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Abstract

A Parallel Implicit Adaptive Mesh Refinement Algorithm

for Predicting Unsteady Fully-Compressible Reactive Flows

Scott A. Northrup

Doctor of Philosophy

Graduate Department of Aerospace Engineering

University of Toronto

2014

A new parallel implicit adaptive mesh refinement (AMR) algorithm is developed for the

prediction of unsteady behaviour of laminar flames. The scheme is applied to the solution

of the system of partial-differential equations governing time-dependent, two- and three-

dimensional, compressible laminar flows for reactive thermally perfect gaseous mixtures.

A high-resolution finite-volume spatial discretization procedure is used to solve the con-

servation form of these equations on body-fitted multi-block hexahedral meshes. A local

preconditioning technique is used to remove numerical stiffness and maintain solution ac-

curacy for low-Mach-number, nearly incompressible flows. A flexible block-based octree

data structure has been developed and is used to facilitate automatic solution-directed

mesh adaptation according to physics-based refinement criteria. The data structure also

enables an efficient and scalable parallel implementation via domain decomposition. The

parallel implicit formulation makes use of a dual-time-stepping like approach with an im-

plicit second-order backward discretization of the physical time, in which a Jacobian-free

inexact Newton method with a preconditioned generalized minimal residual (GMRES)

algorithm is used to solve the system of nonlinear algebraic equations arising from the

temporal and spatial discretization procedures. An additive Schwarz global precondi-

tioner is used in conjunction with block incomplete LU type local preconditioners for

each sub-domain. The Schwarz preconditioning and block-based data structure readily

allow efficient and scalable parallel implementations of the implicit AMR approach on
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distributed-memory multi-processor architectures. The scheme was applied to solutions

of steady and unsteady laminar diffusion and premixed methane-air combustion and

was found to accurately predict key flame characteristics. For a premixed flame under

terrestrial gravity, the scheme accurately predicted the frequency of the natural buoy-

ancy induced oscillations. The performance of the proposed parallel implicit algorithm

was assessed by comparisons to more conventional solution procedures and was found

to significantly reduce the computational time required to achieve a solution in all cases

investigated.
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Chapter 1

Introduction

1.1 Motivation

Advanced combustion science is and will remain a key component for continued eco-

nomic growth and social stability of todays industrial societies and will play a vital role

in the design of future energy utilization systems including electric power generation,

transportation, and heating systems. Virtually all practical combustion devices operate

in the turbulent regime and currently involve the burning of fossil fuels with high carbon

content such as coal, petroleum, and natural gas. Unfortunately, it is the combustion of

these fossil fuels that is responsible for nearly all of the anthropogenic emissions of nitro-

gen oxides (NOx), carbon monoxide (CO), soot, aerosols, and other chemical species that

are harmful, or are suspected to be harmful, to human health and the environment [1].

The production of carbon dioxide (CO2) by fossil fuel combustion is also a major contrib-

utor to climate change. In an effort to deal with emerging environmental concerns and

policies set forth by governmental agencies as well as for reasons of energy security, the

need for high-fuel-efficient, low-emissions combustion technology as well as alternative

and sustainable sources of fuels have been pushed to the forefront of both national and

international attention.

To address these pressing issues, a significantly enhanced fundamental understanding

of combustion processes, specifically low-temperature, lean, turbulent combustion while

avoiding thermoacoustic instabilities is needed. Combustion however, is an inherently

multi-scale process involving the complex interplay of a wide range of non-linear phys-

1
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ical processes including turbulent fluid transport, complex chemical kinetics of multi-

component fuels, multi-phase transport, and radiation transport under conditions of

elevated pressure and/or temperature and, as with all multi-scale processes, small-scale

physics directly impacts observed large-scale behaviour. It is also important to note that,

for devices such as gas turbine engines, future combustion designs will require operation

at even higher pressures and fuel-to-air ratios than those seen today. Our fundamental

understanding of conventional and alternative fuel combustion under such high-pressure

conditions must therefore be significantly improved and the current lack of understand-

ing in this area is one of the major impediments to the adoption of alternative fuels in

gas turbines. Moreover the control of thermoacoustic combustion instabilities is one of

the greatest challenges faced by today’s designers of advanced low-emissions gas turbine

engines. It is therefore evident that the complexity of the physics and wide range of phys-

ical scales make the understanding of combustion an extremely daunting and challenging

task.

Numerical methods offer one avenue for improving our understanding of combustion; how-

ever, the development of predictive mathematical models and numerical simulation tools

for realistic combustion devices is highly challenging [2]. As noted above, a broad array

of physical and chemical models must be integrated into a single mathematical descrip-

tion of the combustion device. Moreover, practical systems involve three-dimensional,

time-dependent, flows through complex geometries and often with moving machinery, as

in gas turbines and internal combustion engines. Due to the limits on available computa-

tional resources and the inability to resolve all solution scales for practical configurations,

numerical prediction of combustion processes relies heavily on reduced mathematical

modelling and sophisticated numerical methods of varying degrees of approximation to

represent the underlying physics and make the problems of interest tractable [3–5].

Unfortunately, current mathematical modelling techniques and numerical solution algo-

rithms are not sufficiently accurate, reliable, robust, and/or scalable enough to address

the numerous and complex issues associated with high-efficiency and low-emissions com-

bustor design, such as high pressure and thermoacoustic effects. A common limitation

in many current combustion modelling approaches is that they have been predominantly

developed with a very specific flow regime or application in mind. As such mathematical

modelling assumptions are made that limit their applicability outside of a specific regime.

For example, a commonly used practice in numerical combustion modelling, including
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the widely used KIVA [6] and OpenFOAM [7] codes, as well as the work of Smooke [8,9],

Bennett [10], and Dworkin [11], is to solve the incompressible form of the Navier-Stokes

equations and rely on compressibility corrections to account for density variations. While

these approaches are adequate for relatively simple low-Mach-number atmospheric com-

bustion regimes such as laminar diffusion flames, they however greatly limit the range

of applicability of the method, making them not well suited for investigating high pres-

sure and certainly unsteady thermal acoustic phenomena. To accurately resolve and

investigate these more complex physical phenomena a fully compressible formulation is

generally required [12]. While some fully compressible approaches for reactive flows have

been developed [12–15], this still represents very much an active area of research as ne-

cessitated by the physical complexities being investigated. Ultimately if quantitative

predictions of unsteady transient behaviour, such as thermoacoustic coupling and com-

bustion instabilities, are to be undertaken, an efficient fully-compressible robust highly

scalable algorithm will be required.

1.2 Numerical Solution Methods for Combustion

Modelling

As mentioned in Section 1.1, most practical combustion configurations are fully turbu-

lent, three dimensional, and involve complex chemical reaction mechanisms. The spatial

and temporal time scales involved in the fluid flow, turbulence, and chemical reactions

can be quite disparate, ranging over multiple order of magnitudes. The chemical reac-

tion mechanisms that describe chemical processes are highly non-linear in nature and

can involve many chemical species. In many cases, each species has to be tracked sep-

arately and a large system of non-linear partial differential equations must be solved.

The disparate scales, non-linearity, and large systems of equations cause many numerical

algorithms to be either very inaccurate or to take an inordinate amount of computational

resources both in terms of time and storage, to achieve an accurate solution. The compu-

tational costs required can thus be extremely prohibitive and many flow regimes and/or

conditions are not obtainable with current approaches.
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1.2.1 Adaptive Mesh Refinement

One highly successful approach to reducing the computational cost of Computational

Fluid Dynamic (CFD) solutions is to make use of solution-directed mesh adaptation

where the underlying computational mesh automatically adapts according to the solu-

tion, adding mesh resolution only where required. In unsteady calculations the benefit

is even more pronounced as mesh resolution is both increased and decreased dynam-

ically allowing the mesh to track solution flow features. A recent assessment of the

needs for large-scale and high-performance scientific computing [16,17] has identified the

need for greater automation of mesh generation via adaptive mesh refinement (AMR)

to reduce the time to generate high-quality meshes and for the treatment of problems

having complex geometries. Adaptive mesh refinement has proven to be very effec-

tive for treating problems with disparate length scales, providing the required spatial

resolution while minimizing memory and storage requirements. When combined with

Godunov-type finite-volume schemes [18], AMR methods have proved to be particularly

effective for the solution of hyperbolic systems of conservation laws on structured Carte-

sian and body-fitted meshes and have been developed for a wide variety of engineering

problems [14,19–47].

To date, several distinct AMR strategies have emerged which can be generally classified

into four broad categories depending on the partitioning algorithm and/or data structure

used to track mesh connectivity: patch-based AMR methods, cell-based AMR methods,

block-based AMR methods, and hybrid block-based AMR techniques. Figure 1.1(a)

depicts a base Cartesian mesh with cells flagged for refinement. Figures 1.1(b)–1.1(d)

demonstrate the subsequent refinement of this base mesh resulting from the patch-based,

cell-based, and block-based AMR schemes.

Berger and Oliger, along with Colella, originally proposed a dynamic gridding tech-

nique for computing time-dependent solutions to hyperbolic partial differential equations

(PDEs) in multiple space dimensions on regular Cartesian meshes [19–21]. This approach

is now more generally referred to as patch-based AMR. The algorithm begins with a

coarse base-level Cartesian grid and, as the calculation progresses, individual grid cells

are flagged for refinement as illustrated in Figure 1.1(b). The patch-based AMR strategy

relies on a fairly sophisticated algorithm to organize collections of individual computa-

tional cells into rectangular patches. The mesh within these newly formed patches can
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(a) Base Cartesian grid (b) Patch-based AMR (c) Cell-based AMR (d) Block-based AMR

Figure 1.1: Illustration of (b) patch-based, (c) cell-based, and (d) block-based AMR

techniques applied to a base Cartesian mesh (a) with cells flagged for refinement indicated

by black dots.

then be further refined, creating additional nested patches.

In cell-based AMR, as proposed and developed for example by Powell and co-workers [24–

26,31,33,34], Berger and Leveque [22], and Aftosmis and co-workers [35,43,44], each cell

may be refined individually as shown in Figure 1.1(c) and is stored using a tree data

structure (quadtree in two dimensions, and octree for three dimensions). This cell-based

tree structure is flexible and readily allows for the local refinement of the mesh by keep-

ing track of the computational cell connectivity as new grid points are generated by the

refinement process (4 new cells in two dimensions and 8 in three dimensions). Most

cell-based approaches have been applied to Cartesian meshes and, in many cases, cut

cells are used to treat complex geometry. Very efficient AMR schemes have been devised

using the latter; fully three-dimensional meshes around extremely complex objects can

be generated automatically and routinely in a matter of hours or less using this tech-

nique [35, 43, 44]. Nevertheless, discretization of elliptic operators on Cartesian cut cells

can be challenging [31] and applications are generally restricted to numerical solution of

hyperbolic systems.

In a block-based AMR strategy, mesh adaptation is accomplished by the dividing and

coarsening of entire pre-defined grid blocks or groupings of cells. Although not required,

each of the groupings or blocks generally has an equal number of cells as shown in Fig-

ure 1.1(d). Tree data structures are again used for tracking block connectivity and mesh

refinement; however, the block-based AMR strategy results in a much lighter tree struc-

ture as compared to that of cell-based methods. While typically larger numbers of mesh
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(a) Body-fitted coarse grid (b) Refined body-fitted grid

Figure 1.2: Illustration of block-based adaptive mesh refinement on body-fitted grid

topology showing original coarse grid (a) and refined grid (b).

cells are created during the refinement process (i.e., typically more than the correspond-

ing number of cells introduced in cell-based AMR approaches), block-based methods

may more readily lend themselves to efficient and scalable parallel implementations via

domain decomposition [14,28,41,42,45–47].

Applications of efficient and scalable parallel block-based approaches on Cartesian meshes

are described by Quirk [27], Berger [28], and by Groth et al. [41, 42, 48]. More recently,

Groth and co-researchers [14, 45–47, 49] have developed a rather flexible block-based

AMR scheme allowing automatic solution-directed mesh adaptation on multi-block body-

fitted (curvilinear) meshes consisting of quadrilateral (two-dimensional, 2D, case) and

hexahedral computational cells (three-dimensional, 3D, case). This block-based approach

has been shown to enable efficient and scalable parallel implementations for a variety of

flow problems, as well as allow local refinement of body-fitted meshes with anisotropic

stretching. The latter aids in the treatment of complex flow geometry and flows with

thin boundary, shear, and mixing layers and/or discontinuities and shocks. Extensions

of the block-based body-fitted AMR approach for embedded boundaries not aligned with

the mesh [50] and with an anisotropic refinement strategy [51] are also possible and have

been developed. Figure 1.2 illustrates the application of the block-based AMR technique

to a body-fitted mesh.

Finally, hybrid block-based AMR approaches have also been considered. For example,

Holst and Keppens [52] applied a hybrid approach to general curvilinear coordinate sys-
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tems, modifying the full tree data structure to allow for incomplete block refinement

and incorporate ideas from patch-based strategies. The proposed hybrid AMR strategy

requires two means to traverse the grid hierarchy, e.g., there is a doubly linked list of

grid pointers per level in addition to the tree data structure. Thus, the mixed data

structure further complicates the neighbour search algorithm in three-dimensions. Holst

and Keppens [52] compared the three AMR strategies, i.e., a patch-based, a tree block-

based, and a hybrid block-based, for a smooth two-dimensional advection test problem

on a doubly periodic domain with a second order numerical scheme, and found that the

block-based AMR approach is the most efficient in terms of the execution speed for the

same accuracy.

Solution directed adaptive mesh refinement methods have been applied to the solution

of combusting flows. Some examples of this would include the parallel AMR algorithms

for 2D low-Mach-number laminar flows developed by Day and Bell [53–55] which was

subsequently extended for use in 3D turbulent combustion regimes [53, 56–59]. Bennett

and Smooke [9,60,61] have employed an adaptive Local Rectangular Refinement (LRR)

method to solve 2D co-flow non-premixed and premixed flames. In addition, in the work

of Northrup and Groth [62,63] and Gao et al. [14,46], a parallel block-based AMR scheme

for steady non-premixed 2D laminar and turbulent combusting flows was proposed. More

recently, this block-based approach for body-fitted multi-block mesh was extended to the

three-dimensional case by Gao and Groth [47,64] for steady non-premixed flames.

1.2.2 Mesh Refinement Adaption Criteria

One difficulty in achieving definite improvements using adaptive mesh refinement is the

lack of reliable error indicators with which to drive the adaptive algorithm. A common

strategy has been to adapt the mesh to key physical features of the flow, such as shock

waves and boundary layers, by employing indicators based on heuristic measures such

the flow gradient, divergence, and/or curl of solution quantities. Such physics-based

approaches have proven to be quite effective [14, 24, 27, 45–47, 49, 65]; however, they

typically require an a priori knowledge of the flow solution for real success. In some

cases, these adaption criteria can also be misleading as resolving the dominant features of

a flow as identified by heuristic measures does not necessarily guarantee a corresponding

reduction in the overall discretization error.
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An alternative approach would be to instead determine a more general estimate of the so-

lution error and then adapt the mesh accordingly so as to reduce this error. A promising

procedure originally proposed by Pierce and Giles [66–68] and further refined by Venditti

and Darmofal [69–71] and Rannacher et al. [72,73] uses an adjoint-based error correction

technique. Nemec et al. [74–76] have also shown adjoint-based error-estimates for adap-

tive mesh refinement of embedded-boundary Cartesian meshes to be quite effective for

aerodynamic flows.

In spite of the successes to date with error-based mesh adaption, the flows being studied

herein are relatively well understood and the flow features requiring adaption, namely the

flame fronts and mixing layers, can be easily tracked by using heuristic measures based on

the gradients of temperature and species mass fractions. As such, simple physics-based

refinement strategies are employed. Investigations into alternative adaption indicators

based on estimates of solution error are therefore not considered as part of this research

and have been left for future studies.

1.2.3 Parallel Implicit Methods Based on a Newton-Krylov

Approach

As previously mentioned, the solution of complex combustion problems result in large

systems of nonlinear partial differential equations (PDEs) that can be very computation-

ally expensive to solve. While AMR can help reduce the size of the problem and thus

the number of equations that need to be solved, the disparate temporal scales make the

systems of equations “stiff”, which causes many numerical time-marching schemes to typ-

ically have stability and/or convergence issues [77]. For many schemes this necessitates

that a very small time step is required which results in the requirement for a very large

number of iterations or steps and thus a high computational cost. Further exacerbating

the cost for unsteady flows such as those associated with combustion instabilities and

thermoacoustic oscillations, is the need to maintain time accuracy. This means many

acceleration approaches that have been devised and work efficiently for time-invariant,

steady-state, problems can not be directly used.

To deal with numerical stiffness two common algorithms have been proposed and are gen-

erally considered: multigrid and implicit methods based on Newton’s method. Implicit



Chapter 1. Introduction 9

schemes have the potential of being unconditionally stable if they are designed in a proper

way. The stability allows a larger time step dictated only by accuracy considerations,

as the method is not limited by the Courant-Friedrichs-Lewy (CFL) stability criterion

that determines the time-step size of traditional explicit schemes. Implicit methods how-

ever do require the solution of a linear system of equations, which increases the memory

requirements and computation cost per iteration. Efficient parallel implementations of

implicit schemes are also more difficult to achieve than for explicit schemes. Neverthe-

less for a wide range of stiff problems, the higher cost per iteration and programming

complexity of implicit methods is often compensated by the algorithm stability and abil-

ity to take a much larger time step, leading to an overall reduction in computational

time [77,78].

The application of Newton’s method with an appropriate temporal discretization scheme

(the application to unsteady problems is discussed below), results in a large sparse set of

linear systems of equations that needs to be solved at each iteration. In previous work

by Venkatakrishnan [79], a direct method was used to solve the linear system, however

the algorithm required high computational cost and memory usage for matrix inversions

and as such application to larger problems is prohibitive. Another approach is to use an

iterative solver which are less robust however, require less storage than direct methods.

Iterative methods are typically classified into one of two categories, stationary and non-

stationary methods. Jacobi, Gauss-Seidel, and successive over-relaxation are examples of

stationary iterative methods and all require strong diagonal-dominance properties to con-

verge. The requirement for diagonal dominance can often reduce a stationary method’s

applicability as a small time step is often required for convergence. Krylov subspace

methods are non-stationary iterative methods where the computation involves finding

an approximate solution of the linear system from a Krylov subspace. Orthogonality

conditions are then imposed to extract the approximate solution. These methods have

been shown to perform better than other stationery iterative methods in a number of

studies by Nielsen et al. [80] and Anderson et al. [81]. Various Krylov methods have been

developed and are well overviewed in the text by Saad [82] and a review paper by Saad

and van der Vorst [83]. Two of the most popular for CFD applications are Bi-Conjugate

Gradient Stabilized (Bi-CGSTAB) as first proposed by van der Vorst [84] and the gener-

alized minimal residual (GMRES) algorithm proposed by Saad and co-workers [85–88].

Newer approaches such as a flexible variant of generalized conjugate residual with inner
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orthogonalization and outer truncation (GCROT) proposed by Hicken [89] shows promise

for certain classes of problems which require high levels of convergence in applications

such as gradient based optimization [90].

GMRES is a popular Krylov method for non-symmetric indefinite systems such as those

obtained from the Euler and the Navier-Stokes equations. As such GMRES has been

very widely applied to the prediction of aerodynamic flows [80, 91–97], and other multi-

physics problems such reacting flows [98, 99] and magnetohydrodynamics [100]. In a

comprehensive overview paper of Newton-Krylov (NK) methods and application areas,

Knoll and Keyes [101] conclude that GMRES and its variants provide the best balance of

robustness and performance as long as they are coupled with a suitable preconditioner.

The choice of the preconditioner is often more important than the choice of the iterative

method [102]. Preconditioning transforms the linear system to a better conditioned

one so that it can be solved in fewer iterations. Simple, low cost preconditioners such

as a block-diagonal preconditioner have been used successfully by Venkatakrishnan and

Mavriplis [92] and Anderson et al. [81]. A more effective preconditioner, which Pueyo

and Zingg [103] found leads to faster convergence, is incomplete lower-upper factorization

(ILU). The factorization can be based on a complete or an approximate Jacobian. ILU

preconditioning has higher memory usage and computational cost than the block-diagonal

approach but this can be controlled by using a variable fill level ILU. At the limit of zero

fill, ILU(0), the preconditioner has the same non-zero pattern as the original Jacobian or

approximate Jacobian matrix, making it relatively low storage [102].

Newton-Krylov methods can also be used for the solution of unsteady problems by ap-

plying an implicit discretization of the physical time derivative in a dual time-stepping

like procedure [104]. This approach has shown great promise for unsteady aerodynamic

solutions [78, 105]. This allows the use of non-time accurate convergence acceleration

approaches to be used while still maintaining time-accuracy and not being restricted by

the CFL stability limitations on time-step size of explicit methods.

To utilize Newton-Krylov methods in large-scale simulations on modern high perfor-

mance computing (HPC) systems, the algorithm must be adaptable to parallel computing

paradigms. The key to any scalable parallel algorithm is finding sufficient independent

computations that when computed in parallel greatly surpass the overhead of the required

communications. The typical strength of NK methods is the tightly coupled nature of the



Chapter 1. Introduction 11

algorithm; however, this provides significant challenges when implementing the scheme

in parallel. Fortunately, various approaches have been developed to allow NK methods

to be applied in a parallel fashion [101,106–111].

One approach to the parallel implementation of an iterative linear solver and its asso-

ciated non-linear problem is to solve a Schur complement problem arising from the de-

composition of the resulting matrices representing the linear problem [106]. Hicken and

Zingg [112] found good success using this approach for the solution of three-dimensional

aerodynamic optimization problems. One possible issue with this approach, however is

that as the global problem increases for a fixed number of partitions or the number of

partitions increases for a fixed size problem so does the Schur complement. This can lead

to scaling issues as the number of processors becomes extremely large as is anticipated

in the next generation of peta- and exa-scale high performance computers [113].

Another approach is offered by domain-based additive Schwarz preconditioning tech-

niques as pioneered for practical applications by Keyes an co-researchers [107, 108, 110,

114]. Impressive results have been shown in applying parallel implementations of Newton-

Krylov-Schwarz (NKS) algorithms for the transonic full potential equations, low-Mach-

number compressible combusting flows, three-dimensional inviscid flow, and magneto-

hydrodynamics [100, 110, 111, 114, 115]. An additional benefit of the Schwarz precondi-

tioning technique is that it can utilize the same domain decomposition procedure used by

the block-based AMR scheme described earlier, making implementation rather straight-

forward. One possible detraction of the Schwarz approach is that as the level of pre-

conditioning (partitioning) is increased, the overall level of implicitness of the method

decreases (less direct coupling of solution content) which can result in longer solution

times.

In the specific application area of combustion modelling, Newton-Krylov methods have

been successfully applied to the solution of 2D laminar flames by Dobbins and Smooke [116]

as well as Veldhuizen et al. [117]. NK methods were utilized by Shadid et al. [118,119] to

solve 3D steady reactive flows and by Pereira et al. [99] for solutions of reactions in porous

media. Parallel approaches based on Newton-Krylov-Schwarz have also been used for 2D

low-Mach-number combustion solutions by Knoll et al. [114,115] and Charest et al. [120].

Charest et al. [121] also applied NK methods to the solution of radiation transport. These

early successful applications of Newton-Krylov, especially parallel Newton-Krylov meth-
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ods to combustion flows, show that they hold great promise for use in a wider range of

more complex and detailed combustion problems.

The approach of combining the strengths of block-based adaptive mesh refinement with

an implicit Newton-Krylov-Schwarz time-stepping scheme to arrive at a scalable par-

allel framework has been intially studied for 2D steady inviscid flows by Groth and

Northrup [49] and Charest et al. [120, 121] and demonstrated great promise. As such,

this thesis deals with further extension of these ideas and the development of a par-

allel Newton-Krylov-Schwarz AMR algorithm for the solution of steady and unsteady

three-dimensional laminar reactive flows.

While as indicated previously, virtually all practical combusting flows are turbulent, for

the method development considered here, the focus will be restricted to laminar reactive

flows with gaseous fuels. Liquid fuels and multi-phase transport are not considered. In

addition the influences of radiation transport and soot formation are also neglected, as are

the detailed chemical kinetics required for accurate pollutant prediction. These assump-

tions will allow some simplification of the physical modelling and thereby facilitate the

systematic development of the numerical solution method. Note that an understanding

and solution of laminar flames is very often a key ingredient and the basis for modelling

turbulent flames [12, 122, 123]. The extension of the proposed solution method to more

practical turbulent flames will be the subject of future follow-on studies.

1.3 Thesis Objective

The primary objective of this thesis is the development of an algorithm that will sig-

nificantly reduce the time it takes to achieve accurate numerical solutions of physically

complex steady and unsteady combusting flows. The solution of the Navier-Stokes equa-

tions governing laminar flow of a thermally perfect compressible reactive mixture will be

considered. This new algorithm will extend the body-fitted, block based, AMR scheme

proposed by Gao and Groth [47] to deal with disparate spatial scales and complex geom-

etry. A Newton-Krylov-Schwarz parallel implicit time-marching scheme will be used to

deal with the range of temporal scales and numerical stiffness resulting from the chem-

ical mechanisms. Low-Mach-number preconditioning will be used to allow the solution

of flows over the full range of Mach numbers. As the Newton-Krylov scheme and low-
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Mach-number preconditioning violate time accuracy, a dual-time-stepping like approach

will be implemented to calculate unsteady flows. These components will be fully inte-

grated in a ground up parallel implementation that will result in a highly scalable parallel

implicit AMR scheme that will be applicable to the solution of a wide range of steady

and unsteady two and three-dimensional combustion flows.

As the primary goal of this thesis is the development of a new algorithm for reactive

unsteady flow problems, and not the investigation or improvement of the modelling of

these flows, relatively simple chemical mechanisms and laboratory-scale laminar flames

are investigated, and are used for the purposes of validating the approach. These prob-

lems include both premixed and non-premixed laminar flames that are well characterized

and studied, yet still provide a physically complex flow that can be computationally de-

manding to solve. Diffusion flames represent generally more inherently stable reactive

flows, that when forced provide a periodic unsteady flow well suited to study the effects

of dynamic AMR. Conical premixed laminar flames are inherently more unstable and

unsteady due to buoyancy interactions and can be quite difficult to model, but given

the correct set of initial and boundary data, are quasi-periodic providing further useful

validation cases.

1.4 Thesis Organization

The thesis is structured as follows. Following this introduction, provided here in Chap-

ter 1, the system of governing equations for a compressible thermally perfect reactive

mixture of gases is presented in Chapter 2. In Chapter 3, the main elements of the pro-

posed finite-volume scheme and parallel block-based adaptive mesh refinement scheme

are outlined. Chapter 4 focuses on the Newton-Krylov-Schwarz algorithm for steady and

time-accurate calculations. Validation of the parallel implicit AMR finite-volume scheme

for 2D axisymmetric and 3D steady and unsteady flows is then given in Chapter 5. The

performance of the proposed algorithm is discussed in Chapter 6. Conclusions and the

main research contributions of the thesis are highlighted in Chapter 7 along with possible

areas for further study.



Chapter 2

Governing Equations

The numerical solution of steady and unsteady laminar non-premixed and premixed

flames for gaseous fuels is considered in this thesis in order to demonstrate the capa-

bilities and potential of the proposed parallel implicit AMR scheme. The mathematical

equations and models used to describe the laminar flames of interest are summarized in

this chapter. The gaseous reactants and products are treated here as a multi-component

mixture of thermally-perfect gases whose transport is governed by the compressible form

of the Navier-Stokes equations. Note that the use of the compressible form of the Navier-

Stokes equations readily allows for the often large density variations associated with

combusting flows as well as the direct prediction of thermoacoustic and other unsteady

combustion phenomena often neglected in low-Mach-number descriptions of combustion

processes. Appropriate temperature-dependent expressions for species and mixture trans-

port coefficients are used and simple one- and two-step chemical kinetic mechanisms are

considered when representing the combustion processes and oxidation of the fuel.

For the purposes of this numerical research, the problems of interest have been restricted

to the study of gaseous methane-air flames, and well-established one- and two-step re-

action mechanisms are used for this well-characterized hydrocarbon fuel. While such

models can obviously introduce errors in the prediction of the maximum flame temper-

ature and cannot provide predictions of pollutant formation, the simplified mechanisms

significantly reduce the cost of obtaining solutions and the overall flame structure and

dynamics can be quite accurately captured by such methods, as will be demonstrated in

Chapter 5. The prediction of pollutant formation is deemed to be outside the scope of

14
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the present work. In addition, the influence of radiation transport and soot formation

on flame characteristics, as well as the multi-phase treatment for liquid fuels, are also

not considered. The remainder of this chapter provides a summary of the mathematical

modelling procedure adopted herein for laminar flames.

2.1 Navier-Stokes Equations for Reactive Mixture of

Thermally Perfect Gases

The Navier-Stokes equations for a reactive mixture of thermally perfect gases are used to

model flames and combusting flows of interest here. Various aspects of this mathematical

description are now reviewed.

2.1.1 Conservation Equations

The conservation form of the Navier-Stokes equations for a multi-species reactive mixture

can be written using vector notation as

∂

∂t
(ρ) + ∇⃗ · (ρu⃗) = 0 , (2.1)

∂

∂t
(ρu⃗) + ∇⃗ · (ρu⃗u⃗+ p

⃗⃗
I) = ∇⃗ · ⃗⃗τ + ρg⃗ , (2.2)

∂

∂t
[ρE] + ∇⃗ ·

[
ρu⃗(E +

p

ρ
)

]
= ∇⃗ · (u⃗ · ⃗⃗τ)− ∇⃗ · q⃗ + ρg⃗ · u⃗ , (2.3)

∂

∂t
(ρcs) + ∇⃗ · (ρcsu⃗) = ∇⃗ · (ρDs∇⃗cs) + ρω̇s s = 1, . . . , N , (2.4)

where

q⃗ = −κ∇⃗T − ρ
N∑
s=1

hsDs∇⃗cs , (2.5)

and where ρ is the mixture density, p is the total mixture pressure, u⃗ is the mixture

velocity vector, p
⃗⃗
I is the identity tensor, E is the total mixture energy, cs is the mass

fraction of species s, ω̇s is the time rate of change of the concentration of species s, T is

the temperature, Ds is the diffusion coefficient of species s, κ is the thermal conductivity,

⃗⃗τ is the fluid stress tensor, g⃗ is the acceleration vector due to gravity, and N is the

number of species in the mixture. Equation (2.1) represents the global or overall mass
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conservation equation for the mixture, Equation (2.2) is the mixture momentum equation,

Equation (2.3) is the energy equation for the mixture, and Equation (2.4) corresponds to

the individual continuity for species s. Note that the total heat flux vector, q⃗, as given

by Equation (2.5), is composed of two components; the thermal energy flux transported

by thermal conduction and the energy flux due to diffusion of all species through the

mixture.

2.2 Thermodynamic Relations and Transport

Relations

The thermodynamic and transport relationships used to complete the mathematical de-

scription of a reactive mixture based on the Navier-Stokes equations given in the previous

subsection are now summarized.

2.2.1 Perfect Gas Equation of State

The reactive mixture is assumed to obey perfect mixture rules and the perfect or ideal

gas equation of state. The latter has the form

p =
N∑
s=1

ρcsRsT = ρRT , (2.6)

where

R =
N∑
s=1

csRs , (2.7)

Rs is the individual species gas constant, and R is the mixture gas constant as defined

by Equation (2.7) above.

2.2.2 Internal Energy for a Thermally Perfect Gas

For this research, a single temperature model is used to describe the thermal state of

the reactive mixture. For each species, the absolute internal energy, es, representing the
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sensible and chemical energy and the absolute enthalpy, hs, have the form

es =

∫ T

0

Cvs(T
′)dT ′ , (2.8)

hs =

∫ T

0

Cps(T
′)dT ′ . (2.9)

where Cps and Cvs are the specific heat capacities at constant pressure and volume which

are taken to be functions of temperature only. Assuming perfect mixing rules for the

mixture, the total absolute internal energy for the mixture, e, and the mixture total

absolute enthalpy, h, can be expressed as

e =
N∑
s=1

cses , (2.10)

h =
N∑
s=1

cshs . (2.11)

The internal energy and enthalpy are related by e = h−p/ρ and the total mixture energy,

E, representing the sum of the internal and bulk kinetic energy of mixtures is then given

by

E = e+
1

2
(u2 + v2) . (2.12)

2.2.3 Thermodynamic and Transport Data for Species

The empirical curve fits, correlations and data compiled by McBride and Gordon [124,125]

are used herein to prescribe the thermodynamic and transport properties of the individual

species. The data set contains properties for over 2,000 substances including 50 reference

elements. Curve fits in the form of polynomial functions are provided for specific heat,

Cps , enthalpy, hs, and entropy, ss. The data also contains various constant compound

properties such as molecular mass Ms and heat of formation, ∆ho
fs
. The polynomial

expressions for enthalpy, hs, heat capacity, Cps , and entropy, ss, for each species have the
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forms

hs = RsT

[
−a1,sT

−2 + a2,sT
−1 lnT + a3,s +

a4,sT

2

+
a5,sT

2

3
+

a6,sT
3

4
+

a7,sT
4

5
+ b1T

−1

]
+∆ho

fs , (2.13)

Cps = Rs

[
a1,sT

−2 + a2,sT
−1 + a3,s + a4,sT + a5,sT

2 + a6,sT
3 + a7,sT

4
]
, (2.14)

ss = −a1,sT
−2

2
− a2,sT

−1 + a3,s lnT + a4,sT

+
a5,sT

2

2
+

a6,sT
3

3
+

a7,sT
4

4
+ b2 , (2.15)

where ai and bi are the coefficients. As has been mentioned, the enthalpy defined here

is the absolute value and includes the heat of formation. This is done to eliminate the

need for an extra source term in the energy equation of Equation (2.3) which would be

required if values for the sensible energy were used.

The species transport properties of thermal conductivity, κs, and viscosity, µs, are also

obtained from the McBride and Gordon [124, 125] data set and are taken to have the

following forms

µs = exp
(
Aµ,s lnT +Bµ,sT

−1 + Cµ,sT
−2 +Dµ,s

)
, (2.16)

and

κs = exp
(
Aκ,s lnT +Bκ,sT

−1 + Cκ,sT
−2 +Dκ,s

)
, (2.17)

where Aµ,s, Bµ,s, Cµ,s, Dµ,s ,Aκ,s, Bκ,s, Cκ,s, and Dκ,s are the provided coefficients for the

empirical curve fits.

2.2.4 Mixture Rules

Perfect mixture rules are used to determine mixture thermodynamic properties. In the

case of the mixture transport coefficients, Wilke’s mixture rule [126] is adopted to evaluate

the mixture viscosity. This mixing rule has the form

µ =
N∑
s=1

µscs
Msϕs

, (2.18)

where

ϕs =
N∑

s′=1

cs′

Ms′

[
1 +

(
µs

µs′

) 1
2
(
Ms′

Ms

) 1
4

]2 [
8

(
1 +

Ms

Ms′

)]− 1
2

. (2.19)
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The thermal conductivity for the mixture is found using the expression due to Mason

and Saxena [127] given by

κ =
N∑
s=1

κscs
cs +Ms1.065(ϕs − 1)

. (2.20)

Note that the dimensionless parameters Prandtl number, Pr,

Pr =
µCp

κ
, (2.21)

Lewis number, Les,

Les =
κ

ρDsCp

, (2.22)

and Schmidt number, Scs,

Scs =
µ

ρDs

, (2.23)

are commonly used to relate the species coefficient of diffusion, Ds, viscosity, µ, and

thermal conductivity, κ. As a first approximation, it can be assumed that Pr ∼ Le ∼
Sc ∼ 1 for many gases [128]. For this research the coefficients for the diffusion of each

species through the mixture, Ds, are determined using the Schmidt number, which are

specified for each species in the mixture.

2.3 Chemical Kinetics

2.3.1 Finite Rate Chemistry

The time rate of change of the species concentrations, ws, is found using the general form

of the law of mass action [129] which has the form

ω̇s =
d
[
csρ
Ms

]
dt

=
Ms

ρ

NR∑
r=1

(
ν

′′

r,i − ν
′

r,i

){
kf
r

N∏
i=1

[
csρ

Ms

]ν′i
− kb

r

N∏
i=1

[
csρ

Ms

]ν′′i }
, (2.24)

where ν
′′
r and ν

′
r are the stoichiometric coefficients of the product and reactant species i

of reaction r, kf
r and kb

r are the forward and backward reaction rates of reaction r, and

NR is the total number of reactions. The forward reaction rates, kf
r , for the NR reactions
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used are temperature dependent and are given for each reaction mechanism. The reverse

reaction rates, kb
r, if not given, are defined in terms of the equilibrium constant Keq

r where

kf
r

kb
r

= Keq
r

(
1

RT

)∑
s νs

, (2.25)

and where

Keq
r = e

−∆GP=1
r

RT . (2.26)

Here ∆GP=1
r is the change in Gibbs free energy at atmospheric conditions (products

minus reactants) for reaction r. The Gibbs free energy for each species is found from

Gs = hs − Tss where the species enthalpy, hs, and entropy, ss, are specified by again

using the empirical curve fits and data sets compiled by McBride and Gordon [124,125].

2.3.2 Reduced Chemical Mechanisms

As mentioned, the present study is restricted to the combustion of gaseous fuels and in

particular methane is used as the representative fuel. Although full or detailed chemi-

cal reaction mechanisms are available for describing methane-air (CH4-air) fuel-oxidizer

combustion processes (e.g., refer to the GRI-Mech 3.0 [130] chemical kinetic models), for

the purposes of the current numerical study, the finite-rate reaction processes are mod-

eled by employing simplified one and two-step reduced chemical reaction mechanisms.

These mechanisms are used to reduce computational time and complexity while still re-

taining reasonably accurate values for key physical features of methane oxidation such

as the premixed laminar flame speed. The primary goal of this research is to develop,

verify, and validate a new parallel implicit AMR framework for treating complex three

dimensional combusting flows and the simplified chemical mechanisms allow for valida-

tion of the methodology without the considerable computational overhead required when

dealing with more complex mechanisms. Note that these mechanisms have been used

successfully in the solution of 2D axisymmetric methane-air laminar diffusion flames in

previous studies by Northrup and Groth [62,63].

The one- and two-step mechanisms considered here can be summarized as follows:

(a) Methane - Air – 1 equation, 5 species (Westbrook and Dryer [131]):

CH4 + 2O2 → CO2 + 2H2O
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The five species considered are methane (CH4), oxygen (O2), carbon dioxide (CO2),

water (H2O), and nitrogen (N2). Nitrogen is assumed to be inert.

(b) Methane - Air – 2 equation, 6 species (Westbrook and Dryer [131]):

CH4 +
3

2
O2 → CO+ 2H2O

CO+
1

2
O2 ⇀↽ CO2

The six species considered are methane (CH4), oxygen (O2), carbon dioxide (CO2),

carbon monoxide (CO), water (H2O), and nitrogen (N2). Nitrogen is again assumed

to be inert.

Both mechanisms use Arrhenius-like formulations for the reaction rates. The one-step

mechanism only has a forward or overall reaction rate given by

kov = A exp

(
−Ea

RT

)
[CH4]

a[O2]
b . (2.27)

The two-step uses the same overall reaction rate for the methane and oxygen, but has

forward and reverse reaction rates for the carbon monoxide and oxygen reactions given

by

kf = A exp

(
−Ea

RT

)
[CO]a[H2O]b[O2]

c , (2.28)

kb = A exp

(
−Ea

RT

)
[CO2]

a . (2.29)

The coefficients for each reaction mechanism are summarized in Table 2.1 and are based

on the work of Westbrook and Dryer [131]. They have been “re-tuned” here to provide

the correct laminar flame speed as described in Northrup [62]. The units for the concen-

trations are in cm3/mol, and the overall units for the reaction rate are in mol/cm3s.

Unless otherwise stated, the mechanism of choice used for this research is the one-step

mechanism with the second-set of rate coefficients for the overall reaction rate given in

Table 2.1. The primary reason is that this mechanism has greater than unity coefficients

a and b for the reaction rate 2.27, making it easier to deal with computationally in the

parallel implicit formulation as will be discussed in Section 4.2.5 of Chapter 4.
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Mechanism Rate A Ea (J/(mol K)) a b c

One-Step kov 2.21× 1013 2.0264× 105 0.2 1.3

kov 1.08× 1017 2.0264× 105 1.0 1.0

Two-Step kov 3.75× 1013 2.0464× 105 0.2 1.3

kf 1014.6 1.6747× 105 1.0 0.5 0.25

kb 5.0× 108 1.6747× 105 1.0

Table 2.1: Methane-Air Reduced Chemical Mechanism Reaction Rate Coefficients



Chapter 3

Parallel Adaptive Mesh Refinement

Finite-Volume Scheme

The governing partial differential equations outlined in the previous chapter provide a

complete description of the physical and chemical processes that occur in the laminar

reactive flow of the compressible reactive mixture. This chapter presents the details of

the proposed parallel adaptive mesh refinement (AMR) finite-volume method developed

for the numerical solution of these equations. Section 3.1 summarizes the finite-volume

spatial discretization scheme and the details related to the evaluation of the numerical

fluxes, both inviscid (hyperbolic) and viscous (elliptic). Section 3.2 describes the imple-

mentation of the finite-volume scheme within a parallel block-based AMR framework.

The solution of the resulting semi-discrete form of the conservation equations via a par-

allel implicit Newton-Krylov method is fully described in the next chapter of the thesis,

Chapter 4.

3.1 Finite-Volume Method

In a finite-volume approach, the governing partial differential equations are solved on

a domain discretized into series of contiguous control volumes, or cells making up the

computational grid for the geometry of interest. The equations are solved in integral

form enforcing both locally and globally conservation of key flow properties, such as

mass, momentum, and energy. A brief summary of the proposed finite-volume scheme is

23
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provided here; however, for more detailed explanations of the principles of finite-volume

methods the reader is referred to the textbooks by Toro [132], Hirsch [133, 134], and

Lomax, Pulliam, and Zingg [77].

Using matrix vector notation, the Navier-Stokes Equations (2.1)-(2.4) can be written in

weak conservation form as
∂U

∂t
+ ∇⃗ · F⃗ = S , (3.1)

where U is the vector of flow solution variables, F⃗ is the total solution flux dyad, and

S is the source vector. Following integration over a three-dimensional control volume in

physical space, and subsequent application of the divergence theorem to the conservation

form of the governing equations, Equation (3.1), one arrives at the integral form of the

Navier-Stokes which can be written as

d

dt

∫
V (t)

UdV +

∮
Ω(t)

F⃗ · n⃗ dΩ =

∫
V (t)

SdV , (3.2)

where V is the control volume, Ω is the closed surface of the control volume, and n⃗ is the

unit outward vector normal to the closed surface. The flux dyad, F⃗, represents the flux of

solution quantities through the boundaries control volume. These fluxes can be generally

categorized as either arising from wave propagation phenomena (hyperbolic fluxes) or

from diffusion processes (elliptic fluxes). Expressions for U, F⃗, and S are given below.

For a fixed three-dimensional control volume that does not vary in time as shown in

Figure 3.1, the cell-averaged solution and source vectors can be defined as follows:

U ≡ 1

V

∫
V

U dV , (3.3)

S ≡ 1

V

∫
V

S dV , (3.4)

where V is the cell volume. If one considers a hexahedral computational cell as depicted

in Figure 3.1, and then substitutes these definitions into the integral form of the con-

servation equations given by Equation (3.2), one arrives at the semi-discrete form of the

conservation equations given by

dU

dt
= − 1

V

∑
face

(
F⃗face · n⃗face∆Aface

)
+ S(U) , (3.5)

or

dU

dt
= −R(U) , (3.6)
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cell (i,j,k)

nface

∆Α
face

Figure 3.1: Three-dimensional hexahedral cell

where the integration of the solution flux over the cell surface has been replaced by

the mid-point quadrature rule (valid for second-order accuracy), where n⃗face and ∆Aface

are the unit outward normal and area of each cells face respectively, and R(U) is the

residual operator for the control volume. Equation (3.5) is a non-linear system of first-

order ordinary differential equations describing the time evolution of the average value of

the solution vector in each computational cell. In order to solve the resulting system of

equations, the various terms appearing in Equation (3.5) must be evaluated. The flux,

F⃗, at the cell boundary is evaluated as a function of the discontinuous states on either

side of the cell interfaces, where discontinuities arise due to the piecewise approximations

for U within each control volume. The numerical evaluation of these fluxes is discussed

in Sections 3.1.3 and 3.1.4 to follow.

3.1.1 Conservation Forms of the Governing Equations

As mentioned, the present work considers the numerical solution of laminar reactive

flows for both two-dimensional axisymmetric and three-dimensional coordinate frames.

As such the vector of flow solution variables, U, the flux dyad, F⃗, and the source vector
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S are given by

F⃗=

(F− Fv,G−Gv)

(F− Fv,G−Gv,H−Hv)
S=

− (Sa−SaV)
r

+ S for axisymmetric ,

S for three dimensions .

Here F and FV are the inviscid and viscous flux vectors in the radial direction for ax-

isymmetric flows and in the x direction for three-dimensional flows, respectively, G and

Gv are the inviscid and viscous flux vectors in the axial direction for the axisymmetric

system and in the y direction for the three-dimensional case, respectively, and H and Hv

are the inviscid and viscous flux vectors in the z direction for three-dimensional flows.

Finally, Sa and Sav are the source terms associated with the axisymmetric system, and S

is the source term associated with the finite-rate chemical kinetics and gravity. Explicit

definitions for U, F⃗, and S are given below for both the two-dimensional (axisymmetric)

and three-dimensional Cartesian coordinate frames.

Navier-Stokes for Axisymmetric Coordinate Frame

For a two-dimensional axisymmetric coordinate system, the Navier-Stokes equations for

a reactive mixture can be written as

∂U

∂t
+

∂(F− Fv)

∂r
+

∂(G−Gv)

∂z
= −(Sa − Sav)

r
+ S , (3.7)

where the vector of conserved variables, U, is given by

U =
[
ρ, ρu, ρv, ρE, ρc1, . . . , ρcN

]T
, (3.8)

and SA and S are the axisymmetric and finite rate chemistry source terms (the latter

also includes the gravitational forces) and have the forms

SA =



−ρu

−ρu2 + τrr − τθθ

−ρuv + τrz

−ρu

(
E +

p

ρ

)
− qr + uτrr + vτrz

−ρc1u+ ρD1
∂c1
∂r

...

−ρcNu+ ρDN
∂cN
∂r


, S =



0

0

ρgz

ρgzv

ρω̇1

...

ρω̇N


. (3.9)
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The inviscid solution flux vectors, F and G, in this case are given by

F =



ρu

ρu2 + p

ρvu

ρu

(
E +

p

ρ

)
ρc1u
...

ρcNu


, G =



ρv

ρuv

ρv2 + p

ρv

(
E +

p

ρ

)
ρc1v
...

ρcNv


, (3.10)

and the viscous solution flux vectors, Fv and Gv, can be written as

Fv =



0

τrr

τzr

−qr + uτrr + vτrz

ρD1
∂c1
∂r

...

ρDN
∂cN
∂r


, Gv =



0

τrz

τzz

−qz + uτrz + vτzz

ρD1
∂c1
∂z

...

ρDN
∂cN
∂z


. (3.11)

In the preceding axisymmetric equations, r is the radial, z is the axial, and θ is the

azimuthal coordinate in the axisymmetric frame, u and v are the radial and axial com-

ponents of the velocity, gz is the component of gravity in the axial direction, qr and qz

are the radial and axial components of the heat flux, and τrr, τrz, τzr, τzz, and τθθ are the

elements of the fluid stress tensor.

Navier-Stokes for a 3D Coordinate Frame

For a fully 3D Cartesian coordinate frame, the Navier-Stokes equations for a reactive

mixture can be written as

∂U

∂t
+

∂ (F− Fv)

∂x
+

∂ (G−Gv)

∂y
+

∂ (H−Hv)

∂z
= S , (3.12)

where the vector of conserved variables, U is given by

U =
[
ρ, ρu, ρv, ρw, ρE, ρc1, . . . , ρcN

]T
, (3.13)
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and the source vector, S, includes the finite rate chemistry and gravitational forces source

terms and is given by

S =
[
0, 0, 0, ρgz, ρgzw, ρω̇1, . . . , ρω̇N

]T
. (3.14)

The inviscid solution flux vectors, F, G, H, for the 3D case are

F =



ρu

ρu2 + p

ρvu

ρwu

ρu

(
E +

p

ρ

)
ρc1u
...

ρcNu



, G =



ρv

ρuv

ρv2 + p

ρwv

ρv

(
E +

p

ρ

)
ρc1v
...

ρcNv



, H =



ρw

ρuw

ρvw

ρw2 + p

ρw

(
E +

p

ρ

)
ρc1w
...

ρcNw



, (3.15)

and the viscous solution flux vectors, Fv, Gv, Hv, are given by

Fv =



0

τxx

τxy

τxz

−qx + uτxx

+vτxy + wτxz

ρD1
∂c1
∂x

...

ρDN
∂cN
∂x



, Gv =



0

τxy

τyy

τzy

−qy + uτxy

+vτyy + wτyz

ρD1
∂c1
∂y

...

ρDN
∂cN
∂y



, Hv =



0

τxz

τyz

τzz

−qz + uτxz

+vτyz + wτzz

ρD1
∂c1
∂z

...

ρDN
∂cN
∂z



.(3.16)

In the preceding equations, x, y, and z are the three components of the Cartesian co-

ordinate frame, u, v, and w are the components of the velocity, gz is the component of

gravity in the z direction, qx, qy, and qz are the components of the heat flux, and τxx,

τxy, τxz, τyy, τyz, τzz are the elements of the fluid stress tensor.
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3.1.2 Semi-Discrete Form of the Governing Equations

The semi-discrete form of the two-dimensional form of the conservation Equation (3.5),

is given then by

dUij

dt
= − 1

Aij

∑
m=1

(
F⃗ijm, ·nijm∆ℓijm

)
+ Sij = Rij(U) , (3.17)

where Aij is the cell volume, and nijm and ∆ℓk are the unit outward normal vector and

the length of cell-edge m, respectively. For the three-dimensional case, the semi-discrete

form can be written as

dUijk

dt
= − 1

Vijk

∑
m=1

(
F⃗ijkm, ·nijkm∆Aijkm

)
+ Sijk = Rijk(U) , (3.18)

where Vijk is the cell area, and nijkm and ∆Aijkm are the unit outward normal vector

and the area of cell-face m, respectively.

3.1.3 Inviscid (Hyperbolic) Flux Evaluation

The inviscid components of the flux, F⃗, appearing in Equations (3.17) and (3.18) are eval-

uated by applying a Godunov-type upwind finite-volume spatial discretization procedure

in conjunction with limited linear solution reconstruction. As proposed by Godunov [18]

in 1959, Godunov’s method is a monotonicity preserving scheme which is able to capture

solution discontinuities, such as shocks, without introducing oscillations in the solutions.

Godunov-type finite-volume methods use the solution of one-dimensional Riemann prob-

lems to evaluate the numerical flux at the cell boundaries.

Riemann Problem

A Riemann problem is a special form of a one-dimensional initial value problem having

discontinuous initial states. This is the situation at the interface between two com-

putational cells described previously, if Ui is considered the left initial state, UL, and

Ui+1 considered the right, UR, as depicted on Figure 3.2 for a simple one-dimensional

computational domain in the direction normal to the cell face. In this case, the invis-

cid equations describing the solution transport through the face can be reduced to the
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Figure 3.2: The Riemann Problem

one-dimensional form
∂U

∂t
+

∂F

∂x
=

∂U

∂t
+A(U)

∂U

∂x
= 0 , (3.19)

where here x represents the coordinate direction normal to the face and A(U) = ∂F/∂U

is the Jacobian of the inviscid flux vector with respect to the solution vector.

For a polytropic gas, the Riemann problem can be solved exactly as described by Gottlieb

and Groth [135] or approximately using alternative approaches developed by Roe [136],

Harten-Lax-van Leer-Einfeldt(HLLE) [137], HLL [138], Linde [139], and AUSM+up [140].

For gaseous mixtures of interest in this research, the Roe approximate linearized Riemann

solver has been extended to deal with a reactive mixture of thermally perfect gases and

is used almost exclusively in all the calculations. The HLLE and AUSM+up approximate

solvers have also been implemented for such reactive mixtures but are not discussed here.

Roe Approximate Riemann Solver

The Roe approximate Riemann solver does not set out to solve the Riemann problem

exactly, but instead it seeks a good estimate of the numerical flux at the interface based

on a local linearization of the governing equations. It does this by locally (i.e, at each

cell interface) replacing the Jacobian matrix A(U) = ∂F/∂U in Equation (3.19) above

with a constant matrix Â = Â(UL,UR) which is a function of the local left and right

states. For a reactive mixture, an average state that exactly satisfies Roe’s property U

can be defined, however in this work an approximate Roe average is used [141,142]. The

approximation used for this work assumes that the Jacobian matrix Â is evaluated using

the Roe-averaged flow variables, f∗, defined in terms of a mass weighting of the left and
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right flow variables, fL and fR, as given by

f∗ =
ρRfR + ρLfL

ρR + ρL
, (3.20)

where fL and fR can be any of the variables u, v, h, e, and cs. The density, ρ, is averaged

using ρ∗ =
√
ρRρL. Once the matrix Â, its eigenvalues Λ̂, and right eigenvectors R̂ are

calculated the flux can be found using

F (UL,UR) =
1

2
(FR + FL)−

1

2
|Â| (UR −UL) , (3.21)

where

|Â| = R̂|Λ̂|R̂−1 . (3.22)

Piecewise Limited Linear Reconstruction

An important concern is the accuracy of the discretization methods. Simply using the

left and the right cell-centered solutions to calculate the cell boundary fluxes yields a

first-order accurate solution. For higher-order accuracy (i.e., second-order accuracy in

smooth regions), a higher-order representation or spatial reconstruction of the solution

is required in each computational cell. The emergence of high-resolution Godunov-type

methods motivated the design of effective limiters for use in one-dimensional higher-order

reconstructions [143]. Algorithms with high resolution in smooth regions and monotone

resolution of discontinuities were devised based on the original concepts of nonlinear

limiters introduced by Boris and Book [144] and van Leer [145]. These concepts which

prevent the occurrence of numerical oscillations, were later generalized via the concept of

total variation diminishing (TVD) by Harten [146]. The reader is referred to the paper

by van Leer [143] for a systematic review and comparisons of various techniques related

to this topic.

In the present work, a higher-order Godunov-type finite-volume upwind formulation

based on approximate Riemann solvers with a least-squares piecewise limited linear so-

lution reconstruction procedure is used to evaluate the components of the hyperbolic

solution flux and achieve second-order accuracy. Here, the values of the left and right

solution states at a cell interface are determined by least-squares piecewise limited linear

solution reconstruction. For example, for cell (i, j, k), at the cell interface (i + 1
2
, j, k),



Chapter 3. Parallel AMR Finite-Volume Scheme 32

the flux has the form

F⃗(i,j,k,m) · n⃗(i,j,k,m) = F⃗

(
RP

(
WL,WR, n⃗(i,j,k,m)

))
,

where n⃗(i,j,k,m) corresponds to the outward unit norm of the cell interface, RP represents

the solution of the Riemann problem in the direction as defined by the unit normal

n⃗(i,j,k,m), and WL and WR are the left and right primitive solution vectors from the

piecewise limited linear reconstruction procedure at the cell interface (i+ 1
2
, j, k), and are

given by

WL = Wi,j,k + Φi,j,k∇⃗Wi,j,k ·∆x⃗L ,

WR = Wi+1,j,k + Φi+1,j,k∇⃗Wi+1,j,k ·∆x⃗R , (3.23)

using the slope limiter, Φ. Wi,j,k and Wi+1,j,k are cell-averaged primitive solution vectors

in the neighbouring cells and ∆x⃗L and ∆x⃗R are the distances between the centroid of the

cell and the cell interface for the left and right cells, respectively.

The slope limiter, Φ, is introduced to limit the solution gradient in order to ensure solution

monotonicity. In the present work, the limiter proposed by Venkatakrishnan [147] has

been used and is given by

Φi,j,k =


ϕ

(
Wmax−Wi,j,k

Wk−Wi,j,k

)
for Wk −Wi,j,k > 0

ϕ

(
Wmin−Wi,j,k

Wk−Wi,j,k

)
for Wk −Wi,j,k < 0

1 otherwise

, (3.24)

where ϕ(y) is a smooth function given by

ϕ(y) =
y2 + 2y

y2 + y + 2
. (3.25)

and Wmax = max(Wi,j,k,Wneighbours), Wmin = min(Wi,j,k,Wneighbours), and Wk is the

unlimited reconstructed solution value at the kth flux quadrature point.

Least Squares Gradient Evaluation

The gradients of the primitive variables, ∇⃗W, are determined by applying a least-squares

approach [148]. This technique is suitable for both structured and unstructured mesh
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and relies on a stencil formed by the nearest and possibly next to nearest neighbouring

cells. For the boundary stencil, a layer of ghost cells containing boundary condition

information are used to generalize the procedure without reducing the reconstruction

stencil. For a cell-centered discretization in three dimensions, the stencil is formed by

joining the nearest twenty-six neighbouring cell centroids. The approximate gradients

using the least-squares gradient construction procedure are obtained by minimizing the

error defined by

k=N∑
k=1

ϵ2ik =
k=N∑
k=1

(∆Wik − ∇⃗Wi ·∆x⃗ik)
2 , (3.26)

where ∆Wik =Wi−Wk, ∆x⃗ik = x⃗i− x⃗k, and N = 8 for two dimensions, or N = 26 for

three dimensions. In the 3D case, the 3×3 system of linear algebraic equations resulting

from the minimization problem can be expressed as
(∆x)2 ∆x∆y ∆x∆z

∆x∆y (∆y)2 ∆y∆z

∆x∆z ∆y∆z (∆z)2




∂W
∂x

∂W
∂y

∂W
∂z

 =


W∆x

W∆y

W∆z

 , (3.27)

where

∆x2=
1

N

N∑
k=1

∆x2
ki, (3.28)

∆x∆y =
1

N

N∑
k=1

∆xki∆yki, (3.29)

and

∆W∆x =
1

N

N∑
k=1

∆Wki∆xki . (3.30)

The other terms have a similar form. The above terms only depend on grid geometry

and so can be pre-computed and stored. Solutions of the 3×3 linear system represented

by Equation (3.27) can be readily obtained using Cramer’s rule.

Low-Mach-Number Preconditioning

The finite-volume scheme described above is a fully compressible formulation that can

readily accommodate large density variations and thermoacoustic phenomena. Neverthe-

less, laminar combusting flows are in general characterized by very low Mach numbers
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(M < 0.2) and nearly incompressible behaviour. The direct application of unmodified

compressible flow solvers to nearly incompressible flows can lead to several numerical

difficulties related to disparities between the convective and acoustic propagation speeds

(i.e., |u|+ a ≫ |u|, where a is the sound speed). The numerical difficulties include slow

convergence rates and excessive numerical dissipation. To circumvent these difficulties,

a local preconditioning technique proposed by Weiss and Smith [149, 150] is used here

to both remove numerical stiffness and maintain solution accuracy for low-Mach-number

flows.

For the 3D case, the preconditioned form of the Navier-Stokes equations for the reactive

mixture can be written as

Γ
∂U

∂τ
+

∂U

∂t
+

∂

∂x
F+

∂

∂y
G+

∂

∂z
H =

∂

∂x
Fv +

∂

∂y
Gv +

∂

∂z
Hv + S , (3.31)

where Γ is the Weiss-Smith preconditioning matrix for the conserved variables and τ

represents an artificial or pseudo time that has been introduced along with the precon-

ditioner. A properly chosen preconditioning matrix can be used to reduce the spread

of the eigenvalues and improves the numerical solution in the low-Mach-number limit.

By applying the preconditioner using a pseudo time, τ , the time accuracy can still be

preserved for unsteady flows if a dual-time stepping procedure is utilized [104]. Addition-

ally, steady state solutions, for which ∂U/∂t = 0, are unaffected by the preconditioning

procedure.

In the case of partial differential equations, the condition number is the ratio of largest

to smallest eigenvalues for the system of equations. The larger the condition number

the greater the disparity in the time scales associated with the acoustic and convec-

tive solution modes. As the Mach number approaches zero, the condition number of

the non-preconditioned system approaches infinity as given in Figure 3.3. The precondi-

tioned system resulting from the application of the Weiss-Smith preconditioning, however

remains well conditioned in the low-Mach-number limit, and for ideal one-dimensional

inviscid flow, asymptotes to a value of 2.62 [151] as shown in Figure 3.3.

In terms of the symmetrizing variables, the Weiss-Smith preconditioning matrix is a

diagonal matrix with a rather simple structure. However, for the thermally perfect

reactive system, the Weiss-Smith preconditioner, Γ, based on the vector of primitive
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Figure 3.3: Condition number for non-preconditioned and preconditioned inviscid form of

the conservation equations for thermally perfect reactive mixtures with fixed composition.

variables, Q,

Q =
[
p, u, v, w, T, c1, . . . , cN

]T
, (3.32)

is given by

Γws =



Θ 0 0 0 − ρ
T

0 · · · 0

0 ρ 0 0 0 0 · · · 0

0 0 ρ 0 0 0 · · · 0

0 0 0 ρ 0 0 · · · 0

−1 0 0 0 ρCp η1 · · · ηN

0 0 0 0 0 ρ · · · 0
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 · · · ρ


. (3.33)

The variables Θ and ηN in the equation above have the forms

Θ =

(
1

M2
r a

2
+

1

CpT

)
,

ηs = hs −
CpTRs

R
.
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A preconditioner for the conservative form of the equations can be achieved by the

transformation

Γ = K−1Γws
∂Q

∂U
, (3.34)

where K is a transformation matrix and ∂Q/∂U is the Jacobian of the primitive solution

vector with respect to the conserved solution vector.

The eigenvalues for the preconditioned Jacobian matrix, Γ−1∂F/∂U, are

λ1 = u′ − a′ λ2 = u, λ3 = u, λ4 = u, λ5 = u′ + a′, λ6 · · ·λN = u . (3.35)

The preconditioned sound speed, a′, and preconditioned flow velocity, u′, are given by

u′ = u (1− α) ,

a′ =
√

α2u2 +M2
r a

2 ,

with the variables α and β defined by

α =
1

2

(
1− βM2

r a
2
)
,

β =

(
1

RT
− 1

CpT

)
,

and where Mr is the reference Mach number for the preconditioner.

The reference Mach number, Mr, controls the level of preconditioning. To avoid singu-

larities when the local Mach number approaches to zero, such as near a stagnation point

[149, 151], Mr is determined from the maximum of the local Mach number and a mini-

mum allowable Mach number Mrmin
(the latter is normally set to the mean free stream

Mach number) with a maximum value of unity corresponding to no preconditioning (no

preconditioning is applied in the supersonic regime). For inviscid flows, Mr is taken to

have the form

Mr = min
(
max

(u
a
,Mrmin

)
,1
)

. (3.36)

For viscous flows, an additional constraint is placed on Mr, such that it does not become

smaller than the local diffusion velocity and is thus given by

Mr = max

(
Mr,

µ

aρ∆x

)
. (3.37)
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The Weiss-Smith preconditioner as described above can be applied, as indicated in Equa-

tion (3.31), to improve the convergence characteristics of the solution method for low-

Mach-number flows. However, its application is equally if not more important for the

control of numerical dissipation. In order to reduce the excessive dissipation produced by

the upwinding approach in the low-Mach-number limit, the preconditioner is also applied

to the flux evaluation procedure in the Roe approximate Riemann solver. The dissipation

term |Â| (UR −UL) from Equation (3.21) is modified as follows

|Â|∆U ≈ Â (UR −UL)

= Γ

(
Γ−1 ∂F

∂U

)
(UR −UL)

= Γ|ÂΓ| (UR −UL) , (3.38)

where ÂΓ is the preconditioned Jacobian

|ÂΓ| = R̂Γ |Λ̂Γ| R̂−1
Γ = R̂Γ |Λ̂Γ| L̂Γ , (3.39)

with eigenvalue matrix, |Λ̂Γ|, defined by

|Λ̂Γ| =



|u′ − a′| 0 0 0 0 0 · · · 0

0 |u| 0 0 0 0 · · · 0

0 0 |u| 0 0 0 · · · 0

0 0 0 |u| 0 0 · · · 0

0 0 0 0 |u′ + a′| 0 · · · 0

0 0 0 0 0 |u| · · · 0
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 · · · |u|


. (3.40)

The resulting numerical flux function then has the form

F (R (UL,UR)) =
1

2
(FR + FL)−

1

2
Γ|ÂΓ| (UR −UL) . (3.41)

For unsteady flows, Venkateswaran and Merkle [152, 153] proposed an additional con-

straint on Mr to ensure acoustic waves are accurately captured, however as only diffusion

dominated flames are investigated in this thesis, this is not of current concern. Further-

more, when coupled with a Newton-Krylov scheme, as discussed in the next chapter,

the temporal preconditioning is no longer required, and the preconditioning is primarily

used to control the excessive dissipation produced by the upwinding approach in the

low-Mach-number limit.
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Figure 3.4: Possible reconstruction paths showing: (a) centroidal path; (b) existing faces

co-volume; (c) diamond path on a Cartesian grid; and (d) diamond path on a curvilinear

grid.

3.1.4 Viscous (Elliptic) Flux Evaluation

Evaluation of the viscous component of the numerical flux in Equation (3.5) depends on

both the solution state and its gradients at the cell interfaces and has the form

F⃗ · n⃗= F⃗(Wi+ 1
2
,j,k, ∇⃗Wi+ 1

2
,j,k) , (3.42)

where Wi+ 1
2
,j,k is the primitive solution vector at the cell interface which is evaluated by

averaging the left and the right reconstructed solution states,

Wi+ 1
2
,j,k =

(WL +WR)

2
. (3.43)

The evaluation of the gradients for the primitive variables at the cell interface, ∇⃗W(i+ 1
2
,j,k),

requires some additional work and is described next.

The required gradients can be evaluated at each cell face by applying the divergence

theorem to a polygon, formed by joining the centroids of cells, vertices of cells, or both,

in a path surrounding the face. Figures 3.4 illustrates a choice of three different paths

in two dimensions: (a) centroidal path; (b) existing faces co-volume; (c) diamond path

on Cartesian grid; and (d) diamond path on a curvilinear grid. Coirier [31] performed

an assessment of a Green-Gauss reconstruction procedure based on these three paths

using a generic Laplacian operator (the Laplacian is representative of the viscous stress

terms of the incompressible Navier-Stokes equations with a constant viscosity). Each

reconstruction path was evaluated on three Cartesian grids: a uniform grid, a uni-

directionally stretched grid, and a one-sided refined grid. Coirier found that the cen-

troidal path produces decoupling that may lead to a checker-board type of numerical
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instability. The existing faces co-volume reconstruction path completely decouples all

the nearest-layer neighbours on the uniform grid and causes directional decoupling on

both the uni-directionally stretched grid and the one-sided refined grid resulting in severe

inconsistencies in the scheme. The diamond path with the linearity preserving weight-

ing function proposed by Holmes and Connell forms a proper reconstruction procedure

although an inconsistent and non-positive scheme can still be produced for the one-sided

refined grid [34,154].

In this work, Green-Gauss integration over the diamond path using the linearity-preserving

weighting function derived by Holmes and Connell to evaluate the gradients at each cell

interface is used in the 2D case and given by

∇⃗Wi+ 1
2
,j =

n⃗

n⃗ · e⃗s

(
Wi+1,j −Wi,j

∆s
+

Wi+ 1
2
,j+ 1

2
−Wi+ 1

2
,j− 1

2

∆l
e⃗t · e⃗s

)
. (3.44)

In Equation (3.44), ∆s is the distance between two centroids, ∆l is the face length, and

unit vectors, e⃗t, n⃗, and e⃗s are the tangential vector, face norm, and the distance vector

from the cell centroid to the neighbour centroid, as shown in Figure 3.5.

In the 3D case, the edges of the diamond path are replaced by surfaces as shown in

Figure 3.6. However, extending Equation (3.44) to three dimensions is not straightfor-

ward as the face tangential vectors are not uniquely defined for most hexahedral mesh.

Therefore, in this research work, the cell-face gradients are evaluated using the formula

proposed by Mathur and Murthy [155]

∇⃗W

∣∣∣∣
i+ 1

2
,j,k

=
Wi+1,j,k −Wi,j,k

∆s

n⃗

n⃗ · e⃗s
+

(
∇⃗W − ∇⃗W · e⃗s

n⃗

n⃗ · e⃗s

)
, (3.45)

where ∇⃗W is the weighted average of the cell centered gradient at the cell interface given

by

∇⃗W

∣∣∣∣
i+ 1

2
,j,k

= α∇⃗Wi,j,k + (1− α)∇⃗Wi+1,j,k . (3.46)

The weighting factor, α, is based on cell volume ratios and given by

α =
Vi,j,k

(Vi,j,k + Vi+1,j,k)
. (3.47)
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Figure 3.5: 2D Cell face gradient recon-

struction.
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Figure 3.6: 3D Cell face gradient recon-

struction.

3.2 Block-Based Adaptive Mesh Refinement

Adaptive mesh refinement is an approach which allows local mesh refinement in areas of

interest while maintaining a coarse mesh in areas not requiring the finer resolution. This

approach minimizes the number of computational cells required thus reducing the size and

computational cost of a particular problem. Originally proposed by Berger and Oliger

for computing time-dependent solutions to hyperbolic PDEs in multiple space dimen-

sions [19], AMR approaches have since been developed for a wide variety of engineering

problems [14,21,23–25,27–30,32,35–42,45–47,64,156]. As discussed in Chapter 1, there

are many types of AMR approaches such as cell-based, patch-based, block-based, and

hybrid block-based that have been developed and each have its benefits and shortcom-

ings. Ultimately the choice comes down to a compromise between refinement efficiency,

parallel scalability, and data-structure complexity. Cell-based methods have the highest

refinement efficiency but require larger and more complex connectivity data-structures,

whereas block-based have the most straight forward data-structures and are easiest to

load-balance at the price of slightly more cells and therefore a lower refinement efficiency.

The proposed scheme here adopts a block-based approach to AMR as proposed by

Groth and co-workers [49,157] for a flexible block-based AMR scheme allowing automatic

solution-directed mesh adaption on multi-block body-fitted (curvilinear) meshes consist-

ing of quadrilateral (two-dimensional, 2D) and hexahedral (three-dimensional, 3D). This
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block-based approach has been shown to enable efficient and scalable parallel imple-

mentations for a variety of flow problems with anisotropic stretching. The latter aids

in the treatment of complex flow geometry and flows with thin boundary, shear, and

mixing layers and/or discontinuities and shocks. Applications of the block-based AMR

scheme have included laminar flames [14, 63] with soot prediction [120] and radiation

transport [121], turbulent non-premixed flames [14, 46, 158] as well as turbulent multi-

phase rocket core flows [45,157], magnetohydrodynamics (MHD) simulations [41,42] and

micron-scale flows [159]. Extensions of the block-based body-fitted AMR approach for

embedded boundaries not aligned with the mesh [50] and with an anisotropic refinement

strategy [51,160,161] are also possible and have been developed.

The AMR methodology described above borrows from previous work by Berger and co-

workers [19–21,28, 35], Quirk [23, 27], and De Zeeuw and Powell [25] for Cartesian mesh

and has similarities with the block-based approaches described by Quirk and Hanebutte

X

Y

Z

(a) (b)

Figure 3.7: 3D hexahedral body fitted mesh of a quarter sphere (a) with 12 (8×8×8)

initial blocks and (b) 1104 (8×8×8) blocks after four levels of mesh refinement.
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[27] and Berger and Saltzman [28]. Other researchers have considered the extension

of Cartesian mesh adaptation procedures to more arbitrary quadrilateral and hexagonal

mesh. See for example the work by Davis and Dannenhoffer [162] and Sun and Takayama

[163]. The flexible block-based hierarchical data structure used here follows the approach

developed by Groth et al. [41, 42] for computational magnetohydrodynamics.

Block-based AMR corresponds to the situation where the mesh is adapted using a domain

decomposed superset of cells, or blocks, that each contain the same number of compu-

tational cells. Three-dimensional grid blocks can then be easily adapted by division of

the block into 8 sub or child blocks, or 4 children in two-dimensions, that are self-similar

to their parents. This has two major benefits over other cell or patch based approaches

in that the block locations can readily be tracked using a compact hierarchical data

structure, and as each block has the same number of cells, each can be treated as an

equivalent work unit making load-balanced parallelization very straightforward. An ex-

ample of block-based AMR is shown in Figure 3.7 where a 3D body-fitted quarter sphere

with an initial 12 block mesh is shown before and after four levels of mesh refinement.

This work builds upon the block-based AMR algorithm described by Gao et al. [14,46,47,

64] for three space dimensions. In the previous work by Gao et al., the focus was primar-

ily on refinement only (not coarsening) for steady-state flow problems with somewhat

restricted grid block topologies. Assumptions concerning grid block connectivity were

made that restricted the generality of the approach: specifically, the approach used for

determining block connectivity was not sufficiently general to allow for both refinement

and coarsening dynamically in unsteady flow computations. In this work, the approach

has been re-implemented with a focus on a more generalized block connectivity and data

structure which allows for both refinement and coarsening as required for unsteady flows

and a wider range of multi-block mesh topologies. The following sections outline the

major components of the AMR algorithm with emphasis on those components and as-

pects that have been modified for improved functionality and performance, particularly

for unsteady flows.
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3.2.1 Refinement and Coarsening

As noted above, the governing equations are integrated to obtain volume averaged so-

lution quantities within hexahedral computational cells. These cells are embedded in

structured blocks consisting of Ni ×Nj ×Nk cells, where Ni, Nj, and Nk are the number

of cells in each logical direction i, j, and k respectively and have values that are even,

but not necessarily equal integers. Mesh adaptation is accomplished by the dividing and

coarsening of the appropriate solution blocks.

In regions requiring increased cell resolution, a “parent” block is refined by dividing itself

into eight “children” or “offspring”. Each of the eight octants or sectors of a parent block

becomes a new block having the same number of cells as the parent and thereby doubling

the cell resolution in the region of interest. This process can be reversed in regions that

are deemed over-resolved and eight children are coarsened into a single parent block.

The mesh refinement is constrained such that the grid resolution changes by only a

factor of two between adjacent blocks and the minimum resolution is not less than that

of the initial mesh. An example of the block-based mesh adaption process as described

is shown in Figure 3.8 for two and three-dimensional meshes with 3 levels of refinement.

Standard multigrid-type restriction and prolongation operators are used to evaluate the

solution on all blocks created by the coarsening and division processes, respectively.

Refinement criteria based on a combination of the gradients of the mixture temperature,

T , and species mass fractions, cs, have been shown to provide reliable detection of flame

and combustion fronts [14, 63]. The criteria have the form

ϵ1 ∝ |∇T | ϵ2 ∝ |∇cs| , (3.48)

and where the measures ϵ1 and ϵ2 are large blocks are refined, and where small blocks

are coarsened based on prescribed relative thresholds.

3.2.2 Solution Block Connectivity

Neighbour information for each computation cell in the mesh is required in order for a

solution update to be performed via application of the discretized conservation equations.

In standard structured mesh approaches, the cell connectivity is naturally provided by

the native i, j, k indexing of the mesh, i.e., by the corresponding computational or logical
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(a) (b)

Figure 3.8: (a) 2D Computational mesh with 20 (8×8) blocks and 1280 cells, showing

3 levels of refinement. (b) 3D Computational mesh with 22 (8×8×8) blocks and 11264

cells, showing 3 levels of refinement.

coordinates. In unstructured meshes, a complete cell by cell connectivity table must

instead be determined. In adaptive mesh refinement for the latter, this is further compli-

cated as this connectivity information has to be updated whenever the mesh is updated.

In block-based AMR, the native structured indexing is preserved internally to each block

(at the cell level), however the block connectivity must be tracked and updated in order

to exchange solution and/or geometry information during the solution procedure.

Hierarchical Tree Data Structure

A hierarchical tree-like data structure, a quadtree in two-dimensions and an octree for

three-dimensions as shown graphically in Figure 3.9, is used to keep track of mesh refine-

ment and the connectivity between solution blocks. The use of this structured approach

in storing block connectivity provides a very efficient data structure that can be quickly

traversed and updated. It is also very lightweight, in terms of storage requirements, so

can be stored on every processor, reducing communication overhead.
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Figure 3.9: Adaptive mesh refinement data structures and associated solution blocks; (a)

quadtree for 2D quadrilateral and (b) octree 3D hexahedral meshes.

The quadtree/octree data structures used here naturally keep track of the refinement level

and connectivity between grid blocks during isotropic refinement processes. Although it

is not strictly anisotropic, the refinement approach here preserves the original stretching

of the initial mesh and allows for anisotropic mesh spacing based on the stretching and

improved treatment of thin boundary and shear layers. Note that strictly anisotropic

mesh adaption strategy has been considered by other researchers [31, 51, 164, 165] and

a hierarchical binary-tree data structure [31] and/or an indexing scheme for Cartesian

mesh can be used to keep track of the grid connectivity [164,165].

Unstructured Root-Block Connectivity

The connectivity between blocks must to be determined in order to carry out message

passing of solution information between blocks. In a structured Cartesian arrangement of

blocks, the connectivity calculation is straightforward as the connectivity can be stored

logically in two- and three-dimensional arrays and the block orientations are always
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Figure 3.10: Unstructured block connectivity of a cylinder using hexahedral blocks

showing local block coordinate frames.

aligned. To accommodate hexahedral based body-fitted grids for more general geometries

such as cylinders and cube-spheres, an unstructured root block connectivity is required

to track the relative orientation of neighbouring blocks. The logic employed follows the

methodology proposed in the Computational Fluid Dynamics General Notation System

(CGNS) [166]. A typical refined block stores the relative orientation of the neighbouring

blocks in the directions of all 26 boundary elements (6 faces, 12 edges and 8 vertices),

and for each neighbour the orientation of the i, j, and k axes relative to the orientation

of the i, j and k axes in the current block is stored in compact form as a three-component

transformation array.

To illustrate the unstructured connectivity between blocks, consider the center block 1

shown in Figure 3.10 in reference to its south neighbour, block 5. The i and j indices

of block 5 run in directions opposite to the i and j indices in block 1. This is indicated

by negative signs in the block 1-to-block 5 transformation array, which is given by [-

1, -2, +3]. The components 1, 2, and 3 in the array signify the i, j and k indices

in block 5. The value 1 in the first component of the array means that the i index

from block 5 is associated with the first index of block 1 (its i index), and the negative

sign indicates that they run in opposite directions. The value 2 in the second position

means that the j indices of the two blocks are also associated and running in opposite

directions, and the value +3 in the third direction indicates that the k indices have
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the same orientation. These transformation arrays represent a short-hand notation for

the transformation matrices [64, 158, 166] describing the relation between indices of two

adjacent blocks, which can be used to exchange solution information between blocks

having common interfaces in a general and transparent way.

The connectivity information is propagated from the root blocks to refined blocks via the

aforementioned quadtree/octree data structure, in such a way that each refined block

stores a transformation array describing index axis alignment with all of its (typically

26 in three space dimensions) neighbour blocks. These block-to-block transformation

arrays are used in the solution procedure to properly compute numerical fluxes through

the block boundaries. Note that the transformation array mechanism is implemented

uniformly for all blocks, but it only results in nontrivial action at block-block interfaces

along sector boundaries, in a transparent manner.

Unstructured root-block presents some additional challenges as the number of neighbour

blocks can vary i.e., not all 8 neighbours in 2D or 26 in 3D are always present. Figure 3.10

shows a 2D case where the center block only has 4 neighbours. This presents an issue

at the block corners where grid cells adjacent to one of the eight sector corners have

only seven neighbouring cells in the 2D case, while all other cells have 8 neighbours. As

these cells are used for gradient reconstruction and flux evaluation, special considerations

must be taken at the corners. The approach used is to automatically detect blocks with

such corner cells, and assigning collapsed corner ghost cells to those blocks sharing the

relevant corner. In practice, this is implemented by using fictitious values in those corner

ghost cells. These collapsed ghost cells are not used in the stencils for reconstruction

computation, so grid cells adjacent to sector corners employ smaller stencil sizes. The

flexible least-squares reconstruction scheme of the proposed finite-volume solution pro-

cedure can automatically handle this transparently without a reduction in the order of

solution accuracy of the scheme.

An illustration of this matter is shown in Figure 3.11 where a two-dimensional cylinder is

again used with the center block having only 4 neighbours. The cells marked with a “o”

are under gradient reconstruction and the cells marked “x” denote the ghost cells that

provide information for reconstruction. In the regular interior and corner reconstructions

all 8 neighbour cells are available for use, however at the corners of the center block where

only 3 blocks abut, only 7 neighbour cells are available, so the reconstruction stencil is
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Figure 3.11: Depiction of cells participating in reconstruction stencils in different regions

or a cylinder mesh. The cell of which the solution is reconstructed is marked with a “o”

and the neighbouring cells that are part of the stencil are marked with a “x”.

reduced accordingly.

Updating the Tree Data Structure

Once the initial, or root, unstructured block layout connectivity is determined from the

physical locations of the blocks in the starting mesh and stored in the hierarchical data

tree structure, the tree itself contains all the required information to update neighbour

information as blocks are refined and coarsened. This is very useful as the reliance on

geometry is removed, making the process computationally quite inexpensive and more

robust.

In previous work by Gao et al. [47, 64], the connectivity was determined by relying

on the parents connectivity information for the new child block. Such a procedure is

sufficient when only refinement for steady-state problems is performed as a blocks parent

information will always be valid; however when coarsening and refinement is performed

simultaneously, which is common in dynamic mesh refinement for unsteady problems,

the parent neighbour information may no longer be valid and thus cannot be used. In

this work, each refined/coarsened block’s parent and child connectivity is re-calculated

to ensure it is consistent with the new mesh topology. This is done using a recursive
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search of the data tree, climbing back towards the root block to update the resulting

coarsened/refined block’s neighbour information. If the neighbour block is not on the

same branch (derived from the same root block) then traversing between root blocks

(based on the initial layout) is performed and then the search continues climbing back

up the new branch until the neighbour is found. Since the data tree is structured and

self-similar, determining neighbour information is relatively straightforward starting from

the root block’s connectivity and descending from parent to child. Although the revised

approach to determining block connectivity is slightly more expensive than the approach

of Gao et al. [47, 64], the resulting algorithm is far more robust and actually simpler to

implement as the whole tree can be recreated from the root blocks without relying on

the existing connectivity as was previously required.

3.2.3 Information Exchange Between Blocks

Solution information is shared between adjacent blocks having common interfaces by

employing two additional layers of overlapping “ghost” cells. Figures 3.12(a) and 3.12(b)

show the ghost cells used for two- and three-dimensional solution blocks, respectively.

The ghost cells provide solution information from neighbouring blocks and are used

to facilitate communications between solution blocks. They also provide a means to

reconstruct the solution for second order spatial accuracy as well as applying boundary

conditions.

3.2.4 Conservative Flux Corrections

Additional inter-block communication is also required at interfaces with resolution changes

to strictly enforce the flux conservation properties of the finite-volume scheme [19,21]. In

particular, the interface fluxes computed on more refined blocks are used to correct the

interface fluxes computed on coarser neighbouring blocks and ensure that the solution

fluxes are conserved across block interfaces.

For three-dimensional multi-block body-fitted meshes at each time step during the solu-

tion procedure, the flux correction is determined and applied as follows:
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cells
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(a) Two space dimensions (b) Three space dimensions

Figure 3.12: Two layers of overlapping “ghost” cells contain solution information from

neighbouring blocks.

• the fluxes of the four fine cells are summed, F⃗fine =
4∑

n=1

F⃗fn An

/
Acoarse and passed

to the coarse neighbour solution block;

• evaluate the flux variance, ∆F⃗= F⃗fine − F⃗coarse, where F⃗coarse is the coarse cell flux;

• correct the residual for the coarse cell (i, j, k) using R⃗i,j,k=R⃗i,j,k− CFL∆ti,j,kAcoarse∆F̃

Vi,j,k
,

where ∆ti,j,k is the time step and Vi,j,k is the cell volume.

A similar variant of this procedure is applied when obtaining solutions on two-dimensional

multi-block meshes with AMR.

3.3 Parallel Implementation

Current hardware and software paradigms are still very much geared towards serial com-

puting. To exploit parallelism, whether it be on shared or distributed memory systems,

a program must explicitly provide a mechanism to subdivide the computation into in-

dependent sub-problems that can be worked on simultaneously, define the distribution
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of the sub-problems, and organize the communications between sub-domains. This sec-

tion describes the proposed algorithm parallel implementation through the use of domain

decomposition, Morton ordering task distribution, and using the MPI library for inter-

process communication.

Figure 3.13: Parallel Domain Decomposition

3.3.1 Domain Decomposition

Domain decomposition is a technique of solving PDEs by decomposing an original do-

main into a set of smaller sub-domains [167]. In parallel computing for computational

fluid dynamics, domain decomposition involves decomposing a computational mesh and

distributing the sub-meshes among the available processors. In this thesis, the compu-

tational domain of interest is a multi-block mesh, which lends itself naturally to domain

decomposition. The domain decomposition is carried out by farming the mesh blocks

out to the separate processors, with more than one block permitted on each processor as

shown in Figure 3.13.

3.3.2 Morton Ordering

For a parallel algorithm to be successful, i.e., readily scalable, it must avoid load imbal-

ance and reduce communication overhead as much as possible. Many factors can lead
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to load imbalance and communication overhead, such as characteristics of the compu-

tational architectures and/or the nature of the numerical algorithm. To mitigate these

factors various approaches have been devised.

For homogeneous architectures (identical processors), as used herein for all parallel com-

putations, an effective load balancing is achieved by exploiting the self-similar nature

of the solution blocks and simply distributing the blocks equally among the processors.

For heterogeneous parallel machines, such as a network of workstations, a weighted dis-

tribution of the blocks can be adopted to preferentially place more blocks on the faster

processors and less blocks on the slower processors.

Placing nearest-neighbour blocks on the same processor can also help to reduce the overall

communication costs. This is usually realized by utilizing space-filling curves which can

provide rather high quality partitions at very low computational costs [44, 168, 169] due

to their “proximity preserving” mappings of a multidimensional space to one-dimensional

space. In this work, a Morton ordering space-filling curve is adopted to provide nearest-

neighbour ordering of the solution blocks in the multi-block quadrilateral and hexahedral

AMR meshes, and improve the parallel performance of the proposed solution method [44].

Figure 3.14 shows the Morton ordering space filling curve (coloured red line) passing

through each of the solution blocks (solid black lines) in both a two-dimensional multi-

block quadrilateral and three-dimensional hexahedral mesh.

3.3.3 Message Passing Interface (MPI)

The parallel implementation of the block-based AMR scheme was developed using the

C++ programming language [170] and the MPI (message passing interface) library [171].

Use of these standards greatly enhances the portability of the computer code. Inter-

processor communication is mainly associated with block interfaces and involves the

exchange of ghost-cell solution values and conservative flux corrections at each residual

evaluation. Message passing of the ghost-cell values and flux corrections is performed in

an asynchronous fashion with gathered wait states and message consolidation.
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3.3.4 Computational Resources

The computational resources for performing all of the calculations reported in this the-

sis were provided by the SciNet High Performance Computing Consortium [172] at the

University of Toronto and Compute/Calcul Canada through funding from the Canada

Foundation for Innovation (CFI) and the Province of Ontario, Canada. All of the com-

putations were carried out on two clusters, the General Purpose Cluster (GPC) and

the Tightly Coupled System (TCS). The GPC consists of Intel Xeon E5540 (2.53 GHz)

nodes whereas the TCS cluster is based on IBM Power6-575 (4.7 GHz) nodes. Both

systems are connected with a high-speed, low-latency, non-blocking DDR Infiniband

interconnect. Scaling studies were also carried out on an IBM BlueGene/Q (BGQ) su-

percomputer [173, 174] which consists of 2,048 low-power 16 core CPUs (32,768 cores)

connected together with a highly scalable proprietary 5D torus network. The BGQ is also

hosted and operated by SciNet with funding provided by the Southern Ontario Smart

Computing Innovation Platform (SOSCIP).
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(a) 2D Mesh (b) 3D Mesh

Figure 3.14: Morton ordering space filling curve used to provide nearest-neighbour order-

ing of blocks for efficient load balancing of blocks on multiple processors. The coloured

red line represents the space filling curve passing through each of the solution blocks in

a multi-block (a) 2D quadrilateral and (b) 3D hexahedral mesh.



Chapter 4

Newton-Krylov-Schwarz Algorithm

The previous chapter outlined the finite-volume approach used to discretize the governing

equations in two and three dimensional physical space. The resulting semi-discrete form

of the governing equations given in Equation (3.6) form a coupled set of non-linear

ordinary differential equations. For completeness they are reproduced here and have the

form

dU

dt
= −R(U) . (4.1)

Various numerical time-marching schemes can be applied to the solution of Equation (4.1).

Common methods such as explicit Euler and Runge-Kutta methods tend to have diffi-

culty when the equations systems are numerically stiff, generally requiring very small

time-steps as they are conditionally stable and as such limited by the CFL and von

Neumann stability conditions [77]. In this case, the time step selection can be dictated

entirely by concerns for stability rather than accuracy considerations. Approaches such

as multigrid [175] have been shown to be very good at accelerating convergence for aero-

dynamic solutions, however in previous studies by Gao et al. [14, 47] for the solution of

turbulent non-premixed combustion, a multigrid approach was found to still require a

relatively large amount of iterations and/or time-steps.

Implicit methods offer a possible way forward for the solution of Equation (4.1) in that

they are not restricted by the usual stability conditions and are typically less sensitive

to numerical stiffness. The user is then free to select the time step based entirely on the

desired accuracy of the solution. The compromise is that implicit methods require greater

computation per iteration and typically require a higher memory overhead due to the

55
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resulting linear system of equations that often result and must be solved. For the same

reason, they are also typically more complex to deploy and are not as easily implemented

in a parallel fashion. However, for many numerically stiff problems, a fully implicit

treatment can allow a sufficiently large time step to offset the higher computational costs

per iteration and result in a more efficient solution scheme overall.

As outlined in the introduction of Section 1.2.3 of Chapter 1, various implicit methods

have been developed and successfully used for the solution of stiff systems of nonlinear

ODE’s. One of the more promising methods for solving systems of non-linear algebraic

equations is Newton-Krylov which has been proposed and formulated for reactive flow

in this research. The present chapter describes the details of solving Equation 4.1 using

a parallel implicit Newton-Krylov-Schwarz algorithm. Section 4.1 summarizes the inex-

act Newton’s method and the temporal discretization procedure. Section 4.2 describes

the Krylov subspace iterative solver GMRES, associated preconditioners, and Jacobian

approximations employed for the solution of the resulting linear system of equations.

Section 4.5 outlines a start-up algorithm that can be used in conjunction with Newton’s

method for steady-state solutions.

4.1 Inexact Newton’s Method

As noted in the introduction of Chapter 1, the primary focus of the thesis is the numerical

solution of unsteady reactive flows that effectively deals with the inherent numerical stiff-

ness encountered in such problems. For this purpose, a parallel implicit time-marching

formulation is adopted in which the resulting non-linear algebraic equations are solved

via an inexact Newton’s method. In this approach the time-dependent solutions of Equa-

tion (4.1) are obtained by employing a dual-time-stepping-like procedure [104,176–178].

In this dual-time approach a pseudo temporal derivative with low-Mach-number precon-

ditioner, Γ, is introduced in Equation (4.1) resulting in a modified residual, R∗(U), as

defined by

Γ
dU

dτ
= −dU

dt
−R(U) = −R∗(U) , (4.2)

where the physical temporal derivative is now included in the modified residual. As

the low-Mach-number preconditioner is applied to the pseudo time derivative, physical

time accuracy is preserved for unsteady time-accurate calculations provided a converged
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solution satisfying dU/dτ=0 is achieved. To this end, Newton’s method is then applied

to the solution of R∗(U) = 0 ensuring recovery of the correct physical time accurate

solution. For steady reactive flows, for which dU/dt=0, the modified residual R∗(U)

reverts back to R(U) and steady solutions in pseudo time, τ , satisfy R(U) = 0 and

correspond to the physical steady-state solution. Solution of the steady-state problem is

discussed in greater detail in Section 4.5 to follow.

For unsteady reactive flows, an implicit second-order backward temporal discretization

(BDF2) scheme is applied in this work to the discretization of the physical time derivative

yielding

R∗(U(n+1)) =
3U(n+1) − 4U(n) +U(n−1)

2△t
+R(U(n+1)) = 0 , (4.3)

where ∆t is the physical time step. Equation (4.3) then represents a system of nonlinear

algebraic equations defining the solution at time level n + 1. Application of Newton’s

method to the solution of Equation (4.3) leads to the following linear system of equations

for the solution update or change, ∆U(n+1) = U(n+1) −U(n) ,[(
3

2△t

)
I+

∂R

∂U

]
△U(n+1,k) = J∗∆U(n+1,k) = −R∗(U(n+1,k)) , (4.4)

which must be solved at each time level, n, and Newton iteration level, k. Starting with

an initial estimate, U(n+1,k=0), successively improved estimates for the solution, U(n+1,k),

are obtained by solving Equation (4.4) at each step, k, of the Newton method, where J∗

is the modified residual Jacobian. The improved approximation for the solution is given

by

U(n+1,k+1) = U(n+1,k) +∆U(n+1,k) . (4.5)

A good initial estimate, U(n+1,k=0), can significantly improve the performance of the

Newton’s method. An obvious candidate is to use the previous time step as the initial

estimate, i.e., U(n+1,k=0) = U(n) as it is readily available. Other choices such as poly-

nomial extrapolation where previous solution information is used to generate low-order

approximations of the next time step can offer improved initial estimates as demonstrated

by Boom and Zingg [179]. For this work, the previous time step proved a sufficient initial

estimate for the low-Mach-number reactive flows investigated.

The iterative procedure is repeated until an appropriate norm of the solution residual is

sufficiently small, i.e.,

||R∗(U(n+1,k+1))||2 < ϵ||R∗(U(n+1,k))||2 , (4.6)
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where ϵ, is the Newton convergence tolerance. For steady-state solutions typically an

ϵ in the range, ϵ ≈ 10−8–10−10, is desired to ensure overall solution convergence. For

unsteady problems, where each time-step is converged, ϵ can typically be less stringent

in the range, ϵ ≈ 10−1–10−2, to avoid over-solving; however, this also is dependent on

the time-step size.

As noted above, each step of Newton’s method requires the solution of a system of linear

equations given by Equation (4.4) which can be re-expressed as

Ax = b , (4.7)

where A is the Jacobian J∗, x = ∆U is the solution update and b = −R∗(U) is the

modified residual right-hand-side vectors. As discussed by Dembo et al. [180], an ex-

act solution of the linear system at each step is not necessary for rapid convergence of

Newton’s method. An iterative solution method can be adopted, as opposed to a direct

solver, which can be halted after a specified reduction in the norm of the linear residual

resulting. Application of the iterative technique to the linear system leads to an overall

solution algorithm with iterations within iterations: the “inner loop” iterations involv-

ing the solution of the linear system and the “outer loop” iterations associated with the

solution of the nonlinear problem via Newton’s method and this is carried out for each

time step. The Newton’s method is referred to as inexact as the inner iterations are not

fully converged at each Newton step. The inner iterations are carried out only until

||R∗ + J∗∆U||2 ≤ ζ||R∗||2 , (4.8)

where ζ represents the convergence tolerance for the iterative solution of the linear prob-

lem and is typically in the range 0.01–0.5.

4.2 Solution of the Linear System of Equations

The resulting linear system of Equations (4.7) is typically a non-symmetric banded matrix

that is typically both very large and sparse for large computational mesh. While direct

solution of this system of equations is an option, the costs in terms of the processor time

and memory storage generally make such an approach prohibitive. Iterative solution
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methods such as a Krylov subspace methods offer a more economical approach for large

sparse systems. A class of Krylov subspace iterative methods, known as Generalized

Minimal RESidual (MRES) methods, was developed previously by Saad and co-workers

[85–88] and have been used extensively in many applications for the solution of large

sparse linear equations systems [80,91–94,96,112,181]. Such an approach is used here in

the parallel implicit formulation and summarized in this section. Further details can be

found found in the text by Saad [82].

4.2.1 GMRES Method

The GMRES method of Saad et al. [85] solves a linear system of the form Ax = b by

finding an approximate solution at every iteration m of the form xm ∈ xo +Km, such

that the L2 norm of the residual rm = b−Axm is minimized. The initial guess is denoted

by xo and Km is the Krylov subspace

Km(A,v1) = span{v1,Av1,A
2v1, . . . ,A

m−1v1} , (4.9)

based on the first Krylov vector v1 that is formed from the initial guess

v1 =
ro

||ro||2
=

b−Axo

||b−Axo||2
. (4.10)

Arnoldi’s procedure is applied to the Krylov subspace, Km, using a modified Gram-

Schmidt procedure as follows:

for j = 1, 2, ...,m

hij = (Avj,vi), for i = 1, 2, ..., j

wj = Avj −
j∑

i=1

hijvi (4.11)

hj+1,j = ||wj||2
vj+1 = wj/hj+1,j

to construct an orthogonal basis of m column vectors vm. From Equation (4.11) the

quantities hij can be related to the vj, by the expression

AVm = Vm+1H̄m , (4.12)
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where Vm = [v1,v2, ...,vm] is an N ×m matrix, and H̄m is an (m+ 1)×m Hessenburg

matrix with the entries being the hij coefficients.

Once the Krylov vectors Vm are defined, the approximate solution is computed by min-

imizing the residual vector. Any vector xm in the space xo +Km can be written as

x = xo +Vmy , (4.13)

where y is a vector of length m. By exploiting the optimality property, one can find the

values of vector y such that the residual norm r(y) = ||b−Ax||2 is minimized.

Considering r(y) and Equation (4.12), one can write

||r(y)||2 = ||b−Ax||2 ,

= ||b−A(xo +Vmy)||2 ,

= ||ro −AVmy||2 , (4.14)

= ||βv1 −Vm+1H̄my||2 ,

= ||Vm+1(βe1 − H̄my)||2 ,

where β = ||ro||2 and e1 is the first column of an m × m identity matrix. The column

vectors of Vm+1 are orthonormal, so that

||r(y)||2 = ||βe1 − H̄my||2 . (4.15)

This form can be easily minimized as this is a (m+1)×m least-squares problem and the

structure of the Hessenburg matrix H̄ is such that simple plane rotations transform it into

an upper triangular matrix. The approximate solution is thus given by xm = xo+Vmym,

where ym minimizes the function r(y) in Equation (4.15).

Restarted GMRES Method

An attractive property of the GMRES method is that it can compute the norm of the

residual as each new search direction is introduced without explicitly forming the approx-

imate solution. As well, the iterative GMRES algorithm is guaranteed to converge for

well-conditioned systems in at most N steps or Krylov subspace search directions, where

N is the system size. However the storage requirements increase linearly with the num-

ber of steps and the computational work increases quadratically. To provide control of
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memory and computational costs, Saad and Schultz [86] devised a variant of the GMRES

algorithm, restarted GMRES(m), where after a certain number of search directions, m

iterations, an approximate solution is formed which becomes the initial guess for the next

GMRES solve. Care must be taken in selecting a value for m to ensure good convergence

properties of the GMRES and Newton iterative methods. A typical value for m used

here is in the range of 20–40 and in general the other GMRES parameters are selected

as to avoid the need for a restart in the majority of cases.

Jacobian-Free Approach

Another very useful feature of the GMRES algorithm is that it does not explicitly require

the evaluation of the global matrix, A. It only requires the evaluation of the matrix-

vector product, Av, as shown in the third step of Equation (4.11). This permits the use

of a so-called “matrix-free” or in this case “Jacobian-free” approach in which numerical

differentiation based on Fréchet derivatives is used to approximate this matrix-vector

product [80,87,93–95,114,115], which when applied to Equation (4.4) yields

Av ≈ R(U+ εv)−R(U)

ε
+

3v

2△t
, (4.16)

where R(U + εv) is the physical residual vector evaluated at some perturbed solution

state and ε is a small scalar quantity. The term, 3v/2△t, in Equation (4.16) results from

the BDF2 temporal discretization of the dual-time-stepping approach. Use of the approx-

imation of Equation (4.16) yields a so-called “Jacobian-free” inexact Newton method and

is used herein. Although the performance of the Jacobian-free method is sensitive to the

choice of ε, Neilsen et al. [80] have found that ε = ε◦/||v||1/22 seems to work well, with

ε◦≈10−8–10−7, and this expression is used in the current implementation.

Row Scaling of the Linear Problem

The GMRES iterative solution method is sensitive to scaling of the linear equations.

In order to obtain a more robust and efficient solver, row scaling can be applied to

the linearized system of Equation (4.7) such that the equations are more appropriately

scaled for numerical computation. The strategy is to scale each equation so that their

coefficients are all of similar magnitude.
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Row scaling can be accomplished by scaling the conserved variable U and solution resid-

ual R vectors within each computational cell such that U
′
= ΥuU and R

′
= ΥrR where

Υu andΥr are diagonal matrices containing the scaling coefficients. Applying this scaling

procedure to the linearized system, Equation (4.7) becomes(
ΥrJ

∗Υ−1
u

)
(Υux) = (ΥuR

∗) , (4.17)

and this prescaled linear problem is then solved in place of the original system.

For this work, the diagonal scaling matrices applied to each computational cell take the

form

Υu,ijk =



1
ρo

1
ρoao

1
ρoao

1
ρoao

1
ρoa2o

1
ρo

. . .

1
ρo


, (4.18)

and

Υr,ijk =



1
ρoao

1
ρoa2o

1
ρoa2o

1
ρoa2o

1
ρoa3o

1
ρoao

. . .

1
ρoao


, (4.19)

where ρo and ao are reference pressure and sound speed respectively. When the scaling

is applied to the conserved variables in each cell, U, as defined previously by Equa-

tion (3.13), the scaled solution vector, U
′
, becomes

U
′
=
[

ρ
ρo
, ρu

ρoao
, ρv

ρoao
, ρw

ρoao
, ρE

ρoa2o
, ρc1

ρo
, . . . , ρcN

ρo

]T
, (4.20)

and the corresponding scaled solution residual, R
′
, has the form

R
′
=
[

R1

ρoao
, R2

ρoa2o
, R3

ρoa2o
, R4

ρoa2o
, R5

ρoa3o
, R6

ρoao
, . . . , RN

ρoao

]T
. (4.21)
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4.2.2 Right Preconditioning of System

For many practical applications, the Jacobian matrix, J∗, is ill-conditioned even after

scaling and preconditioning is required for GMRES to be effective. Saad observes that

effective preconditioning is as important as the choice of the Krylov method [82]. Al-

though the preconditioner can be applied from either side of J∗, right preconditioning is

considered here which can be expressed as

(J∗M−1)(Mx) = b , (4.22)

whereM is the preconditioning matrix. A convenience of right preconditioning is that the

solution residual is unaffected by the preconditioning. Saad [88] indicates that the choice

of the side for the preconditioner should not significantly impact GMRES convergence,

provided M is itself not poorly conditioned.

A variety of preconditioning methods are possible. The ideal preconditioner, M, will

provide a good approximation to J∗−1 (M−1≈J∗−1) while being significantly easier (i.e.,

computationally inexpensive) to invert than J∗. A good preconditioner will cluster the

eigenvalues of the system matrix and thereby reducing the number of steps as GMRES

essentially devotes one step to each cluster of eigenvalues [108]. Obviously, there is a

trade-off between the cost of constructing and applying the preconditioner and the gain

in convergence rate of the GMRES algorithm. Knoll and Keyes [101] discuss various

methods of preconditioning and observe that within the Newton-Krylov framework, pre-

conditioning offers the most possibilities for ensuring an efficient implementation.

In the proposed parallel implicit algorithm, a combination of global and local precondi-

tioning techniques is used. In particular, an additive Schwarz global preconditioner with

variable overlap is used in conjunction with block incomplete lower-upper (BILU) local

preconditioning. This combination of preconditioning fits well with the block-based AMR

and domain decomposition described in previous Chapter 3.2, readily enabling parallel

implementation of the overall method.

Details of the formation of these two preconditioners and the approximate analytical

Jacobian are given in the sections that follow.
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4.2.3 Global Additive Schwarz Preconditioner

Schwarz [182] originally developed his domain-decomposition method to solve boundary-

value problems of partial differential equations whereby the solution on part of the so-

lution domain was solved and then the values at the interface are taken as updated

Dirichlet boundary conditions on another part of the domain. One sweep of Schwarz’s

procedure can be readily viewed as the action of a preconditioner. Schwarz precondition-

ing has been utilized extensively by Keyes and co-researchers and successfully applied

to the prediction of transonic full potential, low-Mach-number compressible combusting,

and three-dimensional inviscid flows [101,110,111,114,115].

A global additive Schwarz preconditioner for Nblocks solution blocks can be defined as

follows:

M−1 =

Nblocks∑
k=1

BT
k M−1

k Bk , (4.23)

where Bk is the gather operator or matrix for the kth domain that gathers the solution

unknowns for the domain from the global solution vector, show graphically in Figure 4.1.

Since the application of each of the sub-preconditioners, Mk, proceeds without regard

to other domains this is referred to as additive (and not multiplicative) Schwarz pre-

conditioning. The difference between a multiplicative and additive Schwarz procedure is

analogous to the difference between the Gauss-Seidel and Jacobi linear iterative solution

methods.

In general, domain overlap is permitted in Schwarz preconditioning. The use of overlap-

ping subdomains can help to offset the loss of overall implicitness of the Newton iterative

solver introduced by the block-based Schwarz preconditioning; however, in practice it

was found here to not result in an overall faster Newton scheme in terms of computa-

tional cost. While reducing iteration counts, the use of overlap was found to require more

computational effort and was therefore not used here.

The additive Schwarz preconditioner fits very well with block-based AMR as the same

domain decomposition that is used for the AMR can be used in the equation precondi-

tioning without additional work or logic. It also leads to a fully parallel implicit approach

with no global serial computations or solution of additional sub-problems, allowing the ef-

ficient scalability of the algorithm to a very high number of processes cores for both weak

and strong scaling problems without suffering from Amahdal’s law and a degradation
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Figure 4.1: Representation of Additive Schwarz preconditioner

in performance as may be encountered with other methods such as Schur complement

methods [106].

Use of a Schwarz method as a preconditioner is however not without a cost as typically the

Schwarz preconditioning results in an increase in the total number of GMRES iterations

required compared to the non-preconditioned computation. This increased cost; however,

can be fairly modest when compared with the overall gains from the ability to solve the

system in parallel and is investigated in more detail in Chapter 6.

4.2.4 Local BILU Preconditioner

In Equation (4.23), M−1
k is the local block preconditioner for the subdomain k. In

this work the local the local preconditioner is determined via incomplete lower-upper

factorization (ILU) [88] of an approximate Jacobian of each sub-domain, J̃k. The block

ILU(f) or BILU(f) factorization of J̃k where Mk is given by

Mk = LkUk ≈ J̃k , (4.24)

and where Lk and Uk are sparse lower and upper triangular matrices. The accuracy of

the incomplete LU factorization is determined by the level of fill, f , for the approximate

inverse. With higher fill levels, more non-zero entries are retained in Lk and Uk more
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closely resembling the sparsity pattern of the local Jacobian matrix providing a more

accurate representation for J̃k; however, this is at the cost of greater computational work

and storage. Although the existence and stability of ILU(f) factorizations has only been

established for a restricted class of matrices [183], the approach has been applied to a

wide range of systems and McHugh et al. [115] and Gropp et al. [111] have shown that

ILU factorization can be an effective local preconditioner for parallel NKS algorithms.

In practice, especially for the 3D problems of interest considered herein, fill levels of 0 or

1 are typically used as the extra storage and expense for using a higher fill level does not

result in an overall reduction in solution time. The effects of ILU fill-level on solution

convergence are investigated in Chapter 6.

4.2.5 Approximate Jacobian of Solution Residual

As mentioned, the BILU(f) preconditioner acts on an approximate Jacobian for each

sub-domain, J̃k. As J̃k is an approximation to the Jacobian J∗, given in Equation (4.4),

and restated here

J∗ =

(
3

2△t

)
I+

∂R

∂U
, (4.25)

it can be determined by an approximation to ∂R/∂U with the addition of 3
2△t

along the

diagonal introduced by the BDF2 temporal discretization. The residual, R, in Equa-

tion (4.1) is composed of three major components, as outlined in Chapter 3; those terms

associated with the inviscid and viscous solution fluxes, F and Fv, and source term, Sp,

respectively. As such the approximate Jacobian, J̃k, is comprised of approximations for

each of these components which are outlined in the following subsections.

Approximate Inviscid Jacobian

As the inviscid flux, F⃗, is computed using an Godunov-type upwind scheme, Section 3.1.3,

the Jacobian is approximated using just the first order terms of the upwind discretization

procedure. This approach has been used previously by many researchers [107, 110] and

provides a relatively inexpensive yet effective preconditioner.

To determine the contributions of the inviscid flux to the approximate Jacobian, consider

first the Jacobian of R∗ in one cell (i, j, k) with respect to the variables in that same cell,
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Ui,j,k. For the inviscid flux functions, the frame of reference is first rotated to a local

frame in the x-direction, the flux at the interface is evaluated and then the frame of

reference is rotated back to the original orientation. This process can be written as

F⃗ · n⃗ = F(UL,UR,n) = A−1F(AUL,AUR) , (4.26)

where A, is a rotation matrix that rotates the momentum vector leaving the mass and

energy fluxes unchanged The matrix A−1 is the inverse of A which is also equal to the

transpose of A since A is orthogonal. By definition of the Riemann problem, the left

state as input to the flux function F is the solution vector corresponding to cell (i, j, k).

Thus the Jacobian of Ri,j,k with respect to Ui,j,k is

∂Ri,j

∂Ui,j

= − 1

Vi,j,k

∑
k faces

(
A−1∂F(AUL,AUR)

∂(AUL)
A ∆A

)
i,j,k

, (4.27)

where the chain rule is used to write

∂F(AUL,AUR)

∂UL

=
∂F(AUL,AUR)

∂(AUL)

∂(AUL)

∂UL

=
∂F(AUL,AUR)

∂(AUL)
A , (4.28)

The term ∂F(AUL,AUR)/∂(AUL) is the Jacobian of the flux function with respect to

its first argument (that is, the “left” state solution vector) and evaluated in the rotated

frame of reference (i.e., local x-direction aligned with face normal). Since the upwind

finite-volume method is conservative and each term in the sum of Equation (4.27) (scaled

by the ratio of the cell volumes) also describes the neighbouring cell’s Jacobian with

respect to the variables in cell (i, j, k). In such a way, the Jacobians of Ri,j,k with respect

to the cell centered solution values in all neighbouring cells can be determined using

Equation (4.27).

Thus the approximate Jacobian of the Roe flux function, including the modification for

low-Mach-number preconditioning, as given in Equation 3.41, then becomes

∂FRoe(AUL,AUR)

∂UL

≈ 1

2

∂FL

∂UL

+
1

2
Γ|ÂΓ| . (4.29)

Approximate Viscous Jacobian

As discussed for the inviscid case, the finite volume method is conservative so we need

only determine the Jacobian of the residual R of Equation (4.1) with respect to the
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variables of cell (i, j, k) and then for each face, add this Jacobian to the Jacobian of the

neighbouring cell with respect to the variables of cell (i, j, k).

For the viscous operator, the term F⃗v · n⃗ in the equation for the residual is given by

Equation (3.42), which is repeated here:

F⃗v · n⃗ = Fvnx +Gvny +Hvnz , (4.30)

where nx, ny, and nz are the components of n⃗. Only the x direction Jacobian ∂Fv/∂U

is described in detail; the other Jacobians ∂Gv/∂U and ∂Hv/∂U can be approximated

readily in a similar manner. The other terms in the equation for the residual are the cell

area and length of each face which are constant with respect to the solution variables.

The evaluation of the viscous flux is a three-step process. First, the cell-centered con-

served variables, Uc, are converted to cell-centered primitive variables, Wc. Then bilin-

ear interpolation and diamond-path reconstruction are used to approximate the primitive

variables and their gradients on a given cell interface, which are stored in an extended so-

lution vector referred to here as Ef . The viscous flux is finally evaluated. Thus ∂Fv/∂U

is performed through a three-step application of the chain rule:

∂Fv

∂Uc

=

(
∂Fv

∂Ef

) (
∂Ef

∂Wc

) (
∂Wc

∂Uc

)
, (4.31)

∂Wc/∂Uc is the standard Jacobian of the primitive variables with respect to the con-

served variables and is readily available. The Jacobian, ∂Ef/∂Wc, is due to geometry

only, for it only depends on the interpolation used in the viscous flux evaluation described

in Section 3.1.4 of Chapter 3.

In the 3D case, the face variables at the cell interface are given by the extended solution

vector

Ef =

[
ρ, u, v, w, p, c1, ..., cN ,

∂ρ

∂x
,
∂u

∂x
,
∂u

∂y
,
∂u

∂z
,

∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂w

∂x
,
∂w

∂y
,
∂w

∂z
,
∂p

∂x
,
∂c1
∂x

, ...,
∂cN
∂x

]T
, (4.32)

where ρ is the density, u, v, and w are the components of the velocity vector, p is pressure

and cn are the species mass fractions. With the solution vector of cell-centered primitive

variables given as

Wc = [ρ, u, v, w, p, c1, ..., cN ]
T , (4.33)
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thus ∂Wf/∂Wc can be easily determined. Finally we need to evaluate ∂Fv/∂Ef which

follows from using Equations (3.16) and (4.32). To simplify the calculations, the viscos-

ity, µ, thermal conductivity, κ, and finite-rate chemistry are taken to be constants and

invariant with respect to the solution variables when evaluating the Jacobian.

Approximate Source Term Jacobian

The Jacobian components related to the source terms, Equation (3.14), is straight forward

as the chemical and gravitational terms only rely on the solution values for local cell i, j, k.

Thus, the contribution to the residual Jacobian can be calculated simply as

∂S

∂Uijk

. (4.34)

One complication that arose was related to the calculation of the derivative of the

time rate of change of the species concentrations, ωN , ∂ω̇N/∂Uijk. As shown in Equa-

tion (2.24), the time rate of change of species concentrations includes two stoichiometric

coefficients which are powers of the species concentrations. When the values of these pa-

rameters are greater than one, there is no problem with the evaluation of the derivatives

numerically; however, when the exponents are less than one, as is the case in some of

the simple mechanisms of Table (2.1), concentration terms appear in the denominator of

the Jacobian. As the concentration approaches zero, this leads to divide by zero issues

and near singular values making the numerical evaluation of the source term Jacobians

inaccurate. To alleviate this issue, all calculations for this research were done with the

second one-step methane-air mechanism of Table (2.1) which has integer coefficients for

exponents in the expressions for the reaction rates. This does not limit the algorithms

applicability for use with complex mechanisms, as more complex and physically accurate

mechanisms only have integer coefficients greater than one. The problem with non-integer

values of the exponent is only an issue caused by the reduced mechanisms being based

on experimental curve fits.

4.2.6 GMRES Performance Diagnostics

Determining why a solution fails to converge can be difficult when using a Newton-Krylov

method. For steady problems, it may be as simple as being overly aggressive in the startup
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phase. However, more subtle problems typically related to GMRES convergence can be

difficult to pinpoint. One technique useful in diagnosing GMRES convergence issues, as

discussed by Chisholm [184], is to monitor the accuracy of the GMRES residual reduction.

This can be done by evaluating the non-dimensional residual

r̄ =
||Ax− b||

||b||
, (4.35)

where ||Ax − b|| is the linear residual. As Ax and b have been calculated in the final

GMRES iteration the cost of evaluating r̄ is just the cost of the calculating the norms of

the two vectors. If the matrix-vector products have been perfectly formed, then the norm

of the linear residual should exactly equal that calculated by the GMRES method and the

r̄ would equal the GMRES convergence tolerance. However, if the reduction is greater

than the GMRES convergence tolerance, then some level of matrix-free breakdown has

occurred. If the breakdown is significant the linear system solution will be inaccurate

which typically leads to divergence of the Newton method. The breakdown is generally

caused by inaccurate Fréchet derivatives, errors in the approximate Jacobian, or improper

scaling of the equations.

To provide further insight, it is often useful to look at the reduction of the residual of

each equation in the system. Ideally the reduction of each equation would be equal to

that of the overall GMRES convergence tolerance, however if this is not the case then this

can be a sign of improper scaling parameter selection, as discussed in Section 4.2.1. It

can also point to errors or inaccuracies with the associated approximate Jacobian terms.

4.3 Implementation of Linear Solver

The BILU local preconditioner was implemented using the Block Preconditioning Toolkit

(BPKIT) package developed by Chow and Heroux [185]. BPKIT incorporates many of

the preconditioners from SPARSKIT2 developed Saad et al. [186] as well as its own and

is extensible providing a framework to allow a user to implement other preconditioners.

For compatibility with this package and future algorithm flexibility, the actual GMRES

implemented is a flexible variant called FGMRES [187]. FGMRES allows the precondi-

tioner to vary between each iteration allowing a wider range of preconditioner choices.
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The computational cost is equivalent; however, the preconditioned vectors M−1vj now

must be stored for each iteration, resulting in FGMRES having a memory footprint that

is approximately double that of the standard GMRES algorithm.

4.4 Storage Requirements

As mentioned in the introduction to this chapter, one of the trade-offs or challenges faced

when using an implicit method in place of an explicit method is that of a higher memory

overhead for the implicit method. In this work, the higher memory overhead was not a

major concern as most cases considered were more computationally bound than memory

bound so the memory available per processor core on the systems used was significantly

greater than necessary to perform the calculations. However, for comparison purposes,

an examination of the proposed implicit algorithms memory usage is provided here.

A single block 3D cube grid consisting of 24×24×24 (13,824) cells was used as the basis

for the evaluation of the memory usage of the proposed 3D parallel implicit solver with

ILU(0) preconditioning and GMRES(40). Reactive flow with 5, 10, 15, and 20 species for

a total of 10, 15, 20, and 25, equations per cell was examined. Using the memory heap

profiling tool “Massif” which is part of the valgrind [188] toolkit, the memory usage of the

implicit NKS algorithm was determined. The results of this profiling are summarized in

Table 4.1 along with an equivalent number of variables per cell metric which is calculated

by dividing the total memory by the number of cells and by the size of a double precision

floating point number, 8 bytes in this instance. This metric can be useful when comparing

memory requirements across differing algorithms and platforms.

Equations Memory (MB) Equivalent Number

per cell Other Approx. Jacobian ILU(0) GMRES(40) Total Variables per cell

10 22 60 68 95 245 2,215

15 28 146 168 141 483 4,367

20 34 269 308 188 799 7,225

25 39 430 494 233 1196 10,815

Table 4.1: Comparison of memory storage requirements of the 3D NKS algorithm for a

single block 13,824 cell grid for a variable number of equations per cell.
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As expected, it is evident from Table 4.1 that in this implementation the storage require-

ments are dominated by: (i) the various storage components of the GMRES algorithm

described in Section 4.2.1; (ii) the preconditioner, M−1
k , described in Section 4.2.4; and

(iii) the approximate Jacobian, J̃k, described in Section 4.2.5. The total memory appears

to grow approximately quadratically with the number of equations, primarily due to the

approximate Jacobian and ILU preconditioner components. For the reduced chemical

mechanisms of methane considered in this work, the resulting memory overhead was not

of particular concern; however; for future computations involving detailed chemistry with

a large number of species memory overhead may be an important factor to consider.

4.5 Steady-State Startup Algorithm

For the solution of steady-state problems, a good startup or globalization algorithm

is invariably required in order to increase the radius of convergence and ensure global

convergence of the NKS method. While this is not the primary focus here, development

of the NKS algorithm required evaluation and validation for several steady problems.

Several different startup strategies have been proposed in the literature [80,92,94,97,181].

One approach that is often adopted and has proved to be an effective startup procedure

is an implicit Euler time-marching method with switched evolution/relaxation (SER) as

proposed by van Leer and Mulder [189].

As described in Section 4.1 for time invariant solutions where dU/dt=0, Equation (4.2)

simplifies to

Γ
dU

dτ
+R(U) = 0 . (4.36)

The application of an implicit Euler time-marching method for the pseudo-time derivative

yields

[
− Γ

∆τn
+

(
∂R

∂U

)n]
∆Un = −Rn . (4.37)

where ∆τn is the time step. As ∆τn → ∞, Newton’s method of Equation (4.4) is

recovered.

In the SER approach, the time step is varied, starting from a finite-value and gradually
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increasing and becoming very large as the desired steady solution is approached. As the

time step becomes large, Newton convergence is achieved. As a finite time step is initially

used the low-Mach-number preconditioner, Γ, is most influential during the intial startup

and the temporal preconditioning becomes less dominant as the time step becomes large.

For the solution of steady time-invariant problems in this work, the SER approach has

been used. A time step multiplier, νn, is introduced that increases as the solution residual,

R, decreases with a adjustable minimum or initial multiplier, νmin,

νn = νmin max

(
1,

1

||R||2

)
. (4.38)

This multiplier is applied in conjunction with a series of stability criteria to determine

the time step,

∆τn = νn min

(
∆x

u+ a
,
ρ∆x2

µ
,

(
max

(
∂Sp

∂U

))−1
)

. (4.39)

The CFL, ∆x/(u + a), and von Neumann, ρ∆x2/µ, stability criteria are considered for

inviscid and viscous flows, respectively. The inverse of the maximum diagonal of the

chemical source term Jacobian, ∂Sp/∂U, is incorporated as a measure of reaction time

scales for reactive flow cases.



Chapter 5

Numerical Results: Validation

This chapter discusses the set of numerical results used in the verification and validation

of the proposed parallel implicit AMR algorithm for reactive flows. A series of well char-

acterized inviscid, viscous, and reactive flow problems are described in Sections 5.1–5.3

and are used to verify that each component of the numerical scheme produces physically

correct results. The influence of various aspects of the proposed algorithm, such as AMR

and low-Mach-number preconditioning, on solution accuracy are also investigated. Where

possible, predicted solutions are compared with analytical solutions and/or experimental

data to validate the numerical results.

Sections 5.4 and 5.5 then describe the application of the parallel finite-volume scheme to

the prediction of both steady and unsteady 3D laminar diffusion and premixed methane-

air flames. The solutions are compared against published numerical and experimental

results and, where applicable, against 2D axisymmetric solutions. The application of the

algorithm to a rather wide range of laminar combustion problems and regimes is used

to show the functionality, robustness, and range of applicability of the parallel implicit

AMR algorithm.

As this chapter focuses primarily on verifying and validating the algorithm’s accuracy and

ability to produce physically correct solutions, details of the algorithms computational

and parallel performance have been left for discussion in Chapter 6 to follow.

74
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5.1 Inviscid Flow

5.1.1 Unsteady One-Dimensional Shock-Tube Problem

The verification of the inviscid finite-volume spatial discretization operators used herein

have been previously and quite extensively studied for both two-dimensional [63,190] and

three-dimensional flows [64]. As verification of the implementation and accuracy of the

combined inviscid spatial and temporal discretization operators applied in the proposed

parallel implicit algorithm, the solution of a one-dimensional shock-tube problem for a

non-reacting inviscid gas is first compared with its analytical solution. As this solution is

time variant, it is also particularly helpful in verifying the implementation of the BDF2

temporal discretization scheme.

A one-dimensional shock-tube problem is initialized with two separated regions (left and

right) of quiescent air, defined as 79% nitrogen, N2, and 21% oxygen, O2, by volume,

at different pressures (pL/pR=10) and densities (ρL/ρR=8). The shock-tube problem

was solved time accurately using the BDF2-NKS method described in Section 4.1, until

time t=0.5 ms. For each outer physical time step, the Newton step was converged two

orders of magnitude with an inner GMRES tolerance of 0.1 and the ILU preconditioner

with a fill of level 2 was used. No Schwarz preconditioning was used as only a single

computational block was used and the problem was solved serially. The approximate

Jacobian preconditioner was only updated for the first Newton step of each time-step, or

if the number of GMRES iterations per Newton-step increased over the previous steps

number of GMRES iterations required for inner loop convergence. The physical time-

step was determined using the standard CFL criteria for inviscid flow as dictated by

Equation (4.39), with a CFL=0.5.

The Roe flux function with the Barth-Jespersen limiter was used to solve the problem

on a 1 m × 1 m computational grid of 128×2 cells using the 2D algorithm, and on

a 1 m × 1 m × 1 m computational grid of 128×2×2 cells using the 3D algorithm.

The predictions of the density, pressure, Mach number and velocity in both cases are

compared to the analytic solution in Figures 5.1 and 5.2. It can be seen that the two- and

three-dimensional results are virtually identical and agree very well with the analytical

solution. Although very slight non-monotone behaviour is observed in several of the

derived quantities, for the most part the shocks and discontinuities are well resolved and

oscillation free.
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Figure 5.1: Comparison of 2D and 3D BDF2-NKS predicted solutions for a 1D shock

tube problem at t=0.5 ms to the exact analytical solution.
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Figure 5.2: Comparison of 2D and 3D BDF2-NKS predicted solutions for a 1D shock

tube problem at t=0.5 ms to the exact analytical solution.
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5.1.2 Steady Two-Dimensional Supersonic Flow Past

a Circular Cylinder

Verification of the inviscid spatial discretization procedure for the multi-dimensional case

was evaluated using supersonic flow past a circular cylinder with a rc = 1 m radius. The

axis of symmetry for the cylinder was taken to be perpendicular to the free-stream flow

direction and assumed to be infinitly long. The free-stream Mach number is M∞ = 2.5

for the case of interest, such that a stationary bow shock forms about the body. The

computational domain extends upstream of the cylinder approximately 1.25× rc parallel

to the flow and 5 × rc perpendicular to the flow, as shown in Figure 5.3(a), such that

the resulting bow shock will be approximately centered in the domain. Dirichlet-type

fixed free-stream flow conditions are applied on the upstream boundary of the domain

with the face of the cylinder treated as a reflective boundary. Neumann-type boundary

conditions are applied to the bottom and outlet boundaries.

The numerical solution was calculated on a single block 64× 64 mesh consisting of 4,096

computational cells as shown in Figure 5.3(a). The predicted solution was obtained with

the two-dimensional version of the parallel implicit solver where the Roe approximate

Riemann solver is used with the Venkatakrishnan slope limiter, a GMRES tolerance

of 0.1, and ILU(2). In addition, the values of the slope limiters were “frozen” and held

constant after the norm of the solution residual was reduced by four orders in magnitude.

The limiter-freezing enables more rapid convergence of Newton’s method in the presence

of strong shocks.

The computed Mach number distribution for the M∞ = 2.5 blunt-body flow is shown in

Figure 5.3(b) and the convergence of the parallel NKS algorithm is given in Figure 5.3(c),

where the 2-norm of density residual is depicted as a function of the number of equivalent

residual evaluations and total processor time. The solution residual was converged 12

orders of magnitude in 22 Newton steps with 458 total GMRES iterations. The com-

puted Mach number distributions demonstrate the prediction capabilities of the proposed

algorithm for this class of flow problem. The structure and position of the bow shock

are well resolved and the subsonic region in the vicinity of the stagnation point on the

cylinder is accurately represented. Furthermore, rather rapid convergence of the solution

is obtained even for this highly nonlinear problem with strong shocks.
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Figure 5.3: Numerical prediction of steady two-dimensional supersonic flow past a

cylinder with a free-stream Mach number of M∞ = 2.5 obtained using a (a) 64×64 grid

showing (b) computed Mach number distribution and corresponding (c) convergence

history of Newton scheme.
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5.1.3 Steady Two-Dimensional Flow Over Bump in Channel

Subsonic Flow with Low-Mach-Number Preconditioning

The problem of inviscid flow through a two-dimensional channel with a non-smoothed

bump, as described by Lynn [191], is used herein to show the benefits and improved

accuracy provided by the low-Mach-number preconditioning. The bump flow problem

consists of a rectangular shaped flow domain with a size of 5.5 m × 2.0 m, and with

a circular arc as a bump on the bottom boundary. Dirichlet-type fixed upstream flow

conditions are applied on the inlet boundary of the domain and the bottom and top edges

are taken to be reflective boundaries. A Neumann-type boundary condition is applied

on the outlet boundary. The initial computational mesh for this case consisted of 128

cells in the x-direction and 64 cells in the y-direction, and was subdivided into 8 blocks

as shown in Figure 5.4. A fine solution mesh with 5 levels of mesh refinement and 94

blocks (94,208 cells) is shown in Figure 5.5 for comparison.

The initial condition for the problem was a uniform flow of air, the composition for which

was as given in Section 5.1.1, with upstream Mach numbers of M∞=0.01 and M∞=0.2.

The predicted solutions were obtained with the two-dimensional version of the parallel

implicit implementation both with and without low-Mach-number preconditioning. In
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Figure 5.4: Initial 8 block, 128×64 computational grid for inviscid flow past a bump in

a 2D channel.
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Figure 5.5: Final 94 block, 94,208 cell computational grid for inviscid flow past a bump

in a 2D channel after 5 levels of mesh refinement.

the case of the latter, a minimum preconditioner Mach number equivalent to the upstream

Mach number, Mrmin
= M∞, was used. For both results, the Roe approximate Riemann

solver was used with the Venkatakrishnan slope limiter, a GMRES tolerance of 0.1,

and ILU(2). The slope limiter was frozen after three orders of magnitude reduction

of the solution residual. Predicted distribution of the flow Mach number obtained by

solving the Euler equations using the NKS algorithm with and without low-Mach-number

preconditioning on the initial coarse grid are shown for M∞=0.01 in Figures 5.6(b) and

5.6(a) and for the M∞=0.2 case in Figures 5.7(b) and 5.7(a), respectively. A fine solution

with 5 levels of mesh refinement with low-Mach-number preconditioning is shown in

Figure 5.6(c) for M∞=0.01 and in Figure 5.7(c) for M∞=0.2 for comparison.

For low-speed subsonic flow over a symmetrical bump, it is expected that the result-

ing shapes of Mach contours should be self similar and symmetric with respect to the

upstream and downstream edges of the bump even though the magnitude of the Mach

number varies depending on the specified upstream value. This can be seen when com-

paring the two solutions in Figure 5.6(c) and Figure 5.7(c). This is a useful feature when

investigating the accuracy of flow solutions and in this case the effects of the low-Mach-

number preconditioning. The low-Mach-number M∞=0.01 non-preconditioned coarse

solution results in distorted Mach contours, due to excessive dissipation, whereas the
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Figure 5.6: Numerical prediction of steady two-dimensional subsonic, M=0.01, flow

past a a bump in a channel showing the Mach number distribution corresponding to

calculations (a) with and (b) without low-Mach-number preconditioning on a coarse 8

block (8,192 cell) grid and on a (c) fine solution with 94 block (94,208 cell) grid with 5

levels of mesh adaptation.
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Figure 5.7: Numerical prediction of steady two-dimensional subsonic, M=0.2, flow past

a bump in a channel showing the Mach number distribution corresponding to calculations

(a) with and (b) without low-Mach-number preconditioning on a coarse 8 block (8,192

cell) grid and on a (c) fine solution with 94 block (94,208 cell) grid with 5 levels of mesh

adaptation.
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Mach contours in the coarse preconditioned case are less distorted and clearly have a

much better agreement with that of the fine solution in Figure 5.6(c). For the M∞=0.2

case, this distortion of the Mach number contours is significantly reduced for this higher

speed case and the solutions with and without low-Mach-number preconditioning are al-

most identical as shown in Figures 5.7(a) and Figures 5.7(b), respectively. The results of

Figures 5.6 and Figures 5.7 provide a clear indication of the necessity of low-Mach-number

preconditioning for low-speed solutions of nearly incompressible flows when applying a

compressible algorithm, at least for inviscid flow cases.

Along with more accurate solutions, the solution residual convergence history shown in

Figure 5.8(a) shows that the preconditioned solution converges significantly faster than

the non-preconditioned case. This is a result of the low-Mach-number preconditioner

also serving as a matrix preconditioner reducing the stiffness of the governing equations,

resulting in far fewer GMRES iterations to achieve convergence. The convergence history

of the solution residual on the sequence of refined AMR meshes leading to the fine grid,

with low-Mach-number preconditioning applied, is also provided in Figure 5.8(b) for

comparison.
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Figure 5.8: Convergence histories of the Newton scheme for the numerical prediction of

steady two-dimensional subsonic flow past a a bump in a channel for solutions obtained on

a (a) coarse 8 block (8,192 cell) grid with and without low-Mach-number preconditioning

and (b) fine 94 block (94,208 cell) grid with low-Mach-number preconditioning.
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Supersonic M=1.4 Flow

To verify further that the two- and three- dimensional implementations of the proposed

solution method are producing equivalent results, and illustrate the AMR capabilities

of the proposed solution method, the flow over a bump in channel case is again used,

however the upstream flow is now taken to be supersonic at the channel inlet. This results

in a complex shock structure propagating downstream from the bump. The same initial

and boundary conditions are used as in the previous case; however, the inlet upstream

Mach number in this case was specified to be M=1.4 and as such no low-Mach-number

preconditioning was required. For 2D simulations, the same 8 block initial grid shown in

Figure 5.4 was used. For the 3D computations, each block of the 2D grid was extruded in

the z-direction by 2 cells to create the 3D mesh. In both simulations, the Roe approximate

Riemann solver was used with the Venkatakrishnan slope limiter, a GMRES tolerance of

0.1, and ILU(2). The slope limiter was frozen after three orders of magnitude reduction

of the solution residual.

The predicted Mach contour distributions obtained using the two- and three-dimensional

versions of the parallel implicit finite-volume scheme are compared in Figures 5.9(a) and

5.9(b). As expected, both versions produce virtually identical results. While there are

minor differences, the computed solutions appear to be very similar. The convergence

plots for the 2D and 3D simulations of Figures 5.9(c) and 5.9(d) also show the number of

equivalent residual evaluations required for solution convergence are approximately the

same; however, the required CPU time, depicted on the top x-axis, is greater for the

three-dimensional solver due to the extra overhead of solving the problem in three space

dimensions with twice the number of grid cells. In both cases, rather rapid convergence

of the solution is obtained after the initial startup phase reduces the residual by about

two orders of magnitude.

The resulting complex shock structure of the channel flow in this case provides a nice

opportunity to demonstrate the predictive and resolution capabilities of the block-based

AMR scheme and how it may be used to greatly reduce the number of computational cells

required to solve a problem. Figure 5.10 shows the predicted distribution of the Mach

number and block-boundaries of the adapted mesh for a sequence of two-dimensional

steady solutions obtained using the proposed parallel AMR finite-volume scheme on six

consecutively refined AMR meshes carried out based on the gradient of density. The
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Figure 5.9: Numerical predictions of steady supersonic flow past a bump in a channel

with an inlet Mach number of M = 1.4 showing the Mach number distributions for a (a)

8 blocks of (32×32 cells) solution in two-dimensions and (b) 8 blocks of (32×32×2 cells)

in three-dimensions along with their corresponding convergence histories for (c) two- and

(d) three-dimension solution schemes.
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predicted Mach number at y = 0.8 m in Figure 5.11 shows that with each level of

mesh refinement the solution is improved to a point where by the 6th level the solution

is essentially mesh independent with accurate representation of the steady-state shock

structure. The solution residual convergence history of the parallel NKS scheme showing

each of the 6 levels of mesh refinement is shown in Figure 5.12. At each level of refinement,

the convergence history shows similar trends, whereby an initial startup phase, leads into

a rapid convergence rate after the limiter-freezing is enabled.

A measure of the efficiency of the block-based AMR scheme for this problem can be

defined by a refinement efficiency parameter, η, given by

η = 1− Ncells

Nuniform

, (5.1)

where Ncells is the actual number of cells in the mesh and Nuniform is the total number of

cells that would have been used on a uniform mesh composed of solution blocks all at

the finest level. The efficiency of the AMR scheme is η = 0 for the initial mesh, where

all solution blocks at the same level of refinement, but rapidly improves as the number

of refinement levels increases. In this case the final grid has only 113,408 cells, whereas

without refinement a uniform grid of 16,777,216 would be required to achieve the same

solution resolution. That is a refinement efficiency of 99.32% or put another way less

than 1% of the computational cells are required using mesh refinement to achieve the

same solution resolution and accuracy. This translates into approximately a 100 fold

reduction in solution time and memory requirements based on mesh size alone.

5.2 Viscous Flow

5.2.1 Subsonic Laminar Boundary-Layer Flow Past a Flat Plate

The computation of two-dimensional subsonic laminar flow over a flat plate is now con-

sidered to demonstrate the accuracy of the viscous spatial discretization scheme imple-

mented within the parallel implicit algorithm for reactive flows. The initial condition for

the flat plate flow problem was a uniform flow of air, the composition for which was as

given previously in Section 5.1.1, with a free-stream Mach number of M∞ = 0.2, and a

Reynolds number of Re=9,318 based on a 0.002 m plate length.



Chapter 5. Numerical Results: Validation 88

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

2 Levels of Refinement 29 Blocks (8x8) = 1856 Cells

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

Initial Mesh 8 Blocks (8x8) = 512 Cells

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

3 Levels of Refinement 101 Blocks (8x8) = 6464 Cells

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

4 Levels of Refinement 164 Blocks (8x8) = 10,496 Cells

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

5 Levels of Refinement 467 Blocks (8x8) = 29,888 Cells

x

y

-1 0 1 2 3 4
0

0.5

1

1.5

2
M

1.7
1.66
1.62
1.58
1.54
1.5
1.46
1.42
1.38
1.34
1.3
1.26
1.22
1.18
1.14
1.1
1.06
1.02
0.98
0.94

6 Levels of Refinement 1772 Blocks (8x8) = 113,408 Cells

Figure 5.10: Numerical prediction of two-dimensional steady supersonic flow past a

bump in a channel with an inlet Mach number of M=1.4 showing the Mach number

distributions and block boundaries at each of the 6 levels of adaptive mesh refinement

based on the gradient of density.
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Figure 5.11: Numerical prediction of two-dimensional steady supersonic flow past a

bump in a channel with an inlet Mach number of M=1.4 showing the Mach number

distribution at y = 0.8 m at each of the 6 levels of adaptive mesh refinement.
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Figure 5.12: Numerical prediction of steady supersonic flow past a bump in a channel

with an inlet Mach number of M=1.4 showing the convergence history of the Newton

scheme through 6 levels of adaptive mesh refinement.
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The predicted solution was again obtained using both the two and three-dimensional

parallel implicit solution methods and compared with the exact solution of the incom-

pressible boundary layer equations first obtained by Blasius as presented in the textbook

by Schlichting [192]. For the 2D case, the initial mesh consisted of three blocks of 32 ×
64 cells and was uni-directionally stretched towards the plate. In three space dimensions,

the same 2D mesh was extruded in the z-direction producing a 3D mesh consisting of

three blocks of 32 × 64 × 2 cells.

The Roe flux function with the Venkatakrishnan limiter was used together with the

with a GMRES tolerance of 0.1 and ILU(2) fill level to achieve a steady-state solution.

Three levels of adaption based on the gradient of density were applied resulting in final

meshes of 14 blocks with 28,672 cells for the 2D simulation and 31 blocks with 126,976

cells for the 3D computations. The predicted skin-friction coefficient along the plate

are shown in Figure 5.13(a). It can be seen that the velocity components and the skin

friction coefficient are in excellent agreement with the Blasius solution, providing a good

indication of the validity of the spatial discretization procedure for laminar flows.

The convergence histories for both 2D and 3D simulations showing solution convergence

at each of the three mesh refinements is shown in Figures 5.13(b) and 5.13(c), respectively.

This problem converges very rapidly requiring effectively no startup, even on the fine

meshes with grid adaption. The number of equivalent residual evaluations required for

solution convergence are approximately the same. However, the required CPU time,

depicted on the top x-axis, is greater for the three-dimensional solver due to the extra

overhead of solving the problem in three space dimensions with over four times the

number of grid cells due to differences in the two and three-dimensional mesh adaption.

5.3 One-Dimensional Planar Unstrained Laminar

Premixed Flame

The implementation of the chemical kinetics and thermodynamic and transport mod-

els used herein for describing methane-air combustion are verified by performing lami-

nar flame speed and flame structure computations for a one-dimensional, planar steady

unstrained laminar flame. Similar one-dimensional premixed flame calculations were
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Figure 5.13: Numerical prediction of subsonic laminar flow, M=0.2 and Re=9,318,

over a 0.002 m flat plate (a) computed plate skin friction, Cf , compared with Blasius

solution, with the (b) two- and (c) three-dimensional parallel implicit solution methods

convergence histories.
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performed in the previous work of Northrup [62] using a two-dimensional explicit time-

marching algorithm for the six-species two-step chemical kinetics scheme of methane-air

combustion. The predictions were in good agreement with the predicted values of a 17-

species, 58-reaction scheme provided by CHEMKIN [193]. As noted earlier in Chapter 2,

a five-species one-step reduced chemical-kinetics scheme for methane oxidization is used

for all of the reactive flow calculations described in this thesis. The structure of the

stoichiometric premixed flame and the laminar flame speed was determined for this one-

step chemical kinetics model and compared to the values obtained using the CHEMKIN

program PREMIX.

In this work, the same one-dimensional premixed flame was re-computed using both the

two- and three-dimensional implementations of the NKS solution algorithm. In the 2D

case, the computational domain consisted of 100 × 2 cells on a solution domain of size

0.02 m × 0.0002 m with a mesh clustered near the flame front located at the center of

the domain. For the 3D computations, the 2D mesh was extruded in the z direction

by 0.0002 m producing a computational domain that consisted of 100 × 2 × 2 cells.

Initially, a stoichiometric mixture of premixed fuel and air was established on one side

of the computational domain and the burnt products on the other side. The inlet and

outlet boundary velocity and pressure were then adjusted to ensure the constant mass

flux throughout domain (see Northrup [62] for further details of the boundary conditions

for a stationary premixed flame).

In the simulations, the Roe flux function with the Venkatakrishnan limiter was used

together with the Newton-Krylov algorithm with a GMRES tolerance of 0.01 and ILU(2)

to achieve a steady-state solution for both two- and three-dimensional implementations.

No Schwarz preconditioning was used as the domain consists of only one solution block

and the problem was solved serially.

As should be expected, the predicted solutions of the two- and three-dimensional NKS

implementations, as depicted in Figure 5.14, were identical and matched well with the

previous results of Northrup [62]. The numerical predictions of the laminar flame struc-

ture is well represented by the profiles of the velocity, temperature, and mass fraction

of Figures 5.14(a),5.14(b),5.14(c) which show the variation of these quantities through

the flame. For the five-species, one-step model, the predicted laminar flame speed was

about 45 cm/s and the flame temperature was 2,300 K. Both values are slightly higher
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than the laminar flame speed and flame temperature provided by CHEMKIN, which were

41 cm/s and 2,234 K, respectively. Nevertheless, in general the predictions of the one-

step model are thought to be acceptable considering the simplified nature of the one-step

chemical kinetics. The only significant difference between the two- and three-dimensional

implementations was in the convergence histories shown in Figures 5.16(a) and 5.16(b),

respectively. While the equivalent residual evaluations are fairly consistent between the

two implementations, the CPU time for the 3D case is as expected significantly greater

than that for the two dimensional case, as found previously in the inviscid and viscous

non-reactive flow results.

Low-Mach-number preconditioning with Mrmin
= 0.01 was employed when obtaining the

low-speed laminar premixed flame results of Figure 5.14, both for convergence accel-

eration and to avoid introducing excessive numerical dissipation. The necessity of the

low-Mach-number preconditioning is easily demonstrated if one compares the accuracy

of the solution profiles calculated with and without low-Mach-number preconditioning as

given in Figure 5.15. The prominent effects of improved solution accuracy afforded by

the preconditioning are seen in the species mass concentrations, Figure 5.15(c), and the

resolution of the pressure drop across the flame front, Figure 5.15(d). Without precondi-

tioning it is not possible to obtain the correct pressure drop across the flame front without

resorting to excessive mesh resolution. Also in comparing the convergence histories of

solutions with and without low-Mach-number preconditioning as given in Figure 5.16(c),

it is evident that the low-Mach-number preconditioning significantly aids in reducing the

solution convergence time similar to what was observed for the inviscid subsonic flow

over a bump as discussed previously in Section 5.1.3.



Chapter 5. Numerical Results: Validation 94

x (m)

V
el

o
ci

ty
 (

m
/s

)

0 0.005 0.01 0.015 0.02

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Velocity of flame front

x (m)

T
em

p
er

at
u

re
 (

K
)

0 0.005 0.01 0.015 0.02

500

1000

1500

2000

(b) Temperature across flame front

x (m)

S
p

ec
ie

s 
M

as
s 

F
ra

ct
io

n
s

0 0.005 0.01 0.015 0.02

0

0.1

0.2

0.3

CH4

O2

CO2

H2O

(c) Species mass fractions

x (m)

P
re

ss
u

re
 (

P
a)

0 0.005 0.01 0.015 0.02

101323.6

101323.8

101324.0

101324.2

101324.4

101324.6

101324.8

101325.0

101325.2

(d) Pressure drop across flame front

Figure 5.14: Steady one-dimensional planar laminar premixed methane-air flame with

an equivalence ratio, ϕ = 1, predicted solution profiles of (a) velocity, (b) temperature,

(c) species mass fractions, and (d) pressure across the flame front.
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Figure 5.15: Steady one-dimensional planar laminar premixed methane-air flame with an

equivalence ratio, ϕ = 1, comparison of predicted solution profiles with and without low-

Mach-number preconditioning of (a) velocity, (b) temperature, (c) species mass fractions,

and (d) pressure across the flame front.
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Figure 5.16: Steady one-dimensional planar laminar premixed methane-air flame with

an equivalence ratio, ϕ = 1, convergence histories for (a) two- and (b) three-dimensional

NKS implementations with low-Mach-number preconditioning and (c) comparison with-

out low-Mach-number preconditioning.
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Figure 5.17: Schematic of Laminar Diffusion flame setup

5.4 Co-Flow Laminar Diffusion Flames

The application of the proposed parallel implicit AMR algorithm is now considered for

the solution of a methane-air co-flow laminar diffusion flame. Such flames are well char-

acterized and studied both experimentally and computationally, providing a very good

basis for the evaluation of solution methods for laminar reactive flow. They also are

typically axisymmetric in nature allowing validation of both the 2D axisymmetric and

3D implementations of the proposed parallel implicit AMR finite-volume scheme. In par-

ticular, both implementations should produce the same cross-sectional results and this

will be demonstrated as part of the verification process.

The particular laminar flame of interest here is a methane-air co-flow configuration as

described by Mohammed et al. [194], Day and Bell [53], Dworkin et al. [11] and Dobbins

et al. [116]. The flame boundary and initial conditions are the same as those used in the

previous studies and are depicted in the schematic diagram of Figure 5.17.
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5.4.1 2D and 3D Computational Domains

For the fully three-dimensional simulation, the computational domain is cylindrical in

shape and 10 cm high with a radius of 5 cm. In the two-dimensional case, an axisymmetric

coordinate frame is used with the axis of symmetry aligned with the centerline of the

cylinder, in cross-section the dimensions of the axisymmetric domain is 10 cm by 5 cm,

depicted by the dash-dot line in Figure 5.17. The outside of the cylinder (right hand

edge in the 2D case) is taken to be a free-slip boundary along which inviscid reflection

boundary data is specified. In both the 2D and 3D domains, the top or outlet of the

flow domain is open to a stagnant reservoir at atmospheric pressure and temperature

conditions and Neumann-type boundary conditions are applied to all properties except

pressure which is held fixed or constant. In both 2D and 3D, the bottom or inlet is

subdivided into four regions. The inner-most region (r ≤ 2 mm) defines the fuel inlet or

jet, which injects a nitrogen diluted methane fuel mixture (cCH4 = 0.5149, cN2 = 0.4851,

cO2 = 0, cCO2 = 0, cCO = 0, and cH2O = 0) at 298 K with a parabolic axial velocity profile

of 0.7 m/s. The next region (r = 2 to r = 2.38 mm) represents the small gap associated

with the annular wall separating the fuel and oxidizer. The third region (r = 2.38 to

r = 25 mm) contains the inflowing stream of the co-flowing oxidizer with a uniform axial

flow velocity of 0.35 m/s, in this case air at 298 K (cO2 = 0.232 and cN2 = 0.768). The

final outer region of the lower boundary inlet (r = 25 to r = 50 mm) is specified to be a

far-field boundary along which free-slip boundary conditions are applied such that there

is no co-flow.

5.4.2 Steady Flame with Constant Inlet Fuel Mass Flow Rate

In the absence of any external perturbations, laminar diffusion flames are generally more

stable than their premixed counter parts and more readily exhibit steady-state or time-

invariant behaviour. As such a steady-state methane-air laminar flame solution was first

considered. The solution domain was initialized with a uniform quiescent gas mixture

corresponding to the four inlet regions defined previously, i.e. diluted methane-air fuel

mixture in the innermost region and air in the outer three regions. The temperature of

the gas mixture for a thin region across the fuel and oxidizer inlets is taken to be 1,500 K

so as to ignite the flame. Note that the Mach and Reynolds numbers based on the fixed
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Figure 5.18: Initial coarse meshes: (a) 2D axisymmetric 96 block (4×8 cell) and (b) 3D

126 block (8×8×8) mesh, for methane-air co-flow laminar diffusion flame simulations.

diluted methane-air flow in the fuel inlet are M=0.0016 and Re=169. Additional details

concerning the setup for this diffusion flame can be found in the papers by Mohammed

et al. [194] and Day and Bell [53].

For both the 2D and 3D diffusion flame calculations, the Roe flux function with the

Venkatakrishnan limiter was used with low-Mach-number preconditioning with aMrmin
of

0.1. The Newton-Krylov-Schwarz algorithm with a GMRES tolerance of 0.01 and ILU(2)

fill level for the 2D computation and ILU(0) for the 3D simulation was used to achieve

steady-state solution results. For the 2D case, the rectangular domain was initialized

with a coarse grid consisting of 96 blocks of 4×8 cells as shown in Figure 5.18(a), and for

the 3D simulation a cylindrical domain was initialized with a hexahedral non-symmetric
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(a) 2D Axisymmetric Solution (b) 3D Solution

Figure 5.19: Solution of methane-air diffusion flame showing the computed isotherms,

flame structure, and block boundaries obtained for (a) 2D axisymmetric 1392 (4×8) block

mesh with 44,544 cells and five levels of refinement and (b) 3D 9275 (8×8×8) blocks with

4,748,800 cells with four levels of refinement (quarter section shown).

coarse grid consisting of 126 blocks of 8×8×8 cells as depicted in Figure 5.18(b). Coarse

solutions were obtained on these initial meshes and then mesh refinement based on the

gradients of temperature and mass fraction of CO2 was applied.

The computed isotherms, flame structure, and block boundaries on the final refined

meshes are shown for the 2D case after 5 levels of adaption resulting in a 1,392 block

mesh with 44,544 cells with a refinement efficiency of η=97% in Figure 5.19(a) and, in

the 3D case, after 4 levels of adaption resulting in a 9,275 block mesh with 4,748,800 cells

with a refinement efficiency of η=85% in Figure 5.19(b). The solution convergence rates

for the 2D and 3D steady-state calculations are shown in Figures 5.20(a) and 5.20(b),

respectively. Both the 2D and 3D convergence histories are similar in terms of number
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Figure 5.20: Newton-Krylov-Schwarz solution convergence histories for adapted (a) 2D

1,392 block and (b) 3D 9,275 block meshes for the solution of a co-flow laminar methane-

air diffusion flame.

of equivalent residual evaluations, however as expected the computational time for the

3D solution computational time is significantly greater than the 2D solution, due to the

larger grid size associated with the fully 3D solution.

A side by side comparison of the temperature isotherms for a cross-section (r–z plane)

at x=0 of the predicted 3D solution and the predicted 2D axisymmetric solution are

provided in Figures 5.21(a) and 5.21(b), respectively. The block boundaries are shown

in the figure to highlight that the computational meshes are somewhat different, and yet

both implementations of the proposed finite-volume scheme converge to what appear to

be identical results. The temperature and species mass fractions for both solutions agree

very well, as is shown in the extracted radial profiles the 2D and 3D solutions at the

axial location of z=0.01 m as given in Figures 5.22(a) and 5.22(b). In particular, such

close agreement provides strong support for the valid and correct implementation of the

proposed 3D finite-volume solution method. The 3D implementation is clearly capable

of providing accurate and grid independent solutions of the present axisymmetric co-flow

diffusion flame that are in excellent agreement with the results of the 2D axisymmetric
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(a) 2D Axisymmetric Solution (b) 3D Solution cross-section at x=0

Figure 5.21: Comparison of steady methane-air co-flow laminar diffusion flame isotherms

predicted from (a) 2D axisymmetric solution and (b) 3D at x=0 solution.

solution scheme, as should be expected theoretically. Finally, Figure 5.23 depicts the

predicted mass fractions of the combustion reactants and products as obtained from

the axisymmetric solution. Virtually identical results were obtained for the fully 3D

computation.

A comparison of the results of Figures 5.19–5.23 with those given in previous studies

[53, 194] (not shown here) reveals, that in spite of the inherent simplifications used in

the single-step reaction mechanism, the predicted flame structures of the 2D and 3D

results agree very well with the previous work. The “wishbone” structure of the high-

temperature region is present and the computed lift-off and flame heights are 0.05 cm

and 3.3 cm, respectively, with a maximum centerline temperature of 2,100 K. All of these
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Figure 5.22: Steady methane-air co-flow laminar diffusion flame temperature isotherms

predicted from (a) 2D axisymmetric solution and (b) 3D at x=0 solution and (c) tem-

perature and (d) species mass fraction cross-sections at an axial position of flame height

z=0.01 m for both 2D and 3D solutions.
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values agree reasonably well with the previously published results and provide a good

indication of the validity of the 2D and 3D implementations, considering that a simple

one-step chemical mechanism was used here, whereas more detailed chemical kinetic

mechanisms were considered in the previous work.

Evaluation of AMR Performance

The solution of the steady-state laminar co-flow diffusion flame also provides an oppor-

tunity to demonstrate the capabilities of the adaptive mesh refinement. The sequences of

adaptively refined grids used in obtaining the 2D and 3D steady co-flow laminar diffusion

flame solutions, showing both the grid blocks and computational cells, are provided in

Figures 5.24 and 5.25, respectively. In both the 2D and 3D results, the effect the finer

mesh resolution can be clearly seen, as the flame structure as indicated by the predicted

temperature distributions becomes sharper and more fully resolved. On closer inspection

of the predicted radial cross-sections of the temperature and species mass fractions given

in Figure 5.26 for each of the 4 levels of mesh adaption for the 3D meshes, it is clear that

mesh refinement is indeed necessary, especially near the centerline to accurately resolve

the flame height and species concentrations. However, following four levels of refinement,

a near “grid-independent” solution appears to have been achieved. While the results

of Figure 5.26 are not conclusive evidence that a grid independent solution has been

achieved (it is possible that finer solution detail could still appear as the mesh is further

refined), they certainly provide strong evidence for grid independence of the predicted

solutions.

5.4.3 Unsteady Flame with Periodic Inlet Fuel Mass Flow Rate

To showcase the algorithm’s performance for unsteady reactive flow prediction, which is

the primary focus here, a variation of the steady laminar diffusion flame considered in the

previous section is examined with a time-varying inlet fuel mass flow rate. An unsteady

diffusion flame is produced by imposing a sinusoidal variation in the axial flow inlet fuel

velocity of the form

vz = 0.7(1− r2

R
)(1 + α sinωt) m/s (5.2)
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(a) 1st Level (96 Blocks) (b) 3rd Level (468 Blocks)

(c) 5th Level (1392 Blocks)

Figure 5.24: Solution of co-flow methane-air 2D axisymmetric laminar diffusion flame

showing the computed isotherms and flame structure as well as grid blocks obtained on

the (a) initial mesh; (b) AMR mesh with three levels of refinement; (c) AMR mesh with

five levels of refinement.
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(a) 2nd Level (322 Blocks) (b) 3rd Level (2408 Blocks)

(c) 4th Level (9275 Blocks)

Figure 5.25: Solution of co-flow methane-air 3D laminar diffusion flame showing the

computed isotherms and flame structure as well as grid blocks obtained on the AMR

mesh with (a) two, (b) three, and (c) four, levels of refinement.
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Figure 5.26: Steady methane-air co-flow laminar diffusion flame 3D radial profiles of (a)

temperature and (b) species mass fraction at an axial height of z=0.01 m at four levels

of AMR grid refinement.
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where α is the parameter controlling the amplitude of the velocity fluctuations and ω is

the frequency of oscillation. In the experiments of Mohammed et al. [194] and Dworkin

et al. [11] a range of cases were considered with varying velocity amplitudes; however,

most of the published work has been presented for cases with velocity amplitudes of 30%

and 50%. In this work, the velocity amplitude was selected to be 50% at a frequency of

20 Hz resulting in a fuel flow velocity that varies from 0.35–1.05 m/s over a period of

0.05 s to best compare with the experimental work presented by Mohammed et al. [194].

All the other parameters, geometry, boundary conditions were kept the same as for the

previous steady flame simulation as summarized in Figure 5.17.

Starting with an initial solution based on the steady-state flame with the inlet fuel velocity

held constant at 0.7 m/s, i.e., the solutions obtained in Section 5.4.2, a full five periods

of the flame oscillations, or 0.25 s at 20 Hz, were evaluated to eliminate and thereby

avoid any non-periodic solution content produced by the solution initialization process.

Newton’s method was used with a GMRES tolerance of 0.05, ILU(2) in 2D , ILU(0) in 3D,

and at each time step the Newton iterations were converged two orders of magnitude,

to a maximum of 10 Newton steps, where 5–7 is typical. The approximate Jacobian

preconditioner was only updated for the first Newton step of each time-step, unless the

number of GMRES iterations required increased.

For the 2D axisymmetric calculation, results of which are shown in Figure 5.27, a fixed

time-step of 0.005 ms was used during the unsteady calculation and mesh refinement was

carried out every 10 iterations or 0.05 ms based on the gradient of temperature, and 3

levels of mesh refinement (4 mesh levels) were used. The dynamic AMR typically pro-

duced solution grids in the range of approximately 440 to 460 blocks (14,080 to 14,720

cells) with an AMR refinement efficiency, η, of 96.3 to 94.2%. For the 3D calculation,

Figure 5.28, the same fixed time-step of 0.005 ms was used during the unsteady calcu-

lation and mesh refinement was also carried out every 0.05 ms based on the gradient of

temperature. Four levels of mesh refinement (5 mesh levels) were used. The dynamic

AMR typically produced solution grids in the range of approximately 24,800 to 25,700

blocks (12,697,600 to 13,158,400 cells) with an AMR refinement efficiency, η, of 95.2 to

95.0%.

A side by side comparison of the temperature isotherms at five 0.01 s intervals of the

20 Hz periodic cycle are shown in Figure 5.29 for a cross-section (r–z plane) at y=0 of
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the predicted 2D axisymmetric and 3D solutions. Similar to the steady laminar diffusion

results presented above, the predicted 2D and 3D solutions agree very well providing

further support for a valid and correct implementation of the proposed 3D finite-volume

solution method.

The predicted flames shape and structure of the 2D and 3D simulations also match

well with the experimental results of Mohammed et al. [194] as shown for comparison

in Figure 5.30. The five cross-section iostherms correspond to 0.01 s of the 0.05 s (20

Hz) periodic fluctuations of the driven flame. The most significant difference is in the

over prediction of temperature. However, this is related to the use of the simplified non-

reversible one-step reaction mechanism used to model the methane-air chemistry in the

present work, whereas a more detailed mechanism was used in the previous studies.
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(a) 2D Axisymmetric Solution

(b) 3D Solution Cross-Section at y=0

Figure 5.29: Comparison of time-varying methane-air co-flow laminar diffusion flame

isotherms at five 0.01 s intervals of the 20 Hz periodic cycle for (a) 2D axisymmetric and

(b) 3D solution procedures.
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(a) Numerical Isotherms

(b) Experimental Isotherms

Figure 5.30: Comparison of a periodic time-varying methane-air co-flow laminar diffu-

sion flame isotherm contours at five 0.01 s intervals from (a) numerical computation and

(b) experimental results of Mohammed et al. [194].
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5.5 3D Conical Laminar Premixed Flame

The previous reactive flow problem examined the well characterized and predictable

behaviour of non-premixed flames where the fuel and oxidizer are simultaneously mixed

through diffusion and convective processes igniting and burning all within the burner. In

a premixed flame, the fuel and oxidizer are first thoroughly mixed at the molecular level

before entering the combustion chamber and the resulting mixture is injected into the

chamber where it is ignited and burnt. Conical methane-air premixed laminar flames,

unlike diffusion flames, do not typically form a steady flame, but rather instead exhibit an

oscillation or flickering of the flame edge and tip. Buoyancy-induced interactions between

the hot products and the cold environment produce velocity fluctuations in the reactants

which result in the flame flicker.

Various aspects of flame/buoyancy coupling in conical and V-shaped premixed flames

have been investigated in previous experimental studies. This includes the flame flicker

frequency as a function of flow velocity, pressure, and strength of the gravitational force

[195,196]. Kostiuk and Cheng [197,198] have also shown that premixed flame oscillations

with characteristic frequencies in the range of 10–20 Hz can be correlated to a wide

range of system parameters. More recent experimental investigations into flame-intrinsic

Kelvin–Helmholtz instabilities for inverted conical premixed flames by Guahk et al. [199]

have shown that the Strouhal number, representing the dimensionless frequency of the

oscillations, can be correlated with the flow Richardson number.

Shepherd et al. [200] have previously made comparisons of experimental measurements

and numerical predictions of laminar premixed flame flicker. The low-Mach-number nu-

merical solution method with AMR developed by Day and Bell [53] was used to obtain

the unsteady numerical solutions. In this previous research, it was found that accurate

predictions of the quasi-periodic flame flicker could be obtained given the correct flame

conditions as dictated by the equivalence ratio and inlet mass flow rate. The premixed

methane-air laminar flame examined herein attempts to reproduce the quasi-periodic

behaviour observed in the previous combined experimental and numerical study of Shep-

herd et al. [200] and the experimental studies of Kostiuk and Cheng [196–198] using the

proposed time-accurate parallel implicit AMR algorithm.

The flame configuration considered herein is very similar to that used for the laminar
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diffusion flame cases, however in this case the fuel being injected through the inlet is

replaced with a premixed methane-air mixture at a fixed equivalence ratio. Fully three-

dimensional solutions were obtained using the same initial and boundary conditions as

described previously and summarized in Figure 5.17; however, the size of the compu-

tational domain used is much larger with a height of 0.3 m and outer radius of 0.1 m

to avoid the effects of far-field boundary data prescription on the predicted solutions.

The initial mesh blocking and spacing is concentrated near the centerline, as depicted in

Figure 5.31(b) to better capture the thin flame fronts associated with premixed flames.

Premixed reactants with an equivalence ratio of ϕ = 0.8 are injected into the domain

through a 0.025 m diameter inlet with a parabolic velocity profile having a peak velocity

of 0.73 m/s. The gas mixture in the interior of the domain is taken to be quiescent air

at standard atmospheric conditions and for the premixed case there is no co-flow.

X
Y

Z

(a) 3D Initial Mesh

X
Y

Z

(b) Closeup of centerline

Figure 5.31: Initial 3D coarse 520 (6×6×6) blocks with 112,320 cell grid for premixed

laminar flame solution.
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5.5.1 Steady Flame in Absence of Gravity

A steady-state or time-invariant solution for the premixed flame was first considered.

As the oscillations in conical premixed laminar flames are buoyancy driven or induced,

in the absence of gravity, results in a steady non-flickering flame is produced. This

has been demonstrated through previous experiments [195, 196] and is readily verified

computationally by setting the source term associated with gravitational acceleration to

zero.

Similar to the previous 3D diffusion flame simulations described above, the Roe flux func-

tion with the Venkatakrishnan limiter was used with low-Mach-number preconditioning

with a reference Mach number, Mrmin
, of 0.1. The Newton-Krylov-Schwarz algorithm

with a GMRES tolerance of 0.01 and ILU(0) fill level was used to achieve a steady-state

solution. The initial unrefined coarse mesh consisting of 520 (6×6×6) grid blocks and

112,320 computational cells is given in Figure 5.31. The resolution of this coarse initial

mesh was however found to be insufficient to obtain a stable and steady premixed flame

solution (the flame would collapse on the inlet and extinguish). It was found that a

minimum of 3 levels of mesh refinements were required to achieve a stable and accurate

solution. The final solution mesh with 4 levels of refinement based on the gradient of

temperature is shown in Figure 5.32 and contains 8,430 blocks and 1,820,880 cells with a

refinement efficiency of η=97%. The refined AMR mesh provides high resolution of the

thin premixed flame interface as shown in the predicted isotherms of Figure 5.32.

The predicted steady-state laminar premixed flame solution of Figure 5.32 exhibits the

expected features of the steady flame behaviour. When compared with a Schlieren image

of a similar steady flame observed by Kostiuk and Cheng [196] in micro-gravity as shown

in Figure 5.32(a), the density contour cross-sections at y=0 match reasonably well. The

numerical flame treated the boundary condition at the fuel inlet by imposing a parabolic

velocity profile without any consideration of the upstream geometry of the fuel tube and

so the interaction between the flame and fuel inlet does not quite match exactly with

the experiment. However, the actual conical flame and premixed flame interface between

products and reactants is well captured.
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(a) 2D Cross-section (b) 3D 1/4-section

Figure 5.32: Solution of 3D steady methane-air premixed flame in the absence of

gravity (a) cross-section at y=0 and (b) 3D quarter sections showing temperature

isotherms, flame structure, and block boundaries obtained using 8,430 (6×6×6) blocks

with 1,820,880 cells with four levels of mesh refinement.

5.5.2 Unsteady Flame with Buoyancy-Induced Oscillations

The unsteady version of the preceding premixed laminar flame with the buoyancy-induced

oscillations was also considered by including a non-zero gravitational force equivalent to

that on the Earth’s surface. Starting from the zero-gravity “steady” solution discussed

in Section 5.5.1 above and re-introducing the gravity source term, so as to “turn gravity

back on”, the predicted premixed flame naturally evolved into an unsteady oscillating

flame. In this case, the time-accurate BDF2-NKS algorithm was used with a GMRES

tolerance of 0.05 and ILU(0), where each time step of the Newton iteration was converged

two orders of magnitude, to a maximum of 10 Newton steps. The approximate Jacobian

preconditioner was only updated for the first Newton step of each time-step, unless the
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(a) Schlieren image
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(b) 2D Cross-section with density contours

Figure 5.33: Comparison of (a) Schlieren images of experiments by Kostiuk and Cheng

[196] and (b) numerical cross-section at y=0 density contours of a laminar premixed

methane-air flame in the absence of gravity.

number of required GMRES iterations increased. A fixed time-step of 0.01 ms was used

during the unsteady calculation and mesh refinement was carried out every 0.1 ms, 10

steps, based on the gradient of temperature, and 3 levels of mesh refinement (a maximum

of 4 mesh levels) were used. As mentioned, the unsteady solution was initialized using the

steady solution discussed in Section 5.5.1 and depicted in Figure 5.32 which contained

8,430 (6×6×6) blocks with 1,820,880 cells. As the solution evolved toward a quasi-

periodic solution the dynamic AMR typically produced solution grids in the range of

approximately 12,000 to 13,000 blocks (2,592,000 to 2,808,000 cells) with a refinement

efficiency, η, of 95.5 to 95.1%. The calculation was run for 0.75 s to allow the solution to

evolve toward a quasi-periodic solution in which the influences of the initial conditions

and startup transients are effectively eliminated.

The resulting predicted solution for premixed flame-flicker, as shown in Figure 5.34,

matches well with the 2D axisymmetric numerical results of Shepherd et al. [200] in

terms of temperature, flame front size, and centerline velocities. When compared with

experimental Schlieren imagery of Kostiuk and Cheng [196] for the unsteady flame as

reproduced in Figure 5.35, current predictions of the density distribution cross-sections
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at y=0 agree well with the Schlieren images. The buoyancy interaction of the hot products

and cold ambient air that produces the unsteady oscillations is quite evident in the results

of Figure 5.34.

Figure 5.36(a) shows six predicted isotherm cross-sections in the y=0 plane over a 0.1 s

time period showing the formation and evolution of the flame edge vortices. The adaptive

mesh refinement indicated by the block boundaries in Figure 5.36(b) would seem to

accurately track and resolve the vortices as they are shed and propagate downstream of

the flame. The predicted flame tip height is nominally 22 mm which matches well with

Shepherd’s et al. [200] experimental estimates of the measured flame height that was

reported to be about 20 mm.

The primary oscillation frequency of the flame oscillations or flicker can be examined

by considering the history of the the centerline axial component of velocity as shown in

Figure 5.37. Applying a Fourier transform to the periodic component of the velocity time

history, starting at 0.4 s, and plotting the amplitude of the transformed signal, or what is

commonly referred to as power spectrum, versus signal frequency as given in Figure 5.38,

a dominant peak at 10.4 Hz is observed. This predicted primary frequency of the flame

oscillations agrees very well with Shepherd’s et al. [200] measurement of 10.2 Hz and

is consistent with Kostiuk and Cheng [197] characterization of premixed methane flame

oscillations in the 10–20 Hz range.

Overall the combination of the time-accurate parallel implicit algorithm with dynamic

AMR does a very good job at resolving the buoyancy driven instability. The adaptive

mesh refinement, as mentioned, was required to provide sufficient resolution as to accu-

rately resolve the thin flame front and allow the buoyancy induced oscillations to develop

naturally. The agreement with previous numerical and experimental studies is rather

good considering the limitations of the reduced methane-air chemical mechanisms.
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(a) 0.4 s (b) 0.44 s (c) 0.48 s

Figure 5.34: 3D solution of a time-varying methane-air co-flow laminar premixed flame

at 3 time intervals, t = 0.4, 0.44, 0.48 s, during its approximately 10 Hz quasi-periodic

cycle, with a) 12,707 block (2,744,712 cell), b) 12,539 block (2,708,424 cell), and c)

12,553 block (2,711,488 cell) grids with (6×6×6 cell) blocks each with 4 levels of mesh

refinement.
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Figure 5.35: Comparison of (a-d) Schlieren images of experiments by Kostiuk and

Cheng [196] and (e-h) predicted numerical cross-sections of the distributions of flow

density in the y=0 plane for t = 0.44, 0.45, 0.46, 0.47 s for unsteady laminar premixed

methane air flame with gravity.
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(a) Temperature Isotherms

(b) Block boundaries

Figure 5.36: 3D predicted solution cross-sections in y=0 plane of a methane-air premixed

flame showing the (a) computed isotherms and (b) block boundaries with four levels

of mesh refinement at 6 time intervals, t = 0.4, 0.42, 0.44, 0.46, 0.49, 0.5 s, showing the

approximately 10 Hz buoyancy driven oscillations.
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Figure 5.37: Conical premixed methane-air centerline flow velocity on the centerline at

an axial height of z=0.1 m showing a quasi-periodic oscillation of approximately 10 Hz.
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Chapter 6

Numerical Results: Algorithm

Performance

As stated in the introduction, the primary objective of this research was to develop

an algorithm that reduces the time it takes to achieve accurate numerical solutions of

laminar reactive flows. The numerical results presented in Chapter 5 have demonstrated

the proposed algorithm’s ability to produce accurate numerical predictions of two- and

three-dimensional laminar non-premixed and premixed combusting flows for both steady

and unsteady flames under low-Mach-number flow conditions. While some algorithm

performance characteristics relating to the benefits of low-Mach-number preconditioning

and refinement efficiency have been already discussed in the previous chapter, along with

the numerical results, for the most part, the details of the performance of the proposed

solution methodology were not discussed as the focus to this stage was on verification

and validation.

This chapter deals specifically with the performance of the parallel implicit finite-volume

AMR scheme as it pertains to computation time and parallel efficiency. Using the so-

lution results from Chapter 5, the proposed algorithm’s convergence rates, for steady

flow problems, and overall solution time, for time-accurate predictions are compared to

other contemporary approaches for steady and unsteady simulations. As the Newton-

Krylov algorithm has many adjustable or tunable parameters requiring user specification

that can have a large effect on solution time, a discussion of parameter selection is also

included. As this is a parallel algorithm, parallel efficiency and scalability is also investi-
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gated as deficiencies in these areas will dominate over serial performance at even modest

numbers of processors and/or cores. As part of the parallel analysis, the performance and

potential drawbacks of the additive Schwarz preconditioning technique are investigated.

6.1 Newton-Krylov-Schwarz Parameter Selection

Almost all numerical methods require some user defined input parameters, such as time

step size and parameters controlling the mesh generation, which are typically used to

balance algorithm accuracy and stability usually at the cost of some trade-off in per-

formance. Newton-Krylov methods are no exception to this in that there are numerous

adjustable parameters, such as the various inner and outer loop convergence tolerances,

preconditioning control parameters, and others, as fully described in detail in Chapter 4

of this thesis.

A common stated detraction of Newton-Krylov methods is that there are almost too

many adjustable parameters and determining an optimal set in some cases can be dif-

ficult for an inexperienced user. Multiple studies have been performed to investigate

the effects of parameter selection on algorithm performance; however, a set of optimal

parameters is often dependent on the equation system, system architecture, and specific

flow regime of interest. Zingg and associates have published multiple studies investigating

Newton-Krylov parameter selection for two- and three-dimensional steady aerodynamic

flows [103, 112, 181, 201] as well as for unsteady flows [78, 105]. Keyes, Gropp and as-

sociates have also carried out considerable research into how Newton-Krylov-Schwarz

parameter selection [108, 109, 111] affects overall algorithm performance, but make no

claim that the optimal combination was found [101]. However, to the experienced user,

this rich set of algorithm options can provide a great deal of architectural and application

adaptivity [101].

Although a detailed investigation into all of the controlling parameters for the present

algorithm is not considered in this thesis, this section provides some investigation and

discussion into the key parameters and how they affected solution convergence rates for

the test cases and flow problems considered in Chapter 5.
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6.1.1 Nonlinear Convergence Tolerance for Newton Scheme

For the non-reacting cases, overall residual reductions of more than ten orders of magni-

tude could typically be achieved, as shown in Figures 5.8 and 5.13(b). However, for the

laminar reactive flow cases considered, only about six or seven orders could be achieved

before the solution would stall. This stall is most likely related to the finite-rate chem-

istry source terms behaviour as the mass fraction of species approaches zero. The species

mass fractions, cs, are required to satisfy both maximum and minimum principles and

lie within the range 0 ≤ cs ≤ 1. This restricted range of validity leads to inaccuracies

in the GMRES matrix-vector products generated using Fréchet derivative approxima-

tions as well as in the approximate Jacobian used as a preconditioner, particularly as

cs → 0. The empirical curve fits used for the thermodynamic and transport data out-

lined in Chapter 2, subsection 2.2.3 may also be hampering convergence as the residual

gets small. Recently, Veldhuizen et al. [117] have proposed using a modified globalized

inexact projected Newton method based on the projected Newton approaches originally

designed for nonlinear optimization problems with constraints to preserve species mass

fraction positivity. While this approach seems quite promising, this was not implemented

in this work due to time constraints. For the unsteady problems, this is also really a non-

issue as full convergence is typically not required, and often not recommended as reducing

the residual too much will lead to oversolving the system and unnecessarily increasing

the computational cost of updating the solution at each time-step [78].

6.1.2 Linear Convergence Tolerance for GMRES Algorithm

The linear or GMRES convergence tolerance parameters govern how accurately the linear

system is solved at each Newton step. A high tolerance is generally more computationally

costly whereas too low of a tolerance can lead to an inaccurate solution update that may

ultimately cause the outer Newton iterations to diverge. For many applications a GMRES

reduction of one order, a tolerance of 0.1, has been shown to be sufficient [103].

In the non-reacting inviscid and viscous cases described in Chapter 4, a tolerance of 0.1

was indeed found to be sufficient. For the reacting cases however, a tighter tolerance of

0.05–0.01 was found to be necessary to avoid divergence of the Newton method. This

is most likely related to the species mass fractions that are highly sensitive to minor
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variations especially when approaching zero. For steady reactive flow calculations, a

tolerance of 0.01 was typically required to avoid solution stall; however, for unsteady

calculations this could be relaxed to a tolerance of 0.05 as the solution was “warm-

starting” with a good initial estimate from the previous time step and the outer loop

convergence was typically converged only a few orders of magnitude.

6.1.3 Local BILU Preconditioner Fill Level

In the variable-fill level BILU preconditioner acting as the local preconditioner for each

partition as described previously in Section 4.2.4, the higher the level of fill used in

constructing the approximate inverse, the more non-zero entries are retained at the cost

of greater computational work and storage. As the level fill is increased, the approximate

inverse approaches that of the exact inverse and further increasing the level of fill has no

beneficial effect. To investigate the effects of the ILU(k) fill level, k, on performance for

reacting flows, the steady co-flow methane-air laminar diffusion flame solutions described

in Section 5.4 were re-computed for the two- and three- dimensional cases with varying

fill levels k, from 0 to 4, with all other parameters remaining constant. The results

for two different mesh resolutions in both two- and three-dimensions are summarized in

Tables 6.1 and 6.2, respectively. For both mesh sizes, the best overall performance was

achieved with a fill level, k, of 2 in 2D and 1 in 3D. In 2D, the overall effect on solution

time is very minor, most likely due to the block sizes being fairly small. In 3D, the

selection of fill level, k, does have a more significant impact on overall solution time than

in 2D, however the effect is still relatively minor. The higher fill levels do reduce the total

number of GMRES iterations required; however, not significantly enough to offset the

extra computational cost of computing the preconditioner. Previous studies by Groth et

al. [49] for 2D inviscid flows found that fill levels of k = 3 or k = 4 provided the best

compromise; however, it appears that for 2D reactive flows, slightly lower levels of fill

appear to be the most cost effective. In 3D, the lack of benefit from high ILU fill levels

is consistent with other investigators [111, 201] and values of k = 0 and k = 1 appear to

be most optimal.
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Mesh size ILU(k) GMRES Iterations NKS Iterations CPU time (min)

0 42,933 3,241 12.47

3072 1 42,211 3,221 12.42

cells 2 40,115 3,196 12.35

3 40,115 3,196 12.46

4 40,115 3,196 12.52

0 57,368 5,027 40.70

12288 1 56,857 5,015 40.58

cells 2 55,513 4,965 40.05

3 53,655 4,951 40.48

4 52,964 4,998 40.93

Table 6.1: Convergence parameter results for varying the ILU(k) fill for the solution of

a two-dimensional steady co-flow laminar diffusion flame with 96 (4× 8) block, 3,072 cell

and 96 (8× 16) block, 12,288 cell meshes on 96 processor cores.

Mesh size ILU(k) GMRES Iterations NKS Iterations CPU time (min)

0 25,394 2,720 143.02

64,512 1 23,141 2,683 138.25

cells 2 22,268 2,716 141.56

3 21,077 2,714 149.08

4 20,254 2,714 164.94

0 35,150 3,666 577.73

217,728 1 31,873 3,669 567.75

cells 2 31,117 3,668 587.13

3 28,922 3,586 592.43

4 28,252 3,673 659.81

Table 6.2: Convergence parameter results for varying the ILU(k) fill for the solution of

a three-dimensional steady co-flow laminar diffusion flame with 126 (8 × 8 × 8) block,

64,512 cell and 126 (12× 12× 12) block, 217,728 meshes on 126 processor cores.
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6.1.4 Domain Overlap for Additive Schwarz

Global Preconditioner

Domain overlap can help to offset the loss of overall implicitness of the Newton itera-

tive solver introduced by the block-based additive Schwarz preconditioning. In the early

stages of the parallel implicit algorithm development, Schwarz overlap was investigated

in the implementation of the two-dimensional solution method. Overlaps ranging from

zero to three were investigated using the bump flow cases outlined in Section 5.1.3 of

Chapter 5. The increased overlap was found to reduce the number of GMRES iterations

as expected; however, the overall CPU time was not reduced, and in fact was found

to increase. The computational cost of solving the larger individual sub-domain blocks

and the extra communication cost was not offset significantly enough by the reduction

in iterations to ultimately reduce overall computation time. Gropp et al. also found

no significant overall performance benefit from the use of domain overlap [111]. For

the three-dimensional solution method, domain overlap was not investigated as the com-

munications costs are generally even higher than for the two-dimensional case and little

benefit could be achieved. As such, additive Schwarz preconditioning with no overlap

has been used in all of the three-dimensional computations reported herein.

6.1.5 Summary of NKS Algorithm Parameter Selection

The specific NKS parameters used for performing the non-reactive and reactive flow

problems Chapter 5 have been presented previously. The selection of these parameters

were based on the investigations outlined in the preceding sections. Table 6.3 provides

a summary of the key parameters found here to work best for the computation of the

range of laminar reactive flows considered in this thesis.

6.2 Steady Solution Performance Compared

to Explicit Time-Marching

As one of the primary goals of implementing the parallel NKS solver was to reduce the

time required to achieve an accurate solution, this section compares the convergence
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2D Steady 3D Steady 2D Unsteady 3D Unsteady

GMRES Tolerance (η) 0.01 0.01 0.05 0.05

ILU Fill Level (f) 2 1 2 1

Newton Tolerance 1× 10−6 1× 10−6 1× 10−2 1× 10−2

Jacobian Update every iteration every iteration 1st iteration 1st iteration

Table 6.3: Summary of NKS parameters for steady and unsteady laminar reactive flows.

rates and total wall-clock times of the NKS solver versus an explicit 4-stage optimally

smoothing solver that has been used extensively in previous work described by Northrup

and Groth [63] and Gao et al. [14].

The comparisons were done using five of the representative inviscid, viscous, and reacting

cases described in Chapter 5. Both solution methods use the same spatial discretization

reconstruction and block based AMR approach, i.e., the same right hand side, the only

difference between the simulations being the time-stepping algorithm. The CFL number

used for the explicit solution was 0.5 and the NKS parameters are described for each case

in Chapter 5. Both cases were run using the same HPC system, as described in Section

3.3.4 of Chapter 3 with the identical number of processor cores.

Figures 6.1 and 6.2 compare the convergence histories of density versus overall CPU

time and equivalent residual, right hand side evaluations, for each of the five cases. The

convergence histories for the other flow variables are similar. The use of equivalent

residual evaluations provides a means for non-dimensionalizing the convergence history

plots, allowing easier comparison of different solution methods across various computer

platforms. The number of residual evaluations should remain relatively constant across

differing systems whereas straight CPU time will vary considerably depending on CPU

generation, model, and architecture.

As both the explicit and implicit solution methods were carried out using the same

compute resources the absolute numbers for the computational cost are not of critical

importance, but rather the relative convergence rates. When examining the convergence

histories of Figures 6.1 and 6.2 it is readily evident that in all cases the NKS solver

significantly outperforms the explicit method by reducing the time to achieve a solution

dramatically, as should be expected for a steady flow problem. The improvement ranges
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from 5 to 10 times reduction in solution time and in the viscous and reacting solutions the

NKS solver was able to converge solution error to a far higher tolerance than the explicit

methods that generally “stalled” after only a few orders. As mentioned in Section 6.1,

the NKS parameters used were not explicitly optimally tuned for these specific cases, so

these significant performance gains can be considered to be relatively conservative.
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Figure 6.1: Comparison of convergence of the solution residuals for the Newton-Krylov-

Schwarz and explicit 4-stage optimally smoothing scheme as applied to; (a) 2D inviscid

bump flow (Section 5.1.3), (b) 2D viscous flat plate initial mesh (Section 5.2.1), (c) 1D

premixed flame (Section 5.3).
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Figure 6.2: Comparison of convergence of the solution residuals for the Newton-Krylov-

Schwarz and explicit 4-stage optimally smoothing scheme as applied to; (a) 2D laminar

diffusion flame initial mesh (Section 5.4.2), (b) 3D laminar diffusion flame initial mesh

(Section 5.4.2).

6.3 Unsteady Solution Performance Compared

to Explicit Time-Marching

The performance of the proposed time-accurate parallel implicit BDF2-NKS algorithm

has also been compared with two contemporary time-marching schemes, the results of

which are now discussed. In particular, the parallel implicit scheme was compared to

an explicit two-step, Runge-Kutta, time-marching scheme, RK2, without the temporal

low-Mach-number preconditioning applied as that would break time accuracy, as well as

the same BDF2 implicit time scheme implemented within a dual-time stepping procedure

using an explicit multi-stage optimally-smoothing scheme as the pseudo-time stepping

method, referred herein as BDF2-DTS. The time-step of the Runge-Kutta scheme is

limited by the CFL condition, whereas the implicit BDF2 schemes are not. Nevertheless,

the solution accuracy of the implicit methods are affected by the inner loop convergence

tolerance.

Unlike for steady problems, where a direct comparison of convergence histories shows the
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algorithms performance, as shown in Section 6.2, for time-accurate problems the only fair

comparison is to compare overall solution CPU time at an equivalent solution accuracy

for the same simulation or problem. The methodology used herein for comparison is

similar to that used by Tabesh et al. [78] when comparing computational costs of various

time-marching methods.

The performance is investigated using the solution of the 3D driven laminar diffusion

flame problem as discussed previously in Section 5.4.3 of Chapter 5. As the solution is

periodic it provides a rather good test case for comparing the time-marching schemes.

The accuracy of the solutions is assessed by comparing the solution of the axial component

of the center-line velocity, w, over one full oscillation, which for this case is 0.05 s. As

there is no analytical solution for this case, the solution error, werror is calculated with

reference to a computed solution, wi,ref shown in Figure 6.3, calculated using a very small

time step. Equation (6.1) shows the error calculation where N is the total number of

time steps.

werror =

√√√√√ N∑
i=0

(wi − wi,ref )
2

N
(6.1)

A 126 (8×8×8 cell) block mesh, as shown in Figure 5.18(b) with 64,512 computational

cells was used without any dynamic adaption to ensure consistent solutions with the

different time-marching schemes. Initially the problem was run for 10 full periods (0.5

s) to remove any initial condition hysteresis effects and ensure a period solution was

achieved. The BDF2 schemes were run with physical time steps, ∆t, of 0.1, 0.05, 0.025,

0.01, and 0.005 ms corresponding to 500, 1000, 2000, 5000, and 10000 steps per period

respectively. The RK2 solutions were run with CFL’s of 0.3, 0.2 and 0.1, as 0.3 was found

to be the largest stable value for this method. For the NKS-BDF2 a Newton tolerance

of 0.01 with a GMRES tolerance of 0.01 was used.

The performance results depicted in Figure 6.4 provide a comparison of the various algo-

rithm solution error, werror, versus the associated computational time. It is clear that the

proposed BDF2-NKS algorithm outperforms the other methods requiring considerably

less computational time to achieve the same solution accuracy. The RK2 scheme is con-

siderably handicapped by having to take very small time steps to maintain stability (i.e.,

there is a limited range of valid time steps) and also not being able to utilize the low-
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mance comparisons of BDF2-NKS, BDF2-

DTS, and RK2 for the solution of a time-

accurate 3D driven laminar diffusion flame.

Mach-number preconditioning of the numerical flux to maintain solution accuracy. The

BDF2-DTS scheme does benefit from the greater stability of the implicit time scheme

allowing it to use much large time-steps; however, it requires a far larger number of inner

loop iterations of the multi-stage optimally smoothing scheme which completely offsets

any possible gains in computational savings. Much like the performance of the steady

solutions, the unsteady NKS solver outperforms the other methods by significantly re-

ducing the number of residual evaluations that are required. For the reactive flow cases,

the cost of the residual evaluation is very high due to the thermally perfect gas rela-

tionships and the chemical source terms. Thus the residual evaluation cost dominates

over the extra costs associated with the NKS, i.e., preconditioner and GMRES overhead,

resulting in the very significant performance gains in overall solution time.

6.4 Parallel Performance

In modern HPC, the parallel performance and scalability of a numerical methods is

an extremely important consideration. Since single core serial CPU performance has
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remained relatively flat due to power consumption issues, manufacturers have turned

to multi-core and hybrid architectures to provide increased computational performance.

This has resulted in modern HPC clusters having ever increasing core counts ranging

from the thousands to over a million in emerging multi-petaflop systems [113,202]. Thus

an algorithms ability to scale to a large number of processor elements is essential in

order to use modern HPC systems efficiently and effectively especially for large and

computationally expensive problems.

As such, the parallel performance of the proposed algorithm is assessed herein by ex-

amining two common metrics, the parallel speedup, Sp , and efficiency, Ep, which are

defined as

Sp =
t1
tp

(6.2)

Ep =
Sp

p
(6.3)

where t1 is the total wall time to solve the problem with 1 processor, and tp is the total

wall times required to solve the problem with p processors. These performance measures

are examined for both strong and weak scaling problems. The effect of the Schwarz

preconditioner is also investigated as, in this implementation, it is directly tied to the

parallel domain decomposition and the amount of preconditioning increases with the

number of processing cores used to solve the problem at hand.

6.4.1 Strong Scaling of Parallel Implicit Algorithm

Strong scaling determines an algorithm’s ability to scale proportionately with more pro-

cessors for a fixed size problem. For strong scaling, the problem size is held fixed while the

number of processors used to perform the computation is varied. Ideally, if the number

of processors used to solve the problem is increased by a factor of 10, then the solution

time should be reduced by the same factor of 10. Strong scaling is also typically the most

challenging for most algorithms as the ratio of communication to computation increases

as the number of processor cores increases. This is of course the inverse of what typically

promotes good parallel scalability.



Chapter 6. Numerical Results: Algorithm Performance 137

The strong scaling performance of the proposed parallel AMR implicit finite-volume

algorithm was examined using the solution of the 3D steady laminar diffusion flame de-

scribed previously in Section 5.4. A non-adapted mesh of 6,400 (8×8 ×8 cell) blocks

totaling 3,276,800 cells with a fixed number of Newton iterations was used to ensure

that equivalent work was used for each solution. As the Schwarz preconditioner in this

implementation is tied to the domain decomposition, i.e., the number of blocks, using

the same number of blocks regardless the number of processors, maintains the same level

of Schwarz preconditioning. This allows one to investigate the algorithms parallel scala-

bility separate from the effects of the Schwarz preconditioner, which will be investigated

independently in Section 6.4.3 of Chapter 6 to follow.

Scaling studies were performed on three separate HPC platforms to determine the effects

of the processor, network, and algorithm on the scalability. Figure 6.5(a) hows the results

of the proposed NKS algorithm on both DDR Infiniband and Gigabit Ethernet on the

SciNet Intel x86 64 cluster using up to 800 nodes which have 8 cores each. At 6,400

cores the algorithm is still achieving 80% efficiency for Infiniband and remarkably, even

with the much higher latency Ethernet, achieving almost 50% for this particular laminar

reactive flow problem.

Figure 6.5(b) shows the scaling results from running on the SciNet IBM Power6 Cluster

with DDR Infiniband using up to 100 nodes with 64 threads per node. The same 3D

steady laminar diffusion flame case was solved using the NKS algorithm as well as the

explicit scheme described in the convergence comparisons in Section 6.2. The parallel

efficiency of the NKS algorithm is very similar to that obtained on the Intel Infiniband

cluster, which is to be expected as the network performance of the two clusters is very

similar. The explicit solution algorithm achieves an efficiency of over 70% at 6,400 cores;

however, is not quite as efficient as the implicit NKS algorithm. This difference can be

attributed to the NKS requiring much less, but more computational expensive, iterations

than the explicit solution method. Thus the ratio of computation to communication

favors the NKS algorithm, increasing the overall strong scaling efficiency.

Scaling studies were also carried out on an IBM BlueGene/Q (BGQ) supercomputer [173,

174] which consists of 2,048 low-power 16 core CPUs (32,768 cores) connected together

with a highly scalable proprietary 5D torus. The same 3D methane-air laminar diffusion

flame case was used; however, the problem size was increased to 32,256 (8×8 ×8 cell)
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blocks totaling 16,512,072 cells. Figure 6.6 shows the very impressive strong scaling of

the NKS implicit algorithm achieving almost 95% efficiency at 32,256 cores. The high

dimensionality of the BGQ 5D Torus results in very low point-to-point latencies allowing

the algorithm to scale extremely well, even with a very high number of cores.

6.4.2 Weak Scaling of Parallel Implicit Algorithm

Weak scaling examines an algorithm’s ability to scale as the problem size is increased

in step with the number of processing cores. For a weak scaling analysis, the problem

size is scaled proportionately to the number of processors and in the ideal case the

computation time would remain fixed or constant. This is generally a more practical

scaling test as it represents the typical case were more processors are required to solve

larger and larger problems in a reasonable amount of time. For most solution methods,

it is usually easier to achiever high performance for weak scaling than for strong scaling

as the communication and work per processor core remains essentially constant.

In the weak scaling evaluations of the parallel implicit AMR finite-volume method, the

3D steady laminar flame solution was again considered. However, the mesh is no longer

constant but scales linearly with the number of processor cores being used. The mesh

is adjusted so as to maintain one (8×8 ×8 cell) block per core starting with 25 blocks

(12,800 cells) through 6,400 blocks (3,276,800 cells). Figure 6.7 shows the weak scaling

results for the parallel implicit algorithm as well as an explicit scheme described in the

convergence comparisons in Section 6.2 on the SciNet Intel x86 64 cluster using DDR

Infiniband. The parallel implicit algorithm achieves a very high relative efficiency of over

90% even up to 6,400 cores and the explicit case also performs well achieving a relative

efficiency of over 80% for 6,400 cores. The weak scaling results are consistent with the

strong scaling results of Section 6.4.1, with the parallel implicit algorithm outperforming

the explicit case, which is expected as the ratio of communication to computation favors

the implicit scheme. The weak scaling relative efficiencies are higher than those of the

strong scaling, but again this is expected as the communication and work per core ratio is

constant in weak scaling, whereas for the strong scaling cases, inter-core communication

increases.
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Figure 6.5: Strong scaling parallel performance of the Newton algorithm for laminar

diffusion flame calculation on a mesh consisting of 6,400 8×8 ×8 cell solution blocks

(3,276,800 cells) showing the relative parallel speed-up on an (a) Intel x86 Ethernet and

DDR Infniband Cluster and (b) IBM Power6 with DDR Infiniband Cluster.
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Figure 6.6: Strong scaling parallel performance of the Newton algorithm for laminar

diffusion flame calculation on a mesh consisting of 32,256 8×8 ×8 cell solution blocks
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Figure 6.7: Weak scaling parallel performance of the Newton algorithm for laminar
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6.4.3 Effects of Additive Schwarz Preconditioning

The strong parallel scaling simulation results described above in Section 6.4.1 were per-

formed using a fixed number of iterations and a fixed domain decomposition, thus the

number of total blocks were held constant, regardless the number of processor cores be-

ing used. These results portray accurately the algorithms ability to scale well with the

increases in communication; however, they do not assess or include the expected degra-

dation in performance of the parallel implicit algorithm caused by the loss of coupling or

implicitness resulting from the domain decomposition procedure and Schwarz precondi-

tioning. Typically the decomposition changes as the number of processors are increased

as further subdivisions of the domain are required. For explicit calculations this typically

does not change the underlying algorithm or convergence rates, it just adds the increased

overhead involved with communication at the boundaries. However in the proposed par-

allel implicit algorithm, where the domain decomposition procedure is also used as the

global Schwarz preconditioner, the algorithms convergence can be deleteriously affected

by the decomposition. As more blocks are used, the less accurate the approximate inverse

that results from the Schwarz preconditioner. As a result, typically a greater number of

GMRES iterations to converge the problem are required, resulting in a higher computa-

tional cost. This was well illustrated in previous work by Groth et al. [49] for 2D inviscid

flow problems.

As the Schwarz preconditioner is tied to the domain decomposition in this implementa-

tion, the effect of the preconditioner can be investigated by adjusting the partitioning

(i.e. the number of blocks) for a mesh with a fixed number of cells. As the number

of blocks increases the number of cells per block decreases and thus the global Schwarz

preconditioner subdivides the global linear system into smaller and smaller local systems

as shown graphically in Figure 4.1 of Chapter 4.

Steady Two-Dimensional Supersonic Flow Past a Cylinder

The effect of the Schwarz preconditioner is first investigated for the solution of inviscid

two-dimensional supersonic flow past a cylinder as described previously in Section 5.1.2 of

Chapter 5. Numerical solutions were calculated on a 128×128 mesh consisting of 16,384

computational cells and several different blockings (partitionings) of the computational
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domain are examined in order to investigate the influence of the Schwarz preconditioning.

A single-block grid consisting of one 128×128 solution block is considered, along with 4-,

16-, and 64-block grids composed of 4 64×64, 16 32×32, and 64 16×16 solutions blocks.

The computed Mach number distribution for the M∞=2.5 = 2.5 blunt-body flow is shown

in Figure 6.8(a) along with single- and 16-block computational meshes in Figures 6.8(b)

and 6.8(c) respectively for comparison. The convergence results of the parallel NKS

algorithm are given for the 1-, 4-, and 16-block cases in Figure 6.9(a), showing the

effects that the higher level of Schwarz preconditioning has on solution convergence and

thus computational time required. The single block with no Schwarz preconditioning

converges the most rapidly and as the Schwarz preconditioning is increased from 4 to

16 blocks the amount of time to reach convergence increases by approximately 30%.

Figure 6.9(b) shows that the algorithm still maintains good parallel scaling, even for the

higher number of block partitions and despite the fact that the ratio of communication

to computation is less favorable in this relatively small two-dimensional problem.

Subsonic Two-Dimensional Laminar Boundary-Layer Flow Past a Flat Plate

The effect of the Schwarz preconditioning is next investigated for the solution of two-

dimensional viscous flow over a flat plate on a 64×128 (8,192 cell) grid, as described

previously in Section 5.2.1 of Chapter 5. Figure 6.10(a) shows the 3 different grid parti-

tions with 3, 12, and 48 blocks, and Figure 6.10(b) shows the effects of the higher level

of Schwarz preconditioning has on solution convergence and thus computational time

required. For this case, the number of GMRES iterations required increases about 10%

between 3 and 12 blocks and overall solution time about 40%. From 12 to 48 blocks, the

effect is much less substantial suggesting that the increased Schwarz preconditioning has

less of an impact on solution time as the number of blocks is increased. Figure 6.10(c)

shows that the algorithm still maintains good parallel scaling, even for the higher num-

ber of block partitions, even though the ratio of communication is computation is less

favorable in this relatively small two-dimensional problem.

Three-Dimensional Co-Flow Laminar Diffusion Flames

Finally, to fully asses the influence of the Schwarz preconditioning and the resulting

degradation in overall performance a more representative combustion case, the solution
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Figure 6.8: Computed solution of parallel NKS algorithm for supersonic flow past a

circular cylinder; Mach number M∞ = 2.5; showing (a) Mach number distribution and

(b) single (128×128) and (c) 16 (32×32) block, 16,384 cell, meshes used in computations.

of a steady three-dimensional co-flow methane-air laminar diffusion flame, as described

previously in Section 5.4.2, is re-investigated. The overall solution was converged four or-

ders of magnitude using a GMRES tolerance of 0.01 and ILU(0). An initial 13 (12×12×72

cell) block grid with 134,784 cells total is subdivided into 26, 52, 104, 208, 312, and 624

blocks as shown in Figure 6.11 with the 624 block portioning having only 6×6×6 cells

per block. All other algorithm and grid parameters, besides the initial block partitioning,

were held constant.

Figure 6.12(a) shows the convergence histories for all 7 cases computed using 1 block per

processor core. As is expected the 13-block case, with the least amount of Schwarz pre-

conditioning, converges the most rapidly and the 624 block case, with the most partitions

converges most slowly. The spread however between these two extremes is only about

20%, which is much better than 50% seen in the previous two-dimensional cases. When



Chapter 6. Numerical Results: Algorithm Performance 144

Equivalent residual evaluations

CPU Time (minutes)

L
2 

n
o

rm
 o

f 
so

lu
ti

o
n

 r
es

id
u

al

0 2000 4000 6000 8000

0 5 10 15

10-6

10-4

10-2

100

102

104 single block mesh (33 steps)
4 block mesh (29 steps)
16 block mesh (54 steps)

(a)

Number of Processors, Np

R
el

at
iv

e
P

ar
al

le
lS

p
ee

du
p,

S
p

R
el

at
iv

e
P

ar
al

le
lE

ff
ic

ie
nc

y,
E

p

5 10 15 20 25 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

Ideal Speedup & Efficiency

Actual Speedup (16 32x32 blocks)
Actual Speedup (64 16x16 blocks)

Actual Efficiency (64 16x16 blocks)
Actual Efficiency (16 32x32 blocks)

(b)

Figure 6.9: Performance of parallel NKS algorithm for supersonic flow past a circular

cylinder; Mach number M = 2.5; (a) convergence history showing 2-norm of density

residual as a function of the number of equivalent residual evaluations and total processor

time and (b) strong parallel scaling.

looking at the solver statistics given in Table 6.4, the overall NKS iterations are relatively

constant; however the total number of GMRES iterations increases by about 20%. This

is consistent with what is expected. As the global GMRES problem becomes less well

conditioned with greater subdivision of the problem, a greater number of iterations is

required to achieve a specified convergence tolerance. Similar trends were also observed

in the previous two-dimensional cases. Despite these effects, Figure 6.12(b) shows the

strong parallel scaling for this case. Even with the combined effects of the Schwarz pre-

conditioner and parallel communication overhead, the parallel efficiency with 624 cores

remains at just under 80%.

In summary, it would seem that overall the use of Schwarz preconditioning has a less

detrimental effect on solution performance for the 3D reactive case than for the 2D

inviscid and viscous flow cases. The two-dimensional inviscid and viscous cases started

with very little Schwarz preconditioning as they were only initially partitioned with one

and three blocks respectively, while the minimum number of partitions for the three-

dimensional case was 13. Unfortunately, due to the topologies of the 3D grids considered,

13 is the minimum that could be accommodated. Also the 3D reactive flow case has a

much more expensive residual evaluation enabling greater parallel efficiency, due to the

increased computation to communication ratio, ultimately reducing the overall time to
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Figure 6.10: Viscous flow over a two-dimensional flat plate computed on the same

64×128 mesh with (a) 3 different domain decompositions (3, 12, and 48 blocks) showing

the effects of Schwarz preconditioner on (b) solution convergence and (c) strong parallel

scaling.
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(a) 13 blocks (b) 26 blocks (c) 52 blocks (d) 104 blocks
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Figure 6.11: 3D laminar diffusion flame 134,784 cells mesh partitioned (a) 13, (b) 26,

(c) 52, (d) 104, (e) 208 , (f) 312, and (g) 624 blocks.
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achieve a solution. While it is felt that the results are quite representative of typical

combustion flows it would seem important to confirm these findings for a wider range of

reactive flow problems and geometries in future follow-on studies.
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Figure 6.12: 3D Steady Laminar Diffusion flame computed with 134,784 cells and

partitioned with 13, 26, 52, 104, 208, 312, and 624 blocks showing (a) the effect of the

Schwarz preconditioner on convergence rate and (b) the associated strong parallel scaling.

Blocks NKS Iterations GMRES Iterations CPU time (min) Wall time (min)

13 4,501 37,155 48,446 3,726

26 4,521 37,548 48,988 1,884

52 4,573 37,622 50,421 969

104 4,552 38,105 50,871 489

208 4,596 41,313 53,186 254

312 4,567 42,625 53,572 171

624 4,640 46,527 60,236 96

Table 6.4: Summary of NKS algorithm solution statistics for the same 134,784 cells mesh

with varying levels of Schwarz preconditioning determined by the number of blocks.
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Conclusions

As stated in the introduction of Chapter 1 of the thesis, the primary objective of this

research was the development of a numerical method that will significantly reduce the

time it takes to achieve accurate solutions of physically complex steady and unsteady

laminar reactive flows. This was achieved by developing a new parallel implicit AMR

scheme and applying it to the solution of a range of steady and unsteady methane-air

laminar diffusion and premixed flames.

The parallel implicit formulation makes use of a dual-time-stepping like approach with

an implicit second-order backward discretization of the physical time. A Jacobian-free

inexact Newton method with a preconditioned generalized minimal residual (GMRES)

algorithm is used to solve the system of nonlinear algebraic equations arising from the

temporal and spatial discretization procedures. An additive Schwarz global precondi-

tioner is used in conjunction with block incomplete LU type local preconditioners for

each sub-domain. This Newton-Krylov-Schwarz algorithm was developed to work in

conjunction with dynamic solution-directed block-based mesh adaptation according to

physics-based refinement criteria. The underlying block-based octree data structure en-

ables an efficient parallel implementation via domain decomposition.

The algorithm, in conjunction with a density-based solution method in which the fully

compressible form of the Navier-Stokes equations are solved in a tightly-coupled manner,

was applied to the solution of steady and driven laminar diffusion flames. The use

of the compressible form of the Navier-Stokes equations naturally allows for the large

density variations associated with reactive flows. It also means that, unlike many other

148
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approaches, the solution method is well prepared for the accurate treatment of flows with

time varying pressure and the prediction of thermoacoustic phenomena. Solutions were

obtained for both 2D axisymmetric and 3D coordinate frames and good agreement was

demonstrated between the two sets of results and with other published experimental and

numerical results. The application of low-Mach-number preconditioning was found to be

necessary and important for controlling dissipation in low-Mach-number flows. Premixed

time-accurate methane-air laminar flames were also investigated and the proposed parallel

implicit AMR finite-volume method did a very good job of predicting the frequency

of buoyancy-driven oscillations that occur under terrestrial gravity. The prediction of

shedded or flame-flicker vortices for the unsteady premixed flame showcased the ability

of the solution directed adaptive mesh refinement to track and resolve detailed flow

features.

The parallel implicit algorithm’s performance was assessed and was found to drastically

reduce the computational time it takes to achieve a solution in all cases investigated com-

pared to standard explicit time marching schemes. For steady flows, the computational

time required to convergence a solution was reduced by a factor 5-10 times. Addition-

ally time-accurate combustion solutions were obtained 6 times faster than comparative

schemes at the same level of accuracy. Parallel communication performance was assessed

and scaling efficiencies over 80% were achieved at over 6,000 cores. The Schwarz pre-

conditioner was investigated and found to decrease the algorithm’s performance as the

amount of preconditioning, greater and smaller blocks, is increased. For 3D reactive

flows, the reduction however was not as severe as with the 2D model problems and any

loss in efficiency was found to be much less than the benefits of being able to solve the

problem of interest using more processing cores, at least for the cases considered.

The combination of the time-accurate parallel implicit algorithm with dynamic AMR

did a very good job at efficiently solving laminar combustion problems and fulfilling the

primary research objective to significantly reduce the time it takes to achieve accurate

solutions. It is felt that, with the proposed algorithm combined with today’s avail-

able and future HPC resources, provide the opportunity to bring to bear unprecedented

computational capabilities to problems related to turbulent reactive flow, including ther-

moacoustic phenomena and combustion instabilities.
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7.1 Contributions

The following is a summary of original contributions arising as a result of this research:

• A 3D block-based AMR framework was extended and adapted to allow for dynamic

refinement and coarsening of the mesh for tracking the solution features of unsteady

flows.

• A new parallel implicit Newton-Krylov-Schwarz algorithm for 2D and 3D unsteady

reactive laminar flows governed by the fully compressible form of the Navier-Stokes

equations was developed that is fully compatible with the aforementioned AMR

scheme.

• The first application of the combination of a fully parallel implicit Newton-Krylov-

Schwarz algorithm with adaptive mesh refinement for reacting flows was performed.

Both steady and unsteady laminar diffusion and premixed flames were considered.

• The proposed algorithm was demonstrated to be considerably faster than a com-

parable explicit scheme for all steady and unsteady flow problems considered.

• The algorithm demonstrated the capability to solve very large problems and scale

to well over 6,000 processor cores. The Schwarz preconditioner was shown to have

an effect on scaling, but still have good parallel scaling performance of 80% at over

600 processing cores for 3D combustion solutions.

7.2 Recommendations for Future Work

The parallel implicit block-based AMR scheme developed in this thesis provides a solid

basis going forward for future research related to both algorithm design and development

as well as combustion research. The overall approach is very promising; however, de-

tailed investigation into algorithm components could still provide significant reductions

in solution times and possibly increase overall robustness. A few key ares of further

investigation are outlined below that would be natural extensions to this research.
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Globalization

A common issue when employing Newton-Krylov methods for the solution of steady-state

problems is the issue of globalization whereby a good startup algorithm is invariably

required in order to increase the radius of convergence and ensure global convergence

of the NKS method. [80, 92, 94, 101]. This has been partially addressed in the thesis by

using the SER methods outlined in Section 4.5. Nevertheless, for the steady reactive

flow problems studied here, significant time was spent in this startup phase. Future

investigation into alternative strategies, such as the work by Zingg and co-researchers

[97,203,204], would likely lead to greater robustness and improved performance.

Preconditioners

As mentioned by Knoll and Keyes [101], the overall efficiency of Newton-Krylov schemes

is predominantly determined by the choice of preconditioner. For the parallel Newton-

Krylov method adopted herein this is even more pronounced. The combination of a

global Schwarz and local ILU(f) preconditioner has worked well for the situations con-

sidered here; however, there was still a measurable degradation caused by the Schwarz

preconditioner, as shown in Section 6.4.3 of Chapter 6.

It is recommended that future research include investigations into the use of multigrid

as a preconditioner [205,206] as well as multi-level approaches such as those proposed by

Cai et al. [207,208] to counteract the effect of the Schwarz preconditioning.

Higher Order Schemes

For unsteady time-accurate flows, the BDF2 temporal scheme was found to perform quite

well when combined with the NKS algorithm. However, for fine solutions relatively small

time steps were still required for stability so investigations into higher order temporal

schemes may be of benefit. Tabesh and Zingg [78] found that this was indeed the case,

when comparing BDF2 with a 4th order explicit single-diagonal implicit Runge-Kutta

(ESDIRK) scheme for unsteady aerodynamic flows.

Along similar lines, the higher order spatial discretization employed was only second

order and thus to resolve fine features, such as the flame fronts in the reactive flow cases,
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a large number of computational cells were required even with the benefits of AMR.

An investigation of higher order spatial discretizations, such as the those considered in

the recent work of Ivan and Groth [209, 210], coupled with the parallel implicit AMR

algorithm may lead to further reductions in overall time to achieve a solution.

AMR

The dynamic 3D adaption scheme has proved very effective at resolving the solution

features of the problems solved in Chapter 5. Further efficiencies may be gained however

from transitioning from an octree data structure where each block must be refined into

8 children blocks, to a binary tree that would allow non-isotropic direction-dependent

refinement [51,160,161].

Turbulence and Detailed Chemistry

The combustion modelling used in this research was relatively unsophisticated. The

study was restricted to simple reduced chemical kinetics and laminar flows. An obvious

next step would be to extend the algorithm to solutions with detailed chemistry as well

as extend it for use with turbulent combustion flow regimes. Both of these application

areas are indeed already being studied as Charest et al. [120] used the parallel implicit

AMR algorithm as the basis for the solution of detailed 2D axisymmetric sooting flames

and Northrup et al. [211] has done some preliminary work extending the algorithm for

Large Eddy Simulations (LES) of reactive flows.
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