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This study is concerned with the development of extended fluid-dynamic models for

the prediction of micro-scale flows. When compared to classical fluid descriptions, such

models must remain valid on scales where traditional techniques fail. Also, knowing

that solution to these equations will be sought by numerical methods, the nature of the

extended models must also be such that they are amenable to solution using compu-

tational techniques. Moment closures of kinetic theory offer the promise of satisfying

both of these requirements. It is shown that the hyperbolic nature of moment equa-

tions imbue them with several numerical advantages including an extra order of spacial

accuracy for a given reconstuction when compared to the Navier-Stokes equations and

a reduced sensitivity to grid irregularities. In addition to this, the expanded set of pa-

rameters governed by the moment closures allow them to accurately model many strong

non-equilibrium effects that are typical of micro-scale flows. Unfortunately, traditional

moment models have suffered from various closure breakdowns, and robust models that

offer a treatment for non-equilibrium viscous heat-conducting gas flows have been elu-

sive. To address these issues, a regularized 10-moment closure is first proposed herein

based on the maximum-entropy Gaussian moment closure. This mathematically well-

behaved model avoids closure breakdown through a strictly hyperbolic treatment for

viscous effects and an elliptic formulation that accounts for non-equilibrium thermal dif-

fusion. Moreover, steps toward the development of fully hyperbolic moment closures for

the prediction of non-equilibrium viscous gas flow are made via two novel approaches. A

thorough study of each of the proposed techniques is made through numerical solution

of many classical flow problems.
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Chapter 1

Introduction

1.1 Non-Equilibrium Micro-Scale Flows and Moment

Closures

Accurate and reliable numerical methods and mathematical descriptions are required for

non-equilibrium micro-scale flows, such as those encountered in the complex conduits

of micro-electromechanical systems (MEMS) and flows associated with chemical-vapour

deposition (CVD) processes commonly encountered in the manufacturing of semicon-

ductor devices [1, 2]. In many instances, Knudsen numbers, Kn, between 0.01 and 10

are possible for these flows, even at or above atmospheric pressure, and thermal non-

equilibrium effects can significantly influence momentum and heat transfer. Neverthe-

less, computationally tractable mathematical descriptions of non-equilibrium or rarefied

gaseous flows still remain somewhat elusive. Particle-simulation techniques, such as

the direct-simulation Monte Carlo (DSMC) method of Bird [3], and techniques based

on the direct discretization of the kinetic equation, such as the approach proposed by

Mieussens [4], have been developed for the prediction of general non-equilibrium gaseous

flows. However, for near-continuum through to transitional-regime flows, the computa-

tional costs incurred by these techniques are considerable. In particular, discrete-velocity

methods become increasingly expensive for flows with a wide range of fluid velocities and

DSMC methods suffer from similar prohibitive computational expense for flows with low

Mach numbers. In these situations, computational expense and storage requirements

have limited their widespread usage [5, 6].

Moment closures offer an approach for handling transition-regime flows (0.01≤Kn≤10)

1



2 Chapter 1. Introduction

and seem particularly well-suited for the treatment of non-equilibrium micro-scale flows

[7, 8, 9, 10]. For high-speed flows, such as those encountered in hypersonic re-entry to

planetary atmospheres, the discontinuous nature (inviscid jumps) provided by moment

closures for the predicted internal structure of shocks may be somewhat undesirable

[9, 11, 12]; however, for subsonic and possibly even transonic micro-scale flows, moment

closures may offer advantages over other approaches. The computational costs associated

with the solution of the partial differential equations (PDEs) governing the time evolu-

tion of the moments representing macroscopic quantities of interest in three-dimensional

physical space is anticipated to be considerably less than those associated with particle-

simulation or direct-discretization solution methods, even for relatively high numbers of

moments. Moreover, when seeking solutions of the closures via numerical methods, the

purely hyperbolic nature of the resulting moment equations makes them particularly ap-

pealing. The hyperbolic moment equations involve only first-order derivatives1 and are

therefore very well suited to solution by the class of very successful Godunov-type finite-

volume schemes which make use of adaptive mesh refinement (AMR) combined with

treatments for embedded and moving boundaries and interfaces [13, 14, 15, 16, 17, 18].

For hyperbolic systems, schemes of this type are robust, insensitive to irregularities in

the computational grids, provide accurate resolution of discontinuities, and permit the

systematic application of physically realistic boundary conditions. When coupled with

AMR, they permit treatment of complex and evolving flow geometries and the resolution

of highly disparate length scales while optimizing the usage of computational resources.

They also have narrow stencils, making them suitable for implementation on massively

parallel computer architectures [14, 15, 16, 17, 18]. Also, the necessity to calculate only

first derivatives means that, for a given stencil or reconstruction, numerical schemes for

the solution of moment equations can achieve one order higher spacial accuracy as com-

pared to the solution of traditional fluid-dynamic equations such as the Navier-Stokes

equations.

Unfortunately, moment closures are not without their limitations. Although the orig-

inal closure hierarchies due to Grad [7, 19, 20] result in moment equations that are

hyperbolic for near-equilibrium flows, these PDEs can suffer from closure breakdown and

loss of hyperbolicity, even for relatively small departures from equilibrium conditions,

even for physically realizable sets of macroscopic moments. Closure breakdown in this

1This is in contrast to other transport equations that have a partially elliptic nature and require the
evaluation of second- or even higher-order derivatives.



1.1. Non-Equilibrium Micro-Scale Flows and Moment Closures 3

case refers specifically to the invalidity of the moment closures for initial value problems

due to the loss of hyperbolicity. The term is also used herein more generally to refer to

the failure or invalidity of closures for reasons ranging from loss of hyperbolicity to non-

integrability or realizability of the distribution function. Moment realizability refers here

to the existence of a positive semi-definite velocity distribution function corresponding

to the set of predicted velocity moments.

More recently, Struchtrup and Torrilhon have proposed regularized variants of the

Grad moment closure hierarchy based on a Chapman-Enskog expansion technique ap-

plied directly to the moment equations [10, 21, 22, 23]. Although the regularized closures

have proved to be quite promising and result in smooth transitions for shocks (a desir-

able feature for high-speed applications, such as re-entry flows), the resulting transport

equations for the moments are of mixed type (i.e., the moment fluxes are functions of

the velocity moments and their derivatives) and formal hyperbolicity of the closures is

lost. As a consequence, the computational advantages of purely hyperbolic treatments

discussed above are also lost and one is faced with dealing with the challenges associated

with the discretization of higher-order derivatives of the solution on irregular meshes,

for which there can be serious trade-offs between accuracy and positivity (related to the

satisfaction of the maximum principal) of the spatial discretization operator [24, 25].

Both accurate and positive discretizations of the Laplacian operator can be difficult to

achieve on computational meshes having large variations in the sizes of adjacent cells as

can typically occur in AMR techniques. Additionally, the regularization process does not

avoid the issues associated with closure breakdown or non-realizability of the predicted

moments.

Alternative moment-closure techniques have been proposed based on the assump-

tion that the approximate form for the distribution function corresponds to that of the

maximum-entropy distribution [8, 9]. The maximum-entropy distribution is defined to

be the distribution that maximizes the physical entropy subject to the constraint that it

be consistent with a given finite set of velocity moments. Finite non-negative values for

the approximate form of the distribution function can be assured through the judicious

selection of closure moments. More importantly, moment closures obtained in this man-

ner have many desirable mathematical properties including hyperbolicity, realizability of

moments, and a definable entropy relation [8, 9]. Based on these ideas, Levermore [8]

has proposed a hierarchy of maximum-entropy closures. The lowest-order members of

this hierarchy are the Maxwellian and Gaussian closures, both of which yield strictly
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hyperbolic moment equations and physically realizable moments. Preliminary numerical

solutions of the Gaussian closure using Godunov-type finite-volume schemes have been

considered by Brown et al. [11, 12] and McDonald and Groth [14, 26]. Numerical solution

of these closures in a Discontinuous-Galerkin context has also been explored recently by

Barth [27]. These early studies clearly illustrate some of the computational advantages

of having a strictly hyperbolic and physically realizable treatment (further evidence will

be provided herein). Unfortunately, high-order members of Levermore hierarchy (those

closures based on super-quadratic velocity weights) do not remain definable for the full

range of physically realizable moments. As shown by Junk [28, 29, 30, 31], the entropy

maximization problem is not guaranteed to have a solution for all physically realizable

velocity moments. This deleterious result is in fact true for any high-order maximum-

entropy closures and is particularly devastating as local equilibrium solutions can be

shown to lie on the boundary in moment space separating the valid region for the clo-

sure, in which the entropy maximization problem can be solved, from the invalid region,

in which a solution to the entropy maximization problem cannot be found [29]. Obviously

this situation is not tenable for practical computations of non-equilibrium gaseous flows

and has prevented the wider application of maximum-entropy-based moment closures.

Recently, Schneider [30, 31] has proposed an approach to dealing with the realiz-

ability of maximum-entropy closures. In this approach, regions of non-realizability are

handled by relaxing the equality constraint on some of the moment values. A maximum-

entropy distribution function can then be found for a subset of the moments of interest.

When Schneider’s technique is followed, it can be shown that global hyperbolicity and

realizability are recovered. Hauck et al. [31] have subsequently carried out a thorough

mathematical analysis of this alternate approach to modifying maximum-entropy clo-

sures. It must be noted that although this technique deals with all regions where the

maximum-entropy distribution function is mathematically not realizable, there remain

regions arbitrarily close to equilibrium for which the associated closing fluxes become

arbitrarily large. This means that issues still remain for any solution procedure which

makes use of finite-precision arithmetic as numerical overflow can certainly occur.

Alternately, hyperbolic moment closures that are not based on a maximum-entropy

concept have been recently proposed by Torrilhon [32]. These closures are based on a

Pearson-IV distribution function. Work in this area remains preliminary; it remains to

be seen if the resulting closures are truly globally hyperbolic and the quality of flow

solutions produced by the resulting moment equations requires further study.
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1.2 Wider Applicability of Moment-Closures

Although the focus here is micro-scale flows, moment closures offer the promise of much

wider applicability. Any situation in which gases exist in a rarefied state or local non-

equilibrium effects are present can in theory be handled effectively by moment closures.

Though not considered in this work, it is possible to create moment closures for non-

uniform multi-component mixtures of gases which can interact through particle collisions

or other forces, such as electro-magnetism [20, 33, 34, 35]. Moment closures can there-

fore be used in magneto-electro-hydrodynamic applications such as plasma modelling,

hypersonic flows in which ionization occurs, or space weather prediction.

Furthermore, moment-closure applicability is not limited to exotic flow situations.

In the course of this work a 10-moment maximum-entropy closure that is mathemati-

cally well-behaved and remains globally hyperbolicis is reviewed. This closure can be

used as a hyperbolic alternative to the Navier-Stokes equations when heat-transfer is

not significant. The 10-moment model offers applicability in all regimes when the adia-

batic Navier-Stokes equations are valid as well as an expanded treatment for local non-

equilibrium effects by allowing for anisotropic pressures. Such a hyperbolic model offers

several advantages over the Navier-Stokes equations and the solution of the resulting

equations can be seen as being more natural when using several popular numerical tech-

niques for the solution of conservation laws, such as Godunov-type finite-volume schemes

or discontinuous-Galerkin schemes.

1.3 Objectives of the Current Study

The objective of this research is to assess the capabilities of current moment closures

for the prediction of micro-scale flows and to consider and develop other novel moment

methods so as to expand on this applicability. This work contains the first thorough

exploration of flow predictions obtained using maximum-entropy moment closures for a

wide range of flow situations. The range of applicability of such closures is assessed and

some of their mathematical advantages are demonstrated. With a view of expanding on

current moment methods, new sets of moment equation are developed with the aim of

finding a method which provides a reliable technique for the treatment of non-equilibrium

heat transfer in a moment closure setting. The predictive abilities of each new model is

assessed through numerical solution of classical flow problems.
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1.4 Scope of the Current Study

This study begins with a review of gaskinetic theory and moment closures. Maximum-

entropy moment closures are introduced and some of their mathematical properties are

reviewed. Particular attention is given to the Gaussian 10-moment closure, which is

a lower-order member of a hierarchy of maximum-entropy closures presented by Lever-

more [8]. Though this moment closures has been known for some time, this work contains

the first thorough assessment of its predictive capabilities for a wide class of canonical

flow problems through a range of Knudsen numbers. Its suitability for many micro-scale

applications is clearly demonstrated.

Following this demonstration of moment closures predictive capabilities, it is shown

that such closures also have several mathematical advantages over other methods. It

is shown that the first-order nature of moment equations makes them ideally suited to

solution by upwind-based finite-volume schemes and that their numerical solutions are

far less sensitive to grid irregularities that are typical of complex geometries or AMR

schemes. This is done through their solution using an embedded-boundary method and

comparison to similar solutions of the Navier-Stokes equations for classical problems.

The Gaussian closure is attractive as it offers a hyperbolic treatment of viscous gas

flow, however it is deficient in that it does not offer any treatment for heat-transfer

effects. An extension is therefore shown which adds a treatment for thermal diffusion.

This extension is based on a regularization technique that is similar to the technique

used by Struchtrup and Torrilhon [10, 21, 22, 23] in their regularization of the Grad

closure hierarchy. It is shown that the addition of heat transfer greatly improves flow

predictions for many micro-scale and rarefied flows. Unfortunately the nature of the

regularization procedure leads to the inclusion of elliptic terms, thus eliminating one of

the more attractive features of moment closures.

Finally, an investigation of higher-order members of the maximum-entropy hierarchy

is presented. Although these higher-order moment closures offer a treatment for heat-

transfer, they suffer from several issues, both practical and theoretical. Several novel

solutions to these issues which allow for the use of higher-order maximum-entropy and

near-maximum-entropy closures are investigated. The thesis concludes with a summary

of achievements and a view to future research.



Chapter 2

Elements of Gaskinetic Theory

2.1 Perspective

In classical fluid mechanics, the microscopic structure of fluids is relatively unimportant.

This is due to the fact that the molecular nature of fluids exists on scales which are much

smaller than the dimensions that are traditionally of interest1. This large separation

of scales leads to microscopic fluctuations that “average out” on scales which are much

smaller than lengths of interest in many fluid-dynamic situations (macroscopic scales).

The smallest scale structure of fluids does not need to be known to properly describe such

situations. If the dimensions of molecular processes associated with a fluid becomes larger

in comparison to problem length scales of interest, this averaging of particle behaviour

may not be possible and the microscopic nature of the fluid becomes important for a

description of the flow.

The length scales associated with the molecular effects of a gas can be characterized

by defining the mean free path, λ, of fluid molecules. This is the average distance that

gas molecules travel between inter-particle collisions. It can be used to classify the regime

in which a flow exists through the definition of the flow Knudsen number,

Kn =
λ

`
, (2.1)

which is the ratio of the mean free path to a representative length for the situation,

`. This non-dimensional number can then be used to define several flow regimes which

characterize the importance of molecular collisions in flow behaviour as follows:

1In this work, the term “molecule” will be used to describe multi-atomic molecules as well as free
atoms or ions.

7
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Kn < 0.01 continuum regime,

0.01 ≤ Kn < 10 transition regime,

10 ≤ Kn free-molecular regime.

For very low Knudsen numbers, typically Kn < 0.01, the scales associated with molecular

processes are much smaller than characteristic lengths of the situation and traditional

fluid-mechanic techniques are valid; this is known as the continuum regime. When the

Knudsen number becomes larger, the details of gas-particle dynamics become paramount

in an understanding of the situation. In such free-molecular situations, traditional fluid-

mechanics cannot be used to describe gas behaviour; a treatment of gas-particle behaviour

is required. For transitional flows, traditional equations are invalid and particle based

methods can be prohibitively expensive. This leaves a flow-regime gap for which the

moment methods introduced in chapter 1 seem well suited.

2.2 Velocity Distribution Functions

Gaskinetic theory seeks to use classical mechanics and a statistical representation of gas-

particle velocity distributions to model gas behaviour. This theory assumes that a gas

is comprised of many discrete particles, however, rather than attempting to model the

behaviour of each individual particle, probability density functions, f(xi, vi, t), are used.

These distribution functions exist in a six-dimensional phase space. For example, if a

monatomic gas is in local thermodynamic equilibrium, it will have a velocity distribution

defined by a single temperature and given by

f(xi, vi, t) =

(
β(xi, t)

π

)( 3
2
)

e(−β(xi,t)v
2
i ) . (2.2)

This is known as a Maxwell-Boltzmann distribution, where vi is the particle velocity and

β(xi, t) = m / 2 κ T (xi, t). In this relation κ = 1.38054 × 10−23J/K is Boltzmann’s

constant, m is the particle mass, and T (xi, t) is the local temperature of the fluid. It can

be shown that a gas in any arbitrary situation will be driven towards this distribution

function by inter-particle collisions and, once it reaches this state, particle collisions

will no longer affect the distribution function [19], hence the name “thermodynamic

equilibrium”.

By integrating equation 2.2 as follows:
∫ vx2

vx1

dvx

∫ vy2

vy1

dvy

∫ vz2

vz1

dvzf(xi, vi, t) , (2.3)
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the fraction of particles at a position, xi, and time, t, whose velocities are contained within

the cube in velocity space defined by vx1 ≤ vx ≤ vx2, vy1 ≤ vy ≤ vy2, and vz1 ≤ vz ≤ vz2

can be found. Often distribution functions are multiplied by the number density, n(xi, t),

of particles; such phase-space functions will be denoted by capital calligraphic letters,

F(xi, vi, t) = n(xi, t)f(xi, vi, t) . (2.4)

By doing this, integrals such as the one above reveal the actual number of particles

whose velocities lie within a specified region of velocity space at a given point, xi, and

time, t.

In the general, non-equilibrium case, gases can deviate significantly from the Maxwell-

Boltzmann distribution given above. For the remainder of this work, if a distribution

function, F , is the equilibrium Maxwell-Boltzmann distribution, it will be denoted by

the symbol M.

2.3 Moments of Distribution Functions

In order to determine the macroscopic properties of a gas defined by a particular distribu-

tion function, velocity moments must be taken. This involves multiplying the distribution

function by an appropriate velocity-dependent weight, M(vi), and integrating over all ve-

locity space. For example, the mass density, ρ, can be determined by taking the molecular

mass, m, of the gas as the weighting function as follows:

ρ =

∫∫∫

∞
mF(xi, vi, t) d3vi = 〈mF〉 . (2.5)

Here the compact notation 〈M(vi)F〉 is used to denote integration over all velocity space.

If the velocity over which the integrations should be taken is not obvious, it will be

denoted with a subscript, 〈M(vi)F〉vi
, however, in most cases it will be clear.

Similarly, by taking a component of particle momentum as the weight, the average,

or bulk, velocity of the gas in that direction can be found and is given by

ui =
〈mviF〉
〈mF〉 . (2.6)

This is referred to as a first-order velocity moment as the weight is a linear function of

particle velocity.

Once the bulk velocity of the fluid is known, it is possible to separate the particle

velocity, vi into two components: the bulk velocity, ui, and the random velocity, ci, such
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that vi = ui + ci. Moments can also be taken using weights dependent on the random

component of particle velocity, M(ci). For example, the second-order random-velocity

moment can be defined as

Pij = 〈mcicjF〉 , (2.7)

where Pij is the generalized pressure tensor. Due to its inherent symmetry, this tensor

has six distinct components. The fluid or deviatoric stress tensor, τij, is related to the

pressure tensor as follows: τij = δijp − Pij, where p = Pii/3 is the equilibrium isotropic

pressure and τkk = 0 for a monatomic gas.

Following this method, moments of arbitrarily high order can be taken, however

traditional macroscopic properties tend to be equated to relatively low-order moments

(third-order or less). As the order of a moment becomes higher, its physical significance

becomes less and less obvious.

2.4 The Boltzmann Equation

The time evolution of the velocity distribution function of a gas is described by the

Boltzmann equation [10, 19] given by

∂F
∂t

+ vi
∂F
∂xi

+ ai
∂F
∂vi

=
δF
δt

. (2.8)

Here ai is the particle acceleration due to external forces such as gravity and is taken

to be zero in the present work. The term on the right hand side of the equation, δF
δt

,

is the collision term. This term represents the effects of intermolecular collisions on the

distribution function.

Following the assumptions that only binary collisions of identical particles occur,

that such collisions take place on a scale much smaller than the mean free path, that the

distribution function can be assumed to be constant over this range, that a single collision

does not appreciably change the distribution function, and that particle velocities are

independent (this is often referred to as the assumption of molecular chaos); the collision

integral can be shown to have the form

δF
δt

=

〈∫ 2π

0

∫ π

0

(F ′F1′ −FF1)gσ sin χ dχ dε

〉

v′i

. (2.9)

Here F and F1 are the local distribution function written in terms of two particles with

velocities vi and v1
i that are undergoing a collision and F ′ and F1′ are written in terms
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of their velocities after the collision (v′i and v1′
i ). The particles’ relative speed prior to the

collision is denoted as g = |vi − v1
i |, σ is the differential collision cross section, χ is the

deflection angle, and ε is a solid angle integrated around a particle undergoing collisions.

Details regarding the derivation of this integral expression are available in any standard

kinetic-theory textbook [10, 19].

2.4.1 Simplified Collision Operators

Even for simple cases, the collision operator can be prohibitively complicated to evaluate

for practical engineering applications. Simplified collision models are therefore often

adopted. One common approximation is the BGK [36] or relaxation-time model, given

by
δF
δt

= −F(xi, vi, t)

τF(xi, t)
+
M(xi, vi, t)

τM(xi, t)
. (2.10)

In this model, particles in non-equilibrium are removed and particles in equilibrium

are added exponentially with characteristic times τF and τM, respectively. For most

situations, these times are taken to be equal, τF = τ0 = τ . Making this assumption

causes equation 2.10 to reduce to

δF
δt

= −F(xi, vi, t)−M(xi, vi, t)

τ(xi, t)
. (2.11)

It can easily be seen that when the non-equilibrium distribution, F , becomes everywhere

equal to the equilibrium solution, M, the collision operator will vanish as required.

2.5 The Method of Moments

For most practical applications, the enormous amount of information obtained from the

solution of the Boltzmann equation is unnecessary. Numerical schemes which solve the

Boltzmann equation require a discretization of the physical spacial domain of the problem

as well as a discretization of the infinite domain of velocity space (or at least a region

that is large enough to capture all velocities of significance throughout the flow) with

sufficient resolution to accurately represent the velocity distribution function of the gas

particles for the entire flow domain. The computational expense of such a scheme can

be prohibitive.

For many purposes, it is sufficient to obtain solutions for a specified set of macroscopic

properties of a gas, as proposed in the original method of moments due to Grad [7]. It
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is therefore necessary to derive equations which govern the evolution of a given set of

velocity moments.

At this point, it is convenient to define notation to describe moments of interest for

a given situation and their corresponding velocity-dependent weights. A column vector

containing weights that are expressed as a function of the total particle velocity, vi, will

be represented by the symbol V(N), where N is the number of entries in the vector.

Similarly, a column vector containing weights that are expressed as a function of the

random particle velocity, ci, will be represented by the symbol C(N). The resulting

moment vectors will be defined as

U(N) =
〈
mV(N)F〉

, (2.12)

W(N) =
〈
mC(N)F〉

. (2.13)

Here, the moments contained in U(N) will be referred to as the conserved moments, mo-

ments contained in W(N) will be referred to as either the random or primitive moments.

It must also be noted that the first-order moments in W(N) are defined in a special way.

This is because all first-order random-velocity moments of any distribution function are

zero by definition. Therefore, the bulk velocity, as defined in equation 2.6, will be de-

fined as the random moment in W(N) which corresponds to a first-order random-velocity

weights in C(N).

2.5.1 Maxwell’s Equation of Change

In order to determine the time evolution of the macroscopic quantity associated with a

velocity weight, M , as defined earlier, moments of the Boltzmann equation can be taken

and written as

∂

∂t
〈mMF〉+

∂

∂xi

〈mviMF〉+
∂

∂vi

〈maiMF〉 =

〈
mM

δF
δt

〉
. (2.14)

Again, the acceleration field, ai, will be taken to be zero. By introducing the notation:

∆[MF ] =
〈
mM δF

δt

〉
, equation 2.14 can be rewritten as

∂

∂t
〈mMF〉+

∂

∂xi

〈mviMF〉 = ∆[MF ] . (2.15)

This is Maxwell’s equation of change written in conservative form.

If a vector of velocity-dependent weights, V(N), is used in place of an individual

weight. The result will be a coupled set of N moment equations describing the evolution
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of the corresponding conserved moments,

∂

∂t

〈
mV(N)F〉

+
∂

∂xi

〈
mviV

(N)F〉
= ∆[V(N)F ] , (2.16)

or
∂U(N)

∂t
+

∂

∂xi

〈
mviV

(N)F〉
= ∆[V(N)F ] . (2.17)

At this point it is also convenient to introduce the notation F
(N)
i =

〈
mviV

(N)F〉
for the

flux diad corresponding to the conserved moment vector U(N). Equation 2.17 can then

be rewritten compactly as

∂U(N)

∂t
+

∂F
(N)
i

∂xi

= ∆[V(N)F ] . (2.18)

2.5.2 Moments of the Collision Operator

The collision operator applied to the vector of velocity weights, V(N), is given by

∆[V(N)F ] =

〈
mV(N)

〈∫ 2π

0

∫ π

0

(F ′F1′ −FF1)gσ sin χ dχ dε

〉

v′i

〉

vi

=

〈〈∫ 2π

0

∫ π

0

mV(N)(F ′F1′ −FF1)gσ sin χ dχ dε

〉

v′i

〉

vi

. (2.19)

Due to the inherent symmetries of particle collisions with respect to the four velocities

vi, v1
i , v′i, and v1′

i ; this collision integral can also be written as

∆[V(N)F ] =

〈〈∫ 2π

0

∫ π

0

mV(N)1(F ′F1′ −FF1)gσ sin χ dχ dε

〉

v′i

〉

vi

(2.20)

=

〈〈∫ 2π

0

∫ π

0

mV(N)′(FF1 −F ′F1′)gσ sin χ dχ dε

〉

v′i

〉

vi

(2.21)

=

〈〈∫ 2π

0

∫ π

0

mV(N)1′(FF1 −F ′F1′)gσ sin χ dχ dε

〉

v′i

〉

vi

. (2.22)

Averaging equations 2.19–2.22 produces a form for the collision integral that will prove

useful and is given by

∆[V(N)F ] =

m

4

〈〈∫ 2π

0

∫ π

0

(
V(N)+V(N)1−V(N)′−V(N)1′) (F ′F1′−FF1)gσ sin χ dχ dε

〉

v′i

〉

vi

. (2.23)
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2.6 Entropy

A very interesting property predicted by the Boltzmann equation is found by inserting

the velocity-dependent weight

M = − k

m
ln
F
y

(2.24)

into equation 2.18. By defining the variable S =
〈
−k ln F

y
F

〉
, as well as its flux

Ψi =
〈
−kvi ln

F
y
F

〉
, and its production Φ = ∆[−k ln F

y
F ]; the following transport

equation is produced,
∂S

∂t
+

∂Ψi

∂xi

= Φ . (2.25)

In an isolated system, into which the flux of S is zero, the rate of change of S can be

explored. In this case, equation 2.25 becomes

∂S

∂t
= Φ . (2.26)

An examination of Φ, which results from the insertion of equation 2.24 into equation 2.23,

shows that it cannot be negative, as

Φ =
k

4

〈〈∫ 2π

0

∫ π

0

ln
F ′F1′

FF1
(F ′F1′−FF1)gσ sin χ dχ dε

〉

v′i

〉

vi

≥ 0 . (2.27)

The non-negativity of this term can be seen as g and σ are always greater than zero, and

sin χ is non-negative for 0 ≤ χ ≤ π. Also, whenever ln F ′F1′
FF1 is negative, (F ′F1′ − FF1)

will be as well. In fact the variable, S, is an entropy density for the gas2. Boltzmann was

the first to discover this relationship between macroscopic entropy and the distribution

of gas-particle velocities. This mathematical result is known today as Boltzmann’s H-

theorem [37].

2.6.1 Entropy as Likelihood

One of the many triumphs of gaskinetic theory has been the insight that Boltzmann

gave in relating the entropy of a gas to its velocity distribution. In fact, his celebrated

H-theorem not only provides this relation in some abstract mathematical sense; it also

provides a very physical sense of what entropy actually is and why it should increase.

2It should be noted that the entropy defined here is the thermodynamic entropy, which always grows
with time. The mathematical entropy has the opposite sign and reduces with time.
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A deeper insight into the meaning of entropy can be discovered, first by calculating

the total entropy in a volume V [10, 38]:

H =

∫

V

S d3xi =

∫

V

∫

∞
−k ln

F
y
F d3vi d3xi . (2.28)

Remembering the definition of the velocity distribution function, the number of particles

in a particular differential volume at a phase-space location of x̂i and v̂i can be calculated

as

Nx̂i,v̂i
= F(x̂i, v̂i) d3xi d3vi = F(x̂i, v̂i)dV̂ , (2.29)

where dV̂ is the volume of the phase cell. The total entropy in the volume, V , as defined

by equation 2.28, can then be written as a sum over all differential phase volumes as

H = −k
∑

x̂i,v̂i

Nx̂i,v̂i
ln

Nx̂i,v̂i

ydV̂
, (2.30)

where the sum is over all possible values of x̂i and v̂i. By making use of the fact that the

total number of particles, N , can be calculated as N =
∑

x̂i,v̂i
Nx̂i,v̂i

, the expression from

H can be re-written as

H = −k
∑

x̂i,v̂i

Nx̂i,v̂i
ln Nx̂i,v̂i

+ kN ln
(
ydV̂

)
. (2.31)

By twice making use of Sterling’s approximation that ln N ! ≈ N ln N −N (for large N),

the following manipulations can be made:

H = −k
∑

x̂i,v̂i

(ln Nx̂i,v̂i
! + Nx̂i,v̂i

) + kN ln
(
ydV̂

)

= −k ln

(∏

x̂i,v̂i

Nx̂i,v̂i
!

)
− kN + kN ln

(
ydV̂

)

= −k ln

(∏

x̂i,v̂i

Nx̂i,v̂i
!

)
− k(N ln N − ln N !) + kN ln

(
ydV̂

)

= k ln

(
N !∏

x̂i,v̂i
Nx̂i,v̂i

!

)
+ kN ln

(
ydV̂

N

)
. (2.32)

Finally, by choosing the constant y = N

dV̂
, equation 2.32 simplifies to

H = k ln W (2.33)

where W = N !Q
x̂i,v̂i

Nx̂i,v̂i
!

is the number of ways to distribute N particles into the phase

cells such that the cell at x̂i and v̂i contains Nx̂i,v̂i
particles; all such arrangements of
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particles are described by the same velocity distribution function. Entropy can therefore

be understood to represent the number of possible arrangements of gaseous particles in

phase space corresponding to a given distribution function. If all particle arrangements

occur with equal frequency, the velocity distribution functions with the highest entropy

will therefore be the most likely. It therefore seems that if the distribution function of a

gas is needed, but complete information is not known, it is best to chose the distribution

function which has the maximum entropy of all those which satisfy the known properties

of the gas as this is the most likely distribution for the gaseous particles.

2.7 Moment Closure

Returning to the subject of moment methods, it is clear that, in general, the moment

equation shown above (equation 2.18) does not represent a closed system. It can be

seen that the time evolution of the moments, U(N) =
〈
mV(N)

〉
, is dependent on the

divergence of the moment fluxes, F
(N)
i =

〈
mviV

(N)F〉
. The latter includes moments of

one higher order in terms of the velocity, vi. Consequently, the time evolution of every

moment is dependent on a moment of one higher order in vi and, in general, an infinite

number of moment equations is therefore required to fully describe the evolution of any

given macroscopic flow quantity. Solution of this infinite system is entirely equivalent to

solving equation 2.8 and no economy in computation has been achieved.

One technique for obtaining a closed system of moment equations (and reduced com-

putational work) is to restrict the distribution function to some assumed form [7]. This

form should be a function of a finite number of free coefficients or degrees of freedom.

These coefficients can then be determined such that a chosen set of moments of the

distribution function (those contained in the vector U(N)) are satisfied, as shown in

equation 2.12 or 2.13. The number of chosen moments of interest must equal the number

of degrees of freedom in the chosen distribution function. Restricting the distribution

function in this manner will ensure that all moments not contained within U(N) (includ-

ing those in the flux diad, F
(N)
i ) become a function of the moments in the solution vector.

A closed set of moment equations is therefore the result.
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2.7.1 The Grad Closure Hierarchy

Perhaps the most well-known assumed or approximate form for the distribution function

is the Grad-type polynomial series expansion, which has the form [7]

F (N) = M [
1 + α(N)TC(N)

]
, (2.34)

where the expansion is performed about the equilibrium solution or Maxwellian distri-

bution function, M. The column vector, α(N), contains the N closure coefficients which

are related to low-order moments as described above. The N random-velocity moments

of interest satisfy

W(N) =
〈
mC(N)F (N)

〉
. (2.35)

In the original work of Grad [7], both 13- and 20-moment closures were considered with

N = 13 , C(13) = [1, ci, cicj, cic
2/2]T , W(13) = [ρ, ui, Pij, qi]

T , (2.36)

and

N = 20 , C(20) = [1, ci, cicj, cicjck]
T , W(20) = [ρ, ui, Pij, Qijk]

T , (2.37)

respectively, where qi and Qijk are the heat-flux vector and generalized heat-flux tensor.

Extensions to many more moments have since been considered by other researchers [9, 10].

It is generally assumed that the inclusion of more moments in a closure leads to a greater

possibility that the resulting approximate distribution can more closely approximate

general non-equilibrium behaviour.

Although Grad-type expansions result in a closed set of locally hyperbolic transport

equations for a finite set of velocity moments, the assumed distribution function can in

many cases be non-physical. It is possible for equation 2.34 to yield negative probabil-

ities for some values of the particle velocity; this is particularly true in the tails of the

distribution function for large random velocities. More significantly, hyperbolicity of the

resulting moment equations can be lost for physically realizable moment values which are

relatively near equilibrium. As a consequence, the moment equations become ill-posed

for initial-value problems, a property that is obviously highly undesirable and has limited

the use of the polynomial-series-expansion technique.
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Chapter 3

Maximum-Entropy Moment

Closures

Rather than adopting a polynomial, series-expansion technique as originally proposed

by Grad [7], an alternate technique for selecting an assumed form for the distribution

function is to choose the function which maximizes the entropy while satisfying a given

finite set of velocity moments [8, 9]. Following the logic of section 2.6.1, this is akin to

selecting the most likely distribution function subject to the constraint that it yield a

given finite set of moments. It will be shown that such a choice leads to moment closures

which seem to have many very desirable mathematical properties.

3.1 Maximum-Entropy Distribution Function

The first step in the construction of the maximum-entropy moment method is the de-

termination of the distribution function which maximizes the entropy while remaining

consistent with the macroscopic moments in the solution vector. This procedure has

been well studied, and is detailed in many previous studies and references [8, 9, 39].

It is easiest to derive the form of the entropy-maximizing distribution function by

writing its associated velocity weight as

M = − k

m

(
ln
F
z
− 1

)
. (3.1)

This is identical to the function given in equation 2.24 with the relationship between the

constants given as y = ez. The problem of maximizing the entropy while satisfying N

19
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specified moments, U(N), corresponding to velocity weights V(N) is therefore

max
F

〈
−k

(
F ln

F
z
−F

)〉
(3.2)

subject to

U(N) =
〈
V(N)F〉

. (3.3)

This constrained maximization can be solved by using the technique of Lagrange mul-

tipliers. Introducing a vector of Lagrange multipliers, α̂(N), the maximization problem

becomes a search for the critical points of a new function, J , having the form

J =

〈
−k

(
F ln

F
z
−F

)〉
− α̂(N)T

(
U(N) − 〈

V(N)F〉)
. (3.4)

At a critical point, dJ
dF = 0, or

dJ

dF =

〈
−k ln

F
z

〉
− α̂(N)T

〈
V(N)

〉

=
〈
lnF −α(N)TV(N)

〉
= 0 , (3.5)

where here k and z have been absorbed into the Lagrange multipliers. It is clear that

equation 3.5 is satisfied if the distribution function is of the form

F (N) = exp
(
α(N)TV(N)

)
. (3.6)

Also, the convexity of the entropy function ensures that this is the only solution [8, 9, 39]

(i.e., it is unique). It can now also be seen that the closure coefficients are the Lagrange

multipliers from the constrained maximization problem.

The first researcher to apply the idea of entropy maximization to extended fluid

dynamics was Dreyer [40]. It has also been explored extensively in the field of rational

extended thermodynamics [9]. More recently, Levermore provided a hierarchy of moment

closures based on the entropy-maximization principle [8] and showed that the hierarchy

possesses many desirable mathematical properties. Levermore requires that the vector

of velocity weights have three properties. Firstly, it must contain as a subset the weights

which correspond to the Euler equations which govern flows in local equilibrium. That

is to say, V(N) must contain [1, vi, vivi]
T as a subset. Secondly, Levermore requires that

the space of functions contained in V(N) be invariant under translation and rotation;

this ensures that the resulting moment equations will be Galilean invariant. Junk later

demonstrated that this rule restricts the velocity weights to be polynomials [29]. The
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third restriction that Levermore places on the velocity-weight vector is that the result-

ing distribution function, equation 3.6, must remain finite even as vi → ∞. If these

three restrictions are satisfied, the resulting closure will posses a positive-valued distri-

bution function, hyperbolic moment equations, realizability of predicted moments, and

a definable entropy relation.

In three dimensions, the Levermore hierarchy includes 5-, 10-, 14-, 21-, 26-, and 35-

moment closures with

N = 5 , C(5) = m[1, ci, c
2/2]T , W(5) = [ρ, ui, p]T , (3.7)

N = 10 , C(10) = m[1, ci, cicj]
T , W(10) = [ρ, ui, Pij]

T , (3.8)

N = 14 , C(14) = m[1, ci, cicj, cic
2/2, c4/15]T , W(14) = [ρ, ui, Pij, qi, r]

T , (3.9)

N = 21 , C(21) = m[1, ci, cicj, cicjck, c
4/15]T , W(21) = [ρ, ui, Pij, Qijk, r]

T , (3.10)

N = 26 , C(26) = m[1, ci, cicj, cicjck, cicjc
2]T , W(26) = [ρ, ui, Pij, Qijk, rij]

T , (3.11)

N = 35 , C(35) = m[1, ci, cicj, cicjck, cicjckcl]
T , W(35) = [ρ, ui, Pij, Qijk, Rijkl]

T ,

(3.12)

where Rijkl = m < cicjckclF > is the generalized fourth-order velocity moment tensor,

rij =Rijkk, and r=Riikk/15. Unlike the series expansions of Grad, which can be viewed as

perturbative expansions about the Maxwellian, the exponential form for the distribution

function of maximum-entropy moment closures is non-perturbative and strictly positive

valued while remaining finite even as vi → ∞ through the appropriate selection of the

vector of velocity weights, V(N) or C(N).

Provided that the maximum-entropy distribution of equation 3.6 is definable, Lev-

ermore [8] has demonstrated the hyperbolicity of the resulting moment equations. By

defining the density and flux potentials, h(α(N)) and fi(α
(N)), given by

h(α(N)) =
〈
eα

(N)TV(N)
〉

, fi(α
(N)) =

〈
vie

α(N)TV(N)
〉

, (3.13)
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the closure moments and moment fluxes can be expressed simply as

h,α(N) =
∂h

∂α(N)
=<V(N)eα

(N)TV(N)

> , fi,α(N) =
∂fi

∂α(N)
=<viV

(N)eα
(N)TV(N)

> (3.14)

and the moment equations of equation 2.18 can then be written as

∂

∂t

(
h,α(N)

)
+∇i · fi,α(N) =<V(N) δF

δt
>= R(α(N)) , (3.15)

where R(α(N)) =<V(N)δF/δt> is the source term associated with collisional processes.

The terms h,α(N) and fi,α(N) can be differentiated again to give

h,α(N)α(N) = <V(N)
[
V(N)

]T
eα

(N)TV(N)

> , (3.16)

and

fi,α(N)α(N) = <vi V(N)
[
V(N)

]T
eα

(N)TV(N)

> . (3.17)

The moment equations above can then be re-expressed as

h,α(N)α(N)

∂α(N)

∂t
+ fi,α(N)α(N) · ∇iα

(N) = R(α(N)) . (3.18)

Equation 3.18 describes the time evolution and transport of the closure coefficients, α(N),

for the maximum-entropy distribution. Hyperbolicity of this system is assured by the

symmetry of fi,α(N)α(N) and symmetric positive definiteness of h,α(N)α(N) . Note that for

any weighting coefficients, w,

wTh,α(N)α(N)w =
〈
wTV(N)

[
V(N)

]T
w eα

(N)TV(N)
〉

≥ 0 (3.19)

and hence h,α(N)α(N) is both symmetric and positive definite. The transport equations

of equation 3.18 are in the form of a Godunov symmetric hyperbolic system [41] and this

form can be shown to be equivalent to the classical Friedrichs-Lax form for hyperbolic

systems [8, 42].

As first noted by Godunov [41], symmetric hyperbolic systems of the form given in

equation 3.18 can be shown to satisfy an additional scalar entropy balance or dissipation

law. Multiplication of equation 3.18 by α(N)T and subsequent manipulation leads to

∂

∂t

(
α(N)Th,α(N) − h

)
+∇i ·

(
α(N)Tfi,α(N) − fi

)
= α(N)TR(α(N)) . (3.20)

Defining the entropy function, s(U(N)), to be Legendre transform of the density potential,

h(α(N)), given by

s(U(N)) + h(α(N)) = α(N)TU(N) = α(N)Th,α(N) , (3.21)
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and the entropy flux to be Legendre transform of flux potential, fi(α
(N)), such that

ji(U
(N)) + fi(α

(N)) = α(N)Tfi,α(N) , (3.22)

then a dissipative entropy balance equation for s(U(N)) can be obtained from equa-

tion 3.20 and written as

∂s

∂t
+∇i · ji = α(N)TR(α(N)) = sT

,UR(s,U) , (3.23)

where s,U = ∂s/∂U = α(N). In fact, making use to the form of the distribution function

given in equation 3.6, equation 3.21 can be rewritten as

s(U(N)) = α(N)TU(N) − h(α(N))

=
〈
mα(N)TV(N)F〉− 〈mF〉

= 〈mF lnF〉 − 〈mF〉 . (3.24)

The relationship between this entropy and the entropy that is obtained by taking the

velocity moment of the distribution function with the weight given in equation 3.1 obvi-

ously differ only by the constant −k/m and a possible offset due to the parameter z in

equation 3.1.

3.2 Determination of Closure Coefficients

The proof of hyperbolicity and the definition of a dissipative entropy given above are

rather elegant and establish a great deal of promise for maximum-entropy moment clo-

sures. Nevertheless, the results are predicated on the existence of a maximum-entropy

distribution of the form given in equation 3.6, for all physically realizable moments. The

distribution function of equation 3.6 is the form that maximizes the physical entropy of

the system for a given finite set of N moments, U(N). This maximization process is equiv-

alent to the minimization of the closure entropy, s(U(N)), defined in equation 3.21 above

and often termed the mathematical entropy. Although the maximum-entropy closures

could be equally referred to as “minimum-entropy” closures, as they formally correspond

to the distribution function having the minimum mathematical entropy for a given set

of moments, the more commonly used term “maximum-entropy” is applied herein in

reference to the closures’ maximization of physical entropy.
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Given the values of the moments, U(N), the entropy, s(U(N)), and closure coefficients,

α(N), can be determined via the solution of the minimization problem given by

s(U(N)) = − min
α(N)

[
h(α(N))−α(N)TU(N)

]
. (3.25)

When h(α(N)) is differentiable, the solution of this minimization problem satisfies

∂

∂α(N)

[
h(α(N))−αNTU(N)

]
= 0 (3.26)

yielding

U(N) = h,α(N) = <V(N)eα
(N)TV(N)

> . (3.27)

The minimization problem above can be used to define a numerical approach for re-

lating α(N) and U(N) in situations for which explicit analytical expressions relating the

coefficients to the predicted moments are not available.

The N =5 and N =10 lower-order closures of the Levermore hierarchy correspond to

the Maxwellian and Gaussian closures. In these cases, closed-form analytical expressions

relating the closure coefficients, α(N), to the predicted moments, U(N), can be found and

maximum-entropy distributions can be defined for the full range of physically realizable

moments. Strict hyperbolicity of the moment equations is also assured for all realizable

moments. For the Maxwellian model, the approximate distribution function is equal

to the equilibrium of Maxwellian distribution function, M, defined in equation 2.2 of

chapter 2 above (i.e., F (5) = M) and, for the Gaussian model, the distribution function

takes the form

F (10) = G =
ρ

m(2π)3/2(det Θij)1/2
e(−

1
2
Θ−1

ij cicj) , (3.28)

where Θij = Pij/ρ is an anisotropic “temperature” tensor. This non-equilibrium distribu-

tion possesses a Gaussian-like distribution in each of the principal strain axes. Physically,

it corresponds to a non-equilibrium condition with a different temperature in each direc-

tion.

One potential stumbling block to practical application arises for all closures in the

Levermore hierarchy beyond the Maxwellian and Gaussian systems: a numerical ap-

proach is required to relate moments and coefficients of the closure as explicit analytical

expressions are not achievable. This can significantly increase the computational costs

of carrying out a computation using the high-order maximum-entropy moment closures.

However, a much more severe problem also appears for all closures beyond the Maxwellian

and Gaussian systems. As stated above, all of the desirable mathematical properties of
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the maximum-entropy closures assume that a maximum-entropy distribution function for

the selected set of velocity moments always exists; this is not the case. Junk has shown

that for any moment system based on moments which correspond to super-quadratic

polynomial weight functions there are physically realizable combinations of the macro-

scopic moments for which a maximum-entropy distribution function is not valid and

cannot be found [28, 29, 30, 31]. Moreover, moment states describing local thermody-

namic equilibrium always lie on the boundaries separating regions in moment space in

which a maximum-entropy distribution function exists and is definable and those regions

for which the maximum-entropy distribution cannot be found [29]. The latter correspond

to regions in which h(α(N)) is no longer differentiable and therefore the solution of the

entropy minimization problem given by equation 3.26 does not exist. For this reason,

there are near-equilibrium regions in moment space for which the higher-order members

of the Levermore maximum-entropy closures will become ill-posed or undefined. This

is not a desirable feature for practical computations of non-equilibrium flows and it has

prevented the wider application of the maximum-entropy closures from the Levermore

hierarchy.
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Chapter 4

The Gaussian Moment Closure

In spite of the evident limitations of the higher-order members of Levermore’s maximum-

entropy hierarchy discussed in chapter 3, the lowest-order non-equilibrium solution, the

Gaussian closure, is a physically realizable and hyperbolic moment closure. The Gaus-

sian distribution appears to have been first derived in early work by Maxwell [43] and

then re-discovered in subsequent but independent research by both Schlüter [44, 45] and

Holway [46, 47, 48, 49]. The potential of this type of closure for efficiently and accurately

predicting both continuum and non-equilibrium flows is now demonstrated by consider-

ing the application of the Gaussian closure to a number of canonical flow problems. In

what follows, an extension of the Gaussian closure for diatomic gases is first described

and then numerical results are given for a number of example problems including shock

structure, Couette flow, flat-plate boundary layer flow, flow past a circular cylinder, and

flow past a NACA0012 micro airfoil.

4.1 Gaussian Closure for Monatomic Gases

The moment equations corresponding to the Gaussian closure can be obtained by using

the weights V (10) = {1, vi, vivj} in the entropy maximization process described above.

When the resulting distribution function, denoted by G and given in equation 3.28, is

used in Maxwell’s equation of change, equation 2.18, the result is a set of ten partial-

differential equations describing the transport of the macroscopic quantities ρ, ui, and

Pij which may be expressed as

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0 , (4.1)

27
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∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + Pik) = 0 , (4.2)

∂

∂t
(Pij + ρuiuj) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij) = ∆[vivjF ] (4.3)

Note that by construction the third-order random-velocity moments of the Gaussian are

zero, < mcicjckG >= 0, such that the heat flux vector, qi = 1
2

< mcicjcjG > also van-

ishes. This points to a significant limitation of the Gaussian closure: its inability to

account for the effects of thermal diffusion (i.e., the transport of translational particle

energy by the random particle motion). Note also that when the solution reaches equi-

librium and G = M, the Gaussian moment equations reduce to the Euler equations of

equilibrium gas dynamics. Solution of equations 4.1–4.3, subject to appropriate initial

and boundary data, provides a complete description of the Gaussian velocity distribution

function throughout the flow field of interest.

4.2 An Extension for Diatomic Gases

The above set of moment equations, equations 4.1–4.3, was derived for a monatomic gas

with three translational degrees of freedom and no internal (rotational or vibrational)

degrees of freedom. This closure is therefore not immediately applicable to diatomic

gases. A modification must be made to account for energy that can be present in the

extra internal degrees of freedom for a diatomic gas. This can be done following the

extension developed previously in an earlier study by Hittinger [50].

Under normal pressures and temperatures, vibrational degrees of freedom are usually

not excited. It is therefore sufficient to simply model the translational and rotational

degrees of freedom present in diatomic molecules. The energy associated with the trans-

lation of the center of mass of a diatomic molecule will be equal to that of a monatomic

molecule of equal weight. Therefore, the only addition required to the 10-moment model

is a treatment for the energy present in the rotation of the molecules. To do this, a

“dumbbell” model of a diatomic molecule will be adopted. This model molecule is free

to rotate about three different axes. Rotation about the axis that is co-axial to the line

that connects the two atoms is assumed to contain no energy, as the moment of inertia

about this axis is negligible.
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Rotational energy can be present in the form of rotation about the remaining two

axes. This energy will be prescribed using

εrotation =
1

2
Iζω

2
ζ +

1

2
Iηω

2
η , (4.4)

where ζ and η are the two axes about which rotational energy may be present. The

parameters Iζ and Iη are the particle’s moment of inertia about these two axes.

The distance of each atom from the molecule’s center of mass is given by

d1 =
m2

m1 + m2

d and d2 =
m1

m1 + m2

d , (4.5)

where m1 and m2 are the masses of the two atoms and d is the total distance between

them. Using these distances, the moments of inertia about each axis can be calculated

as

I = Iζ = Iη = m1d
2
1 + m2d

2
2 =

m1m2

m1 + m2

d2 = m∗d2 , (4.6)

where m∗ = m1m2

m1+m2
. Therefore,

εrotation =
1

2
m∗d2(ω2

ζ + ω2
η) . (4.7)

By assuming that rotational velocities are statistically independent of each other and of

the translational velocities, a modified Gaussian distribution for diatomic gases can be

written as

GD(xi, vi, ωi, t) = G(xi, vi, t)g(xi, ωi, t) = G(xi, vi, t)gζ(xi, ωζ , t)gη(xi, ωη, t) . (4.8)

However, due to the symmetry of the diatomic molecule, the angular velocity distribution

may be expressed solely as a function of xi, t and ω, where ω2 = ω2
ζ + ω2

η.

Through a similar derivation of the equilibrium Maxwellian [50], the distribution

function for angular velocities can be shown to have the form

g(xi, ω, t) = gζ(xi, ωζ , t)gη(xi, ωη, t) =
B(xi, t)

π
e(−B(xi,t)ω

2) . (4.9)

Making an analogy to the translational degrees of freedom, a rotational temperature can

be defined and written as

Trot(xi, t) =
I

2κB(xi, t)
. (4.10)

It follows that

g(ω) =

(
I

2πκTrot

)
e
( −I
2κTrot

ω2)
=

(
I

2πκTrot

)
e(−R

2
ω2) , (4.11)
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where, using p = nkT , a new variable R has been defined:

R =
I

κTrot

=
nI

p

(
T

Trot

)
. (4.12)

The total velocity distribution for the diatomic gas is therefore given by

GD(xi, vi, ω, t) =
n2I

(2π)5/2(det Θ)1/2p

(
T

Trot

)
e(− 1

2
Θ−1

ij cicj)e(− 1
2
Rω2) . (4.13)

This distribution function is now defined in seven-dimensional space consisting of three

position coordinates, three translational velocity components, and an angular velocity

dimension. Though the rotational and translational temperatures need not be equal in

general, they will become equal only when the gas is in thermodynamic equilibrium. In

equilibrium, the particle velocity distribution function for a diatomic gas becomes

MD(x,v, ω, t) =
nI

m(2πp/ρ)5/2
e(− 1

2
ρ
p
[v2+ I

m
ω2]) . (4.14)

By substituting equation 4.13 into equation 2.18, the following system may be ob-

tained:
∂ρ

∂t
+

∂

∂xk

(ρuk) = 0 , (4.15)

∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + Pik) = 0 , (4.16)

∂

∂t
(Pij + ρuiuj) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij) = ∆[vivjF ] , (4.17)

∂Erot

∂t
+

∂

∂xk

(ukErot) = ∆

[
Iω2

2

]
. (4.18)

If it is to be used, the BGK relaxation model, equation 2.11, must now be modified to

account for the added degrees of freedom. The relaxation process towards the equilibrium

solution, MD, is now represented by a “two-step” process as follows:

δF
δt

= −GD(xi, vi, ω, t)−FD(xi, vi, ω, t)

τt(xi, t)
− FD(xi, vi, ω, t)−MD(xi, vi, ω, t)

τr(xi, t)
. (4.19)

In this relaxation-time approximation, the non-equilibrium distribution, GD, relaxes to-

ward the distribution, FD, for which the translational degrees of freedom are in equi-

librium with each other, but not in equilibrium with the rotational degrees of freedom.
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This relaxation will happen on a time scale, τt. The gas will then relax from there to an

equilibrium distribution, MD, on a different time scale, τr. Approximate expressions are

used here to relate the relaxation times to the gas viscosities. They have the following

forms [50]:

τt =
µ

p
, τr =

15µB

4p
, (4.20)

where µ is the fluid viscosity, µB is the bulk viscosity and p is the thermodynamic

pressure; empirical relations can be used to determine the related viscosities. Generally,

τr is larger, but of the same order of magnitude as τt.

Using this collision operator, the moment system can be rewritten as

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0 , (4.21)

∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + Pik) = 0 , (4.22)

∂

∂t
(Pij + ρuiuj) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij)

= −Pij − 1
3
Pkkδij

τt

− (1
3
Pkk − p)δij

τr

, (4.23)

∂

∂t
(Erot) +

∂

∂xk

(ukErot) = −(Erot − p)

τr

. (4.24)

In this system, p is the equilibrium pressure. It is related to the generalized pressure

tensor by Pij = pδij − τij and 1
3
Pkk = p − 1

3
τkk where now τkk 6= 0 for a diatomic gas.

Note that it is possible to relate the extra relaxation terms now present in the system by

first writing the following conservation equation for the total energy in the system

∂

∂t

(
1

2
ρu2 +

1

2
Pjj + Erot

)
+

∂

∂xk

(
uk

[
1

2
ρu2 +

1

2
Pjj + Erot

]
+ ujPjk

)

= −Pkk − 3p

2τr

− Erot − p

τr

. (4.25)

As for monatomic gases, the total energy must be conserved, therefore, the relaxation

terms must balance. By using the relation Pkk = 3p− τkk, it is a simple matter to show

that τkk = 2(Erot− p). Using this result it is possible to replace the equilibrium pressure

in the system in favour of Pij and Erot. This results in the final form of the governing

equations for a diatomic gas given by

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0 , (4.26)
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∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + Pik) = 0 , (4.27)

∂

∂t
(Pij + ρuiuj) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij)

= −3Pij − Pkkδij

3τt

− 2(Pkk − 3Erot)

15τr

δij , (4.28)

∂

∂t
(Erot) +

∂

∂xk

(ukErot) = −3Erot − Pkk

5τr

. (4.29)

In equilibrium, this system of eleven transport equations properly reduces to the Euler

equations with one additional equation for the convection of the rotational energy.

4.3 Eigenstructure for Two-Dimensional Flows

For two space dimensions, equations 4.26-4.29 can be rewritten in conservation form as

∂U

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= S , (4.30)

where again U is the vector of conserved variables which can be expressed as

U =




ρ

ρux

ρuy

ρu2
x + Pxx

ρuxuy + Pxy

ρu2
y + Pyy

Pzz

Erot




, (4.31)

while Fx and Fy are x- and y-direction fluxes given by

Fx =




ρux

ρu2
x + Pxx

ρuxuy + Pxy

ρu3
x + 3uxPxx

ρu2
xuy + 2uxPxy + uyPxx

ρuxu
2
y + uxPyy + 2uyPxy

uxPzz

uxErot




, Fy =




ρuy

ρuxuy + Pxy

ρu2
y + Pyy

ρu2
xuy + 2uxPxy + uyPxx

ρuxu
2
y + uxPyy + 2uyPxy

ρu3
y + 3uyPyy

uyPzz

uyErot




. (4.32)
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The source vector S of equation 4.30 has the form:

S =




0

0

0

− 1
3τt

(2Pxx − Pyy − Pzz)− 2
15τr

(Pxx + Pyy + Pzz − 3Erot)

− 1
τt

Pxy

− 1
3τt

(2Pyy − Pxx − Pzz)− 2
15τr

(Pxx + Pyy + Pzz − 3Erot)

− 1
3τt

(2Pzz − Pxx − Pyy)− 2
15τr

(Pxx + Pyy + Pzz − 3Erot)

− 1
5τr

(3Erot − Pxx − Pyy − Pzz)




.

By making use of the Jacobians Ac = ∂Fx

∂U
and Bc = ∂Fy

∂U
, equation 4.30 can also be

rewritten as
∂U

∂t
+ Ac

∂U

∂x
+ Bc

∂U

∂y
= S . (4.33)

These moment equations can also be written in primitive form [50] with the random

velocity moments, W, as the solution vector. The system then has the form

∂W

∂t
+ Ap

∂W

∂x
+ Bp

∂W

∂y
= S , (4.34)

with coefficient matrices

Ap =




ux ρ 0 0 0 0 0 0

0 ux 0 1
ρ

0 0 0 0

0 0 ux 0 1
ρ

0 0 0

0 3Pxx 0 ux 0 0 0 0

0 2Pxy Pxx 0 ux 0 0 0

0 Pyy 2Pxy 0 0 ux 0 0

0 Pzz 0 0 0 0 ux 0

0 Erot 0 0 0 0 0 ux




(4.35)

and

Bp =




uy 0 ρ 0 0 0 0 0

0 uy 0 0 1
ρ

0 0 0

0 0 uy 0 0 1
ρ

0 0

0 2Pxy Pxx uy 0 0 0 0

0 Pyy 2Pxy 0 uy 0 0 0

0 0 3Pyy 0 0 uy 0 0

0 0 Pzz 0 0 0 uy 0

0 0 Erot 0 0 0 0 uy




. (4.36)
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Many numerical techniques for the solution of hyperbolic systems of equations are

based on the solution or approximate solution of many one-dimensional Riemann prob-

lems to determine the flux of conserved quantities between computational cells or el-

ements [13, 51, 52, 53]. In order to make use of these approximate flux functions in

the numerical solution of equations 4.26–4.29, the eigenstructure of the system must be

known. In particular, to make use of the HLLE flux function [51, 52], the eigenvalues

of the flux Jacobian, Ac = ∂F
∂U

, must be known. Additionally, the right eigenvectors of

the flux Jacobian, Ac, and the left eigenvectors of the coefficient matrix, Ap, from the

primitive form of the system of the moment equations are needed in order to use Roe’s

approximate Riemann solver [53]. It is sufficient to determine the eigenstructure of the

matrices associated with the x-direction, Ac and Ap, as it is typical to make a rotation

of the frame of reference each time a numerical flux is needed, such that the local normal

to a cell or element is aligned with the x direction.

Defining ρc2
xx = Pxx, the eight eigenvalues of Ac and Ap are

λ1−8 =
(

ux −
√

3cxx, ux − cxx, ux, ux, ux, ux, ux + cxx, ux +
√

3cxx

)
.

These represent the wave speeds of the fundamental solution modes for the model. The

corresponding right eigenvectors for the conserved variables are

rc1 =




1

ux −
√

3cxx

uy −
√

3Pxy

cxxρ

3c2
xx − 2

√
3uxcxx + ux

2

uxρuycxx−ux

√
3Pxy−

√
3c2xxρuy+3cxxPxy

cxxρ
ρ2u2

yc2xx−2
√

3Pxycxxρuy+ρc2xxPyy+2P 2
xy

ρ2c2xx

Pzz

ρ

Erot

ρ




, rc2 =




0

0

1

0

ux − cxx

2
(
uy − Pxy

cxxρ

)

0

0




,
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rc3 =




1

ux

uy

u2
x

uxuy

u2
y

0

0




, rc4 =




0

0

0

0

0

1

0

0




, rc5 =




0

0

0

0

0

0

1

0




, rc6 =




0

0

0

0

0

0

0

1




,

rc7 =




0

0

1

0

ux + cxx

2
(
uy + Pxy

cxxρ

)

0

0




, rc8 =




1

ux +
√

3cxx

uy +
√

3Pxy

cxxρ

3c2
xx + 2

√
3uxcxx + ux

2

uxρuycxx+ux

√
3Pxy+

√
3c2xxρuy+3cxxPxy

cxxρ
ρ2u2

yc2xx+2
√

3Pxycxxρuy+ρc2xxPyy+2P 2
xy

ρ2c2xx

Pzz

ρ

Erot

ρ




.

By constructing a matrix Rc containing the eight right eigenvectors for conserved vari-

ables as columns, a matrix Rp containing the right eigenvectors for primitive variables

can be found by the relation Rp =
(

∂U
∂W

)−1
Rc. By inverting Rp it is then possible to

determine a matrix of left eigenvectors for primitive variables, Lp = R−1
p . These left

eigenvectors are

lp1 =

[
0,−ρ

√
3

6cxx

, 0,
1

6c2
xx

, 0, 0, 0, 0

]
,

lp2 =

[
0,− Pxy

2c2
xx

,
ρ

2
,

Pyx

2ρc3
xx

,− 1

2cxx

, 0, 0, 0

]
,

lp3 =

[
1, 0, 0,− 1

3c2
xx

, 0, 0, 0, 0

]
,

lp4 =

[
0, 0, 0,−ρc2

xxPyy − 4P 2
xy

3ρ2c4
xx

,−2Pxy

c2
xxρ

, 1, 0, 0

]
,

lp5 =

[
0, 0, 0,− Pzz

3c2
xxρ

, 0, 0, 1, 0

]
,

lp6 =

[
0, 0, 0,− Erot

3c2
xxρ

, 0, 0, 0, 1

]
,
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lp7 =

[
0,− Pxy

2c2
xx

,
ρ

2
,− Pyx

2ρc3
xx

,
1

2cxx

, 0, 0, 0

]
,

lp8 =

[
0,

ρ
√

3

6cxx

, 0,
1

6c2
xx

, 0, 0, 0, 0

]
.

The eigenstructure of Bc and Bp can be explored in the same manner and is very similar.

A detailed analysis of the nature of the waves associated with the 10-moment model

has been done by Brown et al. [11, 12] as well as by Hittinger [50]. These authors show

that the fundamental wave modes associated with λ1 and λ8 are acoustic waves and are

truly non-linear and the waves associated with λ2 and λ7 are shear waves. Finally, the

waves associated with λ3–λ6 contain an entropy wave, two transverse pressure waves and

a rotational energy wave.

4.3.1 Roe-Average State

For the linearized approximate Riemann solver of Roe, an appropriate average solution

state is required satisfying Roe’s property U [53]. A suitable Roe-average state can be de-

termined using the assumed-form or corrected-average approach described by Brown [12]

and Brown et al. [11]. Letting Wij =
Pij

ρ
, values of the primitive variables defining the

Roe-average solution state for the Gaussian closure can be shown to be:

ρ̂ =
√

ρLρR , ûi =

√
ρRuiR +

√
ρLuiL√

ρR +
√

ρL

, (4.37)

Ŵij =

√
ρRWijR +

√
ρLWijL√

ρR +
√

ρL

+
1

3

√
ρLρR

(
√

ρR +
√

ρL)2
∆ui∆uj , (4.38)

Êrot =

√
ρRErotR +

√
ρLErotL√

ρR +
√

ρL

. (4.39)

4.4 Solid-Wall Boundary Conditions

Appropriate solid-wall boundary conditions for the Gaussian closure are not immediately

obvious. One technique for determining the solution at a wall is to assume that there

exists a Knudsen layer next to the solid surface [7] as illustrated in figure 4.1. In this

infinitesimally thin layer, the fluid exists as a combination of the distribution function

defining incoming particles from the interior flow field and a distribution function defin-

ing reflected particles arising from the wall. For example, for a solid wall extending in
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Knudsen
Layer

Figure 4.1: Knudsen layer at solid-wall.

the x direction with a fluid above it, all the particles with negative y-direction velocities

in the Knudsen layer will come from the neighbouring fluid with statistical properties

defined by the Gaussian. In order to model the particle interaction with the wall, an

accommodation coefficient, 0 ≤ α ≤ 1, is then defined. If α is zero (specular reflection),

the incoming particles will simply be reflected specularly from the wall back into the

Knudsen layer. For α = 1 (diffuse reflection), incoming particles are fully accommodated

and will therefore come into thermodynamic equilibrium with the wall before being re-

leased from the wall and will re-enter the Knudsen layer with the statistical properties

of a Maxwell-Boltzmann distribution defined by a wall temperature, Tw. For any inter-

mediate α value, the reflected particles will enter the Knudsen layer as a combination of

the two cases. Note that experimental observations suggest that most materials exhibit

accommodation coefficients near unity [19]. The resulting distribution function for the

Knudsen layer is then given by

FKn = F+ + F− , (4.40)

where F+ and F− are given by

F− =

{
Gb(vx, vy, vz) for vy < 0 ,

0 for vy > 0 ,

F+ =

{
αMw(vx, vy, vz) + (1− α)Gb(vx,−vy, vz) for vy > 0 ,

0 for vy < 0 ,

and where Gb is Gaussian distribution at the edge of the Knudsen layer and Mw is the

Maxwellian defining particles which are fully accommodated by the wall. By assuming

that the bulk y-direction velocity of the fluid immediately above the wall is zero and by

imposing the constraint that the net particle flux through the wall must be zero, it is

possible to show that the reflected Maxwellian has the form

Mw(vx, vy, vz) =

√
nPyy

kTw

(
m

2πkTw

) 3
2

e−( m
2kTw

)((vx−uwx)2+v2
y+v2

z) , (4.41)
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where all the properties are those of the fluid outside the Knudsen layer with the exception

of Tw, which is the temperature of the wall and uwx, which is the x-direction velocity of

the wall. A quick inspection of the first term in this distribution function finds that it

relates the number density of the reflected Maxwellian to that of the incoming Gaussian

distribution such that

nMaxwellian

nGaussian

=

√
mPyy

ρkTw

. (4.42)

If it is assumed that the wall temperature is equal to the temperature of the gas normal

to the boundary, this ratio will be one, and equation 4.41 simplifies to become

Mw(vx, vy, vz) = n
( m

2πkT

) 3
2
e−( m

2kT )((vx−uwx)2+v2
y+v2

z) , (4.43)

where T is now the temperature of the fluid normal to the wall.

Requiring the component of the bulk velocity of the fluid normal to solid walls to

be zero is a very natural boundary condition for the Gaussian closure and provides one

value for the required boundary data. The eigenvalues of the system, however, suggest

that two boundary data are required to ensure that the problem is well-posed. Realizing

that in the equilibrium limit, with no accommodation at the wall, the wall shear stress

must be zero in order to recover the Euler equations, it seems that a boundary condition

for Pxy would be most appropriate. In order to find this condition, the appropriate

velocity moment of FKn must be evaluated. The bulk velocity of the Knudsen-layer

velocity distribution defined by equation 4.40 is also required as an intermediate step,

this velocity however is not enforced as a boundary condition. It then follows that the

following boundary conditions are appropriate for the Gaussian closure in the case of a

solid wall extending in the x-direction:

uy Kn = 0 , Pxy Kn = α

[
Pxy

2
−

√
ρPyy

2π
(ux − ux Kn) +

√
ρwnwkTw

2π
(uwx − ux Kn)

]
,

ux Kn = (2− α)

[
ux

2
− Pxy√

2πρPyy

]
+ α

2

√
Pyy

nwkTw
uwx

(4.44)

with all properties being those of the incoming Gaussian distribution with the exception

of: ρw, nw, uwx, and Tw, which are defined by the Maxwellian reflected from the wall. It

can easily be seen that this recovers the proper “no-shear” limit for specular reflection

(α = 0). If the wall temperature is again assumed to be equal to the fluid’s normal

temperature, the relations of equation 4.44 can be simplified and take the form:

uy Kn = 0 , Pxy Kn = α

[
Pxy

2
+

√
ρPyy

2π
(uwx − ux)

]
, (4.45)
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where all properties are those of the fluid, with the exception of uwx, which corresponds

to the velocity of the wall. These simplified boundary conditions are no longer a function

of the bulk velocity of the fluid in the Knudsen layer, ux Kn. The boundary conditions

given in equation 4.45 are used for all the mirco-scale flow applications considered in this

thesis. Additional analysis of solid-wall boundary conditions for the Gaussian closure is

given in the recent paper by Khieu et al. [54].

4.5 Numerical Solution of the Gaussian

Moment Equations

The application of the Gaussian moment equations to several canonical flow problems

has been previously investigated [14, 26]. These studies have found that, for flows where

heat transfer does not play a significant role, the 10-moment equations do a very good

job of predicting flow behaviour in the continuum and transition regime. The numerical

scheme used is summarized here as it forms the base of new advancements which are

presented in the subsequent chapters. A selection of numerical results obtained using the

Gaussian moment equations is also offered as they serve as comparisons in later chapters.

Care was taken to ensure that grid resolution was sufficient for accurate numerical results

in each case. For all of the cases considered below, values for the mean free path, λ, used

to define the Knudsen number were determined using the expression for hard-sphere

collisional processes given by Bird [3] as

λ =
16µ

5(2πρp)
1
2

. (4.46)

4.5.1 Godunov-Type Finite-Volume Scheme

A parallel higher-order Godunov-type finite-volume scheme has been developed for the

solution of the transport equations of the Gaussian closure for two-dimensional planar

flows on multi-block quadrilateral meshes. As the relaxation times, τt and τr, can become

very small in the near-equilibrium limit, a point-implicit time marching method is used to

integrate the set of ordinary differential equations that result from the spatial discretiza-

tion of the governing equations and deal with excessive numerical stiffness associated

with the source terms. The fully-discrete finite-volume formulation with second-order



40 Chapter 4. The Gaussian Moment Closure

semi-implicit time marching applied to cell (i, j) is given by

Ũn+1
(i,j) = Un

(i,j) −
∆t

A(i,j)

(∑

k

(Fk · nk ∆`)n
(i,j,k)

)
+ ∆t S̃n+1

(i,j) , (4.47)

Un+1
(i,j) = Un

(i,j) −
∆t

2A(i,j)

(∑

k

(Fk · nk ∆`)n
(i,j,k) +

∑

k

(F̃k · nk ∆`)n+1
(i,j,k)

)

+ ∆t

(
Sn

(i,j) + S̃n+1
(i,j)

2

)
, (4.48)

where U(i,j) is the conserved solution vector for cell (i, j), Fk is the flux dyad evaluated

at the kth quadrature point along the boundary of the cell, A(i,j) is the area of the cell,

∆` and nk are the length of the cell face and unit vector normal to the cell face or

edge, respectively, and the superscript n is the index for the time step of size ∆t. The

numerical fluxes at the faces of each cell, (Fk · nk ∆`)(i,j,k), are determined from the

approximate solution of a Riemann problem posed in a direction defined by the normal

to the face. The left and right solution states for the Riemann problems are determined

via a least-squares piece-wise limited linear solution reconstruction procedure with either

the Barth-Jesperson or Venkatakrishnan limiters [55, 56]. This provides a second-order

accurate spatial discretization for smooth solutions. In the present algorithm, both Roe

and HLLE-type approximate Riemann solvers [52, 53] are used to solve the Riemann

problem and evaluate the numerical flux. This time marching formulation allows the

maximum time step to be determined by the usual CFL condition rather than being

governed by the relaxation time scales, τt and τr, of the stiff source terms.

4.5.2 Parallel Adaptive Mesh Refinement

Following the approach developed by Sachdev et al. [57], the finite-volume scheme de-

scribed above has been combined and implemented within a parallel block-based AMR

solution procedure that enables automatic solution-directed mesh adaptation on body-

fitted multi-block quadrilateral meshes and leads to an efficient and scalable parallel

solution algorithm on distributed-memory multi-processor architectures. The proposed

AMR formulation borrows from previous work by Berger and co-workers [58, 59, 60],

Quirk [61, 62], and De Zeeuw and Powell [63] for Cartesian meshes and has similarities

with the block-based approaches described by Quirk and Hanebutte [62], Berger and

Saltzman [59], and Groth et al. [64]. Note that other researchers have considered the
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Figure 4.2: Quadtree data structure and block-based refinement for body-fitted mesh

showing solution blocks at 4 levels of refinement.

extension of Cartesian mesh adaptation procedures to more arbitrary quadrilateral and

hexagonal mesh, for example, Davis and Dannenhoffer [65] and Sun and Takayama [66].

In the AMR scheme, an initial body-fitted multi-block mesh is automatically refined

in areas of interest according to several physics-based refinement criteria. This is done

by dividing a single “parent” block into four “child” blocks each with the same number

of cells as the parent block, thereby doubling the local grid resolution with each refine-

ment. Overlapping ghost-cells are used to pass information from one block to another,

making the block boundaries entirely transparent to the solution. The ghost cells are

also used for the implementation of boundary conditions. The inter-connectivity of the

solution blocks is stored in a tree-like data structure in which new branches are created

at each refinement. This “quadtree” data structure allows for the connectivity of the

blocks as well as the relative refinement levels to be stored as shown in figure 4.2. Stan-

dard multigrid-type restriction and prolongation techniques are used when refining or

coarsening blocks and flux corrections must be carried out at interfaces between blocks

with different levels of refinement in order to ensure the scheme remains conservative.

The parallel AMR scheme is designed to be easily implemented on large multi-

processor distributed-memory computing facilities. The similarity between blocks of all

refinement levels ensures that they each require approximately the same computational

effort to update the solution at each time step. Thus, parallel implementation is carried

out via domain decomposition where the solution blocks are simply distributed equally

among the available processors, with more than one block permitted on each processor.
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When equal distibution of blocks is not possible, some processors will have one more

block than others and thus more computational work. As the total number of blocks per

processor increases, the unbalance caused by this extra block becomes less significant.

A Morton ordering space filling curve is used to provide nearest-neighbour ordering of

blocks for efficient load balancing [67].

All computations for this study were carried out either on a parallel cluster of four-

way Hewlett-Packard ES40, ES45, and Integrity rx4640 servers with a total of 244 Alpha

and Itanium 2 processors or a large-scale cluster consisting of 3780 computational nodes

each containing two quad-core Intel Xenon 5500 x86-64 processors. Both systems are

connected via a low-latency Myrinet network. The implementation was carried out using

the C++ programming language and the MPI (message passing interface) library.

Important aspects of the proposed solution algorithm are its high parallel efficiency

and scalability. Calculations of the parallel performance and scalability of the algorithm

are shown in figure 4.3. The figure depicts the parallel speed-up, Sp, given by

Sp =
t1
tp

, (4.49)

where t1 is the wall time the computation takes on one processor and tp is the wall time

the computation takes on p processors. The parallel efficiency, Ep, given by

Ep =
Sp

p
, (4.50)

is also shown. The problem considered is a simple channel-flow problem comprising 80

blocks of 32× 64 cells (163, 840 cell computational mesh). Both Sp and Ep are shown as

a function of the number of processors, p. It can be seen that the speed up is linear for

up to 80 processors, and even when 80 processors are used, the parallel efficiency remains

as high as 96%.

4.5.3 Subsonic Planar Couette Flow

A good first test case to determine the validity of boundary conditions for the Gaussian

closure is planar subsonic Couette flow between to oppositely moving infinite plates

[68]. This situation is particularly well suited for the Gaussian moment closure as the

continuum and free-molecular exact solutions do not have heat transfer. The lack of heat

transfer in the moment equations should therefore not lead to errors in either of these

situations. It is for this reason that this is a good flow situation to demonstrate the
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Figure 4.3: Parallel speedup and efficiency for a problem comprising 64 blocks of 32× 64

cells.

validity of the boundary treatment across the full range of Knudsen numbers. Figure 4.4

shows both the predicted normalized flow velocity at the wall, u/U , and normalized shear

stress, τxy

ρU
√

2kT
πm

for the case of Couette flow with two plates moving in opposite directions

at velocity U and a fluid at temperature T and density ρ. The fluid in this case is argon

at 288K and standard pressure. The two plates move in opposite directions at 30 m/s.

The results show that the Gaussian closure is able to reproduce the correct solutions in

both the the continuum and free-molecular flow limits and it effectively transitions from

the continuum solution to the free-molecular solution in a manner that is in very good

agreement with the approximate analytical solution developed by Lees [68].

4.5.4 Flat-Plate Boundary-Layer Flow

After an investigation of Couette flow, a logical step is to consider flat-plate boundary-

layer flow. Computed Gaussian solutions for air flow over a finite flat plate with a

free-stream Mach number of 0.2 are shown in figure 4.5. The solution for a low-Knudsen-

number continuum-flow case (Kn = 2 × 10−5, Re = 1.5 × 104) is shown along with the

solution for a higher-Knudsen-number transitional-flow case (Kn = 2× 10−1, Re = 1.5).

The Gaussian solutions are compared to the classical incompressible boundary-layer flow



44 Chapter 4. The Gaussian Moment Closure

Kn

u/
u

p

10-3 10-2 10-1 100 101 102

10-2

10-1

100

Lees Solution (1959)
Navier-Stokes Solution
Free-Molecular Solution (zero)
Gaussian Solution

(a)

Kn

N
or

m
al

iz
ed

 S
he

ar
 S

tr
es

s

10-3 10-2 10-1 100 101 102

10-2

10-1

100

Lees Solution (1959)
Navier-Stokes Solution
Free-Molecular Solution
Gaussian Solution

(b)

Figure 4.4: (a) Normalized flow velocity at the wall as a function of Knudsen number.

(b) Normalized shear stress as a function of Knudsen number. Both for planar Couette

flow between two diffusely reflecting walls.

solution of Blasius [69]. The results for the continuum-flow case clearly demonstrate the

ability of the Gaussian closure to reproduce the expected incompressible fluid dynamic

solution when collisional process are significant. As expected, the velocity slip at the

wall is negligible for the low-Knudsen-number case. Many find it surprising that a purely

hyperbolic set of equations can recover a classical result that has traditionally only been

modelled by equations with a partially elliptic nature. The results shown here should

prove that the hyperbolic Gaussian moment equations clearly recover the correct result

in the continuum regime.

Turning to the transition-regime case, the boundary layer now becomes thicker and

there is now appreciable slip at the solid boundary; these are both expected characteristics

of higher-Knudsen-number flows. The solutions for the flat-plate cases were obtained

using a rectangular grid with far-field boundaries a distance ten times the plate length

away from the plate. Mesh stretching and adaptive mesh refinement based on the curl

of the velocity field were used to cluster cells near the plate. Final mesh resolutions

ranged from 42000 to 51000 cells. The symbols on figures 4.5(a) and 4.5(b) correspond

to cell-centred values and should give an idea of the resolution used.

Further validation of the Gaussian boundary-layer solutions for the transition regime

is sought by comparing the predicted solutions to several Direct Simulation Monte Carlo

(DSMC) solutions. Sun and Boyd [70] have carried out a study of the coefficient of
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Figure 4.5: Normalized velocity distribution in the developing boundary layer along a

flat plate. (a) Continuum regime; Kn = 2× 10−5. (b) Transition regime; Kn = 2× 10−1.

drag for a finite flat plate in low-speed rarefied flows. Their results were obtained using

DSMC and the Information Preservation method (IP). The IP method is a modified

DSMC method that is intended to be more computationally efficient for low-speed flows.

Figure 4.6 shows a comparison of the coefficient of drag predicted by both the direct-

simulation methods mentioned above and the Gaussian closure. The Blasius [69] and

triple-deck [71, 72] solutions for continuum flow (Kn ¿ 1) and the analytical result for

free-molecular flow [19] (Kn À 1) are also shown. Note that the non-equilibrium drag for

the transition is significantly higher than predicted by the Blasius solution, this is due

to the fact that the Blasius solution is only an approximate solution for incompressible

flow over an infinite flat plate while the current situation, which was chosen to make

comparison with the DSMC data possible, is a compressible flow over a finite plate with

leading- and trailing-edge effects. The triple-deck solution does offer a treatment for

trailing-edge effects and it can be observed that in the continuum regime, low Knudsen

numbers, agreement with the Gaussian solution is good. Good agreement is observed

between all the numerical methods for most of the range of Knudsen numbers. It does,

however, appear that the Gaussian model begins to over-predict the drag for a Knudsen

numbers greater than approximately unity.
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Figure 4.6: Flat-plate drag coefficients at Ma = 0.2 for various Knudsen numbers com-

puted using the Gaussian closure and two DSMC-based methods.

4.5.5 Shock-wave Structure

As gases transition through shock waves, highly non-equilibrium states are produced.

This makes shock-structure calculations good test cases for extended fluid-dynamics tech-

niques. The structure of a one-dimensional planar shock for the Gaussian closure has

been considered in several other previous works [11, 12, 73]. Unlike the Euler equations,

the Gaussian model does not predict a discontinuity for low-Mach-number shocks. In-

stead the shock structure is fully dispersed with a smooth transition because the fastest

wave speed in the Gaussian model is faster than the acoustic waves of the Euler equa-

tions. An internal discontinuity does, however, form at the upstream end of the shock

resulting in a partially dispersed structure when the fluid speed becomes faster than the

fastest leftward moving wave predicted by the system. This wave moves with veloc-

ity u −
√

3Pxx/ρ. The discontinuity, therefore, becomes apparent when u >
√

3Pxx/ρ.

For monatomic gases, the Mach number is given by Ma = u/
√

5p/3ρ and therefore the

discontinuity appears when

Ma =

√
3Pxx/ρ√
5p/3ρ

=
√

9/5 ≈ 1.34 ,
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assuming Pxx = p upstream of the shock. For diatomic gases, the Mach number is given

by Ma = u/
√

7p/5ρ and the discontinuity will begin when

Ma =

√
3Pxx/ρ√
7p/5ρ

=
√

15/7 ≈ 1.46 .

After the discontinuity, there is a region of smooth compression and relaxation where the

flow properties relax to their equilibrium values.

For the shock structure calculations presented here, a one-dimensional grid comprising

one thousand equally spaced cells was employed. Fixed boundary conditions were used.

Normalized density solutions for shocks with Mach numbers of 1.2, 1.5, and 2.0 are

presented in figure 4.7 for argon at standard atmospheric pressure and density. Here the

density is normalized by the relation

ρ? =
ρ− ρu

ρd − ρu

,

where ρu and ρd are the upstream and downstream densities respectively. It can be seen

that, as expected, for low Mach numbers the fluid undergoes a smooth compression,

whereas for higher Mach numbers, the fluid undergoes a compression that is initially

discontinuous followed by a smooth relaxation region. The presence of these discontin-

uous sub-shocks may be undesirable, especially for high-speed flow computations when

internal shock structure is important. Later in this work, in chapter 6, a regulariza-

tion procedure is presented that leads to transport equations that do not predict these

sub-shocks. However, hyperbolicity is sacrificed in this technique.

4.5.6 Subsonic Flow Past a Circular Cylinder

There is a reasonable amount of data and theory available in the literature for subsonic

steady flow past a circular cylinder. In particular the coefficient of drag, Cd, is avail-

able for continuum, transitional, and free-molecular flow regimes. Figure 4.8 shows a

comparison of experimental data collected by Coudeville et al. [74] with an approximate

solution developed by Patterson [75], and solutions from the Gaussian closure for flow

past a cylinder at two different speed ratios, S. The speed ratio is the ratio of the bulk

speed to the most probable random speed of a particle, it differs from the Mach number

by only a constant. The solution due to Patterson is only valid in the region where

the Reynolds number is less than 0.5 and where the Knudsen number can be regarded

as small (i.e., less than unity). As shown in the figure, this is a very limited range of
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validity. The comparisons of figure 4.8 show that the Gaussian solutions are in very good

agreement with the experimental results for the continuum regime and the transition

regime. However, as the free-molecular regime is approached (Kn > 1), the numerical

predictions of the drag coefficient provided by the Gaussian closure is over-estimated.

Gaussian solutions for these cases were obtained on a body-fitted grid of 10, 000 cells.

A comparison of the flow structure for subsonic flows past a cylinder with a speed

ratio S = 0.027 at two different Knudsen numbers is depicted in figure 4.9. Results for

Kn = 1×10−3 and Kn = 1 are given. The figures shows that there are marked differences

in flow structure of the predicted continuum and non-equilibrium flow solutions. At a

Knudsen number of 1 × 10−3, the flow is clearly separated and there is a significant

region of recirculation downstream of the cylinder. This predicted flow structure is in

agreement with experimental observations for flows in this regime. For a Knudsen number

of unity, the flow remains attached and there is a greater symmetry between the upstream

and downstream solutions. Moreover, the flow is perturbed out to much larger relative

distances from the cylinder (i.e., out to larger values of r/d where r is the distance from

the centre of the cylinder and d is the cylinder diameter) in the non-equilibrium case.

4.5.7 Transonic Flow Past a NACA0012 Micro Airfoil

Lastly, the application of the Gaussian closure to the prediction of transonic steady

flow around a NACA0012 micro airfoil at zero angle of attack is now considered. The

free-stream values of the flow Mach number, temperature, and density are 0.8, 257 K,

and 1.161 × 10−4 Kg/m3, respectively, and the chord length of the airfoil is 0.04 m.

These conditions correspond to a Knudsen number of 0.017 and Reynolds number of 73.

Comparisons are made to previous results obtained using a DSMC-based scheme by Sun

and Boyd [6] and experimental results obtained by Allegre, Raffin and Lengrand [76].

Normalized density contours are shown in figures 4.10(a)–4.10(c).

It is evident that the results obtained using the standard Gaussian equations agree

well with DSMC and experiment at the leading edge, however the density seems to be

very under-predicted along the length of the airfoil. A similar finding was reported in

the earlier work by Suzuki and van Leer [77]. It will be demonstrated later in chapter 6

of this work that this under-prediction is related to the fact that the Gaussian closure

lacks heat transfer.
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4.6 Observations

The Gaussian 10-moment model provides a globally hyperbolic treatment for gas flows

outside of local thermodynamics equilibrium. Although is does not provide a treatment

for heat transfer, the closure accounts for anisotropic pressures that are common in

transition-regime flows. This chapter represents the first thorough study of the numerical

solutions of these moment equations for a wide range of gas-flow problems. It is clearly

demonstrated that they show very good promise for flows approaching a Knudsen number

of unity. For higher Knudsen numbers, the agreement between numerical solutions of the

Gaussian closure and theoretical, experimental, and/or numerical results is not as good

and it is speculated that the disagreement in some cases may be due to the lack of thermal

transport by random particle motion. A Godunov-type finite-volume scheme with AMR

is shown to be effective in the solution of these moment equations and an efficient parallel

implementation is readily achieved. Moreover, the computational costs associated with

the solution of the Gaussian moment equations is only 1.5 to 2.0 times more expensive

than an equivalent Euler calculation on the same mesh, making the closure significantly

more affordable than other treatments for non-equilibrium flow prediction.
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Figure 4.7: Normalized density variations through shock waves with shock Mach numbers

of (a) Mas =1.2, (b) Mas =1.5, and (c) Mas =2 as predicted by the Gaussian model.
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Figure 4.8: Coefficient of drag for airflow past a circular cylinder at two speed ratios (S):

experimental results of Coudeville et al., approximate solution due to Patterson, and

Gaussian solution.
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Figure 4.9: Comparison of x-direction velocity contours for flow past a circular cylinder

at a speed ratio S = 0.027. (a) Kn = 1× 10−3. (b) Kn = 1.
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Figure 4.10: Comparison of the normalized density contours around a NACA0012 micro

airfoil: (a) predictions of the standard Gaussian moment equations, (b) predictions of the

DSMC-based method of Sun and Boyd [6] and (c) experimental data of Allegre, Raffin

and Lengrand [76].
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Chapter 5

Gaussian Moment Closure with

Embedded Boundaries

One of the main advantages that moment closures offer over traditional fluid-dynamic

equations is their hyperbolic nature. Not only is this physically pleasing, as hyperbol-

icity ensures finite speeds of propagation within the system, but it also provides several

computational advantages. Firstly, typical numerical schemes for the solution of PDEs

tend to be well-suited for the solution of either hyperbolic or elliptic equations. Schemes

that handle both equation types with equal elegance are rare. The ability to model vis-

cous compressible gas flows in a purely hyperbolic manner can therefore be regarded as

advantageous. This will be demonstrated clearly in the present chapter.

In addition to simplifying the design of numerical solution techniques, the first-order

nature of moment equations can lead to increases in accuracy for several reasons. Firstly,

for a given stencil or reconstruction order, the requirement to only approximate first

derivatives during the numerical solution of moment equations can lead to an extra

order of spacial accuracy as compared to the solution of equations which require second

derivatives, such as the Navier-Stokes equations. Moreover, many numerical rules for

the evaluation of derivatives become more sensitive to grid irregularities for higher-order

derivatives. Moment equations can therefore be said to have another advantage over

traditional fluid-dynamic equations: their numerical solution is less sensitive to grid

quality. This will be demonstrated in a practical sense in this chapter.

In chapter 4, the ability of the Gaussian moment closure to accurately describe a

range of continuum and non-continuum flows was shown. In this chapter, the moment

closure insensitivity to grid irregularities is demonstrated for a mesh-adjustment scheme

55
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that performs local alterations to a body-fitted mesh at embedded, possibly moving

boundaries. These boundaries are not necessarily aligned with the underlying grid. The

particular grid-movement technique used in this study is that developed by Sachdev and

Groth [16, 17].

5.1 Spacial Discretization

For this implementation, spacial and temporal discretizations that are very similar to

those outlined in chapter 4 are utilized. The added complexity is that the effects caused

by the varying geometry of cells associated with moving boundaries must be taken into

account. As before, flow domains are tessellated into blocks containing non-overlapping

cells. Blocks can be connected in an unstructured manner, but cells within a block are

structured quadrilaterals and can be indexed using i-j indices. If numerical quadrature

is used to calculate inter-cellular fluxes, the time rate of change of the average of the

conserved moments in a cell (i, j) can be written as

dU(i,j)

dt
= − 1

A(i,j)

∑

k

[(Fk − wkUk) · nk ∆`](i,j,k) −
(

U

A(i,j)

dA(i,j)

dt

)

(i,j)

+ S(i,j) , (5.1)

where A(i,j) is the area of the cell, while wk, nk, and ∆` are the velocity of, unit normal

to, and length of the kth cell face or edge respectively. The flux dyad is given by Fk and

Uk is the solution state, both evaluated at the quadrature point on the kth face. The

term on the right-hand side of this equation containing the factor dA(i,j)/dt corresponds

to the time rate of change of the cell area. This term is approximated by the geometric

conservation law that states that the change in cell area is equal to the area swept by

the moving surfaces [78]. Given left and right solution states, U(L) and U(R), at each cell

interface, the numerical flux given by

(Fl − wlUl) · nl = F(U(L),U(R), wl, nl) , (5.2)

where F is the numerical flux, is computed by approximately solving a Riemann problem

in a frame of reference that is rotated to be aligned with the normal to the face and

translated with the edge velocity. The left and right solution states are again determined

via a least-squares, piecewise-linear reconstruction procedure in conjunction with the

slope limiter of Venkatakrishnan [55, 56]. This allows second-order spacial accuracy in

smooth regions and first-order accuracy at discontinuities. Roe’s approximate Riemann
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solver [53] is used to solve the Riemann problem and evaluate the numerical flux. The

ordinary differential equations of equation 5.1 are integrated forward in time using the

same time-marching scheme given in equations 4.47 and 4.48.

5.1.1 Mesh-Adjustment Scheme

The insensitivity to grid irregularities of moment equations as compared to other fluid-

dynamic equations is shown here for a mesh-adjustment scheme proposed recently by

Sachdev and Groth [16, 17]. The mesh-adjustment scheme provides an automated treat-

ment for both fixed and moving, non-grid-aligned boundaries embedded in a body-fitted,

multi-block mesh. Similar in nature to the Cartesian-cut-cell methods developed by

Bayyuk et al. [79] and Murman et al. [80], this scheme allows for the nodes of an un-

derlying body-fitted mesh to be adjusted so as to coincide with the embedded bound-

ary. By making only local alterations to the grid, this scheme enables the solution of

unsteady flows involving moving boundaries or for steady flow problems involving sta-

tionary boundaries that are not necessarily aligned with the mesh, while preserving the

structured nature of the blocks and avoiding the creation of small cut cells that are often

generated by traditional cut-cell approaches. In addition, the mesh-adjustment algorithm

is fully compatible with block-based AMR and parallel implementation via domain de-

composition used in the finite-volume scheme described above. A brief summary of the

mesh-adjustment scheme is given in what follows. Full details are contained in the papers

by Sachdev and Groth [16, 17].

Mesh adjustment is carried out in several steps. Firstly, a pre-mesh-adjustment flag-

ging is used in order to determine which cells may require adjustment. The nodal loca-

tions of each cell is compared to bounding boxes that are constructed for each interface;

a cell is known to be active if all four of its nodes lie outside all bounding boxes. Next,

if the cell is partially or entirely contained in a bounding box, intersections between

the edges of the cell and each boundary are sought. If no intersections exist, a ray-

tracing algorithm is employed to determine if the cell is entirely inside or outside of the

boundaries. This ray-tracing entails counting the number of intersections between the

embedded boundary and a line connecting the cell centroid to a reference point within

the boundary. An odd number of intersections indicates that the cell is outside of the

interface. These cells are used during the solution of the fluid equations and are tagged

as “active” cells. Conversely, an even number of intersections indicates that the cell is
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Figure 5.1: Mesh adjustment algorithm: (a) Initial mesh and embedded boundary (thick

line), (b) result of primary adjustment, (c) result of secondary adjustment (dashed lines

indicate inactive cells), and (d) example of (i, j)-indexing on an adjusted mesh.

inside the interface and can be tagged as “inactive” since they are not used during the

flow calculation. All cells that have not been deemed active or inactive are labelled as

“unknown”.

The first mesh-adjustment step involves identifying sharp corners in the interfaces.

The unknown cell that contains each sharp corner is identified, and its nearest node is

moved onto the corner. Once a node has been adjusted to lie on a boundary, it is tagged

as “aligned”. For the remaining “unknown” cells, the nodes nearest to the boundary are

moved to the closest point of intersection between the interface and the mesh lines; this

can be seen in figure 5.1(b). Again, nodes that have been moved are tagged as “aligned”.

This movement will leave cells that are bisected diagonally by the boundary. To account

for this, the secondary step involves moving the nearest not-yet-aligned node of bisected

cells so that it also lies on the boundary. This step will produce triangular cells, as

seen in figure 5.1(c); these cells are simply treated as degenerate quadrilaterals with two

coincident nodes. The final step in the mesh-adjustment algorithm involves using the

same ray-tracing technique mentioned above to determine which of the “unknown” cells

are “active” and which are “inactive”. The resulting mesh remains structured and does

not result in neighbouring cells of radically different sizes.

The present implementation allows for moving embedded boundaries whose motion

can be prescribed either explicitly or through a level-set method [81, 82]. Boundary

locations are computed at each time step and the mesh is readjusted. The velocity of

the embedded boundary is accounted for during the flux calculation and the effect of the
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rate-of-change of cell area is included as a source term (as seen in equation 5.1). To avoid

excessive tangling, the mesh is first returned to an unadjusted state and then readjusted.

Cells near the boundary will therefore change shape and previously active cells may

become inactive, or vice versa. Solution content is supplied to newly activated cells and

removed from newly deactivated cells through a redistribution algorithm designed to

ensure conservation. The solution content of a newly deactivated cell is area-averaged

into neighbouring active cells. The solution content of a newly activated cell is determined

by taking the area-weighted average of the parts of the active cells from the previously

adjusted mesh that intersect with the newly activated cell. A more detailed explanation

of the mesh adjustment scheme and solution redistribution algorithm is provided in the

papers by Sachdev and Groth [16, 17]. This redistribution algorithm is akin to the

projection stage of a finite-volume scheme (determination of a cell-averaged solution).

5.2 Numerical Results

In order to verify and explore the potential of the proposed approach for predicting non-

equilibrium micro-channel flows, several flow problems are now considered. The first

such problem is subsonic boundary-layer flow over a flat plate as previously considered

in chapter 4. The goal in this case is to demonstrate that the embedded boundary treat-

ment and hyperbolic nature of the governing equations will yield smooth predictions of

the frictional forces acting on the plate; traditional cut-cell-type approaches combined

with the Navier-Stokes equations have been shown to produce large oscillations in viscous

drag predictions [24]. Secondly, subsonic Couette flow will again be studied for a range

of Knudsen numbers. The aim in this case is to show that the combination of the Gaus-

sian closure with appropriate boundary conditions can describe the full range of flows

from the well-known continuum regime at low Knudsen numbers, through the transition

regime, and on to the free-molecular regime at high Knudsen numbers. It will also be

demonstrated that the solution transition is equally well predicted by both a mesh that is

aligned with the plates as with a mesh that is intersected at a 30◦ angle. Next, subsonic

flow past a circular cylinder is again considered. As shown previously using body-fitted

meshes, good agreement with experimental results has been achieved in the continuum

and transition regimes [14], and it will be shown that equally good results can be achieved

with the proposed embedded-boundary treatment. In order to show the ease with which

complicated geometries including multiple stationary and moving embedded boundaries
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can be treated, a micro-scale channel flow with complex moving geometry is considered

for both continuum and non-equilibrium flows. A final demonstration of the capabilities

of the proposed modelling and solution procedure is provided by a NACA0012 airfoil

undergoing a prescribed oscillatory pitching motion. For this case, the treatment for

embedded moving boundaries is combined with solution-directed adaptive mesh refine-

ment, and comparisons are made with available experimental data. For all of the cases

considered below, values for the mean free path, λ, used to define the Knudsen number

were again determined using the expression for hard sphere collisional processes given by

Bird [3], given in equation 4.46.

5.2.1 Subsonic Laminar Flat-Plate Boundary-Layer Flow

Subsonic boundary-layer air flow past a flat plate is re-considered. For this diatomic case,

the free-stream Mach and Reynolds numbers are Ma = 0.2 and Re = 2000, respectively,

and the Knudsen number is 1.5×10−4, which indicates that the flow is laminar and in the

continuum regime. Two computational meshes are considered: one aligned with, or at 0◦

to, the plate and a second mesh at 30◦ to the plate. Both meshes initially consist of one

16 × 16 Cartesian square block centred on the origin of the x and y axes. A boundary

representing the flat plate is embedded in the block. This boundary is a line that is

coincident with the x axis and passes through the origin. For x < 0, reflection (symmetry)

boundary conditions are used, while for x > 0, solid-wall boundary conditions with full

accommodation are used. In order to reduce the influence of the outflow boundary on

the solution, the computational domain and plate stretch approximately twenty percent

further than the length to be considered. The computational grid was then subjected to

six or eight mesh refinements such that, at each level of refinement, any block crossed

by the boundary was refined. The result was a mesh comprising 376 blocks and 48, 128

active cells for the zero-degree case and 508 blocks and 65, 024 active cells for the thirty-

degree case when six levels of refinement were used. For eight levels of refinement, 764

active blocks and 195, 584 active cells for the zero-degree case and 1271 active blocks and

276, 992 active cells for the thirty-degree were used. A section of the mesh for each case

can be seen in figure 5.2. The larger number of cells in the non-aligned case is a result of

the fact that, at thirty degrees, the interface crosses more blocks, which will be flagged

for refinement; the smallest cells are the same size for both angles.

Numerical predictions of the friction coefficient, Cf , are shown in figure 5.3. As in
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chapter 4, comparisons are again made to the classical boundary layer results of Blasius

[69]. It can be seen that the computed results and the Blasius solution show good

agreement. It is important to note that there are no oscillations present in the skin-

friction coefficient, even when the flat plate intersects the grid at an angle. The same

two cases were also run with eight levels of mesh refinement. For this refined case, a

close-up view of the plot at the center of the plate is shown. It can be seen that, with

refinement, the Blasius solution is recovered quite well.

The smooth results of the Gaussian closure are in contrast with previous results ob-

tained by Sachdev and Groth using the Navier-Stokes equations [16, 17]. Figure 5.4(a)

shows typical results for predictions of skin-friction coefficients for flow past a flat plate

angled at 30◦ to the grid. The same mesh adjustment scheme is used. The oscillations

present in this figure are due to the necessity of evaluating second derivatives for the so-

lution of the Navier-Stokes equations; these higher-order derivatives are more sensitive to

the grid irregularities caused by the embedded boundary. It can be seen in figure 5.4(b)

that the oscillations in the predicted coefficient of friction are related to the local modifi-

cations to the mesh caused by the embedded boundary. There is a jump in the prediction

whenever the row of cells that is intersected by the boundary changes. Similar oscillations

in the predicted skin-friction coefficients, with even larger and far more deleterious ex-

cursions, were observed in the AMR solutions of Coirier [24] and Coirier and Powell [25]

using a cut-cell approach, which can produce meshes with large differences in adjacent

cell sizes.

Grid convergence behaviour is demonstrated in figure 5.5. Here solutions to the same

boundary-layer situation have been computed on sequences of meshes that were con-

structed either with uniform resolution or with AMR and with a plate embedded at

either zero or thirty degrees to the grid. The coefficient of drag has then been computed

from the predicted skin friction profile. It can be seen that each sequence is converging to

the same value, however this value is less than the coefficient of drag of 0.0297 predicted

by the Blasius approximation. This is because the Blasius solution is an approximate so-

lution for incompressible flow, whereas the Gaussian closure accounts for compressibility

effects. Also, the Blasius solution predicts a coefficient of friction which reaches infinity

at the leading edge. Therefore, even though the solutions to the moment equations agree

well with the Blasius solution further along the plate, they predict a lower drag near the

leading-edge. In fact, it cannot be expected that these computations will converge ex-

actly to any approximate analytic solution to the Navier-Stokes equations simply because
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(a) (b)

Figure 5.2: (a) Section of 48, 128-cell embedded-boundary mesh with flat plate embedded

at 0◦. (b) Section of 65, 024-cell embedded-boundary mesh with flat plate embedded at

30◦.

the governing equations are different. Figure 5.5 also provides a good illustration of the

computational advantages provided by adaptive mesh refinement. It can be seen that the

solutions obtained using AMR provide a given accuracy using only a fraction of the cells

used in a uniform-mesh computation. Obviously in this situation a stretched mesh that

concentrates cells near the boundary could obtain similar results to the AMR, however

in more complicated situation it is not always clear where spacial resolution is needed.

Also, if boundaries are moving or evolving during a simulation, areas requiring increased

resolution will move; adaptive mesh refinement is especially useful in these situations.

5.2.2 Subsonic Laminar Couette Flow

The second problem considered is the one of Couette flow for a gas spanning a variety

of flow regimes. The current investigation comprises two infinite-span plates separated

by a fluid-filled gap that are translating in opposite directions with a speed of up = 30

m/s. The gap between the plates is filled with argon at a temperature of T =288 K and

standard pressure; the diatomic extension to the moment closure is therefore not used for

this case. Again, two embedded meshes are considered, one aligned at 0◦ to the plates

and one at 30◦ to the plates. The original mesh comprised 10, 240 cells, however many
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Figure 5.3: Coefficient of friction calculated for a Cartesian grid with an embedded flat

plate at 0◦ and 30◦ to the grid as compared to Blasius solution; full and close-up views.
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Figure 5.4: (a) Coefficient of friction calculated for a Cartesian grid with an embedded

flat plate at 30◦ to the grid using the Navier-Stokes equations. (b) Relation between

oscillations in predicted coefficients of friction and local modifications to the mes caused

by the embedded boundary.

of these cells were inactive. The number of active cells for all of the 0◦ computations

was 2, 560 and there were 2, 956 active cells for the 30◦ situations; the active portions of

these grids can be seen in figure 5.6. Boundary conditions for the solid walls were applied
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Figure 5.5: Coefficient of drag calculated using various Cartesian grids with an embedded

flat plate at 0◦ and 30◦ to the grid, each of which was constructed using either with

uniform resolution or AMR.

as described above. At the remaining two boundaries, velocity and shear pressure were

extrapolated while all other flow properties where held fixed.

Figure 5.7 shows both the predicted normalized flow velocity at the wall, u/up, and

normalized shear stress, τxy/ρup

√
2kT/πm for the Couette flow problem as a function

of Knudsen number. Values for the fluid velocity at the wall shown in figure 5.7 were

evaluated by taking the average along each plate and values for the fluid shear were

evaluated by taking the average over the entire domain. The results show that the

Gaussian closure, combined with the Knudsen-layer analysis for the solid boundary, is

able to reproduce the correct solutions in both the the continuum (Navier-Stokes) regime,

where there is no slip between the fluid and the wall, and free-molecular regime, where

there is perfect slip. In addition, it provides solutions that effectively transition from the

continuum result to the free-molecular-flow solution in a manner that is in very good

agreement with an approximate analytical solution developed by Lees [68]. Lastly, the
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(a) (b)

Figure 5.6: (a) 2, 560-cell mesh with plates embedded at 0◦. (b) 2, 956-cell mesh with

plates embedded at 30◦.
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Figure 5.7: (a) Predicted values of the normalized velocity at plate wall and (b) normal-

ized shear pressure as a function of Knudsen number for planar subsonic laminar Couette

flow of argon between parallel diffusely reflecting plates; up = 30 m/s, T = 288 K.

numerical predictions are essentially independent of the computational mesh used and

further demonstrate the high numerical accuracy that can be achieved using the Gaussian

closure coupled with the embedded-mesh algorithm.

5.2.3 Subsonic Laminar Flow Past a Circular Cylinder

Subsonic air flow past an circular cylinder is considered next. In order to demonstrate

that the present embedded-mesh treatment can recover the drag results for the circular

cylinder described above with virtually equal accuracy to those obtained with a body-
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fitted mesh (shown in section 4.5.6), values for the coefficient of drag were re-computed

using the Gaussian closure and embedded mesh approach for a range of Knudsen numbers

with speed ratios of 0.027 and 0.107. All computations were again conducted on a square-

shaped Cartesian mesh that initially contained one 16 × 16 block with an embedded

circular cylinder. For most cases, the square domain had a dimension that was 125

times the cylinder radius. This mesh was then refined ten times in order to capture

the boundary, resulting in a mesh of 556 blocks and 112, 936 active cells, as seen in

figure 5.8. As the Knudsen number increases, the distance to which the flow is disturbed

by the boundary interactions also increases. Thus, in order to eliminate the effects of the

far-field boundary on the solution, the size of the initial block had to be enlarged for the

Kn = 0.5 and Kn = 1 cases; additional levels of mesh refinement were then used in order

to preserve the resolution of the inner boundary.

The computed coefficients of drag are shown in figure 5.8. The embedded mesh results

are compared the Gaussian-closure solutions obtained using a body-fitted mesh, as well

as to the experimental results collected by Coudeville et al. [74]. It is quite apparent that

agreement between the experimental results and the values predicted by the Gaussian

closure are equally good when the embedded boundary treatment is used.

5.2.4 Channel Flow with Moving Boundaries

In previous work, Coirier explored Mach 0.1 air flow through a branched channel con-

taining fourteen pin cooling fins using a Cartesian-cut-cell approach [24]. A similar case

is considered here, except two rows of the pins are now assumed to oscillate with a

prescribed motion. The aim of this case is to show how easily the current embedded-

boundary treatment can be used for cases with numerous embedded boundaries, some

of which are moving with respect to the frame of reference of the computational mesh.

Coirier designed the geometry of the problem so as to loosely model the flow within

turbine blades. It involves a channel through which fully developed flow enters. This

channel contains a branch and three rows of cooling pins. The flow resistance caused

by the pins causes some of the flow to be redirected though the secondary channel. An

added characteristic of the current situation is that two of the rows of pins move through

a prescribed oscillation. The computational grid used for this situation is shown in fig-

ure 5.9. A close-up view of the area surrounding the cooling pins at three different times

is shown in figure 5.10. This figure shows the initial position as well as the extremes of
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the pin oscillations. Two Knudsen numbers (based on pin diameter) were considered for

this case: Kn = 7×10−6 (continuum regime) and Kn = 7×10−2 (transition regime). For

both cases, the simulation was originally run to steady state with the pins held stationary.

For the continuum-regime situation, this steady state solution was in good qualitative

agreement with Coirier’s results and showed similar velocity contours and recirculation

regions. Once steady state had been achieved, the pins were set into oscillations de-

scribed by the function δx = ±∆x sin(2πft), where δx is the pin displacement, ∆x is

the maximum displacement, t is the time and, f = 100 s−1 is the frequency. The CFL

restriction on the time step for this explicit scheme ensured that a very large number of

iterations was required for each period of the pin oscillations.

Figures 5.11 and 5.12 show the predicted contours of the x-direction velocity compo-

nent for the above situation for Kn = 7× 10−6 and Kn = 7× 10−2, respectively. In each

figure, the results in the top half of figure show the predicted solutions after 10 ms (one

period) while the results in the bottom half depict the solutions after 15 ms (one and a

half periods). The geometry at both presented times is identical, however at t = 10 ms,

the two outside rows of pins are approaching the center row while at t = 15 ms the

outside rows are moving further apart. The differences in the plots indicates that there

is some level of hysteresis. It can also be noted that in the transition-regime case, the

hysteresis as well as the general effects of the pins on the flow appears to be reduced.

This should be expected since, in higher-Knudsen number cases such as this, the reduced

frequency of collisions leads to a flow that is mostly dependent on the projected area of

the cooling pins; something which does not change throughout the simulation.

5.2.5 Oscillating NACA0012 Airfoil

The final problem considered is that of a NACA0012 airfoil undergoing a prescribed

oscillation in a background airflow. The specific problem selected is one studied experi-

mentally by Landon [83] as part of a study of flow conditions for helicopter blades. Here

a NACA0012 airfoil undergoes an oscillation about its quarter cord with angle of attack

prescribed by the function α(t) = α0 + αm sin(2πft) where α0 = 0.015◦, αm = 2.51◦ and

f = 62.5s−1. The Reynolds number based on chord length is Re = 5.5 × 106 and the

Mach number is 0.775. The flow conditions surrounding the airfoil should therefore be

turbulent, however there is, as yet, no method for the treatment of turbulence in the

10-moment model. Also, in order to avoid using the number of cells required to predict
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a boundary layer at such a high Reynolds number, the solid-wall accommodation coeffi-

cient is set to zero for this case. This is equivalent to assuming fully specular reflection

at the boundary and will lead to an inviscid, Euler-like, near-equilibrium, solution using

the Gaussian model. The Knudsen number for this flow is 6.3×10−7. This flow situation

is therefore firmly in the continuum regime. This study is included to show both that the

moment equations can reliably predict traditional continuum-regime flows and that the

AMR and mesh-adjustment schemes can be used for the solution of practical unsteady

problems.

Here, the NACA0012 airfoil is embedded in an O-type grid with the far-field boundary

located sixteen chord lengths out from the quarter chord of the airfoil. This mesh origi-

nally consisted of two four-by-eight blocks, as shown in figure 5.13(a). This mesh was then

refined uniformly twice so as to produce a thirty-two-block initial grid (figure 5.13(b)).

A regiment of grid sequencing was then employed during which steady-state solutions

for flow past the stationary airfoil were sought on sequentially finer meshes leading to a

final mesh with eight refinement levels. Successive meshes were obtained either through

refinement of every block lying within a bounding box surrounding the airfoil or through

solution-directed refinement using the divergence of the velocity field as the refinement

criterion (blocks containing areas where this value is high were flagged for refinement

and blocks containing areas where this value is very low were flagged for possible coars-

ening). This criterion has been found to identify shocks effectively. The eight-level mesh

resulting from the grid sequencing comprised 3023 blocks and 96, 736 cells, of these cells

46, 797 were internal to the airfoil and therefore inactive.

The mesh resulting from and steady-state solution from the previously-described grid-

sequencing routine was used as the starting point for the time-accurate oscillatory study.

For this simulation, adaptive mesh refinement was carried out every fifty time steps as

this was found to be frequent enough to allow the grid to track changes in the flow

solution effectively.

The adjusted grid and computed thermodynamic pressure contours are shown in fig-

ure 5.14. This figure shows the initial, steady-state solution as well as the solution after

36 and 44 ms (first and third quarter of the third period). Once again, the CFL restric-

tion ensured that a very large number of time steps was taken for each period. It can

be observed that as the airfoil pitches up, the shock on the upper surface strengthens

and moves towards the trailing edge while the shock on the lower surface weakens and

eventually disappears entirely. As the airfoil pitches down, the opposite is true. The effec-
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tiveness with which the adaptive mesh refinement tracks the movement of the shocks can

also be plainly seen in figure 5.14. The scheme effectively concentrates blocks, and thus

computational cells, along the discontinuity. It is observed that, during the oscillation,

there is a hysteresis in the shock position as the airfoil passes the symmetric situation.

This hysteresis is reflected in the calculated coefficient of normal force, as seen in the

bottom right panel of figure 5.14. In this figure the computed normal force coefficient

moves from the near-symmetric steady-state initial solution to a periodic motion which

is in good agreement with the experimental results of Landon [83] and similar to those

obtained by Sachdev and Groth [16, 17].

5.3 Observations

The potential for the use of moment closures combined with a treatment of embedded

boundaries for tackling continuum- and transition-regime flows has been demonstrated.

The proposed approach allows for a non-Cartesian grid to undergo local adjustments

such that it is aligned with arbitrary boundaries. Sharp corners in the interface can be

accurately represented and very small cells, typical of traditional cut-cell approaches,

are not created. The purely hyperbolic nature of moment equations allows for accurate

treatment of micro-scale flows and gives solutions that are not strongly affected by the

grid irregularities caused by the mesh adjustment.

The proposed approach has been verified through application to a number of repre-

sentative, two-dimensional flow problems. It has been demonstrated that the hyperbolic

nature of moment closures allows for smooth predictions of viscous effects along embed-

ded boundaries when similar treatments applied to the Navier-Stokes equations yield

oscillatory results.
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Figure 5.8: (a) Section of embedded-boundary grid used for cylinder calculations. (b) Co-

efficients of drag computed using the Gaussian closure with a body-fitted mesh and a

Cartesian mesh with an embedded boundary at speed ratios of 0.027 and 0.107 are com-

pared with experimental results.
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Figure 5.9: Computational grid used in embedded-boundary branched-duct simulation.

Figure 5.10: Close-up view of computational mesh around cooling pins for the branched-

duct simulation at three different instances in time during their sinusoidal motion.
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Figure 5.11: Shaded contours of the x-direction component of velocity for the branched

channel simulation: Kn = 7× 10−6 simulation with result for t = 10 ms on the top and

t = 15 ms on the bottom.
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Figure 5.12: Shaded contours of the x-direction component of velocity for the branched

channel simulation: Kn = 7× 10−2 simulation with result for t = 10 ms on the top and

t = 15 ms on the bottom.
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(a) (b)

(c) (d)

Figure 5.13: Section of computational mesh with embedded NACA0012 boundary shown

at various states of construction: (a) initial two-block mesh, (b) mesh with thirty-two

blocks resulting from two levels of mesh refinements, (c) mesh with 332 blocks resulting

from five levels of mesh refinements, (d) mesh with 2921 blocks resulting from eight levels

of mesh refinements



74 Chapter 5. Gaussian Moment Closure with Embedded Boundaries

Time = 0 ms

Pressure
120000
116938
109115
101292
93469
85646
77823
70000

Time = 36 ms

Pressure
120000
116938
109115
101292
93469
85646
77823
70000

Time = 44 ms

Pressure
120000
116938
109115
101292
93469
85646
77823
70000

Angle of Attack, α (deg.)

N
o

rm
al

F
o

rc
e

C
o

ef
fic

ie
n

t,
C

N

-3 -2 -1 0 1 2 3

-0.4

-0.2

0

0.2

0.4

Current Results
Landon

Figure 5.14: Computational grids and thermodynamic pressure contour plots for initial,

steady state solution and solution after 36 and 44 ms as well as comparison of computed

normal force coefficient for varying angle of attack and previous experimental results of

Landon.



Chapter 6

Regularized Gaussian Moment

Closure

As has been demonstrated in chapters 4 and 5, the Gaussian moment closure offers a

robust set of hyperbolic moment equations for the prediction of viscous fluid flow across

a wide range of flow regimes. It is, however, deficient in that it cannot account for heat-

transfer effects. Recently, Stuchtrup and Torrilhon [21] have shown a technique for the

regularization of moment equations and have applied this to the 13-moment equations

from the Grad hierarchy. In essence, this technique consists of creating an expansion

about the moment equations, thus allowing small deviations from the assumed distri-

bution function. A required assumption for this procedure is that deviations from the

assumed distribution function are suppressed by inter-molecular collisions more quickly

than non-equilibrium effects contained in the original moment equations. In this chap-

ter, a similar regularization technique is applied to the Gaussian closure. This procedure

results in the addition of elliptic terms to the standard equations of the Gaussian clo-

sure. The resulting terms lead to a heat-transfer treatment which is dependent on the

anisotropic pressure tensor. It is shown that the elliptic nature of the added terms leads

to smooth (regularized) solutions.

The following section will describe the derivation of the present correction to the

Gaussian equations. This is done both by expansion about the moment equations (this

is the technique used by Struchtrup and Torrilhon), and also by explicitly taking an

expansion around the assumed form of the distribution function in the kinetic equation.

It is shown that both techniques yield identical results. Following these derivations, the

application of a finite-volume scheme to the solution of the resulting equations is detailed.

75
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Numerical results for a range of canonical continuum and micro-scale flow problems are

then explored, including shock structure, Couette flow, and flow past a circular cylinder,

as well as transonic flow past a micro airfoil. Comparisons with analytic, experimental,

and direct-simulation Monte Carlo (DSMC) results are also made and demonstrate the

capabilities of the proposed non-equilibrium model. Finally, some thoughts regarding the

applicability of these equations to practical micro-scale applications are explored.

6.0.1 The Collision Operator

As stated earlier, the collision operator present in equations 2.8 and 2.18 is difficult

or impossible to evaluate. Fortunately, for many engineering problems, approximate

collision terms prove adequate. The most commonly used approximation is the BGK

collision operator [36]. This operator can be written as

δF
δt

= −F −M
τ

. (6.1)

In previous chapters, this collision operator has proven adequate for the Gaussian moment

equations in the situations considered. However, the subject of the current chapter is the

addition of heat-transfer modelling to the 10-moment equations and this simple collision

operator is no longer sufficient. A well-known limitation of the BGK model is that it

always yields a Prandtl number of

2

5

γ

γ − 1
=

{
1 for monatomic gases, and

1.4 for diatomic gases.

This is in contradiction with physical Prandtl numbers for most gases, which tend to be

less than one.

There are several other collision-operator models available which can provide more

realistic Prandtl numbers. In the present work, an approximate collision term proposed

by Holway [48] will be used to describe collisional processes for monatomic gases. This

model, often referred to the ellipsoidal statistical model, preserves much of the simplicity

of the BGK model, while allowing for a tunable Prandtl number. It can be written as

δF
δt

= −F − GES

τES

, (6.2)

where

GES(xi, vi, t) =
ρ

m(2π)3/2(det Tαβ)1/2
exp

(
−1

2
T−1

ij cicj

)
. (6.3)
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Again, m is the gas particle mass and ρ is the mass density. In fact, this distribution is a

Gaussian distribution function with a modified pressure tensor. The tensor Tij is defined

as

Tij = (1− ν)RTδij + νΘij , (6.4)

where Θij is again a symmetric ‘temperature’ tensor given by Θij = Pij/ρ. If the param-

eters τES and ν are chosen such that (1− ν)µ = τESp and (1− ν)Pr = 1 the model will

predict the correct values for fluid viscosity and thermal conductivity in the continuum

limit. The ellipsoidal statistical collision model’s adherence to Boltzmann’s H theorem

was only recently demonstrated by Andries and Perthame [84] and only for monatomic

gases. It is important to note that the relaxation times for these two models (τ and τES)

differ by a factor of the Prandtl number, and the moment equations which follow will be

written in terms of the relaxation time for the standard BGK model for consistency with

previous chapters and traditional forms of these equations.

6.1 Extended Fluid Treatment for Thermal-Diffusion

Effects

As stated several times, one of the major shortfalls of the Gaussian closure is its inability

to account for thermal diffusion. This is due to the construction of the assumed form of

the distribution function used to obtain moment closure. By allowing small deviations

from the Gaussian distribution, however, thermal diffusion can be re-introduced into

the moment equations. This can be done by taking an appropriate Chapman-Enskog

perturbative expansion of either the moment equations (equations. 4.1-4.3) or the ki-

netic equation using the Gaussian distribution as the base distribution. Both of these

techniques are detailed here.

6.1.1 Perturbative Expansion About the Moment Equations

The perturbative expansion technique applied to the moment equations is considered first.

A similar technique was previously used by Struchtrup and Torrilhon in the regularization

of the 13-moment equations [21]. For this expansion, it is convenient to define the tensor
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Kijkl = m 〈cicjckclF〉 −m 〈cicjckclG〉 = m 〈cicjckclF〉 − 1

ρ
[PijPkl + PikPjl + PilPjk] .

(6.5)

This quantity is the deviation of the fourth random-velocity moment from that calculated

using a Gaussian distribution. The general moment quantities are then re-written as a

perturbative expansion about their values as predicted by the Gaussian closure. This

is done by introducing a formal smallness or perturbation parameter, ε, which is used

to scale the solution and moment equations. For example, the scaled solution for the

generalized heat flux, Qijk, and previously defined fourth-order tensors are written as

Qijk = Q
(G)
ijk + εQ

(1)
ijk + ε2Q

(2)
ijk + ε3Q

(3)
ijk + · · · , (6.6)

and

Kijkl = K
(G)
ijkl + εK

(1)
ijkl + ε2K

(2)
ijkl + ε3K

(3)
ijkl + · · · . (6.7)

Here, the superscript (G) denotes the value for a moment calculated using a Gaussian

distribution function and the superscript (n) denotes the nth order correction. The

moment equation for the moment 〈cicjF〉 using the ellipsoidal statistical collision model

(without using an assumed form for the distribution function) is

∂Pij

∂t
+

∂

∂xk

(ukPij) + Pjk
∂ui

∂xk

+ Pik
∂uj

∂xk

+
∂Qijk

∂xk

= −1

τ

(
Pij − 1

3
Pkkδij

)
. (6.8)

It can be seen that for this general case, there is a term,
∂Qijk

∂xk
, that is not present

in equation 4.3. Setting this third-order tensor to be effectively zero is how closure was

obtained in the Gaussian model. However, in the current technique, a non-zero first-order

deviation, i.e., Q
(1)
ijk, is introduced. For small deviations from the Gaussian closure, an

approximation to this term can be determined by writing the scaled moment equation for

Qijk, which, again using the approximate relaxation-time collision term of Holway [48],

can be written for a monatomic gas as

∂Qijk

∂t
+

∂

∂xl

(ulQijk) + Qjkl
∂ui

∂xl

+ Qikl
∂uj

∂xl

+ Qijl
∂uk

∂xl

+Pkl
∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)
+

∂Kijkl

∂xl

= −Pr

ετ
Qijk . (6.9)

Note that, in the expression above, equation 6.5 has been used and the scaling param-

eter, ε, has been explicitly introduced on the right-hand side. The small parameter ε is

introduced in accordance with the assumption that deviations of the moment quantities
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from those predicted by the Gaussian closure (i.e., Qijk = 0) will be attenuated rapidly

by collisional processes. By making use of equations 6.6 and 6.7, it can be seen that the

unscaled zeroth-order terms of equation 6.9 yields

Q
(G)
ijk = 0 , (6.10)

in agreement with the Gaussian closure. The equation allowing for unscaled first-order

deviations becomes

Q
(1)
ijk = − τ

Pr

[
Pkl

∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)]
. (6.11)

This is the correction which will be used herein to introduce thermal diffusion to the

Gaussian equations.

6.1.2 Perturbative Expansion About the Kinetic Equation

The above derivation was based on an expansion about the moment equations. The

same result can also be obtained from an expansion about the kinetic equation with

the ellipsoidal statistical collision model of Holway [48]. To do this, it is convenient to

write the collision operator in a slightly different form. This is done by first assuming

(1− ν) = ε ¿ 1 and rewriting the expression for the tensor Tij as

Tij = (1− ν)RTδij + νΘij

= εRTδij + (1− ε)Θij

= Θij + ε [RTδij −Θij]

= Θiα [δαj − εΛαj] , (6.12)

where ΘiαΛαj = [RTδij −Θij]. It can be seen in equation 6.3 that T−1
ij is needed. This

can be written as

T−1
ij = [δiα − εΛiα]−1 Θ−1

αj . (6.13)

Provided the spectral radius of εΛiα is less than unity, a fact that is true given the

assumption of the smallness of ε, the term [δiα − εΛiα]−1 can be formally expanded as

[δiα − εΛiα]−1 = δiα + εΛiα + ε2Λ2
iα + ε3Λ3

iα + · · · =
∞∑

n=0

εnΛn
iα (6.14)

where the notation Λ3
iα = ΛiβΛβγΛγα and Λ0

iα = δiα has been used. Equation 6.3 can

therefore be rewritten as

GES =
ρ

m(2π)3/2(det Tαβ)1/2
exp

(
−1

2

( ∞∑
n=0

εnΛn
iα

)
θ−1

αj cicj

)
. (6.15)
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The summation in the exponent can be rewritten as a product of terms as

GES =
ρ

m(2π)3/2(det Tβγ)1/2

∞∏
n=0

exp

(
−1

2
(εnΛn

iα) θ−1
αj cicj

)

=
ρ

m(2π)3/2(det Tβγ)1/2
exp

(
−1

2
θ−1

ij cicj

) ∞∏
n=1

exp

(
−1

2
(εnΛn

iα) θ−1
αj cicj

)

=
ρ

m(2π)3/2(det Tβγ)1/2
exp

(
−1

2
θ−1

ij cicj

) ∞∏
n=1

( ∞∑

k=0

(−1
2
εnΛn

iαθ−1
αj cicj

)k

k!

)

=
ρ

m(2π)3/2(det Tβγ)1/2
exp

(
−1

2
θ−1

ij cicj

) [
1 +

(
− ε

2
Λiαθ−1

αj cicj

)
+O (

ε2
)]

. (6.16)

At this point, using the small scaling parameter, ε, the scaled distribution function is

assumed to have the form

F = G (
g(0) + εg(1) + ε2g(2) + ε3g(3) + · · · ) . (6.17)

This is then substituted into the scaled kinetic equation using equation 6.16, which yields

∂F
∂t

+ vk
∂F
∂xk

+ = −Pr

ετ

{
F − G

[
1 +

(
− ε

2
Λiαθ−1

αj cicj

)]}
, (6.18)

where the smallness parameter multiplying the relaxation time is akin to assuming that

the collision operator will force general distribution functions towards a Gaussian on a

very fast time scale. Equation 6.18 can be rewritten by gathering terms of similar order

in ε,

Pr
τ
G [

g(0) − 1
]
+ ε

[
∂g(0)G

∂t
+ vk

∂g(0)G
∂xk

− Pr
τ

{(
1
2
GΛiαθ−1

αj cicj

)− g(1)G}]

+ε2 [· · · ] + ε3 [· · · ] = 0 . (6.19)

It is clear that the zeroth-order solution to this equation is g(0) = 1. Retaining first-order

terms, the relation

g(1)G = − τ

Pr

[
∂G
∂t

+ vk
∂G
∂xk

− Pr

2τ
GΛiαθ−1

αj cicj

]
, (6.20)

is obtained. Substitution of this relation into the unscaled kinetic equation (i.e., using

F = G (
1 + g(1)

)
) and taking moments using the weighting functions V = [m, mvi ,mvivj]

leads to
〈
V

∂G
∂t

〉
+

〈
V

∂
(
g(1)G)

∂t

〉
+

〈
Vvk

∂G
∂xk

〉
+

〈
Vvk

∂
(
g(1)G)

∂xk

〉
=

Pr

τ
〈V (GES − G)〉 − Pr

τ

〈
V

(
g(1)G)〉

. (6.21)
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The second term on the left-hand side, as well as the second term on the right-hand side,

must be equal to zero. This is because solution consistency dictates that
〈
V

(
g(1)G)〉

cannot alter the zeroth-order values of 〈VG〉. Once the moments have been computed,

equation 6.21 can be written as

∂U

∂t
+

∂Fk

∂xk

+
∂

∂xk

〈
Vvkg

(1)G〉
=

C

τ
(UES −U) , (6.22)

where U is the solution state, UES is the solution state variables obtained from the

ellipsoidal statistical distribution function, Fk is the flux diad and C is a vector arising

from the collision operator. It is therefore clear that
〈
Vvkg

(1)G〉
must be determined.

The same consistency argument made earlier shows that the moments
〈
mvig

(1)G〉
and〈

mvivjg
(1)G〉

must be zero and that
〈
mvivjvkg

(1)G〉
=

〈
mcicjckg

(1)G〉
. It is this moment

which must be determined. This can be written as

〈
mcicjckg

(1)G〉
= − τ

Pr

〈
mcicjck

(
∂G
∂t

+ vl
∂G
∂xl

− Pr

2τ
GΛlαθ−1

αmclcm

)〉
. (6.23)

The moment
〈
mcicjckclcm

Pr
2τ
GΛlαθ−1

αm

〉
represents the integral of odd functions and is thus

equal to zero. The completion of this derivation, therefore, requires the calculation of〈
mcicjck

∂G
∂t

〉
and

〈
mcicjckvl

∂G
∂xl

〉
. These integrations will be demonstrated separately,

beginning with
〈
mcicjck

∂G
∂t

〉
. This integration will make use of the fact that

1

G
∂G
∂t

=
1

G
∂G
∂ρ

∂ρ

∂t
+

1

G
∂G
∂ui

∂ui

∂t
+

1

G
∂G

∂Θij

∂Θij

∂t
. (6.24)

The derivatives of the Gaussian distribution function with respect to the quantities ρ, ui

and θij can be shown to be

1

G
∂G
∂ρ

=
1

ρ
, (6.25)

1

G
∂G
∂ui

= Θ−1
ik ck , (6.26)

1

G
∂G

∂Θij

= −1

2

1

det Θγδ

∂ det Θγδ

∂Θij

− 1

2

∂Θ−1
kl

∂Θij

ckcl . (6.27)
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This results in the following expression

〈
mcicjck

∂G
∂t

〉
=

odd︷ ︸︸ ︷〈
mcicjck

1

ρ
G ∂ρ

∂t

〉
+

〈
mcicjckΘ

−1
αl clG ∂uα

∂t

〉

+

〈
mcicjck

[
−1

2

1

det Θγδ

∂ det Θγδ

∂Θαβ

− 1

2

∂Θ−1
γδ

∂Θαβ

cγcδ

]
G ∂Θαβ

∂t

〉

︸ ︷︷ ︸
odd

= Θ−1
αl 〈cicjckclG〉 ∂uα

∂t

= Θ−1
αl

[PijPkl + PikPjl + PilPjk]

ρ

{
−uβ

∂uα

∂xβ

− 1

ρ

∂Pαβ

∂xβ

}

= −1

ρ

[
Pij

∂Pkβ

∂xβ

+ Pik
∂Pjβ

∂xβ

+ Pjk
∂Piβ

∂xβ

]

−
[
Pijuβ

∂uk

∂xβ

+ Pikuβ
∂uj

∂xβ

+ Pjkuβ
∂ui

∂xβ

]
. (6.28)

The moment
〈
mcicjckvl

∂G
∂xl

〉
can be integrated as

〈
mcicjckvl

∂G
∂xl

〉
=

∂

∂xl

〈mcicjckvlG〉 −
〈
G ∂

∂xl

[mcicjckvl]

〉

=
∂

∂xl


〈mcicjckclG〉+ ul 〈mcicjckG〉︸ ︷︷ ︸

odd




−
〈
G

[
mcicjvl

∂ck

∂xl

+ mcickvl
∂cj

∂xl

+ mcjckvl
∂ci

∂xl

]〉

=
∂

∂xl

〈mcicjckclG〉+

〈
G

[
mcicjvl

∂uk

∂xl

+ mcickvl
∂uj

∂xl

+ mcjckvl
∂ui

∂xl

]〉

=
∂

∂xl

〈mcicjckclG〉+

odd︷ ︸︸ ︷〈
G

[
mcicjcl

∂uk

∂xl

+ mcickcl
∂uj

∂xl

+ mcjckcl
∂ui

∂xl

]〉

+ul

〈
G

[
mcicj

∂uk

∂xl

+ mcick
∂uj

∂xl

+ mcjck
∂ui

∂xl

]〉

=
∂

∂xl

[
PijPkl + PikPjl + PilPjk

ρ

]

+ul

[
Pij

∂uk

∂xl

+ Pik
∂uj

∂xl

+ Pjk
∂ui

∂xl

]
. (6.29)

This series of steps made use of the facts that ∂vi

∂xj
= 0 and ∂ck

∂xl
= −∂uk

∂xl
.

Combination of equations 6.28 and 6.29, followed by some simple algebra, leads to
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the relation

Qijk =
〈
mcicjckg

(1)G〉
= − τ

Pr

[
Pkl

∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)]
,

(6.30)

which is exactly the same result as obtained by the previous derivation based on a

perturbative expansion applied directly to the moment equations. It should also be

pointed out that these same thermal diffusion terms can also easily be used “as is” with

the diatomic form of the Gaussian moment equations.

6.2 Regularized Gaussian Moment Equations

When the proposed treatment for thermal diffusion is inserted into the standard unmod-

ified Gaussian moment equations for diatomic gas flow, the resulting equations for the

regularized closure can be written as

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0 , (6.31)

∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + Pik) = 0 , (6.32)

∂

∂t
(Pij + ρuiuj) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij)

− ∂

∂xk

(
τ

Pr

[
Pkl

∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)])

= −3Pij − Pkkδij

3τt

− 2(Pkk − 3Erot)

15τr

δij , (6.33)

∂

∂t
(Erot) +

∂

∂xk

(ukErot) = −3Erot − Pkk

5τr

. (6.34)

As can be seen, the moment equations for density, momentum, and rotational energy are

unmodified. The additional thermal-diffusion terms are present only in the six transla-

tional energy equations.

6.2.1 Solid-Wall Boundary Conditions

For this study, the same Knudsen-layer boundary conditions for the 10-moment equations

as mentioned above were utilized. However, the thermal diffusion terms which are added
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to the standard Gaussian closure when used with Knudsen-layer boundary conditions [7]

do not allow for temperature slip between the gas and solid boundary. However this

phenomenon is expected for moderate Knudsen-number flows and must be accounted

for. Temperature-slip boundary conditions have been previously studied [85]. For the

present work, the following expression is used

T = Tw + gλ
∂T

∂ni

, (6.35)

where T is the temperature of the fluid at the boundary, Tw is the temperature of the

wall, ni is the unit normal to the wall, and g is the slip distance factor given by the

expression

g =
10π

16Pr

(
2− αt

αt

)
γ

γ + 1
. (6.36)

Here αt is a thermal accommodation coefficient which describes the fractional extent to

which molecules which impact a surface and are re-emitted from it have their energy

adjusted to that of a stream of particles in thermal equilibrium with the wall; αt = 0

corresponds to reflected particles having no change to their energy and αt = 1 corresponds

to particles begin fully thermally accommodated by the wall. These boundary conditions

can be combined with Knudsen-layer boundary conditions, described earlier in chapter 4,

by assuming that particles are emitted from solid boundaries at the temperature predicted

by the slip condition of equation 6.35.

6.3 Parallel AMR Finite-Volume Scheme

In order to explore the present regularized 10-moment model, the same parallel high-

order Godunov-type finite-volume scheme with block-based adaptive mesh refinement

(AMR) from the previous chapters was utilized. The elliptic fluxes arising from thermal

diffusion are calculated using the diamond-path reconstruction technique [16, 25].

The time-marching method used is the same predictor-corrector method shown in

equations 4.47 and 4.48. This point-implicit technique, which treats the flux terms ex-

plicitly, is not ideal for the regularized moment equations. This is due to the fact that

when the fluxes contain elliptic terms the stability limit of the time-marching scheme

is proportional to 1/(∆x)2. As Knudsen numbers increase (i.e., length scales become

small) this limit on the time step quickly becomes extremely restrictive. This is another

numerical reason why hyperbolic equations are preferable, the time-step restriction on
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hyperbolic equations is only proportional to 1/∆x. Nevertheless, for the cases to be

considered herein, the computational expense involved in the solution of the regularized

moment equations was high, but not intractable.

6.4 Numerical Results

Application of the regularized Gaussian closure discussed above to some standard flow

problems is now considered for a range of Knudsen numbers. For the calculation of the

mean free path required to determine the Knudsen number, the gas is assumed to be

comprised of hard spheres and equation 4.46 is again used.

6.4.1 Shock-Structure Calculations

As a preliminary study into the behaviour of the Gaussian closure with the present cor-

rection for thermal diffusion, one-dimensional planar shock structures were investigated

for shock waves of differing strengths travelling through argon, as was investigated in

chapter 4. The internal structure of shocks is characterized by highly non-equilibrium

features and represents a significant challenge for any non-equilibrium model. The results

of the present investigation can be seen in figures 6.1 and 6.2 where normalized density

and one entry of the generalized heat-flux tensor, Qxxx, are plotted. The density is again

normalized by the relation

ρ? =
ρ− ρu

ρd − ρu

,

where ρu and ρd are the upstream and downstream densities respectively. The heat-flux

entry Qxxx is normalized as

Q?
xxx =

Qxxx(
pxx

√
pxx

ρ

) .

Results for shock Mach numbers, Mas, of 1.2, 1.5, and 2 are shown.

Again, due to hyperbolicity of the standard moment equations, above a critical Mach

number a discontinuity is observed, as was explained in chapter 4. This discontinuity

can clearly be seen in the Mas = 1.5 and Ms = 2 cases of figures 6.1(b) and 6.1(c).

Conversely, it can be seen that the proposed correction for thermal diffusion leads to

smooth (fully dispersed) shock transitions for a wide range of shock Mach numbers, as

should be expected by the regularization procedure. It can also be seen that for lower-

Mach-number cases, the agreement between the regularized Gaussian moment equations
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Figure 6.1: Normalized density variations through shock waves with shock Mach numbers

of (a) Mas = 1.2, (b) Mas = 1.5, and (c) Mas = 2 as predicted by regularized Gaussian

model.

and DSMC calculations is generally quite good. However, for the Mas = 2 case, the

generalized Gaussian and the DSMC results begin to differ due to the increased amount

of non-equilibrium effects present. A comparison of the predicted normalized values of

Qxxx for the regularized Gaussian closure and DSMC are shown in figure 6.2. Again it

can be seen that there is very good agreement, especially for shock Mach numbers of 1.2

and 1.5.
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Figure 6.2: Normalized heat-flux variations through shock waves with shock Mach num-

bers of (a) Mas =1.2, (b) Mas =1.5, and (c) Mas =2 as predicted by regularized Gaussian

model.

6.4.2 Heat Transfer Between Infinite Plates

A good test case to verify the proper implementation of the temperature-slip boundary

conditions is heat transfer between infinite isothermal plates. This case can be used both

to ensure that the correct temperature slip is predicted at the boundary and to study

the predicted heat transfer between the plates over a range of flow regimes and Knudsen
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numbers. It is expected that for low-Knudsen-number situations, the temperature slip

between the boundary and the fluid should be imperceptible. It is only as the Knudsen

number increases into the slip-flow regime that any appreciable slip should be observed.

Finally, in the limit of infinite Knudsen number, the temperature slip should be perfect

and the fluid should have a uniform temperature throughout.

Figure 6.3(a) shows the temperature of argon gas at one of the solid plates for the

situation where the plate temperatures differ by 20 K. This temperature is normalized

by the formula

T ? =
T − Tm

Tw − Tm

,

where T ? is the normalized temperature, T is the temperature of the gas at the boundary,

Tw is the temperature of the solid wall, and Tm is the temperature of the gas midway

between the plates. It can be seen that all of the expected behaviours detailed above are

observed; there is no noticeable slip (T ? ≈ 1) in the low-Knudsen-number situations and

the slip approaches perfect slip conditions (T ? → 0) as the Knudsen number increases.

Non-continuum effects are also very evident when the predicted heat transfer between

the plates is considered. This data has been plotted in figure 6.3(b). This figure shows

the predicted heat flux for the continuum Navier-Stokes equations, the Navier-Stokes

equations with slip-temperature boundary conditions, solutions obtained using the reg-

ularized Gaussian moment equations with slip boundary conditions, and the heat flux

predicted by integration of two half Maxwellians emitted from the solid walls (the free-

molecular solution); these have all been normalized with respect to the free-molecular

solution. It can be seen that the extended Gaussian moment equations together with

slip-temperature boundary condition transition from the continuum solution to a free-

molecular limit which is slightly higher than the true free-molecular solution. This is a

consequence of the derivation used to calculate the slip distance (equation. 6.36). It is

possible to “tune” the slip distance so as to obtain the correct free-molecular heat flux

for the case of heat transfer between two plates, however it would only be correct in this

situation. It seems more advisable to use the equation for slip distance given above as

this is derived from more physical arguments.

6.4.3 Subsonic Flow Past a Circular Cylinder

In order to investigate whether the new thermal-diffusion terms provided by the regular-

ization procedure improve flow predictions for transition regime flows, subsonic airflow
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(a) (b)

Figure 6.3: Heat transfer between infinite plates: (a) normalized temperature of the gas

the wall, (b) predicted heat flux between the plates using regularized Gaussian model.

past a circular cylinder is again considered. With hopes of obtaining better agreement

for higher-Knudsen-number situations than was found is sections 4.5.6 and 5.2.2, these

flow situations were re-computed using the regularized Gaussian moment equations. Fig-

ure 6.4 shows the results of this effort.

Before considering the results of figure 6.4, it should be mentioned that it was found

that the slip-temperature boundary conditions described above introduce numerical dif-

ficulties for the cylinder flows and often result in aphysical negative temperatures at the

boundary when a large temperature gradient at the surface of the cylinder is produced

by compressibility effects. This is especially true for higher-Knudsen-number situations

when length scales are very small and even small temperature differences produce large

gradients. In order to obtain solutions, it was found that isothermal boundary conditions

had to be imposed at the cylinder wall. This was carried out by maintaining a fixed or

constant value for the wall temperature, Tw.

In figure 6.4, it is observed that for lower-Knudsen-number cases the good agreement

between the Gaussian moment equations and the experimental results is not degraded.

As the Knudsen number increases, it can be seen that the thermal diffusion leads to a

reduction of the drag coefficient. Initially this seems promising as the original unmodified

Gaussian closure tends to vastly over-predict the drag at high Knudsen numbers, however

the reduction in the drag caused by the inclusion of heat transfer becomes too large. The
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Standard Gaussian, S=0.027
Regularized Gaussian, S=0.027
Coudeville et al., S=0.107
Standard Gaussian, S=0.107
Regularized Gaussian, S=0.107

Figure 6.4: Coefficients of drag for S = 0.027 and S = 0.107 airflow past a circular

cylinder computed using the standard and regularized Gaussian moment closure on a

body-fitted mesh as compared to experimental results of Coudeville et al. [74]

drag is now under-predicted for high Knudsen numbers.

6.4.4 Transonic Flow Past a NACA0012 Micro Airfoil

As a final example and to illustrate the importance of heat transfer in many transition-

regime flow problems, transonic steady flow of air around a NACA0012 micro-airfoil at

zero angle of attack is again considered. This is the same situation as was considered

in section 4.5.7. For the case of interest, the free-stream Mach and Reynolds numbers

are M=0.8 and Re=73, respectively, and the Knudsen number is Kn=0.017 based on

the chord length. Numerical predictions for this flow were obtained using the regularized

Gaussian moment equations, with extensions for a diatomic gas, and are given in figure

6.5(b).

Numerical predictions of the distribution of the flow density are again shown in the

figures. For comparison, results obtained using the DSMC scheme by Sun and Boyd [6]

and corresponding experimental results based on the measurements of Allegre, Raffin

and Lengrand [76] are also reproduced here in figures 6.5(c) and 6.5(d).



6.5. Observations 91

It is evident from the comparisons of figures 6.5(a)–6.5(d) that the predictions ob-

tained using the standard and regularized Gaussian closure agree surprisingly well with

both the DSMC and experiment results in the vicinity of the leading edge of the airfoil.

In fact, the 10-moment model provides a better estimate of the stagnation-point density

than the DSMC method, which tends to overestimate this value. The disagreement with

DSMC results and experimental measurements in the stagnation region illustrates the

imperfections, uncertainties, and challenges with predicting micro-scale non-equilibrium

flows, even with particle-based methods.

In spite of the good predictive capabilities of the standard Gaussian model for the

leading edge region of the airfoil, the moment closure results in predicted flow densi-

ties that seem to be very much under-predicted along the length of the airfoil towards

the trailing edge. Again, a similar finding was reported in the previous work of Suzuki

and van Leer [77]. While it may be argued that some of this disagreement between

the Gaussian closure and DSMC and experimental data may be attributed to the ap-

plication of boundary conditions, the inclusion of thermal diffusion via the regularized

Gaussian closure provides greatly improved agreement between the moment closure re-

sults and those of both DSMC and experiment, particularly towards the trailing edge

of the airfoil. In general, the overall agreement between the regularized Gaussian and

DSMC and experimental results are very good and this strongly indicates the importance

of non-equilibrium heat transfer for this class of flow problem. The comparisons would

also suggest that a physically realizable and hyperbolic moment closure which properly

accounts for non-equilibrium thermal transport has the potential to perform very well

for problems of this type.

6.5 Observations

A new regularized form of the Gaussian closure has been developed, based on pertur-

bative expansion techniques applied both to the moment equations and the underlying

kinetic equation. It has been shown that this extension to the standard Gaussian mo-

ment equations can lead to improved results for transition-regime flows in which heat

transfer has a significant effect. There are, however, several issues in the derivation

which should be mentioned. First, the assumption that deviations from the moment

quantities predicted by the Gaussian closure will be attenuated rapidly by collisional

processes which lead to the introduction of ε on the right-hand side of equation 6.9 is
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(a) (b)

(c) (d)

Figure 6.5: Comparison of the normalized density contours around a NACA0012 micro

airfoil: (a) predictions of the standard Gaussian moment equations, (b) predictions of the

the regularized Gaussian moment equations, (c) predictions of the DSMC-based method

of Sun and Boyd [6] and (d) experimental data of Allegre, Raffin and Lengrand [76].

not well founded as relaxation times for higher-order moments tend to be larger than for

lower-order moments [21].

There is a related problem with the derivation using the kinetic equation. Remem-

bering the relation between the Prandtl number and the parameter ν in the ellipsoidal

statistical collision model ((1 − ν)Pr = 1), it can be seen that the assumption that
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(1 − ν) = ε ¿ 1 is equivalent to assuming that the Prandtl number of the gas is much

larger than unity. This is in contrast with many typical gases.

It should also be mentioned that the ellipsoidal statistical collision model’s adherence

to Boltzmann’s H theorem has only been demonstrated for monatomic gases. However,

experience obtained during this study suggests that for the present purposes it also leads

to good results for diatomic gases.

The advantage of the regularized 10-moment equations is that they provide a set

of PDEs for non-equilibrium, viscous, heat-conducting gas flows. The elliptic nature of

the added terms is similar to the elliptic terms present in the Navier-Stokes equations.

The numerical solution of the new equation can therefore be relatively easily carried out

using virtually any of the standard numerical frameworks and techniques devised for the

solution of the Navier-Stokes equations. Unfortunately, one of the main advantages of

standard moment equations has been lost: their uniform hyperbolicity. It is for this

reason that a hyperbolic set of higher-order moment equations that provides a treatment

for heat transfer is sought. This will be the subject of chapter 7.
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Chapter 7

Higher-Order Moment Closures

It has been demonstrated in chapters 4 and 5 that the Gaussian closure offers a fully hy-

perbolic treatment for viscous gas-flow prediction. As was stated earlier, this 10-moment

system obtained closure through the choice of a maximum-entropy distribution function

constrained by the choice of moments which yields no heat transfer by construction. Al-

though the regularization procedure developed in chapter 6 leads to useful fluid-dynamic

equations that include heat transfer, the resulting moment equations have an elliptic na-

ture and strict hyperbolicity is lost. Following the successes of the 10-moment maximum-

entropy closure, high expectations for closures of this type to effectively model viscous

heat-conducting gas flows seem justified and higher-order members of the Levermore

hierarchy, for example the 14-, 20-, and 35-moment closures, do provide a hyperbolic

treatment for heat-transfer effects. Unfortunately things are not so easy. There exist

two impediments to the use of higher-order maximum-entropy moment closures. Firstly,

closed-form expressions for the integrals of the maximum-entropy distribution functions

do not exist in general. This means that expressions relating the closure coefficients,

α(N), to the macroscopic moments, U (N), cannot be found. The result of this is that

at every instance that a flux is needed, the entropy maximization problem must be

solved numerically, as shown in section 3.2. This maximization problem must be solved

iteratively in a procedure that requires the repeated accurate numerical integration of

distribution functions whose domain stretches from negative to positive infinity in all

directions of velocity space. This problem adds a huge numerical expense to the solution

of higher-order moment closures, however there is a more subtle and far more devastating

issue. It has been shown that for all members of the Levermore hierarchy of moments

closures which contain moments corresponding to super-quadratic velocity weights there

95
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exist physically realistic moment values for which the underlying entropy maximization

problem has no solution [28, 29]. In these regions the whole mathematical framework on

which the method is based breaks down.

In this chapter, a simplified one-dimensional 5-moment maximum-entropy model is

considered in order to better study the practical implications of both of these challenging

issues. Several techniques aimed at rectifying the problems associated with higher-order

maximum-entropy closures are presented and numerical solutions to several canonical

flow problems are discussed.

7.1 Mathematical Properties of One-Dimensional

Moment Closures

In order to examine the modelling issues associated with higher-order maximum-entropy

closures, kinetic theory applied to a one-dimensional gas is considered. A one-dimensional

gas is defined as a gas whose molecules can only have velocities in one space dimension. In

the case of no external acceleration fields, the Boltzmann equation for a one-dimensional

gas simplifies to
∂F
∂t

+ v
∂F
∂x

=
δF
δt

. (7.1)

Now independent variables velocity, v, and position, x, are scalars. Similarly, Maxwell’s

equation of change simplifies to

∂

∂t
〈mMF〉+

∂

∂x
〈mvMF〉 = ∆[MF ] . (7.2)

An N -moment system of moment equations corresponding to velocity weights V (N) can

be written as
∂U(N)

∂t
+

∂F(N)

∂x
= S , (7.3)

where F is now a vector rather than a diad and S is the local source vector arising from

inter-particle collisions.

One-dimensional moment equations have some remarkable mathematical properties

which can be examined by rewriting equation 7.3 as

∂U(N)

∂t
+

∂F(N)

∂U(N)

∂U(N)

∂x
= S . (7.4)

When polynomial velocity weights are used to generate the moment equations, the flux

of one moment will be a moment that is of one order higher. For the simplified one-

dimensional situation, the fact that velocity is a scalar means that there is only one
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moment of each order and the flux Jacobian, ∂F(N)

∂U(N) , has the structure of a companion

matrix having the form

∂F(N)

∂U(N)
=




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 0 · · · 1

a0 a1 a2 a3 · · · a(N−1)




. (7.5)

Companion matrices1 are interesting as their characteristic equation, p(λ), has the form

p(λ) = a0 + a1λ + a2λ
2 + a3λ

3 + · · ·+ a(N−1)λ
(N−1) − λN . (7.6)

The N roots of this equation, λn, represent the N eigenvalues of the matrix. Moreover,

the matrix with right eigenvectors as columns that corresponds to a companion matrix

is a Vandermonde matrix of the form

R̄ =




1 1 1 · · · 1

λ0 λ1 λ2 · · · λ(N−1)

λ2
0 λ2

1 λ2
2 · · · λ2

(N−1)

λ3
0 λ3

1 λ3
2 · · · λ3

(N−1)
...

...
...

...
...

λ
(N−1)
0 λ

(N−1)
1 λ

(N−1)
2 · · · λ

(N−1)
(N−1)




(7.7)

It is known that for all hyperbolic systems there exists a diagonal matrix, W, con-

taining eigenvector scalings, wi, such that systems of the form shown in equation 7.4 can

be written in symmetric form as

H̄
∂α

∂t
+ J̄

∂α

∂x
= S , (7.8)

where H̄ = R̄W̄R̄T and J̄ = R̄W̄Λ̄R̄T are symmetric matrices while α are the so-

called entropy variables and Λ is a diagonal matrix containing the eigenvalues of the flux

Jacobian [86]. It was shown in section 3.1 that for maximum-entropy moment closures,

the symmetrizing variables are in fact the closure coefficients. These coefficients are also

1It should be noted that companion matrices are often, but not always, presented as having the
structure of a matrix which is the transpose of the matrix above. The mathematical properties of
companion matrices presented here are not changed by working with the transpose.
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the entropy variables for the system, while H̄ and J̄ are the Hessians of the density and

flux potentials, as given earlier in equations 3.16 and 3.17.

For the one dimensional case, both of the Hessians H̄ and J̄ are Hankel matrices

whose entries are moments of the maximum-entropy distribution function. That is, they

have the form

H̄ =




U0 U1 U2 · · · UN−1

U1 U2 U3 · · · UN

U2 U3 U4 · · · ...
...

...
...

. . . U2N−3

UN−1 UN · · · U2N−3 U2N−2




, (7.9)

and

J̄ =




U1 U2 U3 · · · UN

U2 U3 U4 · · · UN+1

U3 U4 U5 · · · ...
...

...
...

. . . U2N−2

UN UN+1 · · · U2N−2 U2N−1




, (7.10)

where here Un is the nth-order conserved moment.

It is at this point that a very interesting property of one-dimensional maximum-

entropy moment closures can be demonstrated. By carrying out the matrix multiplication

H̄ = R̄W̄R̄T and J̄ = R̄W̄Λ̄R̄T with R̄, H̄, and J̄ defined by equations 7.7, 7.9, and

7.10 respectively, it can be seen that the conserved velocity moments can be expressed

as

Un =

(N−1)∑
i=0

wiλ
n
i for n ≤ 2N − 1 . (7.11)

That is, the eigenvalues of the system are the N Gauss quadrature points for which

the zeroth to the (2N − 1)th moments of the maximum-entropy velocity distribution

function are captured exactly and the N eigenvector scaling factors, wi, are in fact

the corresponding weights for the numerical integration rule. The relationship between

the Vandermonde decomposition of a Hankel matrix and Gauss Quadrature rules has

been known for some time [87, 88]. However, the surprising relationship between Gauss

quadrature points and the eigenvalues of a maximum-entropy moment system does not

seem to be in the published literature pertaining to moment closures for kinetic theory.
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7.2 Navier-Stokes-Like Equations for a

One-Dimensional Gas

In order to assess the advantages that the proposed hyperbolic moment closures have over

traditional fluid-dynamic equations, a one-dimensional equivalent to the Navier-Stokes

equations will be examined. The derivation of these equations for the one-dimensional

gas is detailed here.

7.2.1 One-Dimensional Maxwell-Boltzmann Distribution and

3-Moment Equilibrium Closure

The equilibrium Maxwell-Boltzmann distribution function for a one-dimensional gas can

be written as

M =
ρ

m

√
ρ

2πp
exp

(
− ρ

2p
c2

)
. (7.12)

This distribution function has moments:

ρ = 〈mM〉 ,

ρu = 〈mvM〉 , 0 = 〈mcM〉 ,

ρu2 + p =
〈
mv2M〉

, p =
〈
mc2M〉

,

ρu3 + 3up =
〈
mv3M〉

, 0 =
〈
mc3M〉

,

ρu4 + 6u2p +
3p2

ρ
=

〈
mv4M〉

,
3p2

ρ
=

〈
mc4M〉

,

ρu5 + 10u3p + 15u
p2

ρ
=

〈
mv5M〉

, 0 =
〈
mc5M〉

.

(7.13)

If this equilibrium distribution function is substituted into Maxwell’s equation of change,

the result is a three moment system that can be written as

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (7.14)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0 , (7.15)

∂

∂t

(
ρu2 + p

)
+

∂

∂x

(
ρu3 + 3up

)
= 0 . (7.16)

This 3-moment Euler system describes one-dimensional gas flow in thermodynamic equi-

librium. The system has wavespeeds u + a, u, and u− a with a =
√

3p/ρ.
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7.2.2 Collision Operators for a One-Dimensional Gas

The form of the BGK collision operator [36] is unaltered for a one-dimensional gas and

can be written as
δF
δt

= −F −M
τ

. (7.17)

Even though the aim of this chapter is to develop hyperbolic moment equations with a

treatment for heat conduction, this collision operator will be sufficient. There is no need

to worry about choosing a collision operator that has a tunable Prandtl number for this

situation, as was needed in the previous chapter, because, by definition, one-dimensional

gases are not permitted directional anisotropies. There is therefore no equivalent viscosity

in this case and a Prandtl number cannot be defined nor is it relevant. The relaxation

time in this collision operator will be tuned so as to agree with the thermal conductivity

of the soon-to-be defined Navier-Stokes-like equations in the continuum limit.

7.2.3 Chapman-Enskog Expansion for a One-Dimensional Gas

and Navier-Stokes Model

The Navier-Stokes-like equations for a one-dimensional gas can be derived through a

Chapman-Enskog expansion, as was done for the derivation of the regularized Gaussian

closure in section 6.1.1 of chapter 6. Once again it is convenient to define the fourth

moment

k =
〈
mc4F〉− 〈

mc4M〉
=

〈
mc4F〉− 3p

ρ
= r − 3p

ρ
, (7.18)

which is the deviation of the fourth moment r = 〈mc4F〉 from its value in thermodynamic

equilibrium. Next, the third-order random-velocity heat-transfer moment q = 〈mc3F〉
and k are written as perturbative expansions about their equilibrium value as

q = q(M) + εq(1) + ε2q(2) + ε3q(3) + · · · , (7.19)

k = k(M) + εk(1) + ε2k(2) + ε3k(3) + · · · . (7.20)

The moment equation for the second-order moment 〈mv2F〉 can be written for a general

distribution function as

∂

∂t

(
ρu2 + p

)
+

∂

∂x

(
ρu3 + 3up + q

)
= 0 . (7.21)

It is the moment q that corresponds to the heat flux and is not present in the equilibrium

Euler equations for a one-dimensional gas (equations 7.14–7.16). The moment equation
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that describes the evolution of q is then written with a scaled BGK collision term as

∂q

∂t
+ 4q

∂u

∂x
+ u

∂q

∂x
+ 3p

∂

∂x

(
p

ρ

)
+

∂k

∂x
= − q

ετ
. (7.22)

Here the smallness parameter ε on the right-hand side of the equations again signifies

that any deviation from equilibrium is attenuated very rapidly. The expansions for q and

k, equations 7.19 and 7.20, are now inserted and terms of equal order in ε are gathered.

Once this is done it can be seen that the zeroth-order terms lead to the equation

q(M) = 0 , (7.23)

and

k(M) = 0 , (7.24)

as required. The first-order approximation to the heat-flux moment is then found to be

q(1) = −3pτ
∂

∂x

(
p

ρ

)
. (7.25)

This expression can then be combined with equation 7.21 to yield the one-dimensional

Navier-Stokes-like equations that will be used as a representative continuum-regime

model for comparison in this chapter. The resulting transport equations can be sum-

marized as follows:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (7.26)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0 , (7.27)

∂

∂t

(
ρu2 + p

)
+

∂

∂x

(
ρu3 + 3up

)− ∂

∂x

(
3pτ

∂

∂x

(
p

ρ

))
= 0 . (7.28)

7.3 A 5-Moment One-Dimensional

Maximum-Entropy Moment Closure

The lowest-order member of the Levermore hierarchy for a one-dimensional gas which

provides a treatment for heat transfer is a 5-moment system. The vector of generating

weights is V(5) = [1, v, v2, v3, v4]T; the resulting maximum-entropy distribution function

is

F (5) = e(α0+α1v+α2v2+α3v3+α4v4) , (7.29)
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and the corresponding moment equations are

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (7.30)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0 , (7.31)

∂

∂t

(
ρu2 + p

)
+

∂

∂x

(
ρu3 + 3up + q

)
= 0 , (7.32)

∂

∂t

(
ρu3 + 3up + q

)
+

∂

∂x

(
ρu4 + 6u2p + 4uq + r

)
= − q

τ
, (7.33)

∂

∂t

(
ρu4 + 6u2p + 4uq + r

)
+

∂

∂x

(
ρu5 + 10u3p + 10u2q + 5ur + s

)
=

−1

τ

(
4uq + r − 3

p2

ρ

)
. (7.34)

It is the fifth-order random-velocity moment s = 〈mc5F〉 which is not a member of the

solution vector, and must therefore be determined from a closure relation. As explained

earlier, the standard BGK relaxation operator is used to represent the collision terms.

The distribution function of equation 7.29 has been studied previously in the field

of probability [89, 90, 91, 92]. It is known that moments of this distribution function,

〈mvnF〉, cannot be expressed as a closed-form function of the closure coefficients. This

means that the closing flux cannot be expressed as an explicit function of the lower-order

moments that are present in the solution vector. It is for this reason that the entropy-

maximization problem must be solved numerically at every time a flux is needed in any

numerical solution procedure for the moment equations.

Again, this is not the only hindrance to the use of such closures. As with all higher-

order maximum-entropy closures, Junk has shown that there exist physically realizable

moment states for this system for which the entropy-maximization problem has no so-

lution. In these regions the entire mathematical framework of the maximum-entropy

moment closure breaks down [28, 29].

7.4 Moment Realizability

The term moment realizability refers to the existence of a function with certain specified

properties that correspond to a given set of moments. Although a finite set of velocity

moments can not in general be used to uniquely specify a distribution function and

multiple distributions can usually be defined which share the same N moment densities,

in assessing moment realizability, the question is asked whether any distribution function
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with specified properties can correspond to the given set of moments.

7.4.1 Physical Realizability

The question of physical realizability is a question of whether a positive, semi-definite,

probability-density function exists which corresponds to certain prescribed moments. For

any given set of velocity weights, M = m[1, vi, vivj, . . .]
T, one can construct polynomials,

P(vi), as

P(vi) = aTM , (7.35)

where a is a column vector containing the coefficients of the polynomial. For any positive-

valued distribution, F , and polynomial, P , it is clearly a requirement that

< ||P(vi)||2F> = aT <MMTF> a = aTȲa ≥ 0 , (7.36)

and thus the moments present in the real symmetric matrix Ȳ, given by

Ȳ =<MMTF> , (7.37)

are physically realizable provided this matrix is positive definite. It should be noted,

that in assessing the physical realizability of a given moment state, the vector of velocity

weights, M, does not only need to be equal to the vector of generating weights, V(N), of

the known moments. In fact, for a distribution function to be realizable, the matrix Ȳ

must be positive definite for every possible choice of M. In order to assess the physical

realizability of a specific moment state, the vector, M, which will lead to the known

moments being included in Ȳ should be chosen.

For situations in which Ȳ is not positive definite, it follows that the velocity moments

it contains are not consistent with any possible positive-valued distribution function

and, hence, are not physically realizable. The preceding analysis for physical moment

realizability follows from the early work of Hamburger [93, 94] and is closely related to

the now classical Hamburger moment problem.

7.4.2 Physical Realizability of 5-Moment Distribution

Functions

By dimensional analysis and the requirement of Galilean invariance, it can be shown that,

without loss of generality, a 5-moment distribution function, can be non-dimensionalized
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such that ρ = 1, u = 0, and p = 1. The questions of realizability can therefore be

explored on a non-dimensional q?-r? plane with

q? =
1

ρ

(
ρ

p

) 3
2

q and r? =
1

ρ

(
ρ

p

)2

r (7.38)

Once this non-dimensionalization has been carried out, the matrix Ȳ of equation 7.37

that will show the region of physical realizability for the five moments considered in the

above closure can be generated using the velocity weights M = [1, v, v2] and can be

written as

Ȳ =




1 0 1

0 1 q?

1 q? r?


 . (7.39)

This matrix is positive-definite for all states for which r? ≥ 1 + (q?)2. These states are

therefore physically possible. This is not to say that all points on this plane are realizable

by a distribution function of the form given in equation 7.29, but that for any state that

r? ≥ 1 + (q?)2 there exists some corresponding positive-valued distribution function.

7.4.3 Realizability of Maximum-Entropy Distribution

Functions

As has been shown by Junk, there do exist moment states which satisfy the constraints

on physical realizability but for which the entropy-maximization problem does not have

a solution (i.e., there is no corresponding distribution function of the form given in equa-

tion 7.29) [28, 29]. In these situations the distribution function that has the maximum

entropy while being consistent with the moments cannot be said to exist.

Following the analysis of Junk, it can be shown that the physical region for which

the entropy-maximization problem cannot be solved is the line on which q? = 0 and

r? > 3. This last constraint is particularly troubling, as the point at the end of this line,

q? = 0 and r? = 3 is the point that corresponds to local thermodynamic-equilibrium.

The physically realizable region and line along which no maximum-entropy distribution

exists is depicted in figure 7.1.

This issue of non-solvability of the entropy-maximization problem is related to the

inability to satisfy simultaneously all of the restrictive conditions on the closure coeffi-

cients, α(N), which ensure that the polynomial (α)(N)TV(N) in equation 3.6 decreases

toward negative infinity in all directions as |vi| becomes large. More devastating still,
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Figure 7.1: Region of physical realizability and realizability of maximum-entropy distri-

bution function for the one-dimensional 5-moment system.

for all higher-order moment closures, the equilibrium state lies on the boundary in mo-

ment space separating regions in which the entropy maximization problem can be solved

and regions in which a solution is not possible [29]. This seems to leave little hope

that numerical solutions to moment closure problems can be computed for any practical

situations.

Investigation of the behaviour of the non-dimensional closing flux, s?, as a function

of q? and r? shows the practical nature of the problem of realizability for this 5-moment

system. The closure is not defined on the line extending upward from the point (0, 3). It

can be seen in figure 7.2 that as this line is approached from either the left or the right,

the closing flux diverges quickly towards negative of positive infinity respectively. For

practical use of higher-order moment closures, it is not only the mathematical problem

of realizability which must be overcome as even in realizable regions, the flux becomes

arbitrarily large and could never be computed using finite-precision arithmetic. This

issue could be referred to as a problem of numerical realizability.
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Figure 7.2: Non-dimensionalized closing flux s? for the one-dimensional, 5-moment,

maximum-entropy closure.

7.5 Realizable Distribution Functions

One possible technique to avoid issues with non-realizability of maximum-entropy closures

that is explored herein is to modify slightly the assumed form for the distribution function.

This can be accomplished by adding an additional term or factor, σ, to the exponential

of equation 3.6 to yield

F (N) = e(α
(N)TV(N)+σ) = e(α

(N)TV(N))fw , (7.40)

where fw = eσ. This type of modification to the maximum-entropy moment distribution

was first proposed by Au [95] and then later re-considered by Junk [96]. The modifi-

cation is equivalent to multiplying the distribution function by a factor fw. This factor

can be viewed as a “window” function that attenuates the distribution at high veloci-

ties, thus ensuring the distribution remains finite. In general, σ is a velocity-dependent

term that must be chosen such that it approaches negative infinity more quickly than

the polynomial, α(N)TV(N), can approach positive infinity as |vi| becomes large in any

direction. This allows the closure to remain valid for all physically realizable sets of

velocity moments.
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In the case that σ is not a function of the closure coefficients, proof of hyperbolicity as

described in chapter 3 remains valid and the hyperbolic properties of the moment closure

are retained. A simple example where this is true is to take σ = −b|vi|n where b is a

positive real value and n is an even integer larger than the highest power of the velocity

weights in V(N). In this case, ∂σ/∂α(N) = 0 and the proof of hyperbolicity remains

entirely unaltered. Unfortunately, for velocity-weight vectors in the Levermore hierarchy,

the closure is no-longer Galilean invariant for this choice of σ. Taking σ = −b|ci|n leads

to a Galilean-invariant closure; however, in this case, ∂σ/α 6= 0 and hyperbolicity of the

closure is not assured. This is because it is no longer possible to ensure in a general

manner that hαα is symmetric positive definite.

In practise, it would seem prudent to define σ to be a function of the local solution

so as to ensure Galilean invariance of the closure. Moreover, it has been found that it is

also desirable to have the effective width of the window function, σ, be dependent on the

solution so as to match the standard deviation of the unmodified distribution in some

fashion and thereby result in a more appropriate windowing function. In the current

work, the modification to the maximum-entropy distribution is chosen to have the form

σ = −b

(
ρ

p

)L+2
2

|ci|L+2 , (7.41)

where L is the highest exponent of the velocity weights used in the moment closure

and b is some specified positive number. This form for σ clearly makes strict proof of

hyperbolicity elusive; however, it can be shown through numerical experiments that the

resulting moment equations are well behaved and remain hyperbolic for a wide range of

flow conditions.

One cause for concern with this proposed approach may be its treatment of equilib-

rium conditions as the modified distribution function no longer contains the Maxwellian.

Nevertheless, under equilibrium conditions, the moments of the modified distribution

function used in the closure are in full agreement with those of the Maxwellian up to

one order higher than the order of the closure provided that the velocity weights of the

Levermore hierarchy are used. In addition, all odd-order random velocity moments of

the modified assumed-form for the distribution function vanish and are equal to those of

the Maxwellian under equilibrium conditions.

It should be noted that with the introduction of the window function no longer re-

quires the strict use of the velocity weights, V(N) or C(N), proposed in the Levermore
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hierarchy as the window function must be used to ensure that the distribution approxi-

mate function remains finite regardless of the velocity weights. Other choices are therefore

possible for the velocity moments of the closure while still remaining both realizable and

hyperbolic [96].

7.5.1 Alternate Remedies for Non-Realizability

Recently, Schneider [30, 31] has proposed an alternate approach to dealing with the

realizability of maximum-entropy closures. He proposes appropriately relaxing some of

the equality constraints on the moments in the entropy minimization procedure when

defining the maximum-entropy distribution. This leads to a maximum-entropy solution;

however, it is one that does not satisfy the full set of predicted moments (only those

that can be satisfied and represented by the maximum-entropy distribution). Hauck et

al. [31] have subsequently carried out a thorough mathematical analysis of this alternate

approach to modifying maximum-entropy closures.

Mathematically, this approach does preserve hyperbolicity while leading to universally

realizable closures. However, there remain practical issues that are not resolved. The

new closure is modified only in the area where the traditional closure is non-realizable;

all other regions are unaltered. Referring to figure 7.2, it is clear that even in regions

where the maximum-entropy distribution function exists, there are areas where practical

computation of the closing flux will be problematic. In fact, the closing flux still ap-

proaches infinity as the problematic line is approached and there are regions arbitrarily

close to equilibrium where the closing flux is arbitrarily large.

7.5.2 Application to One-Dimensional 5-Moment System

The application of the windowing technique shown above is now considered for the one-

dimensional 5-moment system. The resulting distribution function is

F (5) = eα0+α1c+α2c2+α3c3+α4c4−b(ρ/p)3c6 = eα0+α1c+α2c2+α3c3+α4c4e−b(ρ/p)3c6 , (7.42)

where fw = e−b(ρ/p)3c6 is the window function. The parameter b can be adjusted to modify

the effective width of the window. For b=0, the maximum-entropy closure is recovered.

Figure 7.3 shows the numerical computation of s? as predicted by the new closure for a

wide range of physically realizable situations for b = 10−4 and b = 10−5. For these two

values of b, the modified realizable distribution function fully spans the region in q?-r?
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Figure 7.3: Predicted fifth-order non-dimensional random-velocity moment, s?, as a func-

tion of q? and r? for the 5-moment one-dimensional realizable moment closure with (a)

b=10−4; and (b) b=10−5.

space of all physically realizable moments and values for s? are computable. In fact, the

proposed closure is realizable for all positive non-zero values of b. It is interesting to note

that s? does not appear to be a smooth function of q? and r? as indicated by the sharp

changes in the contour lines.

From figure 7.3, it is evident that the modification to the maximum-entropy dis-

tribution function has resulted in a moment closure which covers the whole realizable

moment space; however, formal proof of global hyperbolicity is not possible in this case.

Hyperbolicity of the proposed closure is instead investigated numerically. The flux Ja-

cobians are computed numerically using a second-order accurate centred finite-difference

technique. Eigenvalues of the Jacobians are then computed numerically. The system of

moment equations is deemed hyperbolic whenever the eigenvalues are real. Figure 7.4

shows the largest imaginary part of the computed eigenvalues as a function of q? and r?

for the normalized distribution function, again for the cases where b=10−4 and b=10−5.

The computed eigenvalues do not remain real, and hence, the system is not globally

hyperbolic. Fortunately, as b decreases, the region of hyperbolicity expands greatly. It

should be obvious that for b = 0 the closure will be hyperbolic but not realizable and

as b is increased the closure is now realizable but the region of hyperbolicity is reduced

and does not span the full range of realizable moments. This points to a trade-off in the
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selection of the realizability parameter b: it must be non-zero and large enough so that

all moments are numerically integrable (numerically realizable) but sufficiently small so

that the closure remains hyperbolic for the non-equilibrium flow conditions of interest.

In order to gain a feel for the degree of non-equilibrium behaviour which is contained

in the hyperbolic region, the orbits of moments describing the structure of shock waves

with shock Mach numbers of 2, 4, and 8 as predicted by a high-resolution numerical

solution of the BGK kinetic equation (equation 7.1) are shown in both figures 7.4(a)

and 7.4(b). The orbit corresponding to a shock with an upstream Mach number of 2

is quite small as compared to that of the stronger shocks. It can be observed that, if

b is taken to be 10−5, even the relatively high shock-Mach-number case remains in the

hyperbolic region. The appearance of complex eigenvalues along the line across which s?

seems to be a non-smooth function of q? and r? is most likely due to the unsuitability of

finite differences across this line. The hyperbolic nature of the closure and its moment

equations is difficult to evaluate on this line.

7.5.3 Godunov-Type Finite-Volume Scheme

As a preliminary investigation of the predictive capability offered by the proposed higher-

order realizable hyperbolic moment equations, a numerical solution procedure has been

constructed for the one-dimensional moment system described above. The moment equa-

tions are solved using a Godunov-type finite-volume scheme. The HLL [97] approximate

Riemann solver is used to evaluate inter-cellular fluxes, for which estimates for the max-

imum and minimum wave speeds are based on the numerical evaluation of the eigenval-

ues of an approximate flux Jacobian for the moment closure. Higher-order accuracy is

achieved through piecewise limited linear reconstruction and a point-implicit predictor-

corrector time-marching scheme is again used to advance the solution [14].

As stated earlier, for the 5-moment closure there is no explicit conversion from con-

served moments, U(N), to the closure coefficients, α(N). The evaluation of the highest-

order flux requires that all of the coefficients be known at each time step. These co-

efficients can be determined by finding the solution to equation 3.25 with the modified

distribution function used to define a modified density potential. This leads to a mini-

mization problem given by

S(U(N)) = −min
α(N)

[
<exp

(
αTV(N) + σ

)
> −αTU(N)

]
. (7.43)
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Although the resulting solution from the minimization of the functional given in equa-

tion 7.43 above is no longer the mathematical entropy and the corresponding distribution

function is not the maximum-entropy distribution, the minimization process still defines

the relationship between the predicted moments and closure coefficients. As this function

can be shown to be convex, the minimization problem can be solved using an approx-

imate Newton’s method. In some cases, it is possible for the computed update from

Newton’s method to move the vector α(N) to a location where numerical integration of

the moments is not possible. When this happens, a simple back-tracking technique is

used to step back into a computable region of moment space.

This technique for synchronization of α(N) and U(N) involves many numerical in-

tegrations of the velocity distribution function and is quite computationally expensive

compared to the other elements of the one-dimensional flow solver. A technique to reduce

the number of re-synchronizations required is therefore very desirable. One possibility is

to again make use of the Hessian of the density potential, ∂2h/∂α2 = ∂U/∂α to update

the closure coefficients after each time step by exploiting the relationship

∆α =

(
∂U

∂α

)−1

∆U . (7.44)

If this update of the coefficients is sufficiently accurate, re-synchronization of α in terms of

U may not be required, thus greatly reducing the cost of the scheme. However, determin-

ing the effectiveness of this simplified update and deciding when a full re-synchronization

is required can be somewhat difficult. One possibility is to apply the simple update above

and integrate one velocity moment and compare it to the target value. A large deviation

in the two values can be used as a trigger for a costly re-synchronization.

7.5.4 Numerical Results for Stationary Shocks

Predictions of the structure of stationary shocks for the one-dimensional gas obtained

by solving the 5-moment version of the physically-realizable moment equations are now

considered. The numerical results are shown in figure 7.5 and compared with numerical

solutions to the equivalent Navier-Stokes-like equations given previously for a range of

shock Mach numbers. Due to the expense of solving the re-synchronization problem,

it was only affordable to use a grid in physical space comprising 300 volumes, however

this resolution seems to give good results. High-resolution numerical solutions of the

one-dimensional BGK kinetic equation for this one-dimensional gas are also depicted
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for comparison. The discrete-velocity method of Mieussens [4] is used to obtain the

numerical solution of the one-dimensional kinetic equation with a region of velocity space

stretching from −5, 000 m/s to 5, 000 m/s discretized into 500 equally spaced points. It

can plainly be observed that the 5-moment system is in much better agreement with the

BGK solution than the Navier-Stokes-like solution. As with all hyperbolic systems, a

discontinuity appears in the moment solution when the incoming flow speed exceeds the

maximum wavespeed in the system. In this case, however, the size of the jump is very

small. This is in contrast to many other moment-closure predictions of shock structure

where the size of the discontinuity tends to grow with the shock Mach number and quickly

dominates the profile.

7.5.5 Numerical Results for the Riemann Problem

In order to explore further the behaviour of the modified 5-moment closure across a

range of Knudsen numbers, a Riemann initial-value problem is considered. The case

of interest consists of a two-state initial condition with a pressure ratio of 2.5 and a

density ratio of 2. Three different situations were examined corresponding to Knudsen

numbers of 2.3× 10−5, 2.3× 10−2, and 23, thus spanning the continuum, transition, and

free-molecular flow regimes. Again, a computational grid of 300 volumes is used. The

resulting solutions are shown in figure 7.6. Here the 5-moment system is compared to the

3-moment closure (which is equivalent to the Euler equations for a one-dimensional gas),

high-resolution numerical solutions of the BGK kinetic equation, and numerical solution

of the equivalent Navier-Stokes-like equations. All of which were described above. Again,

the discrete-velocity method of Mieussens [4] is used to obtain the kinetic solutions now

with a resolution of 200 points stretching from −2, 000 m/s to 2, 000 m/s.

It can be seen in figures 7.6(a) and 7.6(b) that, in the continuum regime, all three

non-equilibrium solutions treatments are in close agreement with the equivalent Euler-

like equations for this one-dimensional gas. On this scale of interest, the regions of the

flow which are not in local thermodynamic equilibrium are much smaller than the domain

of interest and are generally not resolved.

Figures 7.6(c) and 7.6(d) depicts the numerical results for the transition regime, lying

somewhere between continuum and free-molecular results. In this regime, the 3-moment

model, which can only correctly account for flows in thermodynamic equilibrium, gives

an identical solution, although on a different scale, to that found for the continuum
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regime. The non-equilibrium solutions of the 5-moment model, Navier-Stokes equations,

and BGK equation on this scale are all still quite similar to each other in this case, but

are now quite distinct from the equilibrium or equivalent Euler-like result. For the non-

equilibrium solutions, the wave structures that appear as discrete near discontinuities in

the continuum situation are still identifiable but are now quite diffuse and approach one

another such that they interact, yielding a solution with a smooth transition between the

two constant initial states at either end of the solution domain.

The free-molecular results for the Riemann initial-value problem are given in fig-

ure 7.6(e) and 7.6(f). For this case, the 3-moment model again yields results that are the

same as those for the continuum flow solution. For the modified 5-moment model, due to

infrequent inter-particle collisions, the terms associated with the collision operator have

now become so insignificant that the moment closure essentially behaves as a purely hy-

perbolic system without relaxation. It yields a solution with five distinct waves separated

by essentially constant solution states. This non-equilibrium result is in contrast to the

BGK kinetic equation solution, which consists of a single smooth transition between the

two constant initial states, with no clearly identifiable wave structure. The agreement

between 5-moment closure solution and the exact or BGK kinetic solution is certainly not

very good in this case, indicating that, while it is still possible to obtain solutions, there

is an upper bound on the Knudsen number for which the 5-moment model remains phys-

ically valid. Higher-order moment closures would be needed to improve on this result.

For this highly rarefied case, the speed with which significant heat-transfer effects are

carried in the Navier-Stokes case is over predicted and is so high that any temperature

differences are smoothed out extremely rapidly. These thermal effects move so quickly

relative to the hyperbolic components of the equations that they impact the boundary of

the computational domain almost immediately and therefore boundary conditions play

an important role; in this case a zero-derivative Neumann boundary condition was used

for all variables. Regardless of which boundary condition is used, the speed at which

temperature differences are diffused away leads the Navier-Stokes-like equations to pre-

dict solutions that approach the solution to the isothermal Euler solution. This is why a

two-wave solution is predicted in this case.
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7.6 Closed-Form Approximation to a

Maximum-Entropy Moment Closure

As stated earlier, one of the major stumbling blocks to the adoption of maximum-entropy-

based moment closures is the lack of a closed-form expression for closing moment fluxes.

It will now be shown that a simple surface fit can provide an adequate approximation

to the true maximum-entropy 5-moment closure above, equations 7.30–7.34. By using

a fit in this manner, the complexity and expense of moment and distribution function

resynchronization can be avoided. Numerical-solution costs are therefore reduced by

orders of magnitude. Moreover, and somewhat serendipitously, this fit will also avoid the

problem of non realizability of the true maximum-entropy closure.

Firstly, it should be noted that along the line defining the envelope of the region of

physical realizability, r? = 1 + (q?)2, the distribution function is comprised of two delta

functions. On this line the closing relationship can be easily found analytically and is

s? = (q?)3 + 2q?. Next, realizing that the region of realizability is parabolic, it seems

sensible to parametrize this space using a parabolic transformation of the form given by

r? =
2(q?)2

σ
+ 3− σ with 0 ≤ σ ≤ 2 . (7.45)

For this mapping, lines of constant σ are parabolas and σ is the distance down from

local equilibrium, r? = 3, that these lines intersect the r? axis. These parabolas have

curvatures that increase from σ = 2, where the parabola coincides with the limit of

physical realizability, to σ = 0 where the parabola collapses to the line q? = 0 and

r? ≥ 3, thus covering the entire realizable region.

It was found through numerical experimentation that along the lines of constant σ the

moment s? can be well approximated by a cubic function of q? as s? = p3(σ)(q?)3+p1(σ)q?.

The functions p3(σ) and p1(σ) must be fit by first numerically finding finite difference

approximations to these derivatives along the line q? = 0 and 1 ≤ r? ≤ 3. These data

points are then fit using standard fitting software; it has been found that these functions

are well approximated as

p1 = a1 + b1σ + c1σ
2 + d1σ

3 + e1σ
4 + f1σ

5 + g1σ
6 , (7.46)
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with

a1 = 9.9679007422678190 e1 = 4.3920303941514343

b1 = −9.234367231975216 f1 = −1.452821303578764

c1 = 8.2142492688404296 g1 = 0.2006200057926356

d1 = −7.372320367163680

,

and

p3 =
a3 + b3σ + c3σ

2 + d3σ
3

1 + e3σ + f3σ2 + g3σ3
, (7.47)

with

a3 = −20840.93761193234 e3 = −1077.797102997202

b3 = 7937.3772948278038 f3 = −3072.303291055466

c3 = 405.05250560053173 g3 = 1056.0890741355661

d3 = −329.3827765656151

.

Having determined the fits above, the closing flux is expressible as a closed form function

of q? and r?.

7.6.1 Accuracy of Fit and Hyperbolicity

Figures 7.7(a) and 7.7(b) show the non-dimensionalized closing flux, s? of the 5-moment

maximum entropy system as well as the surface fit shown above. The relative error is

plotted in figure 7.6.1. It can be seen that away from the line on which the maximum-

entropy distribution does not exist and the predicted flux is singular, the fit is quite

good. In practise, the fact that the fit does not approximate the singularity well is

actually advantageous as the fit transitions smoothly across the r? axis and numerical

overflow is avoided.

Once again, there is no formal proof of hyperbolicity when this surface fit is used for

the closing flux. However, experience gained from numerical calculation of many flows

using this fit suggests that non-hyperbolicity does not seem to be an issue for a wide

range of conditions.

7.7 Numerical Calculations of Shock Structures

As a preliminary investigation into the behaviour of the fitted moment closure, shock

waves of Mach numbers 2, 4, and 8 are again considered. Once again, the same Godunov-

type finite-volume scheme is used. The costly re-synchronization step is now unnecessary
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as the closing flux is known as a function of the known moments. A computational mesh

with 5, 000 volumes can now easily be used to ensure a solution that is entirely grid-

converged. Eigenvalues must still be determined in order to use the HLL flux function;

these are found numerically using the analytic flux Jacobian.

Comparisons are once again made to high-resolution simulation of the kinetic equa-

tion, 2.8, with the same relaxation collision operator as was used in the moment equa-

tions [36] and with the equivalent Navier-Stokes-like equations for this situation. Fig-

ures 7.9(a), 7.9(c), and 7.9(e) show normalized density profiles for shocks with a Mach

number of 2, 4, and 8 respectively, while normalized heat transfer is shown in fig-

ures 7.9(b), 7.9(d), and 7.9(f).

It can be seen that agreement between the moment equations and the BGK equation is

again very good, far better than the Navier-Stokes-like equations. The profiles predicted

by the surface fit are almost identical to the profiles predicted by the modified, realizable,

5-moment system of section 7.5. The same relatively small discontinuities in the shock

profile are again present. Figure 7.6.1 shows the orbits traced by these shock profiles in

the q̂-r̂ plane. All shocks begin at equilibrium, jump to a non-equilibrium state across

the discontinuity, and return smoothly to equilibrium. It can be seen that in all cases,

the area of largest relative error in the fit is avoided.

7.8 Riemann Problem

Finally, the 5-moment closure fit it used for the computation of the Riemann problem

of section 7.5.5. For this case a computational mesh comprising 3, 000 cells was used.

The results are shown in figure 7.10. One again, solutions are almost identical to those

obtained with the modified, realizable, 5-moment closure. The same transition from a

three-wave equilibrium solution through a diffuse smooth transition into a 5-wave non

equilibrium solution is observed. The only difference in solution that is noticeable to the

eye is in the heat-flux prediction for the free-molecular case (figures 7.6(f) and 7.10(f)).

These solutions, however, are obtained in orders of magnitude less time than the previous

calculations with the costly re-synchronizations of moments and closure coefficients.
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7.9 Remarks Regarding Computational Cost

The computational expense of the different techniques considered in this chapter varied

widely. Although real effort has been made to optimize the solution methods or computer

implementations of the techniques, it is felt that some remarks on computational cost

are warranted.

The numerical solution of the kinetic equation for most of the problems above required

multiple days on a single CPU. Such computations for a realistic three-dimensional gas

would require huge resources. For example, if the same resolution in velocity space was

used in three space dimensions as was used for the shock-structure calculations above,

the solution vector in each cell would have over a hundred million entries! This is clearly

not an attractive option.

The prospects for the moment closure based on a realizable distribution function

shown above are not much better. Computation of the presented shock-structures solu-

tions took more than a day on a single CPU. The extension to a three-dimensional gas

would require the integration of distribution functions which would now exist in three

dimensions. A similar curse of dimensionality that afflicts the kinetic method also affects

this method. For any physically realistic cases the re-synchronization procedure would

be prohibitively expensive.

The surface-fit closure does offer much more affordable option. The computations

carried out above only took several minutes. Moreover, the extension of this method to a

realistic three-dimensional gas does not need to bring the same devastating cost increase

as either the kinetic method or the method based on realizable distribution functions.

The simplest three-dimensional equivalent to the maximum-entropy 5-moment system

shown above is a 14-moment system. Closing fluxes would therefore have to be fit in a

higher-dimensional space, but not by orders of magnitude.

The time required for the Navier-Stokes-like computations varied based on the Knud-

sen number. For low-Knudsen-number cases computations were very fast and only took a

matter of seconds. However, as the Knudsen number increases and length scales get rel-

atively smaller, the time-step restriction required for stability of the calculation becomes

very restrictive due to the partially elliptic nature of the equations.

Solution of the equilibrium 3-moment equations is far faster than all the other meth-

ods. However, with no treatment for non-equilibrium effects, the usefulness of these

equations for practical problems involving any level of non-equilibrium is limited.
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7.10 Observations

Although maximum-entropy-based moment closures are known to have several apparent

disadvantages, including a lack of a closed-form expression for closing fluxes and regions

of non-realizability, it has been demonstrated that these difficulties can be handled in

practise, at least for some closures that contain heat transfer.

The preceding discussion has proposed a technique for the construction of realizable

5-moment moment closures. For this technique, the underlying distribution function is

a modification of the maximum-entropy distribution function that ensures universal mo-

ment realizability for the entire range of physical validity. Global hyperbolicity has been

lost, however through careful selection of the parameter b moments remain numerically

realizable and the closure remains hyperbolic for a very wide range non-equilibrium be-

haviour. The technique leads to usable moment equations, however the cost of their

numerical solution remains somewhat high. Numerical integration of distribution func-

tions is costly, even for the one-dimensional case. For a true three-dimensional gas, the

costs associated with the resynchronization procedure would be overwhelming. However,

the numerical results for the one-dimensional case shown above show the promise of hy-

perbolic moment closures to provide very accurate prediction of non-equilibrium flows.

If such closures are going to be used as a practical tool, more computationally affordable

variants must be sought.

It has also been shown that, for this 5-moment system, a simple surface fit can provide

equally good flow predictions for the cases considered. This includes predictions for highly

non-equilibrium strong-shocks. Eigenvalues must still be obtained numerically, however

the cost of using the surface fit remains orders of magnitude lower than the technique of

using the modified, realizable distribution function with its costly re-synchronizations.

Extension of the methods considered here to a fully three-dimensional gas is how-

ever not necessarily simple. It is anticipated that the modified-distribution technique

of section 7.5 will technically extend to three-dimensions. Nevertheless, the cost of the

accurate numerical integration of multi-dimensional distribution functions required for

the re-synchronization step is expected to be overwhelming.

If hyperbolic moment closures are to be affordable for large-scale, practical, multi-

dimensional problems, closing fluxes should be expressible as a function of known mo-

ments. This was the case for the simple surface fit shown above. A three-dimensional

extension of this technique would require the determination of an appropriate mapping
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(similar to that in equation 7.45) after which closing fluxes can be fit easily; this mapping

may not be obvious to find.

The main point that should be taken from this chapter is not a specific technique

for the construction of hyperbolic high-order moment closures as such, but rather the

promise that they offer for accurate and affordable flow predictions for a wide range of

regimes.
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Figure 7.4: Largest imaginary part of the numerically determined eigenvalues of flux

Jacobian for the modified, realizable, 5-moment moment closure with (a) b = 10−4; and

(b) b = 10−5. The orbits of velocity moments corresponding the transition and internal

structure for stationary shock wave solutions with shock Mach numbers of Ma=2, Ma=4,

and Ma=8 are also shown with the larger orbits corresponding to the higher shock Mach

numbers.
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Figure 7.5: Predicted normalized density and heat-transfer through a stationary shock

wave for a one-dimensional gas as determined using the modified, realizable, 5-moment

closure. The predicted shock structure is compared to results obtained by the direct

numerical solution of the BGK kinetic equation and Navier-Stokes-like equations for a

range of shock Mach numbers, (a)–(b) Ma=2; (c)–(d) Ma=4; and (e)–(f) Ma=8.
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Figure 7.6: Predicted normalized density and heat flux for the Riemann initial-value

problem as determined using the modified, realizable, 5-moment closure as compared

to the equilibrium 3-moment closure, the kinetic equation, and the Navier-Stokes-like

solutions for a range of Knudsen numbers: (a)–(b) Kn=2.3×10−5; (c)–(d) Kn=2.3×10−2;

and (e)–(f) Kn=23.
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Figure 7.7: (a) s? predicted by maximum-entropy closure. (b) s? predicted by surface

fit.
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Figure 7.8: Relative error between fit and true moment s? and orbits for shock waves

with Mach numbers 2, 4, and 8.
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Figure 7.9: Predicted normalized density and heat-transfer through a stationary shock

wave for a one-dimensional gas as determined using a surface fit for the closing flux of

the maximum-entropy 5-moment closure. The predicted shock structure is compared to

results obtained by the direct numerical solution of the BGK kinetic equation and Navier-

Stokes-like equations for a range of shock Mach numbers (a)–(b) Ma=2; (c)–(d) Ma=4;

and (e)–(f) Ma=8.
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Figure 7.10: Predicted normalized density and heat flux for the Riemann initial-value

problem as determined using a surface fit for the closing flux of the maximum-entropy 5-

moment closure as compared to the equilibrium 3-moment closure, the kinetic equation,

and the Navier-Stokes-like solutions for a range of Knudsen numbers: (a)–(b) Kn =

2.3× 10−5; (c)–(d) Kn=2.3× 10−2; and (e)–(f) Kn=23.
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Chapter 8

Conclusions

This study has been concerned with the application of hyperbolic moment closures to

viscous-gas flow prediction in and out of local thermodynamic equilibrium. Such non-

equilibrium flows are common in many applications including micro-scale situations,

highly rarefied flows and flows subjected to very strong gradients, such as those found

in shock waves. It has been demonstrated that moment closures offer many advantages

when compared to other techniques for gas flow prediction in these situations as well as

in traditional continuum applications. Original contributions include:

• the construction of a two-dimensional Godunov-type finite-volume scheme for the

solution of the Gaussian 10-moment model that allows for solution-directed adap-

tive mesh refinement and provides for efficient parallel solution using large-scale

computational facilities,

• the first thorough exploration of the numerical solution of maxium-entropy mo-

ment closures for viscous gas-flow situations in and out of local thermodynamic-

equilibrium for a large range of canonical flow problems,

• the implementation of a two-dimensional flow solver for the 10-moment method

with a treatment for embedded possibly moving boundaries that are not aligned

with the underlying computational mesh,

• the clear demonstration of moment closure’s relative insensitivity to grid irregulari-

ties that result for the mesh-movement algorithm as compared to similar numerical

solutions to the Navier-Stokes equations,

127
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• the development of a novel set of regularized moment equations based on the Gaus-

sian closure that provide a treatment for non-equilibrium heat transfer through the

introduction of anisotropic thermal diffusion,

• the demonstration of the importance of heat-transfer for micro-scale flows through

the numerical solution of the regularized 10-moment equations for a large set of

flow problems,

• the development and numerical exploration of a set of one-dimensional higher-

order hyperbolic moment equations with a treatment for heat transfer based on a

realizable approximation to the maximum-entropy distribution,

• the development and numerical exploration of one-dimensional higher-order mo-

ment equations resulting from a curve fit for the closing flux of the true maximum-

entropy closure.

The advantages that moment closures have can be divided into two types: mathematical

advantages and modelling advantages. Mathematical advantages include properties of

the continuous form of the moment equations, such as finite speeds of information prop-

agation, and properties of discrete equations resulting from moment systems that make

them more apt for numerical solution. Modelling advantages refers to the expanded range

of physical validity that moment equations possess as compared to other fluid-dynamic

equations.

In chapter 5, it was shown that the first-order nature of moment systems make them

less susceptible to numerical difficulties when being solved on irregular meshes, such as

those resulting from AMR or embedded-boundary treatments. A flow solver that makes

use of a treatment for embedded, moving boundaries was constructed for the solution

of the Gaussian, 10-moment equations. It was shown that the fact that the numerical

solution of moment equations requires only the numerical evaluation of first derivatives

leads to smooth solutions for fluid shear when the numerical solution of the Navier-Stokes

equations leads to oscillations that are directly caused by irregularities in the numeri-

cal grid. Another mathematical advantage that was observed when seeking numerical

solutions to both moment systems and the Navier-Stokes equations using explicit-time-

marching techniques is a stability condition which is often less restrictive for the moment

equations. Time-step restriction for purely hyperbolic systems is inversely proportional

to the grid spacing whereas the restriction for the Navier-Stokes equations is proportional
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to the inverse of the square of this distance; this is due to the nature of the elliptic terms

present in the latter equations. The time-step-restriction advantage that the moment

equations have becomes more and more obvious the higher the Knudsen number gets.

The Gaussian moment equations offer a hyperbolic treatment for compressible, vis-

cous gas flow when there is no heat transfer and, as has been established in chapter 4,

can be used reliably in situations when heat-transfer is not significant. Furthermore,

highly scalable parallel and accurate solution of these moment equations are possible

and the computational cost is not significantly more than performing a similar computa-

tion for solution of the Euler equations governing local equilibrium flow. Unfortunately

for many applications, heat transfer plays an appreciable role. This is especially true for

higher-Knudsen-number flows when heat-transfer can be significant even when tempera-

ture differences are very small. In chapter 6 a regularization technique for the 10-moment

system was shown. This technique involves allowing the distribution function to deviate

slightly from the Gaussian. Moment equations can then be derived either starting from

the kinetic equation with appropriate collision operator or from the unmodified moment

equations. This regularization results in the introduction of non-equilibrium heat-flux

terms with and elliptic nature, thus the mathematical advantages furnished by purely

hyperbolic equations is lost. In exchange for this loss of hyperbolicity, however, the

modelling validity of the system is expanded through the introduction of the new terms.

It was shown that, even for situations with small temperature variations, heat transfer

plays an important role in many transition-regime flows. If any technique is going to pro-

vide reliable predictive capabilities in the transitions regime, it must therefore provide

an accurate treatment for non-equilibrium heat-transfer.

Given the elegance and accuracy of the Gaussian closure to predict viscous, adiabatic,

compressible flow, it would be most desirable if higher-order members of the Levermore

hierarchy would provide a similarly straight-forward treatment for heat-conducting gas

flows. As has been shown, this is unfortunately not the case. The lack of a closed-form

expression for the moments of the maximum-entropy distribution function means that

the closing flux cannot be expressed as a simple function of the moments in the solution

vector. The result of this is an incredibly costly re-synchronization procedure to align

the closure coefficients with the known moments that must be undertaken whenever a

closing flux is needed during a computation. As was shown earlier, this is not the only

impediment to the use of higher-order maximum-entropy moment systems. For all such

closures of higher order than the Gaussian closure, there exist physically realistic moment
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values for which the entropy-maximization problem cannot be solved. In these regions

the entire mathematical framework of maximum-entropy moment closures breaks down.

From a practical standpoint, it is not only the regions where the entropy-maximization

problem does not have a mathematical solution that are an issue. It has been shown that

even in regions where the solution technically exists numerical issue may prevent its solu-

tion. This is due to the fact that the closing flux can become arbitrarily large arbitrarily

close to local equilibrium. Any practical solution to the issue of non-realizability must

therefore not only address regions where the distribution function is mathematically non-

realizable, but also regions where it cannot be realized numerically using finite-precision

mathematics.

These impediments to the adoption of higher-order maximum-entropy moment clo-

sure were explored in chapter 7. As well, two novel possible solutions were proposed. It

was shown that by making a small alteration to the underlying distribution function, a

moment closure that is globally realizable can result. However, this alteration results in

sacrificing universal hyperbolicity and regions where the eigenvalues of the flux Jacobian

are not real are the result. It was shown that by carefully selection of the modification

to the distribution, the region of hyperbolicity can be made large enough to encompass

highly non-equilibrium effects while maintaining numerical realizability. Very good agree-

ment between the new closure and high-resolution solution of the corresponding kinetic

equation was demonstrated for a one-dimensional 5-moment system, even for high-Mach-

number shock-structure calculations. The numerical solution of these closures remains

expensive however. The modification that has provided realizability does not provide

a closed-form expression for closing fluxes. These fluxes must therefore be determined

through an expensive iterative procedure requiring many numerical integrations; this

procedure would be prohibitively expensive for the general three-dimensional case.

A second method allowing the practical application of the one-dimensional 5-moment

system is also shown. This technique is based on a surface-fit approximation to the

closing flux in a non-dimensionalized parabolic space. It was found that this particular fit

conveniently avoids the issues of non-realizability and provides a closed-form expression

for the closing flux, therefore numerical calculations can be undertaken in orders of

magnitude less time than the previous method. It is shown that solution quality of this

surface-fit closure is equally good when compared to solution of the kinetic equation.

Neither of the proposed methods for the generation of practical higher-order moment

systems can be obviously extended to the three-dimensional case. The accurate numerical
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integration of distribution functions required for the first method would be prohibitively

expensive in multiple dimensions. An extension to the surface-fit technique would require

that a suitable mapping of the moment quantities could be found, after which the closing

fluxes would have to be well approximated by simple expressions. This mapping is not

obvious in general. The main idea that should be taken from this study into higher-order

moment systems is that there do exist higher-order moment closures and techniques that

can be used to obtain accurate solutions to highly non-equilibrium flow problems. Other

higher-order moment closures that appear to offer a hyperbolic treatment for viscous,

heat-conducting flows have been recently proposed [32], but the work is still preliminary.

Further study is required in order to determine which moment equations will prove most

fruitful.

8.1 Suggestions and Future Work

This study has clearly demonstrated the general applicability of the 10-moment model

to viscous gas-flow prediction. Some mathematical advantages of moment closures, such

as their reduced sensitivity to grid quality, has also been shown. However, there remain

other issues to investigate. One obvious question is how the numerical solution of moment

equations compares to the solution of the Navier-Stokes equations when fully implicit time

marching schemes are used. The larger size of the solution vector for the moment-closure

case will lead to a larger matrix on the left-hand side, however the first-order nature

of the moment equations will afford higher sparsity. It would be interesting to explore

which situation can be solved more efficiently.

The development of robust moment methods which allow for a hyperbolic treatment

of non-equilibrium heat transfer for three-dimensional gases is also an open problem. The

moment technique presented above that is based on a curve fit for the closing flux seems

to be the a good starting point for future exploration as this is the only method that

could remain affordable in multiple dimensions. For such a technique to work in three

dimensions a suitable mapping of the maximum-entropy fluxes would have to be found

that would allow them to be fit by similar simple functions. This mapping may not be

obvious, however if it could be found, a useful set of hyperbolic moment equations for

the prediction of viscous heat-conducting gases in and out of local equilibrium could be

the result.

From this study, it would seem obvious that moment-closure techniques offer many
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advantages over traditional methods. They offer the promise of partial differential equa-

tions that are accurate in a larger range of flow regimes than traditional equations and can

often be numerically solved more quickly than particle-based methods. The first-order,

hyperbolic, conservation-type equations resulting from moment closures are immediately

solvable using the highly sophisticated numerical techniques which have been developed

for the numerical solution of hyperbolic conservation laws. Even though moment meth-

ods have been studied for some time, this remains a very young field of research that is

wide open for the exploration of many ideas. The path this field will take over the next

years is entirely uncertain, however the promises offered should make the exploration

more than worth the effort.
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