/dX varies from 0 to a

maximum negative value and back to 0 again. As a result, the first and last sections of the
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Figure 4.2: A comparison of both physical (left-hand side) and state (right-hand side) planes for a

shock wave of strength p2/p1 = 4.0 (or Mi ≈ 1.84) in argon.

transition profiles for P and U are the same shape because U → 0 and U → 1 when dU/dX ≈ 0.

Otherwise, the center sections of the P and U shock-front transitions are different.

The transition profile for T increases monotonically from 0 to 1 along with the general

variation of D, U and P from 0 to 1. Hence, dT/dX behaves similarly to dU/dX, increasing

from 0 to a maximum negative value and then decreasing back to 0 once more. Note that within

the homogeneous pre- and post-shock equilibrium states of regions (1) and (2), the derivatives

dU/dX and dT/dX are equal to zero.

The entropy S through the shock front increases from 0 in region (1) to a maximum Smax > 1

just behind the center of the shock-front transition, and then decreases from Smax to a value of

1 in region (2). See the paper by Morduchow and Libby [86] and the book by Liepmann and

Roshko [87] for more information on the entropy change across a shock wave.

4.3 Numerical Results and Comparisons with Experiments

Numerical results based on solutions of the governing Navier-Stokes equations, with and without

volume viscosity, are presented herein for the transition and thickness of shock waves occurring

in argon, molecular nitrogen and atmospheric air. The predicted numerical shock-front tran-

sitions are compared to experimental measurements of shock-front structures to illustrate the

accuracy of the ODE solution method as well as the validity of the computed results.

Comparisons to experiments are also made in regard to the variation of reciprocal shock

wave thickness, λ/∆xs, as a function of the shock Mach number,Mi, for the predicted numerical

results. For each of the aforementioned gases of interest, the mean free path, λ, is defined from

gas-kinetic theory as

λ =
16µ1

5ρ1
√
2πRT1

, (4.25)
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based on molecular collisions of rigid, impenetrable spheres. The shock wave thickness, ∆xs, has

been calculated from the velocity profile according to the standard maximum-slope thickness

method of Becker [88], given by the expression

∆xs =
|u2 − u1|
|du/dx|max.

, (4.26)

where |du/dx|max. denotes the maximum gradient of velocity with respect to distance within the

entirety of the shock front.

4.3.1 Shock Waves in Argon

The numerically predicted ODE shock structures for the variation of density through mo-

derate-strength shock waves are compared in Fig. 4.3 to the experimental measurements of

Alsmeyer [64] for shock-front transitions in argon. The results are presented in normalized

form, ranging in particular from 0 to 1 in D as a function of the distance, x, divided by the

mean free path, λ, and are shown for shock Mach numbers of Mi = 1.55, 1.76, 2.05, 2.31, 3.38

and 3.80, respectively. Argon is a monatomic molecule, has no rotational modes and has no

volume viscosity. The distributions of density through the shock fronts are similar in shape and

length with distance about the center, as can be seen in each of Figs. 4.3(a) through (f). In

comparison to the experimental transitions of density obtained by Alsmeyer [64], the numerical

ODE results appear to be in good agreement in the upstream region of the shock front where

D ≈ 0 and show slightly worse agreement in the downstream section where D ≈ 1. This trend

is consistent for all Mach numbers presented in Fig. 4.3 for shock waves in argon.

The predicted reciprocal shock thicknesses, λ/∆xs, in argon, computed from the ODE

solutions for shock wave strengths of 1.0 < Mi < 7.0, are plotted in Fig. 4.4. The numerical

results are compared to the previous experimental measurements taken from the paper by

Alsmeyer [64]. In general, the reciprocal shock thickness increases as a function of the shock

Mach number from weak- to moderate-strength shock waves and then plateaus for stronger

shock waves. The numerical computations of shock thickness as obtained in this study over

the range of 1.0 < Mi < 7.0 follow this pattern. The comparison of results indicates that the

numerically predicted reciprocal shock thicknesses are in good agreement with the experiments

for 1.0 < Mi < 2.0; however, the ODE solutions begin to slightly underpredict the experimental

measurements of shock thickness for 2.0 < Mi < 7.0. This underprediction is most likely

due to the limitations of the Navier-Stokes equations for modelling rapid and sparse collision

processes in argon at elevated temperatures, where kinetic theory predictions are perhaps more

appropriate to use.
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Figure 4.3: Comparisons of numerical ODE solutions (solid lines) against experimental measurements

(dashed lines; see the paper by Alsmeyer [64]) for transitions of density through shock fronts in argon

with (a) Mi = 1.55; (b) Mi = 1.76; (c) Mi = 2.05; (d) Mi = 2.31; (e) Mi = 3.38; (f) Mi = 3.80.
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Figure 4.4: Comparisons of numerical ODE solutions (solid line) against experimental markers (see the

paper by Alsemeyer [64]) for reciprocal shock wave thicknesses in argon.

4.3.2 Shock Waves in Molecular Nitrogen

The Navier-Stokes predictions of the variation of density as a function of distance, through

shocks of varying strength in molecular nitrogen, are presented and compared to experimental

shock-front transitions obtained by Alsmeyer [64] in Fig. 4.5. The results are presented for

the normalized density D varying from 0 to 1 as a function of λ/∆xs, shown for shock Mach

numbers of Mi = 1.53, 1.70, 2.00, 2.40, 3.20 and 3.80, respectively. The ODE results have been

obtained using the compressible, fully viscous and heat-conducting Navier-Stokes equations

with the additional effects of volume viscosity. The predicted transitions of density are in

good agreement with the experimental results, as seen in Figs. 4.5(a) through (f). The density

variations differ only a little in the downstream regions where D ≈ 1 and tend to agree better

in the upstream regions where D ≈ 0.

The numerically predicted reciprocal shock thicknesses in molecular nitrogen, computed

from the ODE solution method for shock wave strengths of 1.0 < Mi < 7.0, are provided in

Fig. 4.6. The numerical reciprocal shock thickness increases as a function of shock strength from

weak- to moderate-strength shock waves and then plateaus for stronger shocks. Experimental

measurements for shock wave thicknesses in molecular nitrogen that are taken from the paper

by Alsmeyer [64] are included in Fig. 4.6. The ODE solutions for reciprocal shock thickness have

been calculated with and without the added effects of volume viscosity (ηv). The comparison of

the ODE solutions for shock thickness to experimental measurements shows excellent agreement

between predictions (when ηv 6= 0) and experiments for the entire range of shock Mach numbers

given by 1.0 < Mi < 7.0. The predicted shock-front transitions are about 64% thicker in
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Figure 4.5: Comparisons of numerical ODE solutions with volume viscosity (solid lines) against

experimental measurements (dashed lines; see the paper by Alsmeyer [64]) for transitions of density

through shock fronts in nitrogen with (a) Mi = 1.53; (b) Mi = 1.70; (c) Mi = 2.00; (d) Mi = 2.40;

(e) Mi = 3.20; (f) Mi = 3.80.
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Figure 4.6: Comparisons of numerical ODE solutions (solid lines) against experimental markers (see

the paper by Alsemeyer [64]) for reciprocal shock wave thicknesses in nitrogen.

molecular nitrogen with the addition of volume viscosity over the range of 1.0 < Mi < 7.0,

as shown in Fig. 4.6. The generally strong agreement of the Navier-Stokes computations with

past experimental data implies that the continuum fluid-dynamic description of gases provides

better and more accurate transition and thickness predictions for shock waves than previously

thought or expected (e.g. see the paper by Elizarova and co-researchers [85]), even at relatively

high shock Mach numbers.

The smooth but rapid transition of non-dimensional flow properties through a shock front

of moderate strength p2/p1 = 4.0 (or Mi ≈ 1.89) in molecular nitrogen, computed using the

ODE solution method, is presented in Fig. 4.7. The computations are illustrated in both

the physical (left-hand side) and state (right-hand side) planes, without (top half) and with

(bottom half) the added effects of volume viscosity. The solutions in the physical plane on

the left-hand side of this diagram demonstrate that volume viscosity increases the shock-front

dissipation and produces a larger shock thickness (bottom, left-hand diagram of Fig. 4.7).

However, volume viscosity does not affect the Rankine-Hugoniot shock jump conditions, so the

solution on either side of the shock front is unchanged with or without volume viscosity. The

gradients of temperature, pressure, density and flow velocity within the shock front are smaller

for thicker shock fronts (i.e. when volume viscous effects are larger). The smaller temperature

gradient, in particular, results in a reduced localized heat conduction through the shock front,

which consequently gives a lower peak entropy value, as illustrated in the bottom half of Fig. 4.7.

The corresponding solutions in the state plane are provided on the right-hand side of Fig. 4.7

and show the variation of non-dimensional flow properties as a function of the non-dimensional

flow velocity.
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Figure 4.7: A comparison of both physical (left-hand side) and state (right-hand side) planes

for a shock wave of strength p2/p1 = 4.0 (or Mi ≈ 1.89) in nitrogen,

without ηv (top half) and with ηv (bottom half).

4.3.3 Shock Waves in Atmospheric Air

The computed ODE solutions for the transition of temperature through shock fronts in atmo-

spheric air are illustrated and compared to experimental measurements in Fig. 4.8 for several

different shock Mach numbers. This graph presents the ODE results in relation to the experi-

mental markers of Sherman [89]. The transition of the normalized temperature T varies from 0

to 1 as a function of x/λ, and it is presented for shock strengths ofMi = 1.78, 1.85, 1.90, 1.98, 3.70

and 3.91. The fully viscous, heat-conducting Navier-Stokes equations with volume viscosity

have been used to model the transition of flow properties through these shocks. In general, the

numerical results agree well with the experimental data for low- to moderate-strength shock

waves in Figs. 4.8(a) through (d), and show slightly worse agreement at stronger shock Mach

numbers in Figs. 4.8(e) and (f), particularly in the downstream regions of the shock fronts.

The predicted reciprocal shock thickness in atmospheric air has been computed with and

without volume viscosity and is presented against some experimental shock thicknesses reported

by Sherman [89] in Fig. 4.9. Experimental data for shock wave thicknesses in air is scarce, so the

comparisons to experiments are quite limited over the entire range of 1.0 < Mi < 7.0. However,
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Figure 4.8: Comparisons of numerical ODE solutions with volume viscosity (solid lines) against

experimental markers (see the paper by Sherman [89]) for transitions of temperature through shock

fronts in atmospheric air with (a) Mi = 1.78; (b) Mi = 1.85; (c) Mi = 1.90; (d) Mi = 1.98;

(e) Mi = 3.70; (f) Mi = 3.91.
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Figure 4.9: Comparisons of numerical ODE solutions (solid lines) against experimental markers (see

the paper by Sherman [89]) for reciprocal shock wave thicknesses in atmospheric air.

the predicted shock thicknesses with volume viscosity are typically around 73% thicker over this

range of shock Mach numbers than those which do not take into account these added effects

of volume viscosity. It can be seen that for low Mach numbers in the range 1.0 < Mi < 2.0,

the ODE solutions seem to slightly underpredict the reciprocal shock thickness when volume

viscosity is accounted for in the governing Navier-Stokes equations. For relatively weak- to

moderate-strength shocks, the curve for air with volume viscosity appears to indicate marginally

thicker shock waves than those obtained in experiment. For stronger shock strengths, the ODE

results predict that the reciprocal shock thickness plateaus as a function of Mach number.

A comparison of both physical- and state-plane solutions for the transition of non-dimension-

al flow properties through a moderate-strength shock wave with p2/p1 = 4.0 (or Mi ≈ 1.89) in

atmospheric air, with and without volume viscosity, is presented in Fig. 4.10. Similar to the

aforementioned results in molecular nitrogen, volume viscosity tends to cause a thickening of the

shock front in atmospheric air and, consequently, a reduction in the peak specific entropy value

due to the smaller temperature gradient within the shock wave. The corresponding variations

of non-dimensional flow properties, plotted as a function of the non-dimensional flow velocity,

are also illustrated in Fig. 4.10, for reference.

(This space intentionally left blank.)
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Figure 4.10: A comparison of both physical (left-hand side) and state (right-hand side) planes

for a shock wave of strength p2/p1 = 4.0 (or Mi ≈ 1.89) in atmospheric air,

without ηv (top half) and with ηv (bottom half).

4.4 Concluding Remarks

For argon, and possibly for other monatomic gases, the Navier-Stokes solutions for shock-front

transition and thickness are well predicted for shock Mach numbers of 1.0 < Mi < 2.0, but

solutions using gas-kinetic theory are likely needed for stronger shock waves of Mi > 2.0. For

molecular nitrogen and atmospheric air, and possibly other diatomic and polyatomic gases, the

Navier-Stokes solutions are better than previously believed or expected for shock Mach numbers

of 1.0 < Mi < 7.0, when volume viscosity is included. This finding is partly due to the more

accurate modelling of volume viscosity in modern research, which was included in previous

studies on shock waves but with a smaller magnitude than in the present work (e.g. see the

paper by Talbot and Scala [90]).
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CFD Algorithm

The numerical simulation of two-dimensional, unsteady, oblique shock-wave reflection phenom-

ena has a rather long history going back more than thirty years. Early research focused on

the prediction of such flows using Godunov-type finite-volume solution methods [91] for the

Euler equations governing inviscid compressible flows on simple uniform Cartesian meshes.

This early research includes the studies of Colella and Glaz [92], Woodward and Colella [93]

and Glaz and co-researchers [94, 95]. Subsequent work by Colella and Glaz [96] as well as

Colella and Henderson [97] considered the application of patch-based, solution-directed adap-

tive mesh refinement (AMR) techniques on Cartesian meshes with localized mesh refinement

in designated regions of the flow field. In subsequent studies, other possibly more general mesh

adaptation schemes have been developed and applied by Fursenko, Timofeev, Voinovich and

co-researchers [98–102], Sun and Takayama [103] and Henderson and co-researchers [104] for

treating compressible, inviscid, unsteady flows with shock waves and their complex interactions.

More recently, the extension of upwind-based finite-volume schemes with AMR to the solu-

tion of the Navier-Stokes equations governing unsteady, compressible, viscous flows with shocks

has permitted researchers to examine the significance of molecular transport properties on the

behaviour of a range of simple and complex compressible flow phenomena. For example, Colella

and co-researchers [105, 106], Timofeev, Ofengeim, Voinovich and co-researchers [107–110], as

well as Henderson and co-researchers [111, 112] have all considered and/or proposed AMR

schemes for the solution of viscous flows associated with unsteady oblique reflections of shock

waves. Additionally, Graves and co-researchers [113] have proposed a Cartesian mesh AMR

scheme for the solution of the compressible Navier-Stokes equations with an embedded bound-

ary treatment.

In spite of these successes, the capabilities of AMR gridding strategies have to date not

permitted the fully resolved numerical solution of viscous, unsteady flow applications contain-

43
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ing shock waves in which the shock is fully resolved for a wide range of Reynolds numbers.

Furthermore, the grid independence of simulations, even for inviscid cases, has been difficult to

establish. Apart from the numerical investigations of Henderson and co-researchers [30], as well

as Ivanov and co-researchers [114,115], who each used very fine, uniform computational meshes

to obtain fully resolved, unsteady and steady computations, respectively, there is a scarcity of

published numerical studies with fully resolved internal shock structures. In turn, this has not

allowed a full evaluation of the effects of micro-scale molecular transport on oblique reflection

processes.

To overcome some of the preceding difficulties, the anisotropic block-based AMR finite-

volume scheme of Zhang and Groth [116], Williamschen and Groth [117] and Freret and

Groth [118] is used here to obtain solutions of both inviscid and laminar, two-dimensional,

compressible flows governed by the Euler and Navier-Stokes equations, respectively. The finite-

volume spatial discretization scheme is coupled with both parallel explicit and fully implicit

time-marching schemes. The latter is based on Newton’s method [119–121]. The anisotropic

AMR technique mitigates the inherently large computational memory and storage requirements

associated with the use of the very fine spatial resolution needed for fully resolved viscous sim-

ulations of shocks, whereas the implicit time-marching scheme provides unconditional stability

of the algorithm and the freedom to select the physical time step for unsteady shock reflection

problems based solely on a consideration of solution accuracy, not stability constraints. Details

of the parallel finite-volume AMR scheme are given in this chapter, whereas the benefits, ca-

pabilities, and parallel performance of the method are demonstrated in Chapter 6 for unsteady

oblique shock reflection problems in which the internal shock structure is fully resolved. The

same solution algorithm with explicit time marching is also used thereafter for the computation

of the flow-fields pertaining to unsteady shock-wave interactions with rigid wedges in inviscid

and polytropic gases based on the Euler equations, to determine the transition boundary sep-

arating regular and Mach reflections (as will be discussed in Chapters 7 and 9). Note that

the numerical solution method is also described in the recent paper by Hryniewicki, Groth and

Gottlieb [122].

5.1 Conservation Equations for Unsteady Gas Flows

5.1.1 Navier-Stokes Equations

The partial differential equations provided by Eqs. (2.1) through (2.3) for solving unsteady

compressible gas flows can be expressed using matrix-vector notation as

∂U

∂t
+ ~∇· ~F = 0, (5.1)
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which, for a two-dimensional Cartesian coordinate system (x, y), can be written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
=
∂Fv

∂x
+
∂Gv

∂y
, (5.2)

where ~F = (F−Fv,G−Gv) is the total solution flux dyad. In Eq. (5.2), the vector of conserved

solution variables, U, the inviscid flux vectors, F and G, and the viscous flux vectors, Fv and

Gv, are given by
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, (5.4)

respectively, and t is the physical time. In Eq. (5.4), the normal and tangential elements of the

viscous stress tensor, τxx, τyy and τxy, are given as

τxx = η

(

4

3

∂u

∂x
− 2

3

∂v

∂y

)

+ ηv

(

∂u

∂x
+
∂v

∂y

)

, (5.5)

τyy = η

(

4

3

∂v

∂y
− 2

3

∂u

∂x

)

+ ηv

(

∂u

∂x
+
∂v

∂y

)

, (5.6)

τxy = η

(

∂u

∂y
+
∂v

∂x

)

= τyx. (5.7)

Also in Eq. (5.4), the x- and y-components of the heat flux vector, qx and qy, are given as

qx = −κ∂T
∂x

, (5.8)

qy = −κ∂T
∂y

. (5.9)

5.1.2 Euler Equations

For the inviscid flow fields which are of principal concern here, the viscous flux vectors Fv and

Gv in Eq. (5.2) are omitted as the terms η, ηv and κ in Eqs. (5.5) through (5.9) all equal to

zero. For a two-dimensional Cartesian coordinate system (x, y), the resultant partial differential

equations are given as
∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (5.10)

in matrix-vector form, where t is the physical time. In Eq. (5.10), the vector of conserved

solution variables, U, and the inviscid flux vectors, F and G, are given by Eq. (5.3), and now
~F = (F,G) is the total solution flux dyad.
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5.2 Finite-Volume Method

The finite-volume method represents and evaluates a set of partial differential equations as a

system of algebraic equations, and the flow properties are calculated at discrete places on a

meshed geometry. See the book of LeVeque [123]. In two spatial dimensions, the finite-volume

method reduces to a finite-area method. The preceding differential form of the governing

equations given by Eq. (5.2) for both the inviscid and viscous flow cases is recast into an

integral form that is convenient for the application of a high-resolution, cell-centred, finite-

volume spatial discretization procedure utilized herein. Equation (5.2) is multiplied by dxdy

and two integrations are included. The first term
∫

y

∫

x (∂U/∂t) dxdy reduces to the integral
∫

A (∂U/∂t) dA over an arbitrary area A. The last term
∫

y

∫

x (
~∇· ~F) dxdy is converted into a

single integral for a closed path around the area A by using the divergence or Green’s theorem.

Equation (5.1) then becomes

d

dt

∫

A
U dA+

∮

Γ

~F · ~n dΓ = 0, (5.11)

in which Γ denotes the closed path and ~n is the outward unit vector that is normal to the

control surface of interest.

Let the arbitrary shaped area in this equation be replaced by a cell of finite area from

an arbitrary computational mesh of quadrilateral shaped cells. A schematic illustrating one

such cell with the side lengths ∆lk and unit outward normal vectors ~nk = nx,k ı̂ + ny,k ̂, with

k = 1, 2, . . . , 4 and where ı̂ and ̂ are the x- and y-coordinate direction unit vectors, is shown in

Fig. 5.1. For this quadrilateral cell (i, j), using the mid-point rule (for second-order accuracy)

for the integration, Eq. (5.11) then reduces to the semi-discrete algebraic form given by

dŪi,j

dt
= − 1

Ai,j

4
∑

k=1

(

~F · ~n∆l
)

i,j,k
= Ri,j(U), (5.12)

via Gaussian quadrature integration, in which

Ūi,j =
1

A

∫

A
Ui,jdA (5.13)

cell (i,j) of
area Ai,j

xi,j ,yi,j
nk
→

∆ lk

Figure 5.1: Quadrilateral cell for the finite-volume method.
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is the cell-averaged value of the conserved solution vector and R is the physical-time residual

vector. The construction of the spatial variation of the conserved solution vector U within

each cell as well as the evaluation of the fluxes ~F at the cell interfaces, to yield a conservative

scheme for the integration of Eq. (5.12) in time, is presented in the following subsections. For

solution methods pertaining to two-dimensional cells that include a curved boundary, see the

work by Ivan and Groth [124]. Finite-volume methods have an important attribute of preserving

the conservation properties of the underlying PDEs discretely for each computational cell and

thereby the entire domain, because the flux crossing a boundary into one cell is identical to

that leaving the abutting cell via the same boundary, and these fluxes are directly related to

the time rate of change of the vector of conserved solution variables U within each cell.

5.2.1 Slope-Limited, Piecewise-Linear, Least-Squares Reconstruction

The calculation of the inviscid and viscous components of the numerical flux passing through

each computational cell requires knowledge of both the solution values as well as their deriva-

tives along the edges of each of these cells. While a first-order accurate, piecewise-constant,

cell-averaged solution given by Ūi,j in Eq. (5.13) can be utilized to provide a very rudimentary

estimate of the spatial variation of the solution within a particular cell (i, j), such an approxi-

mation is typically not favored for practical application as it tends to yield excessive dissipation

via artificial viscosity and may ultimately lead to a loss in the global accuracy of the numerical

solution. Alternatively, the progressively more accurate second- and higher-order type of spa-

tial reconstruction often leads to insufficient amounts of dissipation and consequently results in

solutions that contain non-monotonic, oscillatory behaviour within discontinuous regions of the

flow field. As a result, to ensure solution monotonicity near discontinuities while maintaining

higher-order accuracy in smooth regions of the flow field, higher-resolution spatial discretization

techniques are often implemented in conjunction with slope limiters that are used to restrict

the spatial variations of the solution within each cell to physically realizable and meaningful

values. The framework for this class of methods has been developed extensively by researchers

such as Boris and Book [125], van Leer [126] and Harten [127], and is described briefly herein.

In the present work, a second-order, slope-limited, piecewise-linear, least-squares solution

reconstruction technique is employed to provide a mathematical description of the spatial vari-

ation of the solution within each computational cell. Spatial reconstruction in (x, y) for the

conserved solution variables U is then given by

Ui,j (x, y) = Ūi,j +Φi,j

[

∂U

∂x

∣

∣

∣

∣

i,j

(x− xi,j) +
∂U

∂y

∣

∣

∣

∣

i,j

(y − yi,j)

]

, (5.14)

in which the solution is represented as a linear function that is dependent on the two solution

derivatives, where location (xi,j , yi,j) is the centroid of an arbitrary cell (i, j) in the computa-

tional domain. In Eq. (5.14), Φ is the slope limiter and ∂U/∂x and ∂U/∂y are the gradients of
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the conserved solution vector in the x- and y-coordinate directions, respectively. The evaluation

of each of these three terms will be discussed in the following paragraphs. Standard midpoint

rule quadrature is used to evaluate the solution fluxes through each of the k = 1, 2, . . . , 4 quadra-

ture points along the cell boundary. The reconstruction enables the calculation of U
(k)
i,j at the

four centers of the quadrilateral edges. These four edge values U
(k)
i,j and the corresponding edge

values U
(k)
i±1,j±1 of the neighbouring, adjacent cells can either agree or differ discontinuously,

providing the basis for computing the numerical fluxes across each cell boundary.

Slope limiting is applied during the reconstruction phase to ensure oscillation-free, mono-

tonic solution behaviour near regions of strong gradients and sharp discontinuities within the

flow field. In this research, the non-linear slope limiter developed by Venkatakrishnan [128]

is employed to provide values in the range of 0 ≤ Φi,j ≤ 1 for Eq. (5.14). It is given by

Φi,j = min
k

(

Φ
(k)
i,j

)

, in which

Φ
(k)
i,j =























min

(

1.0,
U

max
i,j −Ūi,j

U
(k)
i,j −Ūi,j

)

for
(

U
(k)
i,j − Ūi,j

)

> 0

min

(

1.0,
U

min
i,j −Ūi,j

U
(k)
i,j −Ūi,j

)

for
(

U
(k)
i,j − Ūi,j

)

< 0

1.0 otherwise

, (5.15)

wherein Umax
i,j = max

(

Ūi,j , Ūi±1,j±1

)

and Umin
i,j = min

(

Ūi,j , Ūi±1,j±1

)

, where Ūi±1,j±1 are the

neighbouring, adjacent, cell-averaged conserved solution vectors that are used in the second-

order reconstruction of Ui,j , and U
(k)
i,j is the unlimited, second-order accurate, piecewise-linear,

reconstructed solution (with Φ
(k)
i,j = 1) at the respective quadrature point k along the boundary

of cell (i, j). The spatial reconstruction of Eqs. (5.14) and (5.15) recovers the unlimited, second-

order accurate, piecewise-linear solution when Φi,j = 1 in smooth regions of the flow field and

degrades to the fully limited, first-order accurate, piecewise-constant, cell-average solution when

Φi,j = 0, wherever discontinuities exist.

The spatial gradients of the conserved solution vector, ∂U/∂x and ∂U/∂y, used in the

second-order reconstruction via Eq. (5.14) are determined by applying a least-squares ap-

proach [129]. The least-squares problem can by solved to approximate the solution gradients

of a given cell (i, j) by considering its Nc neighbouring cells, with Nc = 8 in two dimensions,

and minimizing the error, E, that is defined by

E
2 =

Nc
∑

n=1

E
2
n =

Nc
∑

n=1

[

∆Ūn −
(

∂U

∂x

∣

∣

∣

∣

i,j

(xn − xi,j) +
∂U

∂y

∣

∣

∣

∣

i,j

(yn − yi,j)

)]2

, (5.16)

where ∆Ūn = Ūn−Ūi,j for Ūn taken as the cell-averaged value of the conserved solution vector

of a neighbouring cell n. The resulting system of equations arising from the differentiation of

Eq. (5.16) and subsequent minimization of the error E is expressed in matrix form as
[

(∆x)2i,j (∆x∆y)i,j

(∆x∆y)i,j (∆y)2i,j

][

∂Ū
∂x

∣

∣

i,j
∂Ū
∂y

∣

∣

i,j

]

=

[

(∆U∆x)i,j
(∆U∆y)i,j

]

, (5.17)
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where

(∆x)2i,j =
1

Nc

Nc
∑

n=1

(xn − xi,j)
2 , (5.18)

(∆x∆y)i,j =
1

Nc

Nc
∑

n=1

(xn − xi,j) (yn − yi,j) , (5.19)

(∆y)2i,j =
1

Nc

Nc
∑

n=1

(yn − yi,j)
2 , (5.20)

(∆U∆x)i,j =
1

Nc

Nc
∑

n=1

∆Ūn (xn − xi,j) , (5.21)

(∆U∆y)i,j =
1

Nc

Nc
∑

n=1

∆Ūn (yn − yi,j) . (5.22)

The solution of the system of equations given by Eq. (5.17) can be obtained by using Cramer’s

rule to yield the solution derivatives

∂U

∂x

∣

∣

∣

∣

i,j

=
(∆U∆x)i,j (∆y)2i,j − (∆x∆y)i,j (∆U∆y)i,j

(∆x)2i,j (∆y)2i,j −
[

(∆x∆y)i,j

]2 , (5.23)

∂U

∂y

∣

∣

∣

∣

i,j

=
(∆U∆y)i,j (∆x)2i,j − (∆x∆y)i,j (∆U∆x)i,j

(∆x)2i,j (∆y)2i,j −
[

(∆x∆y)i,j

]2 , (5.24)

thereby facilitating the second-order accurate, piecewise-linear solution reconstruction tech-

nique utilized in this research.

5.2.2 Inviscid (Hyperbolic) Flux Evaluation

The inviscid or hyperbolic components F and G of the flux ~F at each cell interface represent the

net rate of solution flux of the conserved solution quantities between neighbouring computa-

tional cells in the x- and y-coordinate directions, respectively. For any two adjacent cells, each

with a given solution state U, there may exist a discontinuity in the solution state amongst the

left- and right-hand sides of the intercellular boundary, i.e. between UL and UR, separating

these two adjoining cells. For example, in a two-dimensional computational domain composed

of quadrilateral cells, the left and right solution states could be UL = Ūi,j and UR = Ūi+1,j for

neighbouring cells (i, j) and (i+ 1, j) in the x-coordinate direction, following solution recon-

struction. The evaluation of the inviscid component of the flux at a particular Gauss quadrature

point along the cellular interface
(

i+ 1
2 , j
)

is hence

~Fi+1/2,j · ~ni+1/2,j = F̂
(

UL,UR, ~ni+1/2,j

)

, (5.25)

where F̂ is the inviscid component of the intercellular numerical flux in the x-coordinate direc-

tion that results from the solution to the Riemann problem. Along the boundaries of cell (i, j)
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that are given as remaining combinations of
(

i± 1
2 , j ± 1

2

)

, analogous formulations apply in the

x- and y-coordinate directions.

For a polytropic gas, the Riemann problem may either be solved exactly, as described in

the paper by Gottlieb and Groth [130], or alternatively using approximate methods, such as

those developed by Roe [131]; Harten, Lax and van Leer [132]; Einfeldt [133]; Toro, Spruce and

Speares [134]; Liou [135] and Linde [136], amongst others. In this research, the inviscid com-

ponent of the numerical flux at the cell interfaces is evaluated using the approximate Riemann

solver of Harten, Lax and van Leer [132] with contributions by Einfeldt [133]. For a simpli-

fied, one-dimensional computational domain that is aligned with the x-coordinate direction and

whose discontinuous, two-state initial data is prescribed by

U(x, t = 0) =

{

UL for x < 0

UR for x ≥ 0
, (5.26)

the self-similar solution U in the physical plane for all time t > 0 is taken to have the form

U
(

x
t = 0

)

=











UL for x
t ≤ λ−

U⋆ for λ− < x
t < λ+

UR for x
t ≥ λ+

, (5.27)

where the corresponding inviscid component F̂ of the intercellular numerical flux is given by

F̂
(

UL,UR,
x
t = 0

)

=











FL for x
t ≤ λ−

F⋆ for λ− < x
t < λ+

FR for x
t ≥ λ+

, (5.28)

in which FL = F (UL) and FR = F (UR). In Eq. (5.27), the intermediate solution state U⋆ is

given by

U⋆ =
λ+UR − λ−UL

λ+ − λ−
− FR − FL

λ+ − λ−
, (5.29)

while, in Eq. (5.28), the corresponding intermediary flux F⋆ is determined using

F⋆ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL) . (5.30)

The selection criteria residing within Eqs. (5.27) and (5.28) for choosing the appropriate con-

served solution state and corresponding inviscid component of the numerical flux are based upon

the magnitudes of the rightward- and leftward-moving characteristic signal speeds, denoted by

λ+ and λ−, respectively. In Eqs. (5.27) through (5.30), these finite acoustic modes are

λ+ = max
(

λmax
R , λ̂max

)

= max (uR + aR, û+ â) , (5.31)

λ− = min
(

λmin
L , λ̂min

)

= min (uL − aL, û− â) , (5.32)
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wherein the flow variables indicated by overhats denote Roe-averaged quantities. Within this

context, for an arbitrary solution variable denoted by ω, the corresponding Roe-averaged quan-

tity ω̂ is calculated according to a mass-weighting of the left and right states as

ω̂ =
ωL

√
ρL + ωR

√
ρR√

ρL +
√
ρR

. (5.33)

The exceptions to this rule include the Roe-averaged density, which is calculated via

ρ̂ =
√
ρLρR, and the Roe-averaged sound speed, which is computed according to â =

√

γp̂/ρ̂.

With knowledge of the correct characteristic wave speeds with which information in the com-

putational domain propagates, the evaluation of the inviscid component of the numerical flux

can be readily calculated by means of the aforementioned approximate Riemann solver, with

straightforward extension to two spatial dimensions for the applications presented herein.

5.2.3 Viscous (Elliptic) Flux Evaluation

The viscous or elliptic components Fv and Gv of the flux ~F at each cell interface represent

the net rate of diffusion of the conserved solution quantities between neighbouring cells in

the x- and y-coordinate directions, respectively. However, unlike the inviscid counterpart, the

viscous component of the numerical flux depends not only on the solution state U that exists

on the left- and right-hand sides of a given cell boundary of interest, but also depends on the

solution gradients ~∇U that arise along either side of the cell interface. The evaluation of the

viscous component of the flux at a particular Gauss quadrature point along the cellular interface
(

i+ 1
2 , j
)

between neighbouring cells (i, j) and (i+ 1, j) in the x-coordinate direction is hence

~Fi+1/2,j · ~ni+1/2,j = F̂v (UM, ~∇UM) , (5.34)

where F̂v is the viscous component of the intercellular numerical flux in the x-coordinate

direction and UM = (UL +UR) /2 and ~∇UM = (~∇UL + ~∇UR) /2 are two arithmetic means

for the reconstructed solution state and its corresponding gradients, respectively. Numerical

quadrature is performed in an analogous manner over the remaining cell faces of cell (i, j),

that are given as combinations of
(

i± 1
2 , j ± 1

2

)

, to yield the desired viscous fluxes through

each cell boundary. To avoid instabilities associated with even/odd decoupling and disjoint

solution states amongst adjacent computational cells, a central scheme using the diamond-path

reconstruction technique of Coirier and Powell [137] is applied.

5.2.4 Explicit Time Marching via Second-Order Runge-Kutta Method

Following the discretization of the spatial derivatives, a second-order, predictor-corrector time-

marching method is utilized to effectively integrate the semi-discrete form given by Eq. (5.12) in

time and thereby obtain temporally accurate solutions to most of the unsteady flow problems
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studied in this research (both inviscid and viscous). For the explicit, second-order accurate

Runge-Kutta (RK2) method, the advancement of the solution state U from an initial time level

n to that of a subsequent time level (n + 1) is performed through a temporary, intermediate

stage given by time level (n + 1
2). In predictor-corrector form, this temporal evolution of U

from U(n) to U(n+1) is written for quadrilateral cell (i, j) as

U
(n+1/2)
i,j = U

(n)
i,j − ∆t

Ai,j

4
∑

k=1

(

~F · ~n∆l
)(n)

i,j,k
, (5.35)

U
(n+1)
i,j = U

(n)
i,j − 1

2

∆t

Ai,j

4
∑

k=1

(

~F · ~n∆l
)(n+1/2)

i,j,k
. (5.36)

In Eqs. (5.35) and (5.36), the inviscid components F̂ and Ĝ of the intercellular numerical flux

arise from the method described in Section 5.2.2, whereas the viscous components F̂v and

Ĝv of the intercellular numerical flux arise from the method described in Section 5.2.3. The

physical time step ∆t in Eqs. (5.35) and (5.36) for advancing viscous flow-field solutions in time

throughout all cells simultaneously is set by considering both the inviscid Courant-Friedrichs-

Lewy (CFL) stability condition as well as the viscous von Neumann stability criterion:

∆t = nt ·min

[

∆l

(|~u|+ a)max
,
ρ∆l2

η

]

, (5.37)

computed in each coordinate direction (see the book by Lomax, Pulliam and Zingg [138]). For

solutions to the Euler equations, the latter stability criterion is omitted. In Eq. (5.37), the

constant nt = 0.60 in this study, relating to the stability contour of the RK2 time-marching

method, the velocity magnitude |~u| =
√
u2 + v2, the sound speed a =

√

γp/ρ and minimum and

maximum values are obtained from a global search through all cells within the computational

domain. This method considers a continuous, time-dependent path towards completion and is

terminated once the physical time measure at time level n reaches the desired solution time.

5.2.5 Implicit Time Marching and Newton’s Method

A fully implicit Newton-Krylov-Schwarz (NKS) iterative solution method, as developed by

Groth and Northrup [119–121], is also considered herein to reliably and efficiently integrate

the semi-discrete form of the system of the conservation equations given by Eq. (5.12). This

implicit method is particularly well-suited for obtaining highly resolved numerical solutions for

cases in which the stability limits of an explicit time-marching method would likely result in

severe limitations on the maximum allowable physical time step, as dictated by the smallest

cells in the mesh. While the explicit time marching scheme described above was found to be

sufficient in most cases, when used in combination with an anisotropic adaptive mesh refinement

gridding technique, the implicit iterative scheme has been shown to provide significant compu-

tational savings for the calculation of steady shock and fully resolved oblique shock reflection

problems (see the paper by Hryniewicki, Groth and Gottlieb [122] for details).
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Solution of the Steady-State Problem via Newton’s Method

Steady-state solutions of Eq. (5.12) satisfy

R(U) =
dU

dt
= 0, (5.38)

the solution of which requires the solution of a large, coupled, non-linear system of algebraic

equations. Newton’s method is used here to determine the solution of Eq. (5.38). Starting with

an initial estimate, U(0), successively improved estimates of the solution at each iteration level,

m, of Newton’s method can be obtained by solving the linear system

(

∂R

∂U

)(m)

∆U(m) = J(m)∆U(m) = −R(U(m)) (5.39)

where J = ∂R/∂U is the Jacobian of the residual vector with respect to the conserved solution

vector. Improved approximations of the solution are then given by

U(m+1) = U(m) +∆U(m), (5.40)

and the iterative procedure is repeated until a desired reduction in an appropriate norm of

the solution residual vector is achieved, that is, until ||R(U(m))||2 < ǫ||R(U(0))||2, where ǫ is
some small convergence tolerance typically in the range of ǫ ≈ 10−7−10−5 for the steady-state

computations presented herein.

Each iteration level in Newton’s method requires the solution of a large, sparse, and non-

symmetric system of linear equations given by Eq. (5.39). This system is of the general form

Jx = b, where x and b designate the solution and residual vectors, respectively. To solve for

such non-symmetric linear systems, the present algorithm employs a class of Krylov subspace

iterative methods known as generalized minimum residual (GMRES) methods [139] with an ad-

ditive Schwarz global preconditioner. The application of the GMRES method within Newton’s

method results in an overall solution algorithm that consists of a nested iterative procedure:

inner-loop iterations to determine a solution of the linear system at each Newton step using

the GMRES method and outer-loop iterations to solve the non-linear problem using Newton’s

method. For improved performance, an inexact Newton method is adopted wherein the GM-

RES method is only partially converged at each iteration level of Newton’s method, i.e. the

inner-loop iterations are deemed complete when ||R(m) + J(m)∆U(m)||2 ≤ ζ||R(m)||2, where ζ
is some small convergence tolerance (typically, ζ ≈ 0.01−0.5 herein).

Dual-Time-Stepping-Like Approach for Time-Accurate Computations

For the high-resolution solution of time-dependent or unsteady problems, such as those en-

countered in the study of viscous oblique shock reflections with fully resolved internal shock
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structures, the aforementioned implicit NKS method can be extended by adopting a dual-time-

stepping-like procedure [121, 140]. In the implicit dual-time-stepping method, a pseudo time,

τ , and pseudo time derivative of U are introduced, resulting in a modified semi-discrete form

of the governing equations given by

dU

dτ
+R∗(U) = 0, (5.41)

where the vector R∗(U) is the dual-time residual given by

R∗(U) =
dU

dt
+R(U). (5.42)

Steady state solutions in pseudo time of Eq. (5.41) are sought by applying an unconditionally

stable implicit second-order backward differencing formula (BDF2) to the temporal discretiza-

tion of the physical time derivative, yielding

R∗(U(n+1)) =
3U(n+1) − 4U(n) +U(n−1)

2∆t
+R(U(n+1)) = 0. (5.43)

Although numerous time-marching schemes are compatible for use in a dual-time stepping ap-

proach, the BDF2 exhibits favorable stability properties [140] and has been used quite success-

fully to facilitate computations for a variety of practical flow applications, such as those studied

by Northrup and Groth [120,121], Isono and Zingg [141], as well as Tabesh and Zingg [142].

For the unsteady case, solution of the modified non-linear system of algebraic equations

given by Eq. (5.43) is again obtained via Newton’s method and requires the solution of the

following linear system of equations at each Newton step:
[

(

3

2∆t

)

I+

(

∂R

∂U

)(n+1,m)
]

∆U(n+1,m) = J∗∆U(n+1,m) = −R∗(U(n+1,m)), (5.44)

Here, ∆U(n+1,m) is the mth Newton estimate for the solution change at physical time level n.

Successively improved estimates for the solution in physical time are given by

U(n+1,m) = U(n) +∆U(n+1,m). (5.45)

In Eq. (5.44), I denotes the identity matrix and J∗ = ∂R∗/∂U is the Jacobian of the mod-

ified residual vector. The physical time step, ∆t, is determined via Eq. (5.37), as per the

explicit case. In the dual-time-stepping approach, the iterative procedure is repeated until

||R∗(U(n+1,m))||2 < ǫ||R∗(U(n))||2, where a value of ǫ ≈ 10−3−10−2 was found sufficient for the

high-resolution, time-accurate computations presented herein.

5.3 Anisotropic Block-Based Adaptive Mesh Refinement

The spatial discretization of the partial differential equations is implemented on a computational

grid that subdivides the physical domain into a finite representation of geometric cells. To
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achieve the desired level of solution accuracy for a given numerical scheme, a minimum spatial

resolution is required to capture pertinent features of the flow field with sufficient detail and

precision. While a uniformly dense grid tessellation is a simple strategy to meet this demand,

it is inefficient computationally and inherently over-resolves localized regions of homogeneity

within a complex flow field.

Block-based AMR methods have been developed previously using both Cartesian and body-

fitted, multi-block meshes for fluid flows involving a wide variety of complicated physical and

chemical phenomena, as well as complex flow geometries, by Berger and co-researchers [143–

145], De Zeeuw and Powell [146], Powell, Roe and Quirk [147], Quirk and Hanebutte [148],

as well as Groth and co-researchers [149–154], amongst others. Despite the success of this

previous research, one major limitation of these isotropic AMR gridding strategies has been

the accurate and efficient treatment of multi-scale anisotropic physics. Recently, Zhang and

Groth [116] proposed a treatment that addresses this important challenge by considering a

parallel anisotropic block-based AMR method for solutions of a model linear advection-diffusion

equation as well as the fully non-linear Euler equations governing two-dimensional, compressible,

inviscid, gaseous flows. This work was shortly thereafter extended to applications in three-

dimensions by Williamschen and Groth [117] and Freret and Groth [118].

Solution of the coupled non-linear ODEs given by Eq. (5.12) yields area-averaged solution

quantities defined within quadrilateral computational cells. In the multi-block AMR scheme,

these cells are embedded in structured, body-fitted grid blocks and a flexible block-based hi-

erarchical binary tree data structure is used to facilitate automatic and local solution-directed

mesh adaptation of the individual grid blocks. The refinement procedure can be performed

independently in each of the ξ and ζ local computational coordinate directions for the body-

fitted grid block or domain of interest when dealing with strong anisotropic flow features. In

regions requiring increased mesh resolution, a single parent block can be partitioned into two

children blocks, with each new child block having the same number of cells as its parent block.

The resolution in the coordinate direction of refinement is thereby doubled, while remaining

unchanged in the other direction. Conversely, coarsening takes place by combining two children

blocks into one parent block. This process is elucidated in Fig. 5.2, where the advantages of

anisotropic AMR become apparent, in comparison to a traditional isotropic AMR approach, for

dealing with flows exhibiting large solution gradients in one direction but not in the other. To

ensure a smooth variation in the overall solution, refinement ratios are limited to 2:1 between

adjacent grid blocks and the minimum resolution of the computational domain is limited to

that of the initial, i.e. coarsest, mesh.

At regular intervals during the computation, the coarsening and/or refinement of blocks

within the flow field is directed using multiple physics-based refinement criteria. User-defined

percentage thresholds are specified to refine blocks with criteria above the refinement thresh-

old and to coarsen blocks with criteria below the coarsening threshold. This technique is
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(i)

(ii) (iii)

ξ-refinement

ξ-coarsening

ξ-refinement

ξ-coarsening
isotropic

isotropicrefinem
ent

refinem
ent

isotropic

isotropiccoarsening

coarsening

ζ-refine-
ment

ζ-coars-
ening

ζ-refine-
ment

ζ-coars-
ening

Figure 5.2: Refinement and coarsening of an 8× 8 cell block during (i) anisotropic AMR in the

ξ-direction, (ii) anisotropic AMR in the ζ-direction and (iii) isotropic AMR.

implemented to treat flows with disparate spatial and temporal scales and to properly detect

important flow features such as shock fronts, triple-shock confluence and reflection points, con-

tact surfaces, as well as both thermal and viscous boundary and shear layers, whilst limiting the

number of necessary computational cells required to accurately resolve these complex flow con-

figurations. For any given solution variable of interest, u, the direction-dependent refinement

criteria for anisotropic AMR are based on the measures

εξ = ~∇u ·∆X̃/|u| and εζ = ~∇u ·∆Ỹ/|u|, (5.46)

where ∆X̃ and ∆Ỹ are the vector differences between the mid-points of the cell faces in each

of the logical coordinate directions. These indicators provide a representative measure of the

total solution change across individual cells in each coordinate direction and regulate mesh

adaptation in regions containing strong anisotropic characteristics of the flow. In this research,

the direction-dependent refinement for anisotropic AMR is performed once every six time steps

and is specified using both the gradient of density as well as the gradient of flow velocity.

The benefits and capabilities of dynamic mesh adaptation via anisotropic AMR with nr

levels of refinement is demonstrated in Fig. 5.3. The initial mesh at time zero consists of only

two grid blocks depicted in Fig. 5.3(a), and each grid block consists of a set of 8-by-8 cells that

are not displayed. The shock discontinuity is shown as a dashed line in the first block. Before the

flow-field computations begin, anisotropic AMR is implemented to refine the grid blocks around

the shock discontinuity, and these results are shown in Fig. 5.3(b). During the computations

the shock-on-wedge flow field evolves with time, and so does the mesh, tracking and helping to

accurately define all complicated features of the flow field. Grid blocks are illustrated at early
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Figure 5.3: Grid blocks at various stages of a DMR simulation in air (Mi = 4.0, θw = 43.0◦, nr = 10):

(a) solution initialization, (b) initial anisotropic AMR application,

(c) early interaction of incident shock with a wedge, and (d) late interaction.

and late times in Figs. 5.3(c) and 5.3(d), respectively. These four mesh snapshots correspond

to the DMR flow-field configuration computed and shown earlier in Fig. 1.1(d).

A square grid block with equal side lengths ∆l and 8-by-8 interior cells features initial cell

side lengths of 2−3∆l. For nr levels of refinement, the smallest cell side length is reduced to

2−nr−3∆l. For nr = 10, this corresponds to the smallest cell side length of 1.22×10−4∆l and

a refinement factor 2nr given by 1024. The number of refinement levels is specified at the

beginning of each CFD flow-field simulation, and nr varies from 10 to 13 in this study for

unsteady shock-wave interactions with rigid wedges in inviscid and polytropic gases to generate

mesh-independent flow-field simulations with a high spatial resolution. At this specified level

of refinement, upwards of 2× 104 grid blocks (or approximately 1.28× 106 computational cells)

exist within the computed flow fields upon completion of the CFD flow-field simulations.

5.4 Parallel Implementation

The CFD solution technique used herein lends itself naturally to parallelization via block-

based domain decomposition, implemented with the C++ programming language as well as

the Message Passing Interface (MPI) library. The self-similar solution blocks are distributed
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amongst awaiting available processors within a multi-processor architecture, with more than

one block permitted on each processor core. For homogeneous multi-processor architectures,

the self-similar solution blocks are distributed and treated equally amongst the processors;

for heterogeneous systems, a weighted distribution of the blocks is adopted to allocate more

blocks to faster processors and fewer blocks to slower ones. A Morton ordering algorithm

is used to place neighbouring grid blocks on the same processor in an effort to mitigate in-

terprocessor communication and ensure efficient load balancing throughout the system [155].

In this research, the simulations were performed on a large-scale, high-performance IBM Sys-

tem x iDataPlex dx360 M2 computational cluster, built using 3780 nodes in total with two

quad-core 2.53 GHz Intel Xeon E5540 Nehalem x86-64 processors and 16 GB of main memory

per node. A highly scalable and efficient algorithm results.

5.5 Computational Domain, Boundary and Initial Conditions

The computational domain, boundaries, dimensions, and initial conditions ahead of the inci-

dent shock wave in region (1), are documented in Fig. 5.4. The flow properties behind the

incident shock in region (2) are obtained by using the Rankine-Hugoniot jump conditions given

by Eqs. (3.4) through (3.7). The wedge length of 1.2 m was selected so the incident shock could

interact and move along the wedge a distance of 1.0 m for all computed flow-field simulations

with incident shock Mach numbers Mi ranging from 1.0 to 4.0. The 1.0 m height and hori-

zontal pre-wedge distances ensured that the reflected wave would not reach the upper and left

boundaries during all CFD flow-field simulations.
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Figure 5.4: Initial and boundary conditions for the numerical simulation of unsteady shock-wave

reflections from a wedge.
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Algorithm Verification and Validation

Prior to carrying out the oblique shock-wave reflection simulations presented in Chapters 7 and 9

for the determination of the numerical transition boundary separating regular and Mach reflec-

tions, an investigation was performed to first verify and validate some aspects of solutions of

the parallel, anisotropic, block-based AMR, finite-volume scheme. The validity of the numeri-

cal solutions was assessed for several flow problems involving shocks. The solutions and mesh

resolution requirements for the prediction of steady one-dimensional planar shock structure in

a viscous gas was first investigated. Specifically, resolution requirements for mesh-independent

predictions of steady shock structure obtained using the CFD solution method were explored via

comparison to one-dimensional ODE solutions (see Chapter 4). Additionally, a direct compar-

ison of anisotropic and isotropic block-based AMR strategies was made for oblique shock-wave

reflections with under-resolved internal shock structures, in an effort to forecast the anticipated

computational savings of the anisotropic AMR approach when applied to a fully resolved case.

The predictive capabilities of the numerical solution method were also assessed for a range

of oblique shock-wave reflection problems considered in other previous studies. In particular,

the present numerical predictions were compared to the experimental results of Henderson and

Gray [156] for the diffraction of strong incident shock waves over rigid concave corners. Lastly,

to demonstrate the efficacy of the CFD algorithm, a fully resolved simulation of a single-Mach

reflection configuration was considered. The latter provides evidence of the validity of the

numerical framework in the prediction of unsteady oblique shock-wave reflection processes of

interest in this research.

59
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6.1 Mesh Resolution Study for Shock-Front Structure

In order to establish the resolution requirements of the numerical solution method for the

prediction of fully resolved shock waves, a mesh resolution study was conducted in which the

parallel, implicit, finite-volume scheme with anisotropic AMR was applied to the prediction of

one-dimensional stationary shock structure where the working gas was molecular nitrogen (N2).

The predictions of the finite-volume scheme were compared to several ODE results for shock-

front transitions (see Chapter 4). Such comparisons provide a useful validation of the high-

resolution CFD solution method in terms of its ability to compute accurate and highly resolved

internal structures of shock fronts.

Stationary solutions for a shock wave in molecular nitrogen with a shock Mach number

of Mi = 1.95 were considered. A simple rectangular domain made up of two adjacent square

blocks with 0.1 m side lengths was used in which the initial mesh was composed of 10 × 10 cell

blocks. The shock jump conditions were imposed as initial data and supersonic inflow bound-

ary conditions and subsonic outflow boundary conditions were enforced at the upstream and

downstream boundaries, respectively, so as ensure that the shock remains centered indefinitely

within the computational domain. The implicit NKS method described in Subsection 5.2.5 for

steady flows was used to quickly and efficiently converge the solution of this problem to steady-

state. Smoothing of the solution on the coarse initial mesh was achieved by performing 10

steps of an explicit multi-stage time-marching scheme with optimal smoothing, at which point

a steady-state solution was computed directly on the same mesh by using the NKS method

with limiter-freezing enabled to assist in solution convergence. Once the solution on the initial

grid was fully converged to steady-state, the process was repeated following the application of

a single level of anisotropic AMR. This process was then successively repeated until additional

levels of mesh refinement ceased to affect the variation of flow properties through the shock

front. The refinement and coarsening thresholds for the anisotropic mesh adaptation were set to

values of 0.125 and 0.075, respectively, encouraging refinement of the grid with each additional

level of refinement in regions with strong gradients in density, velocity and specific entropy.

The predicted steady-state solutions for the stationary shock, illustrating the asymptotic

convergence of the predicted profiles for the specific entropy as well as density through the shock

wave for 16 through 23 levels of anisotropic AMR are compared in Fig. 6.1. The corresponding

convergence histories for the computations on each successively refined mesh are presented in

Fig. 6.2, where it can be seen that the residual is reduced by at least 5 orders of magnitude

in an average of approximately 25 GMRES iterations per Newton step with 6 to 9 Newton

iterations on each grid. It is evident from the results of the mesh resolution study presented

in Fig. 6.1 that a total of 23 levels of anisotropic AMR are required to accurately capture and

fully resolve the transition of flow properties through the shock front, although it appears as

though as few as 20 levels would suffice and provide sufficient accuracy for many applications.
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Figure 6.1: Mesh resolution study illustrating the smooth but rapid transition of specific entropy and

density profiles through a one-dimensional, planar shock wave of strength Mi = 1.95 in molecular

nitrogen. The inset diagram highlights the convergence of specific entropy profiles at their maximum

peak value within the shock front.
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Figure 6.2: Steady-state convergence history with anisotropic AMR, corresponding to the preceding

results of the mesh resolution study presented in Fig. 6.1, for a one-dimensional, planar shock wave of

strength Mi = 1.95 in molecular nitrogen.

Note that in the case of 23 levels of refinement, the finest cells in the mesh are more than

8 × 106 (or 223) times smaller than the coarsest cells present in the computational domain.

As detailed in the inset of Fig. 6.1, the predicted peak in the specific entropy profiles through

the shock front nearly coincide for the solutions with 22 and 23 levels of anisotropic AMR,

signifying a mesh-independent solution has been achieved.
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The predicted shock-wave thickness obtained using the parallel, implicit, finite-volume

scheme with anisotropic AMR was found to be accurate to within 0.07% of the results ob-

tained from standard ODE solutions [85, 157], when 23 levels of anisotropic AMR were used.

In this study, the shock thickness was calculated from the velocity profile according to the

method presented by Taylor and Maccoll [158]. It is believed that this minor discrepancy in the

computed thickness is largely attributed to small differences in the physical modelling adopted

in the present finite-volume and ODE solutions. The good agreement between the ODE solu-

tions and finite-volume predictions provide a strong indication of the mesh densities required

for accurately predicting shock structure. A detailed listing that compares the accuracy of the

predicted shock thickness results obtained using the anisotropic AMR mesh with 16 through 23

levels of refinement is presented in table 6.1. In particular, the convergence of shock properties,

including the maximum peak specific entropy value, smax, as well as the shock thickness, ∆x,

are given as a function of the number of levels of refinement. It is evident from the results of the

table that, in order to ensure recovery of fully resolved, mesh-independent, shock transitions in

nitrogen under standard atmospheric conditions, the minimum cell sizes, ∆lmin, must be about

10−9 m, or 1 nm. Depending on the strength of the shock wave, this translates to requiring

approximately 100 to 200 cells to reside within the shock transition structure.

Table 6.1: Overview of the numerical results of the mesh resolution study for a one-dimensional, planar

shock wave of strength Mi = 1.95 in molecular nitrogen.

AMR ∆lmin smax ∆x ∣

∣

∣
1− ∆x

∆xODE

∣

∣

∣
·100%

levels (nm) (J/kg·K) (nm)

23 1.25 8521.74 211.3916 0.0609

22 2.50 8521.73 211.4462 0.0868

21 4.80 8521.66 211.5776 0.1490

20 9.40 8521.45 212.3932 0.5350

19 18.75 8520.52 215.2458 1.8853

18 38.50 8517.04 225.1612 6.5787

17 74.50 8502.50 271.0596 28.3044

16 151.75 8496.41 353.0420 67.1103

6.2 Anisotropic versus Isotropic AMR for Shock Reflections

The performance benefits of the anisotropic block-based AMR procedure were characterized

herein by assessing the total reductions in mesh size provided by using the anisotropic approach,

as opposed to the usual isotropic method, for an unsteady oblique shock-wave reflection prob-

lem. The particular case examined corresponds to the single-Mach reflection flow in nitrogen



Chapter 6. Algorithm Verification and Validation 63

examined previously by Henderson and Gray [156] with an incident shock Mach number of

Mi = 1.732 and a wedge angle of θw = 36.90◦. The simulations have been carried out using a

both AMR strategies (isotropic and anisotropic) with adapted meshes having refinement levels

ranging from 7 to 10. A fixed physical time step of ∆t = 1.25× 10−7 s was used. The AMR

procedure was applied once every 7 physical time steps and criteria based on the gradient of

density with refinement and coarsening thresholds of 0.125 and 0.075, respectively, were used

throughout the mesh refinement process.

The predicted distributions of the density for the single-Mach reflection flow obtained using

both isotropic and anisotropic AMR methods with refinement levels ranging from 7 to 10 are

depicted in Fig. 6.3. Each of predicted results are shown at a solution time of t = 9.34× 10−5 s

after the incident shock wave has passed the corner of the wedge and the oblique shock-wave

reflection process has ensued. The corresponding Reynolds number Rez = ρ1a1z/η1, based on

the distance z that the incident shock wave propagates up the wedge surface, is 1.670 × 106

for these computations. The grid blocks for the refined isotropic and anisotropic AMR meshes

are overlayed onto distributions of the density field and the plots reveal the regions of the do-

main where large density gradients exist and, as a result, the mesh concentrations are highest.

The latter correspond to regions near the incident and reflected shocks, Mach stem, viscous

shear layers, and thermal boundary layers, as expected. The total number of computational

cells, Ncells, as well as the refinement efficiency, η, are listed in each case. Here, the refine-

ment efficiency for both isotropic and anisotropic AMR is defined as η = 1 − Ncells/Nuniform,

where Nuniform denotes the total number of computational cells that would exist on a uniform,

isotropic mesh whose maximum refinement level equals the highest level of refinement in any

computational coordinate direction on the current mesh.

It is evident from Fig. 6.3 that the application of the anisotropic AMR scheme for the single-

Mach reflection pattern of interest provides reductions in the mesh size of upwards of 78% when

using up to 10 levels of refinement, when compared to the isotropic AMR method, while still

achieving the same overall solution accuracy. Assuming that the computational memory and

storage requirements scale linearly with the mesh size, this translates to a factor of nearly 5

in computational savings. It is estimated that similar or perhaps even slightly higher levels of

computational savings could be expected approaching the simulation of fully resolved, mesh-

independent oblique shock-wave reflections, wherein flow features such as the shock structure

as well as the combined viscous and thermal boundary layer lend themselves quite naturally

to resolution via an anisotropic AMR approach. The results indicate that anisotropic AMR is

markedly more effective than its isotropic counterpart when dealing with flows having strong

anisotropic features.
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(a) 7 levels of isotropic AMR with Ncells = 105200 and

η = 0.87158.

(b) 7 levels of anisotropic AMR with Ncells = 47100

and η = 0.94251.

(c) 8 levels of isotropic AMR with Ncells = 218000 and

η = 0.93347.

(d) 8 levels of anisotropic AMR with Ncells = 92000

and η = 0.97192.

(e) 9 levels of isotropic AMR with Ncells = 476300 and

η = 0.96366.

(f) 9 levels of anisotropic AMR with Ncells = 138400

and η = 0.98944.

(g) 10 levels of isotropic AMR with Ncells = 854600

and η = 0.98370.

(h) 10 levels of anisotropic AMR with Ncells = 189600

and η = 0.99638.

Figure 6.3: Comparison of isotropic and anisotropic AMR methods for simulating an unsteady

single-Mach reflection problem (Mi = 1.732 and θw = 36.90◦) in molecular nitrogen at

t = 9.34× 10−5 s after the initial interaction of the incident shock wave with the wedge corner.
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6.3 Comparisons with Experiments on Shock Reflections

The predictive capabilities of the parallel, implicit, finite-volume scheme with AMR have also

been assessed herein by comparing numerical predictions to published experimental measure-

ments for several unsteady oblique shock-wave reflection flows. The previous experimental re-

sults of Henderson and Gray [156] were again considered pertaining to the diffraction of shocks

over rigid concave corners in nitrogen. In addition to the single-Mach reflection case outlined in

Section 6.2, a relatively simple regular reflection pattern with Mi = 1.721 and θw = 52.36◦, as

well as a more complex double-Mach reflection configuration with Mi = 2.391 and θw = 46.17◦,

were all investigated. Numerical predictions for each one of these three flows was performed

(a) Regular reflection pattern with Mi = 1.721 and θw = 52.36◦.

(b) Single-Mach reflection pattern with Mi = 1.732 and θw = 36.90◦.

(c) Double-Mach reflection pattern with Mi = 2.391 and θw = 46.17◦.

Figure 6.4: Numerical schlieren images (right) replicating the oblique shock-wave reflection

configurations studied in the experiments of Henderson and Gray [156] (left) for the diffraction of

shock waves in molecular nitrogen over rigid concave corners. Experimental photographs reprinted

from Henderson and Gray [156].
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using 10 levels of anisotropic AMR based on the gradient of density, with refinement and coars-

ening thresholds set to 0.10 and 0.05, respectively. A CFL number of 0.2 was imposed for each

case and anisotropic AMR was applied once every 10 physical time steps.

The simulated or numerical schlieren images based on the predicted contours of the density

gradient for each of the three oblique shock-wave reflection cases are illustrated in Fig. 6.4

and compared to the actual experimental schlieren images. The regular, single-Mach, and

double-Mach reflection computations are shown at physical solution times of t = 5.13× 10−5 s,

6.67× 10−5 s and 4.19× 10−5 s after the incident shock wave has passed the wedge corner,

respectively. These values correspond to the propagation of the incident shock wave a distance

of z = 0.05 m up the surface of the inclined wedge. The Reynolds number Rez = ρ1a1z/η1,

based on this distance z, is 1.181 × 106 for these simulations. It is evident that the predicted

solutions of the shock-wave reflection process are very similar to those of the experiments in

each case. Flow features such as boundary layers and slipstreams, as well as locations of planar

incident, curved reflected, and resultant Mach-stem shock waves are reproduced with accuracy.

Moreover, the qualitative agreement between the numerical results and previous experimental

images provides evidence of the validity of the CFD algorithm for predicting unsteady, oblique

shock-wave reflections in gaseous media.

6.4 Simulation of Fully Resolved Oblique Shock Reflection

As a final demonstration of the capabilities of the parallel, implicit, anisotropic AMR finite-

volume scheme for predicting the physics of unsteady oblique shock-wave reflection processes,

a fully resolved simulation of the single-Mach reflection configuration studied previously is

briefly considered. The process of choosing an appropriate physical time step for use in the

implicit BDF2 approach is first described and then the results of the numerical simulation with

fully resolved shock-front transition profiles are presented and discussed. See the paper by

Hryniewicki, Groth and Gottlieb [122] for more details pertaining to the simulation of fully

resolved oblique shock reflections.

6.4.1 Physical Time Step Selection

For the time-accurate computation of unsteady compressible flows, implicit time-marching

schemes such as the BDF2 can provide the opportunity to achieve much larger physical time

steps than those permissible with the capabilities of an explicit time-marching method. How-

ever, the use of increasingly larger physical time steps tends to progressively degrade the overall

accuracy of a numerical solution. As a result, it is important to first ensure that reasonably

accurate numerical results can still be attained when sufficiently large physical time steps are

used within the solution method.
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In order to examine the effects of time step selection on solution accuracy, an unsteady

shock transition problem is studied, consisting of a one-dimensional planar shock wave with a

strength of Mi = 1.732 propagating in the positive x-direction through a nitrogen-filled shock

tube with straight walls (θw = 0◦). Numerical simulations were carried out using a variety of

fixed physical time steps with the BDF2 scheme described in Subsection 5.2.5 and the solutions

for the propagating shock were determined for a total solution time of 4.0× 10−9 s. Based on

the mesh resolution study of Section 6.1, 20 levels of anisotropic AMR are employed. This was

deemed to be sufficient to capture the full transition of flow properties through the shock wave.

The results obtained using the BDF2 time-marching method were compared to a reference

solution that was obtained using a similarly dense mesh and the explicit, fourth-order Runge-

Kutta (RK4) time-marching method with a small time step. The reference solution was assumed

to contain negligible error as it is calculated with a very small fixed physical time step.

The predicted temporal variations in the density at a selected point of interest produced by

the passage of the shock wave as obtained using the implicit BDF2 scheme with various fixed

physical time steps are compared to the predicted reference solution obtained using the explicit

RK4 time-marching method with a very small time step in Fig. 6.5. While it is evident that the

BDF2 scheme allows use of large physical time steps, it is observed from the results shown in

the figure that care must be exercised in selecting the time step. It should not be overly large so

as to corrupt the numerical accuracy of the predicted solution. From Fig. 6.5, it appears that

using a physical time step of ∆t = 5× 10−11 s provides the BDF2 scheme with a reasonably

large time step with a tolerable loss in accuracy, in comparison to the reference RK4 solution,

when 20 levels of anisotropic AMR are used. For this case, the more restrictive von Neumann

or diffusive stability limit generally dominates and dictates the time step selection for explicit

time-marching schemes. The viscous von Neumann number for this value of the physical time
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Figure 6.5: Temporal variation of density due to the passage of a shock wave of strength Mi = 1.732 in

nitrogen gas, captured using various fixed physical time steps for the fully implicit BDF2 approach.
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step is in the range from 7 to 8 for all cells in the computational domain. Conversely, it should

be noted that the inviscid CFL number is not exceedingly large for this value of the physical

time step and falls in the range from 2 to 3 for all cells in the computational domain.

6.4.2 Computation of a Fully Resolved Single-Mach Reflection

Numerical predictions of the unsteady single-Mach reflection pattern in nitrogen gas withMi =

1.732 and θw = 36.90◦ were obtained using the anisotropic AMR technique alongside the fully

implicit BDF2 time-marching method. The simulation was first initiated on a coarse mesh using

2 adjacent 10 × 10 cell blocks and then started on an ensuing refined mesh following 20 levels

of initial anisotropic AMR. Unsteady AMR was carried out once every 7 physical time steps,

wherein refinement and coarsening was governed by thresholds of 0.125 and 0.075, respectively.

This led to the refinement of the mesh with each additional level of anisotropic AMR in regions

where strong density, velocity and entropy gradients existed within the flow field. The fixed

physical time step used in the time-marching of the solution was ∆t = 5× 10−11 s, as per the

findings presented in Subsection 6.4.1.

The numerical results of the fully resolved simulation are illustrated in Fig. 6.6 at a solution

time of t = 5.14 × 10−7 s after the initial reflection of the incident shock wave from the

wedge surface. At this time, a total of 39,106 10× 10 cell blocks with 3,910,600 computational

cells are present in the simulation with 20 levels of anisotropic AMR, yielding a refinement

efficiency of 0.99999993. The Reynolds number Rez = ρ1a1z/η1, based on the distance z that

the incident shock wave propagates up the wedge surface, is 8.868 × 103 for this simulation.

The internal structures of the incident, reflected and Mach-stem shock waves are well resolved.

Furthermore, as with the under-resolved solution presented earlier, the predicted fully resolved

solution obtained using the parallel implicit anisotropic block-based AMR scheme agrees well

the experimental images of Henderson and Gray [156].

The application of the anisotropic AMR scheme was found to provide a reduction of 78% in

mesh size when compared to the isotropic AMR case, while achieving the same solution accuracy.

Additionally, a further 42% in computational savings was attained by exploiting the ability of

the implicit BDF2 scheme to take a larger time step than that permissible with the conditionally

stable explicit RK2 time-marching method without significantly compromising accuracy (see

the paper by Hryniewicki, Groth and Gottlieb [122] for details). It then follows that the overall

speedup provided by the combination of the anisotropic AMR and parallel fully implicit BDF2

time-marching methods for this fully resolved case is estimated to be a factor of more than 109,

when using 256 cores and assuming a 50% parallel efficiency due to latency and interprocessor

communication, compared to a serial computation performed using the explicit RK2 scheme on

a uniform mesh with a resolution equal to that of the finest mesh blocks.



Chapter 6. Algorithm Verification and Validation 69

Figure 6.6: Predicted density contours with overlaid 10× 10 cell blocks of an unsteady single-Mach

reflection problem (Mi = 1.732 and θw = 36.90◦) in molecular nitrogen at t = 5.14× 10−7 s after the

incident shock wave strikes the corner of the wedge. The internal structures of the incident, reflected

and Mach-stem shock waves are fully resolved; the inset diagrams illustrate the smooth but rapid

transitions of specific entropy and density measured along the dashed distances x′
i
, x′

r
and x′

m
, aligned

in the directions normal to each of these respective shock waves.



Chapter 7

Methodology for the Determination

of the Numerical Transition Bound-

ary Between RR and MR

The transition boundary between regular reflection (RR) and Mach reflection (MR), determined

analytically by von Neumann [5] based on the extreme-angle criterion, given by Eqs. (3.19) to

(3.26) and shown in Fig. 1.2, is examined by performing detailed numerical or CFD flow-field

simulations of planar shock reflections from an inclined wedge. The methodology for determin-

ing the numerical transition boundary precisely from CFD flow-field simulations requires the

following: (i) RR and MR (SMR, TMR and DMR) flow fields concentrated about a point on a

previous analytical transition boundary are computed accurately, and (ii) the wedge angle θw

and incident shock Mach number Mi for a point on the resulting numerical transition bound-

ary are then computed accurately based on the disappearance of the Mach stem from the MR

pattern and the first occurrence of the RR configuration. The first requirement is well met

by using the CFD algorithm described in Chapters 5 and 6. For the second requirement, a

methodology of post-processing the CFD flow fields is developed and described herein to per-

mit the determination of numerous coordinate points (Mi, θw) along the numerical transition

boundary with an accuracy that is much superior than that achievable by human inspection

and interpretation of CFD flow-field images (and also by human interpretation of experimental

flow-field photographs).
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7.1 Selected (Mi, θw)-Coordinates for CFD Simulations

Von Neumann’s [5] transition boundary between RR and MR (SMR, TMR and DMR), based

on the extreme-angle criterion, is used as a starting point for the determination of the numerical

transition boundary based on CFD flow-field simulations. Twenty coordinate points along this

transition boundary were selected, as given in tables 7.1(a) and 7.1(b) for argon and atmospheric

air, respectively. These points along the transition boundary are also plotted and numbered in

Figs. 7.1(a) and 7.1(b) as the sine of the wedge angle θw versus the incident shock Mach number

Mi. At each reference point (M⋆
i , sin (θ

⋆
w)) on the extreme-angle boundary, a set of coordinate

points (Mi, sin (θw)) normal to and crossing the extreme-angle boundary are specified for the

CFD flow-field simulations. These points marked with ‘×’ signs are normal to and cross the

extreme-angle boundary, as shown in points 6 and 15 in Figs. 7.1(a) and 7.1(b). These points,

which are used to define the CFD simulations, are determined by using an (α, β)-coordinate

Table 7.1: Reference points (RP) selected along von Neumann’s extreme-angle transition boundary.

(a) Argon.

RP M⋆
i θ⋆w (◦) φ⋆ (◦)

1 1.001 5.1010 −1.3040

2 1.006 12.2184 −3.4760

3 1.018 20.1533 −7.2071

4 1.041 28.0871 −14.3370

5 1.089 36.3558 −30.8163

6 1.182 43.4991 −57.6984

7 1.305 47.7127 −74.6128

8 1.435 49.9799 −81.7594

9 1.572 51.3539 −85.1728

10 1.715 52.2405 −86.9823

11 1.855 52.8110 −87.9754

12 2.0 53.2183 −88.5968

13 2.25 53.6680 −89.1901

14 2.5 53.9398 −89.4949

15 2.75 54.1151 −89.6662

16 3.0 54.2340 −89.7690

17 3.25 54.3179 −89.8342

18 3.5 54.3792 −89.8773

19 3.75 54.4252 −89.9068

20 4.0 54.4605 −89.9276

(b) Atmospheric air.

RP M⋆
i θ⋆w (◦) φ⋆ (◦)

1 1.001 5.0997 −1.3050

2 1.006 12.2012 −3.4904

3 1.018 20.0766 −7.2854

4 1.041 27.8798 −14.6235

5 1.089 35.8945 −31.7291

6 1.182 42.6428 −59.3245

7 1.305 46.4516 −76.1500

8 1.435 48.3727 −83.0757

9 1.572 49.4404 −86.3081

10 1.715 50.0537 −87.9713

11 1.855 50.3927 −88.8475

12 2.0 50.5908 −89.3669

13 2.25 50.7392 −89.8168

14 2.5 50.7684 −90.0089

15 2.75 50.7463 −90.0907

16 3.0 50.7032 −90.1222

17 3.25 50.6529 −90.1300

18 3.5 50.6021 −90.1267

19 3.75 50.5537 −90.1186

20 4.0 50.5090 −90.1086
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Figure 7.1: Reference points (M⋆

i
, sin (θ⋆

w
)) along von Neumann’s extreme-angle boundary between RR

and MR in (a) argon and (b) air, and superposed (α-β)-coordinate systems showing the locations of

CFD flow-field simulations normal to each respective extreme-angle boundary.

system that is translated from the origin (Mi = 1, sin (θw) = 0) to one of the points (e.g. number

6), and then rotated such that the α-abscissa and β-ordinate are respectively perpendicular and

parallel to the extreme-angle boundary. The transformation that renders the CFD simulation

points is written in terms of the rotation matrix of sines and cosines as

[

Mi −M⋆
i

sin(θw)− sin(θ⋆w)

]

=

[

cos (φ⋆) − sin (φ⋆)

sin (φ⋆) cos (φ⋆)

][

α

β

]

, (7.1)

which is summarized for convenience as

Mi = M⋆
i + α cos (φ⋆)− β sin (φ⋆) , (7.2)

sin (θw) = sin (θ⋆w) + α sin (φ⋆) + β cos (φ⋆) , (7.3)

wherein

φ⋆ = tan−1

(

d sin (θw)

dMi

∣

∣

∣

∣

⋆

)

− 90◦ (7.4)

is the rotation angle and d sin (θw) /dMi denotes the slope of the extreme-angle boundary at the

reference coordinates M⋆
i and sin (θ⋆w). This derivative was defined previously by Eq. (3.32).
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The CFD simulation points are obtained by setting the parameter β = 0 in the transformation

equations given by Eqs. (7.1) to (7.3). The parameter α is then varied such that the CFD

simulation points become concentrated in the vicinity of the numerical transition boundary

where the Mach stem disappears, which might occur below (α > 0), on (α = 0), or above (α < 0)

the extreme-angle transition boundary.

7.2 Mach-Stem Length and Triple-Point Trajectory Angle

A characteristic length of the Mach stem is required for the determination of the numerical or

CFD transition boundary, because this length in Mach-reflection configurations diminishes to

zero as the flow-field simulations are computed closer and closer to the numerical transition

boundary. The characteristic length L′ selected for this study is depicted in Fig. 7.2 for the

case of a single Mach reflection. This physical length is given by L′ = Vmδt− Viδt/cos (θw), in

which Vm denotes the speed of the foot of the Mach stem along the wedge surface, Vi/ cos (θw)

is the speed of the incident shock along the wedge, and δt denotes the time increment after the

incident shock first encounters the wedge apex and a regular- or Mach-reflection pattern begins.

L′

Mach
stem

incident
shock

reflected
shock wedge

surface

upper
boundary

lower
boundary

slip
surface

χ
θw

Figure 7.2: Characteristic Mach-stem length L′.

The physical length L′ as defined above is inconvenient as it increases continuously from

zero with increasing time (δt) for Mach reflections. Hence, the length is normalized by dividing

it by Viδt/ cos (θw) to overcome this difficulty and one then obtains the normalized length

L =
Vm
Vi

cos (θw)− 1 =
Mm

Mi
cos (θw)− 1, (7.5)

which is constant for the case of a self-similar flow field. In the case of a regular-reflection

configuration (without a Mach stem), this normalized length L should be zero. The normalized

length L is calculated for each CFD flow-field simulation of regular and Mach reflection patterns,

as described in the following sections 7.3 to 7.5.

The triple-point trajectory angle χ, defined in Fig. 7.2, is given by

tan (χ) =
1

tan (θw)

[

1− Vi
Vm cos(θw)

]

=
1

tan (θw)

L

1 + L
. (7.6)
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This important relationship between the Mach-stem length L and the angle χ between the

wedge surface and the triple-point trajectory is derived by assuming that the incident shock

and Mach stem are straight lines and the Mach stem is perpendicular to the wedge surface.

7.3 Incident Shock Trajectory and Speed

The trajectory and speed of the incident shock are determined by post-processing data obtained

from each CFD flow-field simulation, rather than accepting the theoretical shock speed based

on the Rankine-Hugoniot equations that were used to initialize the CFD simulation. In the

CFD simulations studied here, which are based on solving Euler’s equations for inviscid flow,

the incident shock front is a rapid transition of flow-field properties typically spread over 3 to

12 cells in this study due to numerical viscosity (note that there is no physical viscosity in these

cases). The objective is to determine the distance-time trajectory of the center of the incident

shock-front transition and calculate therefrom the shock-front speed as the time derivative of

the trajectory distance-time data.

The data collected from each CFD simulation to calculate the incident shock trajectory and

speed are briefly described first. During each CFD simulation, all of the cells along the upper

boundary, as illustrated in Fig. 7.3, are probed every time step just before AMR is activated

(i.e. at every sixth time step), in the order of the cells ahead to behind the incident shock. This

probing is done by using a set of specified pressures given by

p̂k = p⋆1 +
k

K
(p⋆2 − p⋆1) , k = 1, 2, . . . ,K − 1, (7.7)

in which p⋆1 and p
⋆
2 are the theoretical pre- and post-shock pressures, and K = 20 is a convenient

cell
upper bound-

ary cellsp2
*

p1
*

p

x

shock-front
centerline

xc

pc

shock-front
transition

Figure 7.3: Capturing the incident shock-front transition by probing the upper-boundary cells to

determine the transition pressure and flow-field locations.
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number when the number of discrete incident shock-front data points varies from 3 to 12.

On each sweep k, the pressure p̂k is compared to the cell pressure pcell. If p̂k > pcell, the

sweep continues to the next cell. When p̂k < pcell, all relevant cell data for defining the

incident shock transition are stored for post-processing, and the sweep of probing successive

cells for pressure level k is terminated. This probing scheme of successive upper-boundary

cells effectively captures the incident shock-front transition as a collection of discrete pressure-

distance data at a given time step, as also illustrated in Fig. 7.3. The sweeps for the p̂k levels

can gather repeated data from the same cell. All redundant data are not needed to define the

shock-front transition, so they are eliminated from the collected data sets.

The continuous shock-front transition can be constructed by means of a curve fit to the

collected data, as shown by the dashed line through the discrete pressure-distance data. Then,

the location xc of the center of this transition, where the pressure is given by pc =
1
2 (p

⋆
1 + p⋆2),

can be obtained, as depicted by the vertical dashed line in Fig. 7.3. Note that p⋆2 is the

theoretical Rankine-Hugoniot pressure stemming from the specification of the incident shock

Mach number Mi used to initiate the computational flow-field simulations.

The shock-front transition is constructed from the interior cell pressures defined by pi, with

i = 1, 2, . . . , n, versus the cell center distances zi = xi − xapex along the upper boundary of

the computational domain. The symbol n denotes the total number of discrete cell distances

and pressures in the shock transition and xapex is the horizontal distance of the wedge apex on

the lower boundary. The center of the shock-front transition propagates through the upper-

boundary cells with centers located by the coordinates (xi,j , yi,j), in which the indices i and j

denote the arrangement of the cells in the x and y directions. The variations in the vertical cell

distances yi,j from the upper wall do not influence the incident shock-front trajectory and speed

because the shock-front is assumed normal to the upper boundary, so j and yi,j are omitted

from the analysis and equations.

The continuous transition z = z(p) of the incident shock front can be represented as

z = zi + α̂
[

ln (p− p⋆1)− ln (pi − p⋆1)
]

+ β̂
[

ln (p⋆2 − p)− ln (p⋆2 − pi)
]

+ γ̂, (7.8)

with the property averages defined by

zi =
1

n

n
∑

i=1

zi, (7.9)

ln (pi − p⋆1) =
1

n

n
∑

i=1

ln (pi − p⋆1) , (7.10)

ln (p⋆2 − pi) =
1

n

n
∑

i=1

ln (p⋆2 − pi) . (7.11)

The three unknown coefficients in this curve-fit equation, denoted by α̂, β̂ and γ̂, are determined

by means of a standard least-squares fitting method. Note that this logarithmic form of the
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curve-fit equation occurs in theoretical shock-front transitions obtained by Rankine [159] for

heat conduction only and Taylor [160] and Becker [88] for both heat conduction and dynamic

viscosity, although the shock-front structure in the CFD simulations originates from numerical

viscosity (i.e. from ensuring non-oscillatory solution behaviour).

The global error is defined as the sum of the square of the local errors and given by

E =
n
∑

i=1

{

wiα̂
[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

+wiβ̂
[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

+ wiγ̂ − wi (zi − zi)

}2

(7.12)

and the weights wi used in this study are defined by

w2
i =

7

max
(

1, 7
∣

∣

∣

zi−z′o
∆zo

∣

∣

∣

) . (7.13)

The square of the weights w2
i ranges from a maximum value of 7, when (zi − z′o) /∆zo is zero

or close to zero, to much small values when (zi − z′o) /∆zo becomes large. Illustrations of z′o,

zi − z′o and ∆zo are shown in Fig. 7.4.

p1
*

p2
*

po

∆zo(zi,pi)

(zi+1,pi+1)
z'o

∆po

zo on the
transition

p

z

Figure 7.4: Definitions of po, ∆po, z
′

o
, zo and ∆zo for the incident shock-front transition.

The objective of the curve fit is to construct a continuous shock-front transition from the

discrete distance zi versus pressure pi data and therefrom determine the location zo on the

transition for some specified pressure po (normally the center value). In this process an ap-

proximate value of zo is denoted by z′o, and it is obtained from the intersection of two straight

lines; one for the constant pressure po and the other that joins the two coordinates pairs (zi,pi)

and (zi+1,pi+1) that bracket the specified value of po. Also defined in Fig. 7.4 are the terms

∆zo = zi+1−zi and ∆po = pi+1−pi, such that z′o = zi+∆zo (po − pi) /∆po. When the curve fit

has been constructed, the more accurate value of the distance zo on the shock-front transition

is calculated by means of Eq. (7.8) with the pressure p = po. For the center of the shock-front

transition, z = zo → zc, and p = po → pc =
1
2 (p

⋆
1 + p⋆2).

In the standard least-square curve fit the three derivatives ∂E/∂α̂, ∂E/∂β̂ and ∂E/∂γ̂ of
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Eq. (7.12) are determined as

dE

dα̂
= 2

n
∑

i=1

{

wiα̂
[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

+ wiβ̂
[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

+wiγ̂ − wi (zi − zi)

}

· wi

[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

, (7.14)

dE

dβ̂
= 2

n
∑

i=1

{

wiα̂
[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

+ wiβ̂
[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

+wiγ̂ − wi (zi − zi)

}

· wi

[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

, (7.15)

dE

dγ̂
= 2

n
∑

i=1

{

wiα̂
[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

+ wiβ̂
[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

+wiγ̂ − wi (zi − zi)

}

· wi, (7.16)

and subsequently set to zero to yield the matrix equation







a b c

b d e

c e f













α̂

β̂

γ̂






=







g

h

i






(7.17)

for the solution of α̂, β̂ and γ̂. The elements of the square matrix and right-hand vector are

given by

a = w2
i

[

ln (pi − p⋆1)− ln (pi − p⋆1)
]2
, (7.18)

b = w2
i

[

ln (pi − p⋆1)− ln (pi − p⋆1)
] [

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

, (7.19)

c = w2
i

[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

, (7.20)

d = w2
i

[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]2
, (7.21)

e = w2
i

[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

, (7.22)

f = w2
i , (7.23)

g = w2
i (zi − zi)

[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

, (7.24)

h = w2
i (zi − zi)

[

ln (p⋆2 − pi)− ln (p⋆2 − pi)
]

, (7.25)

i = w2
i (zi − zi), (7.26)

and these are averages like those defined earlier by Eqs. (7.9) to (7.11). The solution of Eq. (7.17)
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follows as

γ̂ =
(ad− b2)i+ (bc− ae)h+ (be− cd)g

(ad− b2)f + (bc− ae)e+ (be− cd)c
, (7.27)

β̂ =
ah− bg

ad− b2
+
bc− ae

ad− b2
γ̂, (7.28)

α̂ =
dg − bh

ad− b2
+
be− cd

ad− b2
γ̂, (7.29)

for the curve-fit coefficients. Note that when the curve fit is done without using weights (i.e.

w2
i = 1), then c = 0, e = 0, f = 1 and i = 0 from Eqs. (7.20), (7.22), (7.23) and (7.26),

such that the coefficient γ̂ is then equal to zero. This occurs because of the specific curve-fit

construction given by Eq. (7.8).

The resulting continuous shock-front transitions of the incident shock by the preceding curve

fits to CFD flow-field data are illustrated in Fig. 7.5(a) for reference points RP–1, 5 and 19 with

α = 0.0017, −0.0023 and −0.011 in argon and in Fig. 7.5(b) for reference points RP–4, 8 and

16 with α = 0.005, 0.005 and 0.0 in air (all normal to the extreme-angle transition boundary).

Shown also are the interpolated shock-front transition centers from using p = pc =
1
2 (p

⋆
1 + p⋆2)

to obtain z = zc by using Eq. (7.8). These results were chosen from CFD runs with different

shock Mach numbers to illustrate the shock-front constructions for the cases when the number

of discrete distance-pressure data were 9, 3 and 6 for reference points RP–1, 5 and 19 in argon

and 11, 6 and 4 for reference points RP–4, 8 and 16 in air, respectively. These illustrations
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Figure 7.5: Continuous transitions of the incident shock front constructed by curve fits

using discrete CFD flow-field data.
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are typical of all curve fits for the incident-shock front. It is quite apparent that the curve-

fit expression given by Eq. (7.8) is successful in capturing the incident shock-front transitions

associated with the numerical solutions to the Euler equations.

The trajectory of the incident shock front along the upper boundary during a CFD run

occurs from its start before the wedge apex and ends when the shock progresses along the upper

boundary by the distance (1 m)cos(θw) and along the wedge surface by 1 m. The trajectory

consists of numerous zc values determined at every sixth time step during the CFD run. Such

results are illustrated in Fig. 7.6(a) for reference points RP–2, 8 and 17 with α = 0.0018,

−0.0046 and −0.0167 in argon and in Fig. 7.6(b) for reference points RP–3, 10 and 18 with

α = 0.005, −0.023 and 0.0 in air, respectively. Each shock-front trajectory is plotted as a chain

of numerous small dots, each dot corresponding to the time t at which the shock-front curve-fit

equation gave the transition center value zc.

The shock-front trajectories that are presented in Fig. 7.6 for the incident shock are typical

of those obtained in this study for all of the reference points and different values of α. The

shock-front trajectories look extremely linear. However, the actual advancement of the center

of the incident shock in the CFD simulations is always forward but somewhat nonuniform or

jerky with distance. This jerkiness in movement is very small and it decreases when the CFD

time steps (∆t) are reduced. Hence, trajectory jerkiness is less severe when using more levels

of AMR in the CFD simulations, and also when flow-field simulations contain complex flow

structures with larger flow velocities and sound speeds, because the time steps are thereby

reduced.

The curve fit to the incident shock-front trajectory data (zi = zc,i, ti) is given by the second-

order polynomial

z = zi + â
(

t− ti
)

+ b̂
(

t2 − t2i

)

, (7.30)
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Figure 7.6: Incident shock-front trajectories.
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along with relevant intermediate equations and the curve-fit coefficients b̂ and â given by

b̂ =
ae− bd

ac− b2
, (7.31)

â =
d− bb̂

a
, (7.32)

where

a =
(

ti − ti
)2

= t2i − ti
2
, (7.33)

b =
(

ti − ti
)

(

t2i − t2i

)

= t3i − tit2i , (7.34)

c =
(

t2i − t2i

)2
= t4i − t2i

2
, (7.35)

d = (zi − zi)
(

ti − ti
)

= ziti − ziti, (7.36)

e = (zi − zi)
(

t2i − t2i

)

= zit2i − zit2i . (7.37)

The first-order solution is obtained by setting b̂ = 0 in Eqs. (7.30) to (7.32). The data used for

the incident shock-front curve fits are always confined to the region of z from 10 cm to the end of

the computer run when the incident shock reaches the final distance of about ze = (1 m) cos (θw)

along the top boundary, or a corresponding distance along the wedge of 1 m. The curve fits are

more accurate when the distance-time data corresponds to the incident shock reflecting from

the wedge surface, because the time steps are then smaller than when the incident shock has

not yet reached the wedge apex.

The goodness of the curve fit is tied closely to the standard deviation of the data from the

fitted curve, which is calculated as

σz =

[

1

m

m
∑

i=1

{z(ti)− zi}2
]1/2

, (7.38)

for which m is the number of (zi, ti) data pairs. For the incident shock in this study, the

standard deviations were approximately 18, 9 and 4 microns for AMR levels nr = 10, 11 and

12, respectively, which correspond to about 1/8 of the size of the smallest computational cell

edges within the flow field.

The incident shock-front velocity follows from the derivative of Eq. (7.30) and is given by

Vi = â+ 2b̂te, (7.39)

in which te is the time at the end of the computer run corresponding to the final distance ze. For

the trajectory data illustrated in Fig. 7.6(a) for RP–2, 8 and 17 in argon, the processing of the

CFD simulations via Eq. (7.39) yielded incident shock-front velocities of 322.3984, 458.8673 and

1039.7366 m/s. These computed values are in excellent agreement with the corresponding the-

oretical values from the Rankine-Hugoniot equations that were utilized to initiate the computer
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runs, differing by 0.0019, 0.0016 and 0.0042%, respectively. For the trajectory data illustrated

in Fig. 7.6(b) for RP–3, 10 and 18 in air, the post-processing of the CFD simulations via

Eq. (7.39) yielded incident shock-front velocities of 352.151, 590.216 and 1205.028 m/s. These

computed values differ from the corresponding theoretical values by 0.02, 0.008 and 0.005%,

respectively. Although the incident shock trajectories in the CFD simulations are extremely

linear and a straight-line fit could have been used to fit the data instead of the second-order

polynomial, the second term 2b̂te ≪ â in Eq. (7.39), such that the incident shock velocity Vi is

dictated primarily by the value of â from Eq. (7.32).

7.4 Mach-Stem Trajectory and Speed

In order to categorize the shock-reflection behaviour, the objective is to determine the distance-

time trajectory of the center of the Mach-stem shock front along the wedge and calculate

therefrom the Mach-stem speed from the time derivative of this trajectory. Although the

process is similar to that for the incident shock front in the previous section, there are some

significant differences to explain and difficulties to overcome.

During the collection of CFD simulation data that is used to perform the Mach-stem tra-

jectory calculations, all of the cells along the wedge surface, in the order of the cells ahead to

behind the Mach stem, are probed for each time step just before AMR is activated (i.e. every
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Figure 7.7: Capturing the Mach-stem shock-front transition by probing the cells along the wedge to

determine the transition pressures and flow-field locations.
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sixth time level), as illustrated in Fig. 7.7. This probing procedure is done with the set of

specified pressures

pk = p⋆1 +
k

K
(p⋆2 − p⋆1) , k = 1, 2, . . . , 3K, (7.40)

in which p⋆1 and p
⋆
2 are the pre- and post-shock pressures of the incident shock front, and K = 20

is a convenient number as used previously in Eq. (7.7). The pressure difference between pressure

levels (i.e. pk+1−pk) remains the same as that used for the incident shock front, but the pressure

range has been increased substantially from K − 1 to 3K, because the Mach-stem shock (when

it occurs) is not only stronger than the incident shock but its post-shock pressure p⋆3 is also

unknown. These additional upper sweeps are required to ensure that the entire shock-front

transition is captured at each time level of interest, as depicted in Fig. 7.7.

The data collected from the cell centers consist primarily of the cell pressures pi,j and

locations (xi,j ,yi,j). These data are converted into the pressures pi (j is ignored) and the

distances zi, along the lower boundary before the wedge apex and then along the inclined

wedge surface, by means of

zi =















xi − xapex before wedge apex,
xi−xapex

cos(θw) RR at wedge surface,

h cos (ω) MR at wedge surface,

(7.41)

with relevant information shown in Fig. 7.7. Note that

h =

√

(xi − xapex)
2 + (yi − yapex)

2, (7.42)

h cos (ω) = (xi − xapex) cos (θw) + (yi − yapex) sin (θw) , (7.43)

so that the calculations of the hypotenuse h, small angle ω and h cos (ω) are not required,

because h cos (ω) in Eq. (7.41) is replaced by the results of Eq. (7.43). The first calculation

of zi covers the case of the incident shock front moving along the lower boundary, and this is

equivalent to that used for the incident shock front moving along the upper boundary. The

second calculation of zi is for the case of regular reflection (without a Mach stem) when the

incident shock front contacts and moves along the wedge surface, and the distance extrapolation

to the wedge surface is vertically downward or parallel to the incident shock front. The third

calculation of zi covers the last case of Mach reflection when the Mach stem contacts the wedge

surface and the extrapolation is parallel to the foot of the Mach stem, which is assumed normal

to the wedge surface.

Each set of data for the incident or Mach-stem shock front at the wedge surface is numbered

i = 1, 2, . . . , n′′, and it contains repeated data (i.e. same shock-front pressures and locations).

These redundant data are not needed to define the shock front, so they are removed, and

the number of data n′′ is thereby reduced to n′. This data set still contains additional data

collected from the flow-field behind the shock front, stemming from the upper sweeps that pass
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the shock-front transition (see Fig. 7.7). This extraneous data is also removed from the data

set by doing the calculations

r =
zi − zi+1

∆z
, (7.44)

where

∆z =
z1 − zi
i− 1

, (7.45)

from i = 3, 4, . . . , n′ − 1. If the ratio r of the current cell-center separation by the average

separation is less than 1.1 for 3 ≤ i ≤ n′ − 1, then all of the data is kept and n = n′. However,

if r > 1.1 for a particular value of i, then the calculations stop and n = i. This truncates all of

the extraneous data behind the shock front, because n′ is reduced to n. The data set (zi,pi),

i = 1, 2, . . . , n now contains data only for the shock-front transition at the wedge surface. Note

that this previous procedure is effective in capturing the shock-front transition data, because

the AMR in the CFD algorithm concentrates cells of small widths within and near shock fronts.

The continuous shock-front transition z = z(p) for the incident-shock or Mach-stem data is

then obtained by using the curve-fit equation

z = zi + α̂
[

ln (p− p⋆1)− ln (pi − p⋆1)
]

+ β̂
[

ln (p⋆3 − p)− ln (p⋆3 − pi)
]

+ γ̂, (7.46)

with the post-shock pressure p⋆3 replacing p
⋆
2 in Eqs. (7.8) to (7.11). This post-shock pressure p⋆3

and the curve fit to the shock-front data is determined in the following manner and illustrated

in Fig. 7.8. A value of p⋆3 is guessed to be slightly greater than pn from the shock-front data set.

The curve-fit coefficients α̂, β̂ and γ̂ in Eq. (7.46) are determined by using Eqs. (7.17) to (7.26)

with p⋆3 replacing p⋆2. The corresponding global error E is then calculated by using Eq. (7.12),

once again with p⋆3 replacing p⋆2, and the derivative

dE

dp⋆3
= 2

n
∑

i=1

{

wiα̂
[

ln (pi − p⋆1)− ln (pi − p⋆1)
]

+ wiβ̂
[

ln (p⋆3 − pi)− ln (p⋆3 − pi)
]

+wiγ̂ − wi (zi − zi)

}

· wiβ̂
[

(p⋆3 − pi)
−1 − (p⋆3 − pi)

−1
]

(7.47)

E1

(p
3
* )

1

E'1< 0

E2

(p
3
* )

2

E'2< 0

E3

(p
3
* )

3

E'3< 0

E4

(p
3
* )

4

E'4> 0

(p
3
* )

5

Cubic polynomial between
points 3 and 4 yields the

new estimate of (p
3
* )

5
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Figure 7.8: Determining the post-shock pressure p⋆
3
and curve fit of the Mach-stem shock front by

minimizing the global error.
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is calculated. This derivative should be negative if the value of p⋆3 is sufficiently close to that

of pn. The value of p⋆3 is then increased and the procedure is repeated until the derivative

changes to a positive value. When this occurs the minimum in the global error E has been

bracketed between the last two choices of p⋆3, as illustrated in Fig. 7.8. A cubic polynomial is

then constructed between the two data points with known slopes that bracket the global-error

minimum to determine the new estimate of p⋆3, which is obtained by setting the derivative of

the cubic polynomial to zero. The global error E can also be calculated for this new estimate of

p⋆3. The process is iterative by applying the cubic polynomial between points that bracket the

minimum more closely, yielding a final accurate result for p⋆3. When this iteration is finished,

the curve fit of the shock front is also completed, and the value of the shock-front center zc is

obtained by using p = pc =
1
2 (p

⋆
1 + p⋆3) in Eq. (7.46).

The resulting continuous shock-front transitions of the Mach stem by the preceding curve

fits to CFD flow-field data are illustrated in Fig. 7.9(a) for reference points RP–6, 11 and 14 with

α = 0.0, −0.0032 and −0.007 in argon and in Fig. 7.9(b) for reference points RP–3, 9 and 17

with α = 0.015, 0.004 and −0.0138 in air (all normal to the extreme-angle transition boundary).

Shown also are the interpolated shock-front transition centers from using p = pc =
1
2 (p

⋆
1 + p⋆3)

to obtain z = zc in Eq (7.46). These shock-front constructions are for three cases with discrete

distance-pressure shock transition data of 10, 5 and 7 for reference points RP–6, 11 and 14

in argon and 10, 6 and 4 for reference points RP–3, 9 and 17 in air, respectively. These

constructions are typical of all curve fits for the Mach stem occurring in this study. It is readily
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Figure 7.9: Continuous transitions of the Mach-stem shock front constructed by curve fits

using discrete CFD flow-field data.
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apparent that the curve fit given by Eq. (7.46) successfully captures the Mach-stem shock-front

transitions associated with the numerical solutions to the Euler equations.

The trajectory of the center of the shock front of the Mach stem along the wedge surface

during a CFD run, from its start at the wedge apex and ending when it progresses along the

wedge surface by about 1 m, is obtained from numerous zc values determined at every sixth

time level during the CFD run. Such results are illustrated in Fig. 7.10(a) for reference points

RP–3, 7 and 20 with α = 0.009, 0.0125 and −0.01 in argon and in Fig. 7.10(b) for reference

points RP–3, 8 and 19 with α = 0.005, 0.004 and 0.0 in air, respectively. Each shock-front

trajectory is plotted as a chain of numerous small dots, each dot corresponding to the time t

at which the curve fit gave the center value zc. The Mach-stem trajectories are slightly kinked

at the wedge apex (z = 0 cm), because the shock speed along the lower boundary before the

wedge apex essentially equals that of the incident shock, but later along the wedge surface the

Mach-stem shock is stronger than the incident shock and its speed is larger.

The shock-front trajectories that are presented in Fig. 7.10 for the Mach stem are typical

of those obtained in this study for all of the reference points and different values of α. The two

portions of each shock-front trajectory are almost linear, and the actual advancement of the

center of the Mach-stem transition in the CFD simulations is always forward but jerky with

distance, very similar to that for the motion of the incident shock along the upper boundary.

The speed of the Mach stem along the wedge surface is determined by fitting a second-degree

polynomial to the distance-time data, as given earlier by Eq. (7.30) for the incident shock wave.

The distance-time data used for this curve fit spans the distances along the wedge from 50 cm

to the end of the CFD run at 100 cm, or slightly larger because the Mach stem is ahead of

the incident shock front. The time derivative of the curve fit then yields the Mach-stem speed

Vm = â+ 2b̂te at the end of the shock-front trajectory.
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Figure 7.10: Mach-stem shock-front trajectories.
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The goodness of the polynomial fit is tied closely to the standard deviation of the data from

the second-order curve fit, and the standard deviations given by

σz =

[

1

m

m
∑

i=1

{z(ti)− zi}2
]1/2

(7.48)

can vary markedly for the case of the Mach stem, in contrast to those reported earlier for

the incident shock. For regular reflection from the wedge surface the standard deviations are

typically 2 to 4 times as high as those for the incident shock. For Mach reflections with large

Mach stems that emerge and stabilize rapidly as the wedge apex is encountered and passed,

the standard deviations are 2 to 20 times higher than those for the incident shock. However,

for Mach reflections close to the numerically determined transition boundary, the emergence of

an extremely small Mach stem and its stabilization with distance along the wedge is somewhat

erratic, and the standard deviations are much larger as a result. In such cases the Mach stem

can either emerge suddenly and then decelerate or it can emerge slowly and then accelerate to a

final speed. The distance-time trajectories of such Mach stems are somewhat curved and the use

of a second-order polynomial curve fit to these trajectories yields smaller standard deviations of

the data from the fitted curves in comparison to those computed from a first-order polynomial

curve fit.

7.5 Numerical Transition Boundary Between RR and MR from

CFD Near-Field Data

The methodology and related post-processing tools developed and described in the previous

sections of this chapter are now combined to determine the numerical transition boundary

between regular and Mach reflections by processing the CFD flow-field data for the 20 reference

points defined earlier in tables 7.1(a) and 7.1(b) for argon and atmospheric air, respectively,

and shown previously in Figs. 7.1(a) and 7.1(b) as well.

Plots of the Mach-stem length L versus the parameter α (normal to von Neumann’s extreme-

angle boundary) are shown in Fig. 7.11 for reference points RP–3, 7, 11, 15 and 18 in argon as

well as air. Each plot originates from the post-processing of numerous closely spaced CFD flow

fields around the numerical transition boundary (i.e. near-field data), such that the transition

value αc can be obtained accurately when the Mach-stem length L from Mach reflection patterns

diminishes to zero and the Mach reflection configurations first switch into that of a regular

reflection.

The method of obtaining the numerical transition boundary from such L versus α plots is

explained. Two sets of post-processed data are determined for each plot shown in Fig. 7.11. The

first data set originates from calculations for which all shock reflection patterns from the wedge
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Figure 7.11: Mach-stem length L versus the parameter α in argon (left-hand side) and

air (right-hand side) for RP–3, 7, 11, 15 and 18, when the AMR level nr = 12.
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surface are assumed to be regular reflection, and the data for zi in the post-processing phase is

mapped downward onto the wedge surface, parallel to the incident shock wave, as illustrated

earlier in Fig. 7.7. Some of these data are shown on the left side of the plots in Fig. 7.11 as

the white-filled circles, and they are labelled RR for regular reflection. The second data set

originates from calculations for which all shock reflection patterns from the wedge surface are

assumed to be Mach reflection, and the data for zi in the post-processing phase is mapped

onto the wedge surface, normal to the surface and parallel to the Mach stem (if it exists or it

does not), as also illustrated earlier in Fig. 7.7. Some of these data are shown on the right side

of the plots in Fig. 7.11 as the black-filled circles or black dots, and they are labelled MR for

Mach reflection. The average value of the left-most data for the RR white-filled circles in each

plot is calculated, denoted by Lrr, and shown as a horizontal dashed line in each plot given in

Fig. 7.11. The average value of the left-most data for the MR black dots (not shown on the left

side of each plot) is also calculated, denoted by Lmr, and shown as another horizontal dashed

line. Both averages are nearly zero because they correspond to regular-reflection patterns, the

average Lmr is always lower than Lrr, and the differences between the two are noticeable only

for incident shock Mach numbers Mi between 1.1 to 1.7 and wedge angles from 40 to 50◦.

The data for the case of regular reflection (white-filled circles) are more sensitive to the

emergence of the Mach stem than the data for the case of Mach reflection (black dots). For the

case of the mapping of zi downward onto the wedge surface (parallel to the incident shock), a

disturbance must have a speed slightly greater than the incident shock speed Vi to emerge as a

partial or full Mach stem. For the other case of the mapping of zi normal to the wedge surface

(parallel to the Mach stem), a disturbance must have a speed slightly greater than Vi/ cos (θw)

to emerge as a partial or full Mach stem.

As α increases in the plots shown in Fig. 7.11, the regular-reflection data therefore indicates

the early or premature arrival of the onset of Mach reflection, whereas the Mach reflection

data indicates the late or delayed arrival of the onset of Mach reflection. Hence, the first

indication in the regular-reflection data of a disturbance or Mach stem is flagged, and shown

by the leftmost vertical dashed line among the white-filled circles in the plots in Fig. 7.11.

Furthermore, the delayed indication in the Mach-reflection data of a strong change to a Mach

stem is correspondingly flagged, and shown by the rightmost vertical dashed line among the

black dots.

These two flag placements are based on changes in the data by about 2 or more standard

deviations from the average values of Lrr and Lmr. The numerical transition-boundary value of

α, denoted by αc, is simply taken as the center value or average of the early and late indications

of the emergence of a Mach stem. Furthermore, once the center value αc has been determined,

only the regular-reflection data (white-filled circles) are plotted on the left-hand side of this

center value, and only the Mach-reflection data (black dots) are plotted on the right-hand side,

as illustrated in all of the plots in Fig. 7.11.



Chapter 7. Methodology for Determining Transition Between RR and MR 89

The plots of L versus α for incident shock Mach numbers Mi ranging from 1.0 to 1.5, before

the dual region of regular and Mach reflection shown in Fig. 7.1, exhibit fairly gradually and

smoothly changing values of L from large values in the Mach reflection region to zero (or nearly

zero) as the numerical transition boundary is approached. See such changes in Fig. 7.11 for

reference points RP–3 and 7. This also means that the change in the size of the Mach stem

from Mach to regular reflection is also fairly smooth and gradual, occurring over a wide range

of α values and diminishing slowly to zero as the transition boundary is approached.

For the case of higher incident shock Mach numbers from 1.5 to 4.0 (and upward), in the

dual region of regular and Mach reflection, the reduction in the size of the Mach stem from Mach

to regular reflection is much more rapid and even discontinuous, occurring over a narrow range

of α values. See such changes in Fig. 7.11 for reference points RP–11, 15 and 18. Such nearly

discontinuous Mach-stem changes from Mach to regular reflection at the transition boundary,

from a sizable Mach stem to no Mach stem, were noticed and explained in the early experimental

results and theoretical research by Bleakney and Taub [8] and Kawamura and Saito [10].

The L versus α results presented in this research for the stronger incident shocks are

smoothed somewhat through the numerical transition boundary from the numerical compu-

tations that ensure solution monotonicity near discontinuities. Note that the width of this

smearing is reduced when the accuracy of the CFD simulations is improved by increasing the

number of AMR levels. The 12 refinement levels for AMR used in this research were carefully

selected by assessment testing to ensure that the numerical transition boundary was accurately

defined and essentially independent of the mesh densities used in the CFD simulations. See

Subsection 7.6 for further discussion of CFD flow-field convergence and solution accuracy.

The entire set of post-processed data for the twenty reference points on von Neumann’s

extreme-angle transition boundary are included for completeness in Appendix A for argon and

in Appendix B for atmospheric air.

Contoured flow-fields images from CFD simulations for Mach reflection changing to regular

reflection are presented in Figs. 7.12 and 7.13 for reference points RP–6 and 18 in argon and in

Figs. 7.14 and 7.15 for reference points RP–5 and 16 in air. Each collection of four images is

arranged normal to von Neumann’s extreme-angle transition boundary and features in sequence

two Mach-reflection patterns with diminishing Mach-stem lengths, then the pattern at the

numerical transition boundary when the Mach stem just disappears, and finally one regular-

reflection pattern just beyond this transition boundary. These images are focused on the shock-

reflection patterns close to the wedge surface, and the lengths of 5 mm and 5 cm that are

included in these figures provide a reference length scale.

The SMR patterns presented in Figs. 7.12(a) and 7.12(b) for RP–6 argon and in Figs. 7.14(a)

and 7.14(b) for RP–5 in air occur rather far from the numerical transition-boundary values of

αc = −0.0011 and 0.0001 that are shown in Figs. 7.12(c) and 7.14(c), respectively. In these
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(a) SMR: α = 0.0175, L = 0.001665, Mi = 1.19135,

θw = 42.3418◦; Vi = 381.13 m/s, Vm = 516.50 m/s.

(b) SMR: α = 0.009, L = 0.000457, Mi = 1.18681,

θw = 42.9012◦; Vi = 379.67 m/s, Vm = 518.54 m/s.

(c) Transition: α = −0.0011; L ≈ 0; Mi = 1.18141,

θw = 43.5726◦; Vi = 377.95 m/s, Vm = 521.70 m/s.

(d) RR: α = −0.0036, L ≈ 0; Mi = 1.18008,

θw = 43.7400◦; Vi = 377.52 m/s, Vm = 522.57 m/s.

Figure 7.12: Transition from MR to RR for RP–6 in argon (M⋆

i
= 1.182, θ⋆

w
= 43.4991◦, nr = 12).

(a) DMR: α=−0.01, L=0.034718; Mi=3.49998,

θw=55.3751◦; Vi=1119.72 m/s, Vm=2039.06 m/s.

(b) DMR: α=−0.014, L=0.009722; Mi=3.49997,

θw=55.7805◦; Vi=1119.72 m/s, Vm=2010.45 m/s.

(c) Transition: α = −0.0161, L ≈ 0; Mi = 3.49997,

θw = 55.9950◦; Vi=1119.72 m/s, Vm=2002.43 m/s.

(d) RR: α = −0.0185, L ≈ 0; Mi = 3.49996,

θw = 56.2417◦; Vi=1119.72 m/s, Vm=2015.17 m/s.

Figure 7.13: Transition from MR to RR for RP–18 in argon (M⋆

i
= 3.5, θ⋆

w
= 54.3792◦, nr = 12).
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(a) SMR: α = 0.015, L = 0.001238; Mi = 1.10176,

θw = 35.3386◦; Vi = 379.29 m/s, Vm = 465.53 m/s.

(b) SMR: α = 0.0075, L = 0.000306; Mi = 1.09538,

θw = 35.6161◦; Vi = 377.09 m/s, Vm = 464.00 m/s.

(c) Transition: α = 0.0001; L ≈ 0; Mi = 1.08909,

θw = 35.8908◦; Vi = 374.92 m/s, Vm = 462.82 m/s.

(d) RR: α = −0.0005, L ≈ 0; Mi = 1.08857,

θw = 35.9131◦; Vi = 374.75 m/s, Vm = 462.73 m/s.

Figure 7.14: Transition from MR to RR for RP–5 in air (M⋆

i
= 1.089, θ⋆

w
= 35.8945◦, nr = 12).

(a) DMR: α=−0.0126, L=0.045962; Mi=3.00000,

θw=51.8573◦; Vi=1032.87 m/s, Vm=1749.20 m/s.

(b) DMR: α=−0.0138, L=0.020689; Mi=3.00003,

θw=51.9688◦; Vi=1032.87 m/s, Vm=1711.18 m/s.

(c) Transition: α = −0.0154, L ≈ 0; Mi = 3.00003,

θw = 52.1178◦; Vi=1032.87 m/s, Vm=1682.41 m/s.

(d) RR: α = −0.0165, L ≈ 0; Mi = 3.00004,

θw = 52.2206◦; Vi=1032.87 m/s, Vm=1686.17 m/s.

Figure 7.15: Transition from MR to RR for RP–16 in air (M⋆

i
= 3.0, θ⋆

w
= 50.7032◦, nr = 12).
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computed flow-field images, the Mach stems and slip streams are otherwise too small to be

easily observed by the human eye, i.e. for α values that are sufficiently close to the numerical

transition boundary. The opposite is true for the DMR patterns presented in Figs. 7.13(a)

and 7.13(b) for RP–18 in argon and in Figs. 7.15(a) and 7.15(b) for RP–16 in air. In these

computed flow-field images (close to the numerical transition-boundary values of αc = −0.0161

and −0.0154 that are shown in Figs. 7.13(c) and 7.15(c), respectively), the Mach stems and

slip streams are much more pronounced, because these results occur in the dual region where

either Mach or regular reflection can occur.

The triple point trajectory angles χ, corresponding to the Mach-reflection patterns in argon

shown in Figs. 7.12(a) and 7.13(a) with the largest Mach stems, are given by 0.105◦ and

1.33◦, respectively. The triple-point angles for the Mach-reflection patterns in argon shown

in Figs. 7.12(b) and 7.13(b), with slightly smaller Mach stems (i.e. closer to the numerical

transition boundary), are given by 0.0282◦ and 0.375◦, respectively. The related set of triple-

point angles χ for Mach-reflection patterns in air are given by 0.100◦, 1.98◦, 0.0245◦ and 0.908◦,

corresponding to the CFD flow-fields illustrated in Figs. 7.14(a), 7.15(a), 7.14(b) and 7.15(b),

respectively. All of these angles were calculated by using Eq. (7.6) and the information on L

and θw provided in the captions. These calculated values of the triple-point trajectory angles

χ are more precise than those that can be measured directly from CFD flow-field images, such

as those in Figs. 7.12 through 7.15.

The numerical transition-boundary points from post-processing all of the CFD flow-field

data for the twenty reference points on von Neumann’s extreme-angle transition boundary are

summarized in table 7.2 for argon and air. The values of the transition value αc from data like

those shown in Fig. 7.11, and the corresponding incident shock Mach number Mi and wedge

angle θw calculated by using Eqs. (7.2) and (7.3), appear in columns 4 to 6 for each gas.

(This space intentionally left blank.)
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Table 7.2: Numerical transition boundary between regular and Mach reflections for

a wedge without a boundary layer.

(a) Argon.

RP
reference points numerical transition points

M⋆
i θ⋆w (◦) αc Mi θw (◦)

1 1.001 5.1010 0.00022 1.00122 5.1007

2 1.006 12.2184 −0.00060 1.00540 12.2206

3 1.018 20.1533 −0.00063 1.01738 20.1581

4 1.041 28.0871 −0.00020 1.04081 28.0903

5 1.089 36.3558 −0.00050 1.08857 36.3741

6 1.182 43.4992 −0.00110 1.18141 43.5726

7 1.305 47.7127 −0.00130 1.30466 47.8195

8 1.435 49.9799 −0.00080 1.43489 50.0505

9 1.572 51.3539 −0.00080 1.57193 51.4271

10 1.715 52.2405 −0.00270 1.71486 52.4935

11 1.855 52.8110 −0.00410 1.85486 53.2012

12 2.0 53.2183 −0.00670 1.99984 53.8641

13 2.25 53.6680 −0.00945 2.24987 54.5920

14 2.5 53.9398 −0.01160 2.49990 55.0847

15 2.75 54.1151 −0.01300 2.74992 55.4060

16 3.0 54.2340 −0.01460 2.99994 55.6911

17 3.25 54.3179 −0.01510 3.24996 55.8291

18 3.5 54.3792 −0.01610 3.49997 55.9950

19 3.75 54.4252 −0.01625 3.74997 56.0583

20 4.0 54.4606 −0.01640 3.99998 56.1106
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Table 7.2 (continued): Numerical transition boundary between regular and Mach reflections for

a wedge without a boundary layer.

(b) Atmospheric air.

RP
reference points numerical transition points

M⋆
i θ⋆w (◦) αc Mi θw (◦)

1 1.001 5.0997 0.0003 1.00130 5.0993

2 1.006 12.2012 −0.0001 1.00590 12.2016

3 1.018 20.0766 −0.0003 1.01770 20.0789

4 1.041 27.8798 −0.0008 1.04023 27.8929

5 1.089 35.8945 −0.0002 1.08883 35.9020

6 1.182 42.6428 −0.0001 1.18195 42.6495

7 1.305 46.4516 −0.0001 1.30498 46.4596

8 1.435 48.3727 −0.0001 1.43499 48.3812

9 1.572 49.4404 −0.0019 1.57188 49.6077

10 1.715 50.0537 −0.0040 1.71486 50.4117

11 1.855 50.3927 −0.0067 1.85487 50.9986

12 2.0 50.5908 −0.0091 1.99990 51.4194

13 2.25 50.7392 −0.0121 2.24996 51.8478

14 2.5 50.7684 −0.0137 2.50000 52.0265

15 2.75 50.7463 −0.0147 2.75002 52.0970

16 3.0 50.7032 −0.0156 3.00003 52.1365

17 3.25 50.6529 −0.0160 3.25004 52.1220

18 3.5 50.6021 −0.0164 3.50004 52.1068

19 3.75 50.5537 −0.0167 3.75003 52.0847

20 4.0 50.5090 −0.0170 4.00003 52.0665
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7.6 Study of Mesh Refinement on Solution Accuracy

An investigation was performed to determine the effects of mesh refinement on the accuracy

of the CFD flow-field solutions and the subsequent post-processing determination of the new

numerical transition boundary between regular and Mach reflections. The assessment was

performed to evaluate the resolution requirements in argon and atmospheric air for the twenty

selected reference points (table 7.1) to yield the set of twenty transition points for the transition

value αc, related incident shock Mach number Mi and related wedge angle θw reported in

table 7.2 for each gas. This study was done to demonstrate that the mesh was sufficiently

refined at twelve levels of anisotropic adaptive mesh refinement (AMR) such that the final

results for the new numerical transition boundary were converged (i.e. grid independent) and

considered accurate.

Four plots of the normalized Mach-stem length L versus the parameter α for AMR levels

nr = 10, 11, 12 and 13 are presented for reference points RP–5 and 16 in Fig. 7.16 for argon

and in Fig. 7.17 for atmospheric air. The results for RP–5 for each gas are typical of all

reference points for incident shock Mach numbers in the range 1.0 < Mi < 1.6, for which

the new numerical transition boundary agrees well with the closely spaced sonic and extreme-

angle boundaries of von Neumann [5]. The results for RP–16 for each gas are typical of all

reference points for incident shock Mach numbers in the range 1.6 < Mi < 4.0, for which the

new numerical transition boundary trends above the closely spaced sonic and extreme-angle

boundaries into the dual region of regular and Mach reflections.

As the mesh is refined from AMR levels nr = 10 to 13 for reference points RP–5 and 16

in Fig. 7.16 for argon and in Fig. 7.17 for atmospheric air, (i) the two averages Lrr and Lmr

become more equal and converge toward the true value of zero, (ii) the variations in the data

for regular reflection (white-filled circles) diminishes substantially (especially for RP–1 to 8),

(iii) the variations in the data for Mach reflection (black dots) diminishes marginally, (iv) the

bottom transition region between regular and Mach reflections becomes narrower (RP–5) and

sharper (RP–16), and (v) the early and late indicators of the emergence of a Mach stem,

denoted by the two outer vertical dashed lines, contract for increasing mesh refinement levels

of AMR. However, the average of these early and late indications, given by the center dashed

line labelled αc, shifts slightly leftward (away from the sonic and extreme-angle boundaries),

less and less as the value of αc converges to a nearly constant value. Note that the accuracy of

the post-processed L versus α results is generally better for stronger incident shocks (Mi > 1.6)

within the dual region of regular and Mach reflections than it is for weaker incident shocks

(1.0 < Mi < 1.6) before the dual region. For example, compare the transition profiles of RP–16

with those of RP–5 for a given AMR level in Figs. 7.16 and 7.17.
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Figure 7.16: Mach-stem length L versus parameter α for RP–5 (left-hand side)

and RP–16 (right-hand side) in argon, when the AMR level nr = 10, 11, 12 and 13.

The small changes in the transition values of αc for RP–5 and 16 with increasing AMR

levels nr = 10 to 13, as shown in Fig. 7.16 for argon and in Fig. 7.17 for atmospheric air,

are not significant in changing the numerically determined transition-boundary points (Mi, θw)

presented in table 7.2. If the early and late vertical dashed-line indicators of the emergence of

the Mach stem in the plots of L versus α are considered as error bars on the transition value

of αc, then the results presented in table 7.2 for Mi and θw computed using twelve levels of

AMR are accurate in the worst cases to within ±0.33% and ±0.47%, respectively, in argon and

±0.22% and ±0.27%, respectively, in atmospheric air, for all twenty reference points selected

along von Neumann’s extreme-angle transition boundary. The resulting error bars on symbols

used to plot the incident shock Mach number Mi versus the wedge angle θw for the numerically
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Figure 7.17: Mach-stem length L versus parameter α for RP–5 (left-hand side)

and RP–16 (right-hand side) in air, when the AMR level nr = 10, 11, 12 and 13.

determined transition points (like data shown in Fig. 1.2) are not noticeable, because they

would each be covered by the white-filled circles or black-dot markers used to plot these points.

The use of twelve levels of AMR is considered sufficient to accurately determine the new

transition boundary separating regular and Mach reflections in this research. This conclusion

is based on the present mesh refinement study on CFD solution accuracy, in conjunction with

the preceding results presented in sections 7.3 and 7.4 that illustrate the high accuracy of

the post-processing method in the computations of the incident and Mach shock speeds Vi

and Vm, respectively. At the mesh resolution of twelve levels of AMR, the predicted CFD

flow-field solutions and post-processed transition-boundary points are considered as essentially

independent of the mesh densities used for the CFD simulations.
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7.7 Alternate Numerical Transition Boundary Between RR and

MR from CFD Far-Field Data

The plots of the characteristic Mach-stem length L versus the parameter α (normal to the

extreme-angle transition boundary), similar to those presented previously in Fig. 7.11(a) for

argon, are replotted herein in terms of the triple-point angle χ versus α. The angle χ is defined

in Fig. 7.2. The change from using the Mach-stem length L to the triple-point angle χ is done by

means of Eq. (7.6). Four plots of the alternate representations of the data for determining the

transition boundary between regular and Mach reflection are presented in Fig. 7.18 for reference

points RP–13, 15, 18 and 20, which correspond to the reference incident shock Mach numbers

M⋆
i on the extreme-angle boundary of 2.25, 2.75, 3.5 and 4.0, respectively. These results for χ

versus α correspond to incident shock Mach numbers within the range 1.5 < Mi < 4.0 for the

dual region of regular and Mach reflection in argon, shown previously in Fig. 7.1(a).
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Figure 7.18: Three possible transition boundaries between RR and MR in argon

given by the locations αe, αc and αm.
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The post-processed data for χ versus α from CFD flow-field simulations of regular and Mach

reflections are subdivided into two groups in Fig. 7.18. The closely packed near-field data,

included as the collection of black dots, was used previously in Section 7.5 to determine the

new numerical transition boundary between regular and Mach reflection (without a boundary

layer on the wedge surface), yielding the values of αc given in table 7.2. The location of αc

occurs when the characteristic length L and the triple-point angle χ both diminish to zero for

the transition from Mach to regular reflection. The location of αc among these closely packed

near-field data is depicted by a vertical dashed line labelled αc in each plot in Fig. 7.18.

The location of the transition boundary between regular and Mach reflection from von

Neumann [5], based on his extreme-angle or detachment criterion, is also shown in each plot

as a vertical dashed line labelled αe. This location occurs at the point α = 0, which stems

from our definition of α that starts on and runs perpendicular to the extreme-angle boundary.

Based on the data shown in Fig. 7.18 for the dual region of regular and Mach reflection, von

Neumann’s transition boundary is not valid for inviscid flows (no boundary layer). The CFD

flow-field simulations do not feature L and χ equal to zero in the dual region for the sonic and

extreme-angle criteria.

A second group of post-processed data for χ versus α is shown as a set of white-filled di-

amonds in Fig. 7.18. This group is called far-field data, partly because they do not surround

the new transition boundary location αc between regular and Mach reflection, and partly be-

cause they do not surround the transition boundary location αe stemming from von Neumann’s

extreme-angle criterion. Instead, these far-field data lie farther away and on the right-hand

side of both αc and αe. The straight line in each plot in Fig. 7.18 is based on a least-squares

curve fit to the far-field data only. The extrapolation of this straight line of χ versus α to a zero

value for χ yields the value of αm. This value of αm versus the incident shock Mach number Mi

provides a hypothetical transition boundary between regular and Mach reflection for the dual

region (Mi > 1.55).

The numerical transition-boundary points from post-processing the CFD flow-field data for

reference points RP–9 to 20 to obtain the extrapolated values of αm are collected in table 7.3

(column 4). The corresponding incident shock Mach numberMi and wedge angle θw, calculated

by means of Eqs. (7.2) and (7.3), are listed in columns 5 and 6.

An interpretation and discussion of the two possible transition boundaries between regular

and Mach reflection given in terms of the near-field data for αc and the far-field data for αm

versus the incident shock Mach number are provided in Chapter 9.
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Table 7.3: Alternate numerical transition boundary between RR and MR in argon

using extrapolated far-field data.

RP
reference points extrapolated transition points

M⋆
i θ⋆w (◦) αm Mi θw (◦)

9 1.572 51.3539 0.003480 1.57229 51.03689

10 1.715 52.2405 −0.004456 1.71477 52.65886

11 1.855 52.8110 −0.011772 1.85458 53.94097

12 2.0 53.2183 −0.019298 1.99953 55.10628

13 2.25 53.6680 −0.030077 2.24958 56.68586

14 2.5 53.9398 −0.039184 2.49966 57.94961

15 2.75 54.1151 −0.047072 2.74973 59.01114

16 3.0 54.2340 −0.052726 2.99979 59.78421

17 3.25 54.3179 −0.057870 3.24983 60.47441

18 3.5 54.3792 −0.062732 3.49987 61.11857

19 3.75 54.4252 −0.063878 3.74990 61.31053

20 4.0 54.4606 −0.068683 3.99991 61.93304



Chapter 8

Experimental Transition Boundary

Between RR and MR Without A

Boundary Layer

Experimental data are collected herein to verify the numerical transition boundary between

regular and Mach reflection from a wedge, for the specific case when no shear or boundary

layer exists on the inclined reflecting surface. Only seven such experimental results have been

published for shock-wave reflections in air.

Smith [21] in 1959 was the first researcher to propagate a shock wave at an almost constant

speed Vi or shock number Mi along a rectangular shock-tube channel and then reflect this

planar shock from an angled channel end. His experimental setup is illustrated in Fig. 8.1(a)

for the case of Mach reflection. The two reflected shocks from the two angled channel ends

interact by reflecting from each other along the channel center plane. Flow visualization tools

including parallel fringe interferometry as well as shadowgraph and schlieren photography were

used to quantify shock strengths and measure corresponding wave angles. The reflected shock

angle with the channel centerline is shown in the figure as θi, and the wedge angle is given by

θw = 90◦ − θi. Because the shock reflecting surface behind the two reflecting shocks is gaseous

and moving behind the shocks, no boundary or shear layer is produced at the reflecting surface.

As a consequence, regular and Mach reflection processes are essentially inviscid, without the

shear effects of viscosity and heat transfer by conduction at an otherwise rigid material surface.

To determine the transition boundary between regular and Mach reflection, the channel-end

angle θe must be changed gradually from one shock-tube experimental to the next (for the same

incident shock strength), so that the Mach stem diminishes to zero and regular reflection just

begins.

101
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Figure 8.1: Experimental techniques used to generate oblique shock-wave reflections from reflecting

planes without a combined viscous and thermal boundary layer.

Henderson and Lozzi [16, 22] adopted the shock-tube technique of Smith [21] for some of

their work in 1975 and 1979. The reflection patterns arising from their experimental setup were

hence also assumed to be independent of wall boundary layer effects. A schlieren optical system

was employed to measure the shock-wave angles and infer properties regarding the composition

of the recorded flow fields. Experimental results to be used later in this research, in terms of

the incident shock Mach number Mi and wedge angle θw, were extracted from various diagrams

and figures in the papers of Smith [21] and Henderson and Lozzi [16, 22]. These final results

are presented in table 8.1.

Barbosa and Skews [23] in 2002 criticized the technique of Smith [21] with an angled shock-

tube end as being too small in size and lacking interpretation accuracy. Instead, they built

a large shock tube with a channel that first bifurcates into two equal-sized diverging ducts,

which slowly bend back together, and finally rejoin, as illustrated in Fig 8.1(b). A splitter

mechanism located downstream of a double-diaphragm driver was employed to facilitate this

process by splitting an incident shock front into two synchronized plane waves. These two

equal-strength shocks then travel down separate channels and emerge from the two respective

duct ends to come together and reflect from each other along a perfect, inviscid, symmetric

reflection boundary. Maintaining a constant gas temperature in the upper and lower ducts

before experiments was difficult.

The final shock reflection process for the case of a wedge angle of 40◦ from Barbosa and

Skews [23] is depicted in Fig. 8.1(b), for the case of Mach reflection. The shock reflecting

surface is gaseous and moving behind the reflecting shocks, as in Smith’s apparatus, such that

no shear or boundary layer is produced. Hence, the shock reflection process is essentially

inviscid. The strength of the incident shock waves is systematically varied to make the Mach-

stem length approach zero to determine the transition between regular and Mach reflection.

Holographic interferometry and shadowgraph flow visualization were used for experimental
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measurement. Further bifurcated shock-tube experiments using 20◦ and 48◦ wedge angles with

inviscid, gaseous reflecting surfaces were performed in 2011 by Herron and Skews [24]. The

experimental results for the incident shock Mach numbers Mi and wedge angles θw used in

these studies are taken directly from the papers by Barbosa and Skews [23] as well as Herron

and Skews [24]. These final results are also included in table 8.1.

Table 8.1: Experimental data for the transition between RR and MR for reflecting planes without a

combined viscous and thermal boundary layer in atmospheric air.

Mi θw (◦) year reference

1.039 27.5 1959 Smith [21]

1.88 51.0 1975 Henderson and Lozzi [16]

1.08 33.5
}

1979 Henderson and Lozzi [22]
1.13 38.8

1.144 40.0 2002 Barbosa and Skews [23]

1.0223 20.0
}

2011 Herron and Skews [24]
1.3724 48.0



Chapter 9

Results and Discussion

The regions and transition boundaries between regular and Mach reflections (i.e. RR, SMR,

TMR and DMR) in argon and air are presented in Figs. 9.1(a) and 9.1(b), respectively, in

plots of the wedge angle θw versus the incident shock Mach number Mi. The new numerical

transition boundary between regular and Mach reflections, which was determined by post-

processing closely spaced CFD near-field flow simulation data (inviscid), for the case of shock-

reflections from an inclined wedge without a boundary layer on the wedge surface, is defined

by the string of twenty white-filled circles in these figures. This is done for all twenty reference

points selected along von Neumann’s extreme-angle transition boundary in Section 7.1, and the

data was taken directly from earlier results collected in tables 7.2(a) and 7.2(b).

For low incident shock Mach numbers Mi ranging from 1.0 to 1.6 the numerical transition

boundary is in excellent agreement with the analytical results of von Neumann [5] for the sonic

and extreme-angle transition boundaries, which are very close together. However, for higher

Mach numbers from 1.6 to 4.0, the numerical transition boundary trends higher than the sonic

and extreme-angle boundaries by as much as 1.6◦. This trend at larger incident shock Mach

numbers is noticeable, increases continuously without fluctuations, and is significantly higher

than von Neumann’s sonic and extreme-angle boundaries. This upward shift of the numerical

transition boundary above the closely spaced sonic and extreme-angle boundaries occurs only

in the dual region where either regular or Mach reflection can occur. The upward trend of this

numerical transition boundary (inviscid, no boundary layer) in the dual region is somewhat

unanticipated, because it was expected that the numerical transition boundary would be in

close agreement with the closely spaced sonic and extreme-angle transition boundaries of von

Neumann [5].

Transition-boundary results for regular to Mach reflections from shock-tube experiments

with inclined surfaces that are gaseous and moving without a shear or boundary layer behind

104
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Figure 9.1: Regular to Mach reflection transition boundaries in (a) argon and (b) atmospheric air. The

numerical transition boundary determined in this research for each gas is defined by the string of

twenty white-filled circles in each diagram.
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the shocks, as described in Chapter 8 and given in table 8.1, are included in Fig. 9.1(b) for

the case of air. Most of these experimental results are for low incident shock Mach numbers

Mi below 1.4. These results are in good agreement with von Neumann’s analytical sonic and

extreme-angle transition boundaries, and also in good agreement with the results for the new

numerical transition boundary. The numerical transition boundary, in the range 1.0 < Mi < 1.6,

is not sufficient to accurately provide a definitive conclusion as to whether it agrees better with

either the sonic or extreme-angle boundary, primarily because the sonic and extreme-angle

boundaries are so close together. However, the new numerical transition boundary typically

lies between the closely spaced sonic and extreme-angle boundaries within this lower range of

incident shock Mach numbers.

The upward trend of this numerical transition boundary (inviscid) is somewhat unantici-

pated, because the transition-boundary results from past shock-tube experiments in air shown

in Fig. 9.1(b), for the case of inclined wedges on which there is a combined viscous and thermal

boundary layer, clearly trend below the sonic and extreme-angle transition boundaries. This

persistence of RR into the MR regions in air occurs for all experimental cases with a combined

viscous and thermal boundary layer for incident shock Mach numbers ranging from 1.05 to 2.68

in Fig. 9.1(b). These sparse data would imply that for the case of a combined viscous and ther-

mal boundary layer on the wedge surface, the transition boundary lies below von Neumann’s

sonic and extreme-angle boundaries. This implication is much evident for the case of moving

shock reflections in air, because the experimental data are plentiful and yield a recognizable

experimental transition boundary.

The shift of up to three degrees in Figs. 9.1(a) and 9.1(b) between the new numerical-

transition boundary without a boundary layer (inviscid) and the experiments with a boundary

layer (viscous) illustrates the importance of the viscous effects associated with the combined

viscous and thermal boundary layer on the wedge surface. Regular reflections with a boundary

layer on the wedge persist downward into the Mach-reflection region, across the dual region and

both the new numerical transition boundary and sonic and extreme-angle transition boundaries.

Alternatively, Mach reflections without a boundary layer on the wedge persist upward from the

Mach reflection region into the dual region of regular and Mach reflection, terminating at

the new numerical transition boundary. The CFD images of simulated flow-fields without a

boundary layer on the wedge obtained in this research are always regular-reflection patterns

for the region between our new numerical transition boundary and von Neumann’s mechani-

cal-equilibrium transition boundary.

The physical mechanism and reasons for the upward shift in the new numerical transi-

tion boundary, in the range 1.6 < Mi < 4.0, above von Neumann’s closely spaced sonic and

extreme-angle boundaries, within the dual region of regular and Mach reflections, is not yet

fully understood. The shift does not stem from flow perturbations, numerical disturbances or

modelling errors in the CFD flow-field simulations. The string of twenty white-filled circles for
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the new numerical transition boundary originates from a large number of carefully conducted

two-dimensional CFD flow-field simulations. The transition-boundary points as a string of data

are neither erratic nor jerky in behaviour; instead, they occur in a uniform and systematic man-

ner, as shown in Figs. 9.1(a) and 9.1(b). The new numerical-transition boundary is generated by

high-resolution CFD flow-field simulations, which account fully for the shock-reflection process

from the inclined wedge. The effects of the corner disturbance or signal are included in these

computations, as are those of the curved reflected shock when the corner disturbance overtakes

the incident shock in RR and the triple point in MR. Consequently, it should not necessarily

be expected that the new numerical transition boundary will agree well with the closely spaced

sonic and extreme-angle boundaries for larger incident shock Mach numbers. Von Neumann’s

transition boundaries based on sonic and detachment criteria stem from fairly simple analytical

considerations in which the incident, reflected and Mach-stem shocks, and the slip stream, are

all assumed planar and straight. Moreover, von Neumann’s analytical formulations ignore the

corner disturbance for the extreme-angle boundary, only taking its arrival into account for the

sonic transition boundary.

One shock-tube result from Henderson and Lozzi [16] for Mi = 1.88 in air lies inside the

dual region of regular or Mach reflection, definitively above von Neumann’s analytical sonic and

extreme-angle boundaries, as shown in Fig. 9.1(b). This result, however, is in good agreement

with the new numerical transition boundary. Unfortunately, experimental shock-tube results

like those of Smith [21], Henderson and Lozzi [16,22], Barbosa and Skews [23], and Herron and

Skews [24] are not available at higher incident shock Mach numbers for argon and atmospheric

air to provide a more conclusive confirmation that the numerical transition boundary for inviscid

gas flows is a better transition boundary than those of von Neumann for the sonic and extreme-

angle boundaries.

The new numerical transition boundary between regular and Mach reflection clearly does

not agree with the mechanical-equilibrium boundary of von Neumann [5] for the present case of

unsteady or pseudo-steady flows for moving shock waves interacting with an inclined wedge. See

Fig. 9.1. However, for the case of steady supersonic flows over wedges, the transition boundaries

between regular and Mach reflection are well known to be von Neumann’s mechanical-equilibri-

um and sonic or extreme-angle boundaries that encompass the dual region. Hysteresis effects

involving the changing back and forth between regular and Mach reflection patterns by slow

cyclic changes in the wedge angle are known to occur; see the book by Ben-Dor [14] and the

paper by Ivanov, Gimelshein and Beylich [161]. Such hysteresis effects do not occur for planar

moving shocks interacting with wedges of fixed angle. See the paper by Hornung [28] for more

information about the differences between shock-wave reflections from wedges in pseudo-steady

flows (i.e. with moving shock waves) and those in steady supersonic flows.

As a recap, the occurrences of regular and/or Mach reflection in various ranges of the wedge

angle θw, for inviscid flows without a boundary layer and viscous flows with a boundary layer,
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Table 9.1: Regular and Mach reflection when 1.0 < Mi < 1.6.

θw range
inviscid flow without viscous flow with

a boundary layer a boundary layer

θw > θsb ≈ θnb ≈ θeab ≈ θ if
exp RR

θw < θsb ≈ θnb ≈ θeab ≈ θ if
exp MR†

90◦ > θw > θsb RR

θsb > θw > θnb RR

θnb > θw > θeab RR

θeab > θw > θ vf
exp RR

θ vf
exp > θw > 0◦ MR†

†MR is either vNR or SMR.

Table 9.2: Regular and Mach reflection for Mi > 1.6 (dual region of RR and MR).

θw range
inviscid flow without viscous flow with

a boundary layer a boundary layer

90◦ > θw > θmeb RR RR

θmeb > θw > θnb ≈ θ if
exp RR RR

θ if
exp ≈ θnb > θw > θsb MR† RR

θsb > θw > θeab MR† RR

θeab > θw > θ vf
exp MR† RR

θ vf
exp > θw > 0◦ MR† MR†

†MR is either TMR or DMR.

are summarized in tables 9.1 and 9.2. These tables pertain to incident shock Mach numbers

in the ranges 1.0 < Mi < 1.6 before the dual region of RR and MR, and Mi > 1.6 for the

dual region, respectively. In these tables, the new symbols θsb, θeab, θmeb and θnb denote the

respective wedge angles for the sonic, extreme-angle, mechanical-equilibrium and new numerical

transition boundaries. Also, θifexp and θvfexp denote the transition boundaries from the string of

experimental results without and with a boundary layer on the wedge surface, respectively,

corresponding to inviscid and viscous flows. The tabulated regions of RR and MR stem from

previous and current studies.

An alternate numerical transition boundary between RR and MR for the case of argon is

introduced to elaborate on the foregoing discussion. Data was generated in Section 7.7 and

collected in table 7.3 from the extrapolation of far-field MR data for χ versus α to obtain

the value of αm when χ = 0 (see Fig. 7.18). The corresponding results of Mi and θw for the

twelve αm values in table 7.3 are each plotted as an ‘×’ in Fig. 9.1(a) for argon. These data

fall on, or are very close to, the mechanical-equilibrium boundary of von Neumann throughout

the dual RR and MR region. Based on this close agreement, one could mistakenly believe
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that the mechanical-equilibrium boundary is the transition boundary between RR and MR for

moving shock reflections (pseudo-steady shock reflections), if the new numerical boundary was

not known. Note that the results in Fig. 7.18 illustrate that the far-field data for χ diminishes

linearly with α, whereas the near-field data undergoes a rapid transition to χ = 0 (at the new

numerical transition boundary), well before the location of the falsely extrapolated transition

boundary at αm.

The method of extrapolating far-field data in the dual region of the form χ versus θw at a

constant incident shock Mach number Mi was used in the mid 1940s by Smith [2] to determine

the experimental transition boundary between regular and Mach reflection. The resulting error

in the prediction of the transition boundary by using far-field data in the extrapolation was later

recognized and corrected in 1949 by Bleakney and Taub [8], and it was also explained in 1956

by Kawamura and Saito [10]. The correction was to obtain more closely spaced experimental

photographs near the transition boundary to determine the sudden transition that occurs within

the dual region of regular and Mach reflections.



Chapter 10

Concluding Remarks

The two analytical sets of equations to determine the transition boundaries for von Neumann’s

extreme-angle and mechanical-equilibrium criteria have been revised in Chapter 3 into concise

forms that are more appropriate for modern usage than past formulations. Relevant details of

their contact point and maximum value were also provided for polytropic gases with specific

heat ratios of γ = 5/3 as well as 7/5. These analyses have been performed because of their

relevance and importance to the new results characterizing the numerical transition boundary

between regular reflection (RR) and Mach reflection (MR) for the case of moving planar shock

waves in argon and atmospheric air for the case of a moving, planar shock wave impinging on

a rigid, inclined wedge without a boundary layer.

Numerical solutions of the thickness and transition of flow properties for one-dimensional,

planar shock waves in viscous, heat-conducting gases have been computed in Chapter 4 based

on solutions of the Navier-Stokes equations, with and without volume viscosity. The results

have been presented for several pure species as well as their mixtures, including monatomic

argon, molecular nitrogen and atmospheric air. For polyatomic gases, the inclusion of volume

viscosity in the governing Navier-Stokes equations leads to good agreement of the predicted

numerical results with experimental measurements, for both shock-front transitions as well

as shock wave thicknesses, over a wide range of shock Mach numbers. Comparisons of the

Navier-Stokes computations reported herein with existing experimental data indicates that the

continuum fluid-dynamic description of gases using the Navier-Stokes equations provides better

and more accurate results for shock-front transitions and thicknesses than previously thought

or expected from kinetic theory, even at relatively high shock Mach numbers.

A parallel, fully implicit, anisotropic block-based AMR finite-volume scheme has been de-

scribed in Chapter 5 for solving both inviscid and laminar, two-dimensional, compressible,

unsteady, gaseous fluid flows governed by the Euler and Navier-Stokes equations, respectively.

110
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Verification and validation of the numerical solution method was performed in Chapter 6 to

assess the predictive capabilities of the algorithm for several flow problems involving shocks,

demonstrating the benefits, capabilities and parallel performance of the approach. The com-

bination of anisotropic AMR and parallel implicit time-marching techniques adopted in the

computational scheme has been shown to readily enable time-accurate numerical simulations of

complex multi-shock interaction problems, as represented by unsteady oblique shock reflection

processes with fully resolved internal shock structures. Thereafter, the high-resolution CFD

solution method with explicit time marching was used extensively in the computation of the

Euler equations for flow fields pertaining to unsteady shock-wave interactions with rigid in-

clined wedges in inviscid and polytropic gases, to facilitate the determination of the numerical

transition boundary separating regular and Mach reflections within these flows.

An accurate and systematic methodology for determining the numerical transition boundary

between regular and Mach reflections from CFD flow-field simulations without a boundary layer

on the wedge surface has been developed and well established in Chapter 7. Important details

were provided regarding the procedures for calculating the speeds of the incident shock and

Mach stem, calculating the normalized (self-similar) Mach-stem length, and extracting the

numerical transition-boundary point from closely packed CFD flow-fields across but normal to

von Neumann’s extreme-angle boundary. The procedure was applied at the twenty reference

points within the plane defined by the wedge angle θw versus the incident shock Mach number

Mi, as defined earlier in tables 7.1(a) and 7.1(b) for both argon as well as atmospheric air,

respectively. The twenty new numerical transition-boundary points (Mi,θw) given in table 7.2(a)

and 7.2(b) have been carefully determined for each of these gases with an accuracy superior to

that possible by human inspection and interpretation of numerical images from simulated flow

fields and experimental photographs from experiments.

The numerical transition boundary separating regular and Mach reflections for shock waves

striking wedges in inviscid and non-heat-conducting fluid flows has been documented in Chap-

ter 9, using both argon as well as atmospheric air as the working media. For each individual

gas that has been examined in this research, this new numerical transition boundary agrees

well with the corresponding analytical extreme-angle and sonic transition boundaries of von

Neumann [5] for low shock Mach numbers from 1.0 to 1.6, as might be expected, but this

new numerical transition boundary trends unexpectedly upward by as much as 1.6◦ at larger

shock Mach numbers from 1.6 to 4.0. Although this upward trend is small, it is noticeable,

consistent, significant and confirmed by one experiment by Henderson and Lozzi [16] in air.

For inviscid flow along the wedge surface, with no boundary layer, stronger Mach reflections

therefore persist upward from the Mach-reflection region into the dual region of regular and

Mach reflections. This is exactly the opposite behaviour of what occurs for the case of observed

experimental shock reflections with a combined viscous and thermal boundary layer on the

wedge surface, where regular reflections persist downward into the Mach reflection region (see

Fig. 1.2). Hence, for shock reflections with a boundary layer on the inclined wedge surface,
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the persistence of experimental regular reflection patterns occurs from the regular reflection

region, across the entire dual region and the new numerical transition boundary, over the sonic

and extreme-angle transition boundaries and down into the Mach-reflection regions of TMR

and DMR. The experimental persistence is therefore larger than previously understood, in that

it is now considered to progress past the new numerical transition boundary, instead of the

lower sonic and extreme-angle transition boundaries. The reason for this upward shift in the

new numerical transition boundary is believed to be due to the incorporation of the effects

of the corner disturbance as well as those of the curved reflected shock (when the corner dis-

turbance overtakes the incident shock in RR and the triple point in MR) included in these

computations, which account fully for the shock-reflection process from the inclined wedge.

Von Neumann’s transition boundaries are based on simple analytical considerations in which

the incident, reflected and Mach-stem shocks, and the slip stream, are all assumed planar and

straight. Moreover, von Neumann’s analytical formulations ignore the corner disturbance for

the extreme-angle boundary and only take its arrival into account for the sonic boundary.

10.1 Original Contributions

The primary contributions made as a result of this research are:

• A new numerical transition boundary between regular and Mach reflections has been

determined accurately and analyzed in Chapter 9 for moving shock waves striking wedges

without a combined viscous and thermal boundary layer on the wedge surface in argon

as well as atmospheric air.

• An effective post-processing methodology has been developed in Chapter 7 for the de-

termination of the transition between regular and Mach reflections from CFD simulation

data, providing a technique whose accuracy is far superior to that previously achievable

by human inspection and interpretation of flow-field diagrams.

• The parallel anisotropic block-based AMR finite-volume scheme described in Chapter 5

has been utilized in Chapter 6 to obtain the first-known high-spatial-resolution and time-

accurate computations for unsteady oblique shock-wave reflection processes with fully

resolved internal shock structures.

In addition, several secondary contributions include:

• Analytical solutions for regular reflection and the corresponding solutions for the extreme-

angle and mechanical-equilibrium transition criteria of von Neumann [5] have been revis-

ited and revised in Chapter 3 into concise forms that are convenient for modern usage.

• An ODE solution method based on a continuum fluid-dynamic approach using the Navier-

Stokes equations has been developed in Chapter 4 and used therein to predict numeri-

cal shock-front transitions with and without volume viscosity for several viscous, heat-

conducting gases.
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10.2 Recommendations for Future Research

The analytical, computational-fluid-dynamic and post-processing techniques that have been

developed and described in this dissertation lay the foundation for further studies of shock-

wave reflection transition boundaries and their accurate determination from closely spaced

computational flow fields. Among the many available avenues for future research, the following

are most highly recommended:

• For inviscid and polytropic flow fields, the transition boundary between regular and Mach

reflections in carbon dioxide (CO2) should be determined. This work is a direct extension

of the current study, and involves the solution of the Euler equations for shock-wave

reflections from a wedge without a combined viscous and thermal boundary layer. The

objective would be to gain further insight into the polytropic-gas assumption for the new

numerical transition boundary (γCO2 = 1.29973 is lower than most other gases).

• The persistence of regular reflection across both the new numerical transition boundary

and the sonic and extreme-angle transition boundaries (all of which are inviscid) into the

Mach reflection region in air should be investigated. This study involves the solution

of the Navier-Stokes equations for shock-wave reflections from an inclined wedge with

a combined viscous and thermal boundary layer. The objective would be to develop a

better understanding as to why the experimental results in air (with a boundary layer

on the wedge surface) shown in Fig. 1.2 persist noticeably below the inviscid transition

boundaries and to explore the effect of wedge length on this persistence.

It is noted that computational experiments do not suffer from repeatability problems and are

more readily modified than experimental shock-tube facilities (e.g. turning the boundary layer

off and on, modifying initial flow and boundary conditions, etc.), particularly in large parametric

studies such as these, encouraging their use to quantify the numerous regions and boundaries

of unsteady shock-wave reflections within gaseous flow fields.
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Appendix A

Collection of Post-Processed Data for

Numerical Transition Between RR

and MR in Argon

A collection of numerical results for the transition from regular to Mach reflections for incident

shock waves striking wedges without a combined viscous and thermal boundary layer in argon

is presented herein. The flow-field data has been obtained by means of the CFD solution

method that is described in Chapter 5 and applied to the unsteady, two-dimensional form of

the Euler equations, useful for modelling laminar, compressible, gaseous fluid flows such as the

oblique shock-wave reflections of interest here. The analysis for determining the shock speeds

and characteristic Mach stem length L for a given data set as a function of the parameter

α is then performed via the accompanying post-processing technique outlined in Chapter 7.

The resultant L versus α plots for each of the 20 preselected (M⋆
i , θ

⋆
w) reference point pairings

presented in table 7.2(a) and illustrated in Fig. 9.1(a) for argon are presented in Figs. A.1

through A.20, respectively. A listing of the early and late indications of the emergence of a

Mach stem surrounding the numerical transition boundary between regular and Mach reflections

in argon for a wedge without a boundary layer is tabulated in table A.1.
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Figure A.1: L versus α plot and numerical transition point for reference point 1

(M⋆

i
= 1.001 and θ⋆

w
= 5.1010◦) in inviscid and polytropic argon.
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Figure A.2: L versus α plot and numerical transition point for reference point 2

(M⋆

i
= 1.006 and θ⋆

w
= 12.2184◦) in inviscid and polytropic argon.
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Figure A.3: L versus α plot and numerical transition point for reference point 3

(M⋆

i
= 1.018 and θ⋆

w
= 20.1533◦) in inviscid and polytropic argon.
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Figure A.4: L versus α plot and numerical transition point for reference point 4
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= 28.0871◦) in inviscid and polytropic argon.
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Figure A.5: L versus α plot and numerical transition point for reference point 5
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= 36.3558◦) in inviscid and polytropic argon.
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Figure A.6: L versus α plot and numerical transition point for reference point 6

(M⋆

i
= 1.182 and θ⋆

w
= 43.4992◦) in inviscid and polytropic argon.



Appendix A. Collection of Post-Processed Data for Argon 129

–1 0 1

0

1

2

102 α

1
03  

L

L rr , Lmr
– –RR

MR

RP–7
nr = 12

α c = –0.0013

× 1.6αc

Figure A.7: L versus α plot and numerical transition point for reference point 7
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Figure A.8: L versus α plot and numerical transition point for reference point 8
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= 49.9799◦) in inviscid and polytropic argon.
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Figure A.9: L versus α plot and numerical transition point for reference point 9

(M⋆
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= 1.572 and θ⋆
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= 51.3539◦) in inviscid and polytropic argon.
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Figure A.10: L versus α plot and numerical transition point for reference point 10
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Figure A.11: L versus α plot and numerical transition point for reference point 11
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Figure A.12: L versus α plot and numerical transition point for reference point 12

(M⋆
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= 53.2183◦) in inviscid and polytropic argon.
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Figure A.13: L versus α plot and numerical transition point for reference point 13

(M⋆

i
= 2.25 and θ⋆
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= 53.6680◦) in inviscid and polytropic argon.
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Figure A.14: L versus α plot and numerical transition point for reference point 14

(M⋆

i
= 2.5 and θ⋆

w
= 53.9398◦) in inviscid and polytropic argon.
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Figure A.15: L versus α plot and numerical transition point for reference point 15

(M⋆

i
= 2.75 and θ⋆

w
= 54.1151◦) in inviscid and polytropic argon.
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Figure A.16: L versus α plot and numerical transition point for reference point 16

(M⋆

i
= 3.0 and θ⋆

w
= 54.2340◦) in inviscid and polytropic argon.
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Figure A.17: L versus α plot and numerical transition point for reference point 17

(M⋆

i
= 3.25 and θ⋆

w
= 54.3179◦) in inviscid and polytropic argon.
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Figure A.18: L versus α plot and numerical transition point for reference point 18

(M⋆

i
= 3.5 and θ⋆

w
= 54.3792◦) in inviscid and polytropic argon.
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Figure A.19: L versus α plot and numerical transition point for reference point 19
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= 3.75 and θ⋆
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Figure A.20: L versus α plot and numerical transition point for reference point 20

(M⋆

i
= 4.0 and θ⋆

w
= 54.4606◦) in inviscid and polytropic argon.
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Table A.1: Early and late indications of the emergence of a Mach stem surrounding the numerical transition

boundary between regular and Mach reflections in argon for a wedge without a boundary layer.

RP
early indication transition late indication |late−early|

2

αearly Mi θw(
◦) αc Mi θw(

◦) αlate Mi θw(
◦) ±∆Mi ±∆θw(

◦)

1 0.00009 1.00109 5.1009 0.00022 1.00122 5.1007 0.00035 1.00135 5.1005 0.00013 0.0002

2 −0.00230 1.00370 12.2266 −0.00060 1.00540 12.2206 0.00110 1.00710 12.2145 0.00170 0.0060

3 −0.00230 1.01572 20.1709 −0.00063 1.01737 20.1581 0.00104 1.01903 20.1453 0.00166 0.0128

4 −0.00268 1.03840 28.1302 −0.00020 1.04081 28.0903 0.00228 1.04321 28.0504 0.00240 0.0399

5 −0.00470 1.08496 36.5273 −0.00050 1.08857 36.3741 0.00370 1.09218 36.2211 0.00361 0.1531

6 −0.00415 1.17978 43.7769 −0.00110 1.18141 43.5726 0.00195 1.18304 43.3691 0.00163 0.2039

7 −0.00390 1.30397 48.0339 −0.00130 1.30466 47.8195 0.00130 1.30534 47.6060 0.00069 0.2139

8 −0.00275 1.43461 50.2230 −0.00080 1.43489 50.0505 0.00115 1.43516 49.8786 0.00028 0.1722

9 −0.00165 1.57186 51.5050 −0.00080 1.57193 51.4271 0.00005 1.57200 51.3494 0.00007 0.0778

10 −0.00335 1.71482 52.5547 −0.00270 1.71486 52.4935 −0.00205 1.71489 52.4325 0.00003 0.0611

11 −0.00475 1.85483 53.2634 −0.00410 1.85486 53.2012 −0.00345 1.85488 53.1391 0.00002 0.0621

12 −0.00745 1.99982 53.9370 −0.00670 1.99984 53.8641 −0.00595 1.99985 53.7913 0.00002 0.0728

13 −0.00985 2.24986 54.6316 −0.00945 2.24987 54.5920 −0.00905 2.24987 54.5525 0.00001 0.0396

14 −0.01215 2.49989 55.1398 −0.01160 2.49990 55.0847 −0.01105 2.49990 55.0297 0.00000 0.0551

15 −0.01355 2.74992 55.4616 −0.01300 2.74992 55.4060 −0.01245 2.74993 55.3506 0.00000 0.0555

16 −0.01525 2.99994 55.7572 −0.01460 2.99994 55.6911 −0.01395 2.99994 55.6251 0.00000 0.0661

17 −0.01535 3.24996 55.8546 −0.01510 3.24996 55.8291 −0.01485 3.24996 55.8036 0.00000 0.0255

18 −0.01655 3.49996 56.0412 −0.01610 3.49997 55.9950 −0.01565 3.49997 55.9490 0.00000 0.0461

19 −0.01655 3.74997 56.0891 −0.01625 3.74997 56.0583 −0.01595 3.74997 56.0276 0.00000 0.0308

20 −0.01665 3.99998 56.1363 −0.01640 3.99998 56.1106 −0.01615 3.99998 56.0849 0.00000 0.0257



Appendix B

Collection of Post-Processed Data for

Numerical Transition Between RR

and MR in Atmospheric Air

A collection of numerical results for the transition from regular to Mach reflections for incident

shock waves striking wedges without a combined viscous and thermal boundary layer in atmo-

spheric air is presented herein. The flow-field data has been obtained by means of the CFD

solution method that is described in Chapter 5 and applied to the unsteady, two-dimensional

form of the Euler equations, useful for modelling laminar, compressible, gaseous fluid flows

such as the oblique shock-wave reflections of interest here. The analysis for determining the

shock speeds and characteristic Mach stem length L for a given data set as a function of the

parameter α is then performed via the accompanying post-processing technique outlined in

Chapter 7. The resultant L versus α plots for each of the 20 preselected (M⋆
i , θ

⋆
w) reference

point pairings presented in table 7.2(b) and illustrated in Fig. 9.1(b) for atmospheric air are

presented in Figs. B.1 through B.20, respectively. A listing of the early and late indications of

the emergence of a Mach stem surrounding the numerical transition boundary between regular

and Mach reflections in atmospheric air for a wedge without a boundary layer is tabulated in

table B.1.
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Figure B.1: L versus α plot and numerical transition point for reference point 1

(M⋆

i
= 1.001 and θ⋆
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= 5.0997◦) in inviscid and polytropic air.
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Figure B.2: L versus α plot and numerical transition point for reference point 2

(M⋆

i
= 1.006 and θ⋆

w
= 12.2012◦) in inviscid and polytropic air.
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Figure B.3: L versus α plot and numerical transition point for reference point 3

(M⋆

i
= 1.018 and θ⋆

w
= 20.0766◦) in inviscid and polytropic air.
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Figure B.4: L versus α plot and numerical transition point for reference point 4
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= 1.041 and θ⋆
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= 27.8798◦) in inviscid and polytropic air.

–1 0 1

0

1

2

102 α

1
0

3  
L

L rr , Lmr
– –RR

MR

RP–5
nr = 12

α c = –0.0002

× 2αc

Figure B.5: L versus α plot and numerical transition point for reference point 5
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= 1.089 and θ⋆
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= 35.8945◦) in inviscid and polytropic air.
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Figure B.6: L versus α plot and numerical transition point for reference point 6

(M⋆

i
= 1.182 and θ⋆

w
= 42.6428◦) in inviscid and polytropic air.
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Figure B.7: L versus α plot and numerical transition point for reference point 7
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= 1.305 and θ⋆
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= 46.4516◦) in inviscid and polytropic air.
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Figure B.8: L versus α plot and numerical transition point for reference point 8
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= 1.435 and θ⋆

w
= 48.3727◦) in inviscid and polytropic air.
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Figure B.9: L versus α plot and numerical transition point for reference point 9

(M⋆

i
= 1.572 and θ⋆

w
= 49.4404◦) in inviscid and polytropic air.
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Figure B.10: L versus α plot and numerical transition point for reference point 10

(M⋆

i
= 1.715 and θ⋆
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= 50.0537◦) in inviscid and polytropic air.
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Figure B.11: L versus α plot and numerical transition point for reference point 11
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= 50.3927◦) in inviscid and polytropic air.
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Figure B.12: L versus α plot and numerical transition point for reference point 12

(M⋆

i
= 2.0 and θ⋆

w
= 50.5908◦) in inviscid and polytropic air.



Appendix B. Collection of Post-Processed Data for Atmospheric Air 140

–2 –1 0

0

1

2

3

4

102 α

1
0

2  
L

L rr , Lmr
– –RR

MR

RP–13
nr = 12

α c = –0.0121
× 5

αc

Figure B.13: L versus α plot and numerical transition point for reference point 13

(M⋆

i
= 2.25 and θ⋆
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= 50.7392◦) in inviscid and polytropic air.
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Figure B.14: L versus α plot and numerical transition point for reference point 14
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Figure B.15: L versus α plot and numerical transition point for reference point 15

(M⋆
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= 2.75 and θ⋆

w
= 50.7463◦) in inviscid and polytropic air.
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Figure B.16: L versus α plot and numerical transition point for reference point 16
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Figure B.17: L versus α plot and numerical transition point for reference point 17
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= 50.6529◦) in inviscid and polytropic air.
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Figure B.18: L versus α plot and numerical transition point for reference point 18

(M⋆

i
= 3.5 and θ⋆

w
= 50.6021◦) in inviscid and polytropic air.
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Figure B.19: L versus α plot and numerical transition point for reference point 19
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Figure B.20: L versus α plot and numerical transition point for reference point 20

(M⋆
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Table B.1: Early and late indications of the emergence of a Mach stem surrounding the numerical transition

boundary between regular and Mach reflections in atmospheric air for a wedge without a boundary layer.

RP
early indication transition late indication |late−early|

2

αearly Mi θw(
◦) αc Mi θw(

◦) αlate Mi θw(
◦) ±∆Mi ±∆θw(

◦)

1 −0.00005 1.00095 5.0998 0.0003 1.00130 5.0993 0.00065 1.00165 5.0989 0.00035 0.0005

2 −0.00135 1.00465 12.2060 −0.0001 1.00590 12.2016 0.00115 1.00715 12.1971 0.00125 0.0045

3 −0.00250 1.01552 20.0959 −0.0003 1.01770 20.0789 0.00190 1.01988 20.0619 0.00218 0.0170

4 −0.00310 1.03800 27.9306 −0.0008 1.04023 27.8929 0.00150 1.04245 27.8553 0.00223 0.0376

5 −0.00270 1.08670 35.9950 −0.0002 1.08883 35.9020 0.00230 1.09096 35.8090 0.00213 0.0930

6 −0.00150 1.18123 42.7434 −0.0001 1.18195 42.6495 0.00130 1.18266 42.5558 0.00071 0.0938

7 −0.00165 1.30461 46.5849 −0.0001 1.30498 46.4596 0.00145 1.30535 46.3346 0.00037 0.1252

8 −0.00104 1.43487 48.4618 −0.0001 1.43499 48.3812 0.00084 1.43510 48.3008 0.00011 0.0805

9 −0.00265 1.57183 49.6739 −0.0019 1.57188 49.6077 −0.00115 1.57193 49.5416 0.00005 0.0662

10 −0.00465 1.71484 50.4702 −0.0040 1.71486 50.4117 −0.00335 1.71488 50.3534 0.00002 0.0584

11 −0.00735 1.85485 51.0578 −0.0067 1.85487 50.9986 −0.00605 1.85488 50.9395 0.00001 0.0592

12 −0.00965 1.99989 51.4699 −0.0091 1.99990 51.4194 −0.00855 1.99991 51.3689 0.00001 0.0505

13 −0.01255 2.24996 51.8896 −0.0121 2.24996 51.8478 −0.01165 2.24996 51.8061 0.00000 0.0417

14 −0.01415 2.50000 52.0684 −0.0137 2.50000 52.0265 −0.01325 2.50000 51.9846 0.00000 0.0419

15 −0.01495 2.75002 52.1203 −0.0147 2.75002 52.0970 −0.01445 2.75002 52.0737 0.00000 0.0233

16 −0.01595 3.00003 52.1692 −0.0156 3.00003 52.1365 −0.01525 3.00003 52.1038 0.00000 0.0327

17 −0.01615 3.25004 52.1360 −0.0160 3.25004 52.1220 −0.01585 3.25004 52.1080 0.00000 0.0140

18 −0.01655 3.50004 52.1208 −0.0164 3.50004 52.1068 −0.01625 3.50004 52.0928 0.00000 0.0140

19 −0.01705 3.75004 52.1174 −0.0167 3.75003 52.0847 −0.01635 3.75003 52.0521 0.00000 0.0326

20 −0.01725 4.00003 52.0898 −0.0170 4.00003 52.0665 −0.01675 4.00003 52.0432 0.00000 0.0233
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