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Abstract
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2010

In the last 10-15 years, large-eddy simulation (LES) has become well established for

non-reacting flows, and several successful models have been developed for the transfer

of momentum and kinetic energy to the subfilter-scales (SFS). However, for reacting

flows, LES is still undergoing significant development. In particular, for many pre-

mixed combustion applications, the chemical reactions are confined to propagating

surfaces that are significantly thinner than the computational grids used in practical

LES. In these situations, the chemical kinetics and its interaction with the turbu-

lence are not resolved and must be entirely modelled. There is, therefore, a need

for accurate and robust physical modelling of combustion at the subfilter-scales. In

this thesis, modelled transport equations for progress variable and flame surface den-

sity (FSD) were implemented and coupled to the Favre-filtered Navier-Stokes equa-

tions for a compressible reactive thermally perfect mixture. In order to reduce the

computational costs and increase the resolution of simulating combusting flows, a

parallel adaptive mesh (AMR) refinement finite-volume algorithm was extended and

used for the prediction of turbulent premixed flames. The proposed LES methodol-

ogy was applied to the numerical solution of freely propagating flames in decaying

isotropic turbulent flow and Bunsen-type flames. Results for both stoichiometric and

lean flames are presented. Comparisons are made between turbulent flame structure

predictions for methane, propane, hydrogen fuels, and other available numerical re-

sults and experimental data. Details of subfilter-scale modelling, numerical solution

scheme, computational results, and capabilities of the methodology for predicting

premixed combustion processes are included in the discussions. The current study
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represents the first application of a full transport equation model for the FSD to LES

of a laboratory-scale turbulent premixed flame. The comparisons of the LES results

of this thesis to the experimental data provide strong support for the validity of the

modelled transport equation for the FSD. While the LES predictions of turbulent

burning rate are seemingly correct for flames lying within the wrinkled and corru-

gated flamelet regimes and for lower turbulence intensities, the findings cast doubt

on the validity of the flamelet approximation for flames within the thin reaction zones

regime.



Contents

List of Tables 9

List of Figures 11

List of Symbols 17

1 Introduction 1
1.1 Turbulent Combustion Modelling . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Overview of Turbulent Combustion Modelling . . . . . . . . . 2
1.1.2 Laminar Premixed Flame Structure . . . . . . . . . . . . . . . 2
1.1.3 Flamelet Regime in Premixed Turbulent Combustion . . . . . 3
1.1.4 Flamelet Assumption in Premixed Turbulent

Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Numerical Approaches for Turbulent Combustion . . . . . . . 10
1.1.6 Large-Eddy Simulation of Premixed Turbulent

Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Filtered Equations for LES Turbulent Premixed Combustion 15
2.1 Favre-Filtered Navier-Stokes Equations . . . . . . . . . . . . . . . . . 15

2.1.1 LES filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Filtered Conservation Equations . . . . . . . . . . . . . . . . . 16
2.1.3 The Closure Problem . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Subfilter-Scale Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Smagorinsky Model . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Subfilter-Scale Kinetic Energy One-Equation Model . . . . . . 24
2.2.4 Other Models and Modelling Used Here . . . . . . . . . . . . 25

2.3 Subfilter-Scale Scalar Transport . . . . . . . . . . . . . . . . . . . . . 26
2.4 Subfilter-Scale Turbulent Transport . . . . . . . . . . . . . . . . . . . 26
2.5 Reaction Rate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 26

5



6 Contents

3 Reaction Rate Modelling and Flame Surface Density Model 29
3.1 Reaction Rate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Thickened Flame Model . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 G-equation Approach . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Flame Surface Density Model . . . . . . . . . . . . . . . . . . 33

3.2 Flame Surface Density Model . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Progress of Reaction and Modelled Transport Equation for Progress

Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Reaction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Theory of Flame Surface Density . . . . . . . . . . . . . . . . 37
3.2.4 Algebraic Models . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.5 Modelled Transport Equation for FSD . . . . . . . . . . . . . 39
3.2.6 Modelling of Propagation and Curvature . . . . . . . . . . . . 40
3.2.7 Modelling of Strain Term . . . . . . . . . . . . . . . . . . . . . 42
3.2.8 Modelling of Turbulent Transport Term . . . . . . . . . . . . 43
3.2.9 Summary of Hawkes and Cant FSD Model . . . . . . . . . . . 43

4 Parallel Adaptive Mesh Refinement Finite-Volume Scheme 47
4.1 Favre-Filtered Governing Equations . . . . . . . . . . . . . . . . . . . 47
4.2 Godunov Finite-Volume Method . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Finite-Volume Formulation of Governing Equations . . . . . . 50
4.2.2 Inviscid (Hyperbolic) Flux Evaluation . . . . . . . . . . . . . . 51
4.2.3 Viscous Flux Evaluation . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Time Marching Scheme . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Block-Based Adaptive Mesh Refinement . . . . . . . . . . . . . . . . 60
4.4 Domain Decomposition and Parallel

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Simulation Results 67
5.1 One-Dimensional Premixed Flames . . . . . . . . . . . . . . . . . . . 68

5.1.1 One-Dimensional Laminar Premixed Flame . . . . . . . . . . 68
5.1.2 One-Dimensional Turbulent Premixed Flames . . . . . . . . . 69

5.2 Two-Dimensional Turbulent Freely Propagating Flames . . . . . . . . 71
5.2.1 Influences of Mesh Resolution . . . . . . . . . . . . . . . . . . 72
5.2.2 Influences of Filter Width . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Predicted Premixed Flame Structure . . . . . . . . . . . . . . 78
5.2.5 Influences of Turbulence Intensity: Comparison

of FSD Model and Thickened Flame Models . . . . . . . . . . 80
5.2.6 Influences of Fuel Type . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Three-Dimensional Turbulent Freely Propagating Flames . . . . . . . 88
5.3.1 Influences of Turbulence Intensity . . . . . . . . . . . . . . . . 89



Contents 7

5.3.2 Time Evolution of Flame Profiles . . . . . . . . . . . . . . . . 91
5.3.3 Behavior of Modelled Terms in FSD Closure . . . . . . . . . . 94
5.3.4 Influences of Stoichiometry . . . . . . . . . . . . . . . . . . . . 96

5.4 Three-Dimensional Turbulent Bunsen Flames . . . . . . . . . . . . . 99
5.4.1 Cases of Interest and Bunsen Flame Setup . . . . . . . . . . . 101
5.4.2 Qualitative Features of LES Flame Structures . . . . . . . . . 103
5.4.3 Analysis and Reduction of LES and

Experimental Image Data . . . . . . . . . . . . . . . . . . . . 105
5.4.4 Quantitative Comparisons of LES and Experimentally

Estimated Values of Flame Height . . . . . . . . . . . . . . . . 111
5.4.5 Quantitative Comparisons of LES and Experimentally

Measured Values of Flame Surface Density . . . . . . . . . . . 112
5.4.6 Quantitative Comparisons of LES and Experimentally

Measured Values of Flame Curvature . . . . . . . . . . . . . . 115
5.4.7 Quantitative Comparisons of LES and Experimentally

Measured Values of Turbulent Burning Rate . . . . . . . . . . 119
5.4.8 Influence of Mesh Resolution . . . . . . . . . . . . . . . . . . . 122

6 Conclusions and Recommendations 125
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . 127

Bibliography 131

Appendices 145

A Eigensystem of the Inviscid Jacobian 145

B Summary of Filtered Governing Equations for Cartesian Frame 149

C Kolmogorov-Petrovski-Piskunov (KPP) Flame Speed Analysis 155



8 Contents



List of Tables

5.1 Summary of the 2D freely propagating turbulence scales and flow con-
ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Summary of the freely propagating turbulence scales and flow conditions. 89
5.3 Summary of turbulence scales and flame conditions for the eight Bunsen-

type flames (cases H–P) considered herein. . . . . . . . . . . . . . . . 102

9



10 List of Tables



List of Figures

1.1 Illustration of the structure of a premixed laminar flame as proposed
by Peters [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Regime diagram for premixed turbulent combustion as proposed by
Peters [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Turbulent premixed combustion regimes proposed by Borghi and Des-
triau [2] illustrated in a case where the fresh and burnt gas temperature
are 300K and 2000K, respectively: (a) wrinkled flamelet, (b) thin re-
action zone, (c) broken reaction zone, T denotes the instantaneous
temperature and T̄ denotes the mean temperature. . . . . . . . . . . 6

1.4 An idealized steady premixed flame in a duct. . . . . . . . . . . . . . 9

4.1 Hybrid average gradient-diamond-path approach for a two-dimensional
grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 An example of two neighbouring8× 8× 8 hexahedral solution blocks:
one which has undergone refinement and one which has not [3]. . . . 63

4.3 Multi-block quadrilateral AMR mesh showing solution blocks at vari-
ous levels of refinement and the corresponding quadtree data structure [3]. 64

4.4 Multi-block hexahedral AMR mesh showing solution blocks at various
levels of refinement and the corresponding octree data structure [3]. . 65

4.5 Two layers of overlapping “ghost” cells contain solution information
from neighbouring blocks [3]. . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Flame profiles for stoichiometric laminar premixed 1D CH4-Air flame. 68

5.2 Comparison of the current 1D FSD-LES simulation results to the pre-
dictions of KPP analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Predicted contours of the flame surface density, ρ̄Σ̃, at t = 0.3 ms.
Results are shown for four different computational grids: (a) uniform
mesh with 64×64 cells; (b) uniform mesh with 128×128 cells; (c)
uniform mesh with 256×256 cells; and (d) uniform mesh with 512×512
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11



12 List of Figures

5.4 Predicted decay of resolved turbulence intensity (a) and predicted tur-
bulent burning rate (b) for the different mesh resolutions: uniform
mesh with 64×60 cells; uniform mesh with 128×120 cells; uniform
mesh with 256×240 cells; and uniform mesh with 512×480 cells. . . . 74

5.5 Predicted contours of FSD and resolved turbulence intensity decay with
different filter sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Predicted contours of fame surface density, ρ̄Σ̃, through the turbulent
flame front obtained using uniform mesh with 128×120 cells and AMR
meshes with 1-, 2- and 3-levels of refinement. . . . . . . . . . . . . . . 77

5.7 Predicted profiles of the progress variable (a), c̃, flame surface density
(a), ρ̄Σ̃, and turbulent burning rate (b) obtained using uniform mesh
with 128×120 cells and AMR meshes with 1-, 2- and 3-levels of refinement. 78

5.8 Flame structure for the 2D stoichiometric CH4-air flame at t=1.5 ms. 79

5.9 Contours of RHS terms in Eq. 3.60 at y = 0 and z = 0 plane for 2D
stoichiometric CH4-air flame at t=1.5 ms. . . . . . . . . . . . . . . . 81

5.10 Predicted CH4 contours for cases A-C at 0.6 ms with FSD model and
thickened flame model: (a) Case A, u′/sL =6.8, with FSD model, (b)
Case A, u′/sL = 6.8, with thickened flame model, F = 5, (c) Case B,
u′/sL =10.4, with FSD model, (d) Case B, u′/sL =10.4, with thickened
flame model, F =5, (e) Case C, u′/sL =20.7, with FSD model, (f) Case
C, u′/sL =20.7, with thickened flame model, F =5. . . . . . . . . . . 83

5.11 Predicted CO and FSD contours for cases A-C at 0.6 ms with FSD
model and thickened flame model: (a) Case A, u′/sL =6.8, with FSD
model, (b) Case A, u′/sL = 6.8, with thickened flame model, F = 5,
(c) Case B, u′/sL = 10.4, with FSD model, (d) Case B, u′/sL = 10.4,
with thickened flame model, F =5, (e) Case C, u′/sL =20.7, with FSD
model, (f) Case C, u′/sL =20.7, with thickened flame model, F =5. . 84

5.12 Predicted turbulent burning rates for freely propagating flame in two-
dimensional decaying isotropic turbulent fields for Cases A-C. . . . . 86

5.13 Predicted FSD contours for different fuels: (a) Methane-air flame, (b)
Propane-air flame, (c) Hydrogen-air flame, and (d) turbulent burning
rate for three different fuels. . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 (a) Initial turbulent flow field. Predicted iso-surfaces of c corresponding
to c=0.5 at time t=0.33 ms for stoichiometric cases with turbulence
intensities: (b) u′/sL = 3.3 (case D) (c) u′/sL = 7.25 (case E) and (d)
u′/sL =14.38 (case F). . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.15 (a) Turbulence burning rate for stoichiometric cases with three different
turbulence intensities (case D, E, and F). (b) Turbulent kinetic energy
for the stoichiometric case with turbulence intensity u′/sL =7.25 (case
E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Figures 13

5.16 Predicted contours of c and FSD at x-z plane for the stoichiometric
cases with turbulence intensities: (a) and (b) u′/sL =3.3 (case D), (c)
and (d) u′/sL =7.25 (case E), and (e) and (f) u′/sL =14.38 (case F). . 92

5.17 Predicted iso-surfaces of c = 0.5 for the stoichiometric case with tur-
bulence intensity u′/sL =7.25 (case E) at time (a) t=0.33 ms and (b)
t=0.65 ms, predicted contours of c at x-z plane for turbulence inten-
sity u′/sL =7.25 at time (c) t=0.33 ms and (d) t=0.65 ms, predicted
contours of FSD at x-z plane for turbulence intensity u′/sL = 7.25 at
time (e) t=0.33 ms and (f) t=0.65 ms . . . . . . . . . . . . . . . . . 93

5.18 Predicted contours of RHS terms of Eq. 3.60 at x-z plane for the sto-
ichiometric case with the turbulence intensity u′/sL = 7.25 (case E)
at time t = 0.65 ms. (a) resolved strain term, (b) resolved propaga-
tion term, (c) resolved curvature term, (d) SFS strain term, (e) SFS
curvature term, and (f) net rate of the change. . . . . . . . . . . . . . 95

5.19 RHS term budget of Eq. 3.60 for stoichiometric cases with turbulence
intensities: (a) u′/sL =3.3 (case D), (b) u′/sL =7.25 (case E), and (c)
u′/sL =14.38 (case F). . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.20 Comparison of predicted iso-surfaces of c=0.5, contours of c and FSD
for stoichiometric (case F) and lean (case G) flames with turbulence
intensity u′/sL =14.38 at time t=0.33 ms; (a) Predicted iso-surfaces of
c=0.5 for stoichiometric flame; (b) Predicted iso-surfaces of c=0.5 for
lean flame; (c) Predicted contours of c at x-z plane for stoichiometric
flame; (d) Predicted contours of c at x-z plane for lean flame; (e)
Predicted contours of FSD at x-z plane for stoichiometric flame; (f)
Predicted contours of FSD at x-z plane for lean flame. . . . . . . . . 97

5.21 Comparison of predicted turbulent burning rates of stoichiometric (case
F) and lean (case G) flames with turbulence intensity u′/sL =14.38. . 98

5.22 (a) Schematic of the premixed Bunsen-type flame [4]. (b) Computa-
tional mesh for the premixed Bunsen-type flame. . . . . . . . . . . . . 100

5.23 Premixed turbulent combustion regime diagram showing the conditions
for the eight Bunsen-type flames (cases H–P, 4 experimental and 8
numerical cases) considered herein. . . . . . . . . . . . . . . . . . . . 102

5.24 Predicted iso-surfaces of the progress variable at c=0.5 for stoichiomet-
ric cases with turbulence intensities at t = 9 ms: (a) u′/sL = 3.3 (case
H), (b) u′/sL =7.25 (case I), (c) u′/sL =14.38 (case J), and lean cases
with turbulence intensities: (d) u′/sL = 3.3 (case L), (e) u′/sL = 6.55
(case M), (f) u′/sL =14.38 (case N). . . . . . . . . . . . . . . . . . . . 105

5.25 Predicted contours of the progress variable at y-z plane for stoichiomet-
ric cases with turbulence intensities at t = 9 ms: (a) u′/sL = 3.3 (case
H), (b) u′/sL =7.25 (case I), (c) u′/sL =14.38 (case J), and lean cases
with turbulence intensities: (d) u′/sL = 3.3 (case L), (e) u′/sL = 6.55
(case M), (f) u′/sL =14.38 (case N). . . . . . . . . . . . . . . . . . . . 106



14 List of Figures

5.26 Predicted contours of the FSD at y-z plane for stoichiometric cases
with turbulence intensities at t = 9 ms: (a) u′/sL = 3.3 (case H), (b)
u′/sL = 7.25 (case I), (c) u′/sL = 14.38 (case J), and lean cases with
turbulence intensities: (d) u′/sL = 3.3 (case L), (e) u′/sL = 6.55 (case
M), (f) u′/sL =14.38 (case N). . . . . . . . . . . . . . . . . . . . . . . 107

5.27 Predicted contours of the temperature at y-z plane for stoichiometric
cases with turbulence intensities at t=9 ms: (a) u′/sL =3.3 (case H),
(b) u′/sL =7.25 (case I), (c) u′/sL =14.38 (case J), and lean cases with
turbulence intensities: (d) u′/sL = 3.3 (case L), (e) u′/sL = 6.55 (case
M), (f) u′/sL =14.38 (case N). . . . . . . . . . . . . . . . . . . . . . . 108

5.28 Comparison of the measurement and LES predictions of the location
or map of the c̄=0.5 contour line in the y-z plane for the stoichiometric
methane-air Bunsen flames with turbulence intensities: (a) u′/sL =3.3
(case H) and (b) u′/sL = 7.25 (case I); and lean methane-air Bunsen
flames with turbulence intensities: (c) u′/sL = 6.55 (case M) and (d)
u′/sL = 14.38 (case N). Experimental measurements taken from Yuen
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Chapter 1

Introduction

In the field of combustion science and engineering, scientific computing is now

truly competitive with experiment and theory as a research tool to produce detailed

and multi-scale information about combustion processes that is not readily available

by using the other techniques. In particular, combustion modelling is an essential

tool for providing a better understanding of the physical mechanisms which are key

to improving the performance and reducing the environmental impact of combustion

systems, such as engines and power plants.

In technical processes, combustion usually takes place within the turbulent rather

than the laminar flow regime, as the turbulence increases the mixing processes in

non-premixed systems and the surface area in premixed systems leading to enhanced

combustion. Moreover, combustion releases heat and generates flow instability, which

enhances the transition to fully turbulent flow. In order to simulate turbulent combus-

tion processes, the various coupling mechanisms that exist between the turbulence and

the chemical kinetics must be investigated and correctly modelled. Turbulent com-

bustion modelling is a growing field of importance bringing important improvements

to our understanding of combustion, and the development of combustion models is a

pacing item in this regard.

This chapter begins by first giving an overview of turbulent combustion modelling,

followed by a description of the flamelet regime in premixed turbulent combustion.

Section 1.1.5 provides a brief overview of different numerical approaches for predicting

1
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turbulent combusting flows as well as a more detailed discussion of large-eddy simu-

lation of premixed turbulent combustion. The final sections of this chapter provide

statements of the motivation, the objectives, and an outline of the thesis.

1.1 Turbulent Combustion Modelling

1.1.1 Overview of Turbulent Combustion Modelling

Combustion generally involves the burning of a fuel and oxidizer to produce heat.

Flames can be classified depending on the way the reactants are introduced in the

combustion zone. The two limiting cases are perfectly premixed and non-premixed

flames. In premixed combustion, the reactants (fuel and oxidizer) are perfectly mixed

at the molecular level before entering the reaction zone. Since there is no more mixing

required, this situation is favorable in terms of burning efficiency, but on the other

hand, there is a risk that the flames will propagate in the premixed reactants upstream

of the burner and cause damage to the combustor and/or engine. Flame stability,

extinction, and flash back are issues of concern.

In non-premixed combustion, the reactants are introduced separately into the com-

bustion chamber and the mixing of the reactants, controlled by convection, molecular

diffusion and turbulent transport, limits the reaction rate. Because of the different

characteristics of these flames, most models for describing turbulent combustion have

been developed specifically for one of these two limiting cases. Fewer others can de-

scribe both as well as the intermediate situation of partially premixed combustion.

In the present work, premixed combustion is of primary interest and is investigated

by numerical methods.

1.1.2 Laminar Premixed Flame Structure

In order to fully understand the possible flow regimes for premixed combustion

which will be discussed in more detail in the sections to follows, it is important

to first briefly review the structure of premixed laminar flames. The structure of
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Figure 1.1: Illustration of the structure of a premixed laminar flame as proposed by
Peters [1].

laminar premixed flame fronts as first proposed by Mallard and Le Chatelier and

later developed by Peters [1] is shown in Figure 1.1. It consists of three rather distinct

and different layers: (i) a preheat layer in which the reaction rates are relatively low;

(ii) an inner layer with significant on-going chemical reactions and heat release; and

finally (iii) an oxidation layer in which the oxidation of radicals formed in the inner

layer is completed [1,7]. The flame front has finite thickness and speed and separates

the unburnt fresh gases (a mixture of fuel and oxidizer) from the burnt hot gases

(a mixture of the hot products of the chemical reactions). The temperature of the

gaseous mixture increases across the flame front while the mixture density decreases

such that the pressure of the mixture remains nearly constant across the flame. The

laminar flame thickness and propagation speed of the flame front are generally defined

by the reaction rates and coefficients of thermal and mass diffusion.

1.1.3 Flamelet Regime in Premixed Turbulent Combustion

The different regimes of turbulent combustion can be summarized on a phase

diagram as a function of several key non-dimensional parameters. Diagrams defining

combustion regimes in terms of the representative length and velocity scales have been
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Figure 1.2: Regime diagram for premixed turbulent combustion as proposed by Pe-
ters [1].

proposed by Barrère [8], Bray [9], Borghi [2], Peters [10], Williams [11], Abdel-Gayed

and Bradley [12], Borghi and Destraiu [2], Peters [13], Pitsch and Duchamp [14], and

Düsing et al. [15]. For the purpose of this discussion, the modified diagram proposed

by Peters [1] will be considered as shown in Figure 1.2.

The nature of the premixed combustion process strongly depends on the length

and time scales in the flame front and in the turbulent flow field. The turbulent and

chemical time scales can be defined as follows:

τt ≈
Λ

u′
, τc ≈

δL

sL

, (1.1)

where Λ, u′, δL, and sL are the integral length scale, the root mean square (RMS)

velocity fluctuation, the laminar flame thickness, and the laminar flame speed. The

root mean square velocity fluctuation, u′, and integral length scale, Λ, can be related

to the turbulent kinetic energy, k, and its dissipation rate, ε, in the following manner

u′ ≈
√

k, Λ ≈ u
′3

ε
, (1.2)
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with τt =k/ε. The Kolmogorov length, time, and velocity scales which represent the

smallest scales in the turbulent flow are defined in terms of kinematic viscosity, ν,

and turbulent dissipation rate, ε,

η ≈
(ν3

ε

)1/4

, τη ≈
(ν

ε

)1/2

, uη ≈ (νε)1/4. (1.3)

The thickness of a laminar premixed flame depends on the ratio of the diffusivity D

to the laminar flame speed sL, δL ≈ D/sL, under the assumption that the Schmidt

number has a value of unity, Sc = ν/D = 1, the turbulent Reynolds number, which

compares the turbulent transport with viscous forces, can be written as

ReΛ =
u′Λ

ν
=

u′Λ

sLδL

. (1.4)

Classical scaling arguments introduce two-dimensionless numbers corresponding to

the limiting values of the turbulence eddies size (from integral length scale Λ to

Kolmogorov scale η). They are:

• The Damköhler number, Da, is defined in terms of the largest eddies and corre-

sponds to the ratio of the turbulence time scale, τt, to the chemical time scale,

τc, and given by

Da =
τt

τc

≈ Λ/u′

δL/sL

. (1.5)

• The Karlovitz number, Ka, is defined in terms of the smallest eddies of Kol-

mogorov scale and is the ratio of the chemical time scale to Kolmogorov time

scale given by

Ka =
τc

τη

≈
(δL

η

)2

≈
(uη

sL

)2

, (1.6)

with

τη ≈
(η

ν

)2

≈
√

ν

ε
, sL ≈

ν

δL

, u2
η ≈ (νε)1/2.

The Kolmogorov scale, rather than the integral length scale, is the key length scale be-

cause the interaction between chemistry and turbulence occurs mainly at the smallest

scales.

The turbulent regime diagram can be plotted as a function of the length, Λ/δL, and

velocity, u′/sL, ratios using logarithmic scales for each axes as shown in Figure 1.2.
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Figure 1.3: Turbulent premixed combustion regimes proposed by Borghi and Des-
triau [2] illustrated in a case where the fresh and burnt gas temperature are 300K
and 2000K, respectively: (a) wrinkled flamelet, (b) thin reaction zone, (c) broken
reaction zone, T denotes the instantaneous temperature and T̄ denotes the mean
temperature.
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The lines of constant Reynolds, Damköhler and Karlovitz numbers can be easily

constructed in the diagram based on the following relations between the characteristic

scales:
u′

sL

= Ka2/3
( Λ

δL

)1/3

= ReΛ

( Λ

δL

)−1

= Da−1
( Λ

δL

)
. (1.7)

Five different combustion regimes may be identified in terms of the length scale ratio,

Λ/δL, and velocity scale ratio, u′/sL. They are as follows:

• Laminar flame regime: ReΛ < 1. The line ReΛ =1 separates the laminar flame

regime from the turbulent combustion regime (ReΛ > 1). As noted previously,

most practical combustion systems operate in the turbulent regime.

• Corrugated and wrinkled flamelet regimes: ReΛ > 1 and Ka < 1. The line

Ka=1 at which chemical time scale is equal to the Kolmogorov scale (Klimov-

Williams criterion), separates the flamelet regime from the thin reaction zones

regime. In these two regimes, the smallest spatial scales of the turbulence, η, are

larger than the flame front thickness, δL, such that the flame front is embedded

in the smallest eddies with its laminar structure intact and unaffected by the

turbulence (see Figure 1.3(a)). the distinctions between the two flamelet regimes

can be summarized as follows:

- Wrinkled flamelet regime: u′ < sL. In this regime, the laminar propaga-

tion is dominant and the interaction between turbulence and combustion

remain limited. The speed of the larger turbulent motions is too low to

wrinkle the flame front up to flame interactions [16].

- Corrugated flamelet regime: u′ > sL. In this regime, the larger turbulent

motions are able to induce flame front interactions leading to the forma-

tions of pockets of fresh and burnt gases. Flame topology changes occur

in the corrugated flamelet regime.

• Thin reaction zone regime: 1<Ka<100. In this regime, the turbulent integral

time scale is still larger than the chemical time scale but the Kolmogorov scales

are smaller than the flame thickness but larger than the reaction zone and are
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able to modify the inner flame structure [16] as shown in Figure 1.3(b). The

flame can no longer be identified as a laminar flame front but is still very much

a wrinkled flame.

• Broken reaction zone regime: Ka>100. In this regime, turbulent motions have

shorter characteristic times than the chemical reaction time. Mixing is fast and

the overall reaction rate is limited by chemistry [16]. The system is intensively

disturbed by the small flow structure so that the reaction may take place in

regions instead of layers as shown in Figure 1.3(c).

The original Klimov-Williams criterion states that laminar flamelets can not be ob-

served in a reacting flow if the Kolmogorov scale, η, is smaller than the flame thickness,

δL. Recent direct numerical simulation studies by Poinsot et al. [17] suggest that the

flamelet regime can be extended to accommodate flames whose internal structure

may be somewhat altered by small scale turbulence without leading to quenching of

the flamelets. This suggests that the validity of flamelet assumption can be extended

beyond the wrinkled and corrugated flamelet zones and well on into the thin reaction

regime. This hypothesis will be examined as part of this thesis work.

1.1.4 Flamelet Assumption in Premixed Turbulent

Combustion

The flamelet concept in premixed turbulent flames has been reviewed extensively

by Peters [10] and Libby and Williams [18]. In many premixed turbulent combustion

applications, turbulent time and spatial scales are longer compared with the chemi-

cal time and spatial scales [9], which results in the chemical reaction generally being

confined to thin propagating surfaces with a thickness between 0.1 mm to 1 mm.

The reacting mixture tends to be composed of unburned reactants and burnt prod-

ucts, separated by thin reacting interfaces called flamelets that preserve their locally

laminar structure. This is the basic premise of the flamelet assumption.

The flamelet assumption reduces the modelling of the entire turbulent combustion

problem to a more tractable two-fluid problem. The problem is reduced to that



Section 1.1. Turbulent Combustion Modelling 9

Figure 1.4: An idealized steady premixed flame in a duct.

of providing a description of the flow variables in the fresh and burnt gases, the

motion and dynamics of the flame surface itself, and the local burning rate. Further

simplifications can be made if it is assumed that the local structure of the reactive

interfaces resembles a strained and curved laminar flame. In this situation, the local

rate of reactant consumption can be approximated by that found for the planar

laminar flame. This effectively decouples the effects of chemistry and turbulence.

Chemical effects work to modify the local laminar flame speed, which may be obtained

from separate laminar flame calculations [19]. The primary effect of the turbulence is

to wrinkle and strain the embedded laminar flamelets. Damköhler [20] was the first to

suggest that flame wrinkling is the main mechanism controlling turbulent flames and

presenting theoretical expressions for the turbulent burning velocity [1]. In Figure 1.4,

a schematic of a propagating premixed turbulent flame front is shown moving locally

at the laminar flame speed, sL, and the turbulent flame speed is defined as the speed

the planar flame would have to move in order to consume the same amount of fresh

gases. Conservation of mass flux, ṁ, yields

ṁ = ρusLAT = ρ̄usTA, (1.8)

where ρ̄u is the mean unburnt mixture density, A is the cross-section area, and AT

is the total flame surface area. Ignoring the fluctuations of density, the increase in

the turbulent flame speed compared to the laminar flame speed is due to the increase

in the total flame surface, AT, resulting from a higher fuel consumption rate for the
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same cross-section area, A, and the relationship between sT and sL can be expressed

as
sT

sL

=
AT

A
= Ξ. (1.9)

The ratio, Ξ, is the flame front wrinkling factor corresponding to the available flame

surface divided by its projection in the mean propagation direction [16]. The wrinkling

will depend on the turbulent Reynolds number and the fresh gas fluctuating velocity,

u′.

One of the most widely used flamelet models of premixed turbulent combustion is

the Bray-Moss-Libby model [21]. It applies a presumed probability density function

(PDF) for the progress variable, c, which consists of two weighted delta functions at

c=0 (unburnt gas) and c=1 (burnt gas). The model introduces the concept of a thin

reacting surface embedded within the turbulent flow. The mean reaction rate, ¯̇ω, is

modelled by Bray [22] using the local flame surface area to volume ratio, Σ, and may

be written as

¯̇ω = ρusLI0Σ, (1.10)

where I0 is a factor that accounts for the effects of flame curvature and strain on the

laminar consumption rate.

Note that there are number of other approaches to the modelling of premixed

turbulent combustion based on the flamelet concept. These include the G-equation

formulation and the flame surface density. These models are discussed in greater

detail in Chapter 3 of this thesis.

1.1.5 Numerical Approaches for Turbulent Combustion

The treatment of the turbulence is an important consideration in the modelling of

turbulent combusting flows. Three different approaches are generally possible. They

are: (i) Direct Numerical Simulation (DNS), (ii) Reynolds-Averaged Navier-Stokes

(RANS), and (iii) Large-Eddy Simulation (LES). In comparison to one another, each

of these methods possess various advantages and disadvantages [23, 24]. DNS is the

most accurate method in which all scales of the turbulent flow field are resolved in the
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computation and no turbulence model is required. It involves the solution of the con-

servation equations down to the smallest physical scales (i.e., the Kolmogorov scales).

While modelling is avoided, this resolution requirement makes DNS computationally

expensive and generally impractical for engineering problems. Note that the num-

ber of grid points required to simulate the full range of turbulence scales, even for

somewhat simple flow geometries, may be estimated to be proportional to Re
9/4
Λ [25],

where ReΛ is the turbulence Reynolds number. For many practical applications, the

turbulence Reynolds number is very large, making computational requirements for

DNS enormous. DNS can be even more unfeasible for reacting flows and/or for flows

having complex geometries. It should be pointed out, however, that DNS has its

place in the numerical prediction of turbulent combustion. It has been applied with

considerable success to low Reynolds number flows and effectively employed as a re-

search tool for model development [18]. Some recent examples of the application of

DNS techniques to problems in combustion are described by Vervisch [26].

RANS approaches introduce the notion of averages of flow variables, and the

time averaged governing equations. This results in unclosed correlations which must

be modelled. RANS methods do not resolve any part of the turbulent fluctuations

and introduce some unclosed terms from the time-averaging procedure. The entire

effect of the turbulent fluctuations and these unclosed terms on the mean flow must

be modelled. In general, the complexity of turbulence makes it impossible for a

single RANS model to represent all turbulent flows and thus some adjustment of

model parameters is often required. Several models have been proposed in the past

such as algebraic models by Baldwin-Lomax [27], one-equation models by Spalart-

Allmaras [28], two-equation models (k-ε by Launder [29], k-ω by Wilcox [30]) and

stress-transport models by Launder-Reece-Rodi [31]. A primary attraction of RANS

approaches is that it is the least expensive approach of the possible methods in terms

of computational effort.

LES represents a compromise between DNS and RANS approaches, where large

structures are explicitly computed and small structures (smaller than the filter scale)

are modelled by subfilter-scale (SFS) models [32]. Thus in LES, there is partial

resolution of the turbulent fluctuations. This partial resolution increases the com-
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putational cost but decreases the importance of modelling and effects of modelling

uncertainty [33,34].

Although not of primary concern here, it should be noted that other numeri-

cal approaches for the treatment of turbulence are possible. These include Hybrid

RANS/LES, Semi-Deterministic Simulation (SDS), and Detached-Eddy Simulation

(DES). Extensive reviews of these alternate approaches can be found in the review

papers by Sagaut [35] and Wagner et al. [36].

1.1.6 Large-Eddy Simulation of Premixed Turbulent

Combustion

For non-reacting flows, large-eddy simulation has become quite well established

in recent years, and several successful models have been developed for the transfer of

momentum and kinetic energy to the subfilter-scales [33]. However for reacting flows,

while very promising, it is still in the early stages. In particular, for many premixed

combustion applications, the chemical reactions are confined to propagating surfaces

that are significantly thinner than the computational grids used in practical LES. In

these situations, the chemical kinetics and its interaction with the turbulence are not

resolved and must be entirely modelled. There is therefore a need for accurate and

robust physical modelling of combustion at the subfilter-scales.

There has been considerable interest in LES of premixed combustion. Möller et

al. [37] have applied a variety of LES combustion models to unsteady bluff body

stabilized flames. Menon and Jou [38] and Kim et al. [39] have successfully applied

LES based on flame front propagation to combustion in a gas turbine. Weller et

al. [40] have used a flame wrinkling model in the context of a reacting shear layer.

Angelberger et al. [41] and Veynante and Poinsot [42] used a thickened flame ap-

proach to study combustion instabilities of a turbulent premixed flame. Pitsch and

Duchamp [14] applied a formulated G-equation concept for LES premixed turbulent

combustion with complex methane chemistry. Hawkes [25] and Hawkes and Cant [43]

proposed a transport equation model for flame surface density (FSD) and validated

the model for flames propagating in homogeneous isotropic turbulence. Most of the
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LES studies listed above, the subfilter-scale models for reaction rate modelling are

largely based on the flamelet assumption discussed earlier in Subsection 1.1.4.

This research work considers the application of the FSD model of Hawkes [25] and

Hawkes and Cant [43] with a full treatment for the energy equation to the LES of

freely propagating flames and Bunsen type flames under various turbulent conditions.

The FSD models provide a measure of the wrinkled flame area per unit volume on

the subfilter-scale. The FSD approach for LES is based on filtering the governing

equations with a filter width sufficiently larger than the grid spacing such that the

thin turbulent dynamic premixed flame is smeared out and can be resolved on a

LES grid [44]. A model is then required to account for the subfilter FSD and can be

provided through either an algebraic expression or by solving a transport equation for

the FSD [33]. As a viable new approach to LES of premixed combustion, the modelled

FSD transport equation developed by Hawkes [25] and Hawkes and Cant [43] has

advantages over other approaches in which the physical mechanisms of flame surface

density production and destruction are represented directly by both resolved and

unresolved terms in the transport equation.

1.2 Motivation and Objectives

The primary goal of this thesis was to apply the FSD model of Hawkes and Cant

in an LES framework, Favre-filtered Navier-Stokes equations governing compressible

flows of a thermally perfect reactive mixture of gases. The LES algorithm for the

prediction of turbulent premixed flames was the focus of the research. The results

were compared to available experimental data to investigate its effectiveness in the

modelling of lean-premixed turbulent combustion.

A summary of the main objectives of this doctoral thesis is then as follows:

• to develop an LES framework with finite-volume formulation for predicting

multi-species turbulent reacting flows applied to the compressible form of the

governing equations;

• to assess subfilter-scale models for turbulent premixed combustion;
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• to investigate the resolution requirement of FSD with an adaptive mesh refine-

ment (AMR) scheme and the flame dynamics and stability of lean-premixed

turbulent combustion; and

• to compare the LES numerical results to the available experimental data for

stoichiometric and lean premixed turbulent Bunsen type flames.

1.3 Thesis Outline

Following this introduction, Chapter 2 of the thesis provides a summary of the

Favre-filtered governing equations describing a compressible thermally perfect reactive

mixture of gases. In Chapter 3, reaction rate modelling and details of the LES

filtered transport equation for the flame surface density are presented. Chapter 4

discusses the main elements of the finite-volume scheme and parallel adaptive mesh

refinement scheme developed for solving the governing flow and FSD model equations

and performing the LES simulation. Chapter 5 presents two- and three-dimensional

LES results for freely-propagating flames in decaying isotropic turbulence flows and

Bunsen type premixed flames. Comparison is made between the numerical results

and available experiment data. Model behavior is qualitatively examined and it is

found that the model reproduces the behavior expected of the propagating flame in

a turbulent field. Conclusions from the present work and suggestions for the future

studies are described in Chapter 6.



Chapter 2

Filtered Equations for LES

Turbulent Premixed Combustion

2.1 Favre-Filtered Navier-Stokes Equations

2.1.1 LES filtering

Large-eddy simulation is based on a filtering of the governing conservation equa-

tions. In LES, the relevant quantities, ϕ, may be filtered in the spectral space (com-

ponents greater than a given cut-off frequency are suppressed) or in the physical space

(weighted averaging for a given volume of physical space). Temporal filtering is also

possible, however, we will only consider spatial filtering techniques in this research.

The spatial filtering operation for a solution quantity, ϕ, can be defined by [45]

ϕ̄(~x) =

∫ +∞

−∞
ϕ(~x∗)F (~x− ~x∗)d~x∗, (2.1)

where F is the LES filter. Standard spatial filters are the box filter in the physical

space given by [45]

F (~x) = F (x1, x2, x3) =

{
1/∆3, if |xi| ≤ ∆/2, i = 1, 2, 3,

0, otherwise,
(2.2)

where (x1, x2, x3) are the spatial coordinates of the location ~x and ∆ is the filter

15
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width, and the Gaussian filter is given by

F (~x) = F (x1, x2, x3) =
( 6

π∆2

)3/2

exp
[
− 6

∆2
(x2

1 + x2
2 + x2

3)
]
. (2.3)

Both of these filters are normalized such that∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
F (x1, x2, x3)dx1dx2dx3 = 1. (2.4)

For compressible combusting flows, a mass-weighted, Favre filtering procedure, is

introduced as defined by

ρ̄ϕ̃(~x) =

∫ +∞

−∞
ρϕ(~x∗)F (~x− ~x∗)d~x∗, (2.5)

where ρ is the flow density. The Favre filtering has the advantage for compressible

flows that the filtered continuity equation, Eq. 2.6, is closed exactly without the need

for modelling of high-order filtered quantities.

The filtering operation most commonly used in LES is the implicit or Schumann

filtering [46], in which the computational grid and the discretization operators are

considered as the filter for the governing equations. In this case, the filter width is

taken to be some multiple of the grid size and effective SFS models are generally

dissipative and damp out solution content smaller than the filter width. Using ex-

plicit filtering, the filtering procedure is separated from the grid and discretization

operators. Thus, a grid-independent LES solution can be expected by maintaining

constant filter widths [47–49] and or using constant commutative filters. Neverthe-

less, as in most practical LES studies to date, an implicit filtering approach is used

in this research.

2.1.2 Filtered Conservation Equations

The low-pass spatial filtering procedure defined above provides a separation of

scales for the solution content. Solution content having scales larger than the filter

size, ∆, is fully resolved, whereas solution of scales smaller than ∆ must be modeled.

The relevant quantities, ϕ, are filtered, Favre-filtered (mass-weighted filtering), or

evaluated in terms of the filtered quantities to give ϕ̄, ϕ̃, or ϕ̌, respectively. The
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Navier-Stokes equations governing compressible flows of a thermally perfect reactive

mixture of gases are used herein to describe and predict the time evolution of turbulent

premixed combustion processes. Application of the spatial filtering procedure to

this equation set results in the Favre-filtered form of the Navier-Stokes equations

governing transport of the mixture mass, momentum, and energy as well as species

mass transport. They are given by

∂ρ̄

∂t
+

∂(ρ̄ũi)

∂xi

= 0, (2.6)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj + δij p̄)

∂xi

− ∂τ̌ij

∂xi

= − ∂σij

∂xi︸︷︷︸
I

+
∂(τ̄ij − τ̌ij)

∂xi︸ ︷︷ ︸
II

, (2.7)

∂(ρ̄Ẽ)

∂t
+

∂[(ρ̄Ẽ + p̄)ũi]

∂xi

− ∂(τ̌ijũi)

∂xi

+
∂q̌i

∂xi

= − ∂[ρ̄(h̃sui − h̃sũi)]

∂xi︸ ︷︷ ︸
III

−
∂[
∑Ns

n=1 ∆h0
f,nρ̄(Ỹnui − Ỹnũi)]

∂xi︸ ︷︷ ︸
IV

− 1

2

∂[ρ̄(ũiujuj − ũiũjuj)]

∂xi︸ ︷︷ ︸
V

+
∂(τ̄ijũi − τ̌ijũi)

∂xi︸ ︷︷ ︸
VI

+
∂(τijui − τ̄ijũi)

∂xi︸ ︷︷ ︸
VII

− ∂(q̌i − q̄i)

∂xi︸ ︷︷ ︸
VIII

, (2.8)

∂(ρ̄Ỹn)

∂t
+

∂(ρ̄Ỹnũi)

∂xi

+
∂J̌n,i

∂xi

= − ∂[ρ̄(Ỹnui − Ỹnũi)]

∂xi︸ ︷︷ ︸
IX

− ∂(J̃n,i − J̌n,i)

∂xi︸ ︷︷ ︸
X

+ ω̇n︸︷︷︸
XI

,(2.9)

where

p̄ = ρ̄RT̃ +
Ns∑
n=1

Rnρ̄(ỸnT − ỸnT̃ )︸ ︷︷ ︸
XII

, (2.10)
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Ẽ = ȟs +
Ns∑
n=1

Ỹn∆h0
f,n −

p̄

ρ̄
+

1

2
ũjuj, (2.11)

τ̌ij = 2µ̌(Šij −
1

3
δijŠkk), (2.12)

q̌i = −κ̌
∂T̃

∂xi

− ρ̄

Ns∑
n=1

ȟnĎn
∂Ỹn

∂xi

. (2.13)

J̌n,i = −ρ̄Ďn
∂Ỹn

∂xi

(2.14)

Here, ρ̄ is the filtered mixture density, ũi is the Favre-filtered mixture velocity, p̄ is

the filtered mixture pressure (Eq. 2.10), Ẽ is the Favre-filtered total mixture energy

(including chemical energy) given by Eq. 2.11, ȟs is the sensible enthalpy and ∆h0
f,n

is the heat of formation for species n, Ỹn is the Favre-filtered mass fraction of species

n, and ω̇ is the filtered reaction rate. The resolved viscous stress tensor, τ̌ij, is

evaluated in terms of the filtered quantities by Eq. 2.12, q̌i is the resolved total heat

flux (Eq. 2.13), J̌n,i is the resolved species diffusive fluxes (Eq. 2.14), T̃ is the mixture

temperature, µ̌ is the mixture viscosity, κ̌ is the mixture thermal conductivity, and

Ďn is the diffusivity of species n with respect to the mixture. The strain rate tensor,

Šij, is given by

Šij =
1

2
(
∂ũi

∂xj

+
∂ũj

∂xi

). (2.15)

The terms on the right-hand side (RHS) are subfilter-scale terms, which represent

the effect of the unresolved scales on the resolved solution content. Unlike the terms

on the left-hand side (LHS) of the equations, these terms cannot be expressed directly

in terms of the filtered flow variables and modelling is required for these terms. A

summary of the subfilter-terms, introduced by the Favre-filtering of the governing

equations, is as follows:

• Term I results from the non-linearity of the convective term and needs mod-

elling.
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• Term II results from the non-linearity of the viscous term and the fact that the

Favre filtering procedure and partial differentiation do not commute. Term II

is generally neglected under the assumption that τ̄ij − τ̌ij = 0. A priori tests

confirm that this term is an order of magnitude smaller than term I [50].

• Term III and IV are the sensible enthalpy and species heat formation subfilter

terms which also require modelling.

• Term VI and VIII arise from the non-linearities of the viscous stresses and the

heat flux, respectively. Using assumptions similar to those used as for term II,

these terms can also generally be neglected.

• Term VII represents the SFS viscous diffusion and is generally much smaller

than the other terms that require modelling, and is therefore generally ne-

glected [51].

• Term V is the SFS turbulent diffusion and this term must be modelled.

• Terms IX and XII are similar in nature to term III, term X is similar to term

VIII, and term XI is the filtered reaction rate term which has to be modelled.

As noted previously, there are no subfilter terms appearing in the continuity equation

as a Favre-filtering procedure is applied here.

2.1.3 The Closure Problem

Based on the summary of the SFS terms appearing in the governing equations

given above, the closure problem for LES therefore involves specification of the fol-

lowing quantities in terms of the resolved solution values:

• the subfilter-scale stresses, σij = ρ̄(ũiuj − ũiũj);

• the subfilter-scale turbulent transport, (ũiujuj − ũiũjuj)/2;

• the subfilter-scale enthalpy flux, ρ̄(h̃sui − h̃sũi);

• the subfilter-scale species flux, ρ̄(̃Ynui − Ỹnũi); and
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• the filtered reaction rate, ω̇.

The challenge is to construct robust models for these subfilter-scale terms that will

provide statistically accurate and meaningful results for the large scale flow struc-

tures. In the following section, various closure strategies used herein, which have

been employed in previous studies of compressible reactive flows for modelling the

subfilter-scale terms, are summarized and discussed.

2.2 Subfilter-Scale Stresses

The SFS stress is represented by term I and given by

σij = ρ̄(ũiuj − ũiũj). (2.16)

The modelling of this term has attracted considerable attention to date for both

non-reactive and reactive flows as it is primarily responsive for the mimicking of the

turbulent energy cascade [52]. A brief overview of the several important modelling

concepts for this SFS term now follows.

2.2.1 Smagorinsky Model

The earliest and simplest SFS stress model was proposed by Smagorinsky [53] in

1963. The so-called Smagorinsky model has been widely used for incompressible flow

applications and models the SFS stress tensor in a similar way to the Boussinesq

approximation and eddy-viscosity concept commonly used in RANS simulations. In

the Smagorinsky model for incompressible flow, the SFS stresses are assumed to have

the form

σij −
δij

3
σkk = −ρ̄νt

(∂ũi

∂x̃j

+
∂ũj

∂x̃i

)
= −2ρ̄νtŠij, (2.17)

where νt is the subfilter-scale turbulent viscosity. Smagorinsky postulated the follow-

ing form for νt :

νt = (Cs∆)2|Š|, (2.18)
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where |Š| is the magnitude of the filtered strain rate tensor given by

|Š| =
√

2ŠijŠij, (2.19)

and Cs is the Smagorinsky coefficient, which can be determined from computations

of isotropic turbulence decay, and has been found to lie in the range between 0.1 and

0.25. In Eq. 2.18, the factor ∆ can be seen as the subfilter-scale mixing length and

(Cs∆)2|Š| as the mixing velocity.

For variable density flows, the model must include the trace of the strain rate

tensor in the Reynolds stress, then σij is given by

σij −
δij

3
σkk = −ρ̄νt

(∂ũi

∂x̃j

+
∂ũj

∂x̃i

− 2

3
δij

∂ũk

∂x̃k

)
= −2ρ̄νt

(
Šij −

δij

3
Škk

)
. (2.20)

The SFS stress for compressible flows is then given by

σij = −2ρ̄νt

(
Šij −

δij

3
Škk

)
+

δij

3
σkk. (2.21)

The trace of the SFS stress tensor, σkk, can be modelled by using the following

expression proposed by Yoshizawa [54]:

σkk = 2ρ̄CI∆
2|Š|2, (2.22)

where CI is an additional closure coefficient that is generally quite small, lying some-

where between 0.005 to 0.0066.

In general, the Smagorinsky model is based on the assumption that the SFS stress

tensor behaves similarly to the viscous stress tensor, which is proportional to the strain

rate tensor. It assumes that the SFS turbulence is approximately in equilibrium with

the energy cascaded down from the large or resolved scales. It may be expected that

the energy exchange between resolved and subfilter-scale motion is associated with a

length scale characteristic of the subfilter-scale motion, which is generally taken as

the filter width, ∆.

The main limitation of this model is that it requires a priori specification of the

Smagorinsky constant. Since the optimal value varies under different flow conditions,

there is some variation in the value of Cs given in the literature. For instance for
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channel flows, a value of Cs =0.2 is known to give reasonable results in the center of

the channel while it should be reduced to 0.06 close to the wall. Another drawback

of this model is that it does not exhibit the correct limiting behavior near a wall. A

damping function similar to that proposed by van Driest [55] can be used so that νt

vanishes near the solid boundaries. Nevertheless, the Smagorinsky model seems to

provide roughly the correct amount of dissipation to account for the energy cascade

and the transfer of energy down to the subfilter-scale (Speziale [56]), and has been

widely used and gives reasonable results, with some adjustment of the constant, for

a variety of situations (Fureby et al. [57, 58], Ferziger [59]).

2.2.2 Dynamic Model

The dynamic model was originally developed by Germano et al. [60] and modified

by Moin et al. [61] for the LES of compressible flows. Lilly [62] proposed a least

squares technique to minimize the difference between the closure assumption and the

resolved stresses. The objective of the dynamic model concept is to estimate the small

scale dissipation, and hence solution dependent value of the closure coefficient, Cs,

from the knowledge of the resolved scales by introducing a test filter with a filter width

larger than the resolved grid filter, which generates a second filtered field with cut-off

scales larger than the resolved field. Given any solution quantity, ϕ, the spatially

test-filtered quantity is denoted here by ϕ̂. For a test filter width, ∆̂, which is larger

than the LES filter width, ∆, the test-filtered stresses can then be written as

Qij = ̂̃uiuj − ̂̃ui
̂̃uj, (2.23)

and the test-filtered SFS stresses are defined in a similar way as

σ̂ij = ̂̃uiuj − ̂̃uiũj. (2.24)

The Germano identity involves the difference between the two relations above and is

given by

Lij = Qij − σ̂ij

= (̂̃uiuj − ̂̃ui
̂̃uj)− (̂̃uiuj − ̂̃uiũj)

= ̂̃uiũj − ̂̃ui
̂̃uj. (2.25)
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It is clear from Eq. 2.25 above that the Germano identity, Lij, can be explicitly

calculated from the resolved variables. By applying the test filter to the Smagorinsky

modeled expression for σij, the test-filtered values for σ̂ij may be written as

σ̂ij −
1

3
σ̂kkδij = −2Ĉsαij, (2.26)

with αij given by

αij = ρ̄∆2|Š|(Šij −
1

3
Škkδij). (2.27)

Approximating Ĉsαij = Csα̂ij, which is equivalent to assuming that Cs is constant

over an interval at least equal to the test filter cutoff length, one obtains

σ̂ij −
1

3
σ̂kkδij = −2Csα̂ij. (2.28)

The same model can also be used for the test field stresses as

Qij −
1

3
Qkkδij = −2Csβij (2.29)

with

βij = ˆ̄ρ∆̂2 |̂Š|(̂̌Sij −
1

3
̂̌Skkδij). (2.30)

Now by inserting Qij from Eq. 2.29 and σ̂ij from Eq. 2.28 into Eq. 2.25, one has

Lij −
1

3
Lkkδij = 2Cs(α̂ij − βij) = 2CsMij (2.31)

with Lkk =Qkk − σ̂kk and Mij = α̂ij − βij.

To determine a single value for Cs at a given location in the flow field, Lilly [62]

suggested minimizing the following square error measure:

E = (Lij −
1

3
Lkkδij − 2CsMij)

2. (2.32)

Setting the first derivative of the square of the error, E, with respect to Cs equal to

zero, dE/dCs = 0, and noting that the trace of the tensor Mij is zero, the following

expression for the Smagorinsky closure coefficient is obtained:

Cs =
LijMij

2MijMij

. (2.33)
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The model parameter Cs can be calculated dynamically as part of the solution, from

Eq. 2.33 instead of adjusting its value via a tuning exercise as in the Smagorinsky

model. However, this procedure may sometimes yield negative values of Cs which is

inconsistent with the Smagorinsky model. It has been argued that negative values

should be allowed to represent the phenomenon of energy backscatter [63], in which

the energy is transferred from small scales to large scales. However, a negative value

for Cs results in a negative eddy viscosity, νt, and this can destabilize the numerical

simulation. The calculated value for Cs may also fluctuate strongly in both space and

time which may also act to destabilize LES calculations.

2.2.3 Subfilter-Scale Kinetic Energy One-Equation Model

The one-equation model is an attempt to refine the subfilter-scale stress mod-

elling of the momentum transport for the many situations in which the Smagorinsky

model is not necessarily valid. It was proposed by Yoshizawa et al. [54], and im-

proved by Menon et al. [39]. Many researchers, such as Schumann [64], Schmidt and

Schumann [65], and Yoshizawa [66,67], have employed this approach.

Defining the subfilter-scale kinetic energy, k̃, as

k̃ =
1

2
ρ̄σkk =

1

2
(ũkuk − ũkũk), (2.34)

the sub-filter stresses in the one-equation approach are modelled using a Boussinesq

type assumption and given by

σij = −2ρ̄Cν∆
√

k̃

(
Šij −

δij

3
Škk

)
+

2

3
ρ̄k̃δij, (2.35)

where the SFS turbulent viscosity, νt, is prescribed using the SFS kinetic energy, k̃,

and the filter width, ∆, as follows

νt = Cν∆
√

k̃, (2.36)

and where Cν is the model constant.

An unclosed transport equation for the subfilter-scale kinetic energy, k̃, has been

presented in previous work by Schumann [64] and Germano [68], respectively, and
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there are various modelled transport equations having a similar form. In this thesis,

a modelled scalar transport equation for the SFS kinetic energy is solved along with

the Favre-filtered governing equations and the former is taken to have the form

∂ρk

∂t
+

∂ρ̄ũik̃

∂xi

=
∂

∂xi

(
ρ̄(

νt

Prt

+ ν)
∂k̃

∂xi

)
− σijŠij − Cε

ρ̄k̃3/2

∆
, (2.37)

where Prt is the turbulent Prandtl number for the subfilter-scale turbulent transport

of k̃. The RHS of Eq. 2.37 features diffusive transport of k by molecular collisions

and SFS turbulence (turbulent transport), the production of the SFS turbulence by

the resolved scales, and an approximation for the dissipation rate, ε=Cεk̃
3/2/∆.

A number of previous studies have assessed the values of the model constants and

turbulence Prantl number to be used in the preceding one-equation model. Schmidt

and Schumann [65] used Cν = 0.086, Cε = 0.845, and Prt = 0.25. Yoshizawa [67]

employed Cν =0.09, Cε =1.0, and Prt =1.0. Ghosal et al. [69] and Kim and Menon [39]

determined the model coefficients Cν , Cε, and Prt using a dynamic procedure.

The one-equation model offers the advantages that non-equilibrium effects at the

subfilter-scale level are taken into account and that the subfilter-scale turbulent vis-

cosity vanishes for fully resolved turbulent flow, i.e., k̃ → 0 as ∆ → 0. In addition,

it may be seen from Eq. 2.36 that, since k ≥ 0, no backscatter of turbulent energy

is allowed associated with negative values of the SFS viscosities. It also recovers a

form of the k-ε model used in RANS model closure. Aside from these advantages,

the one-equation model does have one main drawback and that is the need to solve

one additional transport equation and its associated computational cost.

2.2.4 Other Models and Modelling Used Here

There are several other approaches to subfilter-scale stress modelling, such as

two-point closures (Chollet and Lesieur [70]), scale similarity models (Bardina et

al. [71]), and structure-function models (Métais and Lesieur [72]). In this research,

the Smagorinsky and one-equation models have been implemented and are both used

for modelling the SFS turbulent stresses.
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2.3 Subfilter-Scale Scalar Transport

The subfilter-scale enthalpy flux, ρ̄(h̃sui − h̃sũi), and the subfilter-scale species

flux, ρ̄(Ỹnui − Ỹnũi), are usually modelled using standard gradient assumptions and

given by

ρ̄(h̃sui − h̃sũi) = −Cp
ρ̄νt

Prt

∂T̃

∂xi

, (2.38)

and

ρ̄(Ỹnui − Ỹnũi) = − ρ̄νt

Sct

∂Ỹn

∂xi

, (2.39)

where Cp is the heat capacity, Sct is the turbulent Schmidt number. Following a

generalization of the Reynolds analogy concept, the turbulence scalar transport co-

efficients, ρ̄νt/Prt and ρ̄νt/Sct, are products of the turbulence momentum transfer

coefficient, ρ̄νt, and 1/Prt, and 1/Sct, respectively. The two gradient-based models

given above are used in this thesis for the modelling of SFS scalar transport.

2.4 Subfilter-Scale Turbulent Transport

The subfilter-scale turbulent transport term, (ũiujuj − ũiũjuj)/2, arises from the

filtering of convective term in energy equation. Knight et al. [73] proposed a model

for this term that has a form that is similar to the subfilter-scale turbulence diffusion

and is given by
1

2
(ũiujuj − ũiũjuj) = σijũi. (2.40)

The Knight et al. [73] model is used here to model the SFS turbulent transport.

2.5 Reaction Rate Modelling

Last, but certainly not least, the modelling of the filtered reaction rates appearing

in Eq. 2.9 is of particular interest to this thesis research and introduces a number of

challenges when performing LES of reactive flows. This is due to the highly nonlinear

dependence of the reaction rates on the temperature and species mass fractions. It

is also particularly challenging for turbulent premixed combustion where the flame
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thickness, δ, is 0.1–1.0 mm. This is, in many cases, considerably smaller than practical

LES filter widths, ∆. To overcome this difficulty, a number of subfilter-scale models

have been proposed for LES of premixed flames and modelling of flame front propaga-

tion. In the next chapter, Chapter 3, a review is given of three of the more common

and/or popular models for determination of the subfilter-scale reaction rates: the

thickened flame model [74], the G-equation model [1], and the flame surface density

model [25], all of which are based to a large extent on the flamelet concept.
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Chapter 3

Reaction Rate Modelling and

Flame Surface Density Model

Modelling of the reaction rates presents difficulties, particularly for turbulent

premixed combustion, due to the fact that the thermochemical variables vary very

sharply through the flame profile, which is typically very thin. To overcome this dif-

ficulty, three main approaches based on the laminar flamelet assumption have been

proposed: (i) simulation of an artificially thickened flame; (ii) use of a flame front

tracking technique based on G-equation; and (iii) use of a filtered progress variable

with a reaction rate that depends on the flame surface density [16]. In this chapter,

an overview of the reaction rate modelling will be given for these three main flamelet

subfilter-scale models. This is followed by details of flame surface density model, the

model of primary interest here, including theory of flame surface density for LES in

Section 3.2.3 and algebraic FSD modelling approaches in Section 3.2.4. The mod-

elling of the transport equation of Hawkes and Cant for the LES using FSD model is

addressed in Section 3.2.5.

29
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3.1 Reaction Rate Modelling

3.1.1 Thickened Flame Model

The thickened flame model, originally developed by Butler and O’Rourke [75],

is very attractive due to its inherent numerically stabilizing features. It has been

applied to LES of premixed combustion by Thibaut and Candel [76] and Veynante

and Poinsot [77]. In the thickened flame model, the computed flame front structure is

artificially thickened locally while maintaining the same laminar flame speed so that

the thickened flame front can be resolved on the LES mesh [78].

From the theory of laminar premixed flames, it is well established that the laminar

flame speed, sL, and the laminar flame thickness, δL, scale as

sL ∝
√

Dω̇ , (3.1)

and

δL ∝ D/sL , (3.2)

where D is the molecular diffusivity and ω̇ is the reaction rate. Thus, an increase

in flame thickness by a factor, F , with a constant flame speed, can be achieved by

multiplying the diffusivity, D, by F , and the reaction rate, ω̇, by 1/F . An efficiency

factor, EF, is also introduced to account for the resulting decrease in the Damköhler

number, Da, for the flame [74] and the influence of the subfilter-scale turbulence on

the propagation of the flame. The resulting filtered balance equation for chemical

species takes the modified form

∂

∂t

(
ρ̄Ỹn

)
+

∂

∂xi

(
ρ̄Ỹnũi

)
=

∂

∂xi

[
EFF ρ̄

(
D̃n +

νt

Sct

)
∂Ỹn

∂xi

]
+

EFω̇n

F
, (3.3)

where the filtered reaction rate, ω̇n, is now calculated directly using Arrhenius law

reaction rates evaluated in terms of resolved or filtered quantities. Typically, the

thickening factor, F , is in the range from 5 to 30 in the vicinity of the flame front

and near unity far from the flame such that the thickened flame front may then be

adequately resolved on the LES computational mesh.
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As noted above, the consequence of thickening the flame is the reduction of the

Damköhler number, altering the interaction between the turbulence and the chem-

istry. To counteract this reduction, the subfilter-scale flame surface wrinkling model

has been introduced. In this case, the efficiency factor, EF, defined above, can be eval-

uated using a power-law flame wrinkling model. Assuming that the internal structure

of the flame is not significantly altered by the turbulence, as in the wrinkled flamelets,

corrugated flamelets, and thin reaction zones premixed combustion regimes [1], and

that the increased flame surface area due to the flame front wrinkling by the subfilter-

scale turbulence leads to an increase in the flame speed, a power-law expression is

used to evaluate EF given by [79,80]

sTsfs

sL

=
A∆

∆2
= Ξsfs =

(
1 +

∆

∆i

)β

= EF , (3.4)

where sTsfs is the subfilter turbulent flame speed, A∆ is the total flame surface area

in the given box of size ∆, Ξsfs is the subfilter wrinkling factor, ∆i is the inner cutoff

scale, and β is the exponent of the power law expression, which is taken to be 0.5

in [79].

The inner cutoff is associated with the maximum thickness of the laminar flame

thickness and the mean curvature of the flame. It can be defined as the inverse mean

curvature of the flame,

∆i = |〈∇ · n〉s|−1 , (3.5)

where n is the normal vector to the flame and 〈·〉s denotes filtering along the flame

surface. The mean curvature is estimated by assuming an equilibrium between pro-

duction and destruction of flame surface as

|〈∇ · n〉s| = ∆−1(u′sfs/sL)Γ(∆/δL, u′sfs/sL, Resfs) , (3.6)

where Γ is the efficiency function proposed by Charletteet al. [79] to account for the

net straining of all relevant scales smaller than ∆ and Resfs is the subfilter Reynolds

number based on the subfilter-scale fluctuating velocity u′sfs.

The thickened flame model has its obvious advantages over the other models. It

is simple to implement and, due to the Arrhenius law, it may be possible to deal with
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more complicated chemical kinetics and some effects associated with ignition and

flame-wall interaction processes. The approach models both the reaction rate and

subfilter transport terms simultaneously. The primary disadvantages of this model is

related to the generally increased insensitivity of the modelled flame to the turbulence

motions due to the artificial thickening of the flame brush.

3.1.2 G-equation Approach

The G-equation first introduced by Markstein [81] is based on the assumption

that the flame is a thin surface and can be represented by the level surface of a

scalar field, G. Yakhot [82] later suggested that the equation could be used for LES

of combustion. Afterwards, there has been considerable interest in LES using the

G-equation model [14].

The G-equation formalism adopts a view which is opposite to the thickened flame

approach: the flame thickness is set to zero and the flame front is described as a

propagating infinitely thin surface or interface that is tracked using a field variable,

G̃ [16]. The resolved flame brush is related to the iso-level G̃ = Ḡ0 and the filtered

G-equation for G̃ is given by [83]

∂G̃

∂t
+

∂ũiG̃

∂xi

= sT|∇G̃| . (3.7)

The challenge is then to find a model for the turbulent flame speed sT. A closure

for this term is often based on the subfilter-scale turbulence level ũ′ and given by an

algebraic relation of the form

sT

sL

= 1 + α
( ũ′

sT

)n

, (3.8)

where the ũ′ may be estimated in terms of the strain rate tensor and given by

ũ′ = ∆|S̃| = ∆

√
2S̃ijS̃ij . (3.9)

The constants in Eq. 3.8 above, α and n, have to be specified a priori or may be

dynamically determined [84].
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The G-equation model is based on a flame front tracking technique, where dis-

placement of the flame front is evaluated in terms of the displacement speed sT. Since

the flame speed is explicitly included, this leads to an estimation of the volume of

burnt gases produced along with the thermal heat release [85]. On the other hand,

there is no a well-defined quantity for the turbulent flame speed and no universal

model is available. The numerical solution of the G-equation can introduce compu-

tation difficulties and induce flame cusps, which can be generally avoided by adding

a diffusive term in Eq. 3.7. Nevertheless, the model is widely used and has been

successfully applied to several practical problems [86,87].

3.1.3 Flame Surface Density Model

As a third alternative to the modelling of turbulence/chemistry interaction, the

flamelet assumption can be used to relate turbulent burning rate to the flame area

or surface density. The latter can be estimated either through an algebraic closure

or a modelled transport equation. The modelled transport equation for flame surface

density was first applied to non-premixed turbulent combustion based on Coherent

Flame Model (CFM) by Marble and Broadwell [88]. More recent studies have led

to an exact transport equation for the FSD developed by Pope [44] and Candel and

Poinsot [89] which is based on theoretical considerations for a propagating surface.

Various RANS models based on original CFM model have been devised by Cant et

al. [90], Maistret et al. [91], Candel et al. [92], Cheng and Diringer [93], Prasad and

Gore [94], and Mantel and Borghi [95]. There also have been several DNS studies re-

lated to the flame surface density balance equation, including Trouvé and Poinsot [96],

Haworth and Poinsot [97], Trouvé [98], Poinsot et al. [99,100], Bruneaux et al. [101],

Kollmann and Chen [102], Yeung et al. [103], and Pope et al. [104]. Moreover, Vey-

nante et al. [105,106] have analyzed the flame surface density balance equation from

an experimental perspective. There has also been some research related to the appli-

cation of the flame surface density concept in the context of LES for non-premixed

combustion. In particular, Tap et al. [107] have extended the flame surface den-

sity concept to non-infinitely thin flame surfaces and application to autoignition of
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turbulent non-premixed flames by introducing a generalized flame surface density.

Nevertheless, for LES of premixed combustion, it is still at an early stage.

Hawkes and Cant [25] have developed an FSD model for LES of turbulent premixed

flames which has shown considerable promise. The modelled transport equation for

the FSD in the Hawkes and Cant model is based on previous RANS models, however,

some terms that have been previously neglected in RANS-based FSD models can be

significant for LES, and other terms require modification to be consistent with the

LES philosophy. The FSD model, and in particular, the model of Hawkes and Cant

is the focus of this thesis and a complete description of this flamelet based model now

follows below.

3.2 Flame Surface Density Model

3.2.1 Progress of Reaction and Modelled Transport Equation

for Progress Variable

Turbulent premixed flames are generally very thin with a flame thickness in the

range δL = 0.1 mm–1.0 mm, which is in many cases smaller than the filter width,

∆. In the LES context, one approach to modelling of the flame is to ignore for the

most part of its internal structure and the detailed chemical kinetics and represent

the combustion occurring at the flame front in terms of a progress variable, which

varies from 0 (for all reactants) to 1 (for all products). One possible definition of the

progress variable, c, is provided in terms of the reduced fuel mass fraction given by

c =
YF − Y u

F

Y b
F − Y u

F

, (3.10)

where YF, Y u
F and Y b

F are respectively the local, unburnt and burnt fuel mass fractions.

In this way, the composition of the mixture can be specified by the progress variable.

The location of the flame surface is defined by c=c∗. c is the local progress variable

and c∗ is the progress variable which represents the flame surface. Note that other

choices for the progress variable are possible, including the reduced temperature.
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The unfiltered transport equation for progress variable can be represented as

∂

∂t
(ρc) +

∂

∂xi

(ρuic) = ω̇ +
∂

∂xi

(
ρD

∂c

∂xi

)
= up|∇c| . (3.11)

Here, up is the local propagation speed of a constant progress variable surface.

The Favre-filtered transport equation for progress variable c̃ may be written as

∂

∂t
(ρ̄c̃) +

∂

∂xi

(ρ̄ũic̃) +
∂

∂xi

[ρ̄(ũic− ũic̃)] = ¯̇ω +
∂

∂xi

(
ρD

∂c

∂xi

)
. (3.12)

If the subfilter scalar transport term is represented with a gradient based transport

approach model as described in Chapter 2, then

∂

∂xi

[ρ̄(ũic− ũic̃)] =
∂

∂xi

( ρ̄νt

Sct

∂c̃

∂xi

)
, (3.13)

and the unclosed reaction and diffusion terms can be combined and written as

¯̇ω +∇(ρD∇c) = ρup|∇c| =
∫ 1

0

(ρup)sΣsfsdc∗ , (3.14)

where Σsfs is filtered flame surface density which is essentially the flame surface area

per unit volume contained within the LES filtering volume. The detailed theory and

modelled transport equation for FSD will be given in sections 3.2.3, 3.2.4, and 3.2.5

of this chapter.

For very thin flames, (ρup)s and Σsfs are independent of the choice of c∗ and the

following approximation can be made:∫ 1

0

(ρup)sΣsfsdc∗ ≈ (ρup)sΣ̃ ≈ ρrsLΣsfs , (3.15)

where ρr is the reactants density. For practical purposes, (ρup)s maybe approximated

by ρrsL. This is based on continuity considerations, assuming the flame front can

be locally represented by a steady one-dimensional laminar flame. Boger et al. [108]

presented a validation of the approximation ρrsL, through LES filtering of results from

a DNS simulation of premixed combustion. The results showed a good agreement

between the filtered reaction-diffusion term, ∇ · (ρD∇c) + ω̇, and the corresponding

FSD model, ρrsLΣsfs.
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To summarize, the modelled transport equation for filtered progress variable, c̃,

can be expressed as

∂

∂t
(ρ̄c̃) +

∂

∂xi

(ρ̄ũic̃) =
∂

∂xi

( ρ̄νt

Sct

∂c̃

∂xi

)
+ ρrsLΣsfs . (3.16)

In order to determine Σsfs, two possible approaches include use of an algebraic model

or the use of a transport equation. The details of these two approaches will be

discussed in sections 3.2.4 and 3.2.5.

3.2.2 Reaction Scheme

In this thesis, the primary interest is in methane-air flames, which was used in

the experimental research by Yuen and Gülder [4, 5]. The following stoichiometric

equation is assumed to represent the overall reaction:

CH4 + 2(O2 + 3.76N2) → CO2 + 2H2O + 7.52N2 . (3.17)

The five species considered here are methane (CH4), oxygen (O2), carbon dioxide

(CO2), water(H2O), and nitrogen (N2). Nitrogen is assumed to be inert. In this

research, the mass fraction of each species is not given by solving transport equations

for species mass fraction, it is derived based on the stoichiometric equation above and

the definition of progress variable (Eq. 3.10) as follows:

YCH4 = Y u
CH4

+ (Y b
CH4

− Y u
CH4

)c , (3.18)

YO2 = YCH4

(O/F )st

φ
, (3.19)

YCO2 = (1− YCH4 − YO2 − YN2)
NCO2

NCO2 + 2NH2O

, (3.20)

YH2O = (1− YCH4 − YO2 − YN2)
2NH2O

NCO2 + 2NH2O

, (3.21)

YN2 =
7.52NN2

φNCH4

/
(1 +

(O/F )st

φ
+

7.52NN2

φNCH4

) , (3.22)

where (O/F )st is stoichoimetric ratio, φ is equivalence ratio, and Ni is species molec-

ular weight.



Section 3.2. Flame Surface Density Model 37

One of the advantages of FSD transport equation model is that it is easy to apply

this model to different fuels. All that is required is the calculation of the laminar flame

speed and relationships for the mass fraction of the various reactants and products in

terms of the progress variable. In the current research work, in addition to methane-

air, similar stoichiometric reactions are assumed for propane-air, and hydrogen-air as

follows:

C3H8 + 5O2 + 3.76N2 → 3CO2 + 4H2O + 3.76N2 , (3.23)

2H2 + O2 + 3.76N2 → 2H2O + 3.76N2 . (3.24)

3.2.3 Theory of Flame Surface Density

The concept of the flame surface density has been reviewed extensively in previous

papers by Marble and Broadwell [88], Pope [44], Bray et al. [109], and Candel et

al. [89]. The definition taken here is the flame area per unit volume of the surface

at which c= c∗, where c is the local progress variable and c∗ is the progress variable

which represents the flame surface. Theoretically, from Pope’s [44] approach, let the

points X[u, v, t] represent the flame surface (defined by c = c∗), where u, v ∈ U are

local coordinates parameterizing the surface. Then the flame surface to volume ratio,

Σ(c∗; x, t), is defined by

Σ(c∗; x, t) ≡
∫ ∫

U

δ(x− X[u, v, t])A(u, v, t)dudv , (3.25)

where,

A(u, v, t) ≡
∣∣∣∂X

∂u
× ∂X

∂v

∣∣∣ . (3.26)

Here A(u, v, t)dudv represents a differential element of area, and thus the integral

over a volume of interest of Σ gives the instantaneous flame surface area within that

volume.

The flame surface density for LES can be defined in terms of the filtered flame

surface density, Σsfs, and is formally related to Σ(c∗; x, t) by

Σsfs = Σ̄. (3.27)
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In order to discuss the closure of the filtered progress variable equation with filtered

flame surface density, it is more convenient to take the definition of the flame surface

density from Vervisch et al. [110] as the LES filtered conditional gradient of the

progress variable at the flame surface, c=c∗:

Σsfs = |∇c|δ(c∗ − c) . (3.28)

The following sections 3.2.4 and 3.2.5 will discuss the details of the two approaches

for modelling the subfilter flame surface density, Σsfs, algebraic model and transport

equation.

3.2.4 Algebraic Models

Algebraic LES models for the FSD have been developed on the basis of the earlier-

derived RANS model. Boger et al. [108] suggested a simple formulation similar to

Eddy-Break-Up (EBU) and Bray-Moss-Libby (BML) models for RANS

Σsfs = KΣ
c̃(1− c̃)

∆
. (3.29)

Here KΣ is a model constant. Boger et al. [108] calculated a value as 4
√

6/π for KΣ

based on an infinitely thin planar flame and a Gaussian LES filter. It has been also

shown that KΣ depends on filter width ∆ and turbulence level, but is independent of

the observation time.

Charlette et al. [79] presented the following model for Σsfs, which also bears sim-

ilarities to EBU and BML expressions, but includes a term that accounts for the

resolved part of the flame surface density:

Σsfs = |∇c̃|+ αΓk

(δL

∆
,

√
2k̃/3

sL

)√k̃

sL

c̃(1− c̃)

∆
. (3.30)

Here Γk is the efficiency function of the Intermittent Turbulence Net Flame Stretch

(ITNFS) model of Meneveau and Poinsot [111], k̃ represents the subfilter-scale tur-

bulent kinetic energy, and α is a model constant.
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Angelberger et al. [41] have also proposed an algebraic model for the resolved and

subfilter FSD which has the form

Σsfs = [1 + αΓ
(δL

∆
,
u′

sL

) u′

sL

]|∇c̃| , (3.31)

where the function Γ is similar to the ITNFS efficiency function, Γk.

More complete discussion of algebraic LES models for the FSD are given by

Boger et al. [108], and Hawkes [25]. Generally, algebraic models are simple and suf-

ficient for treating situations where there is a local balance between the production

and dissipation of the FSD at the flame front. However, for unsteady situations, the

complicated dynamics of flame stretch can not be completely represented by a simple

algebraic model. Dynamic model constants could be developed based on the physical

arguments and DNS data, or using the dynamic approach proposed by Germano et

al. [60, 68]. A more realistic estimation for LES FSD modelling can be provided by

adopting a modelled transport equation for the FSD. This will be discussed next.

3.2.5 Modelled Transport Equation for FSD

Originally, the concept of solving a modelled transport equation for flame sur-

face density was applied to the non-premixed turbulent combustion by Marble and

Broadwell [88]. Since then, there have been many studies of the approach in turbu-

lent premixed combustion. Marble and Broadwell employed the coherent flame model

to describe the physical processes that create and destroy flame surface area. More

recent studies have led to an exact transport equation for the flame surface density

based on theoretical considerations for a propagating surface as given by Pope [44]

and Candel et al. and Poinsot [89].

A conservation equation for flame surface density can be derived by using an

approach similar to that of Pope [44]. In order to show the equation in a conservation

formulation, the flame surface density variable used herein is taken the form as the

FSD per unit mass, Σ̃=Σsfs/ρ̄. The following Favre-filtered form may be derived for
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the unclosed transport equation:

∂

∂t
(ρ̄Σ̃) +

∂

∂xi

(ρ̄Σ̃ũi) +
∂

∂xi

ρ̄Σ̃[(ui)s − ũi] = (αT)sρ̄Σ̃− ∂

∂xi

[(upNi)sρ̄Σ̃]

+
(
up

∂Ni

∂xi

)
s

ρ̄Σ̃ , (3.32)

where [(ui)s− ũi] is the subfilter flux of FSD, N=−∇c/|∇c| is the local flame surface

normal pointing into the reactants, (αT)s is the surface strain and given by

(αT)s =
[
(δij −NiNj)

∂ui

∂xj

]
s
. (3.33)

A more detailed derivation of this unclosed transport equation is given by both

Pope [44] and Hawkes [25].

Each term in Eq. 3.32 above has an associated physical meaning. On the left-hand

side is a net rate of change, a resolved flow convection, and a subfilter convection.

On the right-hand side is a fluid strain, a planar propagation, and production or

destruction of FSD [25].

There has been a considerable research on RANS modelling of the FSD transport

equation (Eq. 3.32) [94, 112]. More recently, Hawkes and Cant [25] have suggested

an approach to the modelling for LES that resembles in many respects the RANS

models, but also includes terms that account for the resolved components of FSD

production and destruction. The following sections will present the details of the

modelled terms proposed by Hawkes and Cant [25].

3.2.6 Modelling of Propagation and Curvature

In the unclosed FSD transport equation given above, the last two terms on the

RHS, −∇ · [(upN)sρ̄Σ̃] + (up∇ · N)sρ̄Σ̃, represent the propagation and the production

or destruction of FSD due to the combined effects of curvature and propagation.

Based on the assumption of constant propagation speed, up, at the subfilter-scale

level, the resolved and subfilter-scale term may be expressed as

−∇ · [(upN)sρ̄Σ̃] + (up∇ · N)sρ̄Σ̃ = Pres + Cres + Csfs , (3.34)
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where

Pres = −∇ · [(up)s (N)sρ̄Σ̃] , (3.35)

Cres = (up)s∇ · (N)sρ̄Σ̃ , (3.36)

and

Csfs = −(up)s[∇ · (N)s − (∇ · Ns)]ρ̄Σ̃ . (3.37)

The terms Pres and Cres represent the resolved component of planar propagation and

curvature, respectively. The term Csfs represents the difference between the actual

curvature and the resolved curvature. The mean propagation speed, (up)s, may be

estimated by using conservation of mass and introducing the heat release parameter,

τ , for a one dimensional steady premixed laminar flame as follows

ρup = ρrsL , τ =
Tad − Tr

Tr

, ρ =
ρr

1 + τc
, (3.38)

where c can be expressed as the reduced temperature given by c=(T −Tr)/(Tad−Tr).

The propagation speed may be written as

(up)s ≈ sL(1 + τc)s = sL(1 + τc∗) . (3.39)

The forms for Pres and Cres suggested by Hawkes and Cant [25] are employed herein

where Pres and Cres are given by

Pres = − ∂

∂xi

[sL(1 + τc∗)Niρ̄Σ̃] , (3.40)

Cres = sL(1 + τc∗)
∂Ni

∂xi

ρ̄Σ̃ , (3.41)

and where the surface averaged normal is evaluated as (N)s =−∇c̄/(ρ̄Σ̃).

There are several RANS models that can be adopted for modelling the subfil-

ter curvature term given by Pope and Cheng [44], Trouvé and Poinsot [98], Vey-

nante [105], Charlette et al. [79]. In this research, the following model proposed by

Cant [25] is used for the modelling of Csfs, which includes the resolution factor α in

order to make the model vanish as the flow becomes resolved. This model resembles

the commonly employed CFM model proposed by Candel et al. [92] and has the form

Csfs = −αβsL
(ρ̄Σ̃)2

1− c̄
, (3.42)

where α is the resolution factor and β is the model constant.
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3.2.7 Modelling of Strain Term

The term (αT)sρ̄Σ̃ appearing in Eq. 3.32 represents the straining effect of the

surrounding fluid on the flame surface. Considerable attention has been devoted to

the modelling of the effects of fluid strain, see e.g., Cant et al. [90], Yeung et al. [103],

and Trouvé and Poinsot [98]. The term (αT)s may be decomposed as follows:

(αT)s = Sres + Shr + Ssfs , (3.43)

where the resolved strain term, Sres, is evaluated using

Sres = (δij − nij)
∂ũi

∂xj

, (3.44)

and nij is a model for the surface statistic (NiNj)s, which acts as an orientation factor

for the flame strain with respect to the resolved flow gradients. The following model

proposed by Cant et al. [90] for (NiNj)s is employed in the present work:

nij = (Ni)s (Nj)s +
1

3
αδij . (3.45)

The heat release, Shr, is a term that accounts for the expansion effects associated

with heat release and also affects the resolved production as well as the resolved planar

propagation terms and is modelled using an adjustment to the resolved curvature

effect by

Shr = −(c∗ − c̃)τsL∇ · (N)s . (3.46)

The modelling of the subfilter strain term, Ssfs, adapted by Hawkes and Cant [25]

is to reproduce the effects of chemistry and turbulence length scales by ITNFS model

of Meneveau and Poinsot [111] and is given by

Ssfs = Γk

√
k̃

∆
, (3.47)

where the efficiency function Γk is implemented using the curve fitted form of Angel-

berger et al. [41] given by

Γk

(∆

δL

,
u′

sL

)
= 0.75exp

[
− 1.2

(u′/sL)0.3

](∆

δL

)2/3

. (3.48)
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3.2.8 Modelling of Turbulent Transport Term

The term (ui)s−ũi on the LHS of Eq. 3.32 may be interpreted as the subfilter-scale

flux of the FSD. This term is strongly connected with the subfilter-scale flux of the

progress variable given by ũc− ũc̃. This statement has been theoretically proved by

Cant et al. [90] with the relation between the RANS equivalents of these two terms

and the analysis of the DNS results by Veynante et al. [113]. The scalar fluxes of

the progress variable and the flame surface density are found to be controlled mainly

by non-gradient transport (NGT) mechanisms. It is expected that NGT to be the

most dominant when the turbulence levels are low and there is a large expansion

associated with heat release. Based on these ideas, the following model is applied for

the turbulent transport term, (ui)s− ũi, due to the heat release and the non-gradient

transport mechanisms:

(ui)s − ũi = Shr −
νt

Sct

1

(ρ̄Σ̃)

∂(ρ̄Σ̃)

∂xi

. (3.49)

The model of the turbulent transport term is similar to the model suggested by

Veynante et al. [77], but differs in that the efficiency of the NGT is reduced with

increased turbulence, instead of increasing the efficiency of gradient diffusion term.

The proposed model reduces to the exact transport of the FSD for the case of a fully

resolved, one-dimensional, incompressible flame with unity Lewis number.

3.2.9 Summary of Hawkes and Cant FSD Model

The modelled progress variable and flame surface density transport equations

developed by Hawkes and Cant [25] can be summarized as

∂

∂t
(ρ̄c̃) +

∂

∂xi

(ρ̄ũic̃) =
∂

∂xi

( ρ̄νt

Sct

∂c̃

∂xi

)
+ ρrsLρ̄Σ̃ , (3.50)

∂

∂t
(ρ̄Σ̃) +

∂

∂xi

(ρ̄Σ̃ũi) = − ∂

∂xi

ρ̄Σ̃[(ui)s − ũi]

+(Sres + Shr + Ssfs)ρ̄Σ̃

+Pres + Cres + Csfs , (3.51)
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where the various terms appearing in the modelled transport equation for Σ̃ are

defined as follows [25]:

• the surface turbulent velocity fluctuation

(ui)s − ũi = −(c∗ − c̃)τsLNi −
1

(ρ̄Σ̃)

νt

Sct

∂(ρ̄Σ̃)

∂xi

, (3.52)

• the resolved strain source term

Sres = (δij − nij)
∂ũi

∂xj

, (3.53)

• the heat release strain source term

Shr = −(c∗ − c̃)τsL
∂Ni

∂xi

, (3.54)

• the subfilter strain source term

Ssfs = Γk

√
k̃

∆
, (3.55)

• the resolved propagation term

Pres =
∂

∂xi

[sL(1 + τc∗)Niρ̄Σ̃], (3.56)

• the resolved curvature term

Cres = sL(1 + τc∗)
∂Ni

∂xi

ρ̄Σ̃, (3.57)

• the subfilter curvature term

Csfs = −αβsL
(ρ̄Σ̃)2

1− c̃
, (3.58)

and where β is a user-determined model constant and must satisfy β ≥ 1 for reasons

of realisibility [43].
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If we combine turbulent transport term, heat release strain term, and resolved

propagation term together, and assume that on the flame front c∗ = c̃, these terms

can be re-written as

− ∂

∂xi

ρ̄Σ̃[(ui)s − ũi] + Shrρ̄Σ̃ + Pres + Cres =
∂

∂xi

( ρ̄νt

Sct

∂Σ̃

∂xi

)
−sL(1 + τ c̃)Ni

∂(ρ̄Σ̃)

∂xi

−sLτNiρ̄Σ̃
∂c̃

∂xi

. (3.59)

Using the expression above, the final form of the modelled transport equation of flame

surface density can be re-expressed as

∂

∂t
(ρ̄Σ̃) +

∂

∂xi

(ρ̄Σ̃ũi) =
∂

∂xi

( ρ̄νt

Sct

∂Σ̃

∂xi

)
+ (δij − nij)

∂ũi

∂xj

ρ̄Σ̃− sL(1 + τ c̃)Ni
∂

∂xi

(ρ̄Σ̃)

−sLτNiρ̄Σ̃
∂c̃

∂xi

+ Γk

√
k̃

∆
ρ̄Σ̃− αβsL

(ρ̄Σ̃)2

1− c̃
, (3.60)

where c̄ can be estimated using

c̄ =
(1 + τ)c̃

1 + τ c̃
. (3.61)

The complete set of modelled equations include Eq. 3.50 and Eq. 3.60, modelled

transport equations for progress variable and flame surface density, respectively.

According to the LES concept, the modelled transport equations, as far as possible,

should give reasonable results regardless of the choice of filter width ∆. This leads to

two important considerations for the models. Firstly, the transport equation should

revert to the exact closed transport equation as the scalar and velocity fields become

fully resolved in which the subfilter-scale fluxes of momentum vanish and ∆ is much

smaller than the radius of curvature of the flame surface. Secondly, the model should

reflect accepted RANS models for a situation in which ∆ becomes comparable to

the turbulence integral scale. The modelled terms in the transport equations of c

and Σ by Hawkes [25] have displayed these two essential LES requirements. A more

detailed discussion of the physical interpretation and realisability arguments for the

FSD model considered in this study is given by Hawkes [25].
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Chapter 4

Parallel Adaptive Mesh

Refinement Finite-Volume Scheme

The Favre-filtered governing equations (Eq. 2.6, Eq. 2.7, and Eq. 2.8) described

in Chapter 2 together with the filtered transport equations (Eq. 2.37, Eq. 3.50, and

Eq. 3.60) introduced in Chapters 2 and 3 provide a suitable description for carrying

out LES predictions of the physical and chemical processes that occur in a premixed

turbulent flame. A parallel adaptive mesh refinement finite volume method is now

proposed, developed, and reviewed in this chapter for the numerical solution of the

filtered equation set.

This thesis work has involved the development of both a two- and a three-dimensional

LES framework for solving multi-species turbulent reacting flows applied to the com-

pressible form of the Navier-Stokes governing equations, which included the transport

equations for FSD model, two-dimensional AMR application for FSD model, three-

dimensional turbulence field initialization and thickened flame model, and processing

of the comparison of LES-FSD simulation results to the experimental data.

4.1 Favre-Filtered Governing Equations

The Favre-filtered governing equations for LES of premixed turbulent flames in-

troduced in the previous chapters can be expressed using matrix-vector notation in

47
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the following form:
∂U

∂t
+ ~∇ · ~F = S, (4.1)

where U represents the vector of conserved variables, ~F is the flux dyad, and S is the

source term. The flux dyad ~F can be decomposed into an inviscid component, ~FI,

and a viscous component, ~FV, and can thus be written as

~F = ~FI + ~FV

= (FI − FV,GI −GV,HI −HV), (4.2)

where FI, FV, GI, GV, HI, and HV are the components of inviscid and viscous flux

vectors in the x-, y-, and z-coordinate directions, respectively. The vectors U, FI,

FV, GI, GV, HI, HV, and S can be expressed as

U =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄Ẽ

ρ̄c̃

ρ̄Σ̃

ρ̄k̃


, (4.3)

FI =



ρ̄ũ

ρ̄ũũ + p̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄Ẽ + p̄)ũ

ρ̄c̃ũ

ρ̄Σ̃ũ

ρ̄k̃ũ


, GI =



ρ̄ṽ

ρ̄ũṽ

ρ̄ṽṽ + p̄

ρ̄ṽw̃

(ρ̄Ẽ + p̄)ṽ

ρ̄c̃ṽ

ρ̄Σ̃ṽ

ρ̄k̃ṽ


, HI =



ρ̄w̃

ρ̄ũw̃

ρ̄ṽw̃

ρ̄w̃w̃ + p̄

(ρ̄Ẽ + p̄)w̃

ρ̄c̃w̃

ρ̄Σ̃w̃

ρ̄k̃w̃


,

(4.4)
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FV =



0

τ̌xx + σxx

τ̌xy + σxy

τ̌xz + σxz

ũ(τ̌xx + σxx) + ṽ(τ̌xy + σxy) + w̃(τ̌xz + σxz)− (q̌x + θx)
ρ̄νt

Sct
∂c̃
∂x

ρ̄νt

Sct
∂Σ̃
∂x

ρ̄( νt

Prt
+ ν)∂k̃

∂x


, (4.5)

GV =



0

τ̌xy + σxy

τ̌yy + σyy

τ̌yz + σyz

ũ(τ̌xy + σxy) + ṽ(τ̌yy + σyy) + w̃(τ̌yz + σyz)− (q̌y + θy)
ρ̄νt

Sct
∂c̃
∂y

ρ̄νt

Sct
∂Σ̃
∂y

ρ̄( νt

Prt
+ ν)∂k̃

∂y


, (4.6)

HV =



0

τ̌xz + σxz

τ̌yz + σyz

τ̌zz + σzz

ũ(τ̌xz + σxz) + ṽ(τ̌yz + σyz) + w̃(τ̌zz + σzz)− (q̌z + θz)
ρ̄νt

Sct
∂c̃
∂z

ρ̄νt

Sct
∂Σ̃
∂z

ρ̄( νt

Prt
+ ν)∂k̃

∂z


, (4.7)
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S =



0

0

0

0

0

¯̇ω

S̃Σ1 + S̃Σ2 + S̃Σ3 + S̃Σ4 + S̃Σ5

S̃k


. (4.8)

The source vector, S, contains terms related to the chemistry and turbulence mod-

elling which have been discussed in previous chapters. Detailed expressions for these

terms are given in Appendix A.

4.2 Godunov Finite-Volume Method

4.2.1 Finite-Volume Formulation of Governing Equations

The integral form of the preceding governing equations can be derived by inte-

grating the differential form of the equations over a volume, V , and applying the

divergence theorem. The following integral expression is obtained from Eq. 4.1

d

dt

∫
V (t)

UdV +

∮
S(t)

n · ~FdS =

∫
V (t)

SdV, (4.9)

where V is the control volume, S is the closed surface of the control volume, and n is

the unit outward vector normal to the closed surface. The averaged value of U and

of S for the control volume can be defined by the volume integrations as follows:

U =
1

V

∫
V (t)

UdV, (4.10)

S =
1

V

∫
V (t)

SdV. (4.11)
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Eq. 4.9 can then be rewritten using 4.10 and 4.11. This leads to the following system

of coupled integral equations for volume-averaged quantities

dU

dt
= − 1

V

∮
S(t)

n · ~FdS + S. (4.12)

When the integral equation above is applied to a three-dimensional control volume

in a structured multi-block mesh consisting of hexahedral cells, Eq. 4.12 can be re-

written for each computational cell (i,j,k) as

dUi,j,k

dt
= − 1

Vi,j,k

Nf∑
l=1

[
~nl · ~FlAl

]
i,j,k

+ Si,j,k(U) = Ri,j,k(U), (4.13)

where Nf denotes the number of cell faces, Al is the surface area of face l, and

R is the residual operator for the control volume (i, j, k). The semi-discrete form

represented by Eq. 4.13 is a set of coupled non-linear ordinary differential equations

for cell-averaged quantities, U i,j,k, which can be solved by evaluation of the flux

integrals. The remainder of this chapter outlines various aspects of the finite-volume

spatial discretization scheme proposed herein for the solution of the Favre-filtered

equations governing a compressible, thermally perfect, reactive, premixed mixture in

three space dimensions, including solution of Eq. 4.13 for the unsteady combusting

turbulent flows of interest here.

4.2.2 Inviscid (Hyperbolic) Flux Evaluation

The finite-volume scheme defined above requires the evaluation of the solution

fluxes at the cell faces. The inviscid fluxes are discretized by applying a Godunov-type

upwind finite-volume spatial discretization procedure. Godunov-type finite-volume

methods make use of the solution of a locally one-dimensional Riemann problem which

provides a means for evaluating the numerical flux function at the cell boundaries.

As first proposed by Godunov [114], the method is a monotonicity preserving scheme

which is able to capture solution discontinuities, such as shocks, without introducing

oscillations in the solutions. Solution of the Riemann problem also provides natural

upwinding of the solution content. Exact Riemann solvers, such as the one proposed
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by Gottlieb and Groth [115], can be used for the Euler equations for an ideal polytropic

gas. The inviscid flux F between cell (i, j, k) and cell (i + 1, j, k) is then given at the

cell interface (i + 1
2
, j, k) by

~Fi+ 1
2
,j,k · ~n = ~F(R(UL,UR)) = ~F(R(Ui,j,k,Ui+1,j,k)), (4.14)

where UL and UR are left and right vectors, respectively, and R represents the solu-

tion of the Riemann problem. A first-order accurate solution in space can be obtained

by solving Riemann problems using the cell averages as the left and right states when

evaluating the face fluxes. For higher-order accuracy, however, a spatial reconstruc-

tion of the solution in each computational cell is required which will be discussed

in the following section. More efficient and tractable approximate Riemann solvers

such as the Roe [116], Harten-Lax-van-Leer-Einfeldt (HLLE) [117] and Advection

Upstream Splitting Method (AUSM+-up) [118] approximate Riemann solvers can be

used for dealing with more complicated systems such as those under consideration

here, where experience has shown that the approximate approach does not decrease

the accuracy of the overall solution scheme. In this thesis research, the AUSM+-up

approximate Riemann solver proposed by Liou [118] is used, as it is valid for a wide

range of flow speeds and Mach numbers encountered in the premixed turbulent re-

active flows of interest here. Details of the AUSM+-up flux function for the filtered

equations governing premixed reactive flow are given in the sections to follow.

Piecewise Limited Linear Reconstruction

As indicated above, to extend the discretization to higher-order spatial accuracy,

a sub-cell reconstruction is required. A linear least-squares method is used to de-

termine the solution slopes within each cell based on information from neighbouring

cells [119]. The fluxes are then calculated by solving a Riemann problem based on

the reconstructed solution states at the midpoint of each cell interface as follows:

U
L

i+ 1
2
,j,k = Ui,j,k + Φi,j,k

~∇Ui,j,k ·∆~xL,

U
R

i+ 1
2
,j,k = Ui+1,j,k + Φi+1,j,k

~∇Ui+1,j,k ·∆~xR,
(4.15)
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where ∆x̃L and ∆x̃R are given by

∆~xL = ~x− ~xi,j,k,

∆~xR = ~x− ~xi+1,j,k,
(4.16)

and the ~x is the location of interface center. The vector of slope limiters, Φ, is used

for robustness and to maintain monotonicity of the solution near shocks and discon-

tinuities. An extensive analysis of limiters is made in the review by Waterson and

Deconinck [120]. Both the Barth-Jespersen and the Venkatakrishnan slope limiters

have been implemented in the present algorithm. The Barth-Jespersen limiter [121]

which is used extensively in the thesis can be expressed as

Φi,j,k =


min

(
1,

Umax−Ui,j,k

Uk−Ui,j,k

)
, if Uk −Ui,j,k > 0,

min

(
1,

Umin−Ui,j,k

Uk−Ui,j,k

)
, if Uk −Ui,j,k < 0,

1, if Uk −Ui,j,k = 0,

(4.17)

where

Umax = max(Ui,j,k,Uneighbours),

Umin = min(Ui,j,k,Uneighbours),
(4.18)

and Uneighbours are the primitive variables of the neighbouring cells. In the expressions

above, Uk is the unlimited reconstructed solution value at the kth flux quadrature

point.

Approximate Riemann Solvers

As discussed above, Godunov-type finite-volume methods require the solution

of locally one-dimensional Riemann problems. The Riemann problem is a special

initial-value problem with discontinuous initial states and self-similar solutions. It

is posed at the interface between adjacent cells. One approach is to make use of

an exact solution procedure for the Riemann problem as outlined by Gottlieb and

Groth [115] for the Euler equations governing an ideal polytropic gas. However, often

an approximation is sufficient for use in a finite-volume scheme, since only an interface
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flux is needed, and the details of the sub-cell solution are averaged out after each time

step. The approximate solvers can also be more readily extended for the treatment

of more complex systems of partial differential equations, such as the filtered LES

equations governing premixed combustion flows of interest here. The most detailed

upwind approximation scheme associated with the Riemann problem is found in the

solvers of Roe [116], which is based on a local linearization of the flow equations, and

Osher [122], which replaces shock waves by inverted isotropic waves [123]. Since then,

a family of solvers has been developed by Harten, Lax, and van Leer (HLL) [124],

HLLE [117], and AUSM+-up of Liou et al.. In this research, Roe, HLLE and AUSM+-

up are all implemented in the algorithm. For details related to the Roe and HLLE

solvers refer to Sachdev [125] and Gao [126]. Here, our discussion will focus on the

Roe and AUSM+-up flux functions for the filtered LES equations of interest.

Roe’s approximate Riemann solver is based on a local linearization of the governing

partial differential equations (PDEs). The linearized Riemann problem approximates

all waves by discontinuous jumps. The one-dimensional, compressible inviscid-form

of the filtered equations in non-conservative form is given by

∂U

∂t
+

∂F

∂x
=

∂U

∂t
+

∂F

∂U

∂U

∂x
≈ ∂U

∂t
+ Â(Û)

∂U

∂x
= 0, (4.19)

where Â(Û) is the flux Jacobian computed at a reference state, Û, which is a function

of the left and right solution states of the Riemann problem, UL and UR. Since

the approximate flux Jacobian contains constant coefficients, this represents a linear

hyperbolic system of equations for which an analytic solution is available for the

intercell flux. The flux can be expressed as

Fi+ 1
2

=
1

2
(FL + FR)− 1

2

m∑
i

α̂i|λ̂i|R̂i, (4.20)

where m is the number of conservation laws in the system of equations under consid-

eration. An appropriate reference state, Û, can be constructed for the evaluation of

the eigenvalues, λ̂i, right eigenvectors, R̂i, and wave-strengths, α̂i, of the approximate

flux Jacobian, Â(Û) in terms of the left and right solution values. This reference state

was designed such that the approximate flux Jacobian, Â, satisfies three conditions:
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(i) Â has real eigenvalues with a complete set of linearly independent eigenvectors so

that the system remains strictly hyperbolic; (ii) it should be consistent with the exact

flux Jacobian, if UR = UL = U, then one should have Â = ∂F
∂U
|U; and (iii) it should

ensure conservation across discontinuities, F(UR)− F(UL)=Â(UR −UL) [116].

For the governing equations described previously, Eq. 1.3 and Eq. 1.4, the Roe-

averaged velocity, û, v̂, and ŵ, sensible enthalpy, ĥ, progress variable, ĉ, flame surface

density, Σ̂, and turbulence kinetic energy, k, are all given by the general formula of

Ψ̂ =

√
ρLΨL +

√
ρRΨR√

ρL +
√

ρR

, (4.21)

where ΨL and ΨR represent the left and the right state vectors consisting of quantities

listed above, and the Roe-averaged density, ρ̂, is evaluated by ρ̂=
√

ρLρR. There are

eight eigenvalues for the turbulent combusting flows considered here given by

λ̂1 = û− â, λ̂2,3,4 = û, λ̂5 = û + â, λ̂6,7,8 = û. (4.22)

The corresponding eigenvector matrices are given in Appendix A.

Roe’s approximate Riemann solver is valid for shock and contact waves. An en-

tropy fix is necessary to account for the fact that the Roe’s approximate Riemann

solver cannot reasonably represent expansion waves associated with acoustic waves

having wave speeds λ̂1 and λ̂5 in the vacinity of sonic points. The averaged eigenval-

ues, |λ̂k|, in Roe’s flux function, Eq. 4.20, are replaced by Harten’s entropy fix [127]

to increase the magnitude of these two acoustic waves near sonic points such that |λ̂∗k|
is given by

|λ̂∗k| =

|λ̂k| if |λ̂k| ≥ 2∆λk,

λ̂2
k

4∆λk
+ ∆λk if |λ̂k| < 2∆λk,

(4.23)

where ∆λk =max(0, λk(UR)−λk(UL)), k=1, 5. This procedure avoids the prediction

of unphysical expansion shocks.

The AUSM+-up scheme is the latest version in the AUSM-family which is valid at

all speed regimes and in a Mach-number-independent fashion. The difference between

AUSM-family of schemes is that the inviscid flux is split into convective and pressure

contributions to the fluxes. The inviscid fluxes of the governing equation in this
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research are as follows:

F = Fc + P = ṁΦ + P = ρ̄ũ



1

ũ

ṽ

w̃

Ẽ

c̃

Σ̃

k̃


+



0

p̄

0

0

0

0

0

0


. (4.24)

In what follows, the cell interface labeled by subscript “1/2” straddles two neighboring

cells labeled by subscripts “L” and “R”, respectively, lying to the left and right of the

interface.

The numerical flux, F1/2, at cell interface can be expressed in terms of mass flux

ṁ= ρ̄ũ and vector Φ=(1, ũ, ṽ, w̃, Ẽ, c̃, Σ̃, k̃)T as

F1/2 = ṁ1/2ΦL/R + P1/2, (4.25)

where ΦL/R is the left and right vectors and will be determined in a simple upwind

scheme,

Φ =

{
ΦL, if ṁ1/2 > 0,

ΦR, otherwise.
(4.26)

The mass flux, ṁ, is defined as

ṁ1/2 = u1/2ρL/R = a1/2M1/2

{
ρL, if u1/2 > 0,

ρR, otherwise,
(4.27)

where u1/2 is the interface convective velocity, a1/2 is the interface speed of the sound,

M1/2 is the interface Mach number, and ρL/R is the left and right density convected

by u1/2.

The interface Mach number, M1/2, is determined in terms of the flow Mach num-

ber in the left neighbour and right neighbour cells, ML and MR, respectively, and

evaluated using

M1/2 = M+
(m)(ML) +M−

(m)(MR) + Mp. (4.28)
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The split Mach numbers M±
(m) are polynomial functions of degree m=1, 2, 4, as given

in [128] and have the form:

M±
(4)(M) =

{
M±

(1), if |M | ≥ 1,

M±
(2)(1∓ 16βM∓

(2)), otherwise,
(4.29)

where

M±
(1)(M) =

1

2
(M ± |M |), (4.30)

M±
(2)(M) = ±1

4
(M ± 1)2. (4.31)

The left and right Mach numbers, ML/R, can be defined by convective velocity, u1/2,

and the speed of sound, a1/2, as follows:

ML/R =
uL/R

aL/R

. (4.32)

The pressure diffusion term Mp, introduced to enhance calculations for low flow speeds

or multi-phase flow, is defined to be

Mp = −Kp

fa

max(1− σpM̄
2, 0)

pR − pL

ρ1/2a2
1/2

, (4.33)

where

ρ1/2 =
ρL + ρR

2
, (4.34)

a1/2 =
aL + aR

2
, (4.35)

and

M̄2 =
u2

L + u2
R

2a1/2

(4.36)

with 0 ≤ Kp ≤ 1 and σp ≤ 1. The scaling factor is defined by the reference Mach

number M0 as follows:

fa(M0) = M0(2−M0) ∈ [0, 1], (4.37)

where the reference Mach number is given by

M2
0 = min(1, max(M̄2, M2

∞)) ∈ [0, 1]. (4.38)



58 Chapter 4. Parallel Adaptive Mesh Refinement Finite-Volume Scheme

The formula for evaluating the pressure flux is similar to that for the mass flux

and takes the form

p1/2 = P+
(n)(ML)pL + P−(n)(MR)pR + pu, (4.39)

where n = 1, 3, 5 correspond to the degree of the polynomials P±, as in M±. In

general, the fifth-degree polynomials proposed by Liou [128] are preferred because

they are found to yield more accurate solutions. They are also expressed in terms of

the split Mach number and can be written as

P±(5)(M) =

{
1
M
M±

(1), if |M | ≥ 1,

M±
(2)[(±2−M)∓ 16αMM∓

(2)], otherwise,
(4.40)

and the velocity difference (diffusion) term pu is evaluated by

pu = −KuP+
(5)(ML)P−(5)(MR)(ρL + ρR)(faa1/2)(uL + uR), (4.41)

using the parameters

α =
3

16
(−4 + 5f 2

a ) ∈
[
− 3

4
,

3

16

]
, (4.42)

β =
1

8
(4.43)

with 0≤Ku ≤1. In this thesis work, Kp =0.25, Ku =0.75, and σp =1.0 are used [118].

The AUSM+-up scheme has been shown to be valid in low speed flows and robust

for all Mach number regimes. A more complete and detailed discussion is given in

the recent paper by Liou [118].

4.2.3 Viscous Flux Evaluation

The viscous fluxes of the governing equations are elliptic in nature and should

therefore not be upwinded. Furthermore, evaluation of the viscous component of the

numerical flux depends on both the solution and its gradients at the cell interfaces as

follows:

~Fi+ 1
2
,j,k = ~F

(
Ui+ 1

2
,j,k,

~∇Ui+ 1
2
,j,k

)
, (4.44)
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Figure 4.1: Hybrid average gradient-diamond-path approach for a two-dimensional
grid.

where Ui+ 1
2
,j,k is the solution vector at the cell interface which is evaluated by av-

eraging the reconstructed values of the left and right of the all interface and given

by

Ui+ 1
2
,j,k =

(UL + UR)

2
. (4.45)

In this thesis work, the gradient, ~∇Ui+ 1
2
,j,k is evaluated by employing a hybrid average

gradient-diamond-path approach proposed by Mathur and Murthy [3, 129]. In this

approach, the cell-face gradient is determined using

~∇Ui+ 1
2
,j,k =

Ui+1,j,k −Ui,j,k

∆

~n

~n · ~es

+

(
∇U−∇U · ~es

~n

~n · ~es

)
, (4.46)

with

∇U = α∇Ui,j,k + (1− α)∇Ui+1,j,k, (4.47)

and ~n the norm of the face, ∆ the distance between the adjacent cell centres, and es

the unity vector along this direction. The weighting factor, α, is based on cell volume

ratios and given by

α =
Vi,j,k

Vi,j,k + Vi+1,j,k

. (4.48)

These parameters and procedure for the viscous flux evaluation are depicted in the

schematic diagram of Figure 4.1 for a two-dimensional computational grid. The

procedure is also directly applicable in the three-dimensional case.
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4.2.4 Time Marching Scheme

The set of coupled non-linear ordinary differential equations (ODEs) arising from

the spatial discretization procedure given by Eq. 4.13 can be solved by applying a

time-marching scheme to advance the solution forward in time. In this work, the linear

reconstruction used in the spatial discretization scheme is second-order accurate. To

maintain a consistent scheme in terms of accuracy, a time-marching scheme having

the same order of accuracy is used. Various time-marching methods can be used for

different purposes. For more information on time marching schemes, refer to CFD

textbooks by Lomax, Pulliam and Zingg [32] and by Hirsch [130, 131]. In this thesis

research, the explicit two-stage Runge-Kutta time-marching scheme is used [32].

The explicit time marching used here is conditionally stable and the time step

is limited by the inviscid Courant-Friedrichs-Lewy (CFL) stability, viscous von Neu-

mann stability, and the turbulent and chemical time-step constraints. For reacting

flows, the inverse of the maximum diagonal of the chemical source term Jacobian is

added to the time step calculation. A stable time step, ∆tn, is then determined by

using

∆tn = min
(
CFL

∆l

|~u|+ a
,
α

2

ρ∆l2

max(ν, νt)
,
(
βmax

∂S

∂U

)−1
)
, (4.49)

where ∆l is the cell-face length of a cell, a is the sound speed, and ν and νt are

molecular viscosity and turbulent eddy viscosity, respectively, and where α and β are

scaling factors.

4.3 Block-Based Adaptive Mesh Refinement

Adaptive mesh refinement algorithms automatically adapt the mesh to the solu-

tion of the governing equations and can be very effective in treating problems with

disparate length scales. AMR permits local mesh refinement and helps to mini-

mize the number of computational cells required for a particular calculation. There

has been extensive research in the past 15-20 years on AMR algorithms including

studies of patch-based AMR [132, 133], cell-based AMR [134, 135], blocked-based
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AMR [132, 133, 136–140] and hybrid block-based AMR methods [141]. In this re-

search, a block-based AMR formulation is used that borrows from the ideas of Berger

and co-workers [132,133,136–140] for Cartesian meshes and has similarities with the

block-based approaches described by Quirk [139] and Berger [136]. As in other ex-

tensions of Cartesian mesh adaptation procedures to more arbitrary quadrilateral

and hexagonal meshes [142, 143], the proposed AMR scheme allows for the use of

multi-block, body-fitted anisotropic grids for resolving thin shear and boundary lay-

ers. Moreover, a refinement procedure preserves the original stretching of the mesh.

Based on the approach developed by Groth et al. [144, 145] for computational mag-

netohydrodynamics, a flexible block-based hierarchical data structure is used to fa-

cilitate the automatic solution-directed mesh adaptation of the mesh according to

physics-based refinement criteria.

The implementation of the AMR procedure in the proposed algorithm involves

the following steps [3]:

• evaluation of the refinement measures for each solution block and marking of

solution blocks for refinement and coarsening;

• assessment of the refinement levels for all solution blocks to ensure that the

refinement ratio between adjacent blocks is no greater than 1:2;

• removal of solution blocks associated with coarsening of grid;

• addition of “leaves” representing new children solution blocks in the tree data

structure;

• update of block connectivity and block information used in sharing solution

data between blocks; and

• application of the actual coarsening and refinement of blocks marked for a res-

olution change with a redistribution of the children solution blocks among the

processors to ensure load balancing.

In this research, the two-dimensional AMR scheme has been applied when evaluat-

ing the mesh resolution requirements of the FSD subfilter-scale model. A brief review
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of the block-based AMR methodology is given below and a more detailed account

can be found in the Ph.D thesis by Gao [126]. Although this study only considered

the application of AMR to two-dimensional flames and the FSD resolution require-

ments for this case, the three-dimensional AMR scheme has been fully implemented

by Gao [3] and Northrup and Groth [146].

In the AMR scheme used here, each of these structured blocks of the computational

mesh consists of Mx×My quadrilateral cells in two space dimensions and Mx×My×Mz

hexahedral cells in the three-dimensional case, where Mx, My and Mz are even but

not necessarily equal integers. Mesh adaptation is accomplished by dividing and

coarsening of appropriate grid blocks. In regions requiring increased cell resolution, a

“parent” block is refined by dividing itself into four or eight “children” or “offspring”

depending on the dimensionality. Each of the four or eight children of a parent block

becomes a new block having the same number of cells as the parent and thereby

doubling the cell resolution in the region of interest. This refinement process can

be reversed in regions that are deemed over-resolved and four or eight children are

coarsened or merged into a single parent block. Figure 4.2 illustrates two neighbouring

hexahedral blocks of a three-dimensional mesh, the top block has undergone one level

of refinement and the bottom block has not. The resulting refined grid consists of

nine blocks. The refined grid can be coarsened or de-refined by reversing the division

process and merging eight blocks into one.

The refining and coarsening of blocks are directed using multiple physics-based

refinement criteria as previously discribed by Powell et al. [134]. For the turbulent

combusting flows considered here, the following refinement criteria are used:

ε1 ∝ |~∇ρ|, ε2 ∝ |~∇ · ~u|, ε3 ∝ |~∇× ~u|,

ε4 ∝ |~∇T |, ε5 ∝ |c|, ε6 ∝ |Σ|. (4.50)

The first three quantities correspond to local measures of the density gradient, com-

pressibility, and vorticity of the mean flow field and enable the detection of contact

surfaces, shocks, and shear layers. The last three measure the gradient of mean tem-

perature, progress variable, and flame surface density and provide reliable detection

of flame fronts and combustion zones for reactive flows. In this thesis, the last crite-
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Figure 4.2: An example of two neighbouring8× 8× 8 hexahedral solution blocks: one
which has undergone refinement and one which has not [3].

rion, flame surface density, has been used in the two-dimensional freely propagating

turbulent premixed flame with AMR.

Using these measures, the decision for refinement of a given solution block is

determined according to the following procedure [3]:

• calculate the refinement measures for each cell and assign the maximum value

for all cells as the refinement measures for the solution block;

• determine the global minimal and maximal values of the refinement criteria for

all solution blocks.

• mark solution blocks to be refined/coarsened after comparing their refinement

measures to the refinement/coarsening thresholds scaled by the global extrema,

i.e., blocks with refinement measures below some specified minimum measure

are coarsened and blocks with measures above some upper bound are refined.

In order to maintain the connectivity of the solution blocks in the multi-block

mesh, a flexible block-based hierarchical tree-like data structure is used herein. In
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(a) Multi-block refinement (b) Quadtree

Figure 4.3: Multi-block quadrilateral AMR mesh showing solution blocks at various
levels of refinement and the corresponding quadtree data structure [3].

particular, quadtree and octree data structures are used for tracking the connectivity

of blocks in the two- and the three-dimensional cases, respectively. Figure 4.3(a) shows

two-dimensional multi-block quadrilateral AMR mesh solution blocks at various lev-

els of refinement. Figure 4.3(b) illustrates the corresponding quadtree data structure

used to keep track of mesh refinement and the connectivity between solution blocks.

Figure 4.4 depicts a three-dimensional multi-block hexahedral AMR mesh consist-

ing of solution blocks at various levels of refinement and the corresponding octree

data structure. The quadtree/octree data structure developed here naturally keeps

track of the refinement level and connectivity between grid blocks during isotropic

refinement processes. Although it is not strictly anisotropic, the refinement approach

here preserves original stretching of the mesh and allows for anisotropic mesh and

improved treatment of thin boundary and shear layers.

To allow data to be exchanged between adjacent blocks, having common interfaces,

each block has an additional two (or more) layers of overlapping “ghost” cells, which

contain solution information from neighbouring blocks. This happens by exchanging
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Figure 4.4: Multi-block hexahedral AMR mesh showing solution blocks at various
levels of refinement and the corresponding octree data structure [3].

information of the “ghost” cells between adjacent blocks after each time step. In this

research, two additional layers of overlapping “ghost” cells have been used to share

the solution information between adjacent blocks. Figures 4.5(a) and 4.5(b) show

the ghost cells used for two- and three-dimensional solution blocks, respectively. The

ghost cells provide solution information from neighbouring blocks and are used to

facilitate communications between solution blocks.

4.4 Domain Decomposition and Parallel

Implementation

The multi-block hexahedral mesh and tree data structure lends itself naturally

to domain decomposition and enables efficient and scalable implementations of the

solution algorithm for the reactive mixture conservation equations on distributed-
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(a) Two space dimensions (b) Three space dimensions

Figure 4.5: Two layers of overlapping “ghost” cells contain solution information from
neighbouring blocks [3].

memory multi-processor architectures [147]. A parallel implementation of the block-

based AMR scheme has been developed using the C++ programming language and

the message passing interface (MPI) library [3,148]. Domain decomposition is carried

out by farming the solution blocks out to the separate processors, with more than

one block permitted on each processor. For homogeneous architectures with multiple

processors all of equal speed, an effective load balancing is achieved by exploiting the

self-similar nature of the solution blocks and simply distributing the blocks equally

among the processors. For heterogeneous parallel machines, such as a network of

workstations and computational grids, a weighted distribution of the blocks can be

adopted to preferentially place more blocks on the faster processors and less blocks on

the slower processors. Inter-processor communication is mainly associated with block

interfaces and involves the exchange of ghost-cell solution values and conservative

flux corrections at every stage of the multi-stage time integration procedure. Message

passing of the ghost-cell values and flux corrections is performed in an asynchronous

fashion with gathered wait states and message consolidation [149].



Chapter 5

Simulation Results

In this chapter, numerical simulation results for the flame surface density model

applied to the prediction of premixed flames in one, two, and three-dimensions are

described and discussed. Both freely propagating flames in isotropic decaying turbu-

lence and the turbulent methane/air flames associated with a cylindrical Bunsen-type

burner for both stoichiometric and lean fuel/air mixtures are considered. The pre-

dictions of the FSD model are compared to those obtained with the thickened-flame

subfilter model for the two-dimensional flames and comparisons are also made be-

tween the FSD predictions and experimental results for the Bunsen burner flame in

full three space dimensions. The numerical results provide a partial validation of the

LES methodology and demonstrate the predictive capabilities of the FSD model for

flames representative of more practical combustion processes, such as the combustion

occurring in lean-premixed gas turbine engines.

Computational resources for performing all of the calculations reported herein

were provided by the SciNet High Performance Computing Consortium at the Uni-

versity of Toronto and Compute/Calcul Canada through funding from the Canada

Foundation for Innovation (CFI) and the Province of Ontario, Canada. All of the

computations were carried out on a cluster of IBM Power6-575 (4.7 GHz) nodes con-

nected with a high-speed, low-latency, non-blocking 4x-DDR Infiniband interconnect.

67
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(a) Temperature profile for stoichiomet-
ric laminar premixed 1D CH4-Air flame.

(b) Progress variable profile for stoichio-
metric laminar premixed 1D CH4-Air
flame.

(c) Flame surface density profile for sto-
ichiometric laminar premixed 1D CH4-
Air flame.

(d) Species mass fraction profiles for
stoichiometric laminar premixed 1D
CH4-Air flame.

Figure 5.1: Flame profiles for stoichiometric laminar premixed 1D CH4-Air flame.

5.1 One-Dimensional Premixed Flames

5.1.1 One-Dimensional Laminar Premixed Flame

The validation of the current implementation of the FSD model is first examined

for a one-dimensional laminar premixed flame under stoichiometric conditions (φ =

1.0). This problem provides a good first test of the validity of the implementation of

the FSD model in the current LES framework with the parallel AMR finite-volume

solution procedure.
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Numerical results for this case are summarized in Figures 5.1(a)–5.1(d) and present

partial verification of the implementation of FSD model. The figures provide predic-

tions of the flame structure and show the variation of the velocity, progress variable,

flame surface density, and species mass fraction through the flame. The computational

domain consists of 100 cells in the direction of flame propagation and mesh stretching

is used to cluster cells near the center of the domain where the flame front is located.

The inlet and outlet boundary velocity and pressure, denoted by subscripts 1 and 2,

respectively, have been adjusted systematically such that the mass flux is constant

throughout the domain and a stationary flame structure is achieved. The inlet pre-

mixed fuel and oxidizer initial conditions are held constant except for the velocity, u1,

which is computed using the outlet velocity, u2, and density, ρ2, assuming a constant

mass flux, ρ1u1 = ρ2u2. The outlet properties are all extrapolated from the interior

of the domain except for pressure, which is calculated from the inlet pressure using

relation p2 =p1− ρu1(u1−u2). The Roe flux function with VVenkatakrishnan limiter

were both used along with a 4-stage optimally smoothing time marching scheme to

obtain the steady state for the flame structure. Low-Mach number preconditioning

with a minimum preconditioning Mach number Mrmin
of 0.1 along with scalar local

time-stepping were used to accelerate convergence of the calculations to steady state.

The predicted temperature of the products for this one-dimensional planar flame,

T = 2218.5 K, is in good agreement with the predicted value obtained using Can-

tera [150] (T = 2218 K) and the results of Figure 5.1 provide good support for the

validity of the present implementation of the FSD model and LES solver.

5.1.2 One-Dimensional Turbulent Premixed Flames

In order to validate further the implementation of FSD model and assess the

dependence of the net propagation speed, sT, on the turbulent kinetic energy, k, the

simulation of the one-dimensional turbulent propagation flame was again performed

here with prescribed values for the turbulent kinetic energy throughout the domain.

The laminar flame calculation described above was repeated with a constant value

for the turbulent intensity, u′, imposed everywhere throughout the domain.
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Figure 5.2: Comparison of the current 1D FSD-LES simulation results to the predic-
tions of KPP analysis.

This test case provides further evaluation of the implementation of the subfilter-

scale modelling based on the FSD model. The results of the turbulent flame calcula-

tions are shown in Figure 5.2. The computed turbulent flame speeds are compared

with the expected KPP (Kolmogorov-Petrovski-Piskunov) values for different values

of u′/sL ranging from 0 to 20. KPP analysis [112,151,152] is a simple theoretical tool

that may be used to analyze turbulent combustion models. The analysis is based on

several restrictive assumptions, including the assumption of frozen turbulence (tur-

bulent flow field is not affected by combustion), and may be applied to specific classes

of combustion models. A more detailed description of KPP analysis is given in Ap-

pendix B. From the seven cases shown in the figure, in which u′/sL =0.0, 1.0, 2.0, 3.0,

4.0, 5.0, and 10.0, we can see that there is good agreement of the predicted turbulent

flame speeds obtained using the FSD model and finite-volume solution procedure with

the expected KPP values. These one-dimensional results provide further evidence of

the validity of the current implementation of the FSD-LES modelling.
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5.2 Two-Dimensional Premixed Turbulent

Freely Propagating Flames

As a next step in the verification and validation process for the FSD-LES mod-

elling, numerical predictions have been carried out for a two-dimensional freely prop-

agating turbulent premixed methane-air flame. Although it can be argued that

two-dimensional turbulence differs strongly from three-dimensional turbulence by

the absence of the vortex stretching mechanism, turbulent curvature statistics sug-

gest that the three-dimensional topology of a propagating surface is primarily two-

dimensional [153,154]. Moreover, the two-dimensional premixed flame studies consid-

ered here have provided a solid basis for performing subsequent fully three-dimensional

simulations and evaluating and interpreting the three-dimensional results.

The stoichiometric premixed flame is initialized by introducing a one-dimensional

planar laminar premixed flame similar to that discussed above on to a computational

domain with isotropic turbulence. Subsonic boundary conditions are prescribed at in-

flow and outflow boundaries, and periodic boundary conditions are applied at the top

and bottom of the domain. The initial homogeneous turbulent flow field is generated

by prescribing a specified synthetic energy spectrum [97] and using the procedure

developed by Rogallo [155]. The parameters characterizing the initial conditions for

the turbulent flame are: turbulence intensity, u′ = 2.59 m/s; integral length scale,

Λ = 6.47 mm; Taylor micro scale, λ = 0.832 mm; Kolmogorov scale η = 0.06 mm;

turbulent Reynolds number, Reλ =137; laminar flame speed sL =0.38 m/s; and flame

thickness, δL =0.044 mm. The size of the rectangular-shaped domain considered for

the simulation is x = 0.0366 m and y = 0.0342 m. This provides a computational

domain that contains approximately 44 Taylor micro length scales and 5.6 integral

length scales associated with the imposed turbulence field in the direction of flame

propagation.
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5.2.1 Influences of Mesh Resolution

In order to resolve the turbulence field and flame front properly, the simulation

domain should be discretized with a sufficient number of cells to be able to accu-

rately represent the turbulence and flame front. In particular, for the FSD model,

it is important that the soliton-like nature of the FSD solution at the flame front is

accurately resolved. For this purpose, it was felt that the baseline mesh resolution

requirements of the proposed finite-volume scheme for accurately representing the

freely-propagating flame of interest should be established. A study of the influence of

the mesh resolution on the solution quality was therefore carried out. Four different

uniform grids were considered: 64×60=3, 840, 128×120=15, 360, 256×240=61, 440,

and 512×480=245, 760 cell meshes with the computational cells equally distributed

on 48 solution blocks. The cell sizes compared to the Taylor micro and Kolmogorov

scales for each of the different mesh resolutions are ∆x = 0.56λ = 7.36η for 64×60

cells, ∆x=0.33λ=4.14η for 128×120 cells, ∆x=0.17λ=2.3η for 256×240 cells, and

∆x = 0.08λ = 1.17η for 512×480 cells. For each simulation, the filter width, ∆, was

held fixed and equal to ∆ = 2∆x128×120, where ∆x128×120 = 0.267 = 1.25δL mm is the

mesh spacing of the 128×120 grid. The simulation results are computed up to 0.3

ms, which corresponds to a time of approximately one eddy turnover based on the

Taylor micro scale.

The predicted FSD solutions of the freely-propagating flame in the two-dimensional

decaying turbulence flow field on the four different mesh resolutions are shown in

Figures 5.3(a)–5.3(d). Color contours of the predicted values of ρ̄Σ̃ are given in the

figures with peak values of the FSD occurring within the flame. The wrinkling of the

initially planar laminar flame by the resolved turbulent field is quite evident in each

case. Although very long time results are not shown here, it was found that there is a

corresponding increase in the calculated turbulent flame speed as the simulation pro-

gresses until a near equilibrium flame speed is achieved of sT =0.95 m/s (sT/sL≈2.5)

at t=1.8 ms. At that point in the calculation, the predicted turbulent intensity has

diminished by more than a factor of 30%.

Comparing the results of Figures 5.3(a)–5.3(d), it is fairly evident that the coars-
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(a) FSD contour for 64×60 mesh reso-
lution.

(b) FSD contour for 128×120 mesh res-
olution.

(c) FSD contour for 256×240 mesh res-
olution.

(d) FSD contour for 512×480 mesh res-
olution.

Figure 5.3: Predicted contours of the flame surface density, ρ̄Σ̃, at t=0.3 ms. Results
are shown for four different computational grids: (a) uniform mesh with 64×64 cells;
(b) uniform mesh with 128×128 cells; (c) uniform mesh with 256×256 cells; and (d)
uniform mesh with 512×512 cells.

est mesh (64 × 60 cells) does not provide adequate resolution of the flame front as

compared to the solution on the finest mesh. The finest mesh (512×480 cells) results

in a well resolved thin and smooth flame front with a well predicted maximum value

for the FSD. The peak values of the FSD increases with the increased mesh resolu-

tion: FSDmax =1282/m for the 64×60 grid, FSDmax =1677/m for the 128×120 grid,

FSDmax =1812/m for the 256×240 grid, and FSDmax =1921/m for the 512×480 grid.

Nevertheless, the solutions on the other intermediate meshes (256×240 and 128×120
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(a) Resolved turbulence intensity decay. (b) Predicted turbulent burning rate.

Figure 5.4: Predicted decay of resolved turbulence intensity (a) and predicted turbu-
lent burning rate (b) for the different mesh resolutions: uniform mesh with 64×60
cells; uniform mesh with 128×120 cells; uniform mesh with 256×240 cells; and uniform
mesh with 512×480 cells.

grids) also show reasonable agreement with the finest mesh solution in terms of overall

flame wrinkling and peak values of the FSD.

Turning attention to the predicted turbulent field, the predicted temporal varia-

tions of the resolved turbulence intensity, u′, determined for each of the four meshes

are shown in Figure 5.4(a). It may be observed that the predictions of u′ for the

512×480, 256×240 and 128×120 grids are generally in agreement. In fact it appears

that a virtually grid-independent result has been achieved on the 256×240 mesh,

whereas the 64×60 grid result is clearly somewhat under-resolved. However, even

though the turbulence field is generally resolved on the finer meshes, if one considers

the predicted turbulent flame speed on each mesh as shown in Figure 5.4(b), it is

quite apparent that the flame front and FSD are still not yet fully resolved. Fur-

ther refinement of the mesh is required to obtain a fully grid-independent solution.

Note that similar mesh refinement studies have been performed for the thickened

flame model and, as expected, the artificial thickening of the flame front reduces the

mesh resolution requirements for obtaining grid-independent burning rates (accurate

burning rates can be achieved on more moderately refined meshes).
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5.2.2 Influences of Filter Width

In LES, aside from mesh resolution, the filter size, ∆, is an important factor

affecting the quality of the simulation results. The two-dimensional freely-propagating

premixed flame has been considered on the base, 128×120 grid, for four different filter

sizes, ∆: 0.5∆x, ∆x, 2∆x, and 4∆x, in which ∆x is the cell size. The simulation

results were again carried out for one eddy turnover time or until t=0.3 ms.

Figure 5.5 gives the comparison contours of FSD between the filter size 0.5∆x

(Figure 5.5(b)) and the filter size 4.0∆x (Figure 5.5(d)). It may be seen that the

wrinkling of the flame surface decreases and the flame thickness increases as the filter

size is increased. This is expected since the filtering process would smear out the flame

area, reducing flame wrinkling and increasing the flame thickness. The maximum

values of FSD decrease for increasing the filter size, and this is physically consistent

considering the definition of FSD. The comparison of turbulence decay between the

different filter sizes has been shown in Figure 5.5(e). It is evident that the increased

filter size is resulting in faster turbulence decay. This also can be understood from

the LES philosophy, in which the magnitude of the resolved scales decrease and the

magnitude of subfilter-scales increase with the increased filter size as more turbulence

energy is shifted to the unresolved scale. In LES of turbulent premixed flames, the

relative degree of resolved turbulence compared to the unresolved turbulence is an

important aspect. For different filter sizes, the percentages of unresolved turbulence

are 0.34% for ∆=0.5∆x, 1.5% for ∆=∆x, 5.6% for ∆=2∆x, and 20% for ∆=4∆x

case. In this thesis, the expected percentage of unresolved turbulence should be less

than 20% and greater than 1.5%. From the above discussion, it is suggested for the

future applications of the current LES solver that the filter width, ∆, should be twice

of the mesh size, i.e., ∆=2∆x.

5.2.3 Adaptive Mesh Refinement

As noted in Section 5.2.1, one of the numerical challenges associated with the FSD

subfilter-scale model is that the resolution requirements for Σ̃ are typically quite high,

requiring higher resolution of the flame surface than that required by other competing
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(a) FSD contour with filter size 0.5∆x. (b) FSD contour with filter size ∆x.

(c) FSD contour with filter size 2.0∆x. (d) FSD contour with filter size 4∆x.

(e) Resolved turbulence intensity decay.

Figure 5.5: Predicted contours of FSD and resolved turbulence intensity decay with
different filter sizes.

subfilter-scale treatments for premixed flames. For the case described above, the

thickness of the turbulent flame based on the FSD is about 1.5λ or 3δL, requiring
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(a) Predicted contours of FSD, ρ̄Σ̃, for
a 128×120 uniform mesh with 48 blocks.

(b) Predicted contours of FSD, ρ̄Σ̃, for
AMR mesh with 1-level of refinement;
84 blocks and 26,880 cells.

(c) Predicted contours of FSD, ρ̄Σ̃, for
AMR mesh with 2-level of refinement;
165 blocks and 52,800 cells.

(d) Predicted contours of FSD, ρ̄Σ̃, for
AMR mesh with 3-level of refinement;
390 blocks and 124,800 cells.

Figure 5.6: Predicted contours of fame surface density, ρ̄Σ̃, through the turbulent
flame front obtained using uniform mesh with 128×120 cells and AMR meshes with
1-, 2- and 3-levels of refinement.

mesh spacing considerably smaller than the filter width, ∆, to accurately resolve

the variation of Σ̃ across the flame. The proposed finite-volume AMR treatment

was found to be very effective in accurately treating the flame front. The technique

permitted local refinement of the mesh to resolve the FSD solution and thereby obtain

near grid-independent results in a very economical fashion. Figures 5.6(a)–5.6(d)

depict and compare LES results for the freely propagating flame obtained using the

baseline 128×120 grid described previously and three AMR meshes with 1-, 2- and
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(a) Predicted profiles of c̃, and ρ̄Σ̃ for
AMR meshes.

(b) Predicted turbulent burning rate for
AMR meshes.

Figure 5.7: Predicted profiles of the progress variable (a), c̃, flame surface density (a),
ρ̄Σ̃, and turbulent burning rate (b) obtained using uniform mesh with 128×120 cells
and AMR meshes with 1-, 2- and 3-levels of refinement.

3-levels of refinement. Again, the filter width, ∆x = 2∆x128×120, is held constant for

all cases. The finest AMR mesh consists of 124,800 cells on 390 (16×20) solution

blocks.

It can be seen from the figures that a grid-independent result for the FSD is

obtained on the finest mesh. Further evidence for this is given in the predicted

profiles of the progress variable, c̃, and flame surface density through the flame front

of Figure 5.7(a) obtained using the uniform mesh and the three AMR grids. In

addition, the plot of the computed turbulent flame speed obtained on the sequence

of refined meshes as shown in Figure 5.7(b) also indicates that the AMR procedure

rapidly leads to what appears to be a grid-independent result.

5.2.4 Predicted Premixed Flame Structure

The two-dimensional turbulent stoichiometric methane-air flame results are shown

in Figure 5.8. The results are generated at a time equal to five eddy turnover time

(1.5 ms) based on the Taylor micro scale after initialization of the solution field.

Figure 5.8(a) gives contours of the progress variable distribution which varies from

the unburnt gas side of the flame as 0 and burnt side as 1. The corresponding FSD
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contours are presented in Figure 5.8(b). It can be observed that resolved flame brush

remains well structured and strongly wrinkled and there are significant variations of

FSD along the flame that is related to the local flame geometry. As time advances,

the flame profile becomes more wrinkled, developing a complicated structure with

regions of strong resolved curvature.

The contours for the RHS terms in Eq. 3.60 for two-dimensional turbulent methane-

air flames are presented in Figure 5.9 and provide insight into both the FSD modelling

and physics of the flame. The resolved strain term, as shown in Figure 5.9(a), is an

important aspect of the LES flame surface density model. It is zero outside of the

flame brush since the FSD is zero, and varies significantly within the resolved flame

profile. The effect of this term is primarily related to the production of FSD, but there

are also isolated regions of FSD destruction. The contours of the resolved propagation

are shown in Figure 5.9(b). This term acts as expected, causing an increase in FSD

on the fresh gas side and a decrease on the burnt gas side of the flame. It may be seen

from Figure 5.9(c) that the resolved curvature term behaves as a production term in

regions where the flame is convex to the reactants and as a destruction term in regions

where the flame is concave to the reactants. The addition of these two terms (resolved

propagation and curvature) represents the net effects of laminar propagation. The

subfilter-scale terms of the FSD model also include the influences of subfilter strain

(a) Progress variable contour. (b) Flame surface density contour.

Figure 5.8: Flame structure for the 2D stoichiometric CH4-air flame at t=1.5 ms.
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and subfilter curvature. The predicted distributions of both of these terms are shown

in Figure 5.9(d) and Figure 5.9(e), respectively. The subfilter strain is a production

term with values corresponding to the local FSD. Conversely, the subfilter curvature

acts as a localized destruction of the FSD.

The predicted distribution of the RHS terms in the modelled FSD transport equa-

tion are also shown in Figure 5.9(f), so as to asses the relative importance of the con-

tributions of each term to the overall mechanism of flame propagation. Figure 5.9(f)

shows the profiles of the RHS terms for the two-dimensional turbulent methane-air

flame at 1.5 ms. It is evident from the figure that there is a complex balance of

terms through the flame brush resulting in the final net rate of change of FSD. The

largest contributions at the trailing edge of the flame arise from resolved curvature

and subfilter curvature terms which act in the production and destruction of the FSD,

respectively. At the leading edge, the main contributions arise from the resolved and

subfilter strain terms and resolved propagation and curvature terms.

5.2.5 Influences of Turbulence Intensity: Comparison

of FSD Model and Thickened Flame Models

Simulations of two-dimensional freely propagating flames were also carried out for

three different levels of turbulence intensity. The initial ratios of turbulence intensity

to laminar flame speed in the unburnt mixture are: u′/sL = 6.8, 10.4, 20.7. These

cases are identified as case A, case B and case C, respectively. A summary of the

turbulence scales and flow conditions is listed in Table 5.1, where φ is the equivalence

ratio, δL is the laminar flame thickness, λ is the Taylor micro scale, Λ is the integral

length scale, and η is the Kolmogorov length scale. The parameters characterizing

the initial conditions in the unburnt gas are: Λ = 6.4 mm; and λ = 0.83 mm. The

dimensions of the domain for the simulations are Lx = 0.0366 m and Ly = 0.0342

m, and a 128×120 cell uniform computational mesh with 48 solution blocks was

employed. Inflow and outflow subsonic boundary conditions were again imposed on

the left and right boundaries, respectively, whereas the two remaining boundaries are

periodic. For comparison purposes, numerical predictions of the freely propagating
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(a) Resolved strain contour. (b) Resolved propagation contour.

(c) Resolved curvature contour. (d) Subfilter strain contour.

(e) Subfilter curvature contour. (f) Budget of all RHS terms.

Figure 5.9: Contours of RHS terms in Eq. 3.60 at y = 0 and z = 0 plane for 2D
stoichiometric CH4-air flame at t=1.5 ms.
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flame were also obtained using a thickened flame model with a constant thickening

factor, F =5. Figures 5.10(b)–5.10(e) show the predicted contours of methane mass

fraction at a time equal to 0.6 ms. This time corresponds to roughly two, three and

six eddy turnover times based on Taylor scale for cases A, B and C, respectively.

The predicted contours of the methane mass fraction clearly illustrate the strong

influence of the turbulence intensity on the predicted flame structure. For both, the

thickened flame and FSD models, there is a significant increase in the resolved flame

front wrinkling with turbulent intensity. Comparing the two models, the overall

agreement between the predicted flames geometries is rather good. The wrinkling

generated by large turbulent structures is very similar for both models. Differences

are largely due to the fact that the flame front of the thickened model has been

artificially thickened and a greater proportion of the flame wrinkling is therefore

modeled. The differences become more evident when the flame is subject to higher

turbulence levels, as displayed in Figures 5.10(f) and 5.10(e). In this case, some of the

small wrinkled structures that develop at earlier times in the FSD simulation have

grown significantly; however, these same structures are not present in the thickened

flame simulation.

FSD contours for the three turbulence intensities are shown in Figures 5.11(a), 5.11(c)

and 5.11(e). As can be seen, the maximum values of FSD increase with turbulence

intensity. Higher turbulence intensities lead to more flame wrinkling, which in turn,

produce more flame surface. A point of note is the thickness associated with the FSD

contours. There is a thickening of the FSD, which is partly due to lack of resolution

of the FSD. As noted above, a numerical challenge associated with the FSD approach

is that the required resolution of FSD is higher as compared to the thickened flame

Flame φ Λ λ u′ sL δL u′/sL

CH4-Air mm mm m/s m/s mm
A 1.0 6.4 0.83 2.58 0.38 0.044 6.8
B 1.0 6.4 0.83 3.95 0.38 0.044 10.4
C 1.0 6.4 0.83 7.87 0.38 0.044 20.7

Table 5.1: Summary of the 2D freely propagating turbulence scales and flow
conditions.
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(a) FSD model (b) Thickened flame, F =5

(c) FSD model (d) Thickened flame, F =5

(e) FSD model (f) Thickened flame, F =5

Figure 5.10: Predicted CH4 contours for cases A-C at 0.6 ms with FSD model and
thickened flame model: (a) Case A, u′/sL =6.8, with FSD model, (b) Case A, u′/sL =
6.8, with thickened flame model, F = 5, (c) Case B, u′/sL = 10.4, with FSD model,
(d) Case B, u′/sL =10.4, with thickened flame model, F =5, (e) Case C, u′/sL =20.7,
with FSD model, (f) Case C, u′/sL =20.7, with thickened flame model, F =5.

model and other similar approaches. On the other hand, a reduced number of trans-

port equations need to be solved when a FSD and progress variable formulation is
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(a) FSD contours, FSD model (b) CO mass fraction, Thickened
flame, F =5

(c) FSD contours, FSD model (d) CO mass fraction, Thickened
flame, F =5

(e) FSD contours, FSD model (f) CO mass fraction, Thickened
flame, F =5

Figure 5.11: Predicted CO and FSD contours for cases A-C at 0.6 ms with FSD
model and thickened flame model: (a) Case A, u′/sL =6.8, with FSD model, (b) Case
A, u′/sL = 6.8, with thickened flame model, F = 5, (c) Case B, u′/sL = 10.4, with
FSD model, (d) Case B, u′/sL =10.4, with thickened flame model, F =5, (e) Case C,
u′/sL =20.7, with FSD model, (f) Case C, u′/sL =20.7, with thickened flame model,
F =5.
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employed, which, from the computational viewpoint, is advantageous. Another ad-

vantage of the FSD approach is the separation of complex chemistry from turbulence

in which chemistry modeling is simply incorporated through the laminar flame speed

and heat release parameter.

Since the thickened flame approach offers some potential of dealing with more

complex chemical kinetic schemes and detailed transport, results obtained for an

intermediate species like CO are considered next. As discussed previously in Sec-

tion 3.2.2 for the FSD model, the mass fraction of each species is derived based on

the one-step global reaction and the definition of progress variable. A limitation of

the current FSD model pertains to solving complex chemical reactions and obtain-

ing intermediate species. Figures 5.11(b), 5.11(d) and 5.11(f) show the predicted

CO mass fraction contours using the thickened flame model approach. It should be

noted that the thickened flame results were obtained using the algorithm developed by

Hernandez-Perez [156]. For the three different cases, the largest concentrations of CO

tend to occur in regions where the flame front is convex towards the reactants. This is

in agreement with direct numerical simulation results reported in references [157,158].

These regions generally coincide with zones where the flame undergoes downstream

interaction, which have been reported to be the main areas for CO production. In

these regions the CO oxidation layer is curtailed. It is interesting to note that despite

the fact that only a two-step reaction mechanism is used in the LES of the pre-

mixed flames, important features regarding the interaction between turbulence and

chemistry have been captured with thickened flame model.

The turbulent burning rates for the three different values of turbulent intensity

have been computed, based on the integrated FSD and the integrated consumption

rate of fuel, in the FSD and thickened flame simulations, respectively. The corre-

sponding expressions for FSD and the thickened flame burning rates are given by

sT =
sL

Ly

∫
A

ρ̄Σ̃dA, (5.1)

and

sT =
1

ρ̄rỸFLy

∫
A

ω̇FdA, (5.2)
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Figure 5.12: Predicted turbulent burning rates for freely propagating flame in two-
dimensional decaying isotropic turbulent fields for Cases A-C.

where ρ̄r is the reactants density and ỸF is the fuel mass fraction in the reactants.

The predicted turbulent burning rates obtained for both the thickened flame and

FSD models for cases A-C are shown in Figure 5.12. From the figure, it can be seen

that there is a short period of adjustment to the initial conditions until the burning

rates attain the laminar flame speed. After this initial period of adjustment, the

burning rates generally increase while the flame front is wrinkled by the turbulent

flow field. The fuel consumption rate is clearly enhanced by turbulence as more flame

surface is produced by the wrinkling of the flame front.

For both models, the computed burning rates follow the same trend. As the

turbulence level is increased, more wrinkling is generated, resulting in a corresponding

increase in the turbulent burning rates. The predicted turbulent flame speeds are

quantitatively similar for low turbulence intensities, however, for high turbulence

intensity the FSD model yields a higher flame speed.

5.2.6 Influences of Fuel Type

One of the advantages of FSD subfilter-scale model for LES is that it is relatively

easy to apply the model to the combustion of different fuels. All that is required is



Section 5.2. Two-Dimensional Turbulent Freely Propagating Flames 87

(a) Methane-air flame. (b) Propane-air flame.

(c) Hydrogen-air flame. (d) Turbulent burning velocity.

Figure 5.13: Predicted FSD contours for different fuels: (a) Methane-air flame, (b)
Propane-air flame, (c) Hydrogen-air flame, and (d) turbulent burning rate for three
different fuels.

the calculation of the laminar flame speed and relationships for the mass fraction of

the various reactants and products in terms of the progress variable. Note that

this may also be viewed as a drawback as the chemistry of intermediate species

can not be properly represented without introducing additional progress variables.

Here the validation for different fuels has been carried out for methane-air, propane-

air, and hydrogen-air two-dimensional freely propagating flames. The computations

were carried out with a ratio of turbulence intensity to laminar flame speed of 6.5

for all three fuels, and for a physical time of 0.25 ms, which is approximately one

eddy turnover time for the methane-air and the propane-air mixtures, and almost
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five eddy turnover time for the hydrogen-air mixture. The laminar flame speeds for

the three different fuels are 0.38 m/s (CH4), 0.5 m/s (C3H8), and 2.38 m/s (H2).

Figures 5.13(a)–5.13(c) depict the predicted FSD solutions for the three fuels. It may

be observed that methane-air and propane-air have very similar flame wrinkling and

structure, but the hydrogen-air flame exhibits a much higher degree of wrinkling as

should be expected.

5.3 Three-Dimensional Premixed Turbulent

Freely Propagating Methane-Air Flames

Following the verification studies of flame propagation in one- and two-dimensions,

further verification of the implementation of the FSD subfilter-scale model with the

LES framework has been sought by considering fully three-dimensional simulations of

freely propagating flames in homogeneous isotropic decaying turbulent fields. Similar

to the two-dimensional simulations described previously, the three-dimensional turbu-

lent flames are initialized by introducing a planar laminar stoichiometric methane-air

premixed flame onto a computational domain containing the isotropic turbulent field

using the procedure developed by Rogallo [155]. Also as in the two-dimensional sim-

ulations, turbulence fields of three different turbulence intensities were considered.

These cases are identified as case D, case E, and case F, respectively, and the param-

eters characterizing the initial turbulent field in the unburnt mixture for each of the

cases are as follows: relative turbulence intensity, u′/sL = 3.3 (case D), 7.25 (case

E), 14.38 (case F); integral length scale, Λ=1.635 mm (case D), 1.79 mm (case E),

1.79 mm (case F); Taylor micro scale, λ = 0.442 mm (case D), 0.46 mm (case E),

0.46 mm (case F); Komogorov scale, η = 0.052 mm (case D), 0.029 mm (case E),

0.029 mm (case F); laminar flame speed, sL =0.40 m/s (case D), 0.40 m/s (case E),

0.2 m/s (case F); and flame thickness, δL =0.052 mm (case D), 0.029 mm (case E),

0.029 mm (case F). In addition, in order to investigate the influences of stoichiometry,

a lean case has also been carried out with relative turbulence intensity u′/sL =14.38

(case G) and equivalent ratio φ=0.7. A summary of the turbulence scales and flow
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conditions for the three testing cases is provided in Table 5.2.

A cube-shaped physical domain was considered for the simulations with dimen-

sions of 0.01 m× 0.01 m× 0.01 m. Numerical results were obtained using a refined

mesh in the flame propagating direction. The computational domain was discretized

using a 240×60×60 = 864, 000 cell mesh with the cells equally distributed on 4096,

16×4×4-cell, solution blocks. This corresponds to a mesh spacing of ∆x=0.04 mm,

∆y = 0.16 mm, and ∆z = 0.16 mm. A filter width of ∆ = 2∆x = 0.08 mm = 0.1δL

was used when performing the LES. The design of this mesh is based on the study of

the two-dimensional freely propagating flames with AMR scheme, Section 5.2.3. The

simulation results were carried out for one eddy turnover time based on the integral

length scale for all three cases. This corresponds to the physical times of 1.3 ms

(u′/sL =3.3), 0.65 ms (u′/sL =7.25), and 0.33 ms (u′/sL =14.38), respectively.

5.3.1 Influences of Turbulence Intensity

Numerical predictions of the three-dimensional freely propagating flames for cases

D, E, and F, obtained using the FSD model are depicted in Figure 5.14. The predicted

iso-surfaces of the progress variable corresponding to c=0.5 at t=0.33 ms are shown.

The initial turbulence velocity field is also shown in Figure 5.14(a). The fully three-

dimensional structures of the resolved flame surfaces are apparent in the figure. The

wrinkling of the initial planar flame front is clearly illustrated. Furthermore, the

flame front wrinkling is noticeably increased with increasing turbulence intensity.

The increased wrinkling of the flame front also results in a corresponding increase in

the predicted burning rate and hence flame propagating speed.

Flame φ Λ λ η u′ sL δL u′/sL Λ/δL

CH4-Air mm mm mm m/s m/s mm
D 1.0 1.635 0.442 0.05174 1.33 0.403 0.05 3.30 30.46
E 1.0 1.790 0.460 0.02935 2.92 0.403 0.05 7.25 33.34
F 1.0 1.790 0.460 0.02935 5.79 0.403 0.05 14.38 33.34
G 0.7 1.790 0.460 0.02935 2.92 0.201 0.11 14.38 33.34

Table 5.2: Summary of the freely propagating turbulence scales and flow conditions.
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(a) (b)

(c) (d)

Figure 5.14: (a) Initial turbulent flow field. Predicted iso-surfaces of c corresponding
to c=0.5 at time t=0.33 ms for stoichiometric cases with turbulence intensities: (b)
u′/sL =3.3 (case D) (c) u′/sL =7.25 (case E) and (d) u′/sL =14.38 (case F).

The predicted turbulence burning rates for different turbulence intensities are

presented in Figure 5.15(a). It should be noted that the longer simulation time is still

needed to reach the quasi-steady turbulent burning rates for cases D, u′/sL =3.30, and

E, u′/sL =7.25, in Figure 5.15(a). Figure 5.15(b) illustrates the time variation of the

total kinetic energy, the resolved kinetic energy, and the subfilter kinetic energy for the

three-dimensional flame propagation problem with a turbulence intensity u′/sL =7.25

(case E). It is shown that most of the total kinetic energy has been resolved and only

a small portion of the energy, the subfilter kinetic energy, has been modelled. This

can be explained by the refined mesh used in the direction of flame propagation which



Section 5.3. Three-Dimensional Turbulent Freely Propagating Flames 91

(a) (b)

Figure 5.15: (a) Turbulence burning rate for stoichiometric cases with three differ-
ent turbulence intensities (case D, E, and F). (b) Turbulent kinetic energy for the
stoichiometric case with turbulence intensity u′/sL =7.25 (case E).

is required in order to accurately resolve the flame surface density based on resolution

studies for two-dimensional flames considered previously.

The wrinkled structure of the premixed flame fronts are further presented in the

contours of the progress variable, c, and FSD in the x-z plane, Figure 5.16. It may be

observed that increased relative turbulence intensity increases the resolved wrinkling

of the flame surface, as well as the maximum values of FSD. It also may be pointed

out that the resolved flame structure is slightly tightened at the increased turbulence

level. The reason for that is the subfilter flame strain term is scaled with the efficiency

function Γk, which is an increasing function of the subfilter kinetic energy, k̃.

5.3.2 Time Evolution of Flame Profiles

In order to see clearly the time evolution of the freely-propagating flame profiles,

simulation results for case E, in which the relative turbulence intensity is 7.25, are

shown in Figures 5.17(a) and 5.17(b) for two different instances in time. The predicted

iso-surfaces of the progress variable for c=0.5 are shown in the figures at times t=0.33

ms and t = 0.65 ms, respectively. Correspondingly, Figures 5.17(c)–5.17(f) provide

the predicted contours of the progress variable and flame surface density in the x-z

plane. From these figures, it can be seen that the resolved flame brushes remain well
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Predicted contours of c and FSD at x-z plane for the stoichiometric cases
with turbulence intensities: (a) and (b) u′/sL =3.3 (case D), (c) and (d) u′/sL =7.25
(case E), and (e) and (f) u′/sL =14.38 (case F).

structured and there are significant variations of FSD along the flame that are related

to the local flame geometry. The significant wrinkling of the flame surface is captured
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Predicted iso-surfaces of c=0.5 for the stoichiometric case with turbu-
lence intensity u′/sL = 7.25 (case E) at time (a) t = 0.33 ms and (b) t = 0.65 ms,
predicted contours of c at x-z plane for turbulence intensity u′/sL =7.25 at time (c)
t=0.33 ms and (d) t=0.65 ms, predicted contours of FSD at x-z plane for turbulence
intensity u′/sL =7.25 at time (e) t=0.33 ms and (f) t=0.65 ms

by the LES methodology. As time advances, the flame profiles become more wrinkled,

developing a complicated structure with regions of strong resolved curvature. The
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flame generally consists of large areas where the curvature is convex to the reactants

and smaller areas featuring tighter concave curvatures. This behavior has also been

found in DNS studies of flame structure (see, for example, Cant et al. [153]).

5.3.3 Behavior of Modelled Terms in FSD Closure

As for the two-dimensional flames considered above, the ability of the FSD model

to provide insight into the structure and evolution of the three-dimensional flame

surface is highlighted by considering the production and destruction terms that appear

in the FSD transport equation. Figure 5.18 shows contours of the numerical values of

the terms on the RHS of the modelled transport equation (Eq. 3.60) for case E with

the relative turbulence intensity of 7.25 at time t=0.65 ms. The resolved propagation

term, Pres (Figure 5.18(b)), is causing an increase of the FSD on the fresh gas side and

a decrease on the burnt gas side. The resolved curvature term, Cres (Figure 5.18(c)),

acts as a production term in the regions where the flame is convex to the reactants

and as a destruction term in the regions where the flame is concave to the reactants.

The addition of the two terms, Pres and Cres, represents the net effects of laminar

propagation. The ability of LES to exploit the partial resolution of the flame brush

is highlighted by Figure 5.18(b) and 5.18(c). There are strong spatial variations in

the resolved terms that would simply not be observed in a RANS simulation. The

resolved strain term (Figure 5.18(a)) is acting, as expected, as a production term

for the FSD. The subfilter strain term (Figure 5.18(d)) and subfilter curvature term

(Figure 5.18(e)) act as the production and destruction terms for the flame surface,

respectively. The sum of all the terms from the RHS of the transport equation for

the FSD dictates the net rate of change of the flame surface area. Figure 5.18(f)

illustrates the strongly dynamic nature of the flame propagation process through the

spatial variations of the net rate of change of FSD.

The structure of the flame profile is the result of many contributions to production

and destruction taken over a significant time period. This underlines the need for

models based on the solution of a full transport equation of FSD. Figure 5.19 gives

the budget of the RHS terms for cases D, E, and F at time t = 0.33 ms, which are
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Predicted contours of RHS terms of Eq. 3.60 at x-z plane for the stoi-
chiometric case with the turbulence intensity u′/sL = 7.25 (case E) at time t = 0.65
ms. (a) resolved strain term, (b) resolved propagation term, (c) resolved curvature
term, (d) SFS strain term, (e) SFS curvature term, and (f) net rate of the change.
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(a) (b)

(c)

Figure 5.19: RHS term budget of Eq. 3.60 for stoichiometric cases with turbulence
intensities: (a) u′/sL = 3.3 (case D), (b) u′/sL = 7.25 (case E), and (c) u′/sL = 14.38
(case F).

the profiles normal to the three-dimensional flame front along one line. It may be

observed that the increased relative turbulence intensity results in an increase in the

flame brush thickness. In addition, the resolved propagation, curvature and strain

terms become less significant with increased turbulence intensity.

5.3.4 Influences of Stoichiometry

In many practical applications, such as stationary gas turbines for power gener-

ation, there is a strong interest in achieving lean premixed combustion due to the

advantages of higher thermal efficiency and lower NOx emissions. As a follow on
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Comparison of predicted iso-surfaces of c = 0.5, contours of c and FSD
for stoichiometric (case F) and lean (case G) flames with turbulence intensity u′/sL =
14.38 at time t=0.33 ms; (a) Predicted iso-surfaces of c=0.5 for stoichiometric flame;
(b) Predicted iso-surfaces of c=0.5 for lean flame; (c) Predicted contours of c at x-z
plane for stoichiometric flame; (d) Predicted contours of c at x-z plane for lean flame;
(e) Predicted contours of FSD at x-z plane for stoichiometric flame; (f) Predicted
contours of FSD at x-z plane for lean flame.
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Figure 5.21: Comparison of predicted turbulent burning rates of stoichiometric (case
F) and lean (case G) flames with turbulence intensity u′/sL =14.38.

to the preceding numerical results for freely propagating stoichiometric methane-air

premixed flames, numerical simulation of a lean premixed flame was also considered

here with a relative turbulence intensity of u′/sL = 14.38 (case G) at time t = 0.33

ms. In addition, in order to compare the turbulence burning rate for stoichiomet-

ric (case F) and lean (case G) flames, numerical simulation has also been carried

out until time t = 0.7 ms for both cases. The comparison of predicted iso-surfaces

of c = 0.5 and contours of c and FSD for these two stoichiometric and lean flames

are presented in Figure 5.20. It is apparent that the predicted lean premixed flame

displays increased wrinkling and a more diffusive flame front than the stoichiometric

flame (Figure 5.20(b) and Figure 5.20(a), Fig 5.20(d) and Fig 5.20(c)). Also, the

values of the predicted contours of FSD are higher for the lean flame than for the

stoichiometric flame as shown in Fig 5.20(f) and Figure 5.20(e). This behavior is

also reflected in the comparison of the predicted turbulence burning rates for the lean

and stoichiometric flames given in Figure 5.21, in which the normalized or relative

turbulent burning rate for the lean case is found to be higher than for that of the

stoichiometric case. Previous experimental and LES results of Kaminski et al. [159]

suggest that there may be some dependence of flame wrinkling on stoichiometry and

that lean flames can be destabilized even at relatively low turbulence intensities for
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conditions under which a stoichiometric flame is only moderately affected. It should

be noted here that the absolute value of the turbulent burning rate for the lean case is

actually lower than the stoichiometric case. The reason that the normalized turbulent

burning rate for the lean case becomes higher is because of the apparent increased

wrinkling of the flame front under lean conditions.

5.4 Three-Dimensional Premixed Turbulent

Methane-Air Bunsen Flames

Having carried out a partial validation of the proposed subfilter scale FSD model

and LES implementation for one-, two-, and three-dimension premixed laminar and

turbulence flames, we are now in a position to consider the numerical simulation of

turbulent laboratory-scale flames and comparison of predicted flame behavior and

structure to experimental measurements. There have been a variety of simplified tur-

bulent premixed flame configurations studied experimentally by various researchers.

Recent examples include the studies by Sattler et al. [160] of a turbulent V-flame,

Shepherd et al. [161] of a swirl-stabilized flame, Most et al. [162] of a bluff-body

stabilized flame, Chen et al. [163] of Bunsen and stagnation flames, and Filatyev et

al. [164] of slot burner flame. Experimental diagnostics have advanced understanding

of basic flame physics for these idealized laboratory flames and as well as aided in the

development of models that can be used for engineering design. In addition, several

DNS studies have been presented for a laboratory-scale slot burner flame and V-flame

by Bell et al. [165,166] and a lean Bunsen flame by Sankaran et al. [167].

In this thesis, LES was performed with the FSD subfilter-scale model for the

laboratory-scale turbulent premixed Bunsen-type flames considered in the experi-

mental work of Yuen and Gülder [4, 5] and the resulting numerical predictions have

been carefully compared to the experimental measurements. The experiments were

conducted for 31 different premixed Bunsen-type flame conditions. There were 15

different methane-air flames considered in the experimental work under various con-

ditions with equivalence ratios of φ=0.6−1.0, non-dimensional turbulence intensities
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(a) (b)

Figure 5.22: (a) Schematic of the premixed Bunsen-type flame [4]. (b) Computational
mesh for the premixed Bunsen-type flame.

of u′/sL = 3.2 − 24.1, integral length scales of Λ = 1.62 − 1.79, turbulent Reynolds

numbers of Re = 96 − 242, and Karlovitz numbers of Ka = 1.1 − 37.7. Another 16

flames were considered for propane-air mixtures with equivalence ratio in the range

φ = 0.7 − 1.0, non-dimensional turbulence intensities of u′/sL = 2.7 − 20.3, integral

length scales of Λ = 1.61 − 1.83, turbulent Reynolds numbers of Re = 83 − 311, and

Karlovitz numbers of Ka = 0.8 − 23.3. All of the 31 flames considered by Yuen and

Gülder straddle the border between the flamelet and thin reaction zones given by

Ka = 1 on the premixed turbulent combustion regime diagram (refer to Chapter 1)

and correspond to typical working conditions for real gas-turbine combustors. On the

other hand, the geometry set up of the Bunsen burner, as shown in Figure 5.22(a), is

fairly easy to represent using a cylindrical multi-block numerical mesh as depicted in

Fig 5.22(b). The experimental premixed turbulent conical flames [4] were produced

by using a Bunsen burner with an inner nozzle diameter of d=11.2 mm. Turbulence

levels were regulated by perforated plates located at 3-diameter lengths upstream of

the burner nozzle. Particle image velocimetry (PIV) was used to measure instan-
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taneous velocity field of the experimental conditions studied. Planar laser Rayleigh

scattering was used to capture the flame front images.

5.4.1 Cases of Interest and Bunsen Flame Setup

In the present study, four of the experimental cases of Yuen and Gülder [4,5] were

considered: two stoichiometric methane-air premixed flames with relative turbulence

intensities of u′/sL = 3.3 (case H) and u′/sL = 7.25 (case I) and two lean methane-

air premixed flame with relative turbulence intensities of u′/sL = 6.55 (case M) and

u′/sL = 14.38 (case N). In addition, in order to explore more fully the influence of

turbulence on the premixed Bunsen-type flames, four other flames, not considered in

the experimental work, were also simulated. Two of the additional simulated flames

were stoichiometric methane-air premixed flames with relative turbulence intensities

of u′/sL = 14.38 (case J) and u′/sL = 24.1 (case K), respectively, and the other two

flames were lean methane-air premixed flames with relative turbulence intensities

of u′/sL = 3.3 (case L) and u′/sL = 24.1 (case P). The turbulence scales and flow

conditions for all of these eight cases are summarized in Table 5.3. Furthermore, the

locations corresponding to the operating conditions for these eight flames (cases H–P)

on the premixed turbulent combustion regime diagram are given in Figure 5.23, which

clearly shows that the eight flames lie above the flamelet regime (above the Ka = 1

line) and are fully inside the so-called thin-reaction zones regime. For this reason,

the eight flames of interest present significant challenges to the FSD-LES modelling

considered herein, and indeed would challenge any modelling based on the laminar

flamelet concept.

The geometry of the Bunsen burner is shown in Figure 5.22(a). As depicted in

Figure 5.22(b), a cylindrical-shaped computational domain was used with a diameter

of 5d and a height of 10d, such that the influence of the far-field domain boundaries

was minimized. Note that as indicated above, d = 11.2 mm for the burner. The

domain was discretized using a multi-block, body-fitted, hexahedral mesh consisting

of 1664 12×12×8 blocks and a total of 1, 916, 928 computational cells. There were

1, 024 cells in the vertical direction, 48 cells in the azimuthal direction, and approxi-
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Figure 5.23: Premixed turbulent combustion regime diagram showing the conditions
for the eight Bunsen-type flames (cases H–P, 4 experimental and 8 numerical cases)
considered herein.

mately 42 cells in the radial direction for this case. The design and mesh spacing for

this grid was determined based on the findings of study of the two-dimensional freely

propagating flames with AMR described earlier in Section 5.2.3. Subsonic inflow and

outflow boundary conditions were applied at the axial inflow and outflow boundaries

and subsonic outflow boundary conditions with a fixed pressure were employed at

the radial outflow boundaries. The turbulent inflow conditions were again obtained

Flame φ Λ λ η u′ sL δL u′/sL Λ/sL U
CH4-Air mm mm mm m/s m/s mm m/s

H 1.0 1.635 0.442 0.05174 1.33 0.403 0.05 3.3 30.46 17.59
I 1.0 1.790 0.460 0.02935 2.92 0.403 0.05 7.25 33.34 15.58
J 1.0 1.790 0.460 0.02935 5.79 0.403 0.05 14.38 33.34 15.58
K 1.0 1.790 0.460 0.02935 9.71 0.403 0.05 24.1 33.34 15.58
L 0.7 1.635 0.442 0.05174 0.66 0.201 0.11 3.3 15.2 17.59
M 0.7 1.635 0.442 0.05174 1.33 0.201 0.11 6.55 15.2 17.59
N 0.7 1.790 0.460 0.02935 2.92 0.201 0.11 14.38 16.64 15.58
P 0.6 1.790 0.460 0.02935 2.92 0.121 0.18 24.1 9.88 15.58

Table 5.3: Summary of turbulence scales and flame conditions for the eight Bunsen-
type flames (cases H–P) considered herein.
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by using the procedure of Rogallo [155]. The mean inflow velocity was prescribed

to match the measured values from the experimental cases (i.e., 15.58 m/s for all

stoichiometric cases and 17.79 m/s for all lean cases) and the turbulence fluctuations

were superimposed with different fluctuation velocities, u′, cooresponding to the rel-

ative turbulence intensities, u′/sL, Table 5.3. Although not shown, for the selected

mesh the percentages of the unresolved turbulence were 5% for case H, 5.8% for case

I, 6.6% for case J, 6.3% for case K, 4.3% for case L, 5.2% for case M, 6.3% for case

N, and 6.3% for case P. The LES of the eight premixed flames were carried out for a

time period t=9.0 ms after initialization, at which time quasi-steady flame structures

were established. Support for the quasi-steady nature of the LES solutions is given

below.

All of the three-dimensional LES computations of the Bunsen-type premixed

flames were carried out using the SciNet facilities. The simulation of each case was

performed using 13 IBM Power 6-575 nodes, each with 32 cores for a total of 416

cores. The estimated total CPU time was about 50,000 hours and total wall clock

time was about 150 hours for each simulation.

5.4.2 Qualitative Features of LES Flame Structures

To begin this assessment of the FSD-LES modelling, qualitative features of six

of the flames are first examined. Results for three stoichiometric cases (cases H, I,

and J) and three lean methane-air flames (cases L, M, and N) are considered for

this purpose. Three-dimensional views of the predicted instantaneous flame surfaces,

identified by the c = 0.5 iso-surfaces of the progress variable, are displayed in Fig-

ure 5.24 corresponding to time t = 9 ms after the initiation of the simulation, all of

which by this time have achieved a quasi-steady flame structure. In general, the six

simulated flames exhibit highly wrinkled surfaces and the scale of wrinkling becomes

larger near the tips of the flames. It can also be observed that the flame wrinkling

increases with turbulence intensity. As expected the heights of the flames are seen

to be related to the overall burning rates. The flame heights can be seen to decrease

with increasing turbulence intensity as expected and, in general, the stoichiometric
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flames are shorter for similar turbulence intensities than their lean counterparts. Note

that the laminar flame speed for stoichiometric flames is a factor of two larger than

the flame speed for the lean flames, and thus the absolute burning rates of the sto-

ichiometric flames are expected to be higher than those of the lean flames. Further

quantitative comparisons of predicted average flame heights to measurements based

on analysis of the mean progress variable, c̄, are discussed in the subsections to follow.

More details of the LES flame structures can be seen in Figures 5.25–5.27, which

show the predicted contours of progress variable, FSD, and temperature fields, re-

spectively, for a vertical y-z plane through the burner at time t=9 ms. In particular,

it is evident from these figures that there are increases in the maximum values of FSD

with relative turbulence intensity increase. The flames are anchored and prevented

from undergoing strong wrinkling by the burner base; however, further downstream

above the burner exit, the flames become more strongly wrinkled and pockets of

unburned reactants can be clearly identified. Note that the background or product

temperatures are lower for the lean cases as should be expected.

Unlike the freely propagating flames considered earlier, it is somewhat difficult to

compare here the level of resolved wrinkling for the three stoichiometric cases (case

H, I, and J), the three lean methane-air flames (case L, M, and N). The LES results

for three-dimensional freely propagating methane-air flames described in the previous

sections of this chapter suggest that lean methane-air flames exhibit somewhat more

wrinkling and have more diffused fronts. Moreover, the previous work of Kaminski et

al. [159] suggests that there may be some dependence of flame wrinkling on equiv-

alence ratio. However, for the Bunsen flames shown in Figures 5.24–5.27, it would

seem that the lean methane-air flame fronts undergo somewhat less wrinkling by the

turbulence than the stoichiometric flames. This feature will be examined further

below when predicted overall turbulent burning rates are considered.
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(a) (b) (c)

(d) (e) (f)

Figure 5.24: Predicted iso-surfaces of the progress variable at c=0.5 for stoichiometric
cases with turbulence intensities at t=9 ms: (a) u′/sL =3.3 (case H), (b) u′/sL =7.25
(case I), (c) u′/sL = 14.38 (case J), and lean cases with turbulence intensities: (d)
u′/sL =3.3 (case L), (e) u′/sL =6.55 (case M), (f) u′/sL =14.38 (case N).

5.4.3 Analysis and Reduction of LES and

Experimental Image Data

In order to directly compare the present LES-FSD simulations to the experimen-

tal measurements of Yuen and Gülder [4, 5] for the two stoichiometric and two lean

methane-air premixed flames (cases H, I, M, and N, respectively), the temperature

fields from both the planar experimental images and two-dimensional FSD-LES cal-
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(a) (b) (c)

(d) (e) (f)

Figure 5.25: Predicted contours of the progress variable at y-z plane for stoichiometric
cases with turbulence intensities at t=9 ms: (a) u′/sL =3.3 (case H), (b) u′/sL =7.25
(case I), (c) u′/sL = 14.38 (case J), and lean cases with turbulence intensities: (d)
u′/sL =3.3 (case L), (e) u′/sL =6.55 (case M), (f) u′/sL =14.38 (case N).

culation solution cross sections were processed with the same algorithms in identical

fashion so as to extract information concerning the flame heights, surface area, and

curvature statistics. A detailed description of the data analyses and reduction tech-

niques used can be found in the recent Ph. D. thesis of Yuen [4]. For the purposes of

completeness, these data analyses are also briefly summarized in what follows.
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(a) (b) (c)

(d) (e) (f)

Figure 5.26: Predicted contours of the FSD at y-z plane for stoichiometric cases with
turbulence intensities at t=9 ms: (a) u′/sL =3.3 (case H), (b) u′/sL =7.25 (case I),
(c) u′/sL =14.38 (case J), and lean cases with turbulence intensities: (d) u′/sL =3.3
(case L), (e) u′/sL =6.55 (case M), (f) u′/sL =14.38 (case N).

The temperature field analysis takes the two-dimensional planar distributions of

the temperature from Rayleigh scattering images or LES results and converts the

values of the temperature to a progress variable, c, which is defined in terms of the

reduced temperature as follows:

c =
T − Tu

Tb − Tu

, (5.3)
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(a) (b) (c)

(d) (e) (f)

Figure 5.27: Predicted contours of the temperature at y-z plane for stoichiometric
cases with turbulence intensities at t=9 ms: (a) u′/sL =3.3 (case H), (b) u′/sL =7.25
(case I), (c) u′/sL = 14.38 (case J), and lean cases with turbulence intensities: (d)
u′/sL =3.3 (case L), (e) u′/sL =6.55 (case M), (f) u′/sL =14.38 (case N).

where T is the instantaneous temperature at each pixel of the experimental image

or LES computational cell, Tb is the burnt temperature and Tu is the unburnt gas

temperature. Values taken for Tb and Tu were the peak values of the probability

density functions (PDFs) of the temperature distribution for each two-dimensional

image. In what follows, the progress variable is based on the reduced temperature
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field, unless otherwise specified.

Gradients of the progress variable, ~∇c, are estimated for each image or distribution

of c by using:

~∇c(x, y) =

√[
c(x + ∆x)− c(x−∆x)

2∆x

]2

+

[
c(y + ∆y)− c(y −∆y)

2∆y

]2

, (5.4)

where x and y are the coordinates of the pixels or cells and ∆x and ∆y are the

distance between the pixels or cells. An interpolation procedure is also then used to

locate the position of the flame front for different values of c (e.g., the c=0.5 contour

corresponds to the middle of the flame). The corresponding values of ~∇c along the

flame front are also evaluated.

Having defined the progress variable for the image, the average value of the

progress variable, c̄, based on all of the flame images can be obtained. In the case of

the experimental results, 300 images of the progress variable distribution within the

flame are averaged to determine the distributions of c̄. For each LES simulation, the

two-dimensional cross-sectional slices were extracted from 19 instantaneous snapshots

of the numerical solution separated by 0.25 ms taken from the quasi-steady phase of

the flame simulations. The averaging procedure was applied to these numerical im-

ages to determine the corresponding c̄-maps. The experimental and numerical c̄-maps

can then be used to define average flame height and the extent of the flame brush for

each case.

For the analysis of the flame surface area or FSD, the individual distributions

of c and ~∇c, as well as the cumulative distribution for c̄, are used. Two different

techniques for the analysis of the FSD data are considered. One of approach uses the

gradient of the progress variable along the flame front to estimate values for the flame

surface density. The other method uses the ratio of the flame front length, L(c̄), to

the flame zone area, A(c̄). In the gradient of c method, components of ~∇c in x and

y directions are extracted along the flame from (paths of constant c) for c = 0.1 to

c = 0.9. The distribution of the instantaneous local values of the FSD, Σ, along the

flame front is then calculated using the following definition:

Σ = |~∇c|δ(c− c∗), (5.5)
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where δ(c − c∗) is the Kronecker delta function and c= c∗ defines the instantaneous

flame front location. The instantaneous flame fronts are then averaged to obtain

PDFs of FSD and values of the FSD as a function of the progress variable. Note that

the resolution of the two-dimensional numerical images is much less than that of the

experimental images. In the current simulation results, there are about 50,000 cells

along the flame fronts, whereas, the experimental images have about 2,000,000 pixels

along each front.

The second method for estimating the FSD from the two-dimensional planar dis-

tributions of the progress variable is due to Shepherd [168] and follows from direct

measures of the flame front length, L, and the flame zone area, A, as functions of the

mean progress variable, (c̄). Although the true definition of FSD is the flame surface

area per unit volume, a two-dimensional estimate based on the ratio L(c̄)/A(c̄) has

been shown to provide reasonable estimates of the FSD. The flame zone area, A(c̄),

is determined from maps of c̄. Values for A(c̄) values are calculated from the distri-

bution of c̄ and the known area of each image pixel or cell. As for flame front length,

L(c̄), each instantaneous flame front edge defined by c = 0.5 is divided into equal

segments of one pixel or one lengths. The flame front edge is then superimposed onto

the core c̄-map and each segment of the flame front segment is assigned a value of c̄.

From this, L(c̄) is found in a similar manner to A(c̄) and then the ratio L(c̄)/A(c̄) is

calculated to determines values for Σ(c̄).

Finally, the local flame curvature, h, at each pixel or cell along the flame front

can be calculated using the expression

h =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
, (5.6)

where ẋ = dx/ds and ẍ = d2x/d2s are the first and second derivatives with respect

to s which is a path length coordinate along the flame front measured from a fixed

origin on the flame front. For each experimental or numerical image, instantaneous

values for the local flame curvature are calculated along the flame front defined by

c = 0.5 and these values are then grouped to form a probability density function of

the curvature. This procedure is similar to the method described by Pavé [169].



Section 5.4. Three-Dimensional Turbulent Bunsen Flames 111

(a) (b) (c) (d)

Figure 5.28: Comparison of the measurement and LES predictions of the location or
map of the c̄ = 0.5 contour line in the y-z plane for the stoichiometric methane-air
Bunsen flames with turbulence intensities: (a) u′/sL = 3.3 (case H) and (b) u′/sL =
7.25 (case I); and lean methane-air Bunsen flames with turbulence intensities: (c)
u′/sL = 6.55 (case M) and (d) u′/sL = 14.38 (case N). Experimental measurements
taken from Yuen and Gülder [4, 5].

5.4.4 Quantitative Comparisons of LES and Experimentally

Estimated Values of Flame Height

Figure 5.28 shows a comparison of the experimental measurements and LES so-

lution of the location or map of the c̄ = 0.5 contour line in the y-z plane for the

stoichiometric Bunsen flames with turbulence intensities u′/sL = 3.3 (case H, Fig-

ure 5.28(a)) and u′/sL = 7.25 (case I, Figure 5.28(b)) and lean Bunsen flames with

turbulence intensities u′/sL =6.55 (case M, Figure 5.28(c)) and u′/sL =14.38 (case N,

Figure 5.28(d)). The measured c̄=0.5 contour lines were obtained from the Rayleigh

scattering images of Yuen and Gülder [4, 5] and the LES solution results were ob-

tained using the LES-FSD computational framework developed as part of this thesis.

It should be pointed out that, due to reflections from the burner rim, the Rayleigh

scattering images could not be obtained below a height of 40 mm above the burner

rim and so the experimental c̄-maps are cut off below this height.

It is apparent from the results of Figure 5.28 that the FSD subfilter-scale model
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yields flame heights that agree very well with the experimental values in most cases.

The experimental flame heights for the stoichiometric flames (cases H and I) are 9.5 cm

and 6.5 cm, respectively, and the present LES-FSD modelling predicts flame heights

of about 10 cm and 6 cm for these two cases. For the lean flame with u′/sL =14.38

(case N), the FSD model slightly over predicts the flame height as compared with the

experimental value (8 cm is predicted by the LES-FSD modelling compared to the

measure value of about 7 cm). It is only for the lean flame with u′/sL =6.55 (case M)

that the quantitative agreement between the numerical predictions and experiment

is not as strong. The experimental flame height in this case is about 9.5 cm and the

LES-FSD values is clearly well in excess of 10 cm.

5.4.5 Quantitative Comparisons of LES and Experimentally

Measured Values of Flame Surface Density

Figure 5.29 depicts comparisons of the predicted and measured histograms rep-

resenting the PDFs of the FSD through flame as determined using the gradient of

c method described above for stoichiometric and lean premixed methane-air Bun-

sen flames with turbulence intensities of u′/sL = 3.3 (case H), u′/sL = 7.25 (case I),

u′/sL =6.55 (case M), u′/sL =14.38 (case N). The experimental and numerical PDFs

of the FSD are clearly in good agreement for both the stoichiometric and lean cases.

The peak values for the experimental and numerical PDFs occur at similar values

for the FSD and the general trends and behaviour of the experimental and numeri-

cal PDFs are similar. As further evidence of the good agreement between predicted

flame area and experiment, Figure 5.30 provides comparisons of the predicted and

measured variation of the FSD as a function of progress variable, c, through the same

four flames as determined using the gradient of c method. The figure clearly demon-

strates similar qualitative and quantitative agreement between the experimental and

numerical results. In all the flame surface area profiles, the maximum FSD value is

found to be near c=0.5.

Additional comparisons of the predicted and measured variation of the FSD, this

time as a function of the mean progress variable, c̄, as computed using the L(c̄)/A(c̄)
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(a) (b)

(c) (d)

Figure 5.29: Comparisons of the predicted and measured histograms representing the
probability density functions (PDFs) of the FSD through flame as determined using
the gradient of c method for stoichiometric and lean premixed methane-air Bunsen
flames with turbulence intensities: (a) u′/sL = 3.3 (case H), (b) u′/sL = 7.25 (case
I), (c) u′/sL =6.55 (case M), (d) u′/sL =14.38 (case N). Experimental measurements
taken from Yuen and Gülder [4, 5].

method are shown in Figure 5.31. While the agreement between the LES results and

measured flame surface as determined by this alternative approach is not as good as

was obtained for the reduction technique based on the gradient of c, the agreement

is still quite reasonable. Moreover, it would seem that the FSD subfilter-scale model
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(a) (b)

(c) (d)

Figure 5.30: Comparisons of the predicted and measured variation of the FSD, Σ,
as a function of progress variable, c, as determined using the gradient of c method
for stoichiometric and lean premixed methane-air Bunsen flames with turbulence
intensities: (a) u′/sL = 3.3 (case H), (b) u′/sL = 7.25 (case I), (c) u′/sL = 6.55 (case
M), (d) u′/sL = 14.38 (case N). Experimental measurements taken from Yuen and
Gülder [4, 5].

is well suited to describing the evolution and dynamics of the flame front and surface

area, yielding surprisingly good predictions of the FSD distributions for the premixed

Bunsen flames of interest here.
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(a) (b)

(c) (d)

Figure 5.31: Comparisons of the predicted and measured variation of the FSD, Σ, as
a function of mean progress variable, c̄, as determined using the L(c̄)/A(c̄) method
stoichiometric and lean premixed methane-air Bunsen flames with turbulence inten-
sities: (a) u′/sL = 3.3 (case H), (b) u′/sL = 7.25 (case I), (c) u′/sL = 6.55 (case
M), (d) u′/sL = 14.38 (case N). Experimental measurements taken from Yuen and
Gülder [4, 5].

5.4.6 Quantitative Comparisons of LES and Experimentally

Measured Values of Flame Curvature

Comparisons of the predicted and measured histograms representing the PDFs of

the flame front curvature through the flame for the two stoichiometric flames (cases H
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(a) (b)

(c) (d)

Figure 5.32: Comparisons of the predicted and measured histograms representing
the probability density functions (PDFs) of the flame curvature through flame for
stoichiometric and lean premixed methane-air Bunsen flames with turbulence inten-
sities: (a) u′/sL = 3.3 (case H), (b) u′/sL = 7.25 (case I), (c) u′/sL = 6.55 (case
M), (d) u′/sL = 14.38 (case N). Experimental measurements taken from Yuen and
Gülder [4, 5].

and I) and the two lean premixed flames (cases M and N) are displayed in Figure 5.32.

It is quite apparent from the results that the experimental PDFs of flame curvature

are both symmetric and Gaussian-like distributions for all four turbulent intensities.

Similar trends for flame curvature were found in other previous experimental studies
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Figure 5.33: Comparison of the predicted and measured histograms representing the
probability density functions (PDFs) of the flame curvature through flame for lean
premixed methane-air Bunsen flame with turbulence intensity u′/sL =14.38 (case N).
Original and filtered experimental results are both shown with latter based on top-hat
spatial filtering of Rayleigh scattering images of Yuen and Gülder [4, 5].

of premixed turbulent flames by Shepherd [161]. While the numerical PDFs of flame

curvature also appear to be symmetric Gaussian-like distributions, there are clear

differences between the LES and measured distributions. In particular, all of the LES

solutions exhibit narrower PDFs as compared to the experimental ones with the range

of curvatures present in numerical solution being significantly reduced compared to

that detected by the experimental measurements (e.g., curvatures between ±1 mm−1

are prevalent in the LES results whereas the curvature typically falls in the range ±5-

6 mm−1 for the four experimental flames). Remembering that the resolution of the

Rayleigh scattering imaging used in the experiments is much higher than that of the

LES (refer to Subsection 5.4.3 above), it is argued that the LES filtering effectively

removes all of the small-scale wrinkled structures, having high curvature, from the

numerical solutions. As LES provides solutions for filtered flow variables, it would

seem more appropriate to compare the LES results with filtered experimental data.
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(a) Time histories of predicted turbulent burn-
ing rates as determined from the LES-FSD sim-
ulations for 0≤ t≤ 9 ms for lean and stoichio-
metric premixed Bunsen flames, cases H–P.

(b) Comparison of predicted and measured
values of the normalized turbulent burning
rates as a function of turbulence intensity
for lean and stoichiometric premixed Bunsen
flames, cases H–P. The experimental results
are due to Yuen and Gülder [4, 5] and in-
clude estimated burning rates for three dif-
ferent values of the progress variable, c, and
estimates of the integrated flame area.

Figure 5.34: Time histories of predicted turbulent burning rates as determined from
LES-FSD simulations and comparisons of predicted and measured values of the tur-
bulent burning rates as a function of turbulence intensity for lean and stoichiometric
premixed methane-air Bunsen flames, cases H–P.

Support for the preceding argument is provided by the results of Figure 5.33 which

shows a comparison of the curvature PDFs of the original experimental data, filtered

experimental data, LES solution for the lean premixed methane-air Bunsen flame

with u′/sL =14.38 (case N). The experimental temperature images were filtered with

a top-hat filter having a characteristic size of two times the average cell size of the

LES computational grid. It would seem that there is quite good agreement between

the filtered experimental distribution of flame curvature and numerical results for this

case.
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(a) Normalized zero crossing (curvature)
frequency (averaged zero crossings per
flame) for instantaneous surfaces of constant
progress variable as a function of equivalence
ratio.

(b) Normalized zero crossing (curvature)
frequency (averaged zero crossings per
flame) for instantaneous surfaces of constant
progress variable as a function of turbulence
intensity.

Figure 5.35: Experimental measurements of normalized zero crossing (curvature)
frequency, a measure of the degree of wrinkling of flame surface, for lean and stoi-
chiometric premixed methane-air Bunsen flames due to Yuen and Gülder [4–6].

5.4.7 Quantitative Comparisons of LES and Experimentally

Measured Values of Turbulent Burning Rate

The predicted turbulent burning rates may be calculated from the LES-FSD re-

sults by using the integrated FSD as follows:

sT

sL

∝
∫

V

ρ̄Σ̃dV. (5.7)

where the integration is performed over the entire computational domain. Figure 5.34

shows the predicted normalized turbulent burning rates for the four stoichiometric

(cases H, I, J, and K) and four lean cases (cases L, M, N, and P) obtained us-

ing Eq. (5.7). In particular, Figure 5.34(a) depicts the complete time histories of

the predicted turbulent burning rates and Figure 5.34(b) shows a comparison of the

predicted quasi-steady normalized turbulent burning rates for the eight flames to es-

timated values of the burning rates and integrated flame surface area obtained by

Yuen and Gülder [4, 5] from analyses of the measured flame structure. Note that,

as discussed in Chapter 2, according to the flamelet assumption of Damköhler for
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premixed flames it is expected that the turbulent burning rates and integrated flame

areas should be strongly correlated with each other, with both quantities increasing

with increasing turbulence intensity.

The first observation that can be made from Figure 5.34(a) is that, sometime

between 5 ms and 6 ms after initialization of the flame in all eight of the LES calcula-

tions, a relatively stable and constant value of turbulent burning rate is achieved. This

is indicative of the fact that the transient features associated with the initialization of

the simulations are no longer present and a quasi-steady flame has been established

for the last 3-4 ms of the computations. It is the average of these “quasi-steady”

values for the burning rate that are reported along with the experimental results in

Figure 5.34(b). Note that the somewhat unphysical flame solution content associated

with the computation initialization is transported out of the domain during the first

5-6 ms of the simulation.

It is also quite clear from Figure 5.34, that while showing a gradual increase for

low relative turbulence intensities, the LES-FSD predictions of the burning rates do

not continue to increase with increasing turbulence intensity and a maximum value

appears to be achieved for u′/sL >6-8, for both lean and stoichiometric flames. The

plateaus in the predicted burning rates are directly related, through the flamelet

approximation, to a lack of an increase in the predicted flame surface area by the

FSD model. It seems that flame area does not continue to increase with increasing

turbulence intensity (i.e., there appears to be an upper limit to the degree of wrinkling

of the flame front that can be induced by the turbulence). While the experimental

measurements of burning rate continue to increase with turbulence intensity, the

LES predictions of burning rate and flame area are strongly supported by and agree

with both qualitatively and quantitatively with the integrated values of the measured

FSD. The latter also appear to reach a maximum for u′/sL > 6-8 and thereafter

remain relatively insensitive to turbulence intensity. From this and the previous

comparisons of the LES and experimental results, it would seem that the modelled

transport equation for the FSD can in fact quite accurately represent the degree of

wrinkling of the flame surface and increases in flame surface area produced by the

turbulent field. Nevertheless, it would appear that it is not entirely correct to infer
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a direct relationship between turbulent burning rate and flame area. The results of

Figure 5.34 cast some doubt on the flamelet concept, at least for higher turbulence

intensities (i.e., u′/sL > 6-8). Note that while the flamelet concept originally due to

Damköhler is formally only correct in the wrinkled and corrugated flamelet regimes,

in which the laminar flame thickness, δL, is smaller than the smaller turbulent scales

(i.e., the Kolmogorov scale), it has been speculated that the flamelet approach remains

valid throughout the thin reaction zones regime. For the latter, the smallest scales

of the turbulence are generally smaller than the flame front thickness but larger than

the width of the reaction or heat-release zone and therefore leave the latter intact.

The LES and experimental results of Figure 5.34 strongly suggest that the range

of validity of the flamelet concept does not in fact to extend very far into the thin

reaction zones regime.

A final observation that can be made from Figure 5.34(a) pertains to the influence

of stoichiometry on flame wrinkling and burning rates. For LES-FSD predictions of

the freely-propagating methane-air flames discussed in the previous section above, it

was found that the flame front of the lean flame exhibited a higher degree of wrinkling

than the stoichiometric cases and this, in turn, resulted in higher predicted normalized

turbulent burning rates. For the premixed methane-air Bunsen flames of Yuen and

Gülder, this trend is not quite so clear. For the flames having lower relative turbulence

intensities with u′/sL = 3.3 (cases H and L), u′/sL = 7.25 (case I), and u′/sL = 6.55

(case M), the predicted normalized turbulent burning rates provided by the LES for

the stoichiometric cases are somewhat higher than those for the lean cases. However,

for higher relative turbulence intensity case with u′/sL = 24.1 (cases K and P), lean

cases have a higher value for the normalized turbulent burning rate.

Yuen and Gülder [6] have recently performed further analysis of their experimental

data for the Bunsen flames. In particular, they re-examined the flame curvature along

the flame front and collected statistics on the occurrence of zero curvature points, i.e.,

the transition points from negative to positive curvatures along the flame. It is argued

that the frequency of zero curvature (crossing) points provides the information on the

degree of wrinkling of the flame front. Figures 5.35(a) and 5.35(b) summarize the

results of the zero curvature statistical analysis for the methane-air flames. The
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normalized frequency of zero curvature points as a function of both equivalence ratio

and turbulence intensity are shown in the figures. The frequency of occurrences

has been normalized by the total number of images in each flame set. The results of

Figures 5.35(a) and 5.35(b) suggest that there is a mild dependence of flame wrinkling

on stoichiometry for high turbulence intensity and that the lean flames seem to exhibit

a greater degree of wrinkling for higher turbulence intensity. Although it is felt that

further investigation of this matter is certainly warranted, this interpretation of the

results of the curvature analysis would appear to match the findings noted in the

LES-FSD results above.

5.4.8 Influence of Mesh Resolution

The LES studies of two-dimensional premixed turbulent flames discussed earlier in

Section 5.2.1 of this chapter demonstrated the typical mesh resolution requirements

for accurately representing the FSD at the flame front. All of the meshes used in the

subsequent three-dimensional calculations above were selected based on this mesh

resolution criteria. In an effort to assess further the influence of mesh resolution

on the LES results for the three-dimensional Bunsen flames, LES of the premixed

Bunsen flame have been carried out using two different grids for the lean case with a

turbulence intensity of u′/sL =14.38 (case N). The first mesh (mesh A) considered in

this mesh study, was identical to the mesh used in all of the Bunsen flame simulations

described above. Mesh A consisted of 1664 12×12×8 hexahedral blocks and 1, 916, 928

computational cells and there were 1, 024 cells in the vertical direction, 48 cells in the

azimuthal direction, and approximately 42 cells in the radial direction. The second

mesh (mesh B) had the same physical solution domain as that of mesh A; however,

now 6400 8×8×4 hexahedral solution blocks were used in the discretization of the

cylindrical-shaped domain. Mesh B contained 1, 638, 400 computational cells with

1, 024 cells in the vertical direction, and just 32 cells in the azimuthal direction,

and about 52 cells in the radial direction. Mesh B has a finer mesh spacing in

the radial direction than mesh A with ∆xrA
= 0.025 mm = 0.054 λ = 0.86 η, and

∆xrB
= 0.032 mm = 0.07 λ = 1.1 η, but a coarser mesh spacing in the azimuthal
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(a) (b) (c)

(d) (e) (f)

Figure 5.36: Comparison of LES predictions of the iso-surfaces of the progress variable
at c=0.5, and contours of the progress variable, c, and FSD in the y-z plane for lean
premixed methane-air Bunsen flame with turbulence intensity u′/sL =14.38 (case N)
obtained using mesh A (1,916,928 cells) and mesh B (1,638,400 cells): (a) mesh A
iso-surfaces of the progress variable; (b) mesh A contours of the progress variable; (c)
mesh A contours of FSD; (d) mesh B iso-surfaces of the progress variable; (e) mesh
B contours of the progress variable; and (f) mesh B contours of FSD.

direction with ∆xθA
= 0.62 mm = 1.3 λ = 21.5 η, than mesh B, ∆xθB

= 0.41 mm =

0.9 λ = 14.4 η. Both meshes have the same spacing in the vertical direction with

∆x=0.1 mm=0.002 λ=0.034 η.

Figure 5.36 shows a comparison of the LES results for case N on the two different

meshes. The predicted iso-surfaces of the progress variable at c=0.5 and contours of
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both the progress variable, c, and FSD in the y-z plane are shown. Visually, it can be

seen that the LES results on the two meshes are qualitatively quite similar. Moreover,

if one compares the predicted contours of FSD for these two meshes as shown in

Figures 5.36(c) and 5.36(f), the predictions are quantitatively very similar indicating

that the FSD seems to have been sufficiently resolved on both computational meshes.

While the level resolution of meshes A and B are not dramatically different, the

comparisons in Figure 5.36 do provide some further assurance of the reliability and

quality of the LES results for the Bunsen flame reported herein.
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Conclusions and Recommendations

6.1 Conclusions

The present study has considered the application of a flame surface density model

based on the modelled transport equations from Hawkes and Cant [43] to LES of

turbulent premixed flames. A parallel, AMR, finite-volume scheme has been de-

veloped for the numerical solutions of the filtered Navier-Stokes equations coupled

with modelled equations for the progress variable and FSD. Numerical results have

been described for one-, two-, and three-dimensional turbulent premixed flames and

the predicted flame structures have been investigated. In particular, comparisons

were made between the predicted flame structures and turbulent burning rates as

a function of turbulence intensity. For the two-dimensional flames, the LES predic-

tions of the FSD model were compared to results obtained using a thickened flame

model and qualitative agreement between the two subfilter-scale models was observed.

For the three-dimensional flames, the LES-FSD results were compared to available

experimental data for several turbulent premixed methane-air flames. In general,

good qualitative and quantitative agreement for flame structures, in terms of pre-

dicted flame height, FSD, and flame curvature, was achieved for both stoichiometric

and lean cases. The numerical results have demonstrated the capability of the LES

methodology for predicting premixed combustion processes.

The key findings and contributions of the thesis can be summarized as follows:

125
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• The current study represents the first application of the FSD model, based on a

full transport equation model for the FSD, to LES of a laboratory-scale turbu-

lent premixed flame. While previous studies (e.g. Hawkes [25]), have considered

the application of the model to LES of planar flame propagation in an isotropic

decaying turbulent flow, the laboratory-scale turbulent premixed methane-air

Bunsen-type flames studied by Yuen and Gülder [4] are considered herein. The

flames examined are all strongly turbulent and lie well within the thin-reaction

zone regime. The study also provides the first detailed comparisons of the

Bunsen flame data to LES predictions.

• The comparisons of the LES results of this thesis to the experimental data

of Yuen and Gülder [4] provide strong support for the validity of the modelled

transport equation for the FSD. As indicated by the comparisons of flame height,

FSD, and flame curvature, it was found that the LES-FSD predictions can

accurately represent the flame structure, degree of wrinkling of the flame surface,

and increases in flame surface area produced by the turbulent fields. The FSD

model would appear to be well equipped to represent the dynamics of premixed

flame fronts.

• While the flame structure and area are well represented by the FSD subfilter-

scale model, the LES predictions of turbulent burning rate do not match well

with the experimentally measured values for the stronger turbulent cases with

u′/sL >6-8. For the premixed Bunsen flames, the LES-FSD predictions of total

flame area agree both qualitatively and quantitatively with the integrated values

of the measured FSD and reach a maximum for u′/sL >6-8, thereafter remaining

relatively insensitive to turbulence intensity. As the FSD model is based on the

flamelet concept through which the turbulent burning rate is directly related to

the flame area, unlike the measured values, the LES predictions of burning rate

correspondingly also do not continue to increase with increasing turbulence

intensity and maximum burning rates are achieved for u′/sL > 6-8. While

seemingly correct for flames lying within the wrinkled and corrugated flamelet

regimes and for lower turbulence intensities, the findings cast doubt on the
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validity of the flamelet approximation for flames within the thin reaction zones

regime for u′/sL >6-8.

• The influence of stoichiometry on flame wrinkling and burning rates was also

examined herein. From the LES-FSD predictions of both freely-propagating

and Bunsen-type premixed flames, it was found that there is a mild dependence

of flame wrinkling on stoichiometry for high turbulence intensity and that the

lean flames seem to exhibit a greater degree of wrinkling for higher turbulence

intensity. This finding seems to be somewhat supported by the experimental

data of Yuen and Gülder [6].

• Finally, the mesh resolution requirements of the FSD model was also examined

as part of this thesis research and requirements for accurate LES of premixed

flames were established. Moreover, for two-dimensional freely-propagating flames,

the proposed block-based AMR strategy was found to be very effective in deal-

ing with the rapid variation of the FSD through the flame front and providing

more or less grid-independent solutions in an economical manner.

6.2 Recommendations for Future Research

The proposed LES framework with FSD subfilter-scale modelling based on a trans-

ported equation for the FSD would seem to be a promising approach for the simulation

of turbulent premixed combustion processes. Nevertheless further research is required

to make the proposed approach considered herein practical for application to more

practical burner and combustor configurations. Future research may involve some of

the following work among the many possible avenues:

• While providing accurate predictions of turbulent burning rate for relatively

lower turbulent intensities, the FSD model does not appear to provide accu-

rate predictions of turbulent burning rates in the thin reaction zone regime for

u′/sL >6-8. It would be important to first gain a more complete understanding

of the FSD model limitations related to burning rate and then explore possible
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remedies. In particular, it may be possible to correct some of the deficiencies in

the currently subfilter-scale model by incorporating effects of flame curvature

and strain on the laminar consumption rate.

• As it has been mentioned in Section 3.2.8, The scalar fluxes of the progress

variable, ũc− ũc̃, and the flame surface density, (ui)s− ũi, are found to be con-

trolled mainly by non-gradient transport mechanisms. In the current modelled

FSD transport equation, NGT has been included in modelling of the scalar

flux. It would be interesting to investigate NGT effects in the scalar flux for the

progress variable, c. A NGT model for the progress variable devised by Tullis

and Cant [170] has been implemented in the current two-dimensional LES-

FSD solver, but its affects of the predicted solutions has yet to be explored.

This could be the basis for the additional future LES investigations of premixed

flames and comparisons with the Bunsen-type flames. Another interesting com-

parison would be to compare directly the two different modelling approaches for

FSD, the algebraic model of Section 3.2.4 and the transport equation approach

of Section 3.2.9, for the premixed Bunsen flames. In the current research, the

latter approach was used exclusively; however, an algebriac model for the FSD

was also implemented in the two-dimensional LES-FSD formulation developed

herein using the expression of Charlette et al. [79, 80] given in Eq. 3.30. This

could be readily extended for use with three-dimensional premixed flames as

well.

• While demonstrated for two-dimensional flames, the suitability of the block-

based AMR scheme remains to be studied for LES of three-dimensional pre-

mixed flames with the FSD model. Future research should involve the investi-

gation of adaptive mesh refinement to LES of turbulent premixed flames using

the flame surface density model.

• The present LES framework makes use of an explicit time marching scheme. It

would be interesting to investigate the use of parallel implicit time marching

schemes based on Newton-Krylov-Schwarz (NKS) strategies for improving the
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efficiency of the time integration procedure. The current explicit time-marching

scheme may not be optimal and it may be possible to combine the NKS approach

with block-based AMR [146] to yield a more efficient approach.

• Further improvements to the LES framework may be possible through the use

of high-order finite-volume schemes, which have been proposed and evaluated

recently by Ivan [171], in conjunction with high-order explicit commutative

filters, which have also been studied in recent work by Deconinck [172].
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[20] G. Damköhler, “Der einfluβ der turbulenz auf flammengeschwindigkeit in gas-
gemischen,” Z. Elektrochem, vol. 46, pp. 601–652, 1947. English translation
NASA Technical Memorandum 1112.

[21] K. N. C. Bray, P. A. Libby, and J. B. Moss, “Unified modelling approach
for premixed turbulent combustion- part i: General formulation,” Combustion
Flame, vol. 61, pp. 87–102, 1985.

[22] K. N. C. Bray, “Studies of the turbulent burning velocity,” Proceedings of the
Royal Society, vol. 431, pp. 315–335, 1990.

[23] L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, “Three facets of turbu-
lent combustion modelling: Dns of premixed v-flame, les of lifted nonpremixed
flame and rans of jet-flame,” Journal of Turbulence, vol. 5, pp. 1–36, 2004.



Bibliography 133

[24] S. Cant, “High-performance computing in computational fluid dynamics:
Progress and challenges,” Philosophical Transactions: Mathematical, Physical
and Engineering Sciences, vol. 360, no. 1795, pp. 1211–1225, 2002.

[25] E. R. Hawkes, Large-Eddy Simulation of Premixed Turbulent Combustion. PhD
thesis, University of Cambridge, July 2000.

[26] L. Vervisch, “Dns and les of turbulent combustion.” Computational Fluid Dy-
namics in Chemical Reaction Engineering IV, June 19-24, 2005, Barga, Italy.

[27] B. S. Baldwin and H. Lomax, “Thin-layer approximation and algebraic model
for separated turbulent flows,” Paper 91–0610, AIAA, 1978.

[28] P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aero-
dynamic flows,” Paper 92-0439, AIAA, 1992.

[29] B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence. Aca-
demic Press, London, 1972.

[30] D. C. Wilcox, “Reassessment of the scale determining equation for advanced
turbulence models,” AIAA Journal, vol. 26, pp. 1299–1310, October 1988.

[31] B. E. Launder, J. G. Reece, and W. Rodi, “Progress in the development of
a reynolds-stress turbulence closure,” Journal of Fluid Mechanics, vol. 68,
pp. 537–566, 1975.

[32] H. Lomax, T. H. Pulliam, and D. W. Zingg, Fundamentals of Computational
Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 2001.

[33] U. Piomelli, “Large-eddy simulation: Achievements and challenges,” Prog.
Aerospace Sci., vol. 35, pp. 335–362, 1999.

[34] H. Pitsch, “Large-eddy simulation of turbulent combustion,” Annual Review of
Fluid Mechanics, vol. 38, pp. 453–482, 2006.

[35] P. Sagaut, Large-Eddy Simulation for Incompressible Flows. Springer, 2002.
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Appendix A

Eigensystem of the Inviscid
Jacobian

The Favre-filtered conservation equations for LES of premixed turbulent flames
with FSD model can be written as follows:

∂U

∂t
+

∂(FI + FV)

∂x
+

∂(GI + GV)

∂y
+

∂(HI + HV)

∂z
= S, (A.1)

where FI, GI, and HI are inviscid fluxes, FV, GV, and HV are viscous fluxes, and U
is the conservative vector. The inviscid fluxes and conservative variable vector can
be expressed as

U = [ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, ρ̄Ẽ, ρ̄c̃, ρ̄Σ̃, ρ̄k̃]T, (A.2)

FI = [ρ̄ũ, ρ̄ũũ + p̄t, ρ̄ũṽ, ρ̄ũw̃, (ρ̄Ẽ + p̄t)ũ, ρ̄c̃ũ, ρ̄Σ̃ũ, ρ̄k̃ũ]T, (A.3)

GI = [ρ̄ṽ, ρ̄ũṽ, ρ̄ṽṽ + p̄t, ρ̄ṽw̃, (ρ̄Ẽ + p̄t)ṽ, ρ̄c̃ṽ, ρ̄Σ̃ṽ, ρ̄k̃ṽ]T, (A.4)

HI = [ρ̄w̃, ρ̄ũw̃, ρ̄ṽw̃, ρ̄w̃w̃ + p̄t, (ρ̄Ẽ + p̄t)w̃, ρ̄c̃w̃, ρ̄Σ̃w̃, ρ̄k̃w̃]T, (A.5)

where the total energy is defined as

Ẽ = ȟ +
1

2
(ũ2 + ṽ2 + w̃2) + k̃ − p̄t

ρ̄
, (A.6)

and the Favre-filtered enthalpy, ȟ, and the turbulence pressure, p̄t, have the form as

ȟ = ȟs +
Ns∑
n=1

Ỹn∆h0
f,n, (A.7)

p̄t = p̄ +
2ρ̄k̃

3
. (A.8)

Rewriting the above equation system A.1 in terms of primitive parameters, it
becomes

∂W

∂t
+ AI

∂W

∂x
+ BI

∂W

∂y
+ CI

∂W

∂z
= AV

∂W

∂x
+ BV

∂W

∂y
+ CV

∂W

∂z
+ S, (A.9)
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where AI, BI, and CI are the inviscid flux Jacobian matrices, AV, BV, and CV are
the viscous flux Jacobian matrices, and W is the primitive vector. They are defined
as

AI =
∂FI

∂W
, BI =

∂GI

∂W
, CI =

∂HI

∂W
, (A.10)

W = [ρ̄, ũ, ṽ, w̃, p̄t, c̃, Σ̃, k̃]T. (A.11)

The Roe’s approximate Riemann solver used in this research requires knowledge of
the inviscid flux Jacobian matrices, AI, BI, and CI, and their associated eigenvalues
and eigenvectors.

The Jacobian of the inviscid flux in x-direction, ∂F
∂U

, is

∂F

∂U
=



0 1 0 0 0 0 0 0
A21 ũ(2− α) −ṽα −w̃α α −η̌α 0 −α
−ũṽ ṽ ũ 0 0 0 0 0
−ũw̃ w̃ 0 ũ 0 0 0 0

A51 A52 −ũṽα −ũw̃α − ũCp

αR
−ũη̌α 0 −ũα

−ũc̃ c̃ 0 0 0 ũ 0 0

−ũΣ̃ Σ̃ 0 0 0 0 ũ 0

−ũk̃ k̃ 0 0 0 0 0 ũ


, (A.12)

where

α =
R

Cp −R
, (A.13)

η̌ =
Ns∑
n=1

(ȟi − Cp
Ri

R
)
∂Ỹi

∂c̃
, (A.14)

A21 =
1

2
αṼ 2 − ũ− αȟ + a2

t + αc̃η̌, (A.15)

A51 = ũ[
1

2
(α− 1)Ṽ 2 − Cpα

R
ȟ− k̃ + a2

t + αc̃η̌], (A.16)

A52 = Ȟ − αũ2, (A.17)

and Ṽ 2 = ũ2 + ṽ2 + w̃2, Ȟ = ȟ + Ṽ 2/2 + k̃, and at =
√

Cpp̄t

ρ̄(Cp−R)
.

The eigenvalues for the Jacobian matrix ∂F
∂U

are as follows:

λ1 = ũ− at, λ2 = ũ, λ3 = ũ, λ4 = ũ + at, λ5 = ũ, λ6 = ũ, λ7 = ũ, λ8 = ũ,

where the turbulence sound of speed, at, is

at =

√
Cpp̄t

ρ̄(Cp −R)
. (A.18)
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The left primitive eigenvector matrix in x-direction, Lpx, corresponding to the
eigenvalues given above is

Lpx =



0 − ρ̄
2at

0 0 − 1
2a2

t
0 0 0

1 0 0 0 − 1
a2
t

0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 ρ̄

2at
0 0 1

2a2
t

0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (A.19)

The right conservative eigenvector matrix in x-direction, Rcx, corresponding to
the eigenvalues given above is

Rcx =



1 1 0 0 1 0 0 0
ũ− at ũ 0 0 ũ + at 0 0 0

ṽ ṽ ρ̄ 0 ṽ 0 0 0
w̃ w̃ 0 ρ̄ w̃ 0 0 0

Ȟ − ũat Ȟ − a2
t ρ̄v̄ ρ̄w̄ Ȟ + ũat ρ̄η̌ 0 ρ̄

c̃ c̃ 0 0 c̃ ρ̄ 0 0

Σ̃ Σ̃ 0 0 Σ̃ 0 ρ̄ 0

k̃ k̃ 0 0 k̃ 0 0 ρ̄


. (A.20)
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Appendix B

Summary of Filtered Governing
Equations for Cartesian Frame

The filtered Navier-Stokes equations for a three-dimensional compressible fluid
using the subfilter models can be summarized as

∂U

∂t
+

∂FI

∂x
+

∂GI

∂y
+

∂HI

∂z
=

∂FV

∂x
+

∂GV

∂y
+

∂HV

∂z
+ S, (B.1)

where

U =



ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃

ρ̄Ẽ
ρ̄c̃

ρ̄Σ̃

ρ̄k̃


, (B.2)

FI =



ρ̄ũ
ρ̄ũũ + p̄

ρ̄ũṽ
ρ̄ũw̃

(ρ̄Ẽ + p̄)ũ
ρ̄c̃ũ

ρ̄Σ̃ũ

ρ̄k̃ũ


, GI =



ρ̄ṽ
ρ̄ũṽ

ρ̄ṽṽ + p̄
ρ̄ṽw̃

(ρ̄Ẽ + p̄)ṽ
ρ̄c̃ṽ

ρ̄Σ̃ṽ

ρ̄k̃ṽ


, HI =



ρ̄w̃
ρ̄ũw̃
ρ̄ṽw̃

ρ̄w̃w̃ + p̄

(ρ̄Ẽ + p̄)w̃
ρ̄c̃w̃

ρ̄Σ̃w̃

ρ̄k̃w̃


,

(B.3)
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FV =



0
τ̌xx + σxx

τ̌xy + σxy

τ̌xz + σxz

ũ(τ̌xx + σxx) + ṽ(τ̌xy + σxy) + w̃(τ̌xz + σxz)− (q̌x + ϑx)

Ãx

B̃x

C̃x


, (B.4)

GV =



0
τ̌xy + σxy

τ̌yy + σyy

τ̌yz + σyz

ũ(τ̌xy + σxy) + ṽ(τ̌yy + σyy) + w̃(τ̌yz + σyz)− (q̌y + ϑy)

Ãy

B̃y

C̃y


, (B.5)

HV =



0
τ̌xz + σxz

τ̌yz + σyz

τ̌zz + σzz

ũ(τ̌xz + σxz) + ṽ(τ̌yz + σyz) + w̃(τ̌zz + σzz)− (q̌z + ϑz)

Ãz

B̃z

C̃z


, (B.6)

S =



0
0
0
0
0
¯̇ω

S̃Σ1 + S̃Σ2 + S̃Σ3 + S̃Σ4 + S̃Σ5

S̃k


, (B.7)

τ̌xx =
2

3
µ̌
(
2
∂ũ

∂x
− ∂ṽ

∂y
− ∂w̃

∂z

)
, σxx = −ρ̄(ũu− ũũ), (B.8)

τ̌yy =
2

3
µ̌
(
2
∂ṽ

∂y
− ∂ũ

∂x
− ∂w̃

∂z

)
, σyy = −ρ̄(ṽv − ṽṽ), (B.9)

τ̌zz =
2

3
µ̌
(
2
∂w̃

∂z
− ∂ũ

∂x
− ∂ṽ

∂y

)
, σzz = −ρ̄(w̃w − w̃w̃), (B.10)
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τ̌xy = µ̌
(∂ũ

∂y
+

∂ṽ

∂x

)
, σxy = −ρ̄(ũv − ũṽ), (B.11)

τ̌xz = µ̌
(∂ũ

∂z
+

∂w̃

∂x

)
, σxz = −ρ̄(ũw − ũw̃), (B.12)

τ̌yz = µ̌
(∂ṽ

∂z
+

∂w̃

∂y

)
, σyz = −ρ̄(ṽw − ṽw̃), (B.13)

q̌x = −λ̄
∂T̃

∂x
, ϑx = ũT − ũT̃ , (B.14)

q̌y = −λ̄
∂T̃

∂y
, ϑy = ṽT − ṽT̃ , (B.15)

q̌z = −λ̄
∂T̃

∂z
, ϑz = w̃T − w̃T̃ . (B.16)

Models for subfilter-scale terms are:

• Subfilter stress term which is modeled by eddy-viscosity model as

σij = 2ρ̄νt(Šij −
1

3
Škkδij) +

1

3
σkkδij. (B.17)

It can be expressed in three-space dimensions as

σxx = 2ρ̄νt(Šxx −
1

3
Škk) +

1

3
σkk, (B.18)

σyy = 2ρ̄νt(Šyy −
1

3
Škk) +

1

3
σkk, (B.19)

σzz = 2ρ̄νt(Šzz −
1

3
Škk) +

1

3
σkk, (B.20)

σxy = 2ρ̄νtŠxy, σxz = 2ρ̄νtŠxz, σyz = 2ρ̄νtŠyz, (B.21)

where

Šxx =
∂ũ

∂x
, Šyy =

∂ṽ

∂y
, Šzz =

∂w̃

∂z
, (B.22)

Šxy =
1

2

(∂ũ

∂y
+

∂ṽ

∂x

)
, Šxz =

1

2

(∂ũ

∂z
+

∂w̃

∂x

)
, Šyz =

1

2

(∂ṽ

∂z
+

∂w̃

∂y

)
. (B.23)

There are two models for eddy-viscosity given by
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(a) Smagorinsky model for compressible flow as

νt = Cs∆
2|Š|, σkk = −2CI ρ̄∆2|Š|2, CI = 0.09, (B.24)

where

Cs = 0.16, |Š| =
√

2ŠijŠij, Šij =
1

2

(∂ũi

∂xj

+
∂ũj

∂xi

)
. (B.25)

In three dimensions, the strain rate tensor, Šij becomes

|Šxx| =
√

2
∂ũ

∂x
, |Šyy| =

√
2
∂ṽ

∂y
, |Šzz| =

√
2
∂w̃

∂z
, (B.26)

|Šxy| =
√

1

2

(∂ũ

∂y
+

∂ṽ

∂x

)
, |Šxz| =

√
1

2

(∂ũ

∂z
+

∂w̃

∂x

)
, |Šyz| =

√
1

2

(∂ṽ

∂z
+

∂w̃

∂y

)
.

(B.27)

(b) Subfilter kinetic energy one-equation model as

νt = Cν

√
k̃∆, σkk = −2ρ̄k̃, Cν ≈ 0.086− 0.09. (B.28)

• Heat flux term is modelled by an eddy-diffusivity model given by

ϑx = −Čp
ρ̄νt

Prt

∂T̃

∂x
, ϑy = −Čp

ρ̄νt

Prt

∂T̃

∂y
, ϑz = −Čp

ρ̄νt

Prt

∂T̃

∂z
. (B.29)

• Subfilter transport term for progress variable is modelled by gradient transport
model as

Ãx = − ρ̄νt

Sct

∂c̃

∂x
, Ãy = − ρ̄νt

Sct

∂c̃

∂y
, Ãz = − ρ̄νt

Sct

∂c̃

∂z
. (B.30)

• Subfilter transport term for flame surface density is modelled by gradient trans-
port model as

B̃x =
ρ̄νt

Sct

∂Σ̃

∂x
, B̃y =

ρ̄νt

Sct

∂Σ̃

∂y
, B̃z =

ρ̄νt

Sct

∂Σ̃

∂z
. (B.31)

• Subfilter transport term for for subfilter kinetic energy is modelled by gradient
transport model as

C̃x = ρ̄(
νt

Prt

+ ν)
∂k̃

∂x
, C̃y = ρ̄(

νt

Prt

+ ν)
∂k̃

∂y
, C̃z = ρ̄(

νt

Prt

+ ν)
∂k̃

∂z
. (B.32)
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• Source term of progress variable equation as

¯̇ω = ρrsLρ̄Σ̃. (B.33)

• The source terms appearing in flame surface density equation are as follows:

(a) the mean strain term

S̃Σ1x = (δxx − nxx)ρ̄Σ̃
∂ũ

∂x
+ (δxy − nxy)ρ̄Σ̃

∂ũ

∂y
+ (δxz − nxz)ρ̄Σ̃

∂ũ

∂z

= (1− nxx)ρ̄Σ̃
∂ũ

∂x
− nxyρ̄Σ̃

∂ũ

∂y
− nxzρ̄Σ̃

∂ũ

∂z
, (B.34)

S̃Σ1y = (δxy − nxy)ρ̄Σ̃
∂ṽ

∂x
+ (δyy − nyy)ρ̄Σ̃

∂ṽ

∂y
+ (δxz − nxz)ρ̄Σ̃

∂ũ

∂z

= (1− nyy)ρ̄Σ̃
∂ṽ

∂y
− nxyρ̄Σ̃

∂ṽ

∂x
− nxzρ̄Σ̃

∂ṽ

∂z
, (B.35)

S̃Σ1z = (δxz − nxz)ρ̄Σ̃
∂w̃

∂x
+ (δyz − nyz)ρ̄Σ̃

∂w̃

∂y
+ (δzz − nzz)ρ̄Σ̃

∂w̃

∂z

= (1− nzz)ρ̄Σ̃
∂w̃

∂z
− nxzρ̄Σ̃

∂w̃

∂x
− nyzρ̄Σ̃

∂w̃

∂y
. (B.36)

(b) the mean planar propagation term

S̃Σ2 = −sL(1 + τ c̃)
[
Nx

∂(ρ̄Σ̃)

∂x
+ Ny

∂(ρ̄Σ̃)

∂y
+ Nz

∂(ρ̄Σ̃)

∂z

]
. (B.37)

(c) the mean curvature term

S̃Σ3 = −sLρ̄Σ̃
[
Nx

∂c̃

∂x
+ Ny

∂c̃

∂y
+ Nz

∂c̃

∂z

]
. (B.38)

(d) the subfilter strain term

S̃Σ4 = Γk

√
k̃

∆
ρ̄Σ̃. (B.39)

(e) the subfilter curvature term

S̃Σ5 = −βsL
(ρ̄Σ̃)2

1− c̃
. (B.40)
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As

N = −∇c̄

ρ̄Σ̃
, nij = NiNj +

1

3
αδij, c̄ =

(1 + τ)c̃

1 + τ c̃
, (B.41)

we have

Nx = − 1 + τ

ρ̄Σ̃(1 + τ c̃)2

∂c̃

∂x
, Ny = − 1 + τ

ρ̄Σ̃(1 + τ c̃)2

∂c̃

∂y
, Nz = − 1 + τ

ρ̄Σ̃(1 + τ c̃)2

∂c̃

∂z
,

(B.42)

nxx =
1

3
α +

(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂2c̃

∂x2
, (B.43)

nyy =
1

3
α +

(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂2c̃

∂y2
, (B.44)

nzz =
1

3
α +

(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂2c̃

∂z2
, (B.45)

nxy =
(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂c̃

∂x

∂c̃

∂y
, (B.46)

nxz =
(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂c̃

∂x

∂c̃

∂z
, (B.47)

nyz =
(1 + τ)2

(ρ̄Σ̃)2(1 + τ c̃)4

∂c̃

∂y

∂c̃

∂z
. (B.48)

• The source term of subfilter kinetic energy equation is given by

S̃k = −(σxxS̃xx +σyyS̃yy +σzzS̃zz +σxyS̃xy +σxzS̃xz +σyzS̃yz)− ρ̄Cε
k̃

3
2

∆
. (B.49)



Appendix C

Kolmogorov-Petrovski-Piskunov
(KPP) Flame Speed Analysis

This chapter presents a simple theoretical tool to analyze turbulent combustion
models. LES of turbulence is by nature three-dimensional due to the need to re-
solve turbulent structure. But if chosen the LES filter size larger than the flame
brush thickness, the LES turbulence will have a one-dimensional character. The
Kolmogorov-Petrovski-Piskunov (KPP) flame speed analysis for LES considers this
situation. There are some other restrictions to the KPP analysis as well. It only
applies to a steady frozen turbulence in which the turbulence kinetic energy remains
constant. More details for KPP analysis may be found in Hakberg and Gosman [151],
Fichot et al. [152] or Duclos et al. [112].

From progress variable and flame surface density transport equations, Eq. 3.50
and Eq. 3.60, considering a steady one-dimensional propagation in the negative x-
direction at speed sT in the fresh gases, one obtains:

ρrsT
dc̃

dx
=

d

dx

( ρ̄νt

Sct

dc̃

dx

)
+ ρrsLΣ̃, (C.1)

ρrsT

ρ̄

dΣ̃

dx
=

d

dx

( ρ̄νt

Sct

dΣ̃

dx

)
+
(2
3
α− 1

)dũ

dx
Σ̃

− d

dx
(sL(1 + τ c̃)NΣ̃) + sL(1 + τ c̃)

dN

dx
Σ̃

+SsfsΣ̃− αβsL
Σ̃2

1− c̃
. (C.2)

Using the expression for the density ρ̄ = ρr/(1 + τ c̃), assuming constant eddy diffu-
sivities, it may be shown that

d

dx

( ρ̄νt

Sct

dc̃

dx

)
=

ρ̄νt

Sct

d2c̃

dx2
+

ρ̄νt

Sct

τ

1 + τ c̃

( dc̃

dx

)2
, (C.3)
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d

dx

( ρ̄νt

Sct

dΣ̃

dx

)
=

ρ̄νt

Sct

d2Σ̃

dx2
− ρ̄νt

Sct

d

dx

( τ Σ̃

1 + τ c̃

dc̃

dx

)
=

ρ̄νt

Sct

d2Σ̃

dx2
− ρ̄νt

Sct

τ

1 + τ c̃

[ τ Σ̃

1 + τ c̃

( dc̃

dx

)2
+

dc̃

dx

dΣ̃

dx
+ Σ

d2c̃

dx2

]
. (C.4)

The propagation terms may be simplified for the case of constant sL as follows:

− d

dx
(sL(1 + τ c̃)NΣ̃) + sLΣ̃(1 + τ c̃)

dN

dx
= −sLN(1 + τ c̃)

dΣ̃

dx
− τsLNΣ̃

dc̃

dx
. (C.5)

Assuming a steady flow, the continuity gives ũ = ρrsT/ρ̄, then we have

dũ

dx
=

d(1 + τ c̃)sT

dx
= τsT

dc̃

dx
. (C.6)

Now, following the approach of Hakberg and Gosman [151], let

P =
dc̃

dx
, (C.7)

and

Q =
dΣ̃

dx
, (C.8)

and it can be shown that

sT(1 + τ c̃)P =
νt

Sct

P
dP

dc̃
+

νt

Sct

τ

(1 + τ c̃)
P 2 + sL(1 + τ c̃)Σ̃, (C.9)

sT(1 + τ c̃)Q =
νt

Sct

Q
dQ

dΣ̃
+ SsfsΣ̃

− νt

Sct

τ

(1 + τ c̃)
(

τ

1 + τ c̃
P 2Σ̃ + PQ + P

dP

dc̃
Σ̃)

+(
2

3
α− 1)sTτP Σ̃− αβsL

Σ̃2

1− c̃

−sL(1 + τ c̃)NQ− τsLNΣ̃P. (C.10)

In the fresh gases, Σ̃, c̃, dc̃
dx

, and dΣ̃
dx

are all small. The variables Σ̃, P, and Q are

extended as functions of c̃ and Σ̃ as follows:

P = a1c̃ + a2c̃
2 + · · · , (C.11)

Q = b1Σ̃ + b2Σ̃
2 + · · · , (C.12)

Σ̃ = d1c̃ + d2c̃
2 + · · · . (C.13)

In the limit of small c and Σ̃, second and higher order terms may be neglected. Eq. C.9
and Eq. C.10 become

sTa1c̃ =
νt

Sct

a2
1c̃ + sLd1c̃, (C.14)

(sT + NsL)b1Σ̃ =
νt

Sct

b2
1Σ̃ + SsfsΣ̃. (C.15)
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For there to be real solutions for b1, sT must obey

sT ≥ −NsL + 2

√
Ssfs

νtSct

. (C.16)

The KPP theorem indicates that the flame propagation speed corresponds to the
minimum solution for sT (Hakberg and Gosman [151]), therefore

sT = −NsL + 2

√
Ssfs

νtSct

. (C.17)


